1 Project Summary

Phase behavior is a widely studied phenomena in physics. Mathematically
describing, for example, liquid-vapor phase transitions is a complicated pro-
cess and requires lots of approximations and extrapolations. The most simple
approximation of (non-interacting) gases is the ideal gas law which relates
pressure, density and temperature. A relation between these quantities fully
describes the state of a system and is therefore also called an equation of
state. The ideal gas law holds for high temperatures and low densities.
For atmospheric circumstances, gases like oxygen, nitrogen, hydrogen, noble
gases and even some heavier gases like carbon dioxide can to a reasonable
extent be described by the ideal gas law.

For more dense systems, extensions of the ideal gas law are provided in the
literature, of which the virial (or cluster) expansions is the most famous one.
It describes many particle interactions via a pair-interaction route. It is an
expansion in terms of density and, although it is more accurate than the ideal
gas, it still only converges for small enough densities and high temperatures.
For sufficiently high temperatures (above a certain critical temperature) sub-
stances will go continuously from a gas type of behaviour to a liquid type of
behaviour. These transitions are called second order phase transitions and
they can quite accurately be described by expansions around this critical
temperature. First order phase transitions occur below the critical tempera-
ture and they involve latent heat. During such a transition, a system either
absorbs or releases a fixed (and typically large) amount of energy. They are
much more complex and interesting to study since higher order interactions
play a role. Yet pairwise interactions are the state of the art.

We will study liquid vapor systems for a Van der Waals type of fluid. Such
a fluid is described by an equation of state which is an extension of the ideal
gas law. It takes into account a sence of incompressibility beyond a certain
density and an attractive force. This results in isotherms as shown in (the
right pressure volume (p—V') diagram) in figure 1. Above the critical temper-
ature, the isotherms are monotonically deacrasing with volume. The state
points between point 2 and 6 are described by the line straightly connecting
them. This is so since by the second law of thermodynamics, any system
tends to an equilibrium state with maximal entropy (‘disorder’), or, equiva-
lently, minimal free energy. The corresponding (Gibbs) free energy is shown
left in figure 1. This shows that the pure states on the isotherm between
points 2 and 6 are unstable since these states have a higher free energy, than
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Figure 1: Gibbs free energy as a function of pressure for a Van der Waals
fluid at T=0.9T,. The corresponding isotherm is shown at the right. States
in the range 2-3-4-5-6 are unstable. The coordinates are normalized by the
critical values?.

the staight line which represents a liquid vapor mixture.

We will solve such an equation of state for a typical noble gas to obtain
point 2 and 6 as in figure 1!, for a range of temperatures, up to the critical
temperature. This will be done in the formalism of classical density func-
tional theory (classical DFT) which was developed in the sixties to describe
molecular fluids, derived from the quantum equivalent which describes elec-
tron systems. The difficulty in solving the equation of state is obtaining a
correlation function between particles. We will obtain it from a powerful
theory called fundamental measure theory (FMT), which was originally de-
signed to describe interactions of hard sphere mixtures by convoluting the
particles weighted over their fundamental measures (hence the name FMT)
and proven to be very accurate and fast compared to computer simulations.
The theory is developed about two decades ago, but only recently (2002) it
was used to obtain correlation functions for hard spheres. We will try to ex-
tend this to systems of soft particles with long ranged attractions and short
ranged repulsions. Mathematically this leads to an integral equation which
is very challenging to solve. It is a first step towards solving a system of
particles with long ranged interactions fully selfconsistent within FMT.
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