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Abstract

The common practice in the wind energy industry is to develop design tools that provide aero-
dynamical characteristics in breadth of seconds. At Energy Research Centre of the Nether-
lands (ECN), there has been also a research to develop its own design tool for both two
dimensional and three dimensional unsteady incompressible flows. This approach is based on
the idea of L. Prandtl, splitting the flow domain into two regions, where the viscosity plays
an essential role and where the influence of the viscosity can be neglected. Both regions are
formulated and discretized by certain theoretical and numerical considerations in such a way
that overall run time stays in a reasonable limit for the users. However, the idea of split-
ting causes an essential need to couple both regions to obtain the whole flow field solution.
The viscous-inviscid interaction schemes investigates the best possible coupling between two
existing models/regions.

In literature, the research that has been done so far mainly focused on the steady flows. The
interaction methods, algorithms, and interaction laws have been developed considering the
steady flow. In this research, the whole viscous-inviscid interaction embodiment is reinter-
preted in terms of the unsteady flow. This causes conceptual changes in the way the coupling
occurs.

In this thesis, first of all, the coupling techniques have been re-derived for the unsteady flow.
The main focus is kept on the quasi-simultaneous interaction method since it is shown to be
a rapidly convergent technique when the steady flow is considered. However, this becomes
questionable when the unsteady effects are taken into account. In this study, it has been
observed that the embodiment used for the steady quasi-simultaneous method is no longer
valid and both a new quasi-simultaneous algorithm and a new formulation are needed for
unsteady flow. Unlike the steady case, in the unsteady flow, the approximation to the inviscid
flow has a direct role on the final result since it does not vanish when a converged solution
is obtained. Furthermore, the whole idea of a converged solution becomes questionable. This
profound distinction leads to a new algorithm where the final result is computed by the inviscid
flow model to compensate the physics that has to be sacrificed in order to approximate the
inviscid flow.

The approximation to the inviscid flow is called the interaction law. The earlier approaches
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have been using the thin-airfoil approximation when the quasi-simultaneous scheme is em-
ployed. However, considering the unsteady case, the role of interaction law becomes primarily
important than it used to be. In the steady case, the interaction law has been served as an
auxiliary tool which has no effect on the final solution only effecting the convergence rate.
However, in the unsteady case, the interaction law has direct effect on the final solution.
Therefore, a new interaction law is derived based on the panel method. A similar approach
has been implemented in case of the fully simultaneous method in a quite recent publication
by Drela [1] without any approximation to the inviscid flow. Also, Coenen [2] mentioned
this approach briefly; however, she also implemented the thin-airfoil approximation. The fact
that the interaction law is an approximation, inevitably points out that as long as the quasi-
simultaneous method is employed, there will be a physical information loss. This implies that
the new interaction law which is still an approximation but physically more accurate then the
thin-airfoil model since it incorporates more physical information. The loss of the information
is stemmed from ignoring the non-diagonal terms in the aerodynamic influence matrices.

Having defined the interaction law, the governing equations of the viscous model, the integral
boundary layer equations, and the interaction law constitute a coupled system occurring
in the quasi-simultaneous step of the unsteady quasi-simultaneous scheme. This coupled
system is analysed and the effect of the interaction law on the behaviour of the system is
investigated for the laminar flow. It has been observed that, without the interaction law,
i.e. setting the interaction law coefficient to zero, two eigenvalues of the system become
same and the third one becomes zero. This behaviour of the characteristic resembles the
Van Dommelen Singularity discussed in Chapter 4.3. Van Dommelen and Shen stated that
there is a finite-time singularity which reveals itself as a blown-up displacement thickness
that causes an overall breakdown. However, since there is no rigorous criteria for this type of
unsteady singularity, it is not possible to conclude something about this unsteady singularity
based solely on the current results and the characteristics without any simulation. It can be
concluded that, as expected, there is no Goldstein singularity observed when the wall shear
stress, the skin friction, vanishes. Although there are two distinct eigenvalues, the system has
three distinct eigenvectors which means the matrix is not defective. When the interaction
law is implemented to the system, it has been observed that the matrix has three distinct,
real eigenvalues and the system becomes strictly hyperbolic. Furthermore, the interaction
law coefficient shows a dependence with time step size. An optimal step size can be found
numerically which ensures that the system becomes strictly hyperbolic.
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“It is an illusion to suppose that something is known, when all we have is a
mathematical formula of what has happened: it is only characterized, described;

no more!”

— Friedrich Nietzsche






Chapter 1

Introduction

While the energy need is rapidly increasing, the limited amount of the fossil fuels endanger
the future of whole industry and causes an essential need for new kinds of alternative energy
resources. Wind, with its common usage, environmental-friendly nature and promising future,
is seen as one of the most important of them. Wind power, which is the conversion of wind
energy into a useful form of energy using wind turbines, has a great potential to meet the
energy demands of the world in a sustainable way. Europe has been acting for decades as a
pioneer in the wind energy area. According to recent statistics published by the European
Wind Energy Association in 2012 (EWEA), the annual installations of wind power have
increased steadily over the last 12 years, from 3.2 GW in 2000 to 11.9 GW in 2012 with a
compound annual growth rate of over 11.6 % in Europe and the total installed power capacity
increased by 29.2 GW to 931.9 GW and reached a share of total installed generation capacity
of 11.4 % of Europe. Besides the contribution to energy demand, 106 million tones of carbon
dioxide per year were avoided, equivalent to taking 25% of cars in the EU off the road, using
wind energy instead of fossil fuel.

Hence, it is evident that the wind turbines are becoming more and more a viable choice in
terms of both energy and environmental issues. One of the main tasks of the Energy Research
Centre of the Netherlands (ECN) Wind Energy Unit is to help the wind energy industry to
improve existing designs to benefit most. The main attention is focused on the development
of an advanced numerical scheme that can accurately predict the aerodynamic characteristics
of a wind turbine rotor for incompressible two and three dimensional, steady and unsteady
flows [3-5].

1-1 Problem Description

Predicting the characteristics of an unsteady flow around an arbitrary body by solving
the Navier-Stokes equations coupled to a turbulence model is the common practice in the
aerospace industry. However this process requires intensive computational effort when it
comes to simulate large geometries. In the wind energy industry, on the other hand, the

Master of Science Thesis CONFIDENTIAL Firat M. HACIAHMETOGLU



2 Introduction

aerodynamic characteristics of a wind turbine rotor is the main concern, in order to calculate
the loadings on the blade, and these rotors have diameter ranging from 40 meter to 200 meter
which causes huge computational domains. Using the common approach, the simulation of a
single rotor will take days or months. However, it is not possible to wait for such a long time
to provide a single result in the wind energy industry. Therefore, the algorithms developed
to predict the aerodynamic characteristics of a wind turbine rotor, which are also called de-
sign codes in wind energy industry, are designed to provide reasonable results in breadth of
seconds or minutes using a different approach then solving the full Navier-Stokes equations.
The common approach to practise this in the wind industry is, following Prandtl’s idea [6],
to split the solution domain into an inner region that represents the viscous boundary layer
and an outer region that models the inviscid external flow and solving them separately.

Inviscid flow

Figure 1-1: Splitting of the flow domain into the viscous and inviscid regions.

However, the splitting of the flow domain is an fictitious idea to facilitate the mathematical
difficulties faced during the last century, namely the Navier-Stokes equations. In the nature,
for a flow around an arbitrary body, it is not possible to observe a potential flow disjoint from
its boundary layer. These two interact with each other, exchange information via pressure,
density, temperature etc. and determine their characteristics as a whole. There is a reciprocal
action between them. This brings about an essential need to couple these two regions which
constitutes the main research subject of this thesis: viscous-inviscid interaction (VII) schemes.

At the Wind Energy unit of the Energy Centre of the Netherlands, ROTORFLOW project
[3-5] has been initiated and still going on to develop ECN’s own design tool for both two
and three dimensional unsteady incompressible flows based on this splitting approach which
has been used for almost one hundred year. For steady case, ECN has already developed
design codes for the prediction of the aerodynamic characteristics on the wind turbine rotor.
However, ignoring the unsteady motion of an airfoil effects directly the prediction of onset of
the dynamic stall, which, consequently, yields poor overall design predictions. Hence, in the
wind energy industry, unsteady effects have become of a great importance recently.

A great amount of research has been conducted on the splitting approach and therefore many
results are available in literature for steady case (e.g. Balleur [7], Wigton and Holt [8],
Houwink and Veldman [9], Drela and Giles [10], Cebeci et al [11], Nishida [12], Coenen [2],
Bijleveld [13]). On the other hand, the unsteady flow is a relatively new research topic and
a limited number of publications is available (e.g. Swafford et al [14], Cebeci et al [15],
Bermudes et al [16], Garcia [17], Drela [1]).

The main target of this master thesis is to develop a fast and accurate viscous-inviscid inter-
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1-2 Research Methodology 3

action (VII) scheme between the viscous and inviscid solvers for unsteady, two dimensional,
incompressible flow.

The performance of the coupling scheme directly depends on the treatment of the viscous
and the inviscid regions. In order to maintain the overall efficiency, the modelling of these
both regions are needed to be done in such a way that they also provide fast and accurate
results within the regions they are employed. For this reason, the integral boundary layer
formulation is used with the discontinuous Galerkin method discretization to model viscous
part and the potential flow theory is employed with the panel method discretization to model
the inviscid flow [3-5]. The VII schemes can be thought as a function of both the formulation
and discretization of these two regions.

In this thesis, the flow is restricted to be 2D, unsteady, and incompressible and the optimal
VII scheme is aimed to be developed. In literature, for steady case, the viscous-inviscid
interaction has been investigated widely (e.g. Lock and Williams [18], Williams [19]) and also
for unsteady case a limited amount of literature is available (e.g van Dommelen and Shen [20],
Henkes and Veldman [21]) and the main methods have been listed as below:

o The direct method (e.g. Stewartson [22], Goldstein [23])

The simultaneous method (e.g. Nishida [12], Drela [1])

o The quasi-simultaneous method (e.g. Veldman [24], Coenen [2])

The inverse method (e.g. Catherall and Mangler [25])

Every method has its own advantages and disadvantages and all are explained in this thesis.
However, a special attention is paid on Veldman’s [24] the quasi-simultaneous scheme since
it appears to be the most merit candidate for a fast and accurate overall solution. This
method contains an approximation to the inviscid flow model to solve simultaneously with
the viscous flow model. It has been successfully shown to be the fastest and the most accurate
interaction scheme for steady case under some assumptions in [26] and [27]. However, for
unsteady case, the usability of the quasi-simultaneous method has not yet been investigated
which is investigated in this thesis.

1-2 Research Methodology

It has been stated that the efficiency of the viscous-inviscid schemes are determined by the
mathematical properties of the models used in both viscous and inviscid regions. Therefore,
the research begins with reviewing the physics and deriving the governing equations of these
two regions. Chapter 2 explains the boundary layer concept and briefly introduces the integral
boundary layer formulations. Then the final set of the unsteady integral boundary layer
equations derived by Seubers [28] are given. This chapter is kept brief and for the details, the
reader should refer to [28], since the current research is not focused on the derivation of the
viscous flow region which is a broad subject. Chapter 3 presents detailed information about
the modelling of the flow in the inviscid region. The potential flow model and the panel
method are investigated and the general solution procedure is explained. In this chapter,
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4 Introduction

a detailed derivation is given since the coupling scheme, the quasi-simultaneous method,
introduces an approximation to inviscid flow, namely the interaction term. A solid background
of the modelling of the inviscid flow is needed to be able to derive an approximation to it.
Chapter 4 describes the different VII methods that have been reported in the literature. For
unsteady case, the quasi-simultaneous method is investigated in detail and a new algorithm
and formulation are derived. Furthermore, the singularities within the unsteady boundary
layer is discussed. In Chapter 5, the quasi-simultaneous solution which is a part of the
unsteady quasi-simultaneous scheme is focused. The coupled system resulted from this quasi-
simultaneous solution is analysed. Chapter 6 gives the results of the analysis of the coupled
system and the effect of the interaction law on this system in the unsteady flow. Chapter 7
concludes the research, discusses the simplifications that have been done during the derivation
of a new unsteady VII method and explains briefly the procedure to further the research.
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Chapter 2

Flow model in viscous region

The Third International Congress of Mathematicians, organised in Heidelberg in 1904, hosted
a physicist who had a revolutionary impact on the study of fluid mechanics. His name was
Ludwig Prandtl. During the congress, he delivered a lecture and represented his paper en-
titled "Uber Flissigkeitsbewegqung bei sehr kleiner Reibung!". In this paper, he successfully
showed that it was possible to analyse viscous flows by making several theoretical consider-
ations and simple experiments. Until that date, the science of theoretical hydrodynamics,
which had evolved from Euler’s equations of motion for a frictionless non-viscous fluid, and
experimental results were in a great contradiction. Theory neglected the fluid friction due to
overwhelming mathematical difficulties connected with the solution of the well-known Navier-
Stokes equations. However, since the viscosities of most commonly used fluids, e.g. water and
air, are very small, it was assumed that neglecting frictional forces, compared to remaining
gravity and pressure forces, may not cause a profound effect on the general motion of fluid.

Prandtl was the first scientist who unified theoretical and experimental results by showing
a new concept which took the fluid friction into consideration. He showed that the flow
around a slender body can be divided into two regions: a very thin layer near to the body,
the boundary layer, and remaining region outside this layer where the flow is named the
potential flow. While in the former one, friction plays an essential role, in the latter one the
fluid behaves as if it were inviscid. Prandtl supported his theorem with simple experiments
performed in a small water tunnel. This was the first successful reunification of theory and
experiment, which lead to great developments in the future [6].

2-1 Boundary layer theory

The characteristics of the flow around a solid object highly depend on various physical pa-
rameters such as size, orientation, speed, and fluid properties. The main non-dimensional
expressions which characterize the influence on flows, however, depend on all these param-
eters and can be obtained by means of similarity, which dictates that for two flows around

1'On the motion of fluids of very small viscosity"
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6 Flow model in viscous region

geometrically similar objects but having different parameters, forces acting on a fluid particle
must have a fixed ratio to be similar. If we are to limit our interest only to frictional and
inertia forces, to be similar, at all corresponding points the ratio of inertia and friction forces
must be the same:

Inertial Forces

= tant. 2-1
Frictional Forces constan (2-1)

Osborne Reynolds was the one who first discovered that principle which essentially leads
to a dimensionless number, known as the Reynolds number. The mathematical form of the
Reynolds number is given by:

Re = 'O—Ud, (2-2)
W

where p is the density, p is the dynamic viscosity, U is the free stream velocity, d is the
characteristic linear dimension of the body.

Recall that the Reynolds number represents the ratio of inertial effects to viscous effects, when
the viscous effects are not taken into consideration, the Reynolds number approaches infinity.
Similarly, in the absence of inertial effects, the Reynolds number is zero. It can be clearly
concluded that any real flow will have a Reynolds number between these two extremes. The
magnitude of the Reynolds number has a great effect on the nature of the flow.

When the Reynolds number is considerably less than one, this means that friction forces are
dominant. In this type of flows, viscous effects are important in a large area around the
object. The effect of Reynolds number can be clearly seen from Figure 2-1 where the flow
past three flat plates of the same length [ with Reynolds numbers of 0.1, 10, 107 is shown.
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Figure 2-1: Flows over a flat plate with various Reynolds numbers and the effect on viscous
region within the flow field, reproduced from [29].

The influence of viscosity at large Reynolds numbers is negligible everywhere except in a very
thin layer in the immediate neighbourhood of the flat plate (solid wall) where the velocity
increases from zero at the wall to its free stream value which corresponds to the external
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8 Flow model in viscous region

frictionless flow to satisfy the no-slip boundary condition. The height of this thin layer is
called the thickness of the boundary layer, §, which increases from zero at the leading edge
along the plate in the downstream direction. Figure 2-2 shows the velocity distribution in
such a boundary layer.

— = laminar

= turbulent

Figure 2-2: Velocity distribution within a typical laminar and turbulent boundary layer profile
along a flat plate.

What Prandtl suggested was dividing the domain of the flow in the case of fluids of small
viscosity into two regions: the thin boundary layer near the wall and the outside region
where the fluid behaves essentially as if it were inviscid. This approximation brought great
mathematical simplifications and became one of the corner-stones of modern fluid dynamics.

2-1-1 Boundary layer on a flat plate

The simplest example of boundary layer theory is presented by the flow along a very thin
flat plate. Also, this example was the one that Prantdl used to illustrate his boundary layer
theory.

The flow in the boundary layer can exist in three different regimes: laminar, transitional, and
turbulent depending on the local Reynolds number. The velocity gradient in the boundary
layer distorts the fluid particles. Since there is no velocity difference outside the viscous layer,
the flow is irrotational. However, in the boundary layer, the flow becomes rotational which
causes fluid particles, at some distance downstream from the leading edge, to be distorted
greatly due to the random and irregular nature of the turbulence. Fluid particles, distorted
or not, may separate from the boundary layer depending on the pressure distribution in the
boundary layer. Fluid particles are accelerated beyond the stagnation point when the flow
encounters a blunt body e.g. around a circular cylinder or flat plate with a thickness, and when
the velocity increases, by momentum conservation, the pressure decreases. However, while
this phenomenon occurs in the boundary layer, at the same time viscous forces dissipate the
energy of the particles. In the end, the particles will lack sufficient momentum to surmount
the required pressure level to continue on their streamline. They detach from the surface
which is called ”boundary layer separation”.
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2-1 Boundary layer theory 9

In the boundary layer theory, there are three main parameters defined in such a way that
they correspond to the physical quantities.

Boundary layer thickness, d,, is the orthogonal distance from the solid surface where the
velocity in the boundary layer reaches some arbitrary fraction of the freestream velocity of the
upstream velocity or the stream surface (in case of the interacting boundary layer). Typically,
it is given as follows:

dp =9y where u = 0.99U. (2-3)

where U is the velocity of incoming flow and for high Reynolds numbers, it becomes very thin,
0y < L. However, this has no practical importance since it is an arbitrary formulation (i.e.
why %99, not %987?). Introducing the boundary layer edge U. = uly=s,, a formal definition
can be suggested.

Boundary layer displacement thickness, ¢*, is defined to be used in calculations instead
of boundary layer thickness since it is less arbitrary:

5 = ?(1 - g) dy. (2-4)

This expression represents the outward displacement of the streamlines caused by the viscous
effects on the plate. In other words, the outward displacement of the wall that would be
needed to obtain the same solution for the flow outside the boundary layer. This definition
holds true for any incompressible flow, whether laminar or turbulent, constant or variable
pressure. The physical interpretation of this thickness is illustrated below in Figure 2-3.

p=0

e
u=u(y)

U,—u

Figure 2-3: Displacement thickness.

Boundary layer momentum thickness, 6, is similar to the displacement thickness. It
denotes the transverse distance over which the solid wall has to be displaced such that an
inviscid flow produces the same momentum transport:
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10 Flow model in viscous region

Sy

92/&fﬁ‘£>@' (2-5)
0

This definition is applicable to any arbitrary incompressible boundary layer. It is important to
note that @ is not a fundamental quantity as 5* and only used in certain empirical correlations.

A physical representation of these three displacements thicknesses is given in Figure 2-4.

Shaded

1 u areas:
u

H(l L{)
A
4111 1111
111 11 LT 1T IT1 >y

I
1
Coordinate normal to the wall

Figure 2-4: Momentum and displacement thicknesses [30].
The ratio between 0* and 6 is called the shape factor and given as

H=". (2-6)

The value of the shape factor varies with the profile of the flow and reliably indicates when
the flow stays attached or will separate.

Another important parameter in boundary layer characterization is the friction coefficient,
which represents the effect of wall shear forces on the flow, defined as

Cy(w) = g;(,fi, (2-7)

where 7, () is the wall shear stress on the plate, expressed as

ou
Tw(T) = N%|y=0a (2-8)

where p is the dynamical viscosity.

The background of the boundary layer theory has been briefly introduced above. However,
the flow within the boundary layer can be solved following different approaches causing to
define additional expression, parameters etc. The integral boundary layer approach is one of
the most commonly used ones in the wind energy industry due to the short time expectations
of the design procedure. This approach reduces the dimension of the problem by one at the
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2-2 Two dimensional unsteady integral boundary layer equations 11

expense of additional closure relations obtained experimentally. A wide collection of integral
boundary layer methods with different closure relations can be found in Es [31].

The model based on this thesis is derived following the unsteady integral boundary layer
approach by Seubers [28].

2-2 Two dimensional unsteady integral boundary layer equations

Prandtl derived the boundary layer equations considering the asymptotic behaviour of the
Navier-Stokes equations because at that time there were no other ways to find an approximate
solution to this non-linear system of partial differential equations. The derivation of the
integral boundary layer (IBL) equations may be initiated from this asymptotic form or it may
also be started with the integral form of the Navier-Stokes equations. Seubers [28] followed
the latter approach and derived a final set of governing equations in terms of conserved and
asymptotic variables. Note that, the reader is advised to see [28] for detailed derivation.
Within this chapter, the derivation is kept as simple as possible and concentrated on the final
form of the governing equations since the derivation of the IBL equations are quite tedious
and not of primary importance in this thesis.

Seubers used an Euler frame of reference and followed a control volume approach which is
restricted in y direction by the streamline that passes along the boundary layer thickness and
the wall and in x direction by two perpendicular lines to the wall at x, and x;. Then he
formulated a mass and momentum balance for the control volume illustrated in Figure 2-5

Figure 2-5: The control volume for two dimensional flow [28].

Despite the fact that in incompressible flow, the combination of an equation for the mass
and momentum conservation suffices to formulate a closed model, the energy equation has
also been considered in this approach. It is employed in order to control the dissipation to
ensure that even one dimension is reduced (due to the integral boundary layer formulation),
the system still conserves the mass, momentum and the energy.

The need for the closure relations arises from the fact that there are more unknowns than the
number of equations in the system resulted from the fact that the Navier-Stokes equations
are integrated in a direction orthogonal to the flow direction. By relating the additional
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12 Flow model in viscous region

unknowns to one of the variables given in the system, an extra equation can be derived and
used to solve the system. There are several closure relations proposed by different researchers.
For the laminar flow, Thwaites method [32], one of the most commonly used laminar closure,
is used. Other relations are derived by relating momentum density to both mass flux and
momentum flux.

After a tedious derivation and employing the closure relations, the resulting set of equations
in terms of asymptotic variables given below. The definitions of the each symbols is also
given. Note that the bold notation corresponds to vector quantity.

The system in integral formulation:

at/ fi(u dV+/ —dv+[ A / dV / (2-9)

And the definitions for two equation-system in asymptotic variables,

1 [s*

R [51 (2-10a)

rw= g (2-10b)
0 —qg ’
sy — | Me(2Blge —ue) —B,q? ¢ [ (0" +7p)
= G2 HE(2B)ge — ue) —¢ZHyle Bl ge T Ly +p)|° (2-10c)
_ _ueawue 0 1 Rz5¢+§Cf

s(w) = —diq? 0] i [ 2Re; 'Dud |’ (2-10d)

where R, = %Bxuz + =0,
€

Each term given above is denoted as follows: B (—) is the boundary layer budget factor, H
(—) is the boundary layer shape factor, Hy (—) is the kinetic energy shape factor, p* (m)
is the pressure incremental thickness, d, (m) is the streamline-to-surface distance, 6* (m) is
the displacement thickness, d; (m) is the kinetic energy thickness, € (m) is the mechanical
energy thickness, 6 (m) is the momentum thickness, p (kg/m?) is the fluid density, w (m/s)
is the fluid velocity, p (kg/ms?) is the pressure, 7 (kg/ms?) is the stress , u (kg/ms) is the
dynamic viscosity, v (m?/s) is the kinematic viscosity, ® (kgm?/s%) is the dissipation, and g
and u. are the nondimensionalized magnitudes of the total and x—component edge velocities,
respectively, normalized with respect to the undisturbed velocity which is assummed to be at
infinity as follows:

Ue
Uxs

Qe
Qoo

Up = and Qe =

The definitions are given as below. The tilde denotes the curvature effects.
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2-2 Two dimensional unsteady integral boundary layer equations 13

Asymptotic integral quantities
(all with dimension of distance):

Conserved integral quantities
(mass, momentum and energy):

5, def ‘Orthogonal distance from the wall
¥ T to a streamline or stream surface’

e 1 6 ~
i & /)Uoo/o wPUdZJ:Ue(&p —6"),

_odet 1 [Ow 5 3
€ UL J, P udy e (6 — Eu)

Nondimensional factors:

Classical

H % 50,
H ¥ 5,70

A= B ° (Holstein-Bohlen)

det Ue 06?
F = S Oa (Thwaites)
def Tyt u?
S = = IR
pUe *

Conservative

U2 6, — 6"~ 0
Q? by —ep

def Rea / dj,

B, =

In the rest of this thesis, above set of equations (2-10) is used as the governing equation of

the viscous region.
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Chapter 3

Flow model in inviscid region

Because the effects of viscosity are limited to a very thin layer near to the body (the boundary
layer) and also to the wake region, they can be discarded from the model. In this manner,
the governing equations for the inviscid flow become considerably simpler. In addition to
discarding viscosity, even further approximations can be made leading to a potential flow
model, where solving the Laplace equation instead of the full Navier-Stokes equations is
sufficient.

The realization behind this simplification can be explained by observing a fluid particle moving
along its path [. Within the concept of continuum mechanics, the most prominent effect of
viscous forces on the flow is the distorting the fluid particles. In other words, when the
viscous forces are very large, the fluid particle will rotate as a rigid body and follow the path
[ illustrated in Figure 3-1 whereas for negligible viscosity, having no shear force effect, the
fluid particle may not rotate. In this case, flow is considered to be irrotational flow.

Rotational

motion Irrotational

motion

Figure 3-1: Rotational and irrotational motion of a fluid particle.

Considering the line integral along the line C on the path [, the velocity vector g, integrated
over C' can be expressed as
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16 Flow model in inviscid region

/ q-dl :/ udx + vdy. (3-1)
C C

As a consequence of irrotational flow, udx + vdy becomes an exact differential of a potential
® that is independent of the integration path C' and is a function of the location of the point

P(z,y)
O(z,y) = /PP udx + vdy (3-2)

where Py is an arbitrary reference point. ® represents the velocity potential and the velocity
field can be obtained as its gradient

q=Vo (3-3)
and in Cartesian coordinates
oo oo
= — = —, -4
Yo oy (3-4)

Substitution of (3-3) into the continuity equation yields

V.q=V-Vd=Vd=0. (3-5)

This equation, (3-5), is the Laplace equation. It is a linear elliptic partial differential equation
governing the behaviour of the velocity for an inviscid, incompressible, and irrotational flow.
Due to its ellipticity, in order to solve it, the boundary conditions are needed to be prescribed
on all solid surfaces and at infinity. However, having neglected the viscosity of the fluid
prohibits the no-slip boundary condition to be specified on a solid-fluid interface. On the
other hand, the normal component of the relative velocity between fluid and the solid surface
(which may have a velocity qp) can be stated as zero at the boundary

n-(g—qp) =0, (3-6)

where n is the unit vector in normal direction.

Summarizing what has been done until here, splitting the domain into two parts and consid-
ering the mathematical problem of the inviscid one, where viscosity is negligible, the problem
is reduced to solving the Laplace equation to obtain the velocity field created, say, by the
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3-1 Mathematical Model 17

motion around an airfoil or a wing with suitable boundary conditions specified on the body
and at infinity. In a space-fixed reference frame, this mathematical problem can be stated as:

V20 =0 (3-7a)

0P
9 =B on body sur face (3-7b)
V& =0 at r— 0. (3-Tc)

The above set of equations (3-7) is called the Neumann exterior problem because the Neu-
mann boundary condition is specified on the body surface and the flow is considered in the
region exterior to the body. On the other hand, if instead of specifying the normal derivative
of the potential on the boundary (3-7b), a constant value of ® is prescribed on the surface, in
other words the potential is specified on the solid surfaces, then above set of equations, (3-7),
comprise the Dirichlet exterior problem. Note that although the model describes unsteady, ir-
rotational inviscid flow, the mathematical formulation leads to a boundary value problem, not
an initial value problem. As will be discussed later, this means that the unsteady effects are
not present in the partial differential equation, but it is introduced via boundary conditions.
The effect of the geometry submerged in the flow manifests itself through the boundary con-
ditions. However, this does not mean that every geometry may have its unique formulation.
As the mathematical problem of potential flow is linear, a linear combination of elementary
solutions can be found that satisfies the set of geometrical boundary conditions. This can be
done by distributing the singularity elements (elementary solutions) - the strength of which
have to be determined as a part of the solution procedure as will be represented in following
sections. In this manner, the induced velocities resulting from the elementary solutions that
satisfy the irrotationality condition and the boundary layer at infinity can be calculated.

A great amount of publications can be found concerning the potential flow theory. In this
section, for the discussion of the potential flow as well as the panel method, Katz and Plotkin
[33] and Van Garrel [34] are taken as the main reference. In addition to these two references,
an extensive explanation of the details of the panel method can be found in [35].

In the case of viscous-inviscid interaction, a new concept called the transpiration velocity is
introduced in order to take the effect of viscosity on the potential flow into consideration. It
was derived by Lighthill [36] and following it, there are a great number of publications where
transpiration velocity has been seen (e.g. Balleur [37], Bartels [38]). The unsteady form of the
transpiration velocity is derived more recently using an asymptotic approach by Bartels [39].
Furthermore, Cebeci et al [15] developed an unsteady panel method in a similar fashion with
the one employed here developed by Van Garrel [40)].

3-1 Mathematical Model

The potential flow problem is formulated as an elliptic second order partial differential equa-
tion with the appropriate boundary conditions. In this section, these boundary conditions are
introduced for an arbitrary geometry which yields the general solution of (3-7). A geometrical
representation of the problem is given below.
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18 Flow model in inviscid region

Figure 3-2: Nomenclature used to define potential flow problem

In Figure 3-2, three boundaries can be observed: the boundary of an arbitrary body Sp,
the outer boundary S., and the wake boundary Sy,. All these boundaries are enclosed in a
volume V' and they will be specified by the boundary conditions, expressed as (3-7b) and (3-
7c) in accordance with either Dirichlet or Neumann formulation. The whole set of equations
(3-7), is solved for the velocity potential. The normal vector n is defined to point into the
exterior of the domain of interest. It is of great importance to note that (3-7) shows no
explicit time-dependence whereas the velocity potential ®(x,t) does depend on both space
and time. Unsteady effects enter the problem through the boundary conditions. Therefore,
during the derivations, this time-dependency is implicitly assumed.

Equation (3-7) can be restated through Green’s second identity which is derived from appli-
cation of the divergence theorem to the vector field F' = ®;V®y — &9V P, where &1 and -
are two twice continuously differentiable scalar functions. This results in

/(¢1vq>2 _B,Vd) - dS — / (®1V2Dy — BV2D,)dV, (3-8)
S 1%

where S corresponds to all boundaries, including the wake boundary Syy:

S =8+ Sw + Seo- (3-9)

For the two dimensional case, scalar functions are defined as

¢ :=Inr and Dy:=9, (3-10)
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3-1 Mathematical Model 19

where ® is the velocity potential function in point P inside V and 7 is the distance from an
arbitrary fixed point P(x,y) to a point Q(z,y) on the enclosing surface, then » = P — @ and
r=|r|

Notice that ®; approaches minus infinity as r approaches to zero which makes it singular.
This term is the potential induced by an elementary solution defined as a source.

In order to obtain a general solution, different locations of the point P, inside or outside V,
are considered.

In the first case, the point P is placed outside V. Then, both ®; and ®- satisfy Laplace
equation and (3-8) becomes

/ (InrV® — ®Vinr) -ndS = 0. (3-11)
S

The second case, also of particular interest, is when the point P is placed inside the region
V as given in Figure 3-2. In order to exclude the point P from the region of integration, a
small circle with radius € is introduced. Outside of the circle and in the remaining region V,
again, both ®; and ¥, satisfy the Laplace equation and (3-8) becomes

/ (InrV® — ®Vinr) -ndS =0. (3-12)
S+circlee

Having evaluated the outer region, the part of the integral over the circle should be elaborated.
To begin with, a local polar coordinate system at P is introduced; the vector n points inside
the small circle, n = —e,. then following expressions can be obtained for the normal derivative
for the potential and the gradient of the potential on the boundary

0P 1
n-Vo = 5 and V(lnr)=— (7’) er. (3-13)
Substitution of (3-13) into (3-12) yields
® &
—/ <lnrar - r) s —1—/ (InrV® — dVinr) -ndS =0. (3-14)
circlee S

Considering the circle with a radius of €, [ dS = 2me. Taking the limit for ¢ — 0 (assuming
that the potential and its derivatives are well-behaved functions) the first term in the first
integral of (3-14) vanishes, while the second term becomes

T

/circlee (q>> 45 =22 (P). (3-15)

Then, (3-14) can be written as
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20 Flow model in inviscid region

1
o(P) = ~5- /S (InrV® — ®Vinr) - ndS. (3-16)

This formula gives the velocity potential for an arbitrary point P in the flow, inside the region
V.

The third case occurs when the point of interest P is placed on the boundary Sp. After the
same procedure is applied, but considering a semicircle instead of a full circle, the result is

1

o(P) = ——/ (InrV® — ®Vinr) - ndS. (3-17)
™Js

Point P is placed everywhere except one region, which brings the final case, where the point

P lies inside the boundary of Sp which causes an internal potential ®;. Considering this point

P which is exterior to Sp and applying (3-16) yields

1
0= ——/ (InrV®; — ®;Vinr) - ndS. (3-18)
2w Js

The direction vector m points outward from Sp. In order to obtain a form that takes the
influence of the inner potential into consideration as well, (3-16) is added to (3-18) which
yields

@(P):—% : (InrV(® - @;) — (¢ —@;)Vinr) -ndS
B
1

Cor

/ (InrV® — dVinr) -ndS, (3-19)

where the inner potential is considered to be in the opposite direction of nm. The second
integral contains the contribution of the singularity distribution on S, (when it is considered
to be far from Sp) which may be defined as

b = —1/ (InrV® — ®Vinr) - ndS. (3-20)
21 Jg

oo

The potential of the outer surface depends on the selection of the coordinate system. If there
is no body motion, it can be selected as a constant in this region. Having defined the potential
on the surfaces Sp and S, what remains is an equation for the wake region. If it is assumed
to be thin, such that 0®/0n remains continuous, (3-19) becomes

(P) = ——21 (InrV(® — ®;) — (& — ®,)VInr) -ndS
7 Jsg
_ L On-VinrdS+ &(P). (3-21)
21 Jsy
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3-1 Mathematical Model 21

Having emphasized earlier that the Laplace equation and the necessary boundary conditions
together constitute a boundary value problem, it can be easily noticed that all potential
equations (3-16), (3-19), and (3-21) provide the value of ®(P) in terms of ® and d®/0n on
the boundaries. Hence, in order to obtain the solution, these values on the boundaries have
to be determined.

The potential equations (3-16), (3-19), and (3-21) can be simplified using the following defi-
nitions:

—p = (P — D)) (3-22)
o:=V(®— ;) n. (3-23)

These elements are called the doublet (¢) and the source (o) distributions and correspond to
the surface singularity strength. In addition, since the flow is unsteady, they depend both on
time and location. They will act like elementary solutions. Using the definitions (3-22) and
(3-23), (3-19), replacing n - V by 0/0n, can be written as

1 1

0
o(P) = ~5 /SB olnrdS — 27T/SB+SW ,u%lnrds—i— Do (P). (3-24)

The problem (3-7) is now reduced to solving the following equation:

Q=9+ s+ Po, (3-25)

where ¢, and ¢, are perturbation velocity potentials contributed by doublet and source
singularity distributions on the inner boundaries, respectively, given as

1
= —— Vinr)-ndsS, 3-26
ou= gz [ o VD) (3-26)
1
Yo =5 o (Inro)-ndsS, (3-27)

and @, is the unperturbed reference velocity potential when no boundaries are present. The
effect of the potential induced by the singularity distribution on the wake has to be considered
separately. This treatment is explained in the following sections.

Unsteady formulation of potential flow model

Note that the above equations have been derived without taking into account the unsteady
effects of the system. However, as stated before, the time-dependency is considered implicitly
throughout the derivation since it is embedded in the system via the boundary conditions.
This means the whole derivation to obtain a boundary value problem for the velocity potential
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22 Flow model in inviscid region

® at a point P can be extended as a function of time taking into account that the singularity
distribution is updated continuously at every instant of time. Therefore, the time dependent
solution of the potential flow problem (3-7) can be given as:

B(P.1) = 9u(P,1) + po(Pr1) + Bac( Pr1), (3-280)
1
ou(Pt) = o s (uVinr) - -ndsS, (3-28Db)
B w
oo(Pt) = —— [ (nro)-nads, (3-28¢)
7 Jsg

where the distance between evaluation point and boundary may also depend on time, then
r=r(t).

The velocity potential can be determined from (3-28) provided that the appropriate singularity
distribution over the boundary is determined in such a way that the boundary conditions
(3-7b) and (3-7c) are satisfied. Hence the task is, now, finding these distributions. Also
note that the appropriate singularity distributions, i.e. the combination of the sources and
doublets for a particular problem, depend on the geometry of the problem.

3-1-1 Boundary conditions

As already stated in the preceding sections, the potential flow problem (3-7) can be formulated
as either a Neumann or a Dirichlet problem. Within the framework of this thesis, external
Dirichlet boundary conditions are chosen because the interest is kept in the flow field on one
side of the surface with already prescribed values. In the Dirichlet formulation, the potential
inside the body surface ®; is specified as a constant value and this value is prescribed on all
the solid surfaces. Then, the solution is extended to the wake region.

The exterior and interior implies the regions of the flow illustrated in Figure 3-3.

S+

Figure 3-3: The exterior and interior regions.

The first one is, represented by S™, the inviscid flow where the Laplace equations needs to be
solved. The other region, represented by S, has no physical meaning, represents a fictitious
flow with a known velocity potential prescribed by Dirichlet condition:

d; = O(P,1). (3-29)
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Separating the region of interest into ST and S~ since its integrand is singular, the pertur-
bation velocity potential due to doublet distribution (3-28b) causes a jump in the velocity
potential of strength p(P,t) across the surface:

p(P — §*,1) = QF (1) + oL (P0) & Lu(P,1). (3-30)

The two ¢ (P, t) terms on the right hand side of (3-30) can be interpreted as Cauchy Principal
Value or Finite Part integrals over the whole solid surfaces around the body, excluding an
infinitesimal region around the singular point from the surface of integration. Hence, the
separation of the surface does not cause a mathematical problem.

With the velocity potential known (3-29), the velocity field can be expressed as

q;(P,t) = V. (3-31)

The velocity at the surface is expressed by the boundary condition at the surface side ST as
the sum of the normal component of the surface velocity gs(P,t), plus a specified velocity
v (P, t) in the normal direction:

VO -n=gqs n+uy,, P— St (3-32)

The normal velocity distribution is an additional term which can be used to take for example
the boundary layer displacement thickness effect into consideration. The local surface velocity
term, on the other hand, can be arisen from the shear stress effects on the boundary like surface
rate of deformation, surface translation etc.

Recall that in order to solve (3-28), the source and doublet distributions, o and u, need to
be determined.

First, the source strength o can be determined by substituting (3-32) into the definition of
the source strength (3-23), which yields:

o(Qt)=(qs—qi) ntuv,, QESE. (3-33)

Having defined the source strength, the doublet strength demands attention. Boundary inte-
gral equation (3-28a) is rearranged for the point P inside the body approaching the surface
-

Vu(Pt) = ®;(Pt) — oo (P, t) — oo (P, 1), pP— S, (3-34)

After the source distribution has been determined form (3-33), the doublet strength can be
solved from (3-34).
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24 Flow model in inviscid region

The normal component of the velocity at the surface side of interest ST is expressed in (3-32).
The tangential component of the the velocity, on the other hand, can be expressed by taking
the surface gradient of doublet strength (3-23) which yields

V(P t) = V®; — Vs, P— ST (3-35)

Now, combining normal and tangential component of the velocity with source strength (3-33),
gives an expression for the velocity at the surface in terms of the known velocity field and the
perturbation flow field resulting from the source and doublet singularity distributions:

q(P,t) = qi +on — Vpu. (3-36)

Here, the final solution is expressed in terms of the inner velocity field which corresponds
to the non-physical region of the domain S~. This provides a freedom to choose the terms
depending on this non-physical domain, namely g;, which also means choosing the velocity
potential inside the body surface ®;. A general approximation is to choose ®; = ¢; + P
and since the internal perturbation potential ¢; is set to zero, the velocity potential inside
the body can be reduced to ®,, which also means that g; = go. Then assuming a known
surface velocity gs and the normal velocity v,, the velocity distribution can be determined
from the following set of equations:

0=1(9s — o) - M + VM, (3-37a)
QD,U« = —%o, (3-37b)
q(P,t) = goo + om — Vp. (3-37¢)

The above set of equation (3-37a) - (3-37c) defines the mathematical model for the flow in
the inviscid region. The first equation (3-37a) implies that the source strength is adjusted
to give zero normal velocity over the body and (3-37b) implies that the doublet strength is
acting upon the changes on the source strength. But notice that the boundary Sy in (3-28b)
indicates that the doublet strength is not only dependent on the source strength specified on
the body but also it reacts to the changes along the wake region. Hence, the doublet strength
needs to be determined on the wake region as well. In order to ensure a unique solution, the
Kutta condition is imposed to take wake effect on the doublet into account.

Kutta Condition

The wind turbine blades are manufactured using the certain airfoil families and these airfoils
are designed in such a way that they facilitate to produce lift in order to rotate the blades by
creating a pressure difference between the upper and lower sides of the airfoil which causes
a circulation. This circulation can be manipulated into different forms of vortex shedding
behind the airfoil by using the different trailing edge configurations. Therefore, the modelling
of the wake region is very important for accurate prediction of the lift produced by the airfoil.

Firat M. HACIAHMETOGLU CONFIDENTIAL Master of Science Thesis
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The Kutta condition [33] adjusts the doublet strength to satisfy the conditions associated
with the circulation created around the airfoil.

While it is possible to specify the source strength for a general solution in a straightforward
approach, the doublet strength distribution involves physical phenomena that require addi-
tional conditions to be imposed to arrive to a unique solution. The Kutta condition has been
defined to take wake effects into consideration by uniquely relating the doublet strength in
the wake to the doublet strength at the trailing edge. In its most general form, the Kutta
condition requires that the velocity at the trailing edge is bounded

|V®ye| < 0. (3-38)
The objective here is to express the doublet strength in the wake in terms of the strength at
the trailing edge to be able to determine the potential in the wake. Considering the most

basic approach, along the thickness of wake, this potential can be expressed as the difference
between the potential values at the upper and lower surface at the trailing edges.

1L
Havee
Mg
L

Figure 3-4: Kutta condition around trailing edge [34].

This relation may be formulated as follows

Hwse = Hte, — Hte;- (3—39)

In unsteady flows, the Helmholtz theorem of conservation of vorticity (which is also stated as
Kelvin’s theorem) provides an additional equation for the evolution of the wake that can be
employed to determine the streamwise strength of the vorticity shed into the wake. Helmholtz
stated that the time rate of change of circulation around a closed curve consisting of the same
fluid elements is zero. It can be formulated as

dar
— =0 for any t, 3-40
= y (3-40)
where the I' is the circulation around a fluid curve enclosing the body and its wake. This
statement implies that for each time instant the overall circulation must be conserved keeping
the vorticity around the airfoil constant.
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Utilizing the Helmholtz’s theorem brings the need of the vorticity formulation of the general
equations for the fluid motion in the case of incompressible, unsteady, inviscid flow which can
be obtained by applying the curl operator to the momentum conservation equation which
after some manipulations yields [33]:

= —w- Vq. 41
o —w Ve (3-41)

Then, the circulation I" may be expressed as (using Stokes theorem)

F://w-ndS:/qfds, (3-42)
S

oS

where mn is the unit normal vector to the cross section surface S, and 7 is the unit vector
tangential to the contour 0S.

It can now be concluded that given the initial characteristics of the flow at time %y, these
characteristics shall be preserved along the whole wake which may be formulated in terms of
the wake element X, and the wake doublet strength pu,, as follows:

dX
7“’ = X, (to) = zee(to), (3-43a)
Dy
o Haw(to) = fu,e (to)- (3-43b)

The unsteady wake effect is implemented in the panel method based on the potential solver
developed by Van Garrel. The related PhD work about this tool has not yet been publish [40].
Furthermore, the justification of this approach is discussed in the last chapter.

Solution of inviscid flow problem

The problem (3-7) is reduced to finding the appropriate source and doublet distributions on
the surface of the body (Sp, Sw) which automatically fulfill the boundary condition (3-7c)
by having velocity fields that decay as r — oo whereas becoming singular when r = 0. Each
of these singularities is basic solutions and by integrating them over the body surface, the
general solution can be obtained. This formulation is given in (3-28).

One last consideration is the presence of the boundary layer. Notice that the whole solution
procedure is valid only under the assumption of inviscid flow. However, in the scope of this
thesis VII coupling is of primary concern. Thus, the presence of the boundary layer and its
influence on the potential flow is taken into consideration and a modification is introduced
whereby the solution of the whole flow field becomes concordant with the Navier-Stokes
equations. Hence, a concept, namely, viscous potential flow is introduced [2].
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3-2 Effect of the boundary layer on potential flow

The potential flow problem as it is described in the preceding sections has ignored the presence
of the boundary layer and as the reduced system indicates, the solution is obtained by means
of finding the appropriate elementary solutions on the surface of the body. However, the flow
around the body develops a boundary layer which displaces the inviscid region a distance
equal to the boundary layer thickness. This means that the body becomes thicker then it
actually is and the inviscid flow develops starting from this thickness considering it as the new
stream surface. This new physical geometry is called the effective displacement body which
corresponds to the actual physical body plus the displacement thickness. The effect of this
displacement can be imagined as to calibrate the no-slip condition, i.e. normal component
of the velocity on the body is zero, to catch the effect of the boundary layer. This means
that the normal velocity component at the surface of the thicker body is set equal to the
normal velocity at the edge of the boundary layer. The way to match the normal velocity at
the thicker body is done by adding a transpiration velocity to the potential equation. The
resulting flow is named the viscous potential flow.

First, some additional notation is introduced. The total velocity vector is given by q¢ = (u,v)”

where u is the tangential and v is normal velocity component. The velocity at the edge of
the boundary layer is indicated with the subscript e.

Using the continuity equation to describe v and assuming v grows linearly with —(du./9z)y,
the normal component of the velocity can be approximated inside the boundary layer with
the following relation:

Oue
U($7y) ~ = (al;)y—i—vn(x)—k, Yy — 00, (3_44)

where y — oo indicates that it approaches to the edge of the boundary layer and v, corre-
sponds to the transpiration velocity which is expressed in (3-33). The transpiration velocity
is now obtained as follows [2]:

vp(z) = %(qeé*), (3-45)

where ¢. = /u2 + v? is the magnitude of the velocity at the edge of the boundary layer.

Bartels [39], on the other hand, derived the following formulation for unsteady case:

ol 0,8) = (5008 + 2 (0m) ) (3-46)

where dg is named as the density thickness and for the unsteady but incompressible flow the
second term %(pd r) = 0 resulting the same expression as (3-45).

Using the transpiration velocity, the displacement thickness is given by
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o 1
— / ele — pu)dy 3-47
o ot (p pu) (3-47)

and it corresponds to the rate of change of mass defect.

Next step is to include this transpiration velocity into the potential flow problem. It has been
expressed in (3-7c) for the body surface the free-slip boundary condition is given by

Vo -n=0. (3-48)

However, taking the boundary layer into consideration, this condition is modified to be equal
to the transpiration velocity at the edge which corresponds to displace the streamlines outward
to include viscous effects:

Vo - n=u,(x). (3-49)

It has been shown that the presence of the boundary layer affects the source strength by
introducing a viscous contribution to the potential flow. Then, the source strength can be
split into the sum of the viscous and inviscid contributions:

0 = Oiny + Ouis, (3'50)

where 0,5 is resulting from the presence of boundary layer, namely v, and oy, is the Dirichlet
condition specified for the inviscid flow. Then, the source distribution on the body surface
(3-37a) becomes

0 = (qs - qn) “ M+ VUp = Tiny + Ovis- (3—51)

Taking the effect of the wake into consideration, the equation for the potential including the
effect of the boundary layer becomes:

1
O(P,t) = —2—/ CinvInT dS
7 Js,

1

S or

/ (un - V(Inr) — ouss In7) dS + S (P).  (3-52)
Sb+Su)

Then, (3-28b) and (3-28c) takes the following form:

1
= n-Vinrds, 3-53a
1 1
Yy = ——/ Oinv InrdS — 7/ —Ouis InrdsS. (3_53b)
27T Sb ™ Sb“l‘sw

Following this approach, (3-7) including the boundary layer effect (3-53) can be solved using
panel method which is the subject of next section.
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3-3 Weak formulation and discretization

Panel methods are one of the first numerical tools developed for routinely analysing the flow
around the complex geometries of complete aircraft. They have been widely used and are still
being used to solve the inviscid, irrotational flows at subsonic or supersonic Mach numbers
mostly in the aerospace and the wind turbine industries due to their ability to provide realistic
results for the complex and relatively large flow problems without excessive computational
requirements.

In the preceding sections, analytical solutions for the potential flow problem expressed as
the source and doublet singularities are obtained whereby the solution of the potential flow
problem is reduced to finding the strength of the these singularity elements (elementary
solutions) distributed on the boundary surface. Panel methods are based on superimposing
the surface distributions of these singularities over small elements, called panels which are
chosen to be placed on the boundary of the arbitrary body to make the solution unique.

Panel codes are described as being low-order or high-order. While the former indicates the
use of a constant strength singularity distributions over each panel, latter indicates higher
order approximations e.g. linear, quadratic, of the distribution over each panel.

Considering the problem in this thesis, the domain is divided into structured grid cells, in
other words panels, along the body and the wake and a low-order discretization scheme is
used. Both the doublet strength and the source strength are specified constant on the panels
comprising the surface of the body and the wake. The boundary conditions are imposed on
the collocation points. The locations of these points can differ according to the panel method
implemented.

3-3-1 Discretization of the wing/aerofoil problem

The panel method is applied to find the flow around an airfoil because the main concern
in this thesis is analysing the flow around wind turbine blades. The unsteady formulation
of the governing equation has been given in (3-37) and the viscous effect is introduced via
(3-45). Then the relation between source and doublet strength (3-37b) including the viscous
contribution is stated as:

1

1 1
—/ pun -VinrdS = ——/ OinpIn7TdS — —/ —0OyisInT dS. (3-54)
27T Sb+s1u Qﬂ— Sb Sb"l‘sw

2

Above integrals are calculated by discretizing the wing surface and wake region. Let N,
denotes the number of equal distance segments along the body surface and N,, along the
wake. Then the total number of segments is N = Ny + N,,.

Recall that using the low-order approach, all singularities are constant and determined by
applying the boundary condition at the collocation points of the panels. Each panel, denoted
by subscript n has its constant source o, and doublet strength u, starting from 1 to N.
Using the Dirichlet condition for the internal potential, source strength is a given property;
the inviscid part is determined from the freestream and the viscous part is known from the
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viscous quantities. Then, the only unknown in (3-54) is the doublet strength and the equation
can be solved to obtain them by discretizing as follows:

Nb+Nw Nb“l‘Nw

/,un VlnrdS—l——Z/ amvlnrd5’+— Z / —0OpisInrdS = 0.

(3-55)

Above (3-55) may be written in the following form where the body collocation points are
indexed with m € [1, Np]:

Nb+Nw Nb+Nw
Z Amn,U/n + Z analnvn + Z ano-msn =0, (3‘56)
n—1 n—1 n—1

where A, and B, are called aerodynamic influence matrices and given by

A = / - V10 dS, (3-57)

B = / — In 7y dS. (3-58)

A and By, matrices can be regarded as the result of the numerical approximations of the
integral expressions for the perturbation velocity potential and components induced by the
source and doublet distributions. They represents the influence of the constant source and
doublet distribution at panel n on the collocation point m. Note that these matrices are
known [33]. Finally, 7y, denotes the distance between the pair of collocation points.

Notice that (5-11) is not closed because of the additional unknown doublet distributions
on the wake region. The Kutta condition is utilized here to express the unknown doublet
strength in the wake using (3-39). Now, the matrix A,,, is reduced to a N, x N;, matrix and
the system is closed for the solution of the doublet strength. For unsteady flow, on the other
hand, along the wake more than one panel is needed whose values change with every time
step but as stated before, the unsteady effects of the wake region is handled by the panel
solver developed by van Garrel and it is not considered in the unsteady scheme developed in
this work as described in Chapter 4.
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Chapter 4

Viscous-inviscid interaction

Following the revolutionary idea of L. Prandtl [6], the flow field is split into two regions, where
the physics of the fluid is governed by completely different equations. However, since these
two regions are not independent, this idea introduces a new problem which is not present when
the flow field is not split and modelled by the Navier-Stokes equations: How to re-establish
the coupling between the viscous and the inviscid region? This coupling is commonly referred
to as wiscous-inviscid interaction (VII).

In the preceding chapters, the governing equations that describe the behaviour of the flow in
both regions, the viscous region (the boundary layer) and the inviscid region (the potential
flow) are derived. It is important to specify these models in detail because the choice of an
optimal VII method clearly depends on the properties of both. In this chapter, the coupling
schemes between the viscous and inviscid regions are investigated. In literature, a good review
of all VII methods for steady flow can be found by several authors e.g. Le Balleur [37], Lock
and Williams [18], and Coenen [2]. For unsteady flows, on the other hand, there are only
a limited number of publications concerning the coupling schemes and most of the existing
ones are focused on a particular method which is based on the simultaneous solution of the
viscous and inviscid models e.g. Drela [1]. The reason behind this is that the physics of
the unsteady flows becomes so complicated that to employ an interaction schemes which
presume hierarchies cannot provide accurate results. A comprehensive discussion concerning
the singularities in the unsteady boundary layers can be found in [41].

In this chapter, a number of different viscous-inviscid interaction schemes are investigated.
Different approaches exist to explain the interaction procedure, e.g. the triple-deck theory by
Messitier [42] and the functional approach by Brune et al [43]. While the triple-deck theory
gives an insight into the physics of the problem by dividing the flow field into three layers
and consider them individually, the functional approach addresses the matching problem of
the simultaneous solution of the non-linear boundary value problems coupled through their
boundary conditions. Both approaches give an explanation of the singularity occurring when
the skin friction vanishes for the steady laminar flow first shown by Goldstein [23]. For a
solid understanding of the coupling mechanisms, both methods are explained keeping the
details limited. The reader should refer to the mentioned references for further explanation.
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However, it is important to emphasize that, these methods are developed to explain steady
boundary layer flows. For unsteady viscous-inviscid interaction, Cebeci denied the existence
of a finite-time singularity [44]. However, he was shown to be wrong and a new singularity
was introduced by Van Dommelen and Shen [45]. The unsteady boundary layer singularities
are also discussed in this chapter. Following the general explanation of the viscous-inviscid
interaction, a new unsteady quasi-simultaneous interaction scheme is introduced.

Historical overview

Before the modern technology made large computational power available to solve the full
Navier-Stokes equations in the full flow domain, coupling schemes between the boundary layer
and inviscid flow were the main approach to obtain a complete flow field solution. Hence, an
extensive amount of publications have appeared on this subject over the last hundred years.

The very first idea was based on the mathematical theory of matched asymptotic expan-
sions [22]. Here, the flow is solved without considering viscous effects and inviscid velocity
distribution is calculated. Then using this distribution, the boundary layer equations are
solved which feed the inviscid region with an additional transpiration velocity as a boundary
condition resulting in a new velocity distribution. This approach is called direct method since
it makes use of the supposed hierarchy to solve the coupled system sequentially. However, this
method fails to provide results when the flow is no longer attached, i.e. when it separates.
The reason is the well-known Goldstein singularity. In order to resolve this difficulty, Cather-
all and Mangler [25] developed the inverse method. They change the order in the solution
sequence of the direct method. However, this method has been shown to converge very slowly.
These two methods are referred as weak methods since they assume a hierarchy between the
two regions and indicate the subsequent exchange of two flow variables.

Following the advances in the mathematical theory of matched asymptotic expansions, Mes-
sitier [42] developed the so-called triple-deck theory where he successfully showed that the
interaction between the inviscid and viscous region can not be simulated as a small correction
to the inviscid flow. Both regions have to be considered equally important. This insight
naturally leads to so-called strong methods where the hierarchy is abolished and both regions
are treated of equal importance. The first of these methods that was introduced was the
semi-inverse method developed by Le Balleur [7] and Carter [46]. It uses the direct method
to calculate the inviscid flow and the inverse method to calculate the viscous flow. However,
it needs severe relaxation steps which makes it inappropriate for common use. The second
one is the simultaneous method developed by Lees and Reeves [47]. It calculates both flows
simultaneously without any hierarchy, which makes it robust but computationally expensive.
And the last important approach is the quasi-simultaneous method developed by Veldman [24]
where the advantages of the direct and simultaneous method are combined to have a robust
solver which has been shown to produce rapidly convergent solutions.

All methods briefly described above are illustrated in Figure 4-1 and will be investigated
further in this chapter. However, the main interest is kept in the quasi-simultaneous method
since it has been shown to be the most merit candidate for steady flow which rises the question
if it is the same case for unsteady flow.
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Figure 4-1: Schematic explanation of the steady interaction methods.

4-1 Interaction methods

The embodiment behind VII can be briefly summarized as to include the displacement effect
caused by the viscosity by means of adding a transpiration velocity to the boundary conditions
of the potential flow and solve the potential problem by considering this new artificially
thickened body. Therefore, it is manifest that the approach employed to couple two regions
is through the boundary conditions imposed on each region. The coupling is called weak or
strong depending on the input/output hierarchy of the scheme. The physical interpretation
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of the strong and weak coupling, on the other hand, demands additional consideration. Here,
two approaches are briefly explained.

Triple-Deck theory

Introduced by Messier [42] and Stewartson [48], Veldman [24] summarized this theory in
an abridged fashion. Messier followed an approach based on the asymptotic behaviour of
the Navier-Stokes equations. He observed that fixing * = Re®z/L, where z/L is the non-
dimensional distance from the trailing edge of a flat plate, while taking Re — oo, there exists
an o = 3/8 that corresponds to a distinguished limit where the behaviour of the flow is
governed by potential flow theory. Veldman noted that due to the fact that the thickness
is only O(Re_3/ 8), modelling the interaction with the outer flow, a local linearisation will
suffice to have a good approximation. This yielded the quasi-simultaneous interaction method
which is explained in detail in Section 4.1 and 4.2. Messier investigated if for other values
of a alternative approximate equations can be derived. He observed that for a = —5/8, the
behaviour of the corresponding layer is governed by the boundary layer equations. This layer
is called the viscous sublayer. Finally, for &« = —1/2 he observed that the pressure gradient
and the flow deflection are independent. This layer is called the inviscid middle layer. The
triple-layered region given schematically in Figure 4-2.

0 (Re 'BF'S)
POTENCIAL FLOW
REGION
[
CLASSICAL »
BOUNDARY ! 0(Re /2)
LAYER [ ]
0 (Re_ /s)
\

777X777 77

SINGULAR POINT

Figure 4-2: Schematic explanation of the triple-deck theory [24].

The hierarchy of the problem can be explained considering the asymptotic behaviour for
the far upstream and downstream regions in the triple-deck. Veldman observed that, for a
laminar, incompressible flow, when Re?/ 8|x] — oo but * — 0, the pressure is determined
by the inviscid flow following the classical boundary layer hierarchy which is modelled by
the direct method. However, when Re*/®z — 0, this hierarchy is inverted and the pressure is
determined by the viscous flow which corresponds to the inverse method. This limit behaviour
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shows that the interaction between the two regions can never be one-way as is assumed by
the direct and the inverse method. The solutions in both the viscous and inviscid region
strongly depend on each other and any weak formulation will fail to represent the physics of
the problem completely, leading to singularities such as Goldstein’s [23].

Functional Approach
Introduced by Brune et al [43], Williams and Smith [49] extended this approach by giving an
explanation of the singularity behaviour of the quasi-simultaneous interaction method.

The main objective here is to obtain a matching solution on the shared surface (the edge of the
boundary layer) of the viscous and the inviscid flow that is satisfied simultaneously by both
models. Considering the flows separately; first, the solution of the inviscid flow is determined
by the displacement thickness that is included in the system via the transpiration velocity
given in (3-45) and the shape of the airfoil. The inviscid solution provides the velocity where
the boundary layer ends and the inviscid flow starts, called the edge velocity and denoted by
@e- This procedure can be represented in compact form as

P
q.” =P ("), (4-1)
where superscript P denotes the potential flow. For the boundary layer, on the other hand,
the edge velocity determines the displacement thickness:
*B »,
0" = B(ge)- (4-2)

The inverse form of (4-2) is given by:

g.” = B(57"), (4-3)

where B stands for the boundary layer region. P and B are the operators which govern the
relation between the displacement thickness 6* and the edge velocity g. in the viscous and
inviscid flow and they are derived using the panel method and the integral boundary layer
formulations, respectively.

The matched solution, then, implies that

6*P = 5*B and QeP = q€B7 (4'4)

which is also sketched in Figure 4-3. Note that this is not the case in unsteady flow as is
explained in the following sections.
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Inviscid

q. =P (8%)

Qe

«—— Matched (steady)
solution
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Figure 4-3: Matched (steady) solution given on the functional view of relationship between
viscous and inviscid flows [19].

Williams and Smith locally linearised (4-1) and (4-3) to examine the features of the different
coupling procedures.

For the inviscid flow,

¢.” =P (57) + Py (4-5)

and for the viscous flow,

q.” =B, (5*3) + Bo, (4-6)

where the value of coefficients matrices P, Py and By, By are known.

In order to give an insight to this functional approach, the direct method and the quasi-
simultaneous method are explained briefly.

Figure 4-4 illustrates the coupling procedure of the direct method for the attached and sep-
arated flow. It is clear that for the attached flow, the scheme is approaching to the matched
solution in each iteration. However, at and beyond the point of separation, this procedure
fails. This situation corresponds to the Goldstein singularity for laminar flow.
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Figure 4-4: Functional approach of the direct method [19].

Figure 4-5 illustrates the same coupling procedure as in Figure 4-4 but when the quasi-
simultaneous method is applied. As described in detail in the following sections, in the
quasi-simultaneous method an approximation to the inviscid flow is derived. Then, it is used
as a boundary condition to solve the governing equations of the viscous region (in our case
the integral boundary layer equations). This approximation is shown in Figure 4-5 as a lin-
earization (tangent) of the inviscid flow. The intersection of this gives the quasi-simultaneous
solution. The procedure continues until the matched solution is reached. It is clear that us-
ing this method, it is possible to calculate the solutions even beyond the separation without
having to employ inviscid solver multiple times leading to great computational save.

The Triple-Deck and functional approach provide a conceptional understanding of the interac-
tion methods. Now, keeping these approaches in mind, VII methods are introduced following
a compact notation:

ge = P (0%), (4-7)
ge = B(0%), (4-8)
where P and B operator are same as given in (4-1) and (4-3) which govern the relation
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between the displacement thickness 0* and the edge velocity q.. The problem here is to find
a method that satisfies both (4-7) and (4-8); in other words for given displacement thicknesses
obtaining the same velocity distribution along the edge. A summary of these methods is given
in the beginning of this chapter. Now, they will be investigated in detail.

Attached flow Quasi-simultaneous method
INVISCID
Qe | Inviscid REGION
5" de
VISCOUS REGION
! +
INTERACTION
i Viscous LAW
6 *
Separating flow Separated flow
Inviscid
[} Inviscid e
4 f Viscous
Viscous !
5" 5"

Figure 4-5: Functional approach of the quasi-simultaneous method [19].

Direct method

Having the regions separated, the first method that comes to mind is the direct method.
The procedure is very intuitive: first, the viscous forces are neglected and considering only
potential flow, the velocity vector g, is calculated. Then, using this velocity vector, the
integral boundary layer formulation B is solved which provides the displacement thickness §*
as a boundary condition for the subsequent solution. The mathematical formulation can be
described as:

ar =P (5",

0" =B~ (q7) .

where n denotes the number of iterations. This approach is called a weak-interaction method,
because of the reasons described in the section discussing the Triple-Deck theory and fails
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to provide results when B becomes singular which is known as the Goldstein singularity.
Goldstein [23] proved that for steady flow this singularity is observed at the point of vanishing
wall shear stress which also corresponds to the separation point as Veldman [26] pointed out.
Therefore, the direct method is incapable of coupling beyond separation since the presumed
hierarchy between displacement thickness and velocity is no longer valid there.

Inverse method

The inverse method is an attempt to resolve the Goldstein singularity and formulated as the
inverse of the direct method. The idea is to prescribe the displacement thickness for the
viscous flow as a boundary condition. The mathematical formulation is given as:

0" =P (g,
{ﬁsz“» 10

Using this approach Catherall and Mangler [25] were able to overcome the separation prob-
lem but still a hierarchy is assumed which means the interaction remains weak. The main
drawback of this method is deriving the displacement thickness from the potential flow for-
mulation since it is not known a priori. Furthermore, it needs severe under-relaxation which
makes convergence of the solution slow.

Semi-inverse method

This method is introduced by Le Balleur [7] to resolve the problems resulting from assuming
a hierarchy between the two regions as mentioned in the description of the direct method, by
eliminating the drawbacks of the inverse method. Both the potential flow equations and the
boundary layer equations are solved with a prescribed displacement thickness for the velocity
distribution. Then, the newly calculated velocity distribution is relaxed with a parameter w
to determine the new displacement thickness.

qu =P (6*"_1) ’
@z, = B(0"). (1-11)
PR +w (qu + qu> .

Notice that in (4-11), while the boundary-layer equations are solved following the inverse
method, the potential flow is solved following the direct method. Therefore, no singularity at
the point of separation is observed.

Simultaneous method

The simultaneous method implies that both the external flow and the boundary layer equa-
tions are solved simultaneously. The mathematical formulation is given as:
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n __ *7
{qe - P((S n)v (4_12)
q; = B(5"),
which yields
(B—P)5*" =0. (4-13)

As explained in the discussion of the triple-deck theory, the interaction between the inviscid
and viscous flow has a strong character. The simultaneous method takes this strong character
into consideration since it introduces no hierarchy between the displacement thickness and the
edge velocity. In that way, it also does not show any singularity problem at and beyond the
point of separation. However, this method requires intensive computational power. Nishida
[12] used this approach to solve steady interacting flow and quite recently Drela [1] published
a paper where he solved the unsteady integral boundary layer equations coupled to a panel
method, using this simultaneous method.

Quasi-simultaneous method

Among all, the quasi-simultaneous interaction method is of primary importance since it has
been shown to be the faster converging and computationally cheaper one. It combines the
advantages of the direct and the simultaneous method while successfully avoiding the sin-
gularity when the flow separates. The idea behind the quasi-simultaneous method is that
the viscous flow equations are solved with an approximation of the inviscid flow model as
a boundary condition, unlike the direct or inverse method, which is a linear combination of
the edge velocity and displacement thickness. Then, subsequently the inviscid flow model is
solved. Thus, the singularity problems associated with the weak formulation of the hierarchy
are avoided. The mathematical formulation is given as:

n *T n— xn—1
qr. —1(0 ):qepl—I((S ),
az, — B (") =0, (4-14)
qr, — P (5*") =0,

where [ is called the interaction law that provides an approximation of the inviscid flow
model. Notice that this interaction law is defined in such a way that it vanishes for the
steady interacting problem, in other words it has no effect on the converged solution.

The cardinal point in the quasi-simultaneous method (for steady flow) is to find the best inter-
action law I which provides rapidly convergent solutions with smallest computational effort.
The main form that have been used for the interaction law is the thin-airfoil approximation.
It provides a simplified form of the inviscid flow and since for the steady case the influence
of the interaction law vanishes anyway, just an auxiliary tool to converge to solution, it is
reported as an efficient choice for the interaction.

It is important to make a distinction between solving the steady and unsteady flow problem.
In literature, no results have been published for the application of the quasi-simultaneous
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method to unsteady flow whereas for steady flow, extensive studies have been published e.g.
Coenen [2], Bijleveld [13].

In the next section, the unsteady form of the quasi-simultaneous method is introduced.

4-2 Unsteady quasi-simultaneous method

It has been noted that interaction methods, except the simultaneous method, have been
implemented mostly for the solution of steady flow. The derivations, theories and the ap-
proaches to explain the interaction boundary layer flows are based on steady flows. That
reason behind this is as follows: the coupling techniques are developed to avoid solving the
full Navier-Stokes equations. The splitting idea was initiated to keep the solution procedure
as simple as possible. However, when the unsteady effects of the flow are also considered, the
system becomes complicated: coupling the models in the two regions as well as the unsteady
nature of the boundary layer constitute a complex problem. Hence, when unsteady effects
are considered, it has been chosen either to solve the system simultaneously or using the the
discretized Navier-Stokes equations coupled to an appropriate turbulence model.

The unsteady effects change the whole embodiment behind the coupling schemes. This can be
explained considering Figure 4-3 where a "matched" solution is plotted. Here, it is assumed
that the solutions of the viscous and the inviscid flow models will be the same when the
system is converged. The main assumption behind this is that there is a "matched /converged"
solution which, corresponds to the steady solution when time ¢ — oo. However, for the
unsteady boundary layer, there might not be a matched solution. The unsteady behaviour
of the boundary layer is another research topic and a quite controversial area. Therefore,
methods such as the Triple-Deck theory and the functional approach do not provide a precise
explanation about the coupling procedure; they only serve as an auxiliary explanation for the
unsteady case.

Keeping these primary differences in mind, the unsteady coupling techniques are investigated
and a scheme for the quasi-simultaneous method is derived keeping the focus only on the
direct and simultaneous method, because the quasi-simultaneous method can be viewed as a
combination of these two.

Unsteady Direct Method
The unsteady process can be seen as the steady processes stopped at a certain time level.

While the procedure stays same, only the embodiment behind it differs. This procedure can
be seen schematically from Figure 4-6.
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Figure 4-6: Schematic explanation of the unsteady direct methods.

The inviscid flow model calculates the velocity for a given displacement thickness; then, this
displacement thickness is passed into the viscous region and by integrating the viscous model
equations in time, the displacement thickness at the next time level is calculated which is the
input for the edge velocity at that time level. The mathematical formulation can be described
as:

qet =P ((5*t) s (4_15)
B

where ¢ denotes time iteration.

Unlike the steady method, this method will not cause the Goldstein singularity unless t — oc.

Simultaneous method

The simultaneous method implies that both the inviscid flow and the boundary layer equations
are integrated in time to calculate the edge velocity and displacement thickness in the next
time level. This procedure can be seen schematically from Figure 4-7.
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Figure 4-7: Schematic explanation of the unsteady simultaneous method.

The mathematical formulation is given as:

t+l _ p 5*t 7
(s (10
g =B|(d
The solution obtained with the simultaneous method corresponds to the solution of a non-
linear system of equation which is integrated in time having the displacement thickness as an
initial and edge velocity as a boundary condition to determine the both & and ¢' ! at the
next time level (e.g. the Runge-Kutta scheme).

Unsteady Quasi-Simultaneous method

Having defined the unsteady direct and simultaneous methods, the quasi-simultaneous method
which is derived basically by combining the advantages of these two method can be explained.
It differs from the steady formulation since no matched solution is considered during the
scheme. The procedure marches in time starting like the direct method: it integrates the
edge velocity from previous time to next time level using the the displacement thickness
at new time level and the boundary conditions on the corresponding time level as the input.
However, when this edge velocity arrives in the boundary layer formulation, the direct method
is put aside and a combination of g, and ¢* is prescribed as a boundary condition, which is
also called the interaction law, to the integral boundary layer equations (IBL). These two
equations, the interaction law and the IBL equations, are solved simultaneously resulting in
the displacement thickness correction, denoted by Ad* which is added to the displacement
thickness at the previous time to calculate the one in the next time step. In order to clarify
the procedure, consider Figure 4-8.
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Figure 4-8: Schematic explanation of the unsteady quasi-simultaneous method.

Here the procedure resembles the direct method starting with updating the velocity using
panel method:

q.,=P (5*t) .

Then, the simultaneous method is implemented to calculate the displacement thickness at
next time level:
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t+1 _ t
=P (5 ),

e

+l _ B (5*t

e

However, here unlike in the simultaneous method, the interaction law I is used instead of the
whole inviscid flow operator which yields the following form:

(I - B)§* =0. (4-17)

Equation (4-17) results in a coupled non-linear system. After the time integration, it provides
the displacement and the velocity at the new time level expressed in following equations:

act' = Aqlit + g, (4-18a)
5 = ASIT 4 5 (4-18D)

It is important to emphasize that the solution of (4-17) provides only the corrections denoted
by Aq, |t and A§*|iT arisen from the viscous effects. Note that these corrections correspond
to interaction terms I(6*). Cebeci et al [11] explained this relation as a sum of the inviscid
velocity and a small perturbation arising from the presence of the boundary layer. This is
caused by the fact that instead of the inviscid solver, the interaction law is employed (which is
also the reason that why it is called quasi-simultaneous method). The role of the interaction
law is to introduce the displacement of the boundary layer due to the viscous effects. In the
same way the singularity arising form the inverse of the IBL operator is avoided for the steady
coupling. Furthermore, notice that there is a hat g, , in (4-18a) indicating that this velocity is
not the real velocity at new time step. The reason behind that is the core difference between
the steady and unsteady formulation of the quasi-simultaneous method.

Remember that the steady formulation of the quasi-simultaneous method has the following
form:

q, — 1(0"") = gt = 100" ). (4-19)

In this formulation, it is known that for a converged, steady solution, the interaction terms
will cancel out and the two edge velocities will be equal g, = qg};l. However, in the unsteady
case, the aim is not to find a steady solution. Furthermore, there might be no steady solution.

In the unsteady formulation (4-18a), the interaction law has a direct effect on the velocity at
the new time level. Taking into account that the interaction law is an approximation of the
inviscid flow model, the new velocity computed by the quasi-simultaneous solution between
the integral boundary layer equations and the interaction law, denoted by hat ¢, will not
correspond to the real velocity at the new time level due to the fact that the simplifications
introduced to obtain the interaction law inevitably cause loss of accuracy (Notice that this is
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not the case in the steady case since the interaction law is an auxiliary tool only to improve
the convergence rate). Therefore, the velocity given in (4-18a) is not considered, instead
the displacement thickness (4-18b) is considered as an input to the inviscid solver with the
corresponding time level’s boundary conditions to find the velocity at the next time level. In
this way, the information that had to be sacrificed to derive the interaction law, i.e. to avoid
fully simultaneous solution, is aimed to be compensated partly by the inviscid flow model.

Panel Method | e

IBL+IL &

t+1 t+2 t+3 t+4

Figure 4-9: Solution algorithm of the unsteady quasi-simultaneous method.

This procedure is summarized in Figure 4-9.

The final form of the unsteady quasi-simultaneous method is given as:

~t+1 xt _ 4t
) o

e

{att-pP (") =o, (4-21)

where I[6*'] = Aq, | called interaction term and (4-18a) is the interaction law.

Unlike the steady case, in the unsteady quasi-simultaneous method, the interaction law does
not vanish which makes it of a great importance not only for the convergence rate but also
for the accuracy of the solution since it models the viscosity effect on the general problem.
Therefore, the derivation of the interaction law becomes a significant issue in the unsteady
case. As a rule of thump, an interaction term should carry as much physical information as
possible in a form that is as simple as possible.

The derivation of the interaction law and the treatment of the coupled system caused by the
quasi-simultaneous solution of the integral boundary layer equations and interaction law is
explained in the next chapter.

4-3 Discussion about unsteady singularities

It has been mentioned that the Goldstein singularity is derived for the steady boundary layer
when ¢t — oco. However, when the unsteady case is considered, the nature of the boundary
layer changes and brings about new physical phenomena. A comprehensive discussion of the
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singularities in an unsteady boundary layer is published in reference [41] edited by Cebeci.
This discussion contains seven articles written by pioneer names in the boundary layer theory
and this section is based on these articles.

Cebeci [50] asserted that the singularities observed in a boundary layer can be divided into two
classes. The first one includes the well-known Goldstein singularity. The criteria for this kind
of singularity to occur are derived firstly by Moore, Rott, and Sears (known as MRS criteria)
in 1955. They stated that to observe this type of singularity, the shear stress should vanish
and the fluid should be at rest, i.e. w = du/dy = 0. In this case, this corresponds particularly
to the point where the skin friction, the wall shear stress, vanishes. This singularity is showed
to be stemmed from the viscous character of the flow.

The second class of singularities is associated with the inviscid character of the flow. Moore,
Rott, and Sears had seen this and pointed out that "in unsteady flow, the zero wall shear
does not in general signify separation in the sense that the boundary layer leaves the wall."
However, the reason and a rigorous proof of the existence of this second type of singularity had
been a controversial topic for a long time. While Van Dommelen and Shen [20] and Dwyer and
Sherman [51] have found supportive arguments for the existence of an unsteady singularity in
their studies, Cebeci [44] denied its existence. Although Cebeci also encountered an evidence
for the existence of this kind of singularity in one of his numerical experiment, he claimed that
it is stemmed from the numerical method itself and the solution is smooth there: "a singularity
cannot develop... at a finite time if the solution is free from singularities at earlier times". He
meant the solution remains smooth for all finite time. However, this has been proved to be
wrong. Van Dommelen and Shen [20] were the first ones who had come with a strong evidence
and showed that there is a finite-time singularity caused by the intersection of two fluid
particles at the same time which contradicts Cebeci’s hypothesis. They showed that, unlike
the Goldstein singularity, this new type of singularity has an inviscid character caused by the
fact that the special set of equations obtained for the thickness of O(Refl/ %), see Figure 4-2,
can no longer describe the flow because the amount of the separating layer marching into the
inviscid flow becomes large compared to the middle inviscid layer thickness [45]. It has been
shown by several researches independently that this new singularity reveals itself by blowing
up of the boundary layer thickness while the wall shear remains non-zero. Van Dommelen
and Shen were able to satisfy the conditions stated by Moore, Rott, and Sears for this type of
singularity as well in their numerical experiment conducted on a boundary layer of a cylinder
started impulsively. In other words, they found a point in the boundary layer, not on the wall,
where the shear stress is zero and the fluid is stationary. This inviscid character singularity
commonly known as "Van Dommelen singularity".

For more detailed information the reader should refer to the aforementioned literature, for
only an insight to the unsteady boundary layer singularities is given here.
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Chapter 5

Quasi-simultaneous solution

In the previous chapter, the unsteady quasi-simultaneous method is explained and it has
been brought forward that in this algorithm the integral boundary layer equations and the
interaction law are solved simultaneously. This chapters explains this quasi-simultaneous
solution in detail and derives the resulting coupled system.

The integral boundary layer equations are given in the first chapter in a conservative integral
form. Therefore, first, the conservative formulations of the integral boundary layer equations
in integral and differential form are discussed. Furthermore, it is shown by Cousteix and
Houdeville [52] and Bijleveld [13] that the integral boundary layer equations, both separately
and coupled to the model for the inviscid flow region form an unconditionally hyperbolic
system of partial differential equations. Toro [53] is used as the main reference for the theory
on hyperbolic systems because it particularly approaches the subject from the fluid mechanics
perspective. For the generalized eigenvalue problem, Datta [54] provides a good reference.
More background and theory can be found in different textbooks such as [55,56].

5-1 Hyperbolic partial differential equations

Mathematical models can very often be formulated either in differential or integral form. Fur-
thermore, the equations can be formulated in different sets of primary variables. The common
choice is the conserved variables since they entail computational advantages when the models
take the form of conservations laws such as mass, momentum, energy etc., that are conserved
considering the conservation of mass, Newton’s second law, and the law of conservation of
energy, respectively. A large number of numerical methods have been developed based on
this approach which are called the conservative methods.

As Seubers [28] followed an integral approach in the derivation of the governing equations of
the viscous flow, the coupled system is also constructed in the integral form. Therefore, the
following integral form is introduced:
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0/ udV + f(u) - ndl' =0, (5-1)
ot Jy av

where V is the control volume, u is the vector of conserved variables, and f(u) corresponds
to the vector of fluxes. Assuming that the flow variables are sufficiently smooth, (5-1) can
also be written in the differential form given as

%«; + divf(u) = 0. (5-2)

Any set of partial differential equations which can be written in the above form (5-2) is called
a system of conservation laws.

The vector of fluxes f(u) can be expanded as

0f(u) Of Ou
or  Oudz’ (5-3)
where 0f /0u is the Jacobian matrix corresponding to x given by
Ay = . 5-4
J auj ( )
Hence, (5-2) can be formulated in so-called the quasi-linear form:
ou ou
L A= = 0. }
5 (u) 9 0 (5-5)

In the above form (5-5), only the flux Jacobian corresponding to the x is considered. Taking
into account the flux Jacobian corresponding to the ¢ in order to discuss the most general
case, (5-5) extends to

ou 2, O0u
At(u)a + A (u)% =0. (5-6)

Equation 5-6 constitutes a generalized eigenvalue problem which can be written in following
form:

A*v = \Alv, (5-7)
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where v is the generalized eigenvector of A and A’ matrices and X is the corresponding
generalized eigenvector of A% and A which, physically corresponds to the speed of propagation
of the information. The eigenvalues A; of this system are the solutions of the characteristic
polynomial:

|AT — MA| = det(AT — AAY) = 0. (5-8)

If A" matrix is invertible, (5-7) reduces to the standard eigenvalue problem with A = [A’] ~1 A7)
and the characteristic polynomial can be expressed as:

p(A) = =A% + Tr(A)A2 — h(A)\ + det(A). (5-9)

The coefficients in (5-9) are defined as:

Tr(A) = A + Ao + s, (5-10a)
h(A) = M2 + X3 + A3, (5—10b)
det(A) = )\1)\2)\3, (5—100)

where A1, A2, A3 are the roots of (5-9) which correspond to the eigenvalues of the system.

A system (5-6) is said to be hyperbolic at a point (x,t) if A has m real eigenvalues Ay, ..., \p,
and a corresponding set of m linearly independent right eigenvectors K1), ... K™ The
system is said to be strictly hyperbolic if the eigenvalues \; are all distinct.

5-2 Coupled system

The integral boundary layer equations (2-10) are solved simultaneously with the interaction
law which constitutes a coupled system of hyperbolic partial differential equations. The form
of the interaction law (IL) is given in (4-18a). In this section, the appropriate interaction law
is derived based on the detailed discussion of the inviscid flow model presented in Chapter 3.

Interaction law

It has been noted in Chapter 4 that the unsteady quasi-simultaneous scheme takes into ac-
count only the viscous effects during the quasi-simultaneous solution of the integral boundary
layer equations and the interaction law, which is also the reason that the results are called the
corrections as explained in Section 4.2. In order to calculate these corrections, the equation
which gives the doublet distribution in the potential flow given in (3-37), is discretized by
panel method given in fully matrix form as follows:

A (Nin'u + Nvis) + B (O'in'v + O'vis) =0, (5_11)
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where A and B are (Np+ Ny) X (Np+ Ny,) aerodynamic influence matrices. When the viscous
and inviscid effects are considered individually, (5-11) becomes:

A”inv + Boiny = 0, (5-123)
Aﬂvis + Boyis = 0. (5—12b)

Recall the viscous source strength is given by (3-51):

Opis = Un = 7(‘]35*)-

ox

Using (3-51) in (3-37b) and implementing the panel method (5-12b), an expression for fiis
in terms of o,;s can be found and as o0, is expressed in terms of the displacement thickness
0*, the final expression for p,;s can be formulated in terms of §*. An additional simplification
is made: the influence of the wake region is neglected. This will affect the solution for lifting
bodies as will be discussed in the last chapter. Finally, the following form is obtained regarding
the viscous contributions:

0
Aptyis + B | =—(ged6™) ) = 0. -1
poia + B ( 5(2.8%)) =0 (513)
Equation (5-13) can be solved for fi,;s
. _ _Alp (6( 5*)) (5-14)
l"l”UZS - 8:E Qe . -

Then, using (3-37c), the velocity perturbation, i.e. the interaction term, can be calculated:

. 9,
I[6%)m = Age,, = (&C(qeé )) 1 — Villyisy, s (5-15)

where the operator V4 denotes the surface gradient.

Apart from neglecting the wake region, (5-15) is the general solution resulting from the viscous
contributions solved numerically by means of the panel method. The calculated velocity
perturbation is visualized in Figure 4-8.

Having defined the interaction term, the new velocity is calculated using the following inter-
action law:

et — 1 (5" = gl (5-16)
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Equation (5-16) expresses the relation between the simultaneous solution (IBL + IL) and the
direct solution (inviscid flow model). The interaction term I (6* ffl) is found by (5-15) and it

represents the effect of the viscosity on the inviscid flow acting on the boundary layer. Then,
the interaction law is written as (for the ease of notation the hat is dropped):

q?rl - Ufnsn + vsuiis = qé . (5_17)
~~—

known

Notice that in (5-17), the right-hand side is already known from the solution of the inviscid
flow model and it can even be decomposed into its x and z—velocity components, namely ¢
and gz,

9
e = Qe; —Vshvis+ Qe, + (8 (qe5 )> n (5—18)
~—~ ~—~ X
known known
qem (}ez

Construction of the coupled system

In order to express the interaction law in the same set of variables with the integral boundary
layer equations, the normalized magnitude of the edge velocity is expressed as:

1
Qoo

Taking the square of both sides of (5-19):

e = (Iges — VSMviSDQ + (|ge. + Uvisn’)g- (5-19)

1
@2 = gz ((ger = Virois)? + (e + ovism)?) (5-20)

In order to simplify the notation, the absolute value signs and subscripts that denotes the
mth panel are removed taking into account that each term above indicates the length of the
corresponding vector, (5-20) can be reformulated as

1
qz = QT (qac + qu - 2QGI’szvis| + 2Qezavis + ‘vsﬂvisP + (Uvis)Q) . (5—21)
00

Neglecting the last two terms using the fact that Age < ge, (5-21) becomes:
1
Q2 2(]egg|vs,uv7,s| Q2 QQezo'vzs = @ (qu + (Ji) . (5_22)
The doublet distribution p,;s is given by (5-14). Considering only the local effects (for the
justifications the reader should refer to last chapter), (5-14) will reduce to the following form,

specified on each panel,
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Hvisy, = _KJUiSma (5'23)

where K is the m—th diagonal of the multiplication of [A]~![B] matrix after localization, i.e.
taking only the diagonals, calculated during the panel method. Retaining the gradient will
result in a second order partial differential system, in order to avoid this, the gradient of the
doublet distribution is approximated using first order backward finite differencing, considering
the system in one dimension:

‘Vs,ulvis‘ = % (Mvis) = (KUMS)Z_lAm (KO-MS)Za
where Az is the distance between the two collocation points ¢ and ¢ — 1 on the panels used
by the discretization of the inviscid flow model. However, note that (Ko,;s) term has been
projected on the panels in order to use finite differencing. Considering the the fact that the
unknowns at panel ¢ — 1 have been already calculated, these terms can be shifted into the
right-hand side,

(5-24)

1 (Kavis)i—l

— 9, , 2
Qe py (5-25)

1
qg — 0vis(Cr + C2) = @ (qgm + qu)

where

_2¢e, K
Q%A

2qez
C, = Q-
Taking the time-derivative of the both sides of (5-25) yields:

Ca

8q2 0 0 1 2 2 1 (Kam-s)i_l
< — vis(La z)) = - 2qe . -2
o~ o (uis(Ca - C)) = = (ng (a2, +a2.) = Gz 20" 4, ) (5-26)

Same approach followed in (5-26) is also followed in order to avoid mixed derivative in the
second term of left-hand side in (5-26):

0 . (Eo'm's)t - (EUUiS)til
a (UU'LS(Cx + Cz)) = At ,

where E' := (C, + C.,)".

Again, shifting the terms corresponding to the previous time level into the right hand into
right-hand side and using (3-51), (5-26) becomes:

(5-27)

8(12 0 *\ 0 1 2 2
ot - F%(Qeé ) - a ( (Qez +Qez)>

2
oo

0 (1 <Kam>i_1>_<E%is>“ (5-28)

B A At
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where F' = Et/At.

After non-dimensionalizing (5-28) the final form of the interaction law becomes:

dq; 9 9 R 2)
5 Fc8 (ged™) = t(ng (qez—l_Q(iZ)

B 3( 1 (Kffm‘s)z‘l)  (Bows)™' L

02 2" Ay At

(5-29)

Substituting (5-29) into (2-10), the final set of equations for the coupled system is obtained:

8t/ft dv+/ —dVJr T+ / Sy = /

6% /c
u=|cfel,
| e
__Qe 0 0
ffluy=]0 —¢ 0]|u,
L 0 0 de
[ ¢ —qe 0
Fow) = |@H, —¢¢H, 0 u
0 0 0
0 0 0
g'(w)= [0 0 2gec/c|,
00 0
[0 0 —qb/c
g“(u)=| 0 0 0 :
_*FQeC 0 —F¢&*
[ 1
2 Tg?f 3
S(u) = EReé Due .
K vis)i— E vis)
o <é (a2, +4c.) _ﬁm—l@z( 7o) 1) — By o

(5-30a)

(5-30b)

(5-30c)

(5-30d)

(5-30¢)

(5-30f)

As it can be seen from (5-30), the interaction introduced several non-conservative terms in
the system of partial differential equations. Also, implementing the interaction law, it is now
possible to substitute the derivative terms in the source term (2-10d) in non-conservative

matrices g'(u) and g*(u).

The flux Jacobians are calculated using following expressions:
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ot
Af) = S )
() = Ou(;) + g;;(w),

which yields

g 0 —6%/c
Ajj(w)=|0 —¢ 0 |, (5-31a)
i 0 0 24,
roo2 _ 2 g0 (H+2)
Afj(w) = | $H, —¢dH, 2T T —(H+1)q: Hq: 0 (5-31b)
—Fgee 0 —F6* 0 0 0
0 0 0
20
OHk [0 0 —Z2
dge |0 0 0

Characteristic polynomial

The characteristic polynomial (5-9) of the coupled system given in (5-30) is expressed in the
following form:

where
dH,  Hy
= kR -32
Tr(A) qe<1+H<dH H))’ (5-32a)
dH 1
2 k
- — — -32b
h(A) = e (1+ H) (5-32b)
| ILg 1 dH, e aHk>
det(A) = 5 (Hk (H - H> + ¥iia (H+1)+ o0 ) (5-32¢)

A new non-dimensional parameter, the interaction law coefficient, has been defined in (5-32)
as:

L= F&* (5-33)
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and it represents the effect of the interaction law on the system.

Using Vieta’s substitution, the discriminant of (5-9) can be calculated as:

3h(A) — Tr(A4)?

0= . 7 (5-34a)
3

R —9Tr(A)h(A) + 2574(16‘6(A) + QTI“(A) ’ (5-34D)

AS _ Q3 + R2. (5-34(3)

The discriminant of the system provides information about the eigenvalues which can be
used to conclude if the system is (strictly) hyperbolic using the definition given in end of the
previous section. If the polynomial discriminant Ag > 0, one root is real and two are complex
conjugates, then the system is not hyperbolic; if Ag = 0, all roots are real and at least two
are equal, then the system is hyperbolic; and if A; < 0, all roots are real and unequal, then
is system is strictly hyperbolic.
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Chapter 6

Results

The unsteady quasi-simultaneous scheme is introduced in Chapter 4. As a part of this scheme,
the integral boundary layer equations are solved with the interaction law as the boundary
condition and the resulting coupled system is derived in Chapter 5. Furthermore, the neces-
sary conditions for a partial differential equation to be hyperbolic have been explained in the
same chapter. In this chapter, the effect of the interaction law on the solution of the coupled
system is explained.

First, appropriate closure relations have to be chosen to complement the integral boundary
layer equation. Laminar flow is considered and the following closure relations for the shape
factor and the skin friction are used [12]:

1.528 + 0.0111 4397 g go7g (H—4.35)°

H+1 H+1
Hy(H) = —0.0002[(H — 4.35)H? H < 4.35, (6-1)
1.528 4 0.015 L=435° H > 4.35
L (~0.07 + 0.07278 510 ) H <55,
Cr(H) =9, L2 (6-2)
3 (—0.07+0015 (1 - 52p5) H>55

Because of the difficulties in interpreting the eigenvalues of the system (5-30), the discriminant
of the characteristic polynomial (5-9) is calculated by means of Vieta’s substitution (5-34).

Figure 6-1 shows the discriminant of the system when the interaction law coefficient (5-33) is
set to zero for the different values of the shape factor.
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Figure 6-1: The changes in the discriminant of the characteristic polynomial when the in-
teraction law coefficient is set to zero.

Figure 6-1 shows that the discriminant of the characteristic polynomial of A matrix approaches
to zero as the shape factor increases. This means that two eigenvalues of the system become
identical beyond a certain value of H (the sum can be seen in (5-32b)) and the other eigenvalue
is calculated as zero. In the discussion about the unsteady singularities in the boundary layers,
it has been noted that the singularity behaviour is associated with the shear stress by Moore,
Rott, and Sears. Their reasoning was in order to observe a singularity in a boundary layer
(steady or unsteady), the shear stress should vanish and the fluid should be at rest. Therefore,
the skin friction coefficient, which indicates the shear stress at the wall, is plotted in Figure 6-2
in order to see if the value where the discriminant vanishes corresponds to the value at which
the wall shear stress vanishes.
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Figure 6-2: Behaviour of the skin friction according to shape factor.
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Both Figures 6-1 and 6-2 show a similar trend. Both curves have an interval between
3.9 < H < 4.2 where the skin friction and the discriminant approach to zero. This would
suggest the presence of a Goldstein-type viscous character singularity. In order to check if the
matrix is defective there, the eigenvectors are computed and three different eigenvectors are
found which implies that the geometric multiplicity is not less then its algebraic multiplicity
and consequently the matrix is not defective. This agrees with the discussion of the singu-
larity behaviour in unsteady flows in Section 4.3. It has been noted that in unsteady flow,
there is no Goldstein-type (viscous character) singularity present. On the other hand, this
behaviour might correspond to a Van Dommelen singularity since it has been noted in [45]
that Shen and Nenni also observed a singularity that comes about as an intersection of char-
acteristics. However, Van Dommelen and Shen explained the primary physics, though it is
still a controversial topic, behind this type of unsteady singularity as "...it turned out that
the solution becomes singular because part of the vorticity layer moves away from the wall in
an inviscid manner, while essentially preserving its diffusion-determined thickness". Since the
coupled system is not able to include this physics and the lack of theoretical consensus, and
a general criterum, it is not possible to conclude a Van Dommelen type singularity is present
solely based on the results displayed in Figures 6-1 and 6-2, and the characteristics.

After seeing the behaviour of the system without the interaction, next the effect of the inter-
action law on the behaviour of the system is investigated. The coupled system (5-30) shows
a new term in its flux Jacobian A7; (5-32a):

OH,,
dqe

(6-3)

This term governs the effect of the interaction law on the integral boundary layer closure.
Seubers [28] also encountered similar terms e.g. dHy/00* and 0H},/0e. However, he was able
to relate these terms to H; /H by means of the closure relations, so that he can evaluate them
expressed as the second matrix in (5-32a). However, this is not the case when it comes to
(6-3) since there is no closure relation derived as it is done for the integral boundary layer
quantities. In order to fill this gap, a numerical experiment is conducted using a design code
(XFOIL) developed by Drela [10,57].

A simple, symmetric airfoil (NACA 0012) is chosen and for a slight change in g., the changes
in H), are plotted along the chord for Re = 3.10° in Figure 6-3.

Figure 6-3a shows that there is a sudden jump at around chord length of 0.9, this point
corresponds to the laminar-turbulent transition point, i.e. where the laminar flow starts
to be turbulent. The behaviour of the derivative of Hj (6-3) can be interpreted before
transition which is plotted in Figure 6-3b. It is observed that magnitude of the derivative of
Hj, (6-3) never exceeds 0.5 which is at most order unity. Similar trends have been observed
for other airfoils in the laminar flow, i.e. before the transition point. Therefore, the numerical
experiment for (6-3) provides a reasonable approximation for laminar flow.
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Figure 6-3: The numerical experiment conducted on airfoil NACA 0012 in order to interpret
(6-3): a) Full chord length and the behaviour of (6-3), b) Focused on the laminar region.
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Having an approximation for the new term (6-3), the effect of the interaction law coefficient
(5-33) is investigated.

o
n
T

1

Discriminant
1
T

Figure 6-4: The effect of the interaction law coefficient on the coupled system.

Figure 6-4 show that including the interaction law, the discriminant of the characteristic
polynomial shifts towards negative values which means that the two same eigenvalues be-
come distinct with another nonzero distinct eigenvalue. Hence, the system becomes strictly
hyperbolic and a possible Van Dommelen Singularity is avoided.

Recall that the interaction law coefficient is defined in (5-33) as:

I (C,+ Cy) "
=iy

The only term changes in this formulation is the time step At (note that the Az term in C,
is the distance between the collocation points in panels prescribed in the inviscid flow model).
It can be deduced from this definition that decreasing the time-step size will cause an increase
in the interaction law coefficient and the effect of an increase in the interaction law coefficient
is illustrated in Figure 6-4. Hence, an optimum step size can be find numerically which makes
the system strictly hyperbolic.
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Chapter 7

Conclusions and Discussions

In this thesis, the viscous-inviscid interaction schemes are investigated to be employed for
the prediction of the aerodynamical characteristics of unsteady, incompressible flow around
the wind turbine blade sections. The investigation is focused on the quasi-simultaneous
scheme since it has been shown to be a rapidly convergent scheme in the case of steady flow.
The differences between the idea behind the steady and unsteady viscous-inviscid interaction
schemes are pointed out. A new scheme of the quasi-simultaneous scheme is introduced to
solve the unsteady flow, using an interaction law specifically designed for the coupling of the
unsteady models. The coupled system which is a resultant of the quasi-simultaneous solution
is constructed. The effect of the interaction law on the system is investigated. The possible
singularities that can occur are explained.

Discussion

It has been noted that during the derivations, some simplifications have been made that could
negatively influence the accuracy of the solutions. Here these simplifications are discussed.

The discussion starts with the derivation of the panel based interaction law, specifically the
derivation of the doublet strength (5-14). Expressing the doublet strength in terms of the
source strength, there is an inverse and multiplication operation of two matrices A and B.
These matrices are called the aerodynamic influence matrices and have a physical meaning:
They express the effect of the n—th panel on the m—th panel. In their current form they
are dense matrices. And taking the inverse of a dense matrix is an expensive operation. The
argument here is: If one uses the dense matrix operations to obtain the interaction law, would
it be worthwhile to derive an interaction law at all? When solving the interaction problem
quasi-simultaneously is as much computationally expensive as solving it simultaneously, why
would one use the quasi-simultaneous method? This argument implies an essential need for
further simplification.

Following the reasoning of the question above, a simplification approach is offered whereby
only the diagonals of A and B matrices are kept that corresponds, physically, to limit the
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effect of the n—th panel on itself. This approach implies that in every panel, only the local
source and doublet distributions are considered and the attention is restricted only to the
local viscous effects. Using this approach, A matrix becomes easily invertible and [A]~}[B]
multiplication can be easily calculated. Hence, it is possible to express (5-15) as a simple
relation between displacement thickness and edge velocity, f(6*) = Cq. where C is some
constant. Note that, the aerodynamic influence coefficients A,,, and B, are known. The
physical information that is lost when the off-diagonals are ignored is aimed to be compensated
when the new 6* is passed into the inviscid solver. In other words, every panel is updated
by including the local viscous effects, then a new displacement thickness is calculated. This
displacement thickness is then passed into the inviscid flow model where the global effects are
also included. Hence, the only information loss is due to the nonlocal effect of oy;s.

It is important to note that in the approximation, the presence of the singularity on the wake is
also neglected. This simplification becomes important especially for the doublet strength since
the effect of the wake is felt along the whole body. Neglecting the wake region corresponds
to neglecting the effect of the wake on the body, particularly on the lifting properties. This
effect could have been considered by adding one additional panel along the wake and by
Helmholtz theorem, namely the Kutta condition, the doublet strength on this panel could
have been related to the doublet strength on the body which means the doublet strength
on the wake is known when the doublet strength on the body is known. The corresponding
source strength can be modelled by a one or two layers approximation which basically has
the same form as for the body (3-51). Using this wake implementation, the number of
collocation points will increase by one and A and B matrices become (N + 1) x (N + 1)
matrices. The physical correspondence to the diagonals will stay valid but during the local-
effect-simplification, certain information will be lost again. In other words, by neglecting
non-diagonal terms, almost all the effects of the wake which had been introduced are lost.
Therefore, the whole wake region is ignored in the formulation of the viscous contribution and
its effects are left to the inviscid flow model. But, as explained earlier, this is inevitable since
without any sacrifice, it is not possible to find an approximation that can be incorporated in
an efficient VII scheme.

Another important issue is the occurrence of unsteady singularities. As discussed earlier there
is not a commonly accepted theory on the nature and physical mechanisms underlying these
kinds of singularities. It is noted by several authors that the occurrence of these singularities
has been observed when two characteristics intersect which corresponds to the case occurred
in this research. However, since, unlike Goldstein singularity, this subject is still controversial,
it has been avoided to make bold claims without a simulation.

Resume

The implementation of the current scheme and the interaction law could not be realized be-
cause of the time issues. However, a new unsteady scheme is introduced and a new interaction
law is derived which is shown to ensure that the coupled system is strictly hyperbolic by mak-
ing the same eigenvalues distinct avoiding a possible unsteady singularity. The research will
continue with the stability analysis of the coupled system then according to the results, the
new interaction law will be implemented in two/three dimensional incompressible unsteady
solver which is currently being developed by Seubers [28] and the results will be evaluated to
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see if the new quasi-simultaneous scheme yields accurate results compared to the experiments
and if any unsteady singularity occurs as expected.
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