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1
Introduction

It is needless to state the importance of oil in the world economy, as it is one of the
primary source of energy worldwide. Many different techniques are applied to maxi-
mize the amount of oil that can be extracted from a reservoir. During the producing
life of a reservoir, three phases are usually distinguished: primary, secondary and
tertiary recovery. Primary recovery is driven by natural mechanisms, such as fluid
expansion due to pressure decline, and no injection process is involved. The absence
of water injection in the production makes this phase the most profitable one of the
reservoir’s life. Once the pressure drops below a certain limit, usually water or gas are
injected to maintain a higher pressure and also to sweep out oil through a displace-
ment process. This is known as the secondary recovery. However, oil is left behind in
a waterflood either because it is trapped by capillary forces, or because it is bypassed
by the water, which has a higher mobility and may find a path through the reservoir.
At this point, at the production well, water is also produced and the method becomes
inefficient and uneconomical. All the other techniques used after waterflooding are
tertiary recovery. The nature of the recovery is now based on displacement of the
oil. These techniques includes thermal, solvent and chemical methods. In general,
Enhanced Oil Recovery (EOR) are all the techniques for oil recovery that involve the
injection of materials not normally present in the reservoir. This definition does not
restrict EOR to a particular phase of oil recovery. The purpose of EOR is thus to
displace the amount of oil which is unrecoverable through conventional methods.

In this work, the focus will be on polymer flooding, that is, polymer is added to
the injected water in order to increase its viscosity, resulting in a more favourable
mobility ratio 𝑀, defined as

𝑀 = 𝜆ᑨ
𝜆ᑠ

= 𝑘ᑣ,ᑨ𝜇ᑠ
𝑘ᑣ,ᑠ𝜇ᑨ

,

where 𝜆, 𝜇 and 𝑘ᑣ are the mobility, viscosity and relative permeability respectively,
and the subscripts 𝑜 and 𝑤 refer to oil and water phase. A lower mobility ratio will
improve the oil displacement performed by the solution water-polymer. In order to
study polymer flooding from a theoretical point of view, a mathematical model for
the flow of a fluid in a reservoir (a porous media) is needed. The complexity of these
models raises rather quickly as more physical and chemical factors are considered,
thus it is essential to state reasonable assumptions to simplify the models to allow
for analytical study and numerical simulations of the flow.

The report will be structured as follows: in chapter 2, general theory for hyperbolic
equations is discussed. The governing equations of the presented models are mainly
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2 1. Introduction

in hyperbolic form, so a good understanding of the main features of the solution of
these equations, such as rarefaction and shock waves, is necessary. In Chapter 3, a
glossary of petroleum terms is given, so that the reader will become familiar with the
chemical and physical properties of a reservoir. In Chapter 4, the basic theory and
equations of fluid’s flow in porous media are discussed, including the fractional flow
formulation derived by Buckley-Leverett, which is used in a wide range of models
and simulators. Chapter 5 will focus on the discussion of more advanced models
of specific use for polymer flooding. Here, the inaccessible pore volume (IPV) effect
will be discussed: since the polymer molecules are larger, they will not enter all the
pores available for water, so that the polymer may travel faster than an inert tracer.
As a consequence, velocity enhancement models are considered. These models must
be though treated with caution since, as it will be shown, they can lead to ill-posed
problems, in particular a non physical pile-up of the polymer at the water front is
observed in numerical simulations. Last, an overview of numerical methods will be
carried out in Chapter 6, focusing on finite volume method with upwind schemes for
fluxes.



2
Hyperbolic Conservation Laws

Hyperbolic laws arise in many different applications. They have a central importance
also in EOR, especially in water and polymer flooding, where even basic models for
fluid’s flow present typical features related to its hyperbolic nature. Thus, a complete
understanding of the peculiarities of the solutions that are generated, such as rar-
efaction waves and discontinuities (often referred to as shocks), is essential. For an
introduction to conservation laws, the reader is referred to Salsa [12]. For sections
2.2 and 2.3, the approach of Holden-Risebro [4] will be followed; since a thorough
discussion would take too much time, one should refer to this text for details.

2.1. Introduction to Conservation Laws
The general form of a scalar conservation law is

𝑢ᑥ + 𝑓(𝑢)ᑩ = 0, 𝑥 ∈ ℝ, 𝑡 > 0, (2.1)

where 𝑓 ∈ 𝐶Ꮃ is usually referred to as the flux function and 𝑢 represents some physical
property such as concentration. Equation (2.1) and the initial condition

𝑢(𝑥, 0) = 𝑢Ꮂ(𝑥), 𝑥 ∈ ℝ. (2.2)

together form an initial value (or Cauchy) problem.
The method of characteristic is used to build the solution of this kind of problems:

it is possible to find curves on the (𝑥, 𝑡)−plane for which 𝑢 is constant. That is, curves
of the form 𝑥 = 𝜉(𝑡; 𝑥Ꮂ) where

𝑑
𝑑𝑡𝑢(𝜉(𝑡; 𝑥Ꮂ), 𝑡) = 0.

Let us consider the Cauchy problem in the case of linear equation

{ 𝑢ᑥ + 𝑎𝑢ᑩ = 0 𝑥 ∈ ℝ, 𝑡 > 0
𝑢(𝑥, 0) = 𝑢Ꮂ(𝑥)

(2.3)

where 𝑎 > 0 is a given constant. For this simple case, the characteristic are of the
form 𝜉(𝑡; 𝑥Ꮂ) = 𝑎𝑡 + 𝑥Ꮂ. Indeed,

𝑑
𝑑𝑡𝑢(𝜉(𝑡; 𝑥Ꮂ), 𝑡) =

𝑑
𝑑𝑡𝑢(𝑥(𝑡), 𝑡) = 𝑢ᑥ + 𝑎𝑢ᑩ = 0.

3



4 2. Hyperbolic Conservation Laws

The initial data 𝑢Ꮂ(𝑥) is then transported along the characteristics, where 𝑢(𝑥, 𝑡)
is constant. Formally,

𝑢(𝜉(𝑡; 𝑥Ꮂ), 𝑡) = 𝑢(𝜉(0; 𝑥Ꮂ), 0) = 𝑢(𝑥Ꮂ, 0) = 𝑢Ꮂ(𝑥Ꮂ),

meaning, more explicitly,
𝑢(𝑎𝑡 + 𝑥Ꮂ, 𝑡) = 𝑢Ꮂ(𝑥Ꮂ).

Rewriting 𝑥 = 𝑎𝑡 + 𝑥Ꮂ and 𝑥Ꮂ = 𝑥 − 𝑎𝑡 gives the solution to problem (2.3):

𝑢(𝑥, 𝑡) = 𝑢Ꮂ(𝑥 − 𝑎𝑡).

In the linear case studied above, the characteristics do not intersect and the so-
lution is well defined in every point (𝑥, 𝑡). In the more general case (2.1), the method
of characteristic is still applied, but a more precise analysis would show that, even
with regular initial data, singularities may arise within the solution.

The equation for the characteristics reads

𝑥(𝑡) = 𝑓ᖤ(𝑢Ꮂ(𝑥Ꮂ))𝑡 + 𝑥Ꮂ, 𝑓ᖤ = 𝑑𝑓
𝑑𝑢 .

To compute 𝑢(𝑥, 𝑡), consider the characteristic through (𝑥, 𝑡) and follow it backward
in time to determine the point (𝑥Ꮂ, 0). One then has 𝑢(𝑥, 𝑡) = 𝑢Ꮂ(𝑥Ꮂ). Substituting the
equation for the characteristic in the latter gives

𝑢(𝑥, 𝑡) = 𝑢Ꮂ(𝑥 − 𝑓ᖤ(𝑢Ꮂ(𝑥Ꮂ))𝑡),

which can be rewritten as
𝑢 = 𝑢Ꮂ(𝑥 − 𝑓ᖤ(𝑢)𝑡).

Note that the last expression determines 𝑢 implicitly.
The slope of the characteristics depend on the initial data 𝑢Ꮂ and on 𝑓ᖤ(𝑢). It is

clear then that existence and uniqueness of the solution in every point is not ensured,
since the characteristics may intersect or be absent from a part of the (𝑥, 𝑡)-plane.
To deal with these situations, it is necessary to introduce a more flexible definition
of solution which allows for discontinuities along the characteristics.

Definition 2.1. A function 𝑢, bounded in ℝ×[0,∞), is called a weak solution to problem (2.1)-
(2.2) if, for every test function 𝜑 ∈ 𝐶ᐴᎲ (ℝ × [0,∞)) it holds

∫
ᐴ

Ꮂ
∫
ℝ
(𝑢𝜑ᑥ + 𝑓(𝑢)𝜑ᑩ)𝑑𝑥𝑑𝑡 + ∫

ℝ
𝑢Ꮂ𝜑(𝑥, 0)𝑑𝑥 = 0.

The subscript in 𝐶ᐴᎲ stands for compact support of the test function 𝜑(𝑥, 𝑡). A
classical solution is also a weak solution. Definition (2.1) seems quite flexible, since
it allows for discontinuous solutions. It is though necessary to understand the be-
haviour of a weak solution through such discontinuity. A discontinuity, referred to
as shock, arises when the characteristic through a point is not unique, as depicted
in Figure 2.1

To determine the shock wave 𝑠(𝑡), a condition (Rankine-Hugoniot condition) is
used:

𝑑𝑠
𝑑𝑡 =

𝑓(𝑢ᑣ(𝑠, 𝑡)) − 𝑓(𝑢ᑝ(𝑠, 𝑡))
𝑢ᑣ(𝑠, 𝑡) − 𝑢ᑝ(𝑠, 𝑡)

. (2.4)

Here, 𝑢ᑣ and 𝑢ᑝ stand for the solution 𝑢 immediately right and immediately left of the
shock, respectively. Along with an appropriate initial condition (in the case depicted
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t 

x 
Figure 2.1: Characteristics collide: generation of a shock wave.

in Figure 2.1 it would be 𝑠(0) = 0), (2.4) determines the equation for the shock wave
𝑠(𝑡). The solution 𝑢 along the shock jumps from 𝑢ᑝ to 𝑢ᑣ.

To illustrate a case when rarefaction waves occur, consider Figure 2.2.
No characteristics enter the central region: an alternative way must be found to

define a solution in such region. One can show that the following formula gives the
solution in a region where rarefaction waves (centered at 𝑥 = 0) occur:

𝑢(𝑥, 𝑡) = 𝑟 (𝑥𝑡 ) , 𝑟 = (𝑓ᖤ)ᎽᎳ. (2.5)

The fan of characteristics is depicted in Figure 2.3.
Rarefaction and shock waves seem to ensure existence of a solution in the different

configurations that may occur. What about uniqueness?

t 

x 

u=? 

Figure 2.2: No information in the central region: generation of a rarefaction wave.
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t 

x 

u=r(x/t) 

Figure 2.3: Rarefaction wave centered in the origin.

There are cases where both rarefaction and shock waves can be built to define a
(weak) solution, so one may wonder if further conditions can be derived to ensure
uniqueness. To this purpose, it is convenient to think of a physical interpretation
of the solution. These solutions are referred to as entropy solutions, related to the
study of gas dynamic. There are various ways to formulate an entropy condition.
One of the most common is the viscous regularization: equation 2.1 is replaced by

𝑢ᑥ + 𝑓(𝑢)ᑩ = 𝜖𝑢ᑩᑩ. (2.6)

Note that (2.6) is a parabolic equation, thus, even if 𝜖 is small, the equation has a
much more regular behaviour. The idea is that, physically, a model is more realistic
if some diffusion is taken into account, and a conservation law represents a limit
model when diffusion goes to zero. A unique solution for (2.1) is selected such that
it satisfies equation (2.6) for the limit 𝜖 → 0.

One can show that, for sufficiently regular solutions, this entropy condition is
equivalent to the 𝐾𝑟𝑢𝑧̌𝑘𝑜𝑣 entropy condition. A solution satisfies a 𝐾𝑟𝑢𝑧̌𝑘𝑜𝑣 entropy
condition if

∬(𝜂(𝑢)𝜙ᑥ + 𝑞(𝑢)𝜙ᑩ)𝑑𝑥𝑑𝑡 ≥ 0 (2.7)

holds for all convex functions 𝜂 and all nonnegative test functions 𝜙 ∈ 𝐶ᐴᎲ (ℝ×(0,∞)).
It is often more convenient to work with this condition to show that solutions satisfy
entropy conditions.

2.2. The Riemann Problem
Studying a particular initial value problem, the Riemann problem, gives useful in-
sights on the behaviour of problems with more complicated initial value. The infor-
mation contained in this section are based on the work of Holden-Risebro [4].

The Riemann problem is the initial value problem

𝑢ᑥ + 𝑓(𝑢)ᑩ = 0, 𝑢(𝑥, 0) = { 𝑢ᑝ for 𝑥 < 0
𝑢ᑣ for 𝑥 ≥ 0. (2.8)

Since both the equation and initial data are invariant under the transformation
𝑥 ↦ 𝑘𝑥 and 𝑡 ↦ 𝑘𝑡,it makes sense to look for solution of the form 𝑢(𝑥, 𝑡) = 𝑤(𝑥/𝑡).
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Assuming for a moment that 𝑓 ∈ 𝐶Ꮄ and substituting into the equation yields

− 𝑥
𝑡Ꮄ𝑤

ᖤ + 1𝑡 𝑓
ᖤ(𝑤)𝑤ᖤ = 0. (2.9)

Setting 𝑧 = 𝑥/𝑡, equation (2.9) can be rewritten as

𝑧 = 𝑓ᖤ(𝑤), (2.10)

which has the simple solution 𝑤 = (𝑓ᖤ)ᎽᎳ(𝑧) if 𝑓ᖤ is strictly monotone. Of course, in
general the monotonicity of 𝑓ᖤ cannot be guaranteed, thus 𝑓ᖤ must be replaced by a
monotone function on the interval between 𝑢ᑝ and 𝑢ᑣ. Assume now that 𝑢ᑝ < 𝑢ᑣ. On
the interval [𝑢ᑝ, 𝑢ᑣ], 𝑓 is replaced by its lower convex envelope 𝑓⌣, defined by

𝑓⌣(𝑢) = 𝑠𝑢𝑝{𝑔(𝑢) | 𝑔 ≤ 𝑓 and 𝑔 convex on [𝑢ᑝ, 𝑢ᑣ]}. (2.11)

An example of a convex envelope is shown in Figure 2.4.

Figure 2.4: Convex envelope of ፟ in the interval [፮ᑝ, ፮ᑣ]. From [4].

One can show that a solution to (2.8) satisfying a Kru𝑧̌kov entropy condition is
given by

𝑢(𝑥, 𝑡) = 𝑤(𝑧) = {
𝑢ᑝ for 𝑥 ≤ 𝑓ᖤ⌣(𝑢ᑝ)𝑡,
(𝑓ᖤ⌣)ᎽᎳ(𝑥/𝑡) for 𝑓ᖤ⌣(𝑢ᑝ)𝑡 ≤ 𝑥 ≤ 𝑓ᖤ⌣(𝑢ᑣ)𝑡,
𝑢ᑣ for 𝑥 ≥ 𝑓ᖤ⌣(𝑢ᑣ)𝑡,

(2.12)

for 𝑢ᑝ < 𝑢ᑣ and denoting (𝑓ᖤ⌣)ᎽᎳ = ((𝑓⌣)ᖤ)ᎽᎳ. Note that 𝑓ᖦ⌣ ≥ 0, thus 𝑓ᖤ⌣ is nonde-
creasing. Permitting jump discontinuities where 𝑓ᖤ⌣ is constant, its inverse can be
defined, so (2.12) makes sense. If 𝑓 ∈ 𝐶Ꮄ has finitely many inflection points, there
will be finitely many intervals where, alternately, 𝑓⌣ = 𝑓 or 𝑓⌣ < 𝑓. In this case,
𝑢(𝑥, 𝑡) will have the form 𝑢(𝑥, 𝑡) = (𝑓ᖤ)ᎽᎳ(𝑥/𝑡), with a finite number of discontinuities
corresponding to the intervals where 𝑓⌣ < 𝑓. At such discontinuity points, it holds

𝑥 = 𝑓ᖤ(𝑢ᑛ)𝑡 =
𝑓(𝑢ᑛᎼᎳ) − 𝑓(𝑢ᑛ)
𝑢ᑛᎼᎳ − 𝑢ᑛ

𝑡 = 𝑓ᖤ(𝑢ᑛᎼᎳ)𝑡, (2.13)
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where on the interval [𝑢ᑛ, 𝑢ᑛᎼᎳ] it holds 𝑓⌣ < 𝑓. Expression (2.13) satisfies the Rankine-
Hugoniot condition. Hence, the solution given by (2.12) is a sequence of rarefac-
tion waves alternating with shock waves. In Figure 2.4, there are three intervals,
where 𝑓⌣ < 𝑓 on the middle one [𝑢Ꮄ, 𝑢Ꮅ]. Thus, there will be a rarefaction wave for
𝑓ᖤ⌣(𝑢ᑝ)𝑡 ≤ 𝑥 ≤ 𝑓ᖤ⌣(𝑢Ꮄ)𝑡, followed by a shock wave satisfying (2.13) with 𝑗 = 2, and again
rarefaction wave for 𝑓ᖤ⌣(𝑢Ꮅ)𝑡 ≤ 𝑥 ≤ 𝑓ᖤ⌣(𝑢ᑣ)𝑡 (in this case, 𝑓ᖤ⌣(𝑢Ꮄ) = 𝑓ᖤ⌣(𝑢Ꮅ)).

If instead 𝑢ᑝ > 𝑢ᑣ, one can consider the transformation 𝑥 ↦ −𝑥 and the alternative
Riemann problem

𝑢ᑥ − 𝑓(𝑢)ᑩ = 0, 𝑢(𝑥, 0) = { 𝑢ᑣ for 𝑥 < 0
𝑢ᑝ for 𝑥 ≥ 0. (2.14)

Following the same procedure, it is necessary to build the convex envelope of −𝑓 from
𝑢ᑣ to 𝑢ᑝ. This is exactly the negative of the upper concave envelope from 𝑢ᑣ to 𝑢ᑝ. The
concave envelope of 𝑓 is defined by

𝑓⌢(𝑢) = 𝑖𝑛𝑓{𝑔(𝑢) | 𝑔 ≥ 𝑓 and 𝑔 concave on [𝑢ᑣ, 𝑢ᑝ]}. (2.15)

Analogously to (2.12), the solution is now

𝑢(𝑥, 𝑡) = 𝑤(𝑧) = {
𝑢ᑝ for 𝑥 ≤ 𝑓ᖤ⌢(𝑢ᑝ)𝑡,
(𝑓ᖤ⌢)ᎽᎳ(𝑥/𝑡) for 𝑓ᖤ⌢(𝑢ᑝ)𝑡 ≤ 𝑥 ≤ 𝑓ᖤ⌢(𝑢ᑣ)𝑡,
𝑢ᑣ for 𝑥 ≤ 𝑓ᖤ⌢(𝑢ᑣ)𝑡.

(2.16)

This construction of the solution is valid as long as 𝑓⌣,⌢ ≠ 𝑓 on finitely many
intervals, alternating with intervals where 𝑓⌣,⌢ = 𝑓. The solution can be extended to
the case in which 𝑓 is a piecewise twice differentiable function. Furthermore, next
section will extend the analysis to the case of a discontinuous flux function. The
results of this section can be summarized in the following theorem (Holden-Risebro
[4]).

Theorem 2.2. The initial value problem (2.8) with a flux function f(u) such that 𝑓⌣,⌢ ≠ 𝑓 on
finitely many intervals, alternating with intervals where they coincide, has a weak solution
given by (2.12) if 𝑢ᑝ < 𝑢ᑣ, or by (2.16) if 𝑢ᑣ < 𝑢ᑝ. This solution satisfies the 𝐾𝑟𝑢𝑧̌𝑘𝑜𝑣 entropy
condition.

2.3. Discontinuous Flux Function
In water and polymer flooding, physical phenomena and processes may be modeled
by conservation laws. In such equations, it will be shown that cases with a dis-
continuous flux function 𝑓(𝑢) will arise. It is thus convenient to study the Riemann
problem for such functions, in order to understand the behaviour of the solution and
derive conditions to have a well-posed problem. Holden and Risebro [4] studied this
kind of problems, proposing a way to build an entropic solution. They investigated
further existence and uniqueness of entropy solutions for more general Cauchy prob-
lems, but such discussion is not needed for the models presented later and it will be
omitted.

2.3.1. The Riemann Problem for Discontinuous Flux Function
The Riemann problem studied in this section is

{ 𝑢ᑥ + 𝑓(𝛾ᑝ, 𝑢)ᑩ = 0, 𝑢(𝑥, 0) = 𝑢ᑝ, for 𝑥 < 0,
𝑢ᑥ + 𝑓(𝛾ᑣ, 𝑢)ᑩ = 0, 𝑢(𝑥, 0) = 𝑢ᑣ, for 𝑥 > 0, (2.17)
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where 𝛾ᑝ, 𝛾ᑣ, 𝑢ᑝ and 𝑢ᑣ are constants. The first thing to show is that, under some reg-
ularity assumptions on 𝑓, weak solutions exist, and the fulfillment of an additional
entropy condition yields uniqueness.

To find a solution to (2.17), the starting point is to observe that 𝑢(𝑥, 𝑡) must be
the solution to two problems, one on the positive 𝑥-plane and one on the negative
𝑥-plane, namely

𝑣ᑥ + 𝑓(𝛾ᑝ, 𝑣)ᑩ = 0, 𝑣(𝑥, 0) = { 𝑢ᑝ for 𝑥 < 0,
𝑢ᖤᑝ for 𝑥 = 0, (2.18)

and

𝑤ᑥ + 𝑓(𝛾ᑣ, 𝑤)ᑩ = 0, 𝑤(𝑥, 0) = { 𝑢
ᖤ
ᑣ for 𝑥 = 0,
𝑢ᑣ for 𝑥 > 0. (2.19)

The values 𝑢ᖤᑝ , 𝑢ᖤᑣ are yet to be determined. The solution to (2.17) is then built by
gluing together solutions to (2.18) and (2.19):

𝑢(𝑥, 𝑡) = { 𝑣(𝑥, 𝑡), for 𝑥 < 0,
𝑤(𝑥, 𝑡), for 𝑥 > 0. (2.20)

To make sure that this construct is possible, 𝑣(0−, 𝑡) and 𝑤(0+, 𝑡) have to satisfy some
extra conditions.

In the previous section, it was shown that the solution to the Riemann problem

𝑣ᑥ + 𝑔(𝑣)ᑩ = 0, 𝑣(𝑥, 0) = { 𝑣ᑝ for 𝑥 < 0,
𝑣ᑣ for 𝑥 ≥ 0,

is found constructing the lower convex or upper concave envelope, depending whether
𝑣ᑝ < 𝑣ᑣ or 𝑣ᑝ > 𝑣ᑣ. Introducing the notation

𝑔̄(𝑣; 𝑣ᑝ, 𝑣ᑣ) = {
𝑔⌣(𝑣; 𝑣ᑝ, 𝑣ᑣ) if 𝑣ᑝ < 𝑣ᑣ,
𝑔⌢(𝑣; 𝑣ᑝ, 𝑣ᑣ) if 𝑣ᑝ > 𝑣ᑣ,

(2.21)

the solution for 𝑔̄ᖤ(𝑣ᑝ; 𝑣ᑝ, 𝑣ᑣ)𝑡 ≤ 𝑥 ≤ 𝑔̄ᖤ(𝑣ᑣ; 𝑣ᑝ, 𝑣ᑣ)𝑡, satisfying the entropy condition, is

𝑣(𝑥, 𝑡) = 𝑔̄ᖤᎽᎳ (𝑥𝑡 ; 𝑣ᑝ, 𝑣ᑣ) .

Since the solution to (2.17) is formed by gluing together 𝑣 and 𝑤, then 𝑣 must be
equal to 𝑢ᖤᑝ for 𝑥 > 0 (thus allowing only waves with nonpositive speed), while 𝑤 must
be equal to 𝑢ᖤᑣ for 𝑥 < 0 (thus allowing only waves with nonnegative speed). These
observations follow by the fact that Riemann problems have similarity solutions, i.e.
solutions of the form 𝑢(𝑥, 𝑡) = 𝑠(𝑥/𝑡), as discussed in the previous section. The solu-
tion will then be constant along any ray 𝑥/𝑡 through the origin, so at 𝑥 = 0 the solution
keeps the same value. Furthermore, since 𝑣 contains only waves propagating to the
left (nonpositive) and 𝑤 contains only waves propagating to the right (nonnegative),
the jump at 𝑥 = 0 has zero speed. The Rankine-Hugoniot condition yields

𝑓(𝛾ᑝ, 𝑢ᖤᑝ) − 𝑓(𝛾ᑣ, 𝑢ᖤᑣ)
𝑢ᖤᑝ − 𝑢ᖤᑣ

= 0,
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so that
𝑓(𝛾ᑝ, 𝑢ᖤᑝ) = 𝑓(𝛾ᑣ, 𝑢ᖤᑣ). (2.22)

These considerations are used to determine a set of values from which 𝑢ᖤᑣ and 𝑢ᖤᑝ
must be chosen. The characterization of these sets is rather technical and it will
not be presented here, the interested reader should refer to [4]. We only mention
that uniqueness for 𝑢ᖤᑝ and 𝑢ᖤᑣ is ensured by an entropy-like condition motivated
by the viscous regularization, as discussed in the previous section. The following
theorem states that, under reasonable assumptions on 𝑓(𝛾, 𝑢), the existence of a
unique entropy solution is ensured.

Theorem 2.3. Consider the Riemann problem

𝑢ᑥ + 𝑓(𝛾, 𝑢)ᑩ = 0, 𝑡 > 0,

𝑢(𝑥, 0) = { 𝑢ᑝ for 𝑥 < 0,
𝑢ᑣ for 𝑥 > 0, 𝛾(𝑥) = { 𝛾ᑝ for 𝑥 < 0,

𝛾ᑣ for 𝑥 > 0.
(2.23)

(i) Let 𝑓 = 𝑓(𝛾, 𝑢) be a continuously differentiable function on the set

(𝛾, 𝑢) ∈ [𝛾Ꮃ, 𝛾Ꮄ] × [𝑢Ꮃ, 𝑢Ꮄ] = Ω.

Assume that
𝛿𝑓
𝛿𝛾 (𝛾, 𝑢Ꮃ) =

𝛿𝑓
𝛿𝛾 (𝛾, 𝑢Ꮄ) = 0,

so that 𝑓(𝛾, 𝑢Ꮃ) = 𝐶Ꮃ and 𝑓(𝛾, 𝑢Ꮄ) = 𝐶Ꮄ for some constants 𝐶Ꮃ and 𝐶Ꮄ. Then the Riemann
problem (2.23) has a unique entropy solution for all (𝛾ᑝ, 𝑢ᑝ) and (𝛾ᑣ, 𝑢ᑣ) in Ω. Furthermore,
𝑢(𝑥, 𝑡) ∈ Ω for all 𝑥 and 𝑡.

(ii) Let 𝑓 = 𝑓(𝛾, 𝑢) be a locally Lipschitz continuous function for 𝛾 ∈ [𝛾Ꮃ, 𝛾Ꮄ] and 𝑢 ∈ ℝ.
Assume that

lim
ᑦ→±ᐴ

𝑓(𝛾, 𝑢) = ∞ or lim
ᑦ→±ᐴ

𝑓(𝛾, 𝑢) = −∞,

for all 𝛾 ∈ [𝛾Ꮃ, 𝛾Ꮄ]. Then the Riemann problem (2.23) has a unique entropy solution for all
(𝛾ᑝ, 𝑢ᑝ) and (𝛾ᑣ, 𝑢ᑣ) in [𝛾Ꮃ, 𝛾Ꮄ] × ℝ.



3
A Glossary of Petroleum Terms

Before starting to develop mathematical models for fluid flow in porous media, it is
essential to be familiar with the physical and chemical properties that character-
ize both the rock and the fluid. These properties will influence the flow of the fluid
through the rock. The main rock properties of interest are porosity and permeability,
while for the fluid density, compressibility and viscosity will have relevant impor-
tance. In addition, the rock-fluid interaction properties will play an important role
in the modeling. Material is taken from Chen [15].

3.1. Reservoir Rock Properties
The tiny empty passages in a rock are called 𝑝𝑜𝑟𝑒𝑠. Typically, their size varies between
1 and 200𝜇𝑚, depending on the rock layer. The 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦, usually indicated by 𝜙,
is the fraction of volume of rock which is pore space. One may further distinguish
between total porosity and effective porosity: the latter includes only the pores which
are interconnected, hence the ones responsible for fluid flow, while the total porosity
includes also isolated pores. We shall consider effective porosity in the rest of the
discussion. Porosity often varies in space, since in a reservoir different layers of rock
may be present, but in many models will be considered constant for simplicity.

𝑃𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦, denoted by 𝑘, measures the capacity of the rock to conduct fluids
through its interconnected pores. This quantity is also known as 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦,
to distinguish it from the 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 that will be introduced later. A com-
mon unit for permeability is the 𝑚𝑖𝑙𝑙𝑖𝑑𝑎𝑟𝑐𝑦 (𝑚𝑑) (1 𝑑𝑎𝑟𝑐𝑦 ≃ 10ᎽᎳᎴ𝑚Ꮄ). Permeability
usually varies on location and flow direction, but, in 3 dimensions, it is possible to
assume it is a diagonal tensor. However, most of the models considered later are
one-dimensional, so that the permeability 𝑘 will be a scalar.

Often, porosity and permeability are positively correlated (figure 3.1): this result
should not be surprising, since larger pores are most likely going to allow for more
fluid to flow through the porous media.

3.2. Reservoir Fluid Properties
The main properties of fluids in a reservoir are now introduced.

A fundamental notion to be familiar with is the compressibility of a fluid: a fluid
is classified as incompressible if its density is independent of pressure, otherwise
it is said to be compressible. At reservoir condition the fluids may have a slightly

11



12 3. A Glossary of Petroleum Terms

Figure 3.1: Permeability/porosity crossplot. From [15].

compressible behaviour, but often the assumption of incompressibility is used to
derive mathematical models.

The 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 of a fluid, denoted by 𝜇, is a measure of the energy dissipated when
it is in motion resisting an applied shearing force. It has the dimension of force/area
and the most commonly used unit in field is 𝑐𝑒𝑛𝑡𝑖𝑝𝑜𝑖𝑠𝑒 (𝑐𝑝). Viscosity is basically a
consequence of the friction between the molecules of the fluid. In a gas, for example,
where molecules are very far apart, viscosity will be low and the fluid will have a low
resistance to flow. Most commonly, fluids called newtonian have constant viscosity.

3.3. Reservoir Rock/Fluid Properties
The interaction between the rock and the fluid is fundamental to derive realistic and
appropriate models.

The first definition to be considered is 𝑤𝑒𝑡𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦: the wettability of the rock
measures the preference of the rock surface to be wetted by a particular phase. A
formation which has a preference to be wetted by water is called 𝑤𝑎𝑡𝑒𝑟 𝑤𝑒𝑡; an 𝑜𝑖𝑙 𝑤𝑒𝑡
formation has a preference to be wetted by oil. The wettability influences other phys-
ical quantities, such as relative permeability and capillary pressure. This definition
leads to the following characterization of a fluid displacement process:

• 𝐼𝑚𝑏𝑖𝑏𝑖𝑡𝑖𝑜𝑛: a displacement process where the wetting phase increases. In a
water wet system, water flood will be an imbibition process: water will imbibe
into a core containing mobile oil and occupy the smaller pores, thus displacing
the oil.

• 𝐷𝑟𝑎𝑖𝑛𝑎𝑔𝑒: a displacement process where the nonwetting phase increases.

Other properties, like capillary pressure and relative permeability, depend on the na-
ture of the fluid displacement process.
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A quantity widely used in the governing equations for fluid flow in porous media
is the fluid phase 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛. The saturation, denoted by 𝑆, is the fraction of the pore
space that a fluid phase occupies. For a two phase flow with oil and water, it holds

𝑆ᑠ + 𝑆ᑨ = 1.

The 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 of a phase is the amount of that phase which is trapped and
cannot be displaced, i.e. the fluid is immobile. For oil, this saturation is usually
indicated as 𝑆ᑠᑣ (residual oil saturation), while for water the threshold value is called
irreducible water saturation, 𝑆ᑨᑚᑣ. In the literature sometimes this saturation value
is also referred to as connate water saturation 𝑆ᑨᑔ, but there is a subtle yet important
difference between the two terms: connate water saturation is more precisely defined
as the fraction of water that remains trapped within sedimentary rocks during the
process of sedimentation. This definition does not imply that connate water is im-
mobile, although this will be the case in most of the reservoirs and many authors
consider the connate water immobile.

𝐶𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 refers to the discontinuity between the pressure of the non-
wetting phase, say oil, and the wetting phase, say water, thus taking the form

𝑝ᑔ = 𝑝ᑠ − 𝑝ᑨ. (3.1)

Capillary pressure appears in a two-phase flow as a consequence of interfacial ten-
sion at the interface between the two immiscible fluids, such as oil and water. It
depends on the saturation of the wetting phase and on its history (drainage or im-
bibition process), see figure 3.2. More accurate curves of the capillary pressure are
obtained considering the dependence also surface tension 𝜎, porosity 𝜙, permeability
𝑘 and the contact angle 𝜃 with the rock surface of the wetting phase. Using then the
𝐽-𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝐽(𝑆ᑨ) =
𝑝ᑔ

𝜎𝑐𝑜𝑠𝜃√
𝑘
𝜙 (3.2)

and performing experiments, typical curves are obtained.
In the case of three phase flow (say gas, oil, water), the capillary pressures are:

𝑝ᑔᑠᑨ = 𝑝ᑠ − 𝑝ᑨ, 𝑝ᑔᑘᑠ = 𝑝ᑘ − 𝑝ᑠ, 𝑝ᑔᑘᑨ = 𝑝ᑘ − 𝑝ᑨ.

The capillary pressure 𝑝ᑔᑘᑨ can be obtained from the previous ones as

𝑝ᑔᑘᑨ = 𝑝ᑘ − 𝑝ᑨ = 𝑝ᑔᑠᑨ + 𝑝ᑔᑘᑠ,

so that only two capillary pressures are needed.

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 is a dimensionless quantity (a fraction) that measures the
effective permeability of a phase in the case of multiphase flow. In a two phase flow,
one would expect the permeability to either fluid to be lower than that for the single
fluid since it occupies only part of the pore space. Relative permeabilities depend
on saturation and on the history of saturation change. In figure 3.3 typical relative
permeabilities curves are depicted.

A number of models have been developed to relate relative permeability to other
reservoir properties. A popular model for an analytic expression of relative perme-
abilities was proposed by Corey [8]:



14 3. A Glossary of Petroleum Terms

Figure 3.2: Typical capillary pressure curve. From [15].

𝑘ᑣ,ᑨ = {
0 𝑆ᑨ ≤ 𝑆ᑨᑔ,
( ᑊᑨᎽᑊᑨᑔ
ᎳᎽᑊᑨᑔᎽᑊᑠᑣ )

ᑟᑨ 𝑆ᑨᑔ < 𝑆ᑨ < 1 − 𝑆ᑠᑣ,
1 𝑆ᑨ ≥ 1 − 𝑆ᑠᑣ,

(3.3)

𝑘ᑣ,ᑠ = {
0 𝑆ᑨ ≤ 𝑆ᑨᑔ,
( ᎳᎽᑊᑨᎽᑊᑠᑣᎳᎽᑊᑨᑔᎽᑊᑠᑣ )

ᑟᑠ 𝑆ᑨᑔ < 𝑆ᑨ < 1 − 𝑆ᑠᑣ,
1 𝑆ᑨ ≥ 1 − 𝑆ᑠᑣ,

(3.4)

where 𝑛ᑨ, 𝑛ᑠ are the Corey coefficients. The values of these coefficients can be chosen
to capture the physical properties of the reservoir.

Relative permeability models for three phase flows are rather complicated and
will not be discussed here, as the focus throughout the report will be on two phase
systems.

Figure 3.3: Typical relative permeabilities curves. From [15].

Next, it is useful to define the 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝜆ᒆ and the fractional flow 𝑓ᒆ of a phase
𝛼. The mobility is the ratio between relative permeability and viscosity of a certain
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phase:

𝜆ᑨ =
𝑘ᑣ,ᑨ
𝜇ᑨ

, 𝜆ᑠ =
𝑘ᑣ,ᑠ
𝜇ᑠ
.

The mobility ratio 𝑀 is the ratio between mobility of the displacing fluid and the
mobility of the displaced fluid. For waterflooding:

𝑀 = 𝜆ᑨ
𝜆ᑠ
. (3.5)

This is the quantity that polymer flood targets: polymer will increase water viscosity
𝜇ᑨ, resulting in a smaller (and more favourable) mobility ratio.

The interstitial velocity of the flowing phase is denoted by 𝑣ᒆ. In the derivation of
the model for the flow through the porous medium, it is common to work with the
superficial (or Darcy) velocities 𝑢ᒆ = 𝜙𝑣ᒆ. The reason is that an empirical law for 𝑢ᒆ
has been discovered by the French engineer Henry Darcy in 1856. Such law will be
illustrated in the next chapter. Note that it holds 𝑢ᒆ ≤ 𝑣ᒆ.

The fractional flow is a quantity that determines the (fractional) volumetric flow
rate of a phase in the presence of another phase. The fractional flow of a phase is
expressed as the ratio between the Darcy velocity of that phase and the total Darcy
velocity 𝑢 = 𝑢ᑠ + 𝑢ᑨ:

𝑓ᑨ =
𝑢ᑨ
𝑢 , 𝑓ᑠ =

𝑢ᑠ
𝑢 .

Note that 𝑓ᑨ + 𝑓ᑠ = 1. The fractional flow is a really useful quantity, as many models
used in waterflooding and polymer flooding adopt a fractional flow formulation. It
depends strongly on the saturation of the associated phase. The fractional flow curve
has a typical s-shaped form, as it is shown in figure 3.4.

Figure 3.4: Typical curve for water fractional flow ፟ᑨ with different mobility ratio values. From [8].





4
Multi-Phase Flow in Porous Media

Before deriving models for polymer flooding and, in particular, for the velocity en-
hancement effect, it is necessary to present the general and basic equations for fluid
flow in porous media. These equations arise from the usual fundamental laws that
govern fluid flow, such as conservation of mass, momentum and energy. Through
the conservation of mass and employing the empirical Darcy’s law, equations for
a general flow are derived. Typically, the assumption of incompressibility is made,
which is an appropriate approximation far away from the well, where velocities are
low. Equations can then be reformulated within the fractional flow theory, resulting
in a hyperbolic system of equations. This formulation is also known as the Buckley-
Leverett formulation. An analytical solution, characterized by a rarefaction wave
and a shock, is then found. Last, Buckley-Leverett theory is extended and addition
of polymer to the injected water will be incorporated in the model.

4.1. Mass Conservation
Consider a control volume 𝑉 with outward normal n and a general scalar property 𝜑
of a one-phase fluid flowing with velocity v through 𝑉. The law of mass balance for
the control volume states:

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑓𝑙𝑜𝑤 − 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑚𝑎𝑠𝑠.

This statement is formulated as

∫
ᒟᑍ
−𝜑v ⋅ n𝑑𝜕𝑉 = ∫

ᑍ

𝜕𝜑
𝜕𝑡 𝑑𝑉. (4.1)

The source term is usually incorporated in the boundary conditions (injection of
water-polymer at 𝑥 = 0), therefore it will not be considered here. Using the diver-
gence theorem, (4.1) is rewritten as

∫
ᑍ
(𝜕𝜑𝜕𝑡 + ∇ ⋅ (𝜑v)) 𝑑𝑉 = 0. (4.2)

Since the control volume 𝑉 is arbitrary, the integrand must be equal to zero, namely

𝜕𝜑
𝜕𝑡 + ∇ ⋅ (𝜑v) = 0. (4.3)

17
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Note that equation (4.3) is a general relation for a conservation of a fluid’s property
when the source term is absent. For a porous medium, we take 𝜑 = 𝜙𝜌, with 𝜙 the
porosity of the rock and 𝜌 the density of the fluid, and v is the interstitial velocity.
Using the superficial (or Darcy) velocity u = 𝜙v, equation (4.3) reads

𝜕(𝜙𝜌)
𝜕𝑡 + ∇ ⋅ (𝜌u) = 0. (4.4)

For multi-phase flow, the concept of saturation is used. In this case, 𝜑 = 𝜙𝑆ᒆ𝜌ᒆ
and uᒆ = 𝜙𝑆ᒆvᒆ, where 𝛼 ∈ {𝑜, 𝑤} denotes the phase considered (oil or water). The
equation then reads

𝜕(𝜙𝜌ᒆ𝑆ᒆ)
𝜕𝑡 + ∇ ⋅ (𝜌ᒆuᒆ) = 0. (4.5)

At this point, it is necessary to have an expression for the Darcy’s velocities uᑨ,
uᑠ. Darcy’s law is an empirical law discovered by Henri Darcy. The differential form
of this relation in the case of a single-phase flow is

u = −𝑘𝜇 (∇𝑝 + 𝜌
g
𝑔ᑔ
) , (4.6)

where 𝑘 is the absolute permeability, 𝜇 the viscosity, g the gravitational acceleration
vector and 𝑔ᑔ some conversion constant. The minus sign is needed because the fluid
flows from high pressure to low pressure. If we take the vertical axis 𝑧 orientated
downward, we can write

𝜌 g𝑔ᑔ
= −𝜌 𝑔𝑔ᑔ

∇𝑧 = −𝛾∇𝑧,

and Darcy’s velocity (4.6) can be rewritten as

u = −𝑘𝜇 (∇𝑝 − 𝛾∇𝑧) . (4.7)

In the case of multi-phase flow, the definition of Darcy’s velocity is slightly modi-
fied by introducing the relative permeabilities:

uᒆ = −
𝑘𝑘ᑣ,ᒆ
𝜇ᒆ

(∇𝑝ᒆ − 𝛾ᒆ∇𝑧) . (4.8)

Darcy’s velocity (4.8) can be used in the governing equation (4.5) to obtain

𝜕(𝜙𝜌ᒆ𝑆ᒆ)
𝜕𝑡 − ∇ ⋅ (𝜌ᒆ

𝑘𝑘ᑣ,ᒆ
𝜇ᒆ

(∇𝑝ᒆ − 𝛾ᒆ∇𝑧)) = 0, 𝛼 ∈ {𝑤, 𝑜}. (4.9)

The system of equations (4.9) has four unknowns, so further relations for the satu-
rations and pressures are needed in order to close the model. From chapter 3, we
can use the definitions of saturation and capillary pressure to obtain the following
equations:

𝑆ᑨ + 𝑆ᑠ = 1, (4.10)

𝑝ᑔ = 𝑝ᑠ − 𝑝ᑨ. (4.11)

The system of differential-algebraic equations (4.9), (4.10) and (4.11) describes the
flow of water and oil through a porous medium.
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4.2. Fractional Flow Formulation
Classical fractional flow theory was firstly developed by Buckley-Leverett [6, 13] to
describe waterflooding. This formulation allows to find an analytical profile for the
water saturation. The major assumptions of the model are:

1. Fluids are incompressible.

2. The flow is horizontal and one dimensional.

3. Two phases are flowing.

4. Dispersion is negligible

5. Gravity and capillary forces are negligible.

6. Darcy’s law is valid

7. The reservoir is homogeneous.

8. A constant composition is continuously injected, starting at time zero.

If capillarity is negligible, i.e. 𝑝ᑔ = 0, equation (4.11) yields 𝑝ᑠ = 𝑝ᑨ. Since gravity
effect are absent if the flow is horizontal, Darcy’s velocities have now the form

𝑢ᒆ =
𝑘𝑘ᑣ,ᒆ
𝜇ᒆ

𝜕𝑝
𝜕𝑥 . (4.12)

Due to the incompressibility assumption, equations for the saturation of oil and
water read

𝜙𝜕𝑆ᑨ𝜕𝑡 + 𝜕𝑢ᑨ𝜕𝑥 = 0,

𝜙𝜕𝑆ᑠ𝜕𝑡 +
𝜕𝑢ᑠ
𝜕𝑥 = 0.

Summation of the above equations, along with condition (4.10), yields

𝜕𝑢
𝜕𝑥 = 0, (4.13)

where 𝑢 = 𝑢ᑨ + 𝑢ᑠ is the total (constant) velocity.
The fractional flow coefficients are defined as

𝑓ᑨ =
𝑢ᑨ

𝑢ᑨ + 𝑢ᑠ
, 𝑓ᑠ =

𝑢ᑠ
𝑢ᑨ + 𝑢ᑠ

, (4.14)

Recall that relative permeabilities depend strongly on saturation, so that 𝑓ᑨ = 𝑓ᑨ(𝑆ᑨ).
For the relative permeabilities, Corey’s model is employed. Equations using fractional
flow coefficients result in

𝜙𝜕𝑆ᑨ𝜕𝑡 + 𝑢𝜕𝑓ᑨ𝜕𝑥 = 0, (4.15)

𝜙𝜕𝑆ᑠ𝜕𝑡 + 𝑢
𝜕𝑓ᑠ
𝜕𝑥 = 0. (4.16)

Typical initial and boundary conditions are

{ 𝑆ᑨ(𝑥, 𝑡 = 0) = 𝑆ᑨᑔ,𝑓ᑨ(𝑥 = 0, 𝑡) = 1,



20 4. Multi-Phase Flow in Porous Media

where 𝑆ᑨᑔ is the connate water saturation.
Consider now the classical Buckley-Leverett problem, where continuity equation

for water is rewritten as
𝜕𝑆ᑨ
𝜕𝑡 + 𝑢

𝜙
𝑑𝑓ᑨ
𝑑𝑆ᑨ

𝜕𝑆ᑨ
𝜕𝑥 = 0. (4.17)

This is a hyperbolic equation for 𝑆ᑨ, with characteristic velocity given by

(𝑑𝑥𝑑𝑡 )ᑊᑨ
= 𝑢
𝜙
𝑑𝑓ᑨ
𝑑𝑆ᑨ

. (4.18)

On a front propagating with such velocity, the saturation is constant. However,
equation (4.18) cannot be directly integrated because of the s-shaped graph of 𝑓(𝑆ᑨ)
(see chapter 3). The derivative 𝑑𝑓/𝑑𝑆ᑨ is not monotone: after a first increasing phase,
it starts decreasing in correspondence of the inflection point of 𝑓(𝑆ᑨ). Thus, the
characteristic lines intersect and, as discussed in chapter 2, a shock forms. The
velocity of such shock can be found through an overall material balance on a control
volume from the point just behind the shock at time 𝑡 and just ahead the shock at
time 𝑡+Δ𝑡 [10]. For the point ahead of the shock, 𝑆ᑨ = 𝑆ᑨᑔ, while for the point behind
the shock saturation is denoted by 𝑆∗. The material balance gives

𝑣ᏺᑊᑨ =
𝑢
𝜙
𝑓ᑨ(𝑆∗) − 𝑓ᑨ(𝑆ᑨᑔ)

𝑆∗ − 𝑆ᑨᑔ
. (4.19)

Since the velocities given by (4.18) and (4.19) must be equal at the contact between
the shock and the continuous saturation distribution, it holds

𝑓ᑨ(𝑆∗) − 𝑓ᑨ(𝑆ᑨᑔ)
𝑆∗ − 𝑆ᑨᑔ

= 𝑑𝑓ᑨ
𝑑𝑆ᑨ

|
ᑊᑨᎾᑊ∗

. (4.20)

For immobile connate water saturation, 𝑓ᑨ(𝑆ᑨᑔ) = 0, and 𝑆∗ can be obtained from
(4.20) or graphically, since (4.20) is a straight line with slope 𝑑𝑓ᑨ/𝑑𝑆ᑨ and intercept
(𝑆ᑨᑔ, 0), see figure 4.1.

Rewrite equation (4.17) in the conservation form

(𝑆ᑨ)ᑥ + 𝑓(𝑆ᑨ)ᑩ = 0, (4.21)

with 𝑓(𝑆ᑨ) = ᑦ
ᒣ𝑓ᑨ(𝑆ᑨ). Along with the initial data

𝑆ᑨ(𝑥, 0) = {
𝑆ᑨ,ᑚᑟᑛ 𝑥 < 0,
𝑆ᑨᑔ 𝑥 ≥ 0, (4.22)

where 𝑆ᑨ,ᑚᑟᑛ indicates the saturation of water at the injection point, (4.21) - (4.22)
is a Riemann problem for the saturation 𝑆ᑨ with flux function 𝑓(𝑆ᑨ) as depicted in
figure 4.1. Since 𝑆ᑨ,ᑚᑟᑛ > 𝑆ᑨᑔ, Theorem 2.2 from chapter 2 states that the solution
to (4.21) - (4.22) is found by taking the concave envelope of the flux function. Hence,
the straight line in figure 4.1 corresponds to the shock, while the smooth part for
𝑆ᑨ > 𝑆∗ corresponds to the rarefaction wave.

4.3. Polymer Flood
To improve oil recovery, polymer is added to the injected water in order to increase
its viscosity, resulting in a more favourable mobility ratio 𝑀. The mobility ratio here
is defined by

𝑀 = 𝜆ᑨ
𝜆ᑠ

= 𝜇ᑠ𝑘ᑣ,ᑨ
𝜇ᑨ𝑘ᑣ,ᑠ

. (4.23)
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Figure 4.1: Fractional flow function and illustration
of an admissible physical solution. From [7].

Figure 4.2: Buckley-Leverett solution for a fixed ፭ ጻ
ኺ. From [7].

For a water flood, typically 𝑀 > 1. Adding polymer to the injected water will usu-
ally lower the mobility ratio to values close to 1. A thorough discussion on polymer
flooding can be found in [6, 8].

Since the polymer does not change the residual oil saturation, both waterflooding
and polymer flooding will theoretically produce all of the moveable oil over a very
long time scale. This time scale, however, is usually many times the practical reser-
voir development period. The polymer will essentially speed up the recovery, see
figure 4.3. The figure shows also an approximated economic limit for both water
and polymer flood. Polymer flooding will be particularly useful in those reservoirs
where waterflooding is or is predicted to be inefficient. In order to evaluate projects,
it is important to predict recovery profiles for waterflood and polymer flood employ-
ing different chemical agents. The only way of obtaining these data is to perform
different simulations of the proposed projects. This motivates the development and
analysis of mathematical models for polymer flood. Although there are many physical
and chemical effects that influence the flow of the polymer-water solution through
the reservoir, simulations of these models are a good and efficient mean to evaluate
proposed projects. Under reasonable assumptions, models for the flow through the
reservoir are derived, giving the chance to simulate saturation profiles for injected
water and polymer.

Figure 4.3: Comparison of production profiles for a water flood and a polymer flood. From [6].
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4.3.1. Thick Water Model
A first simple approach is to apply classical Buckley-Leverett theory to polymer flood-
ing [2]. This means that the polymer flood is treated as a water flood, only with a
different value for viscosity. This model is called the thick water model. Thus, this
model is mathematically equivalent to the Buckley-Leverett waterflooding and no new
features must be discussed. Figure 4.4 shows two saturation profiles for different
mobility ratio: 𝑀 = 30 corresponds to a waterflooding; 𝑀 = 1 corresponds to a poly-
mer flooding. Figure 4.5 shows the recovery for the two cases. As it can be seen,
the polymer delays the breakthrough of the water front. As a consequence, even if
the ultimate recovery will be the same for both cases, a higher oil recovery will be
reached earlier when employing a polymer flooding instead of a waterflooding.

Figure 4.4: Buckley-Leverett front for water flood (ፌ ዆ ኽኺ) and polymer flood with thick water model (ፌ ዆ ኻ).
From [2].

Figure 4.5: Recovery for water flood (ፌ ዆ ኽኺ) and polymer flood with thick water model (ፌ ዆ ኻ) [2].
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4.3.2. Extended Fractional Flow Theory
To have a more accurate model, classical Buckley-Leverett fractional flow theory can
be extended [6, 10], deriving a continuity equation also for the polymer concentra-
tion 𝑐. On top of the assumptions stated above for the fractional flow theory for
waterflooding, further assumptions for the polymer are

1. The polymer solution has a Newtonian flow behaviour.

2. Polymer dispersion, gravity, capillary forces and adsorption to rock are negligi-
ble.

3. The polymer is present only in the aqueous phase.

The purpose of this section is to derive a qualitative profile for the water satu-
ration and polymer concentration, therefore we disregard effects that would lead to
unnecessary complexities. Several assumptions can be weakened easily.

Since the polymer influences the water viscosity, and thus the mobility, the frac-
tional flow function depends not only on the water saturation, but also on the polymer
concentration. When adding polymer to water, the fractional flow curve shifts toward
the right, as shown in figure 4.6.

Figure 4.6: Fractional flow functions for pure water (blue line) and water with polymer (red line) [7].

According to Pope [10], continuity equations for water and polymer in fractional
flow formulation are

𝜙𝜕𝑆ᑨ𝜕𝑡 + 𝑢ᑋ
𝜕(𝑓ᑨ(𝑆ᑨ, 𝑐))

𝜕𝑥 = 0, (4.24)

𝜙𝜕(𝑆ᑨ𝑐)𝜕𝑡 + 𝑢ᑋ
𝜕(𝑐𝑓ᑨ(𝑆ᑨ, 𝑐))

𝜕𝑥 = 0. (4.25)

The dependence of water viscosity on polymer concentration can be modelled by the
Flory-Huggins equation [8]:

𝜇ᑨ(𝑐) = 𝜇Ꮂᑨ (1 + 𝛼Ꮃ𝑐 + 𝛼Ꮄ𝑐Ꮄ + 𝛼Ꮅ𝑐Ꮅ) = 𝜇Ꮂᑨ𝜇ᑞᑦᑝᑥ(𝑐), (4.26)
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where 𝜇Ꮂᑨ is the water viscosity without polymer, 𝜇ᑞᑦᑝᑥ the viscosity multiplier func-
tion ans 𝛼ᑚ some constants.

To complete equations (4.24) and (4.25), a Riemann initial condition is assigned
for both water and polymer:

𝑆ᑨ(𝑥, 0) = {
𝑆ᑨ,ᑚᑟᑛ = 1 − 𝑆ᑠᑣ 𝑥 < 0,
𝑆ᑨ,Ꮂ = 𝑆ᑨᑔ 𝑥 ≥ 0, (4.27)

𝑐(𝑥, 0) = { 𝑐̄ 𝑥 < 0,
0 𝑥 ≥ 0. (4.28)

During a polymer flood, generally two shocks arise [10]: one at the polymer front,
where polymer contacts connate water, and one as the water saturations increases
from its initial value (as in the waterflood). To compute the shocks velocities, it is
useful to rewrite equation (4.25) for the polymer concentration. Expanding equation
(4.25) and using (4.24), the equation for polymer concentration is rewritten as

𝜙𝑆ᑨ
𝜕𝑐
𝜕𝑡 + 𝑢ᑋ𝑓ᑨ

𝜕𝑐
𝜕𝑥 = 0. (4.29)

The characteristic velocities for polymer concentration and water saturation are

(𝑑𝑥𝑑𝑡 )ᑔ
= 𝑢𝑓ᑨ
𝜙𝑆ᑨ

, (4.30)

(𝑑𝑥𝑑𝑡 )ᑊᑨ
= 𝑢
𝜙
𝑑𝑓ᑨ
𝑑𝑆ᑨ

. (4.31)

Thus, saturation 𝑆∗Ꮃ at the polymer front can be found by solving

𝑓ᑨ(𝑆∗Ꮃ, 𝑐̄)
𝑆∗Ꮃ = 𝑑𝑓ᑨ

𝑑𝑆ᑨ
(𝑆∗Ꮃ).

The water saturation 𝑆∗Ꮄ just in front of the shock is found by comparing jump con-
ditions across the shock:

𝑓ᑨ
𝑆ᑨ
(𝑆∗Ꮃ) = 𝑓ᑨ(𝑆∗Ꮃ, 𝑐̄) − 𝑓ᑨ(𝑆∗Ꮄ, 0)

𝑆∗Ꮃ − 𝑆∗Ꮄ .

The water saturation 𝑆∗Ꮅ just behind the first water front is equal to that of a standard
Buckley-Leverett front:

( 𝑑𝑓ᑨ𝑑𝑆ᑨ
(𝑆∗Ꮅ)) = 𝑓ᑨ(𝑆∗Ꮅ, 0)

𝑆∗Ꮅ − 𝑆ᑨᑔ
.

Two distinct cases are then possible. If 𝑆∗Ꮄ ≤ 𝑆∗Ꮅ, then there will be a constant
plateau for water saturation between the two shocks (case shown in figure 4.7), which
forces 𝑆∗Ꮅ = 𝑆∗Ꮄ. If instead 𝑆∗Ꮄ > 𝑆∗Ꮅ, then, after a smaller plateau, the saturation
will decrease from 𝑆∗Ꮄ to 𝑆∗Ꮅ just behind the water front. Behind the water front,
saturation is constant and equal to 𝑆ᑨᑔ.
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Figure 4.7: Construction of the polymer flooding solution through fractional flow function curve (left); water satura-
tion profile in blue and polymer concentration in green (right). From [7].





5
Velocity Enhancement Models for

Polymer Flooding

The models introduced in chapter 4 for polymer flooding are rather qualitative and
disregard many physical and chemical properties of rock, fluid and their interaction.
Although they are useful to gain insights on the behaviour of the floods, these models
should be refined to achieve a more realistic simulation. Modeling further physical
phenomena may quickly lead to complexities in the analytical model, requiring nu-
merical methods to be very accurate and computationally efficient. According to
Dawson [11], adsorption of polymer molecules onto the rock plays an important role
in polymer flooding, causing a delay of the polymer effluent profile. The resulting
water bank will be gradually denuded of polymer, depending on the nature of the
polymer and reservoir rock. Therefore, adsorption should be included in any realis-
tic mathematical model. However, the effect that will be investigated in this chapter,
studied previously for instance by [2, 6, 11], is the velocity enhancement effect due
to inaccessible and excluded pore volumes (IPV and EPV, respectively). Since the
polymer’s molecules have a larger size, they may not access the smallest pores of the
rock (IPV) and they may be excluded from the layer close to the wall of the chan-
nels (EPV), where velocities are lower. These combined effects result in a velocity
enhancement of the polymer’s molecules. In some experiments, the polymer is ob-
served to travel faster than the water in which it is dissolved, meaning that IPV and
EPV effects overwhelm adsorption and other polymer retention mechanisms. In these
cases, the polymer accumulates at the water front. Whether IPV/EPV effects or ad-
sorption dominate the flow depends on the reservoir and polymer properties. In this
chapter, models for the velocity enhancement factor will be presented and discussed.
It will turn out that this factor causes some mathematical issues, and caution should
be exercised in the interpretation of the overall phenomenon and of the simulation
results.

5.1. Inaccessible and Excluded Pore Volumes
It was first observed experimentally [11] that polymer molecules are transported
through the porous media faster than those of an inert tracer. Dawson et al. named
this effect Inaccessible Pore Volumes. The physical interpretation was that the poly-
mer’s molecules, due to their larger size, cannot enter the smallest pore of the rock
(the ones whose size is smaller than polymer’s molecules). Since the polymer moves

27
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through larger pores than an inert tracer, it tends to move ahead, accumulating
at the front. The result of the original experiments demonstrating the IPV effect is
shown in figure 5.1, where they used polyacrylamide as polymer in a Berea sand-
stone. The polymer’s effluent concentration profile anticipates the one of salt. Daw-
son and Lantz worked then on several experiments where they managed to combine
adsorption and IPV effects, to see how the concentration profile would look depending
on which factor is dominating the polymer’s flow. Results are illustrated in figure 5.2.
They concluded that IPV has a beneficial effect on field performance as it contrasts
adsorption, so that polymer response will be seen sooner than expected at produc-
tion well. In addition, they stated that mathematical models and fields predictions
developed without including IPV and adsorption effects will be in error.

Figure 5.1: Experimental concentration profiles for polymer (polyacrylamide) and salt. From [11].

An alternative physical interpretation of the velocity enhancement effect, known
as excluded pore volumes, has been given later (see [2, 6] and literature referenced
there). Polymer molecules, once more due to their larger size, are excluded from a
layer close to the pore wall. The polymer tends then to travel at the center of the
pore throats. Since the streamlines away from the wall are associated with higher
velocities, the polymer winds up travelling faster than an inert tracer.

Typically, the magnitude of the velocity enhancement factor is such that the poly-
mer travels at velocities up to about 20% faster than tracer species. When velocity
enhancement effects are observed, they may be caused by a combination of IPV and
EPV. If the velocity enhancement effect is simply modeled mathematically by a con-
stant factor 𝛼, essentially both models presented above are included. A constant
velocity enhancement factor may though lead to an unphysical peak of polymer con-
centration at the water front. Bartelds [3] showed that using a constant 𝛼 results in
an ill-posed problem. Refined model for the factor 𝛼 are then necessary to get rid of
unphysical behaviours. At this point, IPV and EPV may be modeled differently, since
they have distinct physical interpretation. Typically, the EPV effect is preponderant
over IPV, but it is also more difficult to model. Bartelds proposed a model for the IPV
effect using a percolation approach; the same approach is used also in [2] to model
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Figure 5.2: Breakout curves for various combination of IPV and adsorption. From [11].

EPV.

Going one step back, it is essential to understand the consequences on the poly-
mer concentration profile of the velocity enhancement. According to Dawson et al.
[11], polymer arrives earlier at the effluent than an inert tracer, as shown in figure
5.1. Bartelds model [2] (suited to model EPV) suggests that a peak in polymer con-
centration should occur in correspondence with the water front (figure 5.3). Several
experimental results support this fact, confirming that this is indeed a physical solu-
tion and not a mere numerical effect: varying different parameters, such as injection
velocity and injection concentration, and using different cores to consider other as-
pects such as adsorption, core length, permeabilities, etc., a peak in the polymer
concentration is measured. Conclusions are that experiments show a significant
peak in polymer concentration just after water breakthrough and they are qualita-
tively in good agreement with simulation results. The balance between retention
mechanisms (such as adsorption) and IPV and EPV effects appear to determine the
amount of polymer accumulated at the water-oil interface.

5.2. Models for the Velocity Enhancement Factor
Given the influence of IPV and EPV effects on the polymer flood, models for the veloc-
ity enhancement factor 𝛼 are needed in order to perform more realistic simulations.
Following the approach of Bartelds [3], the velocity enhancement factor is defined as
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Figure 5.3: Polymer flood simulation: water saturation and polymer concentration profiles for a fixed time. From
[2].

the ratio between the average interstitial velocities of polymer and water, namely

𝛼 =
⟨𝑣ᑡ⟩
⟨𝑣ᑨ⟩

. (5.1)

5.2.1. Constant Velocity Enhancement Factor
In first approximation, one may employ a constant value for 𝛼. Introducing the ef-
fective porosity 𝜙ᑡ for the polymer and using Darcy’s velocities, (5.1) takes the form

𝛼 =
𝑣ᑡ
𝑣ᑨ

=
𝑢ᑨ/𝜙ᑡ
𝑢ᑨ/𝜙

= 𝜙
𝜙ᑡ
. (5.2)

However, in this section results from [3], showing that this choice for 𝛼 leads to an
ill-posed problem when dispersive effects are ignored, will be presented.

In chapter 4, conservation equations for both water and polymer were derived in a
fractional flow formulation. Adding to this model an adsorption term and a constant
velocity enhancement factor, the governing equations become

𝜙𝜕𝑆ᑨ𝜕𝑡 + 𝑢𝜕𝑓ᑨ𝜕𝑥 = 0, (5.3)

𝜙𝜕𝑐𝑆ᑨ𝜕𝑡 + 𝜙𝜕𝑎𝜕𝑡 + 𝛼𝑢
𝜕𝑐𝑓ᑨ
𝜕𝑥 = 0, (5.4)

where 𝑎(𝑐) is the concentration of the polymer absorbed to the rock. Polymer adsorp-
tion to the porous media is assumed to be instantaneous and depending on polymer
concentration, such that

𝑑𝑎
𝑑𝑐 ≥ 0. (5.5)
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The fractional flow 𝑓ᑨ is a function of water saturation and polymer concentration
such that

𝑑𝑓ᑨ
𝑑𝑐 < 0, 𝑑𝑓ᑨ

𝑑𝑆ᑨ
≥ 0. (5.6)

Multiplying equation (5.3) by 𝑐 and subtracting it from (5.4), after somemanipulations
the system of equations can be rewritten in the semi-linear form

𝜕
𝜕𝑡 (

𝑆ᑨ
𝑐 ) +𝒜 𝜕

𝜕𝑥 (
𝑆ᑨ
𝑐 ) = ( 00 ) , (5.7)

where

𝒜 = 𝑢
𝜙 (

ᒟᑗᑨ
ᒟᑊᑨ

ᒟᑗᑨ
ᒟᑔ

(ᒆᎽᎳ)ᑔᒟᑗᑨᒟᑊᑨ
ᑊᑨᎼᑕᑒᑕᑔ

ᒆᑗᑨᎼ(ᒆᎽᎳ)ᑔᒟᑗᑨᒟᑔ
ᑊᑨᎼᑕᑒᑕᑔ

) . (5.8)

The nature of the system depends on the eigenvalues of matrix 𝒜: if the eigen-
values are real for all values of 𝑆ᑨ and 𝑐, then system (5.7) is hyperbolic; if the eigen-
values are complex for some values of 𝑆ᑨ and 𝑐, the system has elliptic regions. The
eigenvalues 𝜆 are found solving the quadratic equation

𝑑𝑒𝑡(𝒜 − 𝜆𝐼) = 0. (5.9)

To have only real solutions, the discriminant 𝐷 of (5.9) must be nonnegative. The
expression for the discriminant is

𝐷 = (𝑢𝜙)
Ꮄ
[(
𝜕𝑓ᑨ
𝜕𝑆ᑨ

− 𝛼𝑓ᑨ+(𝛼−1)𝑐
ᒟᑗᑨ
ᒟᑔ

𝑆ᑨᑕᑒᑕᑔ
)
Ꮄ

+4(
𝜕𝑓ᑨ
𝜕𝑐

(𝛼−1)𝑐ᒟᑗᑨᒟᑊᑨ
𝑆ᑨ+ ᑕᑒ

ᑕᑔ
)] . (5.10)

First, consider the case where 𝛼 = 1 (no velocity enhancement effect). As dis-
cussed within the fractional flow theory in chapter 4, at the polymer front the satu-
ration is found by equating the velocities of the water saturation front and polymer
concentration front, giving

𝜕𝑓ᑨ
𝜕𝑆ᑨ

= 𝑓ᑨ
𝑆ᑨ+ ᑕᑒ

ᑕᑔ
. (5.11)

Since it is reasonable to assume that ill-posedness of the model would cause prob-
lems at the shock, we study expression (5.10) for the discriminant when (5.11) holds.
In the case of 𝛼 = 1, this assumption implies that 𝐷 = 0, thus the eigenvalues are
real (and equal) and the system is hyperbolic. To analyze the discriminant for 𝛼 > 1,
define the region 𝐻 to be the set of all pairs (𝑆ᑨ, 𝑐) where the two eigenvalues are
equal for 𝛼 = 1, i.e. where (5.11) holds:

𝐻 = {(𝑆ᑨ, 𝑐) |
𝜕𝑓ᑨ
𝜕𝑆ᑨ

= 𝑓ᑨ
𝑆ᑨ+ ᑕᑒ

ᑕᑔ
} . (5.12)

Setting 𝛼 = 1 + 𝜖, for (𝑆ᑨ, 𝑐) ∈ 𝐻 the expression for the discriminant is

𝐷 = (𝑢𝜙)
Ꮄ
[ 𝜖
𝑆ᑨ+ ᑕᑒ

ᑕᑔ
( 𝜖
𝑆ᑨ+ ᑕᑒ

ᑕᑔ
(𝑐𝜕𝑓ᑨ𝜕𝑐 + 𝑓ᑨ)

Ꮄ
+ 4𝑐𝜕𝑓ᑨ𝜕𝑐

𝜕𝑓ᑨ
𝜕𝑆ᑨ

)] . (5.13)
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Since 𝜖 may be chosen arbitrarily small, the term on the right of (5.13) dominates
and, due to (5.6), the discriminant is negative. This means that the eigenvalues are
complex and there exists an elliptic region around the set 𝐻: the model is ill-posed.

The presence of an elliptic region leads to instabilities in the numerical solutions.
Using a Corey model for the relative permeabilities and a velocity enhancement factor
𝛼 = 1.1, results shown in figure 5.4 are obtained. Just before the shock, there is an
unbounded peak in the polymer concentration. The height of the peak depends on
the mesh of the grid, giving an indication of the ill-posed behaviour of the system.
The plot in the phase space shows that the peak in the polymer concentration occurs
when the solution crosses the elliptic region. Note that the initial condition (𝑆ᑨ, 𝑐) =
(𝑆ᑨᑔ, 0) and the injection condition (𝑆ᑨ, 𝑐) = (1 − 𝑆ᑠᑣ, 𝑐ᑚ) are separated by the elliptic
regions, which therefore has to be crossed by the solution.

 

Figure 5.4: Numerical solutions of saturation and concentration in ፱-space (left) and in phase-space (right) at
፭ ዆ ኺ.ኼ኿ PV injected and ᎎ ዆ ኻ.ኻ. From [3].

5.2.2. Percolation Model
In order to improve the model and get rid of instabilities, Bartelds [3] proposed a
model of the velocity enhancement factor based on percolation theory. Percolation
theory describes through statistical means themorphology of, and transport through,
randomly disordered media. We restrict now exclusively to the IPV effect, because it
is easier to model using this approach. Extension to EPV effect is studied by Bartelds
in [2].

To use a percolation-type description, the polymer flood is seen as a three-phase
flow. These phases are:

1. Water which cannot contain polymer, with saturation denoted by 𝑆ᑨᎳ.

2. Water which may potentially contain polymer, with saturation denoted by 𝑆ᑨᎴ.

3. Oil without polymer, with saturation 𝑆ᑠ.

Polymer is restricted to water phase 2, while exchange of water molecules between
phase 1 and 2 is allowed. It is assumed further that there is local equilibrium in the
polymer concentration, meaning that there is instantaneous diffusion of polymer
molecules between movable water and the part of connate water which is accessible
to polymer.
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Figure 5.5: Example of a probability distribution showing the threshold radius and the three different phases. From
[3].

Percolation theory is used to model networks that consist of branches and nodes.
The accessible bonds of the network are the one that are actually under study be-
cause they fulfill a specific requirement or condition. The basic idea used to apply
a percolation approach is that the smallest pores do not contain polymer molecules
(IPV), thus polymer is excluded from the pores with radius smaller than a threshold
value 𝑟∗. The accessible bonds in the model are then the pore throats with 𝑟 > 𝑟∗.
Figure 5.5 illustrates an example of a probability density function 𝑃(𝑟) describing
the distribution of pores radii. This probability density function gives the fractional
volume occupied by pores with radius belonging to some interval.

In water-wet media, water prefers to enter pores in a sequence of increasing ra-
dius. This means that all the pores with 𝑟 < 𝑟∗ have to be filled with water before
polymer is allowed to enter the porous media. The threshold water saturation needed
to fulfill this condition is denoted by 𝑆∗ and it is assumed to be lower than the irre-
ducible water saturation, i.e. 𝑆∗ < 𝑆ᑨᑚᑣ1. The water phase 1 where polymer is not
allowed corresponds then to the area of 𝑃(𝑟) with 𝑟 < 𝑟∗. The associated saturation
is 𝑆ᑨᎳ = 𝑆∗. The water phase 2 correspond to the area where 𝑟∗ < 𝑟 < 𝑟ᑨ, and its
saturation is 𝑆ᑨᎴ = 𝑆ᑨ − 𝑆∗.

Model equations for the three phase flow read

𝜙𝜕𝑆ᑨᎳ𝜕𝑡 + 𝜕𝑢ᑨᎳ𝜕𝑥 = 𝑅, (5.14)

𝜙𝜕𝑆ᑨᎴ𝜕𝑡 + 𝜕𝑢ᑨᎴ𝜕𝑥 = −𝑅, (5.15)

𝜙𝜕𝑐ᑨᎴ𝑆ᑨᎴ𝜕𝑡 + 𝜙𝜕𝑎𝜕𝑡 +
𝜕𝑐ᑨᎴ𝑢ᑨᎴ
𝜕𝑥 = 0, (5.16)

where 𝑅 denotes the net transfer rate of water molecules from phase 1 to phase 2.
It is convenient to introduce the average polymer concentration 𝑐 in the total water
1The assumption of Bartelds is actually ፒ∗ ጺ ፒᑨᑔ, but it is also assumed that the connate water is immobile. This
fact was noticed by Hilden et al. [14], who then concluded that in Bartelds [3] ፒᑨᑔ ዆ ፒᑨᑚᑣ. For the purpose of
comparison, here we use the irreducible water saturation.
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phase,

𝑐 = 𝑐ᑨᎴ𝑆ᑨᎴ
𝑆ᑨᎳ + 𝑆ᑨᎴ

. (5.17)

The adsorption term 𝑎 is assumed to be function only of this average concentration.
The velocity enhancement factor can be expressed as

𝛼 =
𝑣ᑡ
𝑣ᑨ

= 𝑣ᑨᎴ
𝑣ᑨ

= 𝑢ᑨᎴ
𝑆ᑨᎴ

𝑆ᑨ
𝑢ᑨ

= 𝑢ᑨᎴ
𝑢ᑨᎳ + 𝑢ᑨᎴ

𝑆ᑨᎳ + 𝑆ᑨᎴ
𝑆ᑨᎴ

. (5.18)

Since it assumed that 𝑆ᑨᎳ = 𝑆∗ < 𝑆ᑨᑚᑣ, 𝜕𝑆ᑨᎳ/𝜕𝑡 is zero and water phase 1 is unable to
flow, giving 𝑢ᑨᎳ = 0. It follows that the transfer rate 𝑅 is zero: no water is exchanged
between phase 1 and phase 2. Using 𝑆ᑨᎳ = 𝑆∗ and 𝑆ᑨᎴ = 𝑆ᑨ−𝑆∗ in (5.18), the velocity
enhancement factor becomes

𝛼(𝑆ᑨ) =
𝑆ᑨ

𝑆ᑨ − 𝑆∗
. (5.19)

Thus, in this model, the velocity enhancement factor is no longer constant, but it
depends on the water saturation 𝑆ᑨ. Typically, near the connate water saturation
the factor has higher values, and it decreases to an almost constant value as water
saturation increases.

Using (5.19), the average polymer concentration can be written as

𝑐 = 𝑐ᑨᎴ
𝛼 . (5.20)

Rewriting the conservation equations in fractional flow formulation (𝑢ᑨ = 𝑓ᑨ𝑢) and
using (5.20) and (5.19), the final governing system is

𝜙𝜕𝑆ᑨ𝜕𝑡 + 𝑢𝜕𝑓ᑨ𝜕𝑥 = 0, (5.21)

𝜙𝜕𝑎𝜕𝑡 + 𝜙
𝜕𝑐𝑆ᑨ
𝜕𝑡 + 𝑢𝜕𝛼𝑐𝑓ᑨ𝜕𝑥 = 0. (5.22)

To study the well-posedness, the same approach as with the constant velocity
enhancement factor is followed. Governing equations are rewritten in the matrix-
vector form

𝜕
𝜕𝑡 (

𝑆ᑨ
𝑐 ) +𝒜 𝜕

𝜕𝑥 (
𝑆ᑨ
𝑐 ) , (5.23)

where the matrix 𝒜 is given by

𝒜 = 𝑢
𝜙 (

ᒟᑗᑨ
ᒟᑊᑨ

ᒟᑗᑨ
ᒟᑔ

ᑕᒆ
ᑕᑊᑨ ᑔᑗᑨᎼ(ᒆᎽᎳ)ᑔ

ᒟᑗᑨ
ᒟᑊᑨ

ᑊᑨᎼᑕᑒᑕᑔ

ᒆᑗᑨᎼ(ᒆᎽᎳ)ᑔᒟᑗᑨᒟᑔ
ᑊᑨᎼᑕᑒᑕᑔ

) . (5.24)

Again, the purpose is to show that the eigenvalues of 𝒜 are real by analyzing the
discriminant of the characteristic equation. Using

𝑑𝛼
𝑑𝑆ᑨ

= −𝛼(𝛼 − 1)𝑆ᑨ
,

after some tedious manipulations the expression for the discriminant takes the form

𝐷 = ( 𝜕𝑓ᑨ𝜕𝑆ᑨ
(𝑆ᑨ +

𝑑𝑎
𝑑𝑐 ) + (𝛼 − 1)𝑐

𝜕𝑓ᑨ
𝜕𝑐 − 𝛼𝑓ᑨ)

Ꮄ
− 4𝛼(𝛼 − 1)𝑐𝑓ᑨ

𝜕𝑓ᑨ
𝜕𝑐

𝑑𝑎
𝑑𝑐 . (5.25)
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Figure 5.6: Numerical solutions of saturation and concentration in ፱-space (left) and in phase-space (right) at
፭ ዆ ኺ.ኼ኿ PV injected for ᎎ ዆ ፒᑨ/(ፒᑨ ዅ ፒ∗). From [3].

From (5.5), (5.6) and the fact that 𝛼(𝑆ᑨ) > 1, it follows that the discriminant is non-
negative and there are no elliptic regions. It must be remarked that this model is
valid under the assumption 𝑆∗ < 𝑆ᑨᑚᑣ. This restriction is though acceptable since a
commonly observed value for 𝛼 is 1.1, which corresponds to a threshold saturation
𝑆∗ = 0.091. Most reservoirs have a value of irreducible water saturation larger than
0.1, so that assuming 𝑆∗ < 𝑆ᑨᑚᑣ is reasonable.

Using the same test problem of the previous section, where a constant velocity
enhancement factor caused a peak in the concentration at the polymer front, results
shown in figure 5.6. The peak now is absent and there is no polymer accumulation
at the front.

In conclusion, a constant velocity enhancement factor leads to an ill-posed model
that causes an unphysical pile-up of the polymer at the polymer front, disregarding
any retardation effect such as adsorption. The height of the peak is unbounded and
depends on the grid spacing used in the simulation. Moreover, the constant velocity
factor model does not have a clear physical counterpart and it is just a convenient
mathematical model. The saturation-dependent model for the velocity enhancement
factor presented by Bartelds is built on a clear physical concept and the resulting
equations are shown to be well-posed (without elliptic regions), so that numerical
instabilities are not an issue. The model proposed takes into consideration only IPV
effects. Other mechanisms, such as EPV, may though lead to a physical pile-up of
the polymer. However, this pile-up should not depend on the numerical mesh and
grow unbounded as with the constant velocity enhancement factor.

The percolation model has been extended by Bartelds to consider the EPV effect
as the major cause of velocity enhancement. The conservation equations are still
(5.21) and (5.22), while the velocity enhancement factor is expressed as

𝛼(𝑆ᑨ) =
𝑆ᑨ𝑘ᑣ,ᑨᎴ
𝑆ᑨᎴ𝑘ᑣ,ᑨ

. (5.26)

The relative permeabilities 𝑘ᑣ,ᑨ and 𝑘ᑣ,ᑨᎴ are determined using a percolation ap-
proach. For a detailed discussion of this model, the reader is referred to [2]. The
main result that must be outlined is that this model allows for accumulation of poly-
mer at the front, as it was shown in section 5.1, figure 5.3. The profile obtained
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was qualitatively in good agreement with the physical experiments, confirming that
a pile-up of the polymer may actually occur. Caution must then be exercised when
interpreting simulation results, since the polymer pile-up may arise from numerical
stability issues or instead be the correct physical profile.

5.2.3. Hilden-Nilsen-Raynaud Model
The models proposed by Bartelds for IPV seeks and succeeds in solving stability is-
sues related to the velocity enhancement factor modeling. Numerical solutions are
smooth and no peaks in polymer concentration appears to grow unbounded. The
model is though subject to the restriction 𝑆∗ < 𝑆ᑨᑚᑣ, where 𝑆∗ is some threshold sat-
uration that must be reached by water before polymer is allowed to be transported
through the porous medium. Since it is not guaranteed that this condition holds for
every reservoir, Hilden et al. [14] proposed an extended model to relax this assump-
tion. Based on an heuristic physical understanding of the relative permeabilities, an
alternative model is derived. This model reduces to the one proposed by Bartelds
when the inaccessible pore volume is smaller than the irreducible water saturation,
which is basically the assumption 𝑆∗ < 𝑆ᑨᑚᑣ. Considering shock solutions, a neces-
sary condition that must be fulfilled by the model in order to be well-posed is derived.

A two-phase water oil flow is considered, where in addition polymer can be part of
the water phase. The conservation equations in two dimensions without IPV effects
and adsorption are

𝜕
𝜕𝑡 (𝜌ᒆ𝜙𝑆ᒆ) + ∇ ⋅ (𝜌ᒆuᒆ) = 0, 𝛼 ∈ {𝑜, 𝑤} (5.27)

𝜕
𝜕𝑡 (𝜌ᑨ𝜙𝑆ᑨ𝑐) + ∇ ⋅ (𝑐𝜌ᑨuᑨᑡ) = 0, (5.28)

where 𝜌ᒆ are the phase densities, 𝑐 the polymer concentration and uᒆ, uᑨᑡ the Darcy’s
velocities given by

uᑠ =−
𝑘ᑣ,ᑠ
𝜇ᑠ
(∇𝑝 − 𝜌ᑠ𝑔∇𝑧), (5.29)

uᑨ =−
𝑘ᑣ,ᑨ
𝜇ᑨ,ᑖᑗᑗ

(∇𝑝 − 𝜌ᑨ𝑔∇𝑧), (5.30)

uᑨᑡ =−
𝑘ᑣ,ᑨᑡ
𝜇ᑡ,ᑖᑗᑗ

(∇𝑝 − 𝜌ᑠ𝑤∇𝑧). (5.31)

Here, it is assumed that the presence of polymer does not influence oil phase, pres-
sures, densities and relative permeabilities. For the viscosity effect, a Todd-Longstaff
[9] model is used. That is, denote the viscosity of a fully mixed water and polymer
solution by 𝜇ᑞ(𝑐), with 𝜇ᑡ = 𝜇ᑞ(𝑐max) and 𝑐max the maximum injection concentration
of polymer. The effective polymer viscosity is

𝜇ᑡ,ᑖᑗᑗ = 𝜇ᑞ(𝑐)ᒞ𝜇ᎳᎽᒞᑡ ,

where 𝜔 ∈ [0, 1] is referred to as the mixing parameter. The viscosity of the partially
mixed water is given by

𝜇ᑨ,ᑖ = 𝜇ᑞ(𝑐)ᒞ𝜇ᎳᎽᒞᑨ .
The effective water viscosity is defined to be

1
𝜇ᑨ,ᑖᑗᑗ

= 1 − 𝑐/𝑐max

𝜇ᑨ,ᑖ
+ 𝑐/𝑐max

𝜇ᑡ,ᑖᑗᑗ
.
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The velocity enhancement factor 𝛼(𝑆ᑨ) can be incorporated in equation (5.28),
giving

𝜕
𝜕𝑡 (𝜌ᑨ𝜙𝑆ᑨ𝑐) + ∇ ⋅ (𝛼(𝑆ᑨ)𝑐𝜌ᑨuᑨᑡ) = 0. (5.32)

To derive a necessary condition to ensure well-posedness, conservation equations
for water and polymer are rewritten in a one-dimensional fractional flow formula-
tion. Therefore, gravitational effect are not present and incompressibility must be
assumed. In addition, the polymer is considered to behave as an inert component,
so that water flow is not affected by polymer presence. The resulting equations are

𝜕𝑆ᑨ
𝜕𝑡 + 𝑢

𝜙
𝜕𝑓ᑨ(𝑆ᑨ)
𝜕𝑥 = 0, (5.33)

𝜕(𝑆ᑨ𝑐)
𝜕𝑡 + 𝑢

𝜙
𝜕
𝜕𝑥 (𝑐𝛼(𝑆ᑨ)𝑓ᑨ(𝑆ᑨ)) = 0, (5.34)

where 𝑢 = 𝑢ᑨ + 𝑢ᑠ is the total velocity. Without loss of generality, assume 𝑢/𝜙 = 1.
Let 𝑧 = 𝑆ᑨ𝑐 and consider the Riemann problem with values (𝑆ᑝ, 𝑧ᑝ) and (𝑆ᑣ, 𝑧ᑣ) on the
left- and right-hand size, respectively. Assume further that solution to (5.33) is a
pure shock and that 𝑆ᑝ > 𝑆ᑣ, which is usually the case since, on the left, water is
injected and, on the right, we have the connate (or irreducible) water saturation 𝑆ᑨᑔ.
Such a pair of saturation will be addressed as a single shock pair. Rankine-Hugoniot
condition gives the velocity 𝑣 of the shock

𝑣 = 𝑓ᑨ(𝑆ᑝ) − 𝑓ᑨ(𝑆ᑣ)
𝑆ᑝ − 𝑆ᑣ

. (5.35)

Rewrite the polymer equation in a moving frame with velocity 𝑣 using the coordinate
𝑥̂ = 𝑥 − 𝑣𝑡. After a change of variables, (5.34) becomes

𝜕𝑧̂
𝜕𝑡 +

𝜕
𝜕𝑥̂ (𝑧̂ (

𝛼( ̂𝑆ᑨ)
̂𝑆ᑨ
𝑓( ̂𝑆ᑨ) − 𝑣)) = 0. (5.36)

Because of the discontinuity in the water saturation, (5.36) has a discontinuous flux.
Removing the hat to simplify the notation, the Riemann problem is

⎧

⎨
⎩

𝜕𝑧
𝜕𝑡 +

𝜕(𝑔ᑝ𝑧)
𝜕𝑥 = 0 if 𝑥 < 0,

𝜕𝑧
𝜕𝑡 +

𝜕(𝑔ᑣ𝑧)
𝜕𝑥 = 0 if 𝑥 > 0,

(5.37)

where
⎧⎪
⎨⎪⎩

𝑔ᑝ =
𝛼(𝑆ᑝ)𝑓ᑨ(𝑆ᑝ)

𝑆ᑝ
− 𝑣,

𝑔ᑝ =
𝛼(𝑆ᑣ)𝑓ᑨ(𝑆ᑣ)

𝑆ᑣ
− 𝑣.

(5.38)

Note that the values 𝑔ᑝ, 𝑔ᑣ are constants. The analysis carried out in section 2.3 for
Riemann problems with discontinuous flux function can be used now. A solution to
problem (5.37) is formed by gluing together the solutions of two Riemann problems
(see section 2.3.1). At the discontinuity, a pair of values 𝑧Ꮍ and 𝑧Ꮌ (which are part
of the initial data of the two Riemann problems) must be determined such that the
following conditions are fulfilled:
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Figure 5.8: Acceptable shock solutions for different signs of ፠ᑝ and ፠ᑣ [14].

1. For x<0, there exists a solution to the first equation in (5.37) with only waves
traveling from right to left.

2. The jump at 𝑥 = 0 is a discontinuity with zero speed, so the Rankine Hugoniot
condition gives 𝑔ᑝ𝑧Ꮍ = 𝑔ᑣ𝑧Ꮌ.

3. For 𝑥 > 0, there exists a solution to the second equation in (5.37) with only waves
traveling from left to right.

If for a pair (𝑧ᑝ, 𝑧ᑣ) values for 𝑧Ꮍ and 𝑧Ꮌ are found such that these requirements are
satisfied, (𝑧ᑝ, 𝑧ᑣ) is called solvable and the Riemann solution joining 𝑧ᑝ to 𝑧ᑣ is called
acceptable. Essentially, to obtain a well-posed problem, the velocity enhancement
function 𝛼(𝑆ᑨ)must be chosen such that any (nonnegative) pair (𝑧ᑝ, 𝑧ᑣ) will be always
solvable.

For the three cases presented in figure 5.8, any pair (𝑧ᑝ, 𝑧ᑣ) is solvable. For the
remaining case

𝑔ᑝ ≥ 0 and 𝑔ᑣ ≤ 0, with 𝑔ᑝ ≠ 𝑔ᑣ, (5.39)

Rankine-Hugoniot condition 𝑔ᑝ𝑧Ꮍ = 𝑔ᑣ𝑧Ꮌ implies that either 𝑧ᑝ = 𝑧Ꮍ = 0 or 𝑧ᑣ = 𝑧Ꮌ = 0
must hold, but 𝑧 = 𝑆ᑨ𝑐ᑡ > 0, so the velocity enhancement factor must be chosen
such that (5.39) never occurs. If 𝑆ᑣ = 𝑆ᑨᑚᑣ (the irreducible water saturation), then
𝑓ᑨ(𝑆ᑣ) = 0 and (5.38) gives 𝑔ᑣ = −𝑣 ≤ 0. Therefore, to ensure that (5.39) does not
occur, it must be 𝑔ᑝ ≤ 0. The shock velocity 𝑣 given by (5.35) is

𝑣 = 𝑓ᑨ(𝑆ᑝ)
𝑆ᑝ − 𝑆ᑨᑚᑣ

.

Using this expression, the condition 𝑔ᑝ ≤ 0 is rewritten as

𝛼(𝑆ᑨ) ≤
𝑆ᑨ

𝑆ᑨ − 𝑆ᑨᑚᑣ
, (5.40)
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for 𝑆ᑨ = 𝑆ᑝ. Inequality (5.40) is a necessary condition for well-posedness of the Rie-
mann problem. Note that, in themodel derived by Bartelds, the velocity enhancement
factor is

𝛼(𝑆ᑨ) =
𝑆ᑨ

𝑆ᑨ − 𝑆∗
. (5.41)

In the case 𝑆∗ < 𝑆ᑨᑚᑣ (which is the restriction imposed by Bartelds model), the neces-
sary condition for the factor (5.41) is satisfied. On the other hand, if 𝑆∗ ≥ 𝑆ᑨᑚᑣ, (5.40)
does not hold and the resulting model is ill-posed.

Under mild assumptions on the fractional flow function, it can be shown that
condition (5.40) is also sufficient in the sense that, if it is satisfied by any shock pair,
then any pair (𝑧ᑝ, 𝑧ᑣ) is solvable.

The purpose is then to derive a model satisfying the necessary condition (5.40).
The main ideas behind the model proposed by Hilden et al. [14] will be presented.
For a thorough and detailed discussion, the reader is referred to the original paper.
The assumption that will guide the model’s derivation is that, in a water wet system,
water invades smallest pores first. In these smallest pores, permeability is lower
and water travels slower. Moreover, the flow is assumed to be one-dimensional and
incompressible.

Similarly to the percolation model, a distribution function 𝜒(𝑟̂) is defined, where
𝑟̂ denotes the characteristic radius of a pore. Since permeability is assumed to de-
pend on the pore size, for each 𝑟̂ there corresponds a permeability 𝑘̂(𝑟̂) and the total
permeability is given by

𝑘 = 𝑛∫
ᐴ

Ꮂ
𝜙̂(𝑟̂)𝑘̂(𝑟̂)𝜒(𝑟̂)𝑑𝑟̂, (5.42)

where 𝑛 is the number of pores in a cross section and the function 𝜙̂ contains the
geometric information on the structure of this section.

Due to the assumption that pores are filled successively in increasing size, for a
given global saturation 𝑆ᑨ there exists a threshold value for the pore size, denoted
by 𝑟(𝑆ᑨ) or simply 𝑟, for which

𝑆̂ᑨ(𝑟̂) = {
1 if 𝑟̂ ≤ 𝑟(𝑆ᑨ),
0 if 𝑟̂ > 𝑟(𝑆ᑨ).

(5.43)

The global water saturation is then defined similarly to (5.42) as

𝑆ᑨ =
𝑛
𝜙 ∫

ᑣ

Ꮂ
𝜙̂(𝑟̂)𝜒(𝑟̂)𝑑𝑟̂, (5.44)

Polymer is then included in the model. The inaccessible pore volume effect is
modeled by defining a threshold value 𝑟∗2 such that polymer cannot enter pores with
𝑟 < 𝑟∗. Polymer concentration can then be expressed as

𝑐̂(𝑟̂) = { 0 if 𝑟̂ ≤ 𝑟∗,
𝑐̄ if 𝑟̂ > 𝑟∗, (5.45)

2The threshold values ፫∗ and ፒ∗ are actually denoted by Hilden et al. as ፫ᑚᑡᑧ and ፒᑨ,ᑚᑡᑧ, respectively. Since
these values are assumed to be equal to the Bartelds’ threshold values, we keep the star notation for comparison
purposes.
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where it is assumed that in the region 𝑟̂ > 𝑟∗ the polymer diffuses uniformly and
reaches a constant concentration 𝑐̄. An expression for the total polymer concentra-
tion is then given by

𝑆ᑨ𝑐 =
𝑛
𝜙 𝑐̄ ∫

ᑣ

ᑣ∗
𝜙̂(𝑟̂)𝜒(𝑟̂)𝑑𝑟̂. (5.46)

These expressions for permeability, saturation and concentration are inserted into
the governing equations. An analytical expression for the velocity enhancement fac-
tor is found manipulating the system of equations, resulting in

𝛼(𝑆ᑨ) =
𝑆ᑨ

𝑘ᑣ,ᑨ(𝑆ᑨ)
𝑘ᑣ,ᑨ(𝑆ᑨ) − 𝑘ᑣ,ᑨ(𝑆∗)

𝑆ᑨ − 𝑆∗
, (5.47)

where 𝑆∗ = 𝑆ᑨ(𝑟∗). To have a well-defined expression, 𝛼(𝑆ᑨ) is defined to be zero for
𝑆ᑨ < 𝑆∗. If the function 𝑘ᑣ,ᑨ(𝑆ᑨ) is convex, which is a common feature for relative
permeabilities, then the necessary condition (5.40) does not hold for 𝑆∗ > 𝑆ᑨᑚᑣ and the
model is still ill-posed. The assumption stated by Bartelds has not been relaxed yet.
The idea is then to introduce a weighting function 𝑤̂(𝑟̂), defined to be equal to zero
for 𝑟̂ ≤ 𝑟∗, since the uniform polymer diffusion assumption may not be appropriate.
The polymer concentration (5.45) becomes

𝑐̂(𝑟̂) = 𝑤̂(𝑟̂)𝑐̄. (5.48)

Define the function 𝑊(𝑆ᑨ) to be

𝑊(𝑆ᑨ) =
𝑛
𝜙 ∫

ᑣ

Ꮂ
𝑤̂(𝑟̂)𝜙̂(𝑟̂)𝜒(𝑟̂)𝑑𝑟̂. (5.49)

This function is useful since [14]

𝑑𝑊(𝑆ᑨ)
𝑑𝑆ᑨ

= 𝑤̂(𝑟̂), (5.50)

so it can be used to define the weighting factor 𝑤̂(𝑐̂) and it has the form of the other
physical properties. If the polymer does not have a preference to invade first regions
with larger or smaller pore size, hence it diffuses uniformly, the function 𝑊(𝑆ᑨ) will
have the expression

𝑊(𝑆ᑨ) = {
0 if 𝑆ᑨ < 𝑆∗
𝐴(𝑆ᑨ − 𝑆∗) if 𝑆∗ < 𝑆ᑨ < 1 − 𝑆ᑠᑣ,

(5.51)

where 𝐴 is some constant that can be chosen to be equal to 1 after normalization. It
was though shown previously that a uniform polymer diffusion does not lead to a well-
posed problem. In an attempt to obtain a well-posed model without renouncing to
use a (simpler) uniform polymer diffusion, the definition of inaccessible pore volume
can be relaxed by allowing a small quantity of polymer to enter the smallest pores.
Thus, 𝑊(𝑆ᑨ) is defined as

𝑊(𝑆ᑨ) = {
ᒠ
ᑊ∗𝑆ᑨ if 𝑆ᑨ < 𝑆∗

𝜖 + (𝑆ᑨ − 𝑆∗) if 𝑆∗ < 𝑆ᑨ < 1 − 𝑆ᑠᑣ.
(5.52)

For 𝜖 → 0, (5.52) reduces to (5.51). Technically, the polymer diffusion is non-uniform
if definition (5.52) is employed for𝑊(𝑆ᑨ). Indeed, the diffusion will change depending
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whether the water saturation is greater or smaller than the inaccessible pore volume
saturation 𝑆∗. If 𝑆∗ < 𝑆ᑨᑚᑣ, (5.52) is simply 𝑊(𝑆ᑨ) = 𝜖 + 𝑆ᑨ − 𝑆ᑨ,ᑚᑡᑧ, and the necessary
condition is fulfilled ∀𝜖 ≥ 0, in particular for 𝜖 = 0. For this choice of 𝜖, the velocity
enhancement factor reduces to the one obtained by Bartelds, namely

𝛼(𝑆ᑨ) =
𝑆ᑨ

𝑆ᑨ − 𝑆∗
.

It is more challenging to analyze the case 𝑆∗ > 𝑆ᑨᑚᑣ, which so far has lead to ill-
posedness for all the proposed models. The expression for the velocity enhancement
factor in this case is

𝛼(𝑆ᑨ) = {
1 if 𝑆ᑨ ≤ 𝑆∗

𝑆ᑨ
ᑜᑣ,ᑨ(ᑊᑨ)Ꮌ ᒠᎽᑊ

∗
ᑊ∗ ᑜᑣ,ᑨ(ᑊ∗)

(ᑊᑨᎼᒠᎽᑊ∗)ᑜᑣ,ᑨ(ᑊ∗) if 𝑆ᑨ > 𝑆∗.
(5.53)

The necessary condition is satisfied for 𝑆ᑨ ≤ 𝑆∗, since it always holds 1 < ᑊᑨ
ᑊᑨᎽᑊᑨᑚᑣ . For

the remaining case 𝑆ᑨ > 𝑆∗, adopt the Corey’s model for the water relative permeabil-
ity, which is recalled to be

𝑘ᑣ,ᑨ = (
𝑆ᑨ − 𝑆ᑨᑚᑣ

1 − 𝑆ᑨᑚᑣ − 𝑆ᑠᑥ
)
ᑅᑨ
,

with 𝑁ᑨ ≥ 1. The necessary condition for well-posedness forces

𝑘ᑣ,ᑨ(𝑆ᑨ) + ᒠᎽᑊ∗
ᑊ∗ 𝑘ᑣ,ᑨ(𝑆∗)

(𝑆ᑨ + 𝜖 − 𝑆∗)𝑘ᑣ,ᑨ(𝑆∗)
≤ 1
𝑆ᑨ − 𝑆ᑨᑚᑣ

, (5.54)

which may be reformulated requiring that the function 𝐹(𝑆ᑨ, 𝜖), defined as

𝐹(𝑆ᑨ, 𝜖) = (𝑆ᑨ + 𝜖 − 𝑆∗)(𝑆ᑨ − 𝑆ᑨᑚᑣ)ᑅᑨᎽᎳ − (𝑆ᑨ − 𝑆ᑨᑚᑣ)ᑅᑨ −
𝜖 − 𝑆∗
𝑆∗ (𝑆∗ − 𝑆ᑨᑚᑣ)ᑅᑨ ,

is nonnegative for all 𝑆ᑨ > 𝑆∗. To study the sign of 𝐹, rewrite it in the form

𝐹(𝑆ᑨ, 𝜖) = (𝜖 − 𝑆∗ + 𝑆ᑨᑚᑣ)(𝑆ᑨ − 𝑆ᑨᑚᑣ)ᑅᑨᎽᎳ −
𝜖 − 𝑆∗
𝑆∗ (𝑆∗ − 𝑆ᑨᑚᑣ)ᑅᑨ ,

and note that 𝐹 is monotone in 𝑆ᑨ and, moreover, 𝐹(𝑆∗, 𝜖) > 0 for 𝑆∗ > 𝑆ᑨᑚᑣ, which is
the case considered here. Thus, if 𝜖 > 𝑆∗−𝑆ᑨᑚᑣ, the function 𝐹 is non decreasing and
𝐹 > 0 for all 𝑆ᑨ > 𝑆∗, so the necessary condition is fulfilled.

One can show that if 𝜖 ≤ 𝑆∗ − 𝑆ᑨᑚᑣ, the function is non increasing and the sign
depends on 𝑆ᑨ, so that it is always possible to find a Corey coefficient 𝑁ᑨ such that
the necessary condition is not satisfied, leading to an ill-posed problem. Therefore,
𝜖 = 𝑆∗ − 𝑆ᑨᑚᑣ is an optimal choice in the sense that every smaller value will result in
an ill-posed problem, and every greater value will allow more polymer to enter the
inaccessible pore volume. Hence, the following values of 𝜖 are chosen depending on
the irreducible and inaccessible pore volume saturations:

𝜖 = { 0 if 𝑆∗ ≤ 𝑆ᑨᑚᑣ,
𝑆∗ − 𝑆ᑨᑚᑣ if 𝑆∗ > 𝑆ᑨᑚᑣ.

(5.55)

The appropriate value of 𝜖 is then inserted into (5.53) to obtain the velocity enhance-
ment factor. A plot of 𝛼(𝑆ᑨ) for different values of Corey’s coefficient 𝑁ᑨ is shown in
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Figure 5.9: Example of a probability distribution showing the threshold radius and the three different phases. From
[14].

figure 5.9. Note that the curves of the velocity enhancement factor are shown to stay
below the upper limit given by the necessary condition.

Numerical simulations are performed for a one-dimensional problem to test the
behaviour of the solution and compare the proposed models, paying particular at-
tention whether the polymer concentration profile will exhibit a peak right after the
shock. The examined models are the conventional model (constant velocity enhance-
ment factor), percolation model (proposed by Bartelds), uniform polymer diffusion
model and non-uniform polymer diffusion model with relaxed definition of inacces-
sibility. Four different scenarios are simulated, using a unit length domain (1 𝑚),
homogeneous permeability and 𝜙 = 0.3. 0.25 pore volumes of water with dissolved
polymer are injected at 𝑥 = 0. Concentration of the injected polymer is 1 𝑘𝑔/𝑚Ꮅ. All
the simulation results are shown in figure 5.10.

In the first case, relative permeabilities are taken to be linear in the water satu-
ration and 𝑆ᑨ,ᑚᑡᑧ > 𝑆ᑨᑚᑣ. In addition, water viscosity is set to be unaffected by the
presence of polymer, which is thus considered to behave as an inert component. The
water saturation profile is the same for all the four models as the viscosity is not
affected by the polymer. Since the relative permeabilities are linear, the solution re-
sults in a pure shock. The conventional and percolation model show a sharp peak,
which appears to grow unbounded, at the water front. The uniform and non-uniform
models do not show such peak.

In the second example, the settings are the same as in the previous case, except
that the relative permeabilities are now quadratic functions of the saturation. The
water saturation profile is again the same for all the models, showing this time the
typical Buckley-Leverett front. The conventional model shows a smooth accumula-
tion of the polymer at the front, while both percolation and uniform models exhibit a
sharper spike. The non-uniform model is observed to give a monotone concentration
profile.

In the third example, the polymer is no longer considered as an inert component
and 𝑆ᑨ,ᑚᑡᑧ < 𝑆ᑨᑚᑣ. The only model showing accumulation of the polymer is the con-
ventional one, while the other models give the same result as in this case 𝑆ᑨ,ᑚᑡᑧ < 𝑆ᑨᑚᑣ,
so they reduce to the same expression for the velocity enhancement factor.

Last, the same scenario of example three is considered, except that now 𝑆ᑨ,ᑚᑡᑧ >
𝑆ᑨᑚᑣ. The non-uniform model is the only one that does not show a pile-up of the
polymer at the front, while the percolation and uniform models result in a sharp
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peak in polymer concentration. The profile of the conventional model is similar to
example three.

Figure 5.10: Numerical solutions for water saturation (left) and polymer concentration (right) using the four different
models for ᎎ(ፒᑨ). From [14].

5.2.4. Conclusions
Several models for the velocity enhancement factor have been proposed. It was shown
that a constant factor leads to an ill-posed model and the numerical simulations may
show a peak in polymer concentration at the polymer front. This peak grows uncon-
trolled depending on the grid size adopted for the numerical method, so it motivates
to derive more accurate models that can prevent stability issues. A model based on a
percolation approach to predict IPV effects was first derived by Bartelds. Such model
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is shown to be well-posed3, but it is subject to the restriction that the inaccessible
water saturation is smaller than the connate water saturation. In practical situa-
tions, we are not guaranteed that this will always be the case. Therefore, Hilden et
al. proposed a model that relaxes this restriction. In this model, a small fraction of
polymer is allowed to enter the inaccessible pore volumes. Numerical simulations
show that the latter model results in a monotone profile for the polymer concentra-
tion, which is appealing from a numerical point of view since it may avoid stability
problems. On the other hand, a monotone solution may not be the actual physical
solution: since polymer is allowed to travel faster than water, one might expect an
accumulation at the front. Bartelds [2] reported several physical experiments where
a higher polymer concentration right after the water breakthrough was observed at
the effluent. Bartelds claims though that the main cause of polymer accumulation is
the EPV effect, which was not taken into account by the model proposed by Hilden.
Moreover, Hilden’s model disregard adsorption and dispersion, focusing mainly on
the IPV effects, but when considering a real reservoir this physical phenomena have
to be taken into account.

In conclusion, modeling IPV effects presents mathematical and numerical chal-
lenges which will be further investigated. A constant velocity enhancement factor
should be avoided, since it causes unbounded peaks in concentration which de-
pends on the grid cells. The model proposed by Hilden et al. shows a regular and
monotone profile, but it seems to exclude the presence of a polymer pile-up at the
front, which may actually be a physical scenario. Caution must then be exercised
when deciding which model to employ in the reservoir simulator: Hilden model will
give a more conservative solution in the sense that, to preserve numerical stability,
it might cut a physical polymer peak at the front. To obtain a more realistic model,
EPV and adsorption have to be inserted in the model as well.

3here well-posedness is intended in the sense that the resulting system of governing equations is strictly hyperbolic.



6
Overview of Numerical Methods

Except for very simple cases, analytical solutions for water saturation and polymer
concentration profiles are not available and therefore numerical methods are needed.
Sintef provides a Matlab simulation toolbox (MRST, Matlab Reservoir Simulation
Toolbox) in order to simulate the flow both in the case of a waterflood or polymer
flood. This toolbox uses a finite volume discretization in space with first order up-
wind schemes for the fluxes and an implicit discretization in time in order to avoid
stability issues. Equations are rewritten in conservation form and then discretized.
In this chapter, the numerical scheme used by the MRST toolbox is presented first
for the waterflood case. The method is then extended to the polymer flood, where
the water and polymer equations are coupled and solved simultaneously using a
fully implicit first order upwind method. Although this approach yields an uncon-
ditionally stable method, it introduces a strong numerical diffusion and, moreover,
it is computationally expensive since equations are non-linear and must be solved
using the Newton method. Thus, an alternative approach was proposed in [7]. Fo-
cusing first on the transport of an inert tracer (so that the transport equation is
decoupled from the flow equations), explicit and semi-implicit methods are studied
and higher-resolution methods are employed to improve the accuracy of the solu-
tion. High-resolution methods are then extended to polymer flooding, solving the
equations sequentially: flow equations are solved with the old concentration value,
while the polymer continuity equation is solved using the current value for the water
saturation.

In industrial simulators, a constant factor for the velocity enhancement is usually
used, even if it is known that the model is not well-posed and the concentration
profile might result in sharp peaks at the polymer front, as showed in the previous
chapter. In a recent paper, Braconnier et al. [1] showed that using an IMPES (Implicit
pressure explicit saturation) scheme with first order upwind method will result in a
non-monotonous concentration profile.

Information presented in the following sections are taken from [7].

6.1. Numerical Methods for Waterflooding
The one-dimensional domain [0, 𝐿] is discretized into 𝑁 equal sized control volumes
𝑉ᑛ, 𝑗 = 1,⋯ ,𝑁, |𝑉ᑛ| = Δ𝑥, using a cell-centered discretization. Cell centers are denoted
by 𝑥ᑛ (see figure 6.1). Equations for water and oil in conservation form and with

45
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Figure 6.1: Cell-centered grid.

incompressibility assumption are recalled to be

𝜕
𝜕𝑡 (𝜙𝑆ᒆ) +

𝜕
𝜕𝑥(𝑢ᒆ) = 0, 𝛼 ∈ {𝑜, 𝑤}. (6.1)

Disregarding capillary pressures, integration of the spatial derivative (6.1) over a
control volume gives

∫
ᑍ

𝜕
𝜕𝑥(𝑢ᒆ)𝑑𝑥 = −∫ᑍ

𝜕
𝜕𝑥 (𝜆ᒆ

𝜕𝑝
𝜕𝑥) = − [𝜆ᒆ

𝜕𝑝
𝜕𝑥 ]

ᑩᑛᎼᎳ/Ꮄ

ᑩᑛᎽᎳ/Ꮄ
= −(𝐹ᒆ,ᑛᎼᎳ/Ꮄ − 𝐹ᒆ,ᑛᎽᎳ/Ꮄ), (6.2)

where 𝐹ᒆ,ᑛᎼᎳ/Ꮄ and 𝐹ᒆ,ᑛᎽᎳ/Ꮄ represent the fluxes through the right and left bound-
aries, respectively. The pressure derivative is discretized using a backward difference
scheme

𝜕𝑝
𝜕𝑥 |ᑩᑛᎼᎳ/Ꮄ

≈
𝑝ᑛᎼᎳ − 𝑝ᑛ
Δ𝑥 ,

while the mobility 𝜆ᒆ(𝑆ᒆ) is discretized through a first order upwind scheme. Since
water is injected at 𝑥 = 0, the flow is from left to right and the upwind approximation
reads

𝜆ᒆ,ᑛᎼᎳ/Ꮄ = 𝜆ᒆ(𝑆ᒆ,ᑛᎼᎳ/Ꮄ) ≈ 𝜆ᒆ(𝑆ᒆ,ᑛ) =
𝑘𝑘ᑣ,ᒆ(𝑆ᒆ,ᑛ)

𝜇ᒆ
.

For the time derivative of (6.1), a first order backward scheme with time step Δ𝑡 gives

𝜕
𝜕𝑡 (𝜙𝑆ᒆ) ≈ 𝜙

𝑆ᑟᎼᎳᒆ − 𝑆ᑟᒆ
Δ𝑡 .

Integration over a control volume 𝑉ᑛ and mean value theorem lead to the fully implicit
discretized form of equation (6.1)

𝜙Δ𝑥
𝑆ᑟᎼᎳᒆ,ᑛ − 𝑆ᑟᒆ,ᑛ

Δ𝑡 = (𝜆ᑟᎼᎳᒆ,ᑛ
𝑝ᑟᎼᎳᑛᎼᎳ − 𝑝ᑟᎼᎳᑛ

Δ𝑥 − 𝜆ᑟᎼᎳᒆ,ᑛᎽᎳ
𝑝ᑟᎼᎳᑛ − 𝑝ᑟᎼᎳᑛᎽᎳ

Δ𝑥 ) . (6.3)

Since the mobilities are non-linear functions of the saturation, Newton method is
used to solve the discrete system. Rewriting (6.3) in the residual form

𝑅ᒆ,ᑛ = 𝜙Δ𝑥
𝑆ᑟᎼᎳᒆ,ᑛ − 𝑆ᑟᒆ,ᑛ

Δ𝑡 − (𝜆ᑟᎼᎳᒆ,ᑛ
𝑝ᑟᎼᎳᑛᎼᎳ − 𝑝ᑟᎼᎳᑛ

Δ𝑥 − 𝜆ᑟᎼᎳᒆ,ᑛᎽᎳ
𝑝ᑟᎼᎳᑛ − 𝑝ᑟᎼᎳᑛᎽᎳ

Δ𝑥 ) = 0,

the system of discretized equations that must be solved is

R(xᑟᎼᎳ,xᑟ) = 0,
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where x is the vector containing the unknowns. The Newton scheme solves the fol-
lowing system at each iteration:

𝑑R
𝑑x 𝛿x

ᑜᎼᎳ = −R(xᑜ), 𝑘 = 0, 1,⋯ ,

updating at each step xᑜᎼᎳ = 𝛿xᑜᎼᎳ+xᑜ. The iterations continue until ||R(xᑜ)||ᐴ < 𝜖,
where 𝜖 is some given tolerance. The analytical expression of the Jacobian ᑕR

ᑕx may be
extremely expensive to compute. The MRST simulator uses automatic differentiation
to prevent this problem: all operations applied to the variables are also applied to
their derivatives in differential form.

The implicit scheme used by the MRST simulator is unconditionally stable, but
this comes at the expenses of accuracy. The water front might be severely smeared
out at the discontinuity. Furthermore, Taylor series expansion cannot be carried
out at the discontinuity since it requires the function to be smooth, so at the shock
the order of accuracy is even less than one. For these reasons, explicit and semi-
implicit schemes will be briefly discussed when discretizing the polymer continuity
equation. These schemes are usually less computationally intensive than implicit
schemes, but restriction on the time step are needed in order to ensure stability. To
improve accuracy, higher order fluxes will also be considered. Figure 6.2 shows how
the implicit solver fails to capture the discontinuity accurately and smears out the
water saturation profile.

(a) Saturation profiles for ጂ፭ ዆ ፓ/ኻኺኺ. (b) Saturation profiles for ፍ ዆ ኻኺኺ.

Figure 6.2: Solution for the water saturation using the fully implicit solver and different values of time step and grid
cells [7].

6.2. Numerical Methods for Inert Tracer
Before dealing with numerical schemes for polymer flooding, it may be useful to
investigate the case of transport of an inert tracer in order to gain insights on the be-
haviour of explicit and semi-implicit schemes, as well as higher-resolution methods,
when applied to an uncoupled transport equation. Water properties are not affected
by the presence of the tracer, so that the fractional flow function depends only on
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water saturation. The transport equation for the tracer concentration 𝑐 is

𝜕
𝜕𝑡 (𝜙𝑐𝑆ᑨ) +

𝜕
𝜕𝑥(𝑐𝑢ᑨ) = 0. (6.4)

First, the flow is solved with the fully implicit method. Then, the obtained discrete
values of 𝑢ᑨ and 𝑆ᑨ are used to solve the transport equation.

Similarly to the previous section, a finite volume discretization combined with a
first order backward time scheme results in

𝜙Δ𝑥
(𝑐𝑆ᑨ)ᑟᎼᎳᑛ − (𝑐𝑆ᑨ)ᑟᑛ

Δ𝑡 = −(𝐹ᑛᎼᎳ/Ꮄ − 𝐹ᑛᎽᎳ/Ꮄ), (6.5)

where the fluxes 𝐹ᑛ±Ꮃ/Ꮄ are again approximated by a first order upwind scheme. Three
approaches are compared:

• Explicit
𝐹ᑛᎼᎳ/Ꮄ = 𝐹ᑟᑛᎼᎳ/Ꮄ = (𝑐ᑟᑛ 𝑢ᑟᑨ,ᑛ),

• Semi-implicit
𝐹ᑛᎼᎳ/Ꮄ = (𝑐ᑟᑛ 𝑢ᑟᎼᎳᑨ,ᑛ ),

• Implicit
𝐹ᑛᎼᎳ/Ꮄ = 𝐹ᑟᎼᎳᑛᎼᎳ/Ꮄ = (𝑐ᑟᎼᎳᑛ 𝑢ᑟᎼᎳᑨ,ᑛ ).

Equation (6.5) is solved for the unknown (𝑐𝑆ᑨ)ᑟᎼᎳᑛ and the concentration is found as

𝑐ᑟᎼᎳᑛ = (ᑔᑊᑨ)ᑟᎼᎳᑛ
ᑊᑟᎼᎳᑨ,ᑛ

. If 𝑆ᑟᎼᎳᑨ,ᑛ is close to zero, this term is replaced by a value 𝜖 in order to

avoid numerical issues which can lead to unphysical solutions.
Numerical solutions for the three cases are shown in figure 6.3. The explicit and

semi-implicit methods reduce the numerical diffusion, but the front is still severely
smeared out. Moreover, the explicit scheme results in a non-monotonous profile,
which is non physical. It can be shown that the explicit scheme is monotonicity-
preserving only if the underlying flow is also solved by an explicit scheme satisfying
a CFL condition. Monotonicity for the semi-implicit scheme can be guaranteed by
imposing restriction on the time step, which may though be much stricter than the
CFL condition for small values of 𝑆ᑨ. For a thorough analysis of the monotonicity,
refer to [7].

To reduce the numerical diffusion, high-resolution methods are introduced. The
idea of these methods is to use a higher order scheme for the fluxes, switching to
a first order scheme near the discontinuity. This approach is well suited for advec-
tion problems since first order upwind smears out the solution, while higher order
schemes result in oscillations close to the jump. The high resolution methods consid-
ered here are the total variation diminishing (TVD) flux-limiter methods, i.e. methods
for which the total variation (of the concentration)

𝑇𝑉(𝑐) =
ᑅ

∑
ᑛᎾᎳ

|𝑐ᑛ − 𝑐ᑛᎽᎳ|

does not grow over time, meaning that 𝑇𝑉(𝑐ᑟᎼᎳ) ≤ 𝑇𝑉(𝑐ᑟ). Such methods guarantee
that no unphysical oscillations will arise in the solution.
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(a) Solution with 50 grid cells and time steps.

 

(b) Solution with 500 grid cells and time steps.

Figure 6.3: Solutions for water saturation and normalized concentration using the explicit, semi-implicit and implicit
methods [7].

The expression of the flux will then take the form

𝐹ᑛᎼᎳ/Ꮄ = 𝐹ᑃ,ᑛᎼᎳ/Ꮄ +ΦᑛᎼᎳ/Ꮄ(𝐹ᐿ,ᑛᎼᎳ/Ꮄ − 𝐹ᑃ,ᑛᎼᎳ/Ꮄ), (6.6)

where 𝐹ᑃ is the low order flux given by the above upwind scheme, 𝐹ᐿ the higher order
flux given by the second order upwind scheme

𝐹ᐿ,ᑛᎼᎳ/Ꮄ =
1
2𝑢ᑨ,ᑛ(𝑐ᑛ + 𝑐ᑛᎼᎳ) −

1
2(𝑢ᑨ,ᑛ)

Ꮄ Δ𝑡
Δ𝑥(𝑐ᑛᎼᎳ − 𝑐ᑛ),

and Φ = Φ(𝜃ᑛᎼᎳ/Ꮄ) the flux limiter function, where

𝜃ᑛᎼᎳ/Ꮄ =
𝑐ᑛ − 𝑐ᑛᎽᎳ
𝑐ᑛᎼᎳ − 𝑐ᑛ

so that, far away from the discontinuity, 𝜃ᑛᎼᎳ/Ꮄ ≈ 1 and Φ(1) = 1, while close the
discontinuity 𝜃ᑛᎼᎳ/Ꮄ ≈ 0 and Φ(0) = 0. TVD flux limiters must be used in order to
have a TVD scheme. One of the most common TVD limiter is the van Leer one, defined
by

Φ(𝜃) = 𝜃 + |𝜃|
1 + |𝜃| . (6.7)

Again, the three cases with explicit, semi-implicit and implicit schemes are com-
pared. The resulting fluxes are:

• Explicit

𝐹ᑛᎼᎳ/Ꮄ = 𝐹ᑟᑛᎼᎳ/Ꮄ = 𝑐ᑟᑛ 𝑢ᑟᑨ,ᑛ +Φ(𝜃ᑟᑛᎼᎳ/Ꮄ)
1
2𝑢

ᑟ
ᑨ,ᑛ (1 −

Δ𝑡
Δ𝑥𝑢

ᑟ
ᑨ,ᑛ) (𝑐ᑟᑛᎼᎳ − 𝑐ᑟᑛ ),

• Semi-implicit

𝐹ᑛᎼᎳ/Ꮄ = 𝑐ᑟᑛ 𝑢ᑟᎼᎳᑨ,ᑛ +Φ(𝜃ᑟᑛᎼᎳ/Ꮄ)
1
2𝑢

ᑟᎼᎳ
ᑨ,ᑛ (1 −

Δ𝑡
Δ𝑥𝑢

ᑟᎼᎳ
ᑨ,ᑛ ) (𝑐ᑟᑛᎼᎳ − 𝑐ᑟᑛ ),
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(a) Solution with 50 grid cells and time steps.

 

(b) Solution with 500 grid cells and time steps.

Figure 6.4: Solutions for water saturation and normalized concentration using the explicit, semi-implicit and implicit
high-resolution methods [7].

• Implicit

𝐹ᑛᎼᎳ/Ꮄ = 𝐹ᑟᎼᎳᑛᎼᎳ/Ꮄ = 𝑐ᑟᎼᎳᑛ 𝑢ᑟᎼᎳᑨ,ᑛ +Φ(𝜃ᑟᎼᎳᑛᎼᎳ/Ꮄ)
1
2𝑢

ᑟᎼᎳ
ᑨ,ᑛ (1 −

Δ𝑡
Δ𝑥𝑢

ᑟᎼᎳ
ᑨ,ᑛ ) (𝑐ᑟᎼᎳᑛᎼᎳ − 𝑐ᑟᎼᎳᑛ ).

While the explicit and semi-implicit methods are linear for 𝑐ᑟᎼᎳᑛ , the implicit scheme
results in a non-linear iteration for 𝑐ᑟᎼᎳᑛ , so that Newton’s method has to be used to
solve the non-linear system.

Simulation results are shown in figure 6.4. The semi-implicit high-resolution
scheme performs best, strongly reducing the numerical diffusion. The explicit scheme
seems to have stability issues, since close to the discontinuity the concentration pro-
file presents oscillations. As mentioned before, in order to achieve stability when
using explicit fluxes, strict restriction on the time step are needed. The implicit
scheme has the advantage of being unconditionally stable, but the numerical diffu-
sion smears out the solution even with higher order fluxes. Moreover, due to the
non-linearity, this scheme is the most expensive of the three. To conclude, the semi-
implicit high-resolution scheme is the most efficient method in term of accuracy and
computation time. The method is TVD, so it is stable provided that the CFL condition
holds. Using the method of frozen coefficients and Von Neumann analysis, a local
stability criterion for the transport equation in the form of CFL condition is found to
be

𝐶ᑋ =
Δ𝑡
Δ𝑥 |𝑣ᑞᑒᑩ| =max

ᑊᑨ
| Δ𝑡𝜙Δ𝑥

𝑢ᑨ(𝑆ᑨ)
𝑆ᑨ

| ≤ 1, (6.8)

where 𝑣ᑞᑒᑩ is the maximum wave speed encountered and 𝐶ᑋ is the Courant number.
If the restriction on the time step becomes too strict, it is safer to switch to the implicit
scheme.

A monotonicity analysis shows that the explicit scheme preserves a monotone
profile only if the underlying flow is also solved through explicit fluxes and a CFL-type
condition holds. The semi-implicit scheme is conditionally monotonicity-preserving,
but the time step restriction may be significantly stricter than the CFL condition,
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especially for small values of 𝑆ᑨ. On the other hand, the implicit scheme results
in an unconditionally monotonous profile, but it is the most expensive of the three
methods and, moreover, there is no relevant gain in accuracy by switching from a
first order to a higher order implicit method. Therefore, a good strategy would be to
use the semi-implicit high resolution method and switch to a monotonous first order
implicit scheme close to the discontinuity. The resulting partially implicit scheme
can be written as

(𝑐𝑆ᑨ)ᑟᎼᎳᑛ = (𝑐𝑆ᑨ)ᑟᑛ −
Δ𝑡
𝜙Δ𝑥(1 − 𝛽ᑛ)(𝐹

ᑟ
ᑛᎼᎳ/Ꮄ − 𝐹ᑟᑛᎽᎳ/Ꮄ) (6.9)

− Δ𝑡
𝜙Δ𝑥𝛽ᑛ(𝐹

ᑟᎼᎳ
ᑛᎼᎳ/Ꮄ − 𝐹ᑟᎼᎳᑛᎽᎳ/Ꮄ),

where 𝐹ᑟᑛ±Ꮃ/Ꮄ are the semi-implicit high resolution fluxes and 𝐹ᑟᎼᎳᑛ±Ꮃ/Ꮄ are the implicit
first order fluxes. The coefficient 𝛽ᑛ denotes the degree of implicitness in cell 𝑗. If
𝛽ᑛ = 1 for all 𝑗, then (6.9) reduces to the first order implicit scheme, while if 𝛽ᑛ = 0 for
all 𝑗, (6.9) reduces to the semi-implicit high resolution scheme. The concentration
profile is monotonous if 𝑐ᑟᎼᎳᑛᎼᎳ ≤ 𝑐ᑟᎼᎳᑛ for all 𝑗. One can show that this condition is
equivalent to require that, for the semi-implicit first order scheme,

Δ𝑡
𝜙Δ𝑥𝑢

ᑟᎼᎳ
ᑛᎼᎳ ≤ 𝑆ᑨ,ᑛᎼᎳ (6.10)

holds. Therefore, we choose 𝛽ᑛ = 0 when (6.10) holds and 𝛽ᑛ = 1 elsewhere. Stability
condition for the partially implicit method is the one required by the semi-implicit
scheme. Simulation results are shown in figure 6.5. The partially implicit scheme
maintains a monotonous profile. However, the accuracy gets worse as the value of
𝑆ᑨᑔ is smaller. This is because for low values of 𝑆ᑨᑔ, the water and tracer fronts are
close to each other and the water saturation profile is solved implicitly, meaning that
numerical diffusion will smear its profile. As a consequence, the low accuracy of the
water profile at the front will result in a less accurate profile for the concentration as
well.

 

(a) Solution with ፒᑨᑔ ዆ ኺ.ኺኻ኿.

 

(b) Solution with ፒᑨᑔ ዆ ኺ.ኻ኿.

Figure 6.5: Solutions for normalized concentration using the partial implicit high-resolution method [7].
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6.3. Numerical Methods for Polymer Flooding
Adding a polymer to the injected water will influence chemical and physical proper-
ties of the fluid. In this case, continuity equation for water saturation and polymer
concentration are coupled. The MRST simulator solves the equations simultaneously
with a fully implicit first order upwind method. This approach result in the following
scheme

⎧⎪
⎨⎪⎩

𝑆ᑟᎼᎳᑠ,ᑛ = 𝑆ᑟᑠ,ᑛ − ᏺᑥ
ᒣᏺᑩ (𝑢ᑠ(𝑆ᑟᎼᎳᑠ,ᑛ , 𝑐ᑟᎼᎳᑛ ) − 𝑢ᑠ(𝑆ᑟᎼᎳᑠ,ᑛᎽᎳ, 𝑐ᑟᎼᎳᑛᎽᎳ )) ,

𝑆ᑟᎼᎳᑨ,ᑛ = 𝑆ᑟᑨ,ᑛ − ᏺᑥ
ᒣᏺᑩ (𝑢ᑨ(𝑆ᑟᎼᎳᑨ,ᑛ , 𝑐ᑟᎼᎳᑛ ) − 𝑢ᑨ(𝑆ᑟᎼᎳᑨ,ᑛᎽᎳ, 𝑐ᑟᎼᎳᑛᎽᎳ )) ,

(𝑐𝑆ᑨ)ᑟᎼᎳᑛ = (𝑐𝑆ᑨ)ᑟᑛ − ᏺᑥ
ᒣᏺᑩ (𝑐ᑟᎼᎳᑛ 𝑢ᑨ(𝑆ᑟᎼᎳᑨ,ᑛ , 𝑐ᑟᎼᎳᑛ ) − 𝑐ᑟᎼᎳᑛᎽᎳ 𝑢ᑨ(𝑆ᑟᎼᎳᑨ,ᑛᎽᎳ, 𝑐ᑟᎼᎳᑛᎽᎳ )) .

Although it has the advantage to be a more stable scheme, accuracy is low due to the
first order upwind fluxes, and the non linearities in both 𝑆ᑨ and 𝑐 makes it compu-
tationally expensive. For this reason, an alternative sequential approach has been
proposed: the flow equations are solved implicitly using the value of concentration
at time level 𝑛 and subsequently the polymer continuity equation is solved using the
updated value of 𝑆ᑨ. The scheme reads:

1. Compute 𝑆ᑟᎼᎳᑨ using 𝑐ᑟ and the fully implicit solver:

{
𝑆ᑟᎼᎳᑠ,ᑛ = 𝑆ᑟᑠ,ᑛ − ᏺᑥ

ᒣᏺᑩ (𝑢ᑠ(𝑆ᑟᎼᎳᑠ,ᑛ , 𝑐ᑟᑛ ) − 𝑢ᑠ(𝑆ᑟᎼᎳᑠ,ᑛᎽᎳ, 𝑐ᑟᑛᎽᎳ))

𝑆ᑟᎼᎳᑨ,ᑛ = 𝑆ᑟᑨ,ᑛ − ᏺᑥ
ᒣᏺᑩ (𝑢ᑨ(𝑆ᑟᎼᎳᑨ,ᑛ , 𝑐ᑟᑛ ) − 𝑢ᑨ(𝑆ᑟᎼᎳᑨ,ᑛᎽᎳ, 𝑐ᑟᑛᎽᎳ)) .

2. Compute 𝑐ᑟᎼᎳ using 𝑆ᑟᎼᎳᑨ

(𝑐𝑆ᑨ)ᑟᎼᎳᑛ = (𝑐𝑆ᑨ)ᑟᑛ −
Δ𝑡
𝜙Δ𝑥 (𝐹ᑛᎼᎳ/Ꮄ(𝑆

ᑟᎼᎳ
ᑨ , 𝑐ᑟ, 𝑐ᑟᎼᎳ) − 𝐹ᑛᎽᎳ/Ꮄ(𝑆ᑟᎼᎳᑨ , 𝑐ᑟ, 𝑐ᑟᎼᎳ)) .

In order to complete the scheme, an expression for the fluxes 𝐹ᑛ±Ꮃ/Ꮄ must be selected.
Given the discussion of the previous section, two high-resolution methods are com-
pared:

• Semi-implicit high-resolution

𝐹ᑛᎼᎳ/Ꮄ = 𝑐ᑟᑛ 𝑢ᑟᎼᎳᑨ,ᑛ +Φ(𝜃ᑟᑛᎼᎳ/Ꮄ)
1
2𝑢

ᑟᎼᎳ
ᑨ,ᑛ (1 −

Δ𝑡
Δ𝑥𝑢

ᑟᎼᎳ
ᑨ,ᑛ ) (𝑐ᑟᑛᎼᎳ − 𝑐ᑟᑛ ),

• Implicit high-resolution

𝐹ᑛᎼᎳ/Ꮄ = 𝐹ᑟᎼᎳᑛᎼᎳ/Ꮄ = 𝑐ᑟᎼᎳᑛ 𝑢ᑟᎼᎳᑨ,ᑛ +Φ(𝜃ᑟᎼᎳᑛᎼᎳ/Ꮄ)
1
2𝑢

ᑟᎼᎳ
ᑨ,ᑛ (1 −

Δ𝑡
Δ𝑥𝑢

ᑟᎼᎳ
ᑨ,ᑛ ) (𝑐ᑟᎼᎳᑛᎼᎳ − 𝑐ᑟᎼᎳᑛ ).

Results are shown in figures 6.6 and 6.7. Again, the semi-implicit scheme seems
to perform best in term of accuracy, while the implicit scheme smears the water
saturation profile at the polymer front and the concentration profile.

A stability criterion for the semi-implicit scheme similar to (6.10) can be found via
Von Neumann analysis giving the necessary condition

𝐶ᑡ =max
ᑊᑨ ,ᑔ

| Δ𝑡𝜙Δ𝑥
𝑢ᑨ(𝑆ᑨ, 𝑐)
𝑆ᑨ

| =max
ᑊᑨ ,ᑔ

| Δ𝑡Δ𝑥
𝑢ᑋ
𝜙
𝑓ᑨ(𝑆ᑨ, 𝑐)
𝑆ᑨ

| ≤ 1. (6.11)

Since the fractional flow curve shifts to the right when polymer is added to water, the
above maximum is attained at 𝑐 = 0, so that condition (6.11) is equivalent to (6.8).
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Figure 6.6: Solutions water saturation for normalized concentration using high-resolution methods and 50 cells
and time steps [7].

 

Figure 6.7: Solutions for water saturation normalized concentration using high-resolution methods and 500 cells
and time steps [7].

6.4. Remarks on Velocity Enhancement Factor
The numerical methods presented in the current chapter have been applied to poly-
mer flooding disregarding the velocity enhancement effect. The model factor 𝛼(𝑆ᑨ)
can be incorporated into the schemes, but, as discussed in chapter 5, it is not clear
which model is well-suited to describe the underlying physical phenomenon. More-
over, stability issues arise when inserting the velocity enhancement factor into the
model. It has been shown that a constant factor results in an ill-posed model which
causes an unlimited pile-up of the polymer at the front. The alternative models pro-
posed address the ill-posedness and succeed to obtain a monotonous profile of the
polymer concentration, but there is no guarantee that these are indeed the correct
physical solutions.

Currently, most of the industrial simulators, and in particular the MRST simula-
tor, are still using a constant factor to model the inaccessible pore volume effect. A
more detailed analysis of the consequences of a constant velocity enhancement factor
on a numerical scheme have been investigated in [1]. Solving the system of equations
through finite volumes with first order upwind fluxes and an explicit scheme in time,
they performed a stability analysis for the water saturation and polymer concentra-
tion profiles. They derived CFL-type conditions, i.e. restrictions on the time step,
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in order to guarantee that the water saturation will remain in its definition interval
[𝑆ᑨᑔ, 1 − 𝑆ᑠᑣ] and that the polymer concentration 𝑐 will be positive. Furthermore, it is
shown that the numerical scheme for the concentration is potentially non-monotone
due to a term that arises when a constant velocity enhancement factor is introduced.
The simulation results presented in the paper show the typical peak at the polymer
front when inaccessible pore volume is considered.

The future work will be devoted to improve the current models used for polymer
flooding when the inaccessible pore volume effect is included, considering the more
recent analytical models proposed in chapter 5 and deriving a more robust numerical
scheme in order to obtain more realistic simulations.
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