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1
Introduction

Burn injuries form a very specific type of skin wounds, which can cause much suffering and inconvenience
to the patients. One who has serious burn injuries, can be literally scarred for life due to the complications
developed post wounding. Wound contracture is one of the symptoms that is characteristic for burn injuries
and it can yield many complications. At the location of the wound, an unusual large number of fibroblasts
accumulates. This is a type of skin cells that exert forces on their direct neighbourhood. Normally, skin
is elastic and if forces are removed, the skin recovers to its original shape again. However, in the case of
burn injuries, the forces can be so strong, that the skin, like other elastic materials, deforms permanently.
Hence, contractures, excessive and pathological contractions are developed. Investigating the healing of burn
injuries is necessary to obtain more insights and to know which factors can influence wound contraction and
scar formation. This could be helpful in order to give a treatment that is better in tune to avoid complications
as much as possible.

In this thesis, the main goal is to collaborate the morphoelastic model [18] into the agent-base model
for wound healing [12]. The agent-based model [12] describes the healing process in the perspective of dis-
placements of cells with various phenotypes, and dynamics of the concentration of different chemokines.
The morphoelastic model [18] provides an advanced model to describe the permanent plastic deformation
as a consequence of excessive forces. The new model that is developed in this thesis is a more complete and
generic model which uses the components from the aforementioned models as well as new features that are
added.

To validate the model and estimate the probability of the occurrence of contractures, a large number of
simulations are necessary. Hence, for the sake of computational efficiency, this model will be implemented
in C++. Currently, the agent-based model has already been developed in C++; see [12] for more details. The
implementation of the morphoelastic model in C++ will be carried out in this report. Hence, a relatively large
part of this report is dedicated to the development of the morphoelastic part of the model.

In Chapter 2, the biological background and preliminary knowledge is given. In Chapter 3, various models
to describe deformation are presented in one dimension and they are extended to higher dimensionality in
Chapter 4. Chapter 5 illustrates how cell traction forces are implemented in the form of Dirac Delta distribu-
tions in the two-dimensional morphoelastic model. Furthermore, it is investigated how the model reacts to
several parameters. In Chapter 6, the morphoelastic model is incorporated in the agent-based model. Monte
Carlo simulations are carried out to get more insights into the model. Chapter 7 focuses on the improvements
on computational efficiency, which is the basis of the parallel computing in the forthcoming work. Finally,
Chapter 8 contains the conclusion, discussions and suggestions for future work.
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2
Biological Background

In this chapter, at first a general description of the skin and dermal wound healing is given. Subsequently, ba-
sic knowledge of described, which is necessary for the development and investigation of the (morpho)elastic
models. In the last section, several modelling options for burn injuries are described.

2.1. Skin structure and dermal wound healing
The descriptions in this section are based on [12], [18] and [21]. The human skin consists of three layers:
epidermis, dermis and hypodermis (see Figure 2.1). The epidermis is a very thin layer (approximately 0.1
millimeter) at the top of the skin, which protects the skin against infection from pathogens and against ul-
traviolet radiation. It plays a role in the regulation of perspiration as well. Below the epidermis, the dermis
is located, which is much thicker than the epidermis (approximately 0.5 to 5 millimeter, depending on the
location at the body). It consists of cells of several phenotypes and it contains the extracellular matrix (ECM),
which is the largest component of the dermis. Furthermore, the dermis harbours blood vessels and other
biological materials. During the healing of a dermal wound, the fibroblasts are the main components to
maintain the ECM. The bottom layer of the skin is called the hypodermis, which connects the dermis to the
tissue below the skin. It mainly contains fat cells which are held in a framework of collagen fibres [6]. The
hypodermis is also called subcutis.

Figure 2.1: A schematic of human skin. Source: [14]
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4 2. Biological Background

The healing process of dermal wounds (in which the dermis is damaged) consists of four partially over-
lapping stages, namely hemostasis, inflammation, profliferation and maturation [9], [16], [18]. The main
features of the four stages are described below.

1. Hemostasis
The hemostasis starts immediately after the wounding. During this stage, the injury stops bleeding
by formation of blood clots. The blood vessels near the injury constrict in order to prevent further
blood loss. Furthermore, platelets stick together and to the injured skin. To form a fibrin network, the
platelets release several chemokines (also called signaling molecules). These are the chemicals that
influence the production and the behavior of cells, for example Platelet Derived Growth Factor (PDGF)
and Transforming Growth Factor β (TGF-β). The hemostasis stage usually lasts a few days. In the case
of burn injuries, there is almost no hemostatis.

2. Inflammation
The inflammation is the main process of wound healing. This phase is characterised by a high activity
of the immune system. For instance, white blood cells enter the wound, which clean the wound of
bacteria and other harmful elements and stimulate the forming of new blood vessels. An example of
a white blood cell type is the macrophage, which is the main phenotype secreting TGF-β. This stage
starts some days after the injury and lasts approximately one week.

3. Proliferation
In this stage, many parts of the skin are restored and contraction occurs. The epidermis is restored and
the production of new blood vessels is continued. The number of cells increase as a consequence of
cell division. In particular, fibroblasts are attracted to the wound area from the uninjured region by
high concentrations of TGF-β. Furthermore, high concentrations of TGF-β will trigger the fibroblasts
to differentiate to myofibroblasts, which exert much larger forces on their direct neighbourhood. Next
to it, (myo)fibroblasts release the collagen that is needed to rebuild the ECM. The proliferation stage
starts approximately five days after the injury and can last several weeks.

4. Maturation
In this phase, the ECM is remodelled, which means that the structure is changing. In particular, colla-
gen of type III is replaced by collagen type I, which is stiffer and has a more randomized orientation,
whereas type III has a nonisotropic orientation. This stage starts during the last part of the proliferation
stage and can last several years, depending on the wound.

2.2. Principles of elasticity theory
In this section, we will introduce the relevant quantities in elasticity theory and explain the relations between
them. The descriptions are based on [7], [11] and [18],

2.2.1. Definition of stress
The first important quantity is stress, most commonly denoted with σ. It is defined by

σ := F

Ac
. (2.2.1)

Here, F denotes the force and Ac denotes a cross-sectional area on which the force is exerted. We assume
here that the force is exerted perpendicular to the area, which is called normal stress. Later, we will introduce
the concept of shear stress, which is the force being exerted tangential to the area. As an example of normal
stress, one could think of a bar on which a force is exerted at both ends. If the bar is stretched, the stresses
are called tensile normal stresses. It is called compressive normal stress if the force is reversed in direction,
causing the bar to compress. In this example, Ac is the area of the grey-coloured surface (see Figure 2.2).
Furthermore, in Equation (2.2.1), it is assumed that the force is uniformly distributed over the area, which is
a special case. If the force is non-uniformly distributed, one could define the stress on a more local scale as

σ(x) = lim
Ac→0

∫
ΩF (x̃) dx̃

Ac
,

whereΩ ∈R2, Ac := Ac (Ω) is the area ofΩ and

lim
Ac→0

Ω= {x}.
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Figure 2.2: Tensile and compressive stress in a bar. Source: [17]

More information on this can for example be found in [7].

2.2.2. Shear stress
Besides normal stress, we need to define shear stress, which is the stress caused by a force exerted tangential
to the area (see Figure 2.3). As it can be seen in the figure, shear stress (if it is tensile) causes the area to move
in the direction of the exerted force, while the opposite side of the object remains in place. Similarly, shear
stress can be defined as σs = F

A . In three dimensions, we have one normal stress vector per dimension and

Figure 2.3: Shear stress. Source: [20]

two shear stress vectors per dimension. Hence, the stress becomes a tensor of nine partial stresses:

σ :=
σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 .

In Figure 2.4, we see thatσi i denotes normal stress in direction of basisvector ei (i = 1,2,3), whileσi j denotes
shear stress on an area in direction of basisvector ei (i = 1,2,3), with force pointing towards the direction of
basisvector e j ( j = 1,2,3). The stress tensor at a specific location x ∈R3 can be obtained by letting the cube in
Figure 2.4 shrink to one point, namely x , and taking the limit of the σi j ’s as the volume of the cube tends to 0.
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Figure 2.4: Cube with normal and shear stresses in three dimensions. Source: [2]

2.2.3. Displacement and Eulerian and Lagrangian approach
Another important quantity is displacement. Suppose a tensile stress is exerted on a bar, as in Figure 2.2. If
the initial length of the bar is L0 = L, the bar will elongate as a consequence of the stress. Suppose the new
length of the bar is L1 = L+δ, then the displacement is defined as

u := L1 −L0 = L+δ−L = δ.

Similarly to the stress, the displacement can be defined locally as well. However, this can be done in two ways.
Suppose the coordinates of the aforementioned bar are [0,L0] in initial state and after stretching it out, the
coordinates are [0,L1]. The displacement can be defined locally with respect to the new coordinates, but also
with respect to the old coordinates. Usually, the new coordinates are denoted with x and the old coordinates
with X . Furthermore there is a mapping x = x(X ) between the old and the new coordinates (or reversed:
X = X (x)). The x-coordinates are called Eulerian coordinates, while the X -coordinates are called Lagrangian
coordinates. It is important to distinguish between the Eulerian and the Lagrangian approach, since it has a
significant impact on the models. The displacement can be defined locally either Eulerian or Lagrangian:

u(x) := x −X (x)

and

u(X ) = x(X )−X .

Other quantities can also be defined in both ways. Suppose the material has a property c (for instance the
concentration of a chemokine), then it can be defined as c = c(x) = c(X (x)) or c = c(X ) = c(x(X )). In particular,
the different approaches have an impact on spatial derivatives, which are given by

dc

dx
(x, t ) and

dc

dX
(X , t ),

with the mutual relationships

dc

dx
(x) = dc

dX
(X (x)) · dX

dx
(x)

and

dc

dX
(X ) = dc

dx
(x(X )) · dx

dX
(X ).

Suppose that c is not only dependent on the location but also on time t , that is,

c = c(x, t ) = c(X (x), t ).

Then the mapping between x and X is dependent on time as well: x = x(X , t ). Subsequently, we have the
Eulerian partial time derivative

∂c

∂t
(x, t ),
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and the Langrangian time derivative

∂c

∂t
(X , t ) = ∂c

∂t
(x(X ), t )+ ∂c

∂x
(x(X ), t ) · dx

dt
(X , t ).

The latter derivative is called the material derivative, which is, in Eulerian coordinates, commonly denoted
by

Dc

Dt
:= ∂c

∂t
+ v

∂c

∂x
.

The expression

v := ∂x

∂t
(X , t ) = Du

Dt
(x, t )

is the velocity of the particle with initial position x(X ,0) = X . The material derivative obeys the normal differ-
entiation rules, such as the Product Rule.

2.2.4. Definition of strain
The concept of strain describes the extent to which the material is stretched as a consequence of exerted
forces. Suppose we have a bar of length L to which a force is exerted at the ends, causing the bar to be
stretched to a length of L+δ. Then the strain, commonly denoted with ε is defined as

ε := L1 −L0

L0
= δ

L
.

This is an Eulerian global definition of strain. Actually, strain is a ratio that represents the elongation per unit
length. As in the case of stress, strain can be defined locally as well. The local Eulerian strain is defined as

ε(x) := du

dx
.

In Lagrangian coordinates, strain is expressed as:

ε(X ) := du

dX
.

Globally, the latter definition corresponds with

εL := L1

L0
= L+δ

L
.

Similar to stress, strain can be defined in three dimension with normal strain and shear strain. Analogously
to the case of stress (see Section 2.2.1), strain can be defined as a tensor in three dimensions:

ε :=
ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 .

However, there are several ways in which the strain tensor is defined. For now we choose the following defi-
nition, in accordance with [18]:

ε := 1

2

(∇u + (∇u)T )
. (2.2.2)

Note that, if we use Eulerian coordinates, then

∇=∇E :=


∂
∂x
∂
∂y
∂
∂z

 ,

whereas in Lagrangian coordinates,

∇=∇L :=

 ∂
∂X
∂
∂Y
∂
∂Z

 .
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2.2.5. Poisson’s effect
The Poisson’s effect is a phenomenon that is important in elasticity theory and that we will use in our models.
If the material is stretched in a certain direction, then it will be compressed in the perpetual directions. Simi-

Figure 2.5: Poisson’s effect in two dimensions. The solid lines represent the original shape and the dashed lines represent the deformed
shape. Source: [5]

larly, if it is compressed in a certain direction, then it will be stretched in the other directions. In Figure 2.5, an
illustration of the phenomenon in two dimensions is given: a rectangle is stretched in the x-direction, which
causes a constriction in the y-direction. A dimensionless quantity called Poisson’s ratio is used in order to
measure the Poisson’s effect:

η :=−εy

εx
= ∂u

∂x

∂y

∂u
.

In the case of isotropic material, we have that the Poisson’s effect in z-direction is equal to the effect in y-
direction. Hence, η is valid for both the y- and the z-direction. In the literature, Poisson’s ratio is usually
denoted with a ν instead of an η [16], [18]. However, in order to prevent confusion with the velocity v , in this
thesis we will denote it by an η.

2.2.6. Viscosity
There is another important phenomenon that has to be described, namely viscosity. This can be illustrated
with a dashpot, see Figure 2.6. The dashpot is filled with a fluid. One can imagine, if the fluid is very viscous,

Figure 2.6: Dashpot. Source: [24]

for example oil or syrup, it becomes very hard to move the piston through the dashpot. Opposite to the case
of elasticity, stress does not immediately result in strain. In other words, viscosity is a measure of resistance
from the fluid and it can be conceptualized as an inner friction.
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2.3. Morphoelasticity
Morphoelasticity describes what happens if the deformation of a material becomes too large. In Figure 2.7,
the relation between the stress and the strain is shown, which is subdivided in mainly two regions. In these
regions, the material behaves differently. In the next two subsections, this will be explained in more detail.

Figure 2.7: Stress-strain curve with several regions of deformation. Source: [19]

2.3.1. Linear region
For small values of σ, there exists a linear relation between stress and strain, that is,

σ= Esε, (2.3.1)

which is known as Hooke’s law. The parameter Es is called the Young’s modulus. The interval [0,ε0], with
ε0 := max{ε > 0 : Hooke’s law is applicable}, is called the linear region and the magnitude of ε0 differs per
material. For shear stresses, the Young’s modulus is not equal to the Young’s modulus for normal stresses.
Hence, we introduce the shear modulus ζ, so that, for i , j ∈ {1,2,3},

σi j =
{

Esεi j , if i = j ,

ζεi j , if i 6= j .
(2.3.2)

It can be proven that ζ is related to Es and to the Poisson’s ratio η, in the following way (see [11] and [18]):

ζ= Es

(1+η)
. (2.3.3)

For the normal strain in three dimensions, we have

Esε11 =σ11 −ησ22 −ησ33. (2.3.4)

Here, the right-hand side partσ11 accounts for the normal one-dimensional Hooke’s law, while the part ησ22+
ησ33 incorporates the Poisson’s effect. For ε22 and ε33, the same can be done, yieldingσ11

σ22

σ33

 = Es

 1 −η −η
−η 1 −η
−η −η 1

−1 ε11

ε22

ε33

 (2.3.5)

= Es

1+η

η/(1−2η)+1 η/(1−2η) η/(1−2η)
η/(1−2η) η/(1−2η)+1 η/(1−2η)
η/(1−2η) η/(1−2η) η/(1−2η)+1

ε11

ε22

ε33

 . (2.3.6)



10 2. Biological Background

Furthermore, considering the shear strain, we have established that

σi j = ζεi j = Es

1+ηεi j . (2.3.7)

Altogether, this yields

σ= Es

1+η
(
ε+ η

1−2η
Tr(ε)I

)
. (2.3.8)

Here, Tr(ε) := ε11 +ε22 +ε33 is the trace of ε and I denotes the 3×3-identity matrix. This establishes Hooke’s

law generalized to three dimensions.

2.3.2. Plastic deformation
The deformation that occurs in the linear region is called elastic deformation. If the strain exceeds the linear
region, the material will behave in another way. Beyond the linear region, plastic deformation will occur: the
material is deformed permanently. The process of permanent deformation being formed, is called morphoe-
lasticity.

If the material is only deformed elastically, it can be totally restored to the initial state when it is released
from stress. However, if the stress passes beyond the linear region, it will cause a permanent distortion in
the material. In the context of burn wounds, this phenomenon causes wound contracture and increased
scar formation. Hence, it is important to incorporate morphoelasticity into the model. Two types of cells
called fibroblasts and myofibroblasts are mainly involved in the contraction of the skin. As it was men-
tioned earlier, in pacticular the myofibroblasts exert larger forces on the direct surrounding area. Further-
more, (myo)fibroblasts produce collagen I fibres, which is of another type then the usual collagen III. Col-
lagen I is more isotropic and stronger, which causes contraction as well. During the proliferation stage, the
(myo)fibroblast density is often larger in the wound area than in the surrounding healthy skin [12]. As a con-
sequence of the contractile forces, the area of the wound shrinks and hence the (initially undamaged) skin
around the wound is also stretched towards the wound. When, eventually, the wound is healed, in most
severe cases, there is a remaining deformation of the skin, which may lead to contractures.

2.4. Agent-based model
There are different ways to model the cells in the skin [23]. There are mainly two categories of models, namely
models based on cell densities and agent-based models, which model the individual cells as particles. The
model that is developed in this thesis is an agent-based model. This type of models has several advantages.
Firstly, it contains more parameters that can be measured in experiments and it is more realistic. Secondly,
it is easier to incorporate stochastic components into the model and to investigate their influence on the
cells. Furthermore, the biological processes are easier to visualize in these models, which is an advantage
when presenting the results to medical professionals. However, agent-based models have a nonnegligible
drawback as well: the computational cost are much larger than for cell density models. This is due to the
fact that for every iteration, the displacements of all the cells has to be computed separately. As a result, the
agent-based model is less suitable when modelling on a large scale. However, the computational cost can be
reduced by an efficient implementation. For example, the cell displacements are suitable for implementation
on the GPU, which increases the efficiency of computation.



3
Preliminaries: one-dimensional model of

force balance

In this chapter, several one-dimensional models will be derived. The derivations are based on [18]. The
Cauchy Momentum Equation lies at the root of all the models, hence in the first section this equation will be
derived. In the subsequent sections, the several models are stated and the numerical aspects are addressed.
The results are presented in the last section.

3.1. Cauchy Momentum Equation
The Cauchy Momentum Equation relates the impulse of a movement to the exerted forces on the moving
area. Therefore, the Cauchy Momentum Equation is the continuum analogue of Newton’s second law:

p := mv , (3.1.1)

where p denotes the impulse and m and v are the mass and the velocity respectively. Hence, the impulse
represents the ‘amount of movement’. Newton’s second law now prescribes that the change of the impulse in
time is proportional to the resultant of the exerted force:

Fres = dp

dt
, (3.1.2)

where Fres is the resulting force, that is, the sum of all (directed) forces exerted on the object. Let Ω(t ) =
[x0(t ), x1(t )] × [y0(t ), y1(t )] × [z0(t ), z1(t )] be a cube in R3. Considering the x-direction, in this continuum
case, the impulse overΩ is the product of the local densities and velocities, integrated over the volume ofΩ:

p1 =
∫
Ω
ρv1 dΩ, (3.1.3)

where p1 and v1 denote the impulse and velocity in x-direction. The forces working on Ω fall into two cate-
gories, namely internal and external forces. The internal forces are usually called body forces. Denoting with
f1 the resultant body force per unit volume in the x-direction, we have

(F b
res)1 =

∫
Ω

f1 dΩ. (3.1.4)

The external forces can be computed based on the stresses. For example, considering the normal stress in
x-direction σ11, we have that the resulting external force is equal to the difference in the normal forces at x1

11
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and those at x0:

(F ext
res )11 = (Fext)11(x1)− (Fext)11(x0) = Aσ̃11(x1)− Aσ̃11(x0)

= (y1 − y0)(z1 − z0) (σ̃11(x1)− σ̃11(x0))

=
∫ z1

z0

∫ y1

y0

σ11(x1, y, z)−σ11(x0, y, z) dA (3.1.5)

=
∫ z1

z0

∫ y1

y0

∫ x1

x0

∂σ11

∂x
(x, y, z) dΩ

=
∫
Ω

∂σ11

∂x
dΩ.

Here, σ̃11(xi ) denotes the average of σ11 over the surface S := {(x, y, z) : x = xi , y ∈ [y0, y1], z ∈ [z0, z1]} and
A := A(S) is the area of S. Other stress in the x-direction are the shear stress σ21 and σ31. Doing the same for
these, we obtain

(F ext
res )21 =

∫
Ω

∂σ21

∂y
dΩ (3.1.6)

and

(F ext
res )31 =

∫
Ω

∂σ31

∂z
dΩ.

The total resultant force in the x-direction now is equal to

(Fres)1 = (F ext
res )1 + (F b

res)1 =
∫
Ω

∂σ11

∂x
+ ∂σ21

∂y
+ ∂σ31

∂z
dΩ+

∫
Ω

f1 dΩ

=
∫
Ω
∇·σ·1 + f1 dΩ.

Applying Newton’s second law, we have

d

dt

(∫
Ω
ρv1 dΩ

)
=

∫
Ω
∇·σ·1 + f1 dΩ. (3.1.7)

We will use Reynold’s Transport Theorem (see [16]), in order to move the time derivative into the integral.
Let Ω(t ) be a time-dependent domain in Rd and let ∂Ω(t ) be the boundary of Ω. Furthermore, let f with
∂ f
∂t ∈ L2(Ω(t )) be a given function and let v represent the velocity of moving boundary ∂Ω(t ), then

d

dt

∫
Ω(t )

f (x(t ), t )dΩ=
∫
Ω(t )

∂ f

∂t
(x(t ), t )dΩ+

∫
∂Ω(t )

f (x(t ), t )v ·ndΓ,

with n being the outward pointing unit normal vector. Applying Theorem 3.1 on the left-hand side of Equa-
tion (3.1.7), we obtain

d

dt

(∫
Ω(t )

ρv1 dΩ

)
=

∫
Ω(t )

∂(ρv1)

∂t
dΩ+

∮
∂Ω(t )

ρv1(v ·n) dζ

=
∫
Ω(t )

∂(ρv1)

∂t
dΩ+

∮
∂Ω(t )

(ρv1v ·n) dζ

=
∫
Ω(t )

∂(ρv1)

∂t
dΩ+

∫
Ω(t )

∇· (ρv1v ) dΩ (3.1.8)

=
∫
Ω(t )

ρ
∂v1

∂t
+ v1

∂ρ

∂t
+ v1∇· (ρv )+ρv ·∇v1 dΩ

=
∫
Ω(t )

ρ
∂v1

∂t
+ρv ·∇v1 dΩ

=
∫
Ω(t )

ρ
Dv1

Dt
dΩ.

Here, v := (v1, v2, v3)T and in the second last equality, we used the Continuity Equation which reads

∂ρ

∂t
+∇· (ρv ) = 0. (3.1.9)
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Hence, combining Equation (3.1.7) and (3.1.8), we have∫
Ω(t )

ρ
Dv1

Dt
dΩ=

∫
Ω(t )

∇·σ·1 + f1 dΩ. (3.1.10)

Considering thatΩwas chosen arbitrarily, it follows that

ρ
Dv1

Dt
=∇·σ·1 + f1. (3.1.11)

For the y-direction and the z-direction, this can be done analogously, which eventually yields:

ρ
Dv

Dt
=∇·σ+ f , (3.1.12)

where f = ( f1, f2, f3)T . This is called the convective form of the Cauchy Momentum Equation. Besides, there
exists a conservation form of the Cauchy Momentum Equation, which is derived as follows:

ρ
Dv

Dt
= D(ρv )

Dt
−v

Dρ

Dt
= D(ρv )

Dt
−v

(
∂ρ

∂t
+v ·∇ρ

)
= D(ρv )

Dt
−v

(
∂ρ

∂t
+∇· (ρv )−ρ(∇·v )

)
(3.1.13)

= D(ρv )

Dt
+vρ(∇·v ).

In the last equality, we used that ∂ρ
∂t +∇· (ρv ) = 0, which is the continuity equation in three dimensions. The

conservation form of the Cauchy Momentum Equation now reads as

D(ρv )

Dt
+vρ(∇·v ) =∇·σ+ f . (3.1.14)

We will use the latter form (Equation 3.1.14) when deriving the viscoelastic and morphoelastic model (Sec-
tions 3.3 and 3.4).

3.2. One-dimensional elastic model
In this section, we will consider a one-dimensional elastic model.

3.2.1. Derivation
We use a one-dimensional version of convective form of the Cauchy Momentum Equation derived in Equa-
tion 3.1.12:

ρ
Dv

Dt
= ∂σ

∂x
+ f . (3.2.1)

Suppose that we have an equilibrium state, that is, Dv
Dt = 0. Then, using Hooke’s Law σ = Esε = Es

du
dx , we

obtain the following time-independent model :

(BV P ) :


−Es

d2u
dx2 = f (x), 0 < x < L,

u(0) = 0,
∂u
∂x (L) = 0.

The model can be made time-dependent by implementing time-dependent body forces:

(I BV P1) :


−Es

∂2u
∂x2 = f (x, t ), 0 < x < l (t ), t > 0,

u(0, t ) = 0, t > 0,
∂u
∂x (l (t ), t ) = 0, t > 0,

u(x,0) = 0, 0 ≤ x ≤ l (t ),

where l (t ) := x(L, t ). An initial condition is added: there is no displacement at the start.



14 3. Preliminaries: one-dimensional model of force balance

3.2.2. Numerical aspects
In the appendix, the Weak Form (W) of (BVP) is derived, which yields the following:

(W ) :


Find u ∈ H 1(Ω) with u(0) = 0 such that

Es
∫ L

0 u′(x)φ′(x) dx = ∫ L
0 f (x)φ(x) dx,

for all φ(x) ∈ H 1(Ω) with φ(0) = 0.

In order to obtain the Galerkin equations, we approximate u with

u(x) ≈ un(x) :=
n∑

j=0
u jφ j (x).

Using linear basis functions φ=φi (x) :=αi +βi x such that φi (x j ) = δi j . This yields

Es

n∑
j=0

u j

∫ L

0
φ′

i (x)φ′
j (x) dx =

∫ L

0
f (x)φi (x) dx

Hence, we obtain a system

Su = f .

Here, S is an (n +1)× (n +1)-matrix and f is a vector of length n +1, with the following element matrix and
vector:

(S)em = E

hem

(
1 −1
−1 1

)
, (3.2.2)

( f )em = hem

2

(
f (xm−1)

f (xm)

)
, (3.2.3)

where em denotes the element [xm−1, xm] and he denotes the length of element em , which is equal to xm −
xm−1. Furthermore, the solution

u := (u0, . . . ,un)T (3.2.4)

at each model point can be solved. As for the model with the time-dependent body force (I BV P1), the weak

form will be as follows:

(W 1) :


Find u ∈ H 1(Ω(t )) with u(x(0)) = 0 and u(0) = 0 such that

Es
∫ l (t )

0
∂u
∂x (x, t )φ′(x) dx = ∫ l (t )

0 f (x, t )φ(x) dx,

for all φ(x, t ) ∈ H 1(Ω(t )) with φ(0, t ) = 0.

The Galerkin equations will be derived in the same way as before, resulting in:

Es

n∑
j=0

u j (t )
∫ l (t )

0

∂φi

∂x
(x, t )

∂φ j

∂x
(x, t ) dx =

∫ l (t )

0
f (x, t )φi (x, t ) dx.

This again yields the system

Su = f .

However, here the vector f is time-dependent, as well as the vector u. Hence, for each time iteration ti = i ·∆t ,
the system has to be solved separately.
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3.2.3. Elastic model with inertia
In the former subsections, Dv

Dt was set to be zero, which means that the inertia was not incorporated. If we

suppose Dv
Dt 6= 0, then the entire Cauchy Momentum Equation is taken into account. Hence, the differential

equation is:

Dv

Dt
= Es

∂2u

∂x2 + f ,

that is,

D2u

Dt 2 = Es
∂2u

∂x2 + f .

This is actually the wave equation and according to the theory of wave equations, this will yield oscillatory
solutions. Subsequently, the numerical solution is oscillatory as well. The derivation of the weak form and
the numerical system is exactly the same as it is for the viscoelastic model in the next section, taking µ = 0.
Therefore we omit the derivation and numerical results for this model for now. As for the viscoelastic model,
if µ is large enough, the damping causes the oscillations to disappear.

3.3. Viscoelastic model
In the former section, a purely elastic model was described. Due to the characteristic of the skin, incorporat-
ing viscosity is necessary.

3.3.1. Derivation
In the concept of viscosity, stress is proportionate with the strain rate, that is, the extent in which the strain
changes in time:

σ=µ∂ε
∂t

(X , t ) =µDε

Dt
(x, t ). (3.3.1)

Here, µ is the viscosity coefficient, representing how viscous the fluid is. In the context of the skin, both
pure elasticity and pure viscosity are not the best way to describe the behaviour of the material [18]. A better
concept is viscoelasticity, which combines elasticity with viscosity, yielding:

σ= Esε+µDε

Dt
, (3.3.2)

which is called the Kelvin-Voigt model [16]. Now note that

∂ε

∂t
(X , t ) = ∂

∂t

(
∂u

∂X

)
= ∂

∂X

(
∂u

∂t
(X , t )

)
= ∂v

∂X
= ∂v

∂x

∂x

∂X
. (3.3.3)

Assuming that the deformation is relatively small, that is

∂x

∂X
≈ 1, (3.3.4)

we can approximate

σ≈ Esε+µ∂v

∂x
. (3.3.5)

Together with the Cauchy Momentum Equation, we obtain a viscoelastic model in one-dimension:

(I BV P2) :



D(ρv)
Dt +ρv ∂v

∂x = ∂σ
∂x + f , 0 < x < l (t ), t > 0,

σ= Esε+µ∂v
∂x , 0 < x < l (t ), t > 0,

ε= ∂u
∂x , 0 < x < l (t ), t > 0,

v = Du
Dt , 0 < x < l (t ), t > 0,

v(0, t ) = 0, t > 0,

σ(l (t ), t ) = 0, t > 0,

u(x,0) = 0, 0 ≤ x ≤ l (t ),

v(x,0) = 0, 0 ≤ x ≤ l (t ).

This model can be viewed as an extension of the time-dependent elasticity model stated in (I BV P1).
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3.3.2. Material derivative of linear basis functions
The following theorem reflects the fact that piecewise linear basis functions do not change in the Lagrangian
framework as the mesh is moving. That is, the material derivative of the basis function is equal to 0. Suppose
φi (x, t ) = φi (x(X , t ), t ) ∈ L2(H 1(Ω(t )), (0,T )) is a Finite Element basis function that is piecewise linear on the
elements at X and such that φi (x j , t ) = δi j , where

δi j =
{

1, if i = j ,

0, if i 6= j .
(3.3.6)

Then we have

Dφi

Dt
(x, t ) = 0. (3.3.7)

Proof. We have that

Dφi

Dt
(x j , t ) = ∂φi

∂t
(X j , t ) = lim

∆t→0

φi (X j , t +∆t )−φi (X j , t )

∆t
= lim
∆t→0

δi j −δi j

∆t
= 0. (3.3.8)

For any x ∈ [xk , xk+1, we can write

x = x(X , t ) = x(λ1Xk +λ2Xk+1, t ), (3.3.9)

such that

λ1 +λ2 = 1. (3.3.10)

Then it follows that

Dφi

Dt
(x, t ) = ∂φi

∂t
(λ1Xk +λ2Xk+1, t ). (3.3.11)

By the linearity of the time derivative, since φi is piecewise linear with respect to X , the time derivative
∂φi
∂t (X , t ) is piecewise linear as well. Hence, this time derivative function can be written as

∂φi

∂t
(X , t ) = A(t )+B(t )X , (3.3.12)

where A(t ) and B(t ) are constant with respect to X . Combining this with Equations (4.2.2), (4.2.4) and (4.2.5),
it follows that

Dφi

Dt
(x, t ) = ∂φi

∂t
(λ1Xk +λ2Xk+1, t )

= A(t )+B(t )(λ1Xk +λ2Xk+1)

= (λ1 +λ2)A(t )+λ1B(t )Xk +λ2B(t )Xk+1

= λ1(A(t )+B(t )Xk )+λ2(A(t )+B(t )Xk+1)

= λ1
Dφi

Dt
(xk , t )+λ2

Dφi

Dt
(xk+1, t )

= 0. (3.3.13)

If we have a certain quantity c(x, t ), then by Theorem 3.3.2 and the Product Rule, we have

Dc

Dt
φi =

D
(
cφi

)
Dt

, (3.3.14)

which is used to derive the weak forms of the time-dependent models.
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3.3.3. Finite-element approximations of the viscoelastic model
In the appendix, the Weak Form (W2) of (I BV P2) is derived, yielding:

(W 2) :


Find u ∈ L2(H 1(Ω(t )), (0,T )) with u(x,0) = 0 and u(0, t ) = 0 such that
d

dt

(∫ l (t )
0 ρvφ dx

)
+∫ l (t )

0 µ∂v
∂x

∂φ
∂x +Es

∂u
∂x

∂φ
∂x dx = ∫ l (t )

0 f φ dx,

for all φ(x, t ) ∈ H 1(Ω(t )) with φ(0, t ) = 0 and v(x,0) = 0.

Euler Backward is used to approximate time integration. Furthermore, to obtain the Galerkin equations, we
approximate v by

v(x, t ) ≈ vn(x, t ) :=
n∑

j=0
v j (t )φ j (x, t ).

In addition, we select linear basis functions φ=φi (x, t ) :=αi (t )+βi (t )x such that φi (x j ) = δi j . This yields

ρ
n∑

j=0
v+

j

∫ l (t+∆t )

0
φ+

i φ
+
j dx

+ ∆t

(
Es

n∑
j=0

u+
j

∫ l (t+∆t )

0

∂φ+
i

∂x

∂φ+
j

∂x
dx +µ

n∑
j=0

v+
j

∫ l (t+∆t )

0

∂φ+
i

∂x

∂φ+
j

∂x
dx

)
(3.3.15)

= ρ
n∑

j=0
v j

∫ l (t )

0
φiφ j dx +∆t

∫ l (t+∆t )

0
f +φ+

i dx.

Here,

v+
j := v j (t +∆t ), u+

j := u j (t +∆t ), φ+
i :=φi (x, t +∆t ) and f + := f (x, t +∆t ),

and

v j := v j (t ), u j := u j (t ) and φi :=φi (x, t ).

This yields a system (
ρSk+1

1 +∆tµSk+1
2

)
vk+1 = ρSk

1 v k −∆tEs Sk+1
2 uk+1 +∆t f k+1. (3.3.16)

Here, S1 and S2 are (n +1)× (n +1)-matrices with corresponding element matrices

(Sk
1 )e = hk

e

6

(
2 1
1 2

)
, (3.3.17)

(Sk
2 )e = 1

hk
e

(
1 −1
−1 1

)
. (3.3.18)

Furthermore,

vk :=
(
vk

0 , . . . , vk
n

)T
. (3.3.19)

Since both uk+1 and f k+1 need to be known before computing v k+1, the following approximations are used:

xk+1
i ≈ xk

i +∆t vk
i , (3.3.20)

uk+1
i ≈ uk

i +∆t vk
i . (3.3.21)

3.4. Morphoelastic model
In Section 2.3, morphoelasticity was described as the main cause of wound contractures. Therefore, in this
section we will derive a morphoelastic model.
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3.4.1. Derivation
In Subsection 2.2.3, the mapping between the Eulerian and Lagrangian coordinates was already introduced.
Subsequently, we introduce the deformation gradient F , which is defined as

F (X , t ) := ∂x

∂X
(X , t ). (3.4.1)

This gradient represents the magnitude of the deformation. The deformation gradient can be divided into
plastic deformation α and elastic deformation γ:

F (X , t ) =α(X , t )γ(X , t ) (3.4.2)

Initially, there is no plastic deformation or stress. Hence, the zero-stress state is the same as the initial state. If
plastic deformation occurs, the tissue will not again retake its initial position when it is released from stress.
As a consequence, the zero-stress state is no longer equal to the initial state. Hence, denoting the zero-stress
state with z, we have:

α(X , t ) = ∂z

∂X
(X , t ) (3.4.3)

and

γ(X , t ) = ∂x

∂z
(z(X , t ), t ). (3.4.4)

Here, the zero-stress state can be viewed as a function of the initial state and time. Therefore, we have

F (X , t ) = ∂x

∂X
(X , t ) = ∂x

∂z
(z, t )

∂z

∂x
(X , t ) =αγ. (3.4.5)

Figure 3.1 shows the relations between various states. The growth of the plastic deformation is defined as

Figure 3.1: Relation between initial state, zero-stress state and current state. Source: [18] (Figure 4.7)
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follows, written in Eulerian coordinates:

Dγ

Dt
(x, t ) = F (x, t )g (x, t ), (3.4.6)

where g (x, t ) represents the growth rate of the material. Since γ=α−1F = Fα−1, Equation (3.4.6) results in

F
Dα−1

Dt
+α−1 DF

Dt
= F g , (3.4.7)

Dα−1

Dt
+F−1α−1 DF

Dt
= g . (3.4.8)

Note that

F−1 DF

Dt
= ∂X

∂x

D

Dt

(
∂x

∂X

)
= ∂X

∂x

∂v

∂X
= ∂v

∂x
. (3.4.9)

Here, we used that F−1 = 1/(∂x/∂X ) = ∂X /∂x, assuming ∂x/∂X 6= 0. Furthermore, we used the Product Rule,
which yields

D

Dt

(
∂x

∂X
(x, t )

)
= ∂

∂t

(
∂x

∂X
(X , t )

)
= ∂

∂X

(
∂x

∂t
(X , t )

)
= ∂v

∂X
. (3.4.10)

Combining Equation (3.4.8) and (3.4.9), we obtain

Dα−1

Dt
+α−1 ∂v

∂x
= g . (3.4.11)

We can express α−1 in terms of the strain. In Section 2.3.1, in the context of pure elasticity, (Eulerian) strain
was defined as

ε= ∂u

∂x
= ∂(x −X (x, t ))

∂x
. (3.4.12)

However, note that if a permanent deformation has occured, such that we have zero-stress state z instead of
X , it is more appropriate to use the following for the strain:

ε(x, t ) := ∂(x − z)

∂x
= 1− ∂z

∂x
= 1− 1

α
= 1−α−1, (3.4.13)

provided that α 6= 0. Hence, α−1 = 1−ε and Equation (3.4.11) results in

D(1−ε)

Dt
+ (1−ε)

∂v

∂x
= g , (3.4.14)

Dε

Dt
+ (ε−1)

∂v

∂x
=−g . (3.4.15)

In [18], this equation is referred to as the Strain Evolution Equation. Therefore, a one-dimension morphoe-

lastic model is given by

(I BV P3) :



D(ρv)
Dt +ρv ∂v

∂x = ∂σ
∂x + f , 0 < x < l (t ), t > 0,

Dε
Dt + (ε−1)∂v

∂x =−g , 0 < x < l (t ), t > 0,

σ= Esε+µ∂v
∂x , 0 < x < l (t ), t > 0,

v = Du
Dt , 0 < x < l (t ), t > 0,

u(0, t ) = 0, t > 0,

v(0, t ) = 0, t > 0,

σ(l (t ), t ) = 0, t > 0,

v(x,0) = 0, 0 ≤ x ≤ l (t ).

In [13], it is suggested that a suitable choice for g is

g (x, t ) = ξε(x, t ), (3.4.16)

where ξ is a positive constant. This makes the rate of permanent deformation linearly dependent on the
strain. In other words, the larger ξ, the larger the permanent deformation.
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3.4.2. Finite-element approximations of the morphoelastic model
In this subsection, we will derive the finite-element approximations for the one-dimensional morphoelastic

model (I BV P3). We have already derived the weak form for the Cauchy Momentum Equation, which resulted

in Equation (A.2.12). Note that in (I BV P3), we are searching for solutions of v as well as ε. In this way, we

obtain as a weak form

(W 3a) :


Find v ∈ L2(H 1(Ω(t )), (0,T )) with v(x,0) = 0 and v(0, t ) = 0 such that
d

dt

(∫ l (t )
0 ρvφ dx

)
+∫ l (t )

0 µ∂v
∂x

∂φ
∂x +Esε

∂φ
∂x dx = ∫ l (t )

0 f φ dx,

for all φ(x, t ) ∈ H 1(Ω(t )) with φ(0, t ) = 0.

To obtain the Galerkin equations, we approximate ε with

ε(x, t ) ≈ εn(x, t ) :=
n∑

j=0
ε j (t )φ j (x, t ).

Following the same assumptions and procedures as in former derivations,this yields

ρ
n∑

j=0
v+

j

∫ l (t+∆t )

0
φ+

i φ
+
j dx

+ ∆t

(
Es

n∑
j=0

ε+j

∫ l (t+∆t )

0

∂φ+
i

∂x
φ+

j dx +µ
n∑

j=0
v+

j

∫ l (t+∆t )

0

∂φ+
i

∂x

∂φ+
j

∂x
dx

)
(3.4.17)

= ρ
n∑

j=0
v j

∫ l (t )

0
φiφ j +∆t

∫ l (t+∆t )

0
f +φ+

i dx.

Here,

ε+j := ε j (t +∆t ) and ε j := ε j (t ).

In the appendix, the Weak Form (W3b) of the Strain Evolution Equation is derived, yielding:

(W 3b) :


Find ε ∈ L2(H 1(Ω(t )), (0,T )) such that
d

dt

(∫ l (t )
0 εψ dx

)
−∫ l (t )

0
∂v
∂xψ dx =−∫ l (t )

0 gψ dx,

for all ψ(x, t ) ∈ H 1(Ω(t )).

Substituting g = ξε, as it was discussed in Subsection 3.4.1, we obtain

d

dt

(∫ l (t )

0
εψ dx

)
+

∫ l (t )

0
ξεψ− ∂v

∂x
ψ dx = 0. (3.4.18)

For the Strain Evolution Equation, time integration will work well for Euler Forward as well as for Euler Back-
ward. We will derive the Galerkin equations for both methods, to compare the results for both methods. We
again select linear basis functions, ψ=φi . Starting with Euler Forward, we have

n∑
j=0

ε+j

∫ l (t+∆t )

0
φ+

i φ
+
j dx = (1−∆tξ)

n∑
j=0

ε j

∫ l (t )

0
φiφ j dx +∆t

n∑
j=0

v j

∫ l (t )

0
φi
∂φ j

∂x
dx. (3.4.19)

Together with Equation (3.4.17), this yields two systems(
ρSk+1

1 +∆tµSk+1
2

)
vk+1 +∆tEs Sk+1

3 εεεk+1 = ρSk
1 v k +∆t f k+1 (3.4.20)

and

Sk+1
1 εεεk+1 = (1−∆tξ)Sk

1εεε
k +∆tSk

4 vk . (3.4.21)
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Here, S3 and S4 are (n +1)× (n +1)-matrices with corresponding element matrices

(Sk
3 )e = 1

2

(−1 −1
1 1

)
, (3.4.22)

(Sk
4 )e = 1

2

(−1 1
−1 1

)
, (3.4.23)

Furthermore,

εεεk :=
(
εk

0 , . . . ,εk
n

)T
. (3.4.24)

Alternatively, we can use the Euler Backward method in order to solve the strain evoluation equation. This
yields, starting from Equation (A.3.8),

(1+∆tξ)
n∑

j=0
ε+j

∫ l (t+∆t )

0
φ+

i φ
+
j dx =

n∑
j=0

ε j

∫ l (t )

0
φiφ j dx +∆t

n∑
j=0

v j

∫ l (t+∆t )

0
φ+

i

∂φ+
j

∂x
dx, (3.4.25)

that is,

(1+∆tξ)Sk+1
1 εεεk+1 = Sk

1εεε+∆tSk+1
4 v k+1. (3.4.26)

Combined with Equation (3.4.17), we now obtain a system of 2(n +1) equations. Define

w k := (εk
0 , . . . ,εk

n , vk
0 , . . . , vk

n)T =
(
εεεk

v k

)
,

then the system reads as

Sk+1w k+1 = T k w k +∆tΦk+1, (3.4.27)

where

Sk :=
(
(1+∆tξ)Sk

1 −∆tSk
4

∆tEs Sk
3 ρSk

1 +∆tµSk
2

)
, (3.4.28)

T k :=
(
Sk

1 0
0 ρSk

1

)
(3.4.29)

and

Φk :=
(

0
f k

)
. (3.4.30)

As can be seen, the 0’s in the matrix T k denote zero matrices of size (n +1)× (n +1) and the 0 in f k denotes a
zero vector of length n−1. In the next section, these two methods will be compared and we will mainly focus
on the convergence.

3.5. Results
In this section, the results of the aforementioned models will be shown. In the first and second subsection,
the details of the body force and overview of parameters are given. Then the time-independent model is
considered and in the fourth subsection, the time-dependent models are treated.

3.5.1. Body force
In all the models, the body forces were for the utmost extent chosen in accordance with [18]. In the time-
independent model, the body force function is given by:

f (x) =
{

f̄ , if x ≤ L
2 ,

− f̄ , if x > L
2 ,

(3.5.1)
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where f̄ ≥ 0 is viewed as a parameter that reflects the magnitude of the body force. To have a smooth force
function against time, we define the time-dependent function

T (t ) :=
{

1−exp
(−C f · t/t f

)
, if 0 ≤ t < t f ,(

1−exp
(−C f · t/t f

))
exp

(−(
t − t f

))
, if t ≥ t f .

(3.5.2)

Here, C f ≥ 0 is a measure that is positively related to the maximal number of fibroblasts that enter the area.
Furthermore, t f denotes the time when the number of fibroblasts maximizes in the area. The body force
function is then defined by

f (x, t ) =
{

f̄ ·T (t ), if 0 ≤ x ≤ x
( L

2 , t
)

,

− f̄ ·T (t ), if x > x
( L

2 , t
)

.
(3.5.3)

Here, x( L
2 , t ) denotes the x-position at time t with original position X = L

2 , that is the middle of the tissue.
Note that the body forces are equal to 0 initially and are increasing with time, until the moment that the
maximum number of fibroblasts is reached. After that, the body forces decrease again.

3.5.2. Parameters
In Table 3.1, the chosen parameters are stated. In the column ’application’, it is described in which models
the parameter is used. It is important to point out that not all of the chosen values are calibrated to reality.
We chose these values here to reproduce the results of [18] as far as possible.

Description Parameter Value Unit Application

Fibroblasts measure C f 4.0 - all models
Duration of body force t f 20.0 day all time-dependent models
Body Force f̄ 5.0 N·g·cell−1·cm−1 all models
Elasticity (Young’s modulus) Es 31.0 N·cm−2 all models
Tissue length L 10.0 cm all models
Number of gridnodes n 50 - all models
Time step ∆t 0.02 day all time-dependent models

General material density ρ 1.02 g·cm−1 visco- and
morphoelastic model

Viscosity parameter µ 100.0 N·day·cm−1 visco- and
morphoelastic model

Rate of permanent deformation ξ 0.05 - morphoelastic model
Duration of simulated time T 40.0 day all models

Table 3.1: Overview of used parameters in the time-dependent one-dimensional models

3.5.3. One-dimensional time-independent purely elastic model
In this subsection, the results of the time-independent model (BV P ) are presented. In Figures 3.2A and 3.2B,
x and u are plotted as a function of the original coordinates X . In Figure 3.2A, the initial state is represented
as well (blue dashed line). Hence, the graph in Figure 3.2B actually shows the difference between the two
curves in Figure 3.2A.
The body force tries to contract the one-dimensional tissue towards the middle X = 5. Since there is a fixed
boundary condition u(0) = 0, the actual displacement is larger at the right side of the middle than it is at the
left side. This yields the behaviour as it is shown in Figure 3.2.

3.5.4. One-dimensional time-dependent models
In this subsection, results of the time-dependent models (I BV P1), (I BV P2) and (I BV P3) are shown. The
curves of x and u as a function of X at a certain moment in time, are more or less the same as the graphs in
Figure 3.2. Therefore, we omit that here. However, since the models are time-dependent, the development
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A. Plot of x as a function of X . B. Plot of u as a function of X .

Figure 3.2: Equilibrium state in purely elastic model.

of the tissue length can be shown as a function of time and then the difference between the three models
is clearly visible. (see Figure 3.3). The tissue length is defined as l (t ) := x(L, t ): since the tissue does not
move at X = 0, the length only depends of the position at X = L. The main differences between the several
models can be seen in the figures. At t = 20, where the tissue starts to recover towards the initial state, the
graph is much smoother in the viscoelastic model than in the purely elastic model. The other difference
is that displacements are somewhat smaller than in the purely elastic model, which is mainly because the
viscoelasticity causes a delay in the displacements. Therefore, the tissue starts to recover again while the
displacement is not yet as large as in the purely elastic model. As for the morphoelastic model, a plastic
deformation has occurred, which causes the tissue not to recover to the initial state. Therefore, for ξ> 0, the
final length is smaller than the initial length, as opposed to the other models.

The one-dimensional morphoelastic model is less suitable for the case that the plastic deformation is very
small, that is, if ξ is zero or close to zero. This can be explained as follows: the equation that is to be solved, is

Dε

Dt
+ (ε−1)

∂v

∂x
=−ξε. (3.5.4)

This means,

Dε

Dt
− ∂v

∂x
=−ξε−ε∂v

∂x
=−

(
ξ+ ∂v

∂x

)
ε. (3.5.5)

Supposing ξ= 0, we have

Dε

Dt
=−∂v

∂x
ε+ ∂v

∂x
. (3.5.6)

The problem ε′ = λε is unstable for λ > 0. Further, time integration with Euler Backward is unstable in this
case, resulted from that the problem is ill-posed. However, this is the type of problem we have in Equation

(3.5.6): if ∂v
∂x < 0 while at the same time

∣∣∣ ∂v
∂x

∣∣∣ is not very large. This explains why Euler Backward yields bad

results for large t when ξ= 0. When ξ is very small, as was the case in the above example, the problem occurs
as well.

As an example, Figure 3.4 shows a plot of u at t = 40 and a plot of l (t ) for ξ = 10−4 (the other param-
eters remain the same). Although the graph of the length is smooth, it can be seen that in the plot of the
displacements, oscillations appear at the boundaries and in the middle.

3.5.5. Comparison between Euler Forward and Euler Backward in morphoelastic model
In Subsection 3.4.2, we have seen that there are two approaches to solve the morphoelastic model numer-
ically. In the first method, Euler Forward is used to solve the Strain Evolution Equation, which yields two
systems, stated in Equation (3.4.20) and (3.4.21). In the second method, Euler Backward is used, which yields
one system, stated in Equation (3.4.27).
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A. Elastic model B. Viscoelastic model

C. Morphoelastic model

Figure 3.3: Plots of tissue length as a function of t for different models

A. Plot of u as a function of X at t = 40
B. Plot of length as a function of t

Figure 3.4: Morphoelastic model with ξ= 10−4
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In order to consider the convergence of both methods, we define the following variable:

Md := max
0≤k≤K

max
0≤i≤n

∣∣u1(xi , tk )−u2(xi , tk )
∣∣ , (3.5.7)

where u1(xi , tk ) and u2(xi , tk ) are the displacements at xi at iteration k, computed with the Euler Forward
and Euler Backward method respectively. Hence, Md reflects the maximum over time and location of the
difference between the two methods. In Figure 3.5, a log-log plot of the value of Md is shown as function of
the time step d t . The total length of the simulations was t = 40 days and all parameters (except for the time
step) were the same as in Table 3.2. It can be seen that the relationship between the maximal error and the
time step is linear and

O(Md ) =O(∆t ).

Figure 3.5: Log-log plot of Md as function of time step





4
Two-Dimensional model of force balance

with body force

In this chapter, we will generalize the models to the case of multi-dimensions. In the first section, the model
derivation is done. The second section handles the numerical aspects and in the third section the results are
presented. Since the computations for three dimensions are far more complex than for two dimensions, we
mainly work on two-dimensional models in this manuscript.

4.1. Derivation
We will consider a purely elastic model, a viscoelastic model and a morphoelastic model.

4.1.1. Purely elastic model
In multi-dimensional models, several equations of the one-dimensional models need to be generalized. We

use the Cauchy Momentum Equation in multi-dimensions Equation (3.1.14), Hooke’s law in three dimensions

(Equation (2.3.8)) and the definition of ε in Equation (2.2.2), which yield:

(I BV P4) :



D(ρv )
Dt +vρ(∇·v ) =∇·σ+ f , x ∈Ω, t > 0,

σ= Es
p
ρ

1+η
(
ε+ η

1−2ηTr(ε)I
)

, x ∈Ω, t > 0,

ε= 1
2

(∇u + (∇u)T
)

, x ∈Ω, t > 0,

σ ·n +au = 0, x ∈ ∂Ω, t > 0,

u(x ,0) = 0, x ∈Ω,

v (x ,0) = 0, x ∈Ω.

4.1.2. Viscoelastic model
At first we need to define the symmetric and skew part of a matrix. Let A be an n × n-matrix. Then the
symmetric part of A is an n ×n-matrix defined by

sym(A) = 1

2

(
A+ AT )

.

The skew part of A is an n ×n-matrix defined by

skew(A) = 1

2

(
A− AT )

.

In the viscoelastic model, the stress tensor is extended with a viscoelastic part:

σ=σ
visco

+σ
elas

, (4.1.1)

27
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where σ
elas

is the elastic part of the stress tensor as defined in Hooke’s law (Equation (2.3.8)) and used in

Subsection 4.1.1. Furthermore, σ
visco

is the viscoelastic part of the stress tensor. It is defined as:

σ
visco

=µ
Dε

Dt
. (4.1.2)

According to [13], this can be written as:

σ
visco

=µ1 sym(∇v )+µ2Tr(∇v ) I , (4.1.3)

where sym(∇v ) := 1
2

(∇v +∇v T
)

and µ1 and µ2 are the shear viscosity and bulk viscosity respectively. Hence,
the stress tensor is given by:

σ=µ1 sym(∇v )+µ2Tr(∇v ) I + Es

1+η
(
ε+ η

1−2η
Tr(ε)I

)
.

Hence, the viscoelastic model is given by

(I BV P5) :



D(ρv )
Dt +vρ(∇·v ) =∇·σ+ f , x ∈Ω, t > 0,

σ=µ1sym(∇v )+µ2Tr(∇v )I + Es
p
ρ

1+η
(
ε+ η

1−2ηTr(ε)I
)

, x ∈Ω, t > 0,

ε= 1
2

(∇u + (∇u)T
)

, x ∈Ω, t > 0,

σ ·n +au = 0, x ∈ ∂Ω, t > 0,

u(x ,0) = 0, x ∈Ω,

v (x ,0) = 0, x ∈Ω.

4.1.3. Morphoelastic model
In the morphoelastic model in higher dimensions, we have a generalization of the Strain Evolution Equation
(3.4.14). According to [10], the multi-dimensional Strain Evolution Equation reads:

Dε

Dt
+ε skew

(
∂v

∂x

)
− skew

(
∂v

∂x

)
ε+

(
Tr

(
ε
)
−1

)
sym

(
∂v

∂x

)
=−g . (4.1.4)

Hence, the full multi-dimensional morphoelastic model reads:

(I BV P6) :



D(ρv )
Dt +vρ(∇·v ) =∇·σ+ f , x ∈Ω, t > 0,

σ= µ1
2

(∇v + (∇v )T
)+µ2 (∇·v ) I + Es

p
ρ

1+η
(
ε+ η

1−2ηTr(ε)I
)

, x ∈Ω, t > 0,
Dε

Dt +ε skew
(
∂v
∂x

)
− skew

(
∂v
∂x

)
ε+

(
Tr

(
ε
)
−1

)
sym

(
∂v
∂x

)
=−g , x ∈Ω, t > 0,

σ ·n +au = 0, x ∈ ∂Ω, t > 0,

u(x ,0) = 0, x ∈Ω.

4.2. Numerical systems
In this section, we will derive the weak forms and the Galerkin equations for the models derived in Section
4.1. For the derivation of the weak forms, a generalization for multi-dimensions of Theorem 3.3.2 is used [4].
Let Ω(t ) ∈ Rn and φi (x , t ) = φi (x(X , t ), t ) ∈ L2(H 1(Ω(t )), (0,T )) is a Finite Element triangular basis function
that is piecewise linear at X , such that φi (x j , t ) = δi j , where

δi j =
{

1, if i = j ,

0, if i 6= j .
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Then we have

Dφi

Dt
(x , t ) = 0. (4.2.1)

Proof. Similarly to the proof of Theorem 3.3.2, we have that

Dφi

Dt
(x j , t ) = ∂φi

∂t
(X j , t ) = lim

∆t→0

φi (X j , t +∆t )−φi (X j , t )

∆t
= lim
∆t→0

δi j −δi j

∆t
= 0. (4.2.2)

Notice that for general x ∈Ω(t ), we can write

x = x(X , t ) = x(λ0 X0 + . . .+λN XN , t ), (4.2.3)

such that

N∑
j=0

λ j = 1. (4.2.4)

Then it follows that

Dφi

Dt
(x , t ) = ∂φi

∂t

(
N∑

j=0
λ j X j , t

)
. (4.2.5)

By definition of the time derivative, sinceφi is piecewise linear in X , the time derivative ∂φi
∂t (X , t ) is piecewise

linear as well. Hence, this time derivative function can be written as

∂φi

∂t
(X , t ) = A0(t )+ A1(t )X 1 + . . .+ An(t )X n , (4.2.6)

where X k denotes the k-th component of the vector X . Combining this with Equations (4.2.2), (4.2.4) and
(4.2.5), it follows that

Dφi

Dt
(x , t ) = ∂φi

∂t

(
N∑

j=0
λ j X j , t

)

= A0(t )+
n∑

k=1

(
Ak (t ) ·

[
N∑

j=0
λ j X j

]k)

=
(

N∑
j=0

λ j

)
· A0(t )+

N∑
j=0

(
λ j

[
n∑

k=1
Ak (t )X k

j

])

=
N∑

j=0

(
λ j

[
A0(t )+

n∑
k=1

Ak (t )X j k

])

=
N∑

j=0

(
λ j

Dφi

Dt
(x j , t )

)
= 0.
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4.2.1. Purely elastic model
In the appendix, the weak form (W4) of (I BV P4) is derived:

(W 4) :



Find v1, v2 ∈ L2(H 1(Ω(t )), (0,T )), such that

ρ d
dt

(∫
Ω(t ) v1φ1 dΩ

)=
−Es

p
ρ

1+η
∫
Ω(t )

(
1−η

1−2η
∂u1
∂x + η

1−2η
∂u2
∂y

)
∂φ1
∂x + 1

2

(
∂u1
∂y + ∂u2

∂x

)
∂φ1
∂y dΩ

+∫
Ω(t ) f1φ1 dΩ−a

∮
∂Ω(t ) u1φ1 dΓ,

ρ d
dt

(∫
Ω(t ) v2φ2 dΩ

)=
−Es

p
ρ

1+η
∫
Ω(t )

1
2

(
∂u1
∂y + ∂u2

∂x

)
∂φ2
∂x +

(
η

1−2η
∂u1
∂x + 1−η

1−2η
∂u2
∂y

)
∂φ2
∂y dΩ

+∫
Ω(t ) f2φ2 dΩ−a

∮
∂Ω(t ) u2φ2 dΓ,

for all φ1(x , t ),φ2(x , t ) ∈ H 1(Ω(t )).

Defining N := (nx +1) · (ny +1)−1 (which is the number of nodes in Ω minus one), this yields the following
Galerkin equations:

ρ
N∑

j=0
(v1)+j

∫
Ω+
φ+

i φ
+
j dΩ = ρ

N∑
j=0

(v1) j

∫
Ω(t )

φiφ j dΩ

+ ∆t
Es

p
ρ

1+η
N∑

j=0
(u1)+j

(
−

∫
Ω+

1−η
1−2η

∂φ+
i

∂x

∂φ+
j

∂x
+ 1

2

∂φ+
i

∂y

∂φ+
j

∂y
dΩ

)

+ ∆t
Es

p
ρ

1+η
N∑

j=0
(u2)+j

(
−

∫
Ω+

η

1−2η

∂φ+
i

∂x

∂φ+
j

∂y
+ 1

2

∂φ+
i

∂y

∂φ+
j

∂x
dΩ

)

+ ∆t
∫
Ω+

f +
1 φ

+
i dΩ, (4.2.7)

and

ρ
N∑

j=0
(v2)+j

∫
Ω+
φ+

i φ
+
j dΩ = ρ

N∑
j=0

(v2) j

∫
Ω(t )

φiφ j dΩ

+ ∆t
Es

p
ρ

1+η
N∑

j=0
(u1)+j

(
−

∫
Ω+

1

2

∂φ+
i

∂x

∂φ+
j

∂y
+ η

1−2η

∂φ+
i

∂y

∂φ+
j

∂x
dΩ

)

+ ∆t
Es

p
ρ

1+η
N∑

j=0
(u2)+j

(
−

∫
Ω+

1

2

∂φ+
i

∂x

∂φ+
j

∂x
+ 1−η

1−2η

∂φ+
i

∂y

∂φ+
j

∂y
dΩ

)

+ ∆t
∫
Ω+

f +
2 φ

+
i dΩ. (4.2.8)

Here,Ω+ :=Ω(t +∆t ). Furthermore, all variables with a superscript + should be evaluated at t = t +∆t . After
deriving the Galerkin equations, we obtain the following numerical systems for the purely elastic model:(

ρM k+1
1 +∆t 2B k+1

)
v k+1

1 = ρM k
1 v k

1

+ ∆t
Es

p
ρ

1+η
((

1−η
1−2η

Sk+1
1 + 1

2
Sk+1

2

)
uk+1

1 +
(

η

1−2η
Sk+1

3 + 1

2
Sk+1

4

)
uk+1

2

)
+ ∆t f k+1

1 −a ·∆t ·bk
1 , (4.2.9)

and (
ρM k+1

1 +∆t 2B k+1
)

v k+1
2 = ρM k

1 v k
2

+ ∆t
Es

p
ρ

1+η
((

η

1−2η
Sk+1

4 + 1

2
Sk+1

3

)
uk+1

1 +
(

1−η
1−2η

Sk+1
2 + 1

2
Sk+1

1

)
uk+1

2

)
+ ∆t f k+1

2 −a ·∆t ·bk
2 . (4.2.10)
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The matrices M k
1 ,Sk

l (l = 1, . . .4) and B k , are (N +1)×(N +1)-matrices and f k
1 , f k

2 , bk
1 and bk

2 vectors of length
N +1 with the following (boundary) element matrices and element vector:

(M k
1 )e = |∆|ke

24

2 1 1
1 2 1
1 1 2

 , (4.2.11)

(Sk
1 )e = −|∆|ke

2

β1β1 β1β2 β1β3

β2β1 β2β2 β2β3

β3β1 β3β2 β3β3

 , (4.2.12)

(Sk
2 )e = −|∆|ke

2

γ1γ1 γ1γ2 γ1γ3

γ2γ1 γ2γ2 γ2γ3

γ3γ1 γ3γ2 γ3γ3

 , (4.2.13)

(Sk
3 )e = −|∆|ke

2

β1γ1 β1γ2 β1γ3

β2γ1 β2γ2 β2γ3

β3γ1 β3γ2 β3γ3

 , (4.2.14)

(Sk
4 )e = −|∆|ke

2

γ1β1 γ1β2 γ1β3

γ2β1 γ2β2 γ2β3

γ3β1 γ3β2 γ3β3

 , (4.2.15)

(B k )be = a · ||q
k
2 −q k

1 ||
6

(
2 1
1 2

)
, (4.2.16)

( f k
d )e = |∆|ke

6

 fd (pk
1 ,k∆t )

fd (pk
2 ,k∆t )

fd (pk
3 ,k∆t )

 , (4.2.17)

(bk
d )be = ||q k+1

2 −q k+1
1 ||

2

(
ud (q k

1 ,k∆t )
ud (q k

2 ,k∆t )

)
, (4.2.18)

where |∆|ke denotes twice the area of the element e = (pk
1 , pk

2 , pk
3 ) at time step k and ||q k

2 −q k
1 || is the length

of boundary element be = [q k
1 , q k

2 ] at time step k. For B k , bk
1 and bk

2 , only boundary element matrix and
vectors are given, since this matrix and vector are related to the boundary condition. For internal elements,
the element matrix of B k is a zero matrix and the element vectors of bk

d are zero vectors. Furthermore,

βi :=βpi , γi := γpi , i ∈ {1,2,3},

and

v k
d :=

(
(vd )k

0 , . . . , (vd )k
N

)T
, uk

d :=
(
(ud )k

0 , . . . , (ud )k
N

)T
and f k

d :=
(
( fd )k

0 , . . . , ( fd )k
N

)T
, (d = 1,2).

Same as in the one-dimensional case, uk+1
d is approximated by:

uk+1
d ≈ uk

d +∆t v k
d , d ∈ {1,2}. (4.2.19)
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4.2.2. Viscoelastic model
In the appendix, the weak form (W5) of (I BV P5) is derived:

(W 5) :



Find v1, v2 ∈ L2(H 1(Ω(t )), (0,T )), such that

ρ d
dt

(∫
Ω(t ) v1φ1 dΩ

)=∫
Ω(t )−µ1

2

(
∂v1
∂y + ∂v2

∂x

)
∂φ
∂x −

(
µ2

∂v1
∂x + (

µ1 +µ2
) ∂v2
∂y

)
∂φ
∂y dΩ

−Es
p
ρ

1+η
∫
Ω(t )

(
1−η

1−2η
∂u1
∂x + η

1−2η
∂u2
∂y

)
∂φ1
∂x + 1

2

(
∂u1
∂y + ∂u2

∂x

)
∂φ1
∂y dΩ

+∫
Ω(t ) f1φ1 dΩ−a

∮
∂Ω(t ) u1φ1 dΓ,

ρ d
dt

(∫
Ω(t ) v2φ2 dΩ

)=∫
Ω(t )−µ1

2

(
∂v1
∂y + ∂v2

∂x

)
∂φ
∂x −

(
µ2

∂v1
∂x + (

µ1 +µ2
) ∂v2
∂y

)
∂φ
∂y dΩ

−Es
p
ρ

1+η
∫
Ω(t )

1
2

(
∂u1
∂y + ∂u2

∂x

)
∂φ2
∂x +

(
η

1−2η
∂u1
∂x + 1−η

1−2η
∂u2
∂y

)
∂φ2
∂y dΩ

+∫
Ω(t ) f2φ2 dΩ−a

∮
∂Ω(t ) u2φ2 dΓ,

for all φ1(x , t ),φ2(x , t ) ∈ H 1(Ω(t )).

This means that Equation (4.2.9) becomes:(
ρM k+1

1 +∆t 2B k+1
)

v k+1
1 = ρM k

1 v k
1

+ ∆t
Es

p
ρ

1+η
((

1−η
1−2η

Sk+1
1 + 1

2
Sk+1

2

)
uk+1

1 +
(

η

1−2η
Sk+1

3 + 1

2
Sk+1

4

)
uk+1

2

)
+ ∆t

(((
µ1 +µ2

)
Sk+1

1 + µ1

2
Sk+1

2

)
v k+1

1 +
(
µ2Sk+1

3 + µ1

2
Sk+1

4

)
v k+1

2

)
+ ∆t f k+1

1 −a ·∆t ·bk
1 , (4.2.20)

and Equation (4.2.10) becomes:(
ρM k+1

1 +∆t 2B k+1
)

v k+1
2 = ρM k

1 v k
2

+ ∆t
Es

p
ρ

1+η
((

η

1−2η
Sk+1

4 + 1

2
Sk+1

3

)
uk+1

1 +
(

1−η
1−2η

Sk+1
2 + 1

2
Sk+1

1

)
uk+1

2

)
+ ∆t

((µ1

2
Sk+1

3 +µ2Sk+1
4

)
v k+1

1 +
(µ1

2
Sk+1

1 + (
µ1 +µ2

)
Sk+1

2

)
v k+1

2

)
+ ∆t f k+1

2 −a ·∆t ·bk
2 . (4.2.21)

4.2.3. Morphoelastic model
In the morphoelastic model, the Strain Evolution Equations are included:

Dε11
Dt +ε11∇·v = (1−ε22) ∂v1

∂x +ε11
∂v2
∂y + 1

2 (ε21 +ε12)
(
∂v1
∂y − ∂v2

∂x

)
− g11,

Dε12
Dt +ε12∇·v = ε12∇·v + 1

2

(
(1−2ε11) ∂v1

∂y + (1−2ε22) ∂v2
∂x

)
− g12, ε21 = ε12,

Dε22
Dt +ε22∇·v = (1−ε11) ∂v2

∂y +ε22
∂v1
∂x − 1

2 (ε12 +ε21)
(
∂v1
∂y − ∂v2

∂x

)
− g22.

Hence, we seek the solutions to both v and ε. The viscoelastic systems in Equation (4.2.20) and (4.2.21)

become:

ρM k+1
1 v k+1

1 = ρM k
1 v k

1 + ∆t
Es

p
ρ

1+η
(

1−η
1−2η

P k+1
1 εεεk+1

11 +P k+1
2 εεεk+1

12 + η

1−2η
P k+1

1 εεεk+1
22

)
+ ∆t

(((
µ1 +µ2

)
Sk+1

1 + µ1

2
Sk+1

2

)
v k+1

1 +
(
µ2Sk+1

3 + µ1

2
Sk+1

4

)
v k+1

2

)
(4.2.22)

+ ∆t f k+1
1 −a ·∆t ·bk

1 , (4.2.23)
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and

ρM k+1
1 v k+1

2 = ρM k
1 v k

2 + ∆t
Es

p
ρ

1+η
(

η

1−2η
P k+1

2 εεεk+1
11 +P k+1

1 εεεk+1
12 + 1−η

1−2η
P k+1

2 εεεk+1
22

)
+ ∆t

((µ1

2
Sk+1

3 +µ2Sk+1
4

)
v k+1

1 +
(µ1

2
Sk+1

1 + (
µ1 +µ2

)
Sk+1

2

)
v k+1

2

)
(4.2.24)

+ ∆t f k+1
2 −a ·∆t ·bk

2 . (4.2.25)

Here, P k
1 and P k

2 are (N +1)× (N +1)-matrices with corresponding element matrices:

(P k
1 )e = −|∆|ke

6

β1 β1 β1

β2 β2 β2

β3 β3 β3

 , (4.2.26)

(P k
2 )e = −|∆|ke

6

γ1 γ1 γ1

γ2 γ2 γ2

γ3 γ3 γ3

 . (4.2.27)

In the appendix, the weak form (W6) of the Strain Evolution Equations is derived, yielding:

(W 6) :



Find ε11,ε12,ε22 ∈ L2(H 1(Ω(t )), (0,T )), such that
d

dt

(∫
Ω(t )ε11φ1 dΩ

)=∫
Ω(t )

(
(1−ε22) ∂v1

∂x +ε11
∂v2
∂y + 1

2 (ε21 +ε12)
(
∂v1
∂y − ∂v2

∂x

)
− g11

)
φ1 dΩ,

d
dt

(∫
Ω(t )ε12φ2 dΩ

)=∫
Ω(t )

(
ε12∇·v + 1

2

(
(1−2ε11) ∂v1

∂y + (1−2ε22) ∂v2
∂x

)
− g12

)
φ2 dΩ,

d
dt

(∫
Ω(t )ε22φ3 dΩ

)=∫
Ω(t )

(
(1−ε11) ∂v2

∂y +ε22
∂v1
∂x − 1

2 (ε12 +ε21)
(
∂v1
∂y − ∂v2

∂x

)
− g22

)
φ3 dΩ,

for all φ1(x , t ),φ2(x , t ) ∈ H 1(Ω(t )).

Deriving the Galerkin Equations and applying Euler Backward result in a non-linear system:
(1+ξ∆t ) M k+1

1 εεεk+1
11 = M k

1εεε
k
11 +∆tT k+1

1 v k+1
1 +∆t f k+1

ε11
(w k+1),

(1+ξ∆t ) M k+1
1 εεεk+1

12 = M k
1εεε

k
12 + ∆t

2

(
T k+1

2 v k+1
1 +T k+1

1 v k+1
2

)+∆t f k+1
ε12

(w k+1),

(1+ξ∆t ) M k+1
1 εεεk+1

22 = M k
1εεε

k
22 +∆tT k+1

2 v k+1
2 +∆t f k+1

ε22
(w k+1).

(4.2.28)

Here, T1 and T2 are (N +1)× (N +1)-matrices, with the following element matrices:

(T k
1 )e = |∆|ke

6

β1 β2 β3

β1 β2 β3

β1 β2 β3

 , (4.2.29)

(T k
2 )e = |∆|ke

6

γ1 γ2 γ3

γ1 γ2 γ3

γ1 γ2 γ3

 . (4.2.30)

Furthermore,

εεεk
d1d2

:=
(
(εd1d2 )k

0 , . . . , (εd1d2 )k
N

)T
, d1,d2 ∈ {1,2},

and
w k := (εεεk

11,εεεk
12,εεεk

22, v k
1 , v k

2 )T .

Note that f k+1
ε11

, f k+1
ε12

and f k+1
ε22

are vector-valued functions of w k with length N +1. The element vectors are
defined by

( f k
ε11

(w k ))e := |∆|ke
24

−
[
βe · (v1)e

]
ε̄εε1

22 +
[
γe · (v2)e

]
ε̄εε1

11 +
[
γe · (v1)e −βe · (v2)e

]
ε̄εε1

12
−[
βe · (v1)e

]
ε̄εε2

22 +
[
γe · (v2)e

]
ε̄εε2

11 +
[
γe · (v1)e −βe · (v2)e

]
ε̄εε2

12
−[
βe · (v1)e

]
ε̄εε3

22 +
[
γe · (v2)e

]
ε̄εε3

11 +
[
γe · (v1)e −βe · (v2)e

]
ε̄εε3

12

 , (4.2.31)
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( f k
ε12

(w k ))e := |∆|ke
24


[
βe · (v1)e +γe · (v2)e

]
ε̄εε1

12 −
[
γe · (v1)e

]
ε̄εε1

11 −
[
βe · (v2)e

]
ε̄εε1

22[
βe · (v1)e +γe · (v2)e

]
ε̄εε2

12 −
[
γe · (v1)e

]
ε̄εε2

11 −
[
βe · (v2)e

]
ε̄εε2

22[
βe · (v1)e +γe · (v2)e

]
ε̄εε3

12 −
[
γe · (v1)e

]
ε̄εε3

11 −
[
βe · (v2)e

]
ε̄εε3

22

 , (4.2.32)

and

( f k
ε22

(w k ))e := |∆|ke
24

−
[
γe · (v2)e

]
ε̄εε1

11 +
[
βe · (v1)e

]
ε̄εε1

22 +
[
γe · (v1)e −βe · (v2)e

]
ε̄εε1

12
−[
γe · (v2)e

]
ε̄εε2

11 +
[
βe · (v1)e

]
ε̄εε2

22 +
[
γe · (v1)e −βe · (v2)e

]
ε̄εε2

12
−[
γe · (v2)e

]
ε̄εε3

11 +
[
βe · (v1)e

]
ε̄εε3

22 +
[
γe · (v1)e −βe · (v2)e

]
ε̄εε3

12

 . (4.2.33)

Here,
βe := (βp1,βp2,βp3)T , γe := (γp1,γp2,γp3)T .

Furthermore,
(vd )e := ((vd )p1 , (vd )p2 , (vd )p3 )T

and
ε̄εεi

d1d2
:= (εd1d2 )p1 + (εd1d2 )p2 + (εd1d2 )p3 + (εd1d2 )pi .

Combining Equations (4.2.23), (4.2.25) and (4.2.28) together in one single system, we obtain:

M
k+1

w k+1 = M k w k +∆tSk+1w k+1 +∆t f k+1(w k+1), (4.2.34)

where

M
k

:=


(1+ξ∆t ) M k

1 O O O O
O (1+ξ∆t ) M k

1 O O O
O O (1+ξ∆t ) M k

1 O O
O O O ρM k

1 +∆t 2B k+1 O
O O O O ρM k

1 +∆t 2B k+1

 , (4.2.35)

M k :=


M k

1 O O O O
O M k

1 O O O
O O M k

1 O O
O O O ρM k

1 O
O O O O ρM k

1

 , (4.2.36)

Sk :=


O O O T k

1 O
O O O 0.5T k

2 0.5T k
1

O O O O T k
2

Ēs η̄1P k
1 Ēs P k

2 Ēs η̄2P k
1 µ̄Sk

1 +0.5µ1Sk
2 µ2Sk

3 +0.5µ1Sk
4

Ēs η̄2P k
2 Ēs P k

1 Ēs η̄1P k
2 0.5µ1Sk

3 +µ2Sk
4 0.5µ1Sk

1 + µ̄Sk
2

 , (4.2.37)

and

f k (w k ) :=


f k
ε11

(w k )
f k
ε12

(w k )
f k
ε22

(w k )
f k

1 −a ·bk
1

f k
2 −a ·bk

2

 . (4.2.38)

Here,

Ēs := Es
p
ρ

1+η , η̄1 := 1−η
1−2η

, η̄2 := η

1−2η
, µ̄ :=µ1 +µ2.

Since f k+1 is a non-linear function of w k , we have to solve the equations by means of an iterative method.
We choose the iterative method of Picard. We have

w k+1 =
(
M

k+1 −∆tSk+1
)−1 (

M k w k +∆t f k+1(w k+1)
)

. (4.2.39)
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Starting with an initial guess w k+1
0 , we define for n ≥ 0:

w k+1
n+1 :=

(
M

k+1 −∆tSk+1
)−1 (

M k w k +∆t f k+1(w k+1
n )

)
. (4.2.40)

This process will be continued until the residual

rn :=
∣∣∣∣∣∣(M

k+1 −∆tSk+1
)

w k+1
n −

(
M k w k +∆t f k+1(w k+1

n )
)∣∣∣∣∣∣

2
, (4.2.41)

is small enough. Here || · ||2 denotes the Euclidean norm.

4.3. Results
In this session, we will mainly display the results regarding all the aforementioned two-dimensional models,
in particular, the area changing over time and the deformation of the computational domain. The parameter
values are taken from Table 4.1. Here, we consider a body force only in horizontal direction, which is defined

Description Parameter Value Unit Application

Fibroblasts measure C f 4.0 - all models
Duration of body force t f 10.0 day all models
Maximal magnitude of body force f̄ 50.0 N·g·cell−1·cm−1 all models
Elasticity of the ECM Es 31.0 N·cm−2 all models
Length of domain in x-direction Lx 1.0 cm all models
Length of domain in y-direction Ly 1.0 cm all models
Number of gridnodes in x-direction nx 20 - all models
Number of gridnodes in y-direction ny 20 - all models
Time step ∆t 0.04 day all models

Material density ρ 1.02 g·cm−1 models including
Cauchy Momentum Eq.

Shear viscosity µ1 100.0 N·day·cm−1 visco- and
morphoelastic models

Bulk viscosity µ2 100.0 N·day·cm−1 visco- and
morphoelastic models

Degree of permanent deformation ξ 0.05 - morphoelastic model
Duration of simulated time T 16 day all models
Parameter in Robin boundary condition a 31.0 - all models

Table 4.1: Overview of used parameters in the two-dimensional models

as follows:

f (x, y, t ) =


(
f̄ ·T (t ),0

)T
, if 0 ≤ x ≤ x

(
Lx
2 , t

)
,(− f̄ ·T (t ),0

)T
, if x > x

(
Lx
2 , t

)
,

(4.3.1)

where T (t ) is defined as in Equation (5.1.7).
In Figure 4.1, the displacement of the nodal points is shown at t = 8 days. It can be seen that the tissue, in

particular the points in the centre of the computational domain, mainly migrates in the horizontal direction.
Furthermore, in the vertical direction, especially around x = 0, the tissue slightly expands, which is due to the
Poisson’s effect. We only show one plot of this type for all the models, since the differences are not so clearly
visible in the plot.

In Figure 4.2, the dynamic of the area of the computational domain is shown for the purely elastic, vis-
coelastic and morphoelastic model respectively. We see that the behaviour of the area is the same as the
behaviour of the length in the one-dimensional case. In the elastic model, a sharp transition can be ob-
served at t = 10 days (the moment at which the body force starts to decrease). In the viscoelastic model, the
transition starts at the same moment, but it is much smoother due to the delay caused by viscosity. In the
morphoelastic model, since ξ> 0, it can be observed that the wound does not fully recover to its initial state:
a permanent deformation is developed.
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Figure 4.1: The nodal points of finite element methods are shown, where red scatters present the initial positions and black scatters
represent the positions at t = 8 days. Here, the morphoelastic model is used.

A. Elastic model B. Viscoelastic model

C. Morphoelastic model

Figure 4.2: Plots of tissue area as function of time



5
Two-dimensional morphoelastic model

with point forces

In the former chapters, a general body force was used to model the contraction of the wound. in the applica-
tion of wound healing, we model the point forces exerted by the (myo)fibroblasts in the form of Dirac Delta
distributions. Therefore, the model stated in Chapter 4 will be modifeid due to the special characteristics
of the Dirac Delta distribution. At first, the mathematical model is described. Subsequently, the results are
presented. In the last section, the model is tested by means of a parameter sensitivity test.

5.1. Mathematical model
During wound healing, in particular the proliferation phase, the (myo)fibroblasts exert pulling forces on
the direct environment (the extracellular matrix) and cause local contractions of the wound. According to
[1], we will use Dirac Delta distributions in order to model these point forces. Suppose there is one single
(myo)fibroblast in the domain with cell centre at xc . We assume that the forces are exerted on the cell bound-
ary, which is a continuous curve denoted by ∂Ωc and the forces are directed towards xc . Dividing ∂Ωc into
multiple line segments, the corresponding force then becomes [1], [16]

fp (x) =
NS∑
j=1

P ·n(x)δ(x −x j )∆Γ j , (5.1.1)

where NS is the number of line segments of the cell, P is the magnitude of the pulling force per length unit,
n(x) is the unit inward pointing unit normal vector (towards the cell centre) at position x , x j is the midpoint
on the line segment j and ∆Γ j is the length of the line segment j . This method is also used in fluid dynamics

and is known as the immerse boundary method [16]. As NS →∞, that is, ∆Γ j
N → 0, Equation (5.1.1) becomes

fp (x) =
∮
∂Ωc

P ·n(x)δ(x −xs )dΓ, (5.1.2)

where xs is a point on the cell boundary. Usually, a biological cell is modelled as a circle in two dimensions
and a sphere in three dimensions. As NS →∞, the curve ∂Ωc becomes a circle. However, it will significantly
increase the computational cost [16]. Besides, we are working on a relatively small wound with multiple cells,
so in the quest of the balance of the accuracy of the solution and the computational efficiency, simple polygon
like triangles (NS = 3) or squares (NS = 4) are chosen to approximate the cell boundary. Hereby, we follow the
methods proposed in [1], to model this as a square surrounding the cell, with at each edge of the square a
point force directed towards the cell: see Figure 5.1. Consider a square with side lengths 2 ·rs surrounding the
(myo)fibroblast. The value of rs is chosen in such a way that the area of the square-shaped cell is equal to the
area of the original circle-shaped cell. This indicates that

rs =
p
πR

2
, (5.1.3)

37
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Figure 5.1: Cellular point forces exerted on a square curve towards the cell center. Image source: [1]

where R is the radius of the circle-shaped cell. The midpoint of each side is given by

xn = (xc , yc + rs )T ,

xe = (xc + rs , yc )T ,

xs = (xc , yc − rs )T ,

xw = (xc − rs , yc )T . (5.1.4)

For the square-shaped cell as shown in Figure 5.1, using Equation (5.1.1), the cell traction force becomes

fp (x) = 2rs P (nnδ(x −xn)+neδ(x −xe )+nsδ(x −xs )+nwδ(x −xw )) , (5.1.5)

where P is the force magnitude per length unit and nn ,ne ,ns and nw are the unit vectors pointing towards
xc (out of the northern, eastern, southern and western boundary respectively). This is an approximation of
the contracting point force at xc , as rs → 0. Equation (5.1.1) defines the force for a (myo)fibroblast with fixed
location and time-independent force. We can generalize the equation for a moving (myo)fibroblast with
time-dependent traction force by

fp (x , t ) =
NS∑
j=1

P (t ) ·n(x , t )δ(x −x j (t ))∆Γ j . (5.1.6)

In this chapter, P (t ) was defined in the same way as in Equation (5.1.8), with P (t ) = P ·T (t ), where T (t ) is
defined as

T (t ) :=
{

1−exp
(−3 · t/t f

)
, if 0 ≤ t < t f ,(

1−exp
(−3 · t/t f

))
exp

(−(
t − t f

))
, if t ≥ t f .

(5.1.7)

Furthermore, if there are multiple cells, the total force equals the sum of the cell traction forces of each cell:

f (x , t ) =
Nc (t )∑
i=1

f i
p (x , t ), (5.1.8)

where Nc (t ) is the number of cells at time t and f i
p (x , t ) denotes the cell traction force belonging to cell i at

location x and time t , as defined in Equation (5.1.6). Hence, we obtain following model:

(I BV P7) :



D(ρv )
Dt +vρ(∇·v ) =∇·σ+ f (x , t ), x ∈Ω, t > 0,

σ= µ1
2

(∇v + (∇v )T
)+µ2 (∇·v ) I + Es

p
ρ

1+η
(
ε+ η

1−2ηTr(ε)I
)

, x ∈Ω, t > 0,
Dε

Dt +ε skew
(
∂v
∂x

)
− skew

(
∂v
∂x

)
ε+

(
Tr

(
ε
)
−1

)
sym

(
∂v
∂x

)
=−g , x ∈Ω, t > 0,

σ ·n +au = 0, x ∈ ∂Ω, t > 0,

u(x ,0) = 0, x ∈Ω,

v (x ,0) = 0, x ∈Ω.
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where

f (x , t ) =
Nc (t )∑
i=1

N i
S∑

j=1
P (t ) ·n j (x , t )δ(x −x j (t ))∆Γ j . (5.1.9)

The weak form will be the same as (W6) in Chapter 4. However, in this weak form, the expression
∫
Ω(t ) fdφd dΩ,

(d = 1,2) can now be simplified a little further. We have:

∫
Ω

f ◦φ dΩ =
Nc (t )∑
i=1

N i
S∑

j=1

∫
Ω

2rs Pn j (x , t )δ(x −x j (t )◦φ dΩ

=
Nc (t )∑
i=1

∫
Ω

2rs P

(
δ(x −x i

e (t ))−δ(x −x i
w (t ))

δ(x −x i
s (t ))−δ(x −x i

n(t ))

)
◦φ dΩ

=
Nc (t )∑
i=1

2rs P

(
φ1(x i

e (t ), t )−φ1(x i
w (t ), t )

φ2(x i
s (t ), t )−φ2(x i

n(t ), t )

)
, (5.1.10)

where f ◦φ := ( f1φ1, f2φ2)T .

5.2. Numerical Result
In this section, the numerical results are shown for (I BV P7) with traction force function as defined in Section
5.1. We start with the simulation in which there is only one relatively big cell centered at the origin, then we
consider multiple smaller cells, of which the size is comparable to the size of the mesh elements. In Figure

Description Parameter Value Unit

Length of the domain in x-direction Lx 0.2 cm
Length of the domain in y-direction Ly 0.2 cm
Length of the wound in x-direction B x 0.04 cm
Length of the wound in y-direction B y 0.04 cm
Number of nodes in x-direction nX 32 -
Number of nodes in y-direction nY 32 -
Time step ∆t 0.03 day
Half of the sides of the cells (one cell simulation) rs 0.0222 cm
Half of the sides of the cells (multiple cells simulation) rs 0.001 cm
Young’s modulus E 31.0 N·cm−2

Density ρ 1.02 g·cm−3

Shear viscosity µ1 100.0 N·day·cm−2

Bulk viscosity µ2 100.0 N·day·cm−2

Poisson’s ratio η 0.48 -
Degree of permanent deformation ξ 0.15 -
Constant in Robin bnd. condition a 1000.0 -
Magnitude of point forces (one cell simulation) P 10.0 N
Magnitude of point forces (multiple cells simulation) P 210.0 N
Moment at which force reaches maximum value t f 10.0 day
Duration of simulated time T 18.0 day

Table 5.1: Overview of used parameters in Section 5.2

5.2, the results are shown for the one big cell. We assume the cells have no active displacement but only
passive convections. In other words, the displacements of cells are only caused by the displacement of the
enviroment, that is, the displacement of the grid points. Furthermore, this indicates that throughout the
entire simulation, the cells will stay in the same triangular mesh element. The parameter values used in the
simulations are shown in Table 5.1. For rs and P , two values are shown in the table, since they are different
for the simulation with one big cell and the simulation with multiple small cells.
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A. Plot of domain and wound boundary in x,y-plane at t = 10 days
B. Plot of wound area as function of time

Figure 5.2: Morphoelastic model with traction force induced by one cell

A. Plot of domain and wound boundary in the x,y-plane at t = 10
days

B. Plot of wound area as function of time

Figure 5.3: Morphoelastic model with traction force induced by multiple cells
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In Figure 5.3, the results are shown for multiple cells. The total number of cells is 49 and they located
uniformly over the wound area, that is, for i ∈ {0, ..,48}:

x i
c = (−0.5 ·B x + (0.5+ i1) ·B x/7,−0.5 ·B y + (0.5+ i2) ·B y/7)T , (5.2.1)

where x i
c denotes the location of the cell center of cell i , i1 := i %7 and i2 = floor(i /7) with floor denoting the

function which rounds the number down to an integer, B x and B y are the length of the wound in x-direction
and y-direction.

The traction forces are visible in the plots of the wound in the x,y-plane. In Figure 5.2A, the deformation
of the wound area is mainly present in the midpoint of the cell sides, where the point forces are exerted. In
Figure 5.3A, the deformation is more spread out along the sides of the wound since the cells are distributed
uniformly in the entire wound. Figure 5.2B and Figure 5.3B both show that the area of the wound decreases
due to the traction forces and that a permanent deformation occurs.

5.3. Parameter analysis
Mathematical modelling suffers from the fact of lacking the parameter values. Besides the complicated nature
of wound healing model, different patients have different characteristics of skin, which results into different
healing processes. Hence, it is essential to have sensitivity tests regarding parameters to validate the model,
and to have a better insight into the wound healing. To investigate the behaviour of the models, several
parameter sensitivity tests were done. In a parameter sensitivity test, computational simulations are carried
out with all parameters fixed, except for one parameter, which is varied among the simulations. Without
specific declaration, the parameter values used in the model are shown in Table 5.2. Furthermore, in Table
5.3, the ranges of the varied parameters are shown. The wound area is defined to be a square in the center of

Description Parameter Value

Length of the domain in x-direction Lx 0.2
Length of the domain in y-direction Ly 0.2
Length of the wound in x-direction B x 0.04
Length of the wound in y-direction B y 0.04
Number of nodes in x-direction nX 31
Number of nodes in y-direction nY 31
Time step ∆t 0.03
Young’s modulus E 31.0
Density ρ 1.02
Shear viscosity µ1 100.0
Bulk viscosity µ2 100.0
Poisson’s ratio η 0.48
Degree of the permanent deformation ξ 0.15
Spring constant in Robin boundary condition a 1000.0
Magnitude of the point forces P 210.0
Half of the sides of the square-shaped cells rs 0.001
Moment at which force reaches maximum value t f 3.0
Number of cells in the wound Nc 49

Table 5.2: Overview of used parameters in the parameter sensitivity tests

the domain. Most of the parameters are taken from [18] or estimated in this study.

5.3.1. Gridsize and time step
At first, we analyze some numerical parameters, namely the gridsize and the time step. As for the grid size,
a plot is shown with 10 log(h) on the horizontal axis , where h denotes the distance between the grid nodes.
On the vertical axis, the relative area of the wound is shown. For example, if the relative area has a value
of 0.95, then this means that the area is 95% of the original area. The values for h on the horizontal axis
vary from h = 0.02 to h = 0.004, which in our domain corresponds to 10 and 50 grid nodes respectively, in
each direction. The corresponding values of 10 log(h) are from −1.699 to −2.398 respectively. The results area
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Description Parameter Range of values

Distance between the (equidistant) gridnodes h [0.0040,0.020]
Time step ∆t [0.0032,0.0]
Young’s modulus E [0.0,100.0]
Shear viscosity µ1 [10,400]
Bulk viscosity µ2 [10,400]
Degree of the permanent deformation ξ [0.0,0.5]
Poisson’s ratio η [0.0,0.495]
Magnitude of the point forces P [0.0,500.0]
Spring constant in Robin boundary condition a [1.78,316228]

Table 5.3: Overview of ranges in the parameter sensitivity tests

shown for several moments of time. The number of iterations is 200, which means that the simulation runs
from t = 0 till t = 6.0, with the time step given in Table 5.2. In Figure 5.4, the curves at t = 1.5, t = 3.0, t = 4.5
and t = 6.0 are shown in one figure, as well as the curve of the minimal values of the relative area throughout
the entire simulation. The curve for the minimal area mostly overlaps with the curve for t = 3, since the
force started decreasing at t = 3 (that is, t f = 3). It is not necessary to show all the plots in a separate figure,
since, although quantitatively different, they are qualitatively the same. Therefore, only the minimal area is
shown in a separate plot. The convergence of the solution can be seen in Figure 5.4, since with smaller mesh

Figure 5.4: Relative wound area at moments as function of grid size

size, the wound area ratio at the same time point is getting more stable and less fluctuated. From around
h = 10−2.15, the wound area stays relatively stable as the size of mesh elements decreases. Therefore, we select
31 gridnodes in each coordinate of which the corresponding mesh size h is around 10−2.176, for the sake of
the balance between the accuracy of the solution and the computational cost. Hence, in other simulations
in this section, h = 10−2.176 is selected as the size of the mesh elements. As for the time step, we show the
results for time steps varying from ∆t = 100 = 1.0 to ∆t = 10−2.5 ≈ 0.00316. On the horizontal axis, 10 log(∆t ) is
shown, ranged from 0 to −2.5 (see Figure 5.5). Here, the results are clearly converging for values smaller than
∆t = 10−1.5 ≈ 0.032. Hence, in the rest of the simulations, a time step of 0.03 is maintained.
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Figure 5.5: Relative wound area at moments as function of time step

5.3.2. Elasticity parameter
The next parameter that is to be analysed, is the elasticity parameter E , which is also called the Young’s mod-
ulus. This parameter determines how stiff the computational domain is. It is varied from 0.0 to 100.0. The
curves show a type of hyperbolic behaviour in Figure 5.6. This could be explained as follows. The same effect
is visible when doing the parameter analysis for the one-dimensional model. Using the equations

dσ

dx
+ f = 0, (5.3.1)

and

σ= du

dx
. (5.3.2)

Multiplying Equation (5.3.1) with 1
E , and combining the two equations, we obtain,

d2u

dx2 =− 1

E
f , (5.3.3)

Since the (contracting) force now is multiplied by 1
E , which increases hyperbolically as E ↓ 0, this indicates

that the solution will increase hyperbolically as well. Hence, the relative area (or, in case of one dimension:
the length) will show hyperbolic decrease as E ↓ 0. In the one dimensional purely elastic model that was men-
tioned, for E = 0, the contraction becomes infinitely large, which results in a singular matrix to be solved.
However, with viscoelasticity involved, this effect is cancelled. Although the model in (I BV P7) is more com-
plex, the elasticity principle is the same. The elastic part of the stress tensor reads

σ
el as

= E

1+η
(
ε+ η

1−2η
Tr(ε)I

)
(5.3.4)

= E

1+η
(

1

2

(∇u + (∇u)T )+ η

1−2η

(
∂u1

∂x
+ ∂u2

∂y

)
I

)
. (5.3.5)

The elastic part of the stress tensor is linearly related with E . Hence, varying the elasticity parameter E shows
the same behaviour qualitatively.
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Figure 5.6: Relative wound area at moments as function of elasticity parameter

5.3.3. Viscoelasticity parameter

There are two viscosity parameters, µ1 and µ2, which determines the damping effect of the domain. In the
simulations, we combined these two parameters and varied them both. The parameterµ in Figure 5.7 denotes
a the scaling factor of µ1 and µ2: µ = 1 corresponds to µ1 = µ2 = 40 and µ = 2 corresponds to µ1 = µ2 = 80
etc. There is a gap between the graph for t = 3 and the graph for the minimal area for high µ. This is due to
the fact that the viscoelasticity causes a delay in the effect of the forces, so that the minimal area is reached
later when viscoelasticity parameter is large. Furthermore, the curves show slightly hyperbolic behaviour,
which can be explained in a similar way as is done for the elasticity parameter. In Figure 5.7, the curves for
t = 4.5 and t = 6 show little different behaviour near µ= 0. This is due to numerical instability as the portion
of viscoelasticity becomes small. Therefore, it could be recommended to use a purely elastic model rather as
soon as viscoelasticity is negligible.

5.3.4. Morphoelasticity parameter

In (I BV P6), the parameter ξ determines the degree of the permanent deformation. Figure 5.8 shows the re-
sults of the parameter analysis for the morphoelasticity parameter ξ. Varying ξ does not influence the relative
area at t = 1.5 that much, since, the permanent deformation is not yet developed at that time point. However,
the influence of ξ increases for later time points, which is in accordance with the fact that ξ determines the
degree of permanent deformation.

5.3.5. Poisson’s ratio

In Figure 5.9, the results are shown for Poisson’s ratio η (see Subsection 2.2.5). Poisson’s ratio indicates how
much a material will deform in the direction perpendicular to the force direction. If η = 0.5, the material is
incompressible. In Figure 5.9, we can see that area(Ω) ↑ 1.0 as η ↑ 0.5. In that case, the total area decreases not
so much, because compression in one direction cause a in other directions (see Figure 2.5 in Section 2.2.5).
Furthermore, the curves in Figure 5.9 show a hyperbolic behaviour. This can be explained by analyzing the
elastic part of the equation for the stress tensor, which was already defined in Equation (2.3.8). As η ↑ 0.5 (that
is, the material gradually becomes incompressible), we have that 1−2η ↓ 0, causing a singularity at η = 0.5
and causing 1

1−2η to grow hyperbolic as η ↑ 0.5.
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Figure 5.7: Relative wound area at moments as function of viscoelasticity parameter

Figure 5.8: Relative wound area at moments as function of morphoelasticity parameter
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Figure 5.9: Relative wound area at moments as function of Poisson’s ratio

5.3.6. Magnitude of cell traction forces
In Figure 5.10, the results are represented for the force that is exerted by the (myo)fibroblasts in the wound
area. Here, P is defined as in Equation (5.1.1). The result is as expected: the minimal area shrinks (linearly) as
the force increases.

5.3.7. Boundary condition value
In this subsection, we look into the spring constant a the Robin boundary condition in (I BV P7). Robin’s
boundary condition benefits from the flexibility of the value of a. If a is relatively small, the boundary is
more free and hence, it is closer to a Neumann boundary condition. However, as a →∞ a Dirichlet boundary
condition is considered. In Figure 5.11 the results of the sensitivity test are shown. On the horizontal axis,
10 log(a) is put instead of a, since an exponential scale is to have a wide range of values. Since the behaviour of
the individual curves is not so clearly visible in Figure 5.11, the curve of the minimal area is shown seperately
in Figure 5.12 The curves show that, as expected, the relative area is closer to 1 as the boundary becomes
more fixed. However, it appears that the relative area of the wound is not affected significantly from a. That
can be explained by the fact that the wound area is far away from the boundary of the computational domain.
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Figure 5.10: Relative wound area at moments as function of cellular force

Figure 5.11: Relative wound area at moments as function of the spring constant in the boundary condition
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Figure 5.12: Minimal relative wound area as function of the spring constant in the boundary condition



6
Agent-based model for wound healing in

burn injuries

One of the main goals of the project is, to combine the morphoelasticity model with the agent-based model
that was developed in [12]. We start with the description of the combined model, followed by the results
from our simulations. In the last section, Monte Carlo simulations are run to obtain more insights into the
behaviour of the model and the influence of parameters on the outcome of the model.

6.1. Description of the model
Skin contains various components, which cannot all be incorporated into the model. With necessary simpli-
fications, we consider the following skin components in our model: cells, cytokines and extracellular matrix
(ECM). Hence, the model carries out the following calculations:

• Computation of the location and movements of three phenotypes of cells (regular fibroblasts, myofi-
broblasts and macrophages);

• Cellular proliferation (division), apoptosis (programmed death) and differentiation;

• Computation of the concentration of two chemokines (PDGF and TGF-β);

• Computation of the substrate contraction due to cellular traction forces.

Since it is impossible to incorporate every aspect of activities in the skin, we make some simplifications in the
biological system (see [12] and [16]):

• The division of myofibroblasts and macrophages is neglected;

• The cell geometry is assumed to be constant;

• When a fibroblast proliferates, the cell centers of the daughter cells are assumed to move into opposite
directions with a distance of half the cell radius. The directions are determined randomly;

• Cell division, death and differentiation are determined from an exponential distribution.

In the following subsections, the model will be explained in more detail.

6.1.1. Cell displacements
Cell displacement is determined by a series of mechanisms, regardless of the cell phenotype:

• The presence of other cells in the neighbourhood of the cell, which can attract other cells within a
certain distance or on the other hand repel against others if it collides other cells;

• Chemotaxis, that is, cells move towards (or in some cases: away from) high concentrations of chemokines;

• Passive convections, caused by contraction of the wound as computed in the morphoelasticity model;

49
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• Random walk, which is modelled by a Wiener process.

Hence, the displacement of the cells can be determined by

dxi (t ) = κi M(xi )zi dt + si
c
∇c(xi , t )

||∇c||2
dt +v (xi (t ), t ) dt +

p
2D dW (t ), (6.1.1)

where dxi denotes the displacement of cell i at time t and κi is a measure that is dependent of several prop-
erties of the cells, M(xi ) is the magnitude of the total strain energy, (i.e. attraction and repulsion between
cells) experienced by the cell and zi represents the direction of movement caused by the strain energies.
Furthermore, v (xi (t ), t ) denotes the velocity of the passive convection at the location xi (t ) of the cell center
and

p
2D dW (t ) is a Wiener process, where D is a cell diffusivity parameter. Additionally, si

c is a measure of
chemotaxis and ∇c denotes the gradient of the concentration of the chemokine by which the cell is attracted.
In the case of fibroblasts, this is TGF-β, whereas the macrophages are attracted by large gradients of the PDGF
concentration. If ||∇c||2 = 0, the quotient ∇c(t ,xi )

||∇c||2 is set to zero.
A brief description of the mechanisms in Equation (6.1.1) will be given. More details can be found in

[12], [16] and Chapter 5. For chemotaxis, in the case of (myo)fibroblasts, the triggering chemokine is TGF-β,
whereas for macrophages, it is PDGF. The displacements from chemotaxis are determined by the normalized
gradient. This is done to avoid extreme displacements caused from high gradients. The parameter si

c in
Equation (6.1.1) is determined in the following way:

si
c := ν ·S(r i ) · (1−S(r i )), (6.1.2)

where

S(r ) := 1

2

(
1+ sin

((
r − 1

2

)
π

))
, (6.1.3)

and r i denotes the number of receptors bound to cell i and ν is a chemotaxis constant, which differs per phe-
notype of cells. The number of receptors bound to a cell changes over time, dependent of the concentration
of chemokines:

dr i

dt
=

{
−d ur i +d bcP (xi , t )(1− r i ), if i is a fibroblast,

−d ur i +d bcβ(xi , t )(1− r i ), if i is a macrophage,
(6.1.4)

where d u and d b denote the unbinding rate and binding rate respectively.
For the strain energy densities, each individual cell has a minimal native strain energy density, indepen-

dent from the presence of other cells, which we denote with M 0
j for cell j . The total magnitude of the strain

energy densitiy belonging to a cell i is computed in the following way:

Mi (xi ) = Mi ,at tr −Mi ,col , (6.1.5)

where Mat tr is the attracting energy and Mcol is the repelling or collision energy. The attracting energy is
defined as

Mi ,at tr =
Nc (t ,di )∑

j=1
M 0

j exp

(
Es

Ec
· ||xi −x j ||

R

)
, (6.1.6)

where Nc (t ,di ) is the number of cells that is located within the detection range di of cell i , xi and x j are the
locations of the cell centers, R is the cell radius, Es and Ec are the elasticity modulus of the substrate and of
the cell and the M 0

j are the native strain energy densities. The collision energy is defined as

Mi ,col =
Nc (t )∑

j=1, j 6=i

4Ec · (Rhi j )2.5

15
p

2π
, (6.1.7)

where Nc (t ) denotes the total number of cells in the domain and hi j is the overlapping distance between cells
i and j , defined as

hi j = max
(
2R − ∣∣∣∣xi −x j

∣∣∣∣ ,0
)

. (6.1.8)



6.1. Description of the model 51

Note that Mi ,col = 0 if cell i does not collide any other cells. The direction zi of the displacement caused by
strain energy is a normalized weighed average of the vectors connecting cell i with the surrounding cells, that
is:

zi = z̄i

||z̄i ||
, (6.1.9)

where

z̄i =
Nc (t ,di )∑
j=1, j 6=i

M 0
j exp

(
Es

Ec
· ||xi −x j ||

R

)
x j −xi

||x j −xi ||
. (6.1.10)

The measure κi in Equation (6.1.1) is determined in the following way:

dr i

dt
=

{
κi = Ki · (0.5 · si

c +0.1 ·ν), if i is a fibroblast,

κi = Ki · si
c , if i is a macrophage,

(6.1.11)

where Ki is a positive constant. The mechanism in Equation (6.1.11) was not original in the model of strain
energies [22], but was added in [12] to avoid the displacements caused by strain energies to dominate the
displacements caused by chemotaxis.

For passive convections, the velocity is determined by the velocities as defined in the morphoelastic
model (see Subsection 4.1.3 and Subsection 6.1.4).

If a fibroblast crosses the boundary of the computational domain, it is removed from the model and a new
fibroblast is initiated at a random location on the opposite boundary.

6.1.2. Cell division, apoptosis and differentation
Cellular proliferation, apoptosis (programmed death) and differentiation are incorporated in the model. We
assume that all phenotypes of cells are able to die, however, only regular fibroblasts are allowed to profliferate
or to differentiate into myofibroblasts. The proliferation of macrophages and myofibroblasts is neglected.
Furthermore, fibroblasts need to be matured sufficiently to proliferate or differentiate. A large number of
cells in the domain will increase the apoptosis rate and decrease the proliferation rate. According to [12] and
[16], we define the proliferation, differentiation and apoptosis rates by:

λp = max
(
Kp · c2

β−dp · (1.0−0.333 ·Mcol ),0.0
)

, (6.1.12)

λmyo =
{

max
(
Kmyo · c2

β
(x f )+dmyo · (1.0−0.962 ·Mcol ),0.0

)
, if cβ > 1 ·10−8,

0.0, if cβ ≤ 1 ·10−8,
(6.1.13)

λa, f = d f · (1.0+0.667 ·Mcol ), (6.1.14)

λa,m = Kmp

(cP (xm)+10−9)
+0.667 ·d f ·Mcol , (6.1.15)

where λp denotes the proliferation rate of fibroblasts, λa, f is the apoptosis rate for fibroblasts (holding for
both regular and myofibroblasts) and λa,m is the apoptosis rate for macrophages, dp , d f and dmp are pa-
rameters to fine-tune the proliferation rate and death rates, cP and cβ are the concentrations of PDGF and
TGF-β respectively, x f and xm are the locations of the cell center of the fibroblast and macrophage respec-
tively. Furthermore, Mcol denotes the collision energy experienced by the cell as defined in Equation (6.1.7),
Kp , K f and Ka are positive constants relating the rates to the collision energy, Kmyo is a constant relating the
differentation rate to the concentration of TGF-β. It is very difficult to balance the proliferation and apoptosis
rates in such a way that the correct cell density is reached in the end. Therefore, the apoptosis rate is adapted
slightly for special cases, to make sure the correct density of fibroblasts is reached again. At first, we define
the average number of cells in the neighbourhood of a fibroblast, based on the normal cell density:

Nneed =πr 2
nρcel l , (6.1.16)

where rn is an effective radius around the fibroblast and ρcel l denotes the fibroblasts density. Furthermore,
the actual number of fibroblasts within a radius of rn around the fibroblast is computed, which we will denote
by Nsur . The adapted apoptosis rates are different for myofibroblasts and regular fibroblasts:

λi
a,myo f =

{
λa, f (1.0+ Ai /43200), if cβ < 10−9,

λa, f if cβ ≥ 10−9, if cβ ≥ 10−9,
(6.1.17)
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where λi
a,myo f denotes the apoptotis rate of myofibroblast i and Ai denotes the age of myofibroblasts i . In

this way, it is reassured that all the myofibroblasts die soon after the concentration of TGF-β drops. Further-
more,

λa,r eg . f =


λa, f · Nsur

Nneed
, if cβ < 10−9 and Nsur ≥ Nneed ,

λa, f , if cβ ≥ 10−9 and Nsur ≥ Nneed ,

0.0, if Nsur < Nneed .

(6.1.18)

According to the exponential distribution, the probability with given parameter λ is determined by:

P(E k
i ) = 1.0−exp(−λE ·∆t ), (6.1.19)

where ∆t is the time step and E k
i denotes the event that cell i proliferates, dies or differentiates at iteration k.

A random number ζ ∈ (0,1) will be generated, and the event E k
i only takes place if ζ<P(E k

i ).

If the concentration of TGF-β is large enough, additional fibroblasts are initiated at the boundary of the
computational domain. A Poisson distribution with parameter β f · cβ · l ·∆t is used to determine how many
macrophages enter the wound at each time step. Here, l denotes the perimeter of the domain and β f a
positive constant. Fibroblasts only enter the domain if the TGF-β concentration transcends a threshold value
βmi n

f .

6.1.3. Concentration of chemokines
The concentration of PDGF and TGF-β is determined by the following transport-reaction equations, respec-

tively ([12]):

(I BV PP ) =


∂cP
∂t −DP∆cP = 0, x ∈Ω, t > 0,

DP
∂cP
∂n +K cP = 0, x ∈ ∂Ω, t > 0,

cP (x ,0) = c0
P (x), x ∈Ω.

and

(I BV Pβ) =


∂cβ
∂t −Dβ∆cβ = s(x , t ), x ∈Ω, t > 0,

Dβ
∂cβ
∂n +K cβ = 0, x ∈ ∂Ω, t > 0,

cβ(x ,0) = 0, x ∈Ω,

where cP and cβ denote the concentrations of PDGF and TGF-β respectively, DP and Dβ are the correspond-
ing diffusion parameters and K is the rate with which the molecules leave the domain. Since TGF-β is secreted
by macrophages, the source term s(x) is a function of the position of macrophages:

s(x , t ) = κβ
Nm (t )∑

i=1
δ(x −xi (t )), (6.1.20)

whereκβ is the magnitude of secreted TGF-β by one cell per second, Nm denotes the number of macrophages
at time t and xi (t ) is the location of the center of cell i at time t .

6.1.4. Wound contraction
In order to compute wound contractions caused by cellular traction forces, the morphoelastic model as de-

fined in Chapter 5 is used. It has been widely documented that myofibroblasts play an important role in

wound healing and contraction [16]. Since myofibroblasts exert much stronger traction forces, P (as defined

in Equation (5.1.1)) is set to be twice as large as the traction force for regular fibroblasts [1]. Hence, the initial
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boundary value problem modelling the contraction of the wound becomes:

(I BV P8) :



D(ρv )
Dt +vρ(∇·v ) =∇·σ+ f , x ∈Ω, t > 0,

σ= µ1
2

(∇v + (∇v )T
)+µ2 (∇·v ) I + Es

p
ρ

1+η
(
ε+ η

1−2ηTr(ε)I
)

, x ∈Ω, t > 0,
Dε

Dt +ε skew
(
∂v
∂x

)
− skew

(
∂v
∂x

)
ε+

(
Tr

(
ε
)
−1

)
sym

(
∂v
∂x

)
=−g , x ∈Ω, t > 0,

σ ·n +au = 0 , x ∈ ∂Ω, t > 0,

u(x ,0) = 0, x ∈Ω,

v (x ,0) = 0, x ∈Ω.

where

f (x , t ) =
N f (t )∑
i=1

N i
S∑

j=1
P f n j (x , t )δ(x −x j (t ))∆Γi , j

+
Nmyo (t )∑

i=1

N i
S∑

j=1
Pmyo n j (x , t )δ(x −x j (t ))∆Γi , j , (6.1.21)

where N f (t ) is the number of fibroblasts at time t , Nmyo(t ) is the number of myofibroblasts at time t , P f and
Pmyo is the magnitude of traction force per space unit for fibroblasts and myofibroblasts respectively, N i

S is
the number of segments with which the cell boundary of cell i is modelled (see Section 5.1), n j is the inward
pointing unit normal vector of cell boundary segment j , x j (t ) is the midpoint of segment j and ∆Γi , j is the
length of line segment j of cell i .

In Section 5.1, NS = 4 chosen, (i.e. the curve modelling the cell boundary is a square). However, according
to [15], using NS = 3 would decrease the computational cost while it would not harm the accuracy of the
results. Hence, in this model NS = 3 is used. The orientation of the segments is determined randomly for
every (myo)fibroblast.

6.1.5. Initial settings of the model
The initial number of fibroblasts is determined on the basis of an initial density of fibroblasts. The fibroblasts
are randomly distributed over the non-wounded area. Furthermore, at t = 0, there are no macrophages in the
domain. A Poisson distribution with parameter βmp · cP · l ·∆t is used to determine how many macrophages
enter the wound at each time step. Here, l denotes the perimeter of the wound and βmp a positive constant.
Macrophages only enter the wound if the PDGF concentration transcends a threshold value βmi n

mp . The initial

concentration of PDGF is set with the function c0
P (x), which is defined in such a way that the concentration

is high in the wound area and (almost) zero in the non-wounded area, with a smooth transition at the wound
boundary [12]. The initial concentration of TGF-β is set to zero. The initial domain is a square with side
length Ld . The wound is modelled to be a square in the center of the domain with side length Lw = 0.2 ·Ld .

6.2. Simulation results
In this section, the numerical results are shown for the model in Section 6.1. The parameter values used in
the simulations are shown in Table 6.1. All the used units are now SI base units.

In Figures 6.1 - 6.6, the state of the domain is shown for several moments in time. The boundary of the
wound is indicated in the red. The initial boundary of the wound is indicated by black. The red dots are
macrophages, the blue dots are regular fibroblasts and the black dots are myofibroblasts.

Figure 6.1 displays the intital condition of the model, as it is describe in Subsection ??.
After 7 hours and 12 minutes (0.3 days, Figure 6.2), macrophages triggered by the high gradients of PDGF,

are entering the wound. Since macrophages come from the injured vessels, we assumed that they enter the
wound via the edge between injured and uninjured region. Furthermore, the macrophages immediately start
to secrete TGF-β, causing the TGF-β concentration to increase.

At t = 3 days (Figure 6.3), the macrophages have migrated further towards the center of the wound. In
the meantime, the concentration of PDGF has been decreasing in the wound by diffusion. Hence, the entry
of macrophages has stopped, since the PDGF concentration does not exceed the lower limit anymore. More
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Description Parameter Value Unit

Length of the domain in x-direction Lx 1.5 ·10−3 m
Length of the domain in y-direction Ly 1.5 ·10−3 m
Length of the wound in x-direction B x 6.708 ·10−4 m
Length of the wound in y-direction B y 6.708 ·10−4 m
Number of nodes in x-direction nX 31 -
Number of nodes in y-direction nY 31 -
Time step ∆t 2592 s
Radius of the triangle-shaped curve around cells rs 5.387 ·10−6 m
Substrate Elasticity (Young’s modulus) Es 1 ·103 N·m−2

Density ρ 5 ·103 g·m−3

Shear viscosity µ1 1 ·104 N·s·m−2

Bulk viscosity µ2 1 ·104 N·s·m−2

Poisson’s ratio η 0.48 -
Degree of permanent deformation ξ 1 ·10−6 -
Spring constant in (IV BP8) a 1 ·10−4 -
Magnitude of point forces (regular fibroblasts) P f 0.2 N
Magnitude of point forces (myofibroblasts) Pmyo 0.8 N
Duration of simulated time T 28 day
Cell radius R 2 ·10−6 m
Cell Elasticity Ec 60 kg· m−1· s−2

Basic strain energy of cells M 0 8.144 kg· m−1· s−2

Maximal detectable range (for all cells) di 29.5 ·10−6 m
Strain energy constant Ki 4.0 ·10−14 m·s3·kg−2

Detection range of cells d 2.95 ·10−5 m
Diffusion rate PDGF DP 2.3 ·10−12 m2·s−1

Diffusion rate TGF-β Dβ 2.3 ·10−11 m2·s−1

Constant in Robin bnd. condition in (I BV PP ) and (I BV Pβ) K 103 m−1

Diffusion parameter for random walk D 9 ·10−18 m2·s−1

Magnitude of TGF-β secretion κβ 6.246 ·10−20 kg·s−1cell−1

Maximal initial concentration of PDGF cw 10−5 kg·m−3

TGF-β dependent proliferation rate of fibroblasts Kp 8.8659 ·104 -
TGF-β independent proliferation rate of fibroblasts dp 8.02 ·10−7 -
TGF-β dependent differentation rate of fibroblasts Kmyo 0.4 ·107 -
TGF-β independent differentation rate of fibroblasts dmyo 1 ·10−3 -
Apoptosis rate of fibroblasts and macrophages d f 4.01 ·10−7 -
PDGF dependent apoptosis rate of macrophages Kmp 5.57 ·10−14 -
Receptor unbinding rate d u 2.78 ·10−4 s−1

Receptor binding rate of fibrobalsts d b 1.39 ·102 m3· kg −1· s−1

Chemotaxis constant of fibroblasts ν f 1.2 ·10−6 m·s−1

Chemotaxis constant of macrophages νmp 1.0 ·10−8 m·s−1

Threshold value for entry of fibroblasts in domain βmi n
f 3.0 ·10−10 kg·m−3

Constant for entry of fibroblasts in domain β f 3.5 ·10−5 m2·kg−1·s−1

Threshold value for entry of macrophages in wound βmi n
mp 3.33 ·10−9 kg·m−3

Constant for entry of macrophages in wound βmp 1.67 ·105 m2·kg−1·s−1

Table 6.1: Overview of used parameters in Section 6.2



6.2. Simulation results 55

TGF-β is secreted by the macrophages, causing fibroblasts migrating into the wound and proliferating. More
importantly, differentiation from fibroblasts to myofibroblasts is induced. The wound starts to deform as a
result of the large number of fibroblasts in the wound which exert traction forces.

After 4.5 days (Figure 6.4), the number of (myo)fibroblasts has increased further and the wound is more
contracted. The fibroblasts are clumping together in the direct neighbourhood of the macrophages by chemo-
taxis. This effect is increased by the contraction of the skin. In addition, the number of macrophages is de-
creasing by apoptosis, resulting in the TGF-β concentrations dropping.

At t = 6 days (Figure 6.5), all macrophages are dead and the concentration of TGF-β is very low. Hence,
the proliferation rate of fibroblasts decreases, differentiation has stopped and the apoptosis rate increases.
This causes the number of (myo)fibroblasts to decrease gradually.

After 12 days (Figure 6.6), the cell density is average again and most myofibroblasts have died. Further-
more, the wound area has recovered partially. However, because of morphoelasticity, the wound will not
recover completely.

To measure the degree of contraction of the wound, the (relative) wound area is an important index. In
Figure 6.7, the relative wound area is shown as a function of time. Initially, the wound area increases a little bit,
because the fibroblasts are initially in the uninjured region and in the simulation, the wound is surrounded
by the healthy skin. After a while, the wound area decreases rapidly by the larger number of fibroblasts in
the wound. As the number of fibroblasts decreases again, the wound area increases again, until a dynamic
equilibrium is reached.

In Figure 6.8, the number of several phenotypes of cells is illustrated against time. At first, the number of
macrophages increases. Subsequently, the number of (myo)fibroblasts increases rapidly. As the macrophages
are dead, the number of (myo)fibroblasts decreases again. Eventually, all myofibroblasts are dead and the
number of regular fibroblasts is stable again, although it is slightly more than it is initially, because the gap
at the wound area is filled with fibroblasts now. In Figure 6.9, the number of macrophages against time is
illustrated separately to make the differences clearly visible.

Figure 6.1: State of the domain at t = 0 days
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Figure 6.2: State of the domain at t = 0.3 days

Figure 6.3: State of the domain at t = 3 days
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Figure 6.4: State of the domain at t = 4.5 days

Figure 6.5: State of the domain at t = 6 days
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Figure 6.6: State of the domain at t = 12 days

Figure 6.7: Relative wound area against time
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Figure 6.8: Number of cells against time. Blue indicates the total number of cells, orange indicates the number of regular fibroblasts,
green indicates the number of myofibroblasts and red indicates the number of macrophages.

Figure 6.9: Number of macrophages against time
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6.3. Monte Carlo simulations
The model described in Section 6.1 contains many input parameters. Several of these parameters are not
exactly measured in the laboratory experiments, or differ from case to case. To investigate relations between
input parameters and output parameters or between output parameters mutually, Monte Carlo simulations
were carried out. Six input parameters were chosen to be varied in these simulations. For each simulation,
the values of these parameters were determined randomly by a uniform distribution over a certain interval.
The varied parameters were: Substrate Elasticity, Magnitude of Point Forces, Viscosity, Apoptosis Rate, Pro-
liferation Rate and Differentiation Rate. In Table 6.2, the uniform distributions of the variables are displayed.
The magnitude of point forces P f of regular fibroblasts and the magnitude of point forces Pmyo of myofi-
broblasts were varied simultaneously by letting Pmyo be defined as Pmyo := 4·P f , similarly to Section 6.2. The
shear viscosity and bulk viscosity were varied simultaneously: µ1 =µ2 =:µ. As for the Apoptosis Rate, only d f

was varied, while dmp was fixed. Furthermore, Kp and dp , the proliferation rates, were varied simultaneously.
A variation factor Ap was added for the simultaneous variation of Kp and dp :

Kp = Ap ·K 0
p and dp = Ap ·d 0

p ,

where K 0
p and d 0

p were defined as in Table 6.1. As for the differentiation rates Kmyo and dmyo , this was done
analogously with a factor Amyo . All the other input parameters were defined as in Table 6.1.

The following quantities were considered as output parameters: the relative area of the wound at t = 3.5
days, the minimal relative area of the wound, the final relative area of the wound, the moment at which the
minimal area is reached and the moment at which the final area is reached. A strictly final wound area does
not exist, since there always remain some small fluctuations in the area, even when the situation is apparently
stable. This is due to small movements of the fibroblasts by strain energies and random walk. Hence, the final
area is defined by the following steps:

1. Define M = 1.0− Ar el
mi n , where Ar el

mi n is the minimal relative wound area. The quantity M can be viewed
as the maximal shrinkage of the wound.

2. If |Ak0 − Ak0−1| < 0.03 ·∆t k0 ·M , where Ak0 denotes the relative wound area at iteration k0 and ∆t k0 is
the time step at iteration k0, then a test is started at iteration k0.

3. For iteration k > k0, if |Ak −Ak0 | ≤ 0.03·M , the test continues. If |Ak −Ak0 | > 0.03·M , then the test failed
and it is interrupted. A new test is then started at iteration k, that is, k0 := k.

4. If t k1 − t k0 ≥ 2.0 days and for all iterations k such that k0 < k ≤ k1, the condition in item (3) is satisfied,

then the following is checked: define the average relative wound area as Aav :=
∑k1

k=k0
Ak

k1−k0
. If for all k0 ≤

k < k1, the condition |Ak −Aav | ≤ 0.03·∆t k ·M is satisfied, the test is passed and the moment of the final
relative wound area is set to be t k1 and the value is set to be Ak1 .

This procedure means that the final wound area is defined to be reached as soon as the fluctuations of the
area are less than 6% of the maximal shrinkage of the wound.

Description Parameter Interval Unit

Substrate Elasticity (Young’s modulus) Es [1 ·102,5 ·103] N·m−2

Viscosity µ [1 ·103,1 ·105] N·s·m−2

Magnitude of point forces (regular fibroblasts) P f [0.1,0.4] N
Magnitude of point forces (myofibroblasts) Pmyo [0.4,0.16] N
Apoptosis rate of fibroblasts and macrophages d f [1.20 ·10−7,6.82 ·10−7 -
Variation factor for Proliferation rate Ap [0.3,1.7] -
Variation factor for Differentiation rate Amyo [0.3,1.7] -

Table 6.2: Overview of used parameters in Section 6.2

In Figure 6.10, the relations between the relative area at t = 3.5 days, the minimal area and the final area
are shown. It appears that the parameters have a strongly linear relationship to each other. This means that
the condition of the wound in an early phase, is a strong indicator for the condition of the wound in a later
phase.
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A. Area at 3.5 days against Minimal Area B. Area at 3.5 days against Minimal Area (zoomed)

C. Area at 3.5 days against Final Area D. Area at 3.5 days against Final Area (zoomed)

E. Minimal Area against Final Area F. Minimal Area against Final Area (zoomed)

Figure 6.10: Scatter plots of relative wound area at different moments
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Table 6.3 presents the Pearson correlation coefficients for the parameters in Figure 6.10. All the correla-
tions are larger than 0.9, which indicates a strong linearity in the data. Furthermore, the p-values, are of order
10−3 or smaller.

Area at t = 3.5 days Minimal Area Final Area

Area at t = 3.5 days 1.0 0.904055 0.918347

Minimal Area 0.904055 1.0 0.955016

Final Area 0.918347 0.955016 1.0

Table 6.3: Pearson Correlation Matrix for wound area at three moments



7
Implementation and Programming Work

on Agent-Based Model

One of the long-term objectives of this project is to develop an efficient software, so that the model can pro-
duce the results in a few minutes. In this chapter, the implementation and improvement of the computa-
tional perspective are discussed. We compared the computational cost for different programming languages
as well.

7.1. Implementation of Agent-Based Model
7.1.1. Structure of the code
The agent-based model [12] was implemented in C++. The code was available during this thesis project for
the model in Chapter 6. The code consisted of mainly two classes, named ‘Scenario’ and ‘FEM’. In ‘FEM’,
the Finite Element computations are carried out and in ‘Scenario’, which uses ‘FEM’, the other aspects of the
model are implemented.

The purely elastic, viscoelastic and morphoelastic models in Chapters 3 and 4 were at first implemented
in Python and subsequently implemented in C++. The results of the Python code and the C++-code were
compared with each other, to confirm that there are no implementational errors. In C++, the implementation
consisted of a class ‘Elasticity’ using two subclasses: ‘FEM-elast’ for pure elasticity and viscoelasticity and
‘FEM-morpho’ for morphoelasticity. For the final model in Chapter 6, a class ‘ElastScen’ (in which ‘Elasticity’
and ‘Scenario’ were combined) was constructed. In this class, the general computations are carried out, while
the Finite Elements parts are carried out in FEM and FEM-morpho.

A user-friendly API in Python already existed for the model [12]. It is suitable for users to run simulations
with the option to insert some parameters and to visualize the results. This API was extended to make it
suitable for the new model.

7.1.2. Moving mesh
In the implementation, a moving mesh is used, which is the easiest way to solve the differential equations,
since they are formulated in an Eulerian framework. Furthermore, the mesh that is used is a structured mesh
(see Figure 7.1).

An advantage of this mesh is the structured numbering, which made it possible to write some algorithms
to make the computations more efficient (see Subsection 7.1.3). A disadvantage of the structured mesh is the
fact that the angles of the triangles are not optimal. For an optimal situation, all the angles should be as close
as possible to 1

3π. However, in the structured mesh one angles is 1
2π and two angles are 1

4π. As the nodal
points are going to move as a consequence of displacements, the triangles can easily become ill-shaped in
the sense of very obtuse or acute angles, as it is shown in Figure 7.2. Therefore, we developed an algorithm
to remesh the domain. This means that new nodal points are chosen, and that the values of the several
quantities in the model at node i are approximated by linear interpolation:

q(x N
i , t ) ≈ ∑

j∈{p1
i ,p2

i ,p3
i }

q(xO
j , t )φO

j (x N
i ), (7.1.1)
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Figure 7.1: Structured mesh which was used for the Finite Element computations, t = 0

Figure 7.2: Deformed mesh with several ill-shaped triangles



7.1. Implementation of Agent-Based Model 65

where x N
i denotes the coordinates of node i in the new mesh, xO

j denotes the coordinates of node j in the

old mesh and φO
j is the test function belonging to node j in the old mesh. Furthermore, p1

i , p2
i and p3

i are the

nodes of the triangle in the old mesh which contains x N
i and q denotes a certain quantity in the model (for

example concentration of a certain chemokine). Besides for remeshing, this method is also used to approxi-
mate the values of quantities at the location of cells if necessary:

q(xc , t ) ≈ ∑
j∈{p1

c ,p2
c ,p3

c }

q(x j , t )φ j (xc ), (7.1.2)

where xc denotes the location of the cell center.
To determine whether remeshing is necessary at a certain time step, an angle criterion was set. We define

θmi n to be the minimal allowed angle and θmax to be the maximal allowed angle. If all angles in the mesh at
time t are larger than θmi n and smaller than θmax , then the angle criterion is satisfied. Otherwise, a remesh
is carried out.

Let {x1, x2, x3} denote the nodal points of a triangular mesh element ek ∈ Ω(t ) ⊂ R2 with corresponding
angles θ1, θ2 and θ3. Let φi (i ∈ {1,2,3}) be piecewise linear basis functions with φi (x) :=αi +βi x +γi y such
that φi (x j ) = δi j , where δi j is defined as in Equation (3.3.6). Then we have

cosθ3 =− 〈ω1,ω2〉
||ω1|| · ||ω2||

, (7.1.3)

where

ωi :=
(
βi

γi

)
,

and 〈., .〉 denotes the vectorial dot product in R2. Analogously,

cosθ2 =− 〈ω1,ω3〉
||ω1|| · ||ω3||

, (7.1.4)

and

cosθ1 =− 〈ω2,ω3〉
||ω2|| · ||ω3||

, (7.1.5)

Proof. We define

z1 := x1 −x3 and z2 := x2 −x3.

Then

cos θ3 =
〈z1, z2〉

||z1|| · ||z2||
.

Furthermore, since φi (x j ) = δi j (i , j ∈ {1,2,3}), we have

〈ω1, z1〉 = β1(x1 −x3)+γ1(y1 − y3)

= α1 +β1x1 +γ1 y1 −
(
α1 +β1x3 +γ1 y3

)
= φ1(x1)−φ1(x3) = 1−0

= 1, (7.1.6)

and

〈ω1, z2〉 = β1(x2 −x3)+γ1(y2 − y3)

= α1 +β1x2 +γ1 y2 −
(
α1 +β1x3 +γ1 y3

)
= φ1(x2)−φ1(x3) = 0−0

= 0. (7.1.7)

Analogously, we can show

〈ω2, z2〉 = 1, (7.1.8)
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and

〈ω2, z1〉 = 0. (7.1.9)

From Equations (7.1.7) and (7.1.9) it follows that

z⊥
1 = K1ω2,

and
z⊥

2 = K2ω1,

where

|K1| = ||z1||
||ω2||

,

and

|K2| = ||z2||
||ω1||

.

Furthermore, using Equations (7.1.6) and (7.1.8), we obtain

K1 = K1 ·1 = K1 〈ω2, z2〉 = 〈K1ω2, z2〉 = 〈z⊥
1 , z2〉 ,

and
K2 = K2 ·1 = K2 〈ω1, z1〉 = 〈K2ω1, z1〉 = 〈z⊥

2 , z1〉 =−〈z⊥
1 , z2〉 .

This yields

K1 ·K2 =−〈z⊥
1 , z2〉2 < 0,

from which we can conclude

K1 ·K2 =−|K1||K2| = − ||z1||
||ω2||

· ||z2||
||ω1||

.

Combining this with Equation (7.1.6), it follows

cos θ3 = 〈z1, z2〉
||z1|| · ||z2||

= 〈z⊥
1 , z⊥

2 〉
||z1|| · ||z2||

= 〈K2ω2,K1ω1〉
||z1|| · ||z2||

= − ||z1||
||ω2||

· ||z2||
||ω1||

· 〈ω1,ω2〉
||z1|| · ||z2||

= − 〈ω1,ω2〉
||ω1|| · ||ω2||

. (7.1.10)

This concludes the proof for Equation (7.1.3). The proofs of Equations (7.1.4) and (7.1.5) are similar.

In the code, Theorem 7.1.2 is used to compute the cosines of the angles of a mesh element. The element
satisfies the angle criterion if for all angles θi (i = 1,2,3),

cos(θmax ) ≤ cos(θi ) ≤ cos(θmi n),

holds true.

7.1.3. Working with two time steps
In [12], a stability criterion was given for displacements of cells per iteration:

max
c∈{1,...,Nc (tk )}

||dxc (tk )|| ≤ 2R, (7.1.11)

where Nc (tk ) is the number of cells at time tk and ||dxc (t )|| is the norm of the computed displacement at
iteration k for cell c. In other words, the maximal distance that is travelled by a cell during one time step is
not allowed to be larger then twice the radius of the cells. If the time step is small enough, the mechanical
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energy as defined in the model will prevent the cells from moving through each other. On the other hand, if
the time step is so large that the norms of the displacement become twice the radius of the cells, the cells can
move through each other without noting this. However, it turned out that the stability criterion was already
violated for a time step larger than 12 seconds. For a simulated time of, for example 80 days, the computa-
tional cost would then rise to approximately half a week, which is not a desirable duration. Although using
the GPU would increase the efficiency, a GPU is not always available and hence an algorithm was imple-
mented to avoid this scenario in the CPU-computations. The algorithm splits the model in two parts: for the
computation of the cell displacements, a smaller time step ∆ts is used, and for the other components of the
model (such as the FEM computations), a regular larger time step ∆t is used. In other words, during each
time iteration, a number of sub-iterations with time step ∆ts is carried out, in which the cell displacements
are computed. Hence, the stability condition is satisfied while the other parts of the model (such as the Finite
Element computations) are not carried out during every sub-iteration. Furthermore, the magnitude of ∆ts is
estimated before every time iteration, based on the displacements in former iterations, so that∆ts will not be
smaller than strictly necessary.

This procedure is not likely to influence the result to a large extent. The displacements from chemotaxis
and random walk are similar as when the global time step ∆t would be used for the whole model. They are
only corrected by the collision energy to avoid cells moving through each other.

7.1.4. Trianglechecks
For a number of features in the model, it is necessary to know in which triangular element certain coordinates
are located. For example, the triangles in which macrophages are contained are needed to solve for the TGF-
β concentrations. Furthermore, to compute the cellular forces, the triangles containing (myo)fibroblasts are
needed. In the code of [12], a function called ‘Trianglecheck’ was implemented, which used the barycentric
coordinate system to determine if a triangle contains a certain point. This function is also used in the current
model, however, it is a modified and extended. We established a list, which stores the indices of the triangular
mesh elements in which the cells are located. If it is not yet known in which element a cell is located (for
example in the case of new cells), this is indicated by the number −1. Suppose cell i is contained in triangular
element T (i , tk ) at time tk and suppose the maximum of the displacements of cells during iteration k +1 is
maxc ||dxi ||. Then at time tk+1, cell c1 can only be located in triangles that are within a radius of maxc ||dxi ||
from T (i , tk ). Based on the structured numbering of the mesh, it is easy to determine which triangles have to
be detected, saving some computational cost (see Section 7.2).

Suppose the distance in x-direction between two gridnodes in the structured mesh is∆x. Then a T (i , tk+1)

cannot be more than ceil( maxc ||dxi ||
∆x ) triangle columns away from the column in which T (i , tk ) is located.

Here, ceil denotes the function which rounds the number up to an integer. Analogously, in y-direction, the

T (i , tk+1) cannot be more than ceil( maxc ||dxi ||
∆y ) triangle rows away from the row in which T (i , tk ) is located.

As the grid being deformed by traction forces, the maximal displacement of gridnodes has to be added to
maxc ||dxi ||, since ∆x and ∆y can become smaller.

A similar algorithm is used for the calculation of the strain energies. As defined in Equation (6.1.6), the
strain energy of cell i is only increased by cell j if cell j is located within the detection range di of cell i . If
T (i , tk ) is known, then, based on the structured numbering of the mesh, all the cells that are located within a
radius of di can be found by checking the triangles in that range.

7.1.5. Adapting time step during simulation
During the proliferation phase, the number of fibroblasts and myofibroblasts increases significantly. When
carrying out simulations, it turned out that the results of (I BV P8) often became unstable as a result of the
larger magnitude of traction forces. A smaller time step is then needed to avoid unstable results. However,
the computational cost increase linearly with the decrease of the time step. During the proliferation phase,
the velocities in the substrate can be around 100 times larger than usual, which means that making the time
step sufficiently small would cause the simulations to last around 100 times longer. An algorithm was imple-
mented to adjust the time step automatically in the course of the simulation.

After each iteration, the maximum of the norms of the displacements during the iteration is calculated:

uk
max := max

0≤i≤N
(||∆t k v k

i ||2), (7.1.12)

where N is the number of grid nodes, ∆t k is the time step at iteration k and v k
i is the velocity at grid node i

during iteration k. Subsequently, uk
max is compared with the average of maximal displacements during the
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previous iterations:

uk−1
av :=

k−1∑
j=0

(
u j

max

k −1

)
. (7.1.13)

If it turns out that

uk
max > 2.5 ·uk−1

av , (7.1.14)

then a new time step is defined by

∆t k+1 := uk
av

uk
max

∆t k . (7.1.15)

To avoid the average maximal displacement to be influenced too much by a sudden increase of the velocity,
the new time step is already used to adapt the average of maximal displacements for the next iteration:

uk
av = (k +1)uk−1

av +maxN
i=0 ||∆t k+1v k

i ||2
k

. (7.1.16)

Furthermore, to avoid an unnecessarily small time step, the time step is increased if the displacements be-
come small again as a results of cellular apoptosis: if

uk
max < 0.8 ·uk−1

av , (7.1.17)

then

∆t k+1 := fr∆t k , (7.1.18)

where

fr := min

(
uk

av

uk
max

,
∆t 0

∆t k

)
.

7.2. Computational analysis
At first, we state the hardware details for the sake of reproducibility. The computations were carried out with
an Intel(R) Core(TM) i7-1065G7 CPU with 8 GB of memory. As compiler, gcc (Ubuntu 9.3.0-17ubuntu1 20.04)
9.3.0 was used.

The models in Chapter 3 and 4 were implemented in Python at first and later on, they were implemented
in C++. As expected, the computational cost decreased significantly in C++. In Figure 7.3, the computational
cost of the two-dimensional morphoelastic model (I BV P6) from Subsection 4.1.3 are shown respectively in
Python and C++. The C++ program turns out to be approximately 30 times faster than the Python program.

Next, we investigate the computational cost of certain components in the model. Figure 7.4 shows the
computational cost per iteration of the computation of cell displacements, the Finite Element computations
for the elasticity part of the model, and other computations. In the simulation, the same parameter values
were used as in Section 6.2 (see Table 6.1). The cell displacements part includes proliferation, apoptosis and
differentiation. The graph has the same shape as the graph of the total number of cells in Figure 6.8, which
means that there is a more or less linear relationship between the number of cells and the computational
work of calculating the cell displacements and states. Hence, for larger numbers of cells, the computational
work is much more.

Figure 7.5 presents the Finite Element computations for the chemokine concentration, the trianglechecks
(as described in Subsection 7.1.4) and the adaptation of cell location by convective displacement. As de-
scribed in Subsection 7.1.1, the Finite Element computations for the concentrations are carried out in the
class FEM, while for the displacements, they are carried out in FEM-morpho. In Figure 7.5, the category
"Adapt mesh" refers to the fact that the mesh in FEM has to be updated once the displacements have been
computed in FEM-morpho. This strategy was the easiest way to combine the code for both the agent-based
model and the morphoelastic model. However, in the computational perspective, it is not the most efficient
way since FEM and FEM-morpho both contain their own mesh and state. Consequently, there have to be
many communications between them in order to synchronize with each other. From the results in Figures
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Figure 7.3: Computational cost of simulations of (I BV P6) in Python and C++. The red graph indicates the simulation in Python and the
blue graph indicates the simulation in C++

Figure 7.4: Computational cost of several components of the model in Chapter 6. Blue indicates the cell displacement computations,
orange indicates the FEM computations for elasticity and green indicates the other computations.
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Figure 7.5: Computational cost of other components of the model. Blue indicates the FEM computations for chemokine concentrations,
orange indicates the trianglechecks, green indicates computations of convective cell displacements, red indicates the adaptation of the
mesh in the FEM class and purple indicates the other computations.

7.4 and 7.5, it appears that the FEM computations for elasticity need much more time than for the concen-
trations of chemokines. The reason is that for (I BV P8), the numerical system is five times as large as the
numerical systems for (I BV PP ) and (I BV Pβ).

From the figures, it is clear that the computational cost per iteration mainly consist of the computation
of the cell displacements and the FEM computations for elasticity. In [12], for the CPU computations, the
computational cost per iteration for computing the strain energy densities with 1800 cells in the domain was
around 0.06 seconds. Currently, by using the improved trianglecheck functions, it is around 0.01 seconds,
which is six times faster. Although this improvement has not yet been implemented on the GPU, it is promis-
ing to improve the computational efficiency further. However, in Figure 7.4, the computational work for cell
displacements is around 0.12 seconds per iteration (at t = 0, when there are 1800 cells in the domain). This is
much larger than the aforementioned 0.01 seconds. However, this is caused by the fact that the strain energies
are computed multiple times during one iteration, by the algorithm of ‘subiterations’ described in Subsection
7.1.3. Although this causes the workload per iteration to increase, the global time step is approximately 200
times larger than when the stability condition in Equation (7.1.11) has to be satisfied. Hence, effectively, the
computational cost has decreased.

The computational cost for remeshing is not displayed in the figures, since remeshing only happens a
few times during the simulation. However, from measurements, it turn out that the computational cost for
remeshing varied from 0.02 to 0.06 seconds.

As for the Monte Carlo simulations in Section 6.3, the module Multiprocessing in Python, which makes it
possible to run four simulations at the same time without increasing the computational cost per simulation.
Averagely, a single simulations needed approximately eight minutes to run. Consequently, when running
multiple simulations with multiprocessing, the average computation time per simulations is approximately
two minutes.
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Conclusion and discussion

8.1. Conclusion
In this project, at first we developed several elastic models to describe the deformation of an elastic material,
so that later they could be used to model the deformation of the ECM. Further, they were developed in both
one and two dimensions and with gradually increasing complexity. The models were compared in various
aspects and in particular analyzed from numerical perspective. The two-dimensional morphoelastic model
was extended with the addition of point forces. Several parameter sensitivity tests were carried out with the
morphoelastic model with point forces, some of which confirmed biological observations.

We extended the agent-based model for wound healing developed in [12] by incorporating the morphoe-
lastic model with point forces and by making a separation between regular fibroblasts and myofibroblasts. To
avoid the numerical results becoming unstable for certain parameter values, an algorithm was implemented
to adapt the time step automatically if the velocities are too large. Monte Carlo simulations were carried out
with the model to investigate relations between several input and output parameters. From the results, it
could be concluded that there is a strong relationship between the state of the wound in early phases and
later phases of the healing. In other words, it would be helpful for the physicians and surgeons to foresee the
healing process if they know certain data in the early stage of the healing.

One of the long-term objectives of the model is to provide a simulation tool, so that the model can com-
pute the probability and the degree of the contraction of the wound by inputting patient-characteristic data,
such as age, gender and race. Therefore, it is important to decrease the computational cost of the simula-
tions, to which end the model was implemented in C++. Currently, Monte Carlo simulations for a domain
with approximately 2000 cells on average can be carried out with a computational cost of approximately two
minutes per simulation averagely.

8.2. Discussion and future work
In this section, we suggest a few research directions and display some remarks of the current agent-based
model for wound healing.

The agent-based model was expanded with morphoelasticity and differentiation to myofibroblasts. Hence,
the model is more complete and suitable to obtain more insights into the interaction between cellular be-
haviour and the deformation of the ECM.

The agent-based model has the advantage that some parameters are measurable and can be used directly.
However, currently the correct value of some parameters is unknown, and the values also differ from the loca-
tion of the wound in the body. In the literature, one can find several different values for the same parameter
used in various models or measured with different techniques in the laboratories [3]. Furthermore, when
the numerical settings of the model are modified, (for example if the scale of the computational domain is
changed), several parameters have to be adjusted. The possibility of Monte Carlo simulations now makes
it easier to investigate the effect of the parameter values on the results of the model, which is promising to
fine-tune the parameter values further.

By implementing the model in C++ and improving the computational efficiency of several components
of the model, it is now possible to carry out Monte Carlo simulations. This makes the model more valuable
and potential for practical use. There are many possibilities to increase the computational efficiency further.

71
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Parts of the model are already implemented on the GPU with CUDA [12]. If this code is updated for the new
model, the computational efficiency can become even higher. Furthermore, the code can still be optimized
further, for example by combining the classes FEM and FEM-morpho (see Chapter 7).

The angles of the triangles in the used mesh at t = 0 were equal to 1
2π, 1

4π and 1
4π. This mesh was not

generated automatically with the help of a software module, but it was manually constructed in the code.
The structured mesh has the advantage that the knowledge an logic in the ordering and numbering, helps to
make computations more efficient. On the other side, the angles of the mesh are not optimal, in particular
because in the moving mesh, triangles are easy to become ill-shaped, which indicates that some angles are
so small, that the triangle is nearly degenerate. This problem was solved by remeshing, which works fine if
the domain boundary is more or less fixed (that is, if the spring constant a in the Robin boundary condition
is large enough). As the displacements near the domain boundary become larger, it is difficult to maintain
a structured mesh without angles becoming too small or too large, even if remeshing is carried out. Hence,
further options for triangulation to improve this, could be investigated: for example, in [12], the Triangle
software was used to generate an unstructured mesh with angles that are close to 1

3π, which is the ideal angle
magnitude. Furthermore, at the end of this thesis, a structured mesh was written with most of the angles
close to 1

3π. Although this mesh was not tested extensively, it is promising for later use.
In future work, more aspects could be incorporated in the model, such as the presence of fibrin bundles

and the orientation of collagen [16]. Furthermore, the model could be extended to three dimension. As the
computational efficiency is more and more improving, the model becomes more suitable for further exten-
sion.



A
Derivations of Weak Forms and Galerkin

Equations

A.1. One-dimensional purely elastic model
In order to derive the weak form, we multiply the differential equation with the test function φ and integrate
over the domain: ∫ L

0
−Es u′′(x)φ(x) dx =

∫ L

0
f (x)φ(x) dx,

−Es

∫ L

0

[
u′(x)φ(x)

]′−u′(x)φ′(x) dx =
∫ L

0
f (x)φ(x) dx,

−Es
(
u′(L)φ(L)−u′(0)φ(0)

)+Es

∫ L

0
u′(x)φ(x) dx =

∫ L

0
f (x)φ(x) dx,

Es

∫ L

0
u′(x)φ(x) dx =

∫ L

0
f (x)φ(x) dx.

This yields the following weak form:

(W ) :


Find u ∈ H 1(Ω) such that

Es
∫ L

0 u′(x)φ(x) dx = ∫ L
0 f (x)φ(x) dx,

for all φ(x) ∈ H 1(Ω).

A.2. One-dimensional viscoelastic model
We now proceed to derive the weak form of the Cauchy Momentum Equation:

D(ρv)

Dt
+ρv

∂v

∂x
= ∂σ

∂x
+ f . (A.2.1)

In order to derive the weak forms of the equations, we multiply by a test function φ, and integrate over the
domainΩ(t ) = [0, l (t )]: ∫ l (t )

0

(
D

(
ρv

)
Dt

+ρv
∂v

∂x

)
φ dx =

∫ l (t )

0

(
∂σ

∂x
+ f

)
φ dx (A.2.2)

For the test function φ we will use piecewise linear basis functions. According to Theorem 3.3.2, it can be
derived that

D(ρv)

Dt
φ= D(ρvφ)

Dt
−ρv

Dφ

Dt
= D(ρvφ)

Dt
. (A.2.3)
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Using the former result and the Product Rule twice, we obtain that∫ l (t )

0

D(ρvφ)

Dt
+ρ ∂(v2φ)

∂x
−ρv

∂(vφ)

∂x
dx =

∫ l (t )

0

∂(σφ)

∂x
−σ∂φ

∂x
+ f φ dx. (A.2.4)

Now using the fact that

D(ρvφ)

Dt
= ρ ∂(vφ)

∂t
+ρv

∂(vφ)

∂x
, (A.2.5)

we obtain ∫ l (t )

0
ρ
∂(vφ)

∂t
+ρ ∂(v2φ)

∂x
dx =

∫ l (t )

0

∂(σφ)

∂x
−σ∂φ

∂x
+ f φ dx. (A.2.6)

Applying Leibniz’ Rule and Gauß’s Theorem twice, respectively, yields

d

dt

(∫ l (t )

0
ρvφ dx

)
− [ρvφ]x=l (t )l ′(t )+

∫ l (t )

0
ρ
∂(v2φ)

∂x
dx =

∫ l (t )

0

∂(σφ)

∂x
−σ∂φ

∂x
+ f φ dx, (A.2.7)

d

dt

(∫ l (t )

0
ρvφ dx

)
− [ρvφ]x=l (t )l ′(t )+ [ρv2φ]x=l (t )

x=0 =
∫ l (t )

0

∂(σφ)

∂x
−σ∂φ

∂x
+ f φ dx. (A.2.8)

Noting that l ′(t ) = v(l (t ), t ) and applying the boundary condition v(0, t ) = 0, we obtain

d

dt

(∫ l (t )

0
ρvφ dx

)
=

∫ l (t )

0

∂(σφ)

∂x
−σ∂φ

∂x
+ f φ dx. (A.2.9)

We apply Gauß’s Theorem to the right-hand side and apply the boundary conditionσ(l (t ), t ) = 0 andφ(0, t ) =
0, which yields

d

dt

(∫ l (t )

0
ρvφ dx

)
= [σφ]x=l (t )

x=0 +
∫ l (t )

0
−σ∂φ

∂x
+ f φ dx, (A.2.10)

d

dt

(∫ l (t )

0
ρvφ dx

)
= −

∫ l (t )

0
σ
∂φ

∂x
− f φ dx. (A.2.11)

Substituting σ=µ ∂v
∂x +Esε=µ ∂v

∂x +Es
∂u
∂x , this yields the weak form:

d

dt

(∫ l (t )

0
ρvφ dx

)
+

∫ l (t )

0
µ
∂v

∂x

∂φ

∂x
+Es

∂u

∂x

∂φ

∂x
dx =

∫ l (t )

0
f φ dx. (A.2.12)

A.3. One-dimensional morphoelastic model
Now we will derive the weak form of the strain evoluation equation

Dε

Dt
+ (ε−1)

∂v

∂x
=−g . (A.3.1)

We multiply by the test function ψ ∈ L2(H 1(Ω(t )), (0,T )) and integrate over (0, l (t )):∫ l (t )

0

(
Dε

Dt
+ (ε−1)

∂v

∂x

)
ψ dx =−

∫ l (t )

0
gψ dx (A.3.2)

By Theorem 3.3.2, we obtain ∫ l (t )

0

D
(
εψ

)
Dt

+ (ε−1)
∂v

∂x
ψ dx = −

∫ l (t )

0
gψ dx, (A.3.3)∫ l (t )

0

∂
(
εψ

)
∂t

+ v
∂
(
εψ

)
∂x

+εψ∂v

∂x
− ∂v

∂x
ψ dx = −

∫ l (t )

0
gψ dx. (A.3.4)

Applying the Product Rule yields∫ l (t )

0

∂
(
εψ

)
∂t

+ ∂
(
vεψ

)
∂x

− ∂v

∂x
ψ dx = −

∫ l (t )

0
gψ dx. (A.3.5)
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Now we apply Leibniz’ Rule and Gauß’s Theorem, obtaining

d

dt

(∫ l (t )

0
εψ dx

)
+ [
εψ

]x=l (t ) l ′(t )+ [
vεψ

]x=l (t )
x=0 −

∫ l (t )

0

∂v

∂x
ψ dx = −

∫ l (t )

0
gψ dx. (A.3.6)

Now using that l ′(t ) = v(l (t )) and the boundary condition v(0) = 0, we obtain as a weak form

d

dt

(∫ l (t )

0
εψ dx

)
−

∫ l (t )

0

∂v

∂x
ψ dx = −

∫ l (t )

0
gψ dx. (A.3.7)

Substituting g = ξε, as it was discussed in Subsection 3.4.1, we obtain

d

dt

(∫ l (t )

0
εψ dx

)
+

∫ l (t )

0
ξεψ− ∂v

∂x
ψ dx = 0. (A.3.8)

A.4. Two-dimensional Purely elastic model
In order to obtain the weak form of the Cauchy Momentum Equation, we multiply by the test function and
integrate overΩ. We have for d = 1,2:∫

Ω(t )

(
D(ρvd )

Dt
+ρvd∇·v

)
φ dΩ=

∫
Ω(t )

(∇·σ·d + fd
)
φ dΩ. (A.4.1)

According to Theorem 4.2, this yields∫
Ω(t )

D(ρvdφ)

Dt
+ρvdφ∇·v dΩ =

∫
Ω(t )

(∇·σ·d )φ+ fdφ dΩ. (A.4.2)

Now note that ∫
Ω(t )

D(ρvdφ)

Dt
+ρvdφ∇·v dΩ (A.4.3)

= ρ

∫
Ω(t )

∂(vdφ)

∂t
+v ·∇(vdφ)+ vdφ∇·v dΩ (A.4.4)

= ρ
d

dt

(∫
Ω(t )

vdφ dΩ

)
−

∮
∂Ω(t )

vdφv ·n dΓ+
∫
Ω(t )

v ·∇(vdφ)+ vdφ∇·v dΩ (A.4.5)

= ρ
d

dt

(∫
Ω(t )

vdφ dΩ

)
+

∫
Ω(t )

−∇· (vdφv )+v ·∇(vdφ)+ vdφ∇·v dΩ (A.4.6)

= ρ
d

dt

(∫
Ω(t )

vdφ dΩ

)
+

∫
Ω(t )

−vdφ∇·v −v ·∇(vdφ)+v ·∇(vdφ)+ vdφ∇·v dΩ (A.4.7)

= ρ
d

dt

(∫
Ω(t )

vdφ dΩ

)
. (A.4.8)

Hence, we have

ρ
d

dt

(∫
Ω(t )

vdφ dΩ

)
=

∫
Ω(t )

(∇·σ·d )φ+ fdφ dΩ. (A.4.9)

Furthermore, using Leibniz’ Rule and the Product Rule,

ρ
d

dt

(∫
Ω(t )

vdφ dΩ

)
=

∫
Ω(t )

∇· (σ·dφ)−σ·d ·∇φ+ fdφ dΩ, (A.4.10)

ρ
d

dt

(∫
Ω(t )

vdφ dΩ

)
=

∮
∂Ω(t )

σ·d ·nφ dΓ+
∫
Ω(t )

−σ·d ·∇φ+ fdφ dΩ. (A.4.11)

For now, we will omit the part ∮
∂Ω(t )

σ·d ·nφ dΓ, (A.4.12)
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since we will handle the boundary conditions separately, namely in Subsection A.7 In the purely elastic
model, we substitute

σ11 = Es
p
ρ

1+η
(
ε11 + η

1−2η
(ε11 +ε22)

)
, (A.4.13)

σ12 =σ21 = Es
p
ρ

1+η ε12, (A.4.14)

σ22 = Es
p
ρ

1+η
(
ε22 + η

1−2η
(ε11 +ε22)

)
. (A.4.15)

This yields

ρ
d

dt

(∫
Ω(t )

v1φ dΩ

)
= −Es

p
ρ

1+η
∫
Ω(t )

(
ε11 + η

1−2η
(ε11 +ε22)

)
∂φ

∂x
+ε12

∂φ

∂y
dΩ

+
∫
Ω(t )

f1φ dΩ (A.4.16)

and

ρ
d

dt

(∫
Ω(t )

v2φ dΩ

)
= −Es

p
ρ

1+η
∫
Ω(t )

ε12
∂φ

∂x
+

(
ε22 + η

1−2η
(ε11 +ε22)

)
∂φ

∂y
dΩ

+
∫
Ω(t )

f2φ dΩ. (A.4.17)

For the elastic and viscoelastic model, we will express the weak forms in terms of the displacement u. Using
the definitions of strain from the elastic model, we have:

ε11 = ∂u1

∂x
, (A.4.18)

ε12 = ε21 = 1

2

(
∂u1

∂y
+ ∂u2

∂x

)
, (A.4.19)

ε22 = ∂u2

∂y
. (A.4.20)

This yields weak forms

ρ
d

dt

(∫
Ω(t )

v1φ dΩ

)
= −Es

p
ρ

1+η
∫
Ω(t )

(
1−η

1−2η

∂u1

∂x
+ η

1−2η

∂u2

∂y

)
∂φ

∂x
+ 1

2

(
∂u1

∂y
+ ∂u2

∂x

)
∂φ

∂y
dΩ

+
∫
Ω(t )

f1φ dΩ (A.4.21)

and

ρ
d

dt

(∫
Ω(t )

v2φ dΩ

)
= −Es

p
ρ

1+η
∫
Ω(t )

1

2

(
∂u1

∂y
+ ∂u2

∂x

)
∂φ

∂x
+

(
η

1−2η

∂u1

∂x
+ 1−η

1−2η

∂u2

∂y

)
∂φ

∂y
dΩ

+
∫
Ω(t )

f2φ dΩ. (A.4.22)

Defining N := (nx +1) · (ny +1)−1 (which is the number of nodes in Ω minus one), this yields the following
Galerkin equations:

ρ
N∑

j=0
(v1)+j

∫
Ω+
φ+

i φ
+
j dΩ = ρ

N∑
j=0

(v1) j

∫
Ω(t )

φiφ j dΩ

+ ∆t
Es

p
ρ

1+η
N∑

j=0
(u1)+j

(
−

∫
Ω+

1−η
1−2η

∂φ+
i

∂x

∂φ+
j

∂x
+ 1

2

∂φ+
i

∂y

∂φ+
j

∂y
dΩ

)

+ ∆t
Es

p
ρ

1+η
N∑

j=0
(u2)+j

(
−

∫
Ω+

η

1−2η

∂φ+
i

∂x

∂φ+
j

∂y
+ 1

2

∂φ+
i

∂y

∂φ+
j

∂x
dΩ

)

+ ∆t
∫
Ω+

f +
1 φ

+
i dΩ (A.4.23)
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and

ρ
N∑

j=0
(v2)+j

∫
Ω+
φ+

i φ
+
j dΩ = ρ

N∑
j=0

(v2) j

∫
Ω(t )

φiφ j dΩ

+ ∆t
Es

p
ρ

1+η
N∑

j=0
(u1)+j

(
−

∫
Ω+

1

2

∂φ+
i

∂x

∂φ+
j

∂y
+ η

1−2η

∂φ+
i

∂y

∂φ+
j

∂x
dΩ

)

+ ∆t
Es

p
ρ

1+η
N∑

j=0
(u2)+j

(
−

∫
Ω+

1

2

∂φ+
i

∂x

∂φ+
j

∂x
+ 1−η

1−2η

∂φ+
i

∂y

∂φ+
j

∂y
dΩ

)

+ ∆t
∫
Ω+

f +
2 φ

+
i dΩ. (A.4.24)

Here, Ω+ :=Ω(t +∆t ). Furthermore, all variables with a superscript + should be evaluated at t = t +∆t . We
can write these two equations as systems

ρM k+1
1 v k+1

1 = ρM k
1 v k

1

+ ∆t
Es

p
ρ

1+η
((

1−η
1−2η

Sk+1
1 + 1

2
Sk+1

2

)
uk+1

1 +
(

η

1−2η
Sk+1

3 + 1

2
Sk+1

4

)
uk+1

2

)
+ ∆t f k+1

1 (A.4.25)

and

ρM k+1
1 v k+1

2 = ρM k
1 v k

2

+ ∆t
Es

p
ρ

1+η
((

η

1−2η
Sk+1

4 + 1

2
Sk+1

3

)
uk+1

1 +
(

1−η
1−2η

Sk+1
2 + 1

2
Sk+1

1

)
uk+1

2

)
+ ∆t f k+1

2 . (A.4.26)

The matrices M k
1 and Sk

l (l = 1, . . .4), are (N +1)× (N +1)-matrices and f k
1 , f k

2 vectors of length N +1 with the
following element matrices and element vector:

(M k
1 )e = |∆|ke

24

2 1 1
1 2 1
1 1 2

 , (A.4.27)

(Sk
1 )e = −|∆|ke

2

β1β1 β1β2 β1β3

β2β1 β2β2 β2β3

β3β1 β3β2 β3β3

 , (A.4.28)

(Sk
2 )e = −|∆|ke

2

γ1γ1 γ1γ2 γ1γ3

γ2γ1 γ2γ2 γ2γ3

γ3γ1 γ3γ2 γ3γ3

 , (A.4.29)

(Sk
3 )e = −|∆|ke

2

β1γ1 β1γ2 β1γ3

β2γ1 β2γ2 β2γ3

β3γ1 β3γ2 β3γ3

 , (A.4.30)

(Sk
4 )e = −|∆|ke

2

γ1β1 γ1β2 γ1β3

γ2β1 γ2β2 γ2β3

γ3β1 γ3β2 γ3β3

 , (A.4.31)

( f k
d )e = |∆|ke

6

 fd (pk
1 ,k∆t )

fd (pk
2 ,k∆t )

fd (pk
3 ,k∆t )

 , (A.4.32)

where |∆|ke denotes twice the area of the element e = (pk
1 , pk

2 , pk
3 ) at time step k. Furthermore,

βi :=βpi , γi := γpi , (i = 1,2,3)

and

v k
d :=

(
(vd )k

0 , . . . , (vd )k
N

)T
, uk

d :=
(
(ud )k

0 , . . . , (ud )k
N

)T
and f k

d :=
(
( fd )k

0 , . . . , ( fd )k
N

)T
, (d = 1,2).
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Same as in the one-dimensional case, uk+1
d is approximated by:

uk+1
d ≈ uk

d +∆t v k
d , (d = 1,2). (A.4.33)

The above element matrices only hold for internal elements. However, we will deal with the boundary ele-
ments separately in Subsection A.7.

A.5. Two-dimensional viscoelastic model
In the viscoelastic model, all the equations are the same as in the elastic model, except for the definitions of
stress: 

σ11 =µ1
∂v1
∂x +µ2∇·v + Es

p
ρ

1+η
(
ε11 + η

1−2η (ε11 +ε22)
)

, (x ∈Ω, t > 0)

σ12 = 1
2µ1

(
∂v1
∂y + ∂v2

∂x

)
+ Es

p
ρ

1+η ε12, (x ∈Ω, t > 0)

σ22 =µ1
∂v2
∂y +µ2∇·v + Es

p
ρ

1+η
(
ε22 + η

1−2η (ε11 +ε22)
)

, (x ∈Ω, t > 0) ,

(A.5.1)

We see that the expressions

σ11 = µ1
∂v1

∂x
+µ2∇·v , (A.5.2)

σ12 = 1

2
µ1

(
∂v1

∂y
+ ∂v2

∂x

)
, (A.5.3)

σ22 = µ1
∂v2

∂y
+µ2∇·v (A.5.4)

are added to σ11,σ12 and σ22 respectively. This means that, according to Equation (A.4.11), we should add
the following to the right-hand side of Equation (A.4.21):∮

∂Ω(t )
σ·1 ·nφ dΓ+

∫
Ω(t )

−σ·1 ·∇φ dΩ

=
∮
∂Ω(t )

(
n1σ11 +n2σ21

)
φ dΓ+

∫
Ω(t )

−σ11
∂φ

∂x
−σ21

∂φ

∂y
dΩ

=
∮
∂Ω(t )

n1

((
µ1 +µ2

) ∂v1

∂x
+µ2

∂v2

∂y

)
φ+n2

µ1

2

(
∂v1

∂y
+ ∂v2

∂x

)
φ dΓ

+
∫
Ω(t )

−
((
µ1 +µ2

) ∂v1

∂x
+µ2

∂v2

∂y

)
∂φ

∂x
− µ1

2

(
∂v1

∂y
+ ∂v2

∂x

)
∂φ

∂y
dΩ. (A.5.5)

Furthermore, according to Equation (A.4.11), we should add the following to the right-hand side of Equation
(A.4.22): ∮

∂Ω(t )
σ·2 ·nφ dΓ+

∫
Ω(t )

−σ·2 ·∇φ dΩ

=
∮
∂Ω(t )

(
n1σ12 +n2σ22

)
φ dΓ+

∫
Ω(t )

−σ12
∂φ

∂x
−σ22

∂φ

∂y
dΩ

=
∮
∂Ω(t )

n1
µ1

2

(
∂v1

∂y
+ ∂v2

∂x

)
φ+n2

(
µ2
∂v1

∂x
+ (
µ1 +µ2

) ∂v2

∂y

)
φdΓ

+
∫
Ω(t )

−µ1

2

(
∂v1

∂y
+ ∂v2

∂x

)
∂φ

∂x
−

(
µ2
∂v1

∂x
+ (
µ1 +µ2

) ∂v2

∂y

)
∂φ

∂y
dΩ. (A.5.6)

This means that we have to add the following to the right-hand side of Equation (A.4.23):

∆t
N∑

i=0
(v1)+j

(∮
∂Ω+

n+
1

(
µ1 +µ2

)
φ+

i

∂φ+
j

∂x
+n+

2
µ1

2
φ+

i

∂φ+
j

∂y
dΓ

)

+ ∆t
N∑

i=0
(v1)+j

(
−

∫
Ω+

(
µ1 +µ2

) ∂φ+
i

∂x

∂φ+
j

∂x
+ µ1

2

∂φ+
i

∂y

∂φ+
j

∂y
dΩ

)

+ ∆t
N∑

i=0
(v2)+j

(∮
∂Ω+

n+
1 µ2φ

+
i

∂φ+
j

∂y
+n+

2
µ1

2
φ+

i

∂φ+
j

∂x
dΓ

)

+ ∆t
N∑

i=0
(v2)+j

(
−

∫
Ω+
µ2
∂φ+

i

∂x

∂φ+
j

∂y
+ µ1

2

∂φ+
i

∂y

∂φ+
j

∂x
dΩ

)
(A.5.7)
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and the following to the right-hand side of Equation (A.4.24):

∆t
N∑

i=0
(v1)+j

(∮
∂Ω+

n+
1
µ1

2
φ+

i

∂φ+
j

∂y
+n+

2 µ2φ
+
i

∂φ+
j

∂x
dΓ

)

+ ∆t
N∑

i=0
(v1)+j

(
−

∫
Ω+

µ1

2

∂φ+
i

∂x

∂φ+
j

∂y
+µ2

∂φ+
i

∂y

∂φ+
j

∂x
dΩ

)

+ ∆t
N∑

i=0
(v2)+j

(∮
∂Ω+

n+
1
µ1

2
φ+

i

∂φ+
j

∂x
+n+

2

(
µ1 +µ2

)
φ+

i

∂φ+
j

∂y
dΓ

)

+ ∆t
N∑

i=0
(v2)+j

(
−

∫
Ω+

µ1

2

∂φ+
i

∂x

∂φ+
j

∂x
+ (
µ1 +µ2

) ∂φ+
i

∂y

∂φ+
j

∂y
dΩ

)
. (A.5.8)

This means that Equation (4.2.9) becomes:

ρM k+1
1 v k+1

1 = ρM k
1 v k

1

+ ∆t
Es

p
ρ

1+η
((

1−η
1−2η

Sk+1
1 + 1

2
Sk+1

2

)
uk+1

1 +
(

η

1−2η
Sk+1

3 + 1

2
Sk+1

4

)
uk+1

2

)
+ ∆t

(((
µ1 +µ2

)
Sk+1

1 + µ1

2
Sk+1

2

)
v k+1

1 +
(
µ2Sk+1

3 + µ1

2
Sk+1

4

)
v k+1

2

)
+ ∆t f k+1

1 (A.5.9)

and Equation (4.2.10) becomes:

ρM k+1
1 v k+1

2 = ρM k
1 v k

2

+ ∆t
Es

p
ρ

1+η
((

η

1−2η
Sk+1

4 + 1

2
Sk+1

3

)
uk+1

1 +
(

1−η
1−2η

Sk+1
2 + 1

2
Sk+1

1

)
uk+1

2

)
+ ∆t

((µ1

2
Sk+1

3 +µ2Sk+1
4

)
v k+1

1 +
(µ1

2
Sk+1

1 + (
µ1 +µ2

)
Sk+1

2

)
v k+1

2

)
+ ∆t f k+1

2 . (A.5.10)

A.6. Two-dimensional Morphoelastic model
In the morphoelastic model, the Strain Evolution Equations are added:

Dε11

Dt
+ε11∇·v = (1−ε22)

∂v1

∂x
+ε11

∂v2

∂y
+ 1

2
(ε21 +ε12)

(
∂v1

∂y
− ∂v2

∂x

)
− g11, (A.6.1)

Dε12

Dt
+ε12∇·v = ε12∇·v + 1

2

(
(1−2ε11)

∂v1

∂y
+ (1−2ε22)

∂v2

∂x

)
− g12, (A.6.2)

Dε22

Dt
+ε22∇·v = (1−ε11)

∂v2

∂y
+ε22

∂v1

∂x
− 1

2
(ε12 +ε21)

(
∂v1

∂y
− ∂v2

∂x

)
− g22. (A.6.3)

We derive the weak form of these equations, as usual. For the left-hand side of Equation (A.6.10), we have:∫
Ω(t )

(
Dε11

Dt
+ε11∇·v

)
φdΩ =

∫
Ω(t )

D(ε11φ)

Dt
+ε11φ∇·v dΩ

=
∫
Ω(t )

∂(ε11φ)

∂t
+v ·∇(ε11φ)+ε11φ∇·v dΩ

=
∫
Ω(t )

∂(ε11φ)

∂t
+∇· (ε11φv ) dΩ. (A.6.4)

Note that ∫
Ω(t )

∂(ε11φ)

∂t
dΩ = d

dt

(∫
Ω(t )

ε11φdΩ

)
−

∮
∂Ω(t )

ε11φv ·n dΓ

= d

dt

(∫
Ω(t )

ε11φdΩ

)
−

∫
Ω(t )

∇· (ε11φv ) dΩ. (A.6.5)
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Combining Equation (A.6.4) and (A.6.5) yields

∫
Ω(t )

(
Dε11

Dt
+ε11∇·v

)
φ dΩ= d

dt

(∫
Ω(t )

ε11φdΩ

)
. (A.6.6)

The same can be done for the left-hand side of Equation (A.6.11) and (A.6.12). Hence, we have weak forms

d

dt

(∫
Ω(t )

ε11φ dΩ

)
=∫

Ω(t )

(
(1−ε22)

∂v1

∂x
+ε11

∂v2

∂y
+ 1

2
(ε21 +ε12)

(
∂v1

∂y
− ∂v2

∂x

)
− g11

)
φ dΩ, (A.6.7)

d

dt

(∫
Ω(t )

ε12φ dΩ

)
=∫

Ω(t )

(
ε12∇·v + 1

2

(
(1−2ε11)

∂v1

∂y
+ (1−2ε22)

∂v2

∂x

)
− g12

)
φ dΩ, (A.6.8)

d

dt

(∫
Ω(t )

ε22φ dΩ

)
=∫

Ω(t )

(
(1−ε11)

∂v2

∂y
+ε22

∂v1

∂x
− 1

2
(ε12 +ε21)

(
∂v1

∂y
− ∂v2

∂x

)
− g22

)
φ dΩ. (A.6.9)

As in the one-dimensional case, we take gi j := ξεi j , a linear relationship. Using again linear basis functions
and applying Euler Backward time integration, we obtain the following Galerkin equations:

(1+ξ∆t )
N∑

j=0
(ε11)+j

∫
Ω+
φ+

i φ
+
j dΩ =

N∑
j=0

(ε11) j

∫
Ω(t )

φiφ j dΩ

+ ∆t
N∑

j=0
(v1)+j

∫
Ω+
φ+

i

∂φ+
j

∂x
dΩ

− ∆t
N∑

l=0
(ε22)+j

N∑
j=0

(v1)+k

∫
Ω+
φ+

i

∂φ+
j

∂x
φ+

l dΩ

+ ∆t
N∑

l=0
(ε11)+j

N∑
j=0

(v2)+k

∫
Ω+
φ+

i

∂φ+
j

∂y
φ+

l dΩ

+ ∆t
N∑

l=0
(ε12)+j

N∑
j=0

(v1)+k

∫
Ω+
φ+

i

∂φ+
j

∂y
φ+

l dΩ

− ∆t
N∑

l=0
(ε12)+j

N∑
j=0

(v2)+k

∫
Ω+
φ+

i

∂φ+
j

∂x
φ+

l dΩ
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and

(1+ξ∆t )
N∑

j=0
(ε12)+j

∫
Ω+
φ+

i φ
+
j dΩ =

N∑
j=0

(ε12) j

∫
Ω(t )

φiφ j dΩ

+ ∆t
N∑

l=0
(ε12)+j

N∑
j=0

(v1)+k

∫
Ω+
φ+

i

∂φ+
j

∂x
φ+

l dΩ

+ ∆t
N∑

l=0
(ε12)+j

N∑
j=0

(v2)+k

∫
Ω+
φ+

i

∂φ+
j

∂y
φ+

l dΩ

+ ∆t

2

N∑
j=0

(v1)+j

∫
Ω+
φ+

i

∂φ+
j

∂y
dΩ

− ∆t
N∑

l=0
(ε11)+j

N∑
j=0

(v1)+k

∫
Ω+
φ+

i

∂φ+
j

∂y
φ+

l dΩ

+ ∆t

2

N∑
j=0

(v2)+j

∫
Ω+
φ+

i

∂φ+
j

∂x
dΩ

− ∆t
N∑

l=0
(ε22)+j

N∑
j=0

(v2)+k

∫
Ω+
φ+

i

∂φ+
j

∂x
φ+

l dΩ

and

(1+ξ∆t )
N∑

j=0
(ε22)+j

∫
Ω+
φ+

i φ
+
j dΩ =

N∑
j=0

(ε22) j

∫
Ω(t )

φiφ j dΩ

+ ∆t
N∑

j=0
(v2)+j

∫
Ω+
φ+

i

∂φ+
j

∂y
dΩ

− ∆t
N∑

l=0
(ε11)+j

N∑
j=0

(v2)+k

∫
Ω+
φ+

i

∂φ+
j

∂y
φ+

l dΩ

+ ∆t
N∑

l=0
(ε22)+j

N∑
j=0

(v1)+k

∫
Ω+
φ+

i

∂φ+
j

∂x
φ+

l dΩ

+ ∆t
N∑

l=0
(ε12)+j

N∑
j=0

(v1)+k

∫
Ω+
φ+

i

∂φ+
j

∂y
φ+

l dΩ

− ∆t
N∑

l=0
(ε12)+j

N∑
j=0

(v2)+k

∫
Ω+
φ+

i

∂φ+
j

∂x
φ+

l dΩ.

Note that these equations are nonlinear. We can write this as three systems

(1+ξ∆t ) M k+1
1 εεεk+1

11 = M k
1εεε

k
11 +∆tT k+1

1 v k+1
1 +∆t f k+1

ε11
(w k+1), (A.6.10)

(1+ξ∆t ) M k+1
1 εεεk+1

12 = M k
1εεε

k
12 +

∆t

2

(
T k+1

2 v k+1
1 +T k+1

1 v k+1
2

)
+∆t f k+1

ε12
(w k+1), (A.6.11)

(1+ξ∆t ) M k+1
1 εεεk+1

22 = M k
1εεε

k
22 +∆tT k+1

2 v k+1
2 +∆t f k+1

ε22
(w k+1). (A.6.12)

Here, T1 and T2 are (N +1)× (N +1)-matrices, with the following element matrices:

(T k
1 )e = |∆|ke

6

β1 β2 β3

β1 β2 β3

β1 β2 β3

 , (A.6.13)

(T k
2 )e = |∆|ke

6

γ1 γ2 γ3

γ1 γ2 γ3

γ1 γ2 γ3

 . (A.6.14)
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Furthermore,

εεεk
d1d2

:=
(
(εd1d2 )k

0 , . . . , (εd1d2 )k
N

)T
, d1,d2 ∈ {1,2},

and
w k := (εεεk

11,εεεk
12,εεεk

22, v k
1 , v k

2 )T .

Note that f k+1
ε11

, f k+1
ε12

and f k+1
ε22

are vector-valued functions of w k with length N +1. The element vectors are
defined as

( f k
ε11

(w k ))e := |∆|ke
24

−
[
βe · (v1)e

]
ε̄εε1

22 +
[
γe · (v2)e

]
ε̄εε1

11 +
[
γe · (v1)e −βe · (v2)e

]
ε̄εε1

12
−[
βe · (v1)e

]
ε̄εε2

22 +
[
γe · (v2)e

]
ε̄εε2

11 +
[
γe · (v1)e −βe · (v2)e

]
ε̄εε2

12
−[
βe · (v1)e

]
ε̄εε3

22 +
[
γe · (v2)e

]
ε̄εε3

11 +
[
γe · (v1)e −βe · (v2)e

]
ε̄εε3

12

 , (A.6.15)

( f k
ε12

(w k ))e := |∆|ke
24


[
βe · (v1)e +γe · (v2)e

]
ε̄εε1

12 −
[
γe · (v1)e

]
ε̄εε1

11 −
[
βe · (v2)e

]
ε̄εε1

22[
βe · (v1)e +γe · (v2)e

]
ε̄εε2

12 −
[
γe · (v1)e

]
ε̄εε2

11 −
[
βe · (v2)e

]
ε̄εε2

22[
βe · (v1)e +γe · (v2)e

]
ε̄εε3

12 −
[
γe · (v1)e

]
ε̄εε3

11 −
[
βe · (v2)e

]
ε̄εε3

22

 (A.6.16)

and

( f k
ε22

(w k ))e := |∆|ke
24

−
[
γe · (v2)e

]
ε̄εε1

11 +
[
βe · (v1)e

]
ε̄εε1

22 +
[
γe · (v1)e −βe · (v2)e

]
ε̄εε1

12
−[
γe · (v2)e

]
ε̄εε2

11 +
[
βe · (v1)e

]
ε̄εε2

22 +
[
γe · (v1)e −βe · (v2)e

]
ε̄εε2

12
−[
γe · (v2)e

]
ε̄εε3

11 +
[
βe · (v1)e

]
ε̄εε3

22 +
[
γe · (v1)e −βe · (v2)e

]
ε̄εε3

12

 . (A.6.17)

Here,
βe := (βp1,βp2,βp3)T , γe := (γp1,γp2,γp3)T .

Furthermore,
(vd )e := ((vd )p1 , (vd )p2 , (vd )p3 )T

and
ε̄εεi

d1d2
:= (εd1d2 )p1 + (εd1d2 )p2 + (εd1d2 )p3 + (εd1d2 )pi .

In the morphoelastic model, we are solving for ε and v . Hence, after time integration and introducing the

Finite Element approximations, Equation (A.4.16) and (A.4.17) result in

ρ
N∑

j=0
(v1)+j

∫
Ω+
φ+

i φ
+
j dΩ = ρ

N∑
j=0

(v1) j

∫
Ω(t )

φiφ j dΩ

− ∆t
Es

p
ρ

1+η
1−η

1−2η

N∑
j=0

(ε11)+j

∫
Ω+

∂φ+
i

∂x
φ+

j dΩ

− ∆t
Es

p
ρ

1+η
N∑

j=0
(ε12)+j

∫
Ω+

∂φ+
i

∂y
φ+

j dΩ

− ∆t
Es

p
ρ

1+η
η

1−2η

N∑
j=0

(ε22)+j

∫
Ω+

∂φ+
i

∂x
φ+

j dΩ

+ ∆t
∫
Ω+

f +
1 φ

+
i dΩ (A.6.18)

and

ρ
N∑

j=0
(v2)+j

∫
Ω+
φ+

i φ
+
j dΩ = ρ

N∑
j=0

(v2) j

∫
Ω(t )

φiφ j dΩ

− ∆t
Es

p
ρ

1+η
η

1−2η

N∑
j=0

(ε11)+j

∫
Ω+

∂φ+
i

∂y
φ+

j dΩ

− ∆t
Es

p
ρ

1+η
N∑

j=0
(ε12)+j

∫
Ω+

∂φ+
i

∂x
φ+

j dΩ

− ∆t
Es

p
ρ

1+η
1−η

1−2η

N∑
j=0

(ε22)+j

∫
Ω+

∂φ+
i

∂y
φ+

j dΩ

+ ∆t
∫
Ω+

f +
2 φ

+
i dΩ. (A.6.19)
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This yields elastic systems

ρM k+1
1 v k+1

1 = ρM k
1 v k

1 + ∆t
Es

p
ρ

1+η
(

1−η
1−2η

P k+1
1 εεεk+1

11 +P k+1
2 εεεk+1

12 + η

1−2η
P k+1

1 εεεk+1
22

)
+ ∆t

(((
µ1 +µ2

)
Sk+1

1 + µ1

2
Sk+1

2

)
v k+1

1 +
(
µ2Sk+1

3 + µ1

2
Sk+1

4

)
v k+1

2

)
(A.6.20)

+ ∆t f k+1
1 (A.6.21)

and

ρM k+1
1 v k+1

2 = ρM k
1 v k

2 + ∆t
Es

p
ρ

1+η
(

η

1−2η
P k+1

2 εεεk+1
11 +P k+1

1 εεεk+1
12 + 1−η

1−2η
P k+1

2 εεεk+1
22

)
+ ∆t

((µ1

2
Sk+1

3 +µ2Sk+1
4

)
v k+1

1 +
(µ1

2
Sk+1

1 + (
µ1 +µ2

)
Sk+1

2

)
v k+1

2

)
(A.6.22)

+ ∆t f k+1
2 . (A.6.23)

Here, P k
1 and P k

2 are (N +1)× (N +1)-matrices with corresponding element matrices:

(P k
1 )e = −|∆|ke

6

β1 β1 β1

β2 β2 β2

β3 β3 β3

 , (A.6.24)

(P k
2 )e = −|∆|ke

6

γ1 γ1 γ1

γ2 γ2 γ2

γ3 γ3 γ3

 . (A.6.25)

In the morphoelastic model, we can replace the elastic part of Equation (A.5.9) and (A.5.10) with these equa-
tions. Now we can write Equations (A.6.10), (A.6.11), (A.6.12), (A.6.20) and (A.6.21) in one single system,
namely:

M
k+1

w k+1 = M k w k +∆tSk+1w k+1 +∆t f k+1(w k+1), (A.6.26)

where

M
k

:=


(1+ξ∆t ) M k

1 O O O O
O (1+ξ∆t ) M k

1 O O O
O O (1+ξ∆t ) M k

1 O O
O O O ρM k

1 O
O O O O ρM k

1

 , (A.6.27)

M k :=


M k

1 O O O O
O M k

1 O O O
O O M k

1 O O
O O O ρM k

1 O
O O O O ρM k

1

 , (A.6.28)

Sk :=


O O O T k

1 O
O O O 0.5T k

2 0.5T k
1

O O O O T k
2

Ēs η̄1P k
1 Ēs P k

2 Ēs η̄2P k
1 µ̄Sk

1 +0.5µ1Sk
2 µ2Sk

3 +0.5µ1Sk
4

Ēs η̄2P k
2 Ēs P k

1 Ēs η̄1P k
2 0.5µ1Sk

3 +µ2Sk
4 0.5µ1Sk

1 + µ̄Sk
2

 (A.6.29)

and

f k (w k ) :=


f k
ε11

(w k )
f k
ε12

(w k )
f k
ε22

(w k )
f k

1
f k

2

 . (A.6.30)

Here,

Ēs := Es
p
ρ

1+η , η̄1 := 1−η
1−2η

, η̄2 := η

1−2η
, µ̄ :=µ1 +µ2.
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A.7. Boundary condition
In this subsection, we consider the Robin boundary condition for the two-dimensional model. In (A.4.11), we
have that ∮

∂Ω(t )
σ·d ·nφ dΓ=−a

∮
∂Ω(t )

udφ dΓ. (A.7.1)

Hence, when carrying out the Euler Backward time integration, we should add the following to the right-
handside of the equations:

−a ·∆t ·
∮
∂Ω+

u+
dφ

+
i dΓ (A.7.2)

We approximate u+
d := ud (t +∆t ) with an backward approximation ud (t )+∆t · v(t +∆t ). Replacing this and

carrying out the Finite Element approximation yields

−a ·∆t ·
∮
∂Ω+

udφ
+
i dΓ−a ·∆t 2

N∑
j=0

(vd )+j

∮
∂Ω+

φ+
j φ

+
i dΓ. (A.7.3)

The first part

−a∆t
∮
∂Ω+

udφ
+
i dΓ (A.7.4)

will cause a boundary vector −a ·∆t ·bk to be added to the right-handside of the system. Suppose we have a
boundary element be = [q k

1 , q k
2 ], then the corresponding boundary element vector is:

(bk
d )be =

||q k+1
2 −q k+1

1 ||
2

(
ud (q k

1 ,k∆t )
ud (q k

2 ,k∆t )

)
, (A.7.5)

for d = 1,2. Furthermore, the second part of (A.7.3)

−a∆t
N∑

j=0
(vd )+j

∮
∂Ω+

φ+
j φ

+
i dΓ (A.7.6)

can be put to the left-handside of the equation. Then a boundary element matrix can be defined with

B k
be = a · ||q

k
2 −q k

1 ||
6

(
2 1
1 2

)
, (A.7.7)

Then the following should be added to the left-handside of the system:

∆t 2
(
B k+1 O

O B k+1

)
v k+1. (A.7.8)

This holds in the pure elastic and viscoelastic case. In case of the morphoelastic system, the following has to
be added to the left-handside:

∆t 2


O O O O O
O O O O O
O O O O O
O O O B k+1 O
O O O O B k+1

w k+1. (A.7.9)
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