Relative Permeability Hysteresis in Porous Media

Eric Baruch Gutierrez Castillo

Abstract

In reservoir modeling, relative permeability hysteresis in multi-phase sys-
tems has been broadly documented. The models introduced by Killough (1976)
and Carlson (1981) have become the industry standard for simulating hysteretic
variables in two-phase systems in porous media. These models assume relative
permeability functions to be independent from time. Here, a time-dependent
relative permeability problem is formulated and a corresponding model is pre-
sented.



1 INTRODUCTION

In petroleum reservoir engineering various techniques are used to enhance
the oil recovery from a reservoir. Practices such as water and gas injection have
the secondary effect of changing the internal configuration of the fluids inside
the reservoir. Afterward the system behaves differently, depending not only
on the present state of the reservoir but also on its previous history. Several
variables presenting this “memory”, known as hysteresis, must be integrated
properly into the simulation.

Such variables are usually determined empirically, but recent analytic models
are starting to predict these functions. Hysteretic variables and their modeling
are the main topic of this document. In particular, a model will be sought to
predict the values of the relative permeabilities of a system in porous media.

1.1 Permeability

Before describing hysteresis, let us first review the definition of permeability.
It represents the capacity for flow through porous material, with higher perme-
ability representing higher capacity. The relation between the permeability &k of
a fluid and its flow ¢ (per square unit) is specified by Darcy’s law:

k AP
=—— 1
1= (1)
where p is the viscosity of the fluid, AP is the pressure gradient, and L the
length of the material through which the fluid moves.

Permeability in this case is determined by the material alone. However for
multiple phase flow, that is, a system containing two or more fluids, the presence
of one fluid affects the flow of the others. The capacity of one phase to flow with
respect to the others is called the relative permeability. Hence when considering
an oil and water system, the total permeability of the oil, for example, is related
to both the material and the amount of water.

We call absolute or intrinsic permeability the one determined by the porous
material alone. The total permeability is the product of the absolute and relative
permeabilities. While the absolute term is usually considered constant, the
relative part varies with the amount of the other phase. In fact, permeabilities
are complex functions of the structure and chemistry of the fluids, and as a
result they can vary from place to place in a reservoir. Inside a control volume,
however, we may look at the relative permeabilities as functions solely of the
quantity of each fluid.

The fluids in a system are often characterized by their wettability. Since
water has higher wettability than oil, in a two phase system they are usually
referred to as the wetting and the non wetting phase, respectively. The fraction
of the pore space occupied by each phase in the control volume is called its



saturation. The water saturation and oil saturation in a two phase system are
denoted s,, and s, respectively. If the system consists of only these two fluids,
then

Sw+ Sn=1 (2)

holds at all times. Since we can always recover s, = 1 — s,,, it suffices to look
at variables as functions of one saturation only. It is important to mention that
the saturation s,,, and hence also s,, never physically attains the values 0 nor
1, not even asymptotically. The actual range of the saturation goes from s,
called the critical saturation, to the maximum saturation s, **.

The usual shape of the water relative permeability function k,,, with respect
to the water saturation s,,, is as follows

W

max
0 Swe s 1

Figure 1: Relative permeability of the wetting phase vs wetting phase saturation.

This figure agrees with the intuition that the less oil there is in the vol-
ume, the easier the water will flow. Conversely, one would expect oil relative
permeability k,, to increase as the water saturation drops.

This is in fact what occurs, the curve of k,, is always a decreasing function
of s,,. However, a mayor anomaly is observed every time this is measured: the
shape of the function k,, changes depending on whether the water saturation is
increasing or decreasing. Indeed, this means we have two different shapes for
this curve:

The value of k,, depends on both the saturation s,, and the direction in which

it is moving. When the water saturation is decreasing, i.e. when ag;“ < 0, then
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Figure 2: Relative permeability of the non-wetting phase vs water saturation.

k,, follows the first curve, which is called the drainage curve, since water is being
“drained” from the volume. Conversely when % > 0, we are in the case of the
second curve, called the imbibition curve.

This is explained by the fact that oil and water move differently through
porous media, hence as one phase forces the other out, the distribution of the
saturations inside the volume changes significantly, which in turn affects the
phases capacity to flow, producing a process that is not exactly reversible.

The result is that k., is a function not only of s,, but also of the previous state
of the system, i.e. its history. This dependence on the past of the system is called
hysteresis. Other variables such as capillary pressure also exhibit hysteretic
behavior when plotted against changes in water saturation.

1.2 Scanning Curves

Figure 2 shows two cases where the derivative does not change sign at any
time. Let us consider the alternative:

Assume water saturation is at its minimum, i.e. S, and water starts being
pumped into the reservoir, then k,, should follow the imbibition curve until the
saturation reaches s;**. If, after reaching its maximum, the water starts being
drained, k, will now follow the drainage curve until s,, = s, again.

However, if the draining process is interrupted before the saturation reaches
Swe, for instance at Sy, Swe < Swi < Siy**, and water starts being pumped back
into the volume, now k,, needs to stop following the drainage curve and follow



the imbibition curve instead. But the imbibition and drainage curve do not
intersect at almost any point, so for the transition from one to the other to be
smooth, we need anther curve starting at point (S, kn(Sw:)). These transition
curves are called scanning curves.
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Figure 3: Imbibition process for ky, reversed at s.;.

Figure 3 shows an imbibition process that has been reversed, hence the
scanning curve goes in the opposite direction, i.e. the direction of decreasing
wetting saturation, until it reaches the drainage curve. At this point, k,, follows
the drainage curve again. Analogously, the drainage process can also be reversed
at any point, which would result in a scanning curve going in the direction of
increasing saturation, until it reaches the imbibition curve again.

In fact, any model that wishes to accurately describe k, would need an
infinite number of scanning curves, at any point s,,; where the process may be
reversed.

In general the drainage and imbibition curves, also called bounding curves,
are empirically known and the scanning curves are predicted based on this
information. On this document, several models describing different methods of
constructing these scanning curves will be examined.



2 TWO-PHASE SYSTEMS

As stated before, various techniques are common practice for enhanced oil
recovery. In water-flooding, water is injected in one or more places (injection
wells) in a reservoir under high enough pressure for the oil in the reservoir to
be pushed by the injected water towards the producing wells of the reservoir
(oil displacement). In water alternating gas (WAG) injection water and gas are
injected in turn for the same effect.

Consider a water-flooding in one space dimension. On one end water is
injected and on the other end oil and water are produced. Both oil and water are
assumed to be incompressible. In one spatial dimension, the flow is described
by variables depending on (z,t), the space and time coordinates. The main
variables driving the model are phase saturation s; and phase pressure p;.

2.1 Transport Equations

The two-phase flow model of incompressible fluid flow through a porous
medium in one space dimension is given by the transport equations for oil and
water mass:

0 0
a(d)/)wsw) + %(ﬂuﬂ/w) =0. (3)

0 0
a((bposo) + %(povo> =0. (4)

where v; is the seepage velocity for phase [. This is not the actual velocity
of a phase but its apparent velocity through the reservoir. Actual velocity is
higher because of the tortuosity of the actual path of the flow through the pore
space. According to Darcy’s law for two phase flow in a porous medium, seepage
velocity is given by

_xhom 5
w Ox
As before, p; represents the pressure of each phase and k; the relative per-
meability. Two properties of the fluids, the mass density p; and the viscosity p;
are assumed constant. The permeability K and the porosity ¢, i.e. the fraction
of the total volume occupied by pores, are properties of the porous rock and are
also taken as constants.

v =

2.2 Convection-Diffusion Equation

The total velocity is defined v = v, + v,,. Dividing equations (3) and (4) by
pw and p, respectively, adding the resulting equations, and using the fact that
Sw + So = 1, we obtain

v

oz "



Thus v is a function solely of ¢ and is determined by boundary conditions.
For simplicity, is taken to be nonzero and independent of time.

The water and oil fractional functions are defined, respectively, by

fu = kuw/ _ ko/po
k’w/,uw +k()/l/l’0 kw/ﬂw +k50/ﬂo
Clearly f,, + fo = 1. It is easy to see that
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We define the capillary pressure as the difference in pressures p. = p, — Pu-
Using the fact that f,, + f, = 1, we obtain

'Ufw = 7Kk7w <fw
Haw

ky . O
Ufw = Uy — Kluiwfoapc (7)

Substituting v, from equation (7) into equation (3) yields the convection
diffusion equation for the water phase

0 0 0 08y
E(ﬁﬁsw) + %(Ufw) = [Kfﬁx]
where
Ky, Opc
€= _,uiwfoasw

is the capillarity-induced diffusion coefficient. For v # 0, we can set

K - K
t=¢—2t and r=—2I
v v

in order to remove constants K, ¢ and v from our equation. For simplicity, we
drop the tildes:

0 0 0 | Osy
S5+ () = 5 5] ©

An analogue expression is found for the oil phase. Notice how only the terms
fw and e are subjected to hysteresis, as they depend on k,,, k, and p..

2.2 Wettability

Wetting is the ability of a liquid to maintain contact with a solid surface.
The degree of wetting, known as wettability, is determined by a force balance
between adhesive and cohesive forces. Adhesive forces between a liquid and
solid cause a liquid drop to spread across the surface. Cohesive forces within
the liquid cause the drop to ball up and avoid contact with the surface.



The contact angle 6 is the angle at which the liquidvapor interface meets
the solidliquid interface. The contact angle is determined by the result between
adhesive and cohesive forces. As the tendency of a drop to spread out over a
flat, solid surface increases, the contact angle decreases. Thus, the contact angle
provides a useful characterization of wettability.

Contact
Angle, 6

Contact
Angle, 0

Figure 4: Different fluids exhibiting different wettability. The contact angle 6 serves as an
inverse measure of wettability.

Capillary pressure and relative permeabilities depend on the interaction be-
tween the phases, which in turn depend on the size and shape of the pores and
the wettability of the phases. Different rocks exhibit different wetting levels for
each phase, but in general water-wet systems, i.e. surface with preference to be
coated with water, are far more common.

2.3 Phase Saturations

The range in which the wetting phase saturation s, varies goes from the
critical saturation s,,., the saturation at which this phase starts to flow; to the
maximum saturation s;'** = 1— s,,., where the irreducible saturation s,, is the
saturation at which the non wetting phase can no longer be displaced.

Formally, s, is the value at which the non wetting phase can no longer be
displaced by the wetting phase, while s, is the value at which the non wetting
phase can no longer be displaced by any kind of pressure gradient. Because of
other variables, s,. and s,, may be different but clearly s, > s, at all times.

This means, although 1 — s, is the maximum theoretical value for s,,, it
is not always attainable, so we consider 1 — s,, instead. Furthermore, while
1 — sy usually remains constant, 1 — s,,- may change if parameters are modified
during a process.

Analogously, the range of the non wetting phase saturation s,, goes from s,
to 1 — sy-. When considering water, it can often be assumed that s, = S



3 HYSTERESIS MODELS

Hysteresis in relative permeability occurs whenever porous rock exhibiting
a strong wettability preference for a specific phase experiences a change in sat-
uration from a drainage to an imbibition process. When this happens the non
wetting phase is subject to entrapment by the wetting phase.

In reservoir modeling gross errors can result if hysteresis is ignored. For
example, drainage data used instead of imbibition data in a gas reservoir with
a strong water drive could result in predicted recoveries as much as twice the
amount actually observed [10].

The best known models used in industry, introduced by Killough ([8],1976)
and Carlson ([5],1981), will be presented along with two more recent methods.
A brief description of the physical phenomenon is also explained in this chapter.

3.1 Physical Background

Land ([9],1968) formalized the concept of hysteresis by describing the be-
havior of the trapping that the non wetting phase undergoes, and explaining its
effect on the relative permeability. Ever since, almost every model builds upon
his ideas to describe hysteresis.

In a water-wet system, water inside the pore space tends to gather close
to the surface of the rock, while the oil stays further away from the rock walls.
Hence in the smaller pores and pore throats, which have a larger surface/volume
ratio, water is generally more present than oil and tends to flow easier.

According to Land’s experiments, as the oil begins to flow into the medium,
it invades first the bigger pores. As the oil saturation continues to increase, the
smaller the size of the pores it starts to occupy. During this process k,, follows
the primary drainage curve, until the process is reversed. When this happens,
the wetting phase enters the system, pushing the main bulk of the oil phase
first, and trapping a portion of the non wetting phase in the smaller pores.

Since the variables of interest are mostly dependent on the saturation, this
trapped volume will play a role in describing their behavior. We will see more
details of Land’s work as they come up in the following different models.



3.2 Carlson

Let us now consider the model proposed by Carlson ([5],1981). It focuses on
the relative permeability of the non wetting phase k,, in a two phase system and
it assumes that the relative permeability of the wetting phase k,, exhibits no
hysteretic behavior. Furthermore, k,, follows two bounding curves, the primary
drainage curve k2 and the primary imbibition curve kZ.
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Figure 5: Relative permeability of oil vs oil saturation, according to Land’s experiments.

As suggested by Land, it is assumed that trapping only occurs during im-
bibition, hence if the imbibition process is reversed then the imbibition curve
will be retraced exactly, as shown in figures 5 and 7. Hence, instead of scanning
curves, what we have is different imbibition curves k., as in figure 7.

Let s,: be the “trapped” fraction of the saturation described by Land, and
Spy the “free” fraction, so that

Sn = Snf + Snt 9)

Following Carlson’s reasoning, we can predict the imbibition curve by using
the drainage curve and adjusting for the trapping. The values of imbibition
curve that k,, follows must be the values of the drainage curve evaluated on the
free saturation only, equivalently

kp(sn) = Ky (snp) (10)

10



This states that if no trapping occurred the imbibition and drainage curves
would be identical.
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Figure 6: Relative permeability of oil vs oil saturation. Equation (10) explains the distance
between the two curves caused by the trapped saturation sp¢.

At the beginning of the imbibition, at s]'**, both curves have the same value,
since no trapping has taken place yet. As the imbibition process goes on, and
water starts trapping the oil, the trapped saturation s,; grows and the curves
drift further apart. Hence in order to predict the curve k. we need to know the
value of s, for any given saturation s,,.

Estimating the trapping

Since part of the non wetting fluid was trapped by the incoming wetting fluid,
the irreducible saturation s, is strictly greater than the original saturation s,
as it contains all the trapped oil that could not be displaced. In fact, the later
the drainage process is reversed, the more trapping occurs, which results in a
larger residual saturation sy,..

Land [9] formalized this through his experiments and established the relation
between the saturation at which the drainage is reversed, s,;, and the irreducible
saturation s,,,:

—_— = (11)
where C'is a constant.
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Hence s, increases along with the historical maximum s,;, as shown in
figure 7. Intuitively, the more non wetting phase enters our volume before we
start forcing it back out, the harder it will be for the wetting phase to push it
all out, as more non wetting volume will be trapped in the smaller pores.
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Figure 7: Relative permeability k, vs s,. The drainage process has been reversed at sg;.
Equation (11) states the relation between sp; and spr.

Land computed the value of the free saturation s, ¢ as a function of s, sy,
and C. To show this, let us recall equation (9):

Sn = Snf + Snt

It is clear that s, = 0 when s, = s,;, and that s,y = 0 when s, = sp,.
At any other value s, Sn; > Sn > Snr, it is possible, using equation (11), to
determine the distribution of s,, between s, and s,f.

At s, exactly s, has already been trapped. The free saturation sy is
subject to further entrapment according to equation (11). The amount in s,
that is yet to be trapped, sy, is determined by substituting s, for s,; and
Spfr for s,, in equation (11):

Equivalently

12



Snf
= — 12

Eventually s,; will reach s,,, but at the moment the trapped saturation is
the future total trapped saturation minus the saturation yet to be trapped, i.e.

Snt = Snr — Snfr

Substituting (12) into this last equation yields

S =S — 73’”)0
nt — onr 1 I Csnf
Replacing s,¢ by s, — snf,
S s s —g  _ _onf
n snf nr 1+Csnf
Solving for s,,¢ yields
1 , . 4
Snf = 5 (sn - Snr) + (5n - Sm") + 6(511 - Snr) (13)

This equation allows us to determine s, at any given moment. The value of
sps can then be used in equation (10) to predict the unknown imbibition curve
from the empirically known drainage curve.

However, we need the right input to compute s,y. If s,; is known and C
can be predicted, then s,, and s, can be computed using (11) and (13).

Estimating C

Let us assume s,; is known exactly. In practice measurements of s, are
difficult to obtain, but we can use the following procedure to compute it without
experimental determination.

Let s,, be N experimental imbibition data points, and sy, their respective
free saturation fractions. Substituting equation (11) into (13) and solving for
Spr glVes us

S .=
nr;

1
4Snisnfj (snj - Snf7)> 2‘|

Sni = Snf;

DN | =

A value s,,; is computed for every experimental data point j, in order to
deal with the uncertainties that may arise. An unbiased estimate of s, is then
obtained by taking the average

1 N
Snr = N § Snr;
Jj=1

13



Once 3, is obtained, it can be used in equation (11) to compute C. With C
determined, we can use equation (11) to calculate the corresponding s,, given
any S,;. The value of s,,; follows immediately from this using (13). Finally, by
equation (10), the imbibition curve kL will be given by the drainage curve k2
evaluated on s,y.

The whole process requires exact knowledge of the primary drainage curve
and the point s,;, and at least one experimental value s, in the imbibition
curve.

14



3.3 Killough

Killough’s model [8] was introduced before Carlson’s and it uses a simpler
solution but requires more input data. As in Carlson’s model, assume no trap-
ping occurs during drainage. Hence any imbibition curves, when reversed, are
retraced exactly until we arrive again at the primary drainage curve.

Primary Drainage /

Primary Imbibitian

Imbibition kL started at s_

e

D = e 1 1 —
s max 5 max
nc nr Sor ni 5h

|
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Figure 8: Relative permeability of oil ky, vs oil saturation s,. Drainage process reversed at
Sni- The resulting imbibition curve (yellow) results of interpolating its two extreme values.

Assume the primary drainage process is reversed at saturation s,;. At this
moment it is true that

ki (sni) = Ky (sni) (14)

However we know that the new imbibition curve will reach k, = 0 when
saturation arrives at s, which depends on s,; by equation (11).

EL(sp) =0 (15)

To predict the intermediate curve k! lying between (14) and (15), Killough
considered two methods: a) parametric interpolation and b) normalized exper-
imental data.

a) Using parametric interpolation on (14) and (15) yields

KL (50) = KD (5n1) (‘) (16)

Sni — Snr

15



where ) is a given parameter. Clearly it is satisfied that k! = k2 at s,; and
k£ =0 at s,,.

Notice that in order to obtain the corresponding value of s, this method re-
quires computing parameter C' from equation (11), although Killough described
it simply as

1 1

C:

max

mazx
Snr Sni

i.e. defined by the extreme values of the saturation, corresponding to the end
of the primary drainage process and the end of the primary imbibition process.

This requires measuring s;**, which can be difficult in practical situations.

b) Alternatively to (16), using normalized experimental data results in

ky (s3) = ki (spma)
kTIL(Sn> = kv?(‘gm) |:k7]l* (SWQQ:) _ krlzg (Smax)]

where k:fl* is the experimental or analytical primary imbibition curve, which lies

between the maximum possible s,, and s]2**, and s}, is given by

- |:(Sn - Snr)(sﬁaz) — Sgraa::| + Smaz (17)
Sni — Snr
For this last method, is clear that both boundary curves, drainage and im-
bibition, are assumed known at least empirically.

Wetting Phase Hysteresis

Killough also considered the effect of trapping on the wetting phase rela-
tive permeability. The solution follows the same idea, with the scanning curve
ranging from k% (sn;) = k2 (sni) to a maximum kI (s,,). This last value is
approximated using

b (5ur) = K8 (sn) + [0 (s7507) = KE (572 (m)

I*
n
max
nr

and a is a given parameter. The inter-
) is given by

where kL is defined analogous to k
polation between k! (s,;) and kI (s

ki (s1) = Ky (s70%)

L (s — L (s

B (50) = KD (s,) + ] (KL () — k2 (500))

where s is defined as in (17).
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3.4 The Scanning Hysteresis Model

Generally denoted SHM, the model described in ([3],2000) is based on the
experimental data gathered by Gladfelter and Gupta [7] and by Braun and
Holland [4]. The curves they registered for relative permeability are different
that the ones used by Land:
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Figure 9: Relative permeability of oil vs oil saturation, as documented by [7] and [4]. In the
SHM, the scanning curves are exactly reversible.

Notice how the boundary curves have inverted roles as compared to the
previous models. This discrepancy in empirical data helps us understand why
are there no well-established physical models around hysteresis.

In this model, whenever a primary process is reversed, a scanning curve is
used to move from one primary curve to the other. If a process is reversed while
on a scanning curve, the scanning curve is retraced exactly. The boundary
curves are assumed known and denoted by

k,? (sn) and kfl(sn)

For the scanning curves, a parameter 7 is introduced to serve as the “mem-
ory” of the system:

k‘TSL = k:;?(sn, )

As we move along one of the boundary curves, i.e. drainage or imbibition,
the memory state of the system changes, hence 7 changes accordingly. As soon

17



as we enter a scanning curve, parameter m remains constant during the duration
of the scanning process, until we reach another boundary curve.

For consistency, 7 is different for every scanning process, which implies scan-
ning curves never touch. Since it is only a reference parameter, 7 values can be
chosen arbitrarily. In this case, © € [0, 1].

For continuity, when following a primary curve, m must be modified in such
a way that

kP (sp) = k2 (sp, ) along the primary drainage curve
and
kL (sp) = kS (s, ) along the primary imbibition curve

This, together with smoothness and monotony assumptions on the relative
permeability functions, uniquely determines w. Hence 7 can be solved as a
function of the saturation s,, in any of both cases:

7w =7"(s,) (drainage) and 7 =7'(s,) (imbibition)

Mathematical Model

Next, an expression for k2 must be chosen. Schaerer et al [2] use the following
choices, defined as functions of s = s,,:

ki (s) = (1—s)"

kn(s) = (1—s)°
With 1 < 6 < n, and
(1-m)*
(1—am)

Where ¢, ( are also shaping parameters greater than 1. In [2], they use
0=2,n=3,({=2and (=1.

kS (s,m) = (1—as)S

Once 7P and 7! are defined, the convection-diffusion equation for the wet-
ting phase (8) is modified to include the parameter n:

Jds 0 0 | 0Os
+ —F(s,m) = p [8633}

ot ' ox (18)

where s = s,,, € is taken as a small positive constant, and F' is divided in three
cases,

18



— _ kuw(s)/ps . 0s
F(s,m) = fP(s) = T () e+ KD ()i when 7 =nP(s) and a5 < 0
— _ kw(s)/ps _ 0Os
F(s,m) = fl(s) = T (5) s & K1.() i when 7 =n(s) and 5 >0
B B kw(s)/ s or )
F(s,m) = f9(s) = T (5) /s + K3 (5, 7) J1im and i 0 otherwise

corresponding to the drainage, imbibition and scanning case, respectively.

The system is then supplied with appropriate initial and/or boundary con-
ditions. Riemann solutions for this problem are presented in [3] and [2].
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3.5 Larsen & Skauge

Hysteresis is also present during changes in saturation during three phase
flow. Most three-phase systems consist of a wetting phase (water), an intermedi-
ate phase (oil) and a non wetting phase (gas). In these processes, such as water
alternating gas injection (WAG), the two-phase hysteresis models will generally
not be able to describe relative permeabilities reported for the reservoirs.

Larsen and Skauge ([10],1998) present a representation for relative perme-
ability that accounts for hysteresis in a three-phase scenario.

Three-phase systems

During two-phase flow, there is only one independent saturation, hence the
system can only move in two directions, drainage or imbibition. In the three-
phase system however, at least two saturations are independent, meaning there
is an infinite number of directions the saturation distribution can take.

For instance a DDI process consists of decreasing water saturation, decreas-
ing oil saturation, and increasing gas saturation. In order to be compatible with
the two-phase case, relative permeabilities must be defined for every trajectory,
as in figure 10:

Sg

DDI-process #I1

Crossing Point

DDI-process #1

Sw So

Figure 10: Two DDI process starting from different water and oil saturation. Due to
hysteresis, at the crossing point relative permeabilities are in general not unique.

For consistency, trajectories must be described by the three saturation di-
rections. That is, no phase can change saturation direction during a trajectory.
These are known as constrained trajectories and the model focuses on these
processes only.
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Like in the previous models, relative permeability of a trajectory will be a
function of saturation and the starting point of a trajectory. In the two-phase
case, we used s,; to denote the point at which a process was reversed, i.e. when
a new trajectory was started. Hence permeabilities were usually of the form

k = f(sxa Sxi)

where x represents either phase. In three-phase, at least two saturations are
needed to determine the third one, and two initial saturations to determine the
initial point of a trajectory, hence we will have

k= f(smsya Smiasyi)

The Model

Consider a water alternating gas scenario. Every time both a water and a gas
injection is complete, the cycle starts again, as shown in figure 11. These will re-
sult in hysteresis “loops”, each loop displaying overall less relative permeability,
as trapping occurs on every cycle.

To estimate the trapping, Land’s formalism will be used. Only non wetting
phase (gas) hysteresis will be explained.

krg f krg

1. loop

Figure 11: Gas relative permeability vs water and gas saturation, during a WAG process.

During increasing gas saturation (drainage), ng for loop n is calculated by
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0 el = ot Gs) = ket (S2) g5t
w n
(19)
where s, € [s‘;t“”, 1]. The primary gas relative permeability curve, Gy,

exists from s, = 0 to the maximum gas saturation. The first set of parenthesis

on equation (19) represents a transformation of the G; curve at s, = s‘;t‘"t.

The second set accounts for reduction of gas relative permeability in presence
of moving water. The last term is the stopping point of the last hysteresis loop.
This term ensures continuity between hysteresis loop n and n —1. When n =1,
this term is zero.

Decreasing gas saturations (imbibition) obey the trapped gas model of Land.
For every loop, this involves a small transformation of the gas saturation

(Sf;mns)n = (Sg)n — (Sgnd)n—l

where (s,)n € [(8¢"%),—1, (84i)n). In the same way, we have

g
trans _ _ end
(Sgr Jn = (Sgr)n (sq Jn—1

(559" = (g1 — (55" )nr
and

1 1

(sgr?‘qans)n - (Stggans )n

(Ctrans )n —

Now equation (13) can be used with transformed saturations. Note that the

(s¢"®),,—1 term cancels out in the resulting equation:

1 4
(8gf)n = B} l(sg — Sgr) + \/(59 — 8gr)? + W(SQ — Sgr)

n

The transformed free saturation can then be calculated as

(597" )n = ($g£)n + (55" In—1

The relative permeability can now be computed using equation (10), with
trans

54y replaced by S
[kg(sq) = kg (57" )]n
where s'70ms € [(s5t97) ) (s0i)n].

gf g
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