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Abstract

Extreme climate events are becoming more frequent and pose growing risks to residential properties worldwide

[1–4]. Climate risk can affect various other types of risk, including business, operational and market risk.

In the Netherlands—where the majority of the surface lies below sea level—flood risk in particular presents

a significant challenge [5]. Although the Dutch government has committed to improving defence against

floods, which mitigates the probability of major flood events in the coming years [6], the residual risk remains

relevant. These risks can cause issues for banks, as they can impact clients’ creditworthiness and the value

of the underlying collateral, thereby increasing banks’ credit risk for mortgages.

Credit risk is typically quantified using credit risk models. Therefore, the integration of climate-related

events into such models provides the foundation for quantifying the impact of climate risks on credit risk

metrics. Climate-related damage thus directly links to credit risk models. Moreover, from 2026 onwards,

it will be mandatory under regulatory requirements for banks to integrate climate risks into their credit risk

management [7].

This literature report provides the theoretical foundation for research focused on incorporating flood risk

into ABN AMRO Bank ’s credit risk models for residential mortgages. It does so by introducing key credit

risk metrics, such as Probability of Default, Loss Given Default, and regulatory capital, followed by relevant

regulatory frameworks [8–10], and concludes with an overview of climate risk concepts and a review of a

leading methodology for flood risk integration into RRE models [11].

Given the many assumptions involved in both flood and credit risk modelling, and the early stage of develop-

ment of these modelling approaches [12], this study highlights the need for critical evaluation and potential

refinement—providing motivation for deeper investigation in the next phases of this research.
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Preface

This literature report serves as the theoretical foundation for my master’s thesis in Applied Mathematics

at TU Delft. It explores the academic landscape of credit risk and climate risk, with a specific focus on

residential mortgages as the exposure class, and flood risk as the key physical climate risk driver. In addition,

it identifies an existing methodology and theoretical framework that connects these domains.

The road to this final thesis topic was not quite linear. From the outset, I set a strong requirement for

myself: the research had to be as directly relevant to industry practice as possible. While this seemed like a

great guiding principle, it also made the search for the right focus a more complex and iterative journey.

Throughout the past months, I explored multiple directions—ranging from broad financial risk modeling

to machine learning applications, from explainable AI to integrating climate factors into risk assessment.

Conversations with experts at TU Delft, Accenture, and later ABN AMRO played a key role in defining my

focus. Each discussion provided new insights and helped me critically assess what was feasible, relevant and

valuable. Each pivot was necessary to arrive at a topic that is both academically interesting and practically

useful. To illustrate this process, I have included a visual representation of how the research topic evolved

over time. This chart reflects not just the changes in scope, but also the thought process behind narrowing

down to a research question that aligns with both academic relevance and industry needs.

As can be seen, several topic iterations happened throughout the process. It started with an interest in both

financial risk management and machine learning, as I saw a lot of potential in the combination of these fields.

At a certain point, the decision was made to move away from the machine learning focus, based on advice

from experts who mentioned that regulatory constraints would make the topic less directly applicable.

Not long after, climate risk came into the picture—a topic that’s gaining a lot of attention in the credit risk

field. From 2026 onwards, banks will be required to include climate risk in their models, which made it a

great fit for the kind of relevance I was looking for.

After comparing different exposure classes (see Appendix), the decision was made to focus on residential

real estate (RRE). This is the largest class, as it typically makes up more than a quarter of a bank’s total

credit exposure, representing the largest share [13]. With input from ABN AMRO, I chose to work with their

existing climate risk models, focusing specifically on flood risk, with the goal of analyzing and improving the

current quantification.

While this literature study is a milestone in my thesis journey, it is by no means the final step. The insights

gained during this phase will help guide the next stages of the research, ensuring that the work remains

grounded in both theoretical foundations and practical relevance.
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List of Abbreviations

Abbreviation Definition

BCBS Basel Committee on Banking Supervision

BIS Bank for International Settlements

CAR Capital Adequacy Ratio

CDF Cumulative Distribution Function

CER Climate-Related and Environmental Risks

CBS Centraal Bureau voor de Statistiek

CET1 Common Equity Tier 1

CRD Capital Requirements Directive

CRR Capital Requirements Regulation

CSRD Corporate Sustainability Reporting Directive

C-VaR Credit Value at Risk

DNB De Nederlandsche Bank

DTI Debt-to-Income Ratio

E&S Environmental and Social

EAD Exposure at Default

EBA European Banking Authority

ECB European Central Bank

EL Expected Loss

ESG Environmental, Social and Governance

FINREP Financial Reporting

GDP Gross Domestic Product

GHG Greenhouse Gases

IRB Internal Ratings-Based

K Capital Requirement

LGD Loss Given Default

LGL Loss Given Loss

LRA DR Long-Run Average Default Rate

LIWO Landelijk Informatiesysteem Water en Overstromingen

LTI Loan-to-Income Ratio

LTV Loan-to-Value Ratio

NHG Nationale Hypotheek Garantie

PD Probability of Default

RWA Risk-Weighted Assets

SA Standardised Approach

SSM Single Supervisory Mechanism

SSM2017 Standard Method for Calculating Flood Damage in The Netherlands

(2017)

UL Unexpected Loss

VaR Value at Risk

WCDR Worst-Case Default Rate

WOZ Waardering Onroerende Zaken

Table 1: List of used Abbreviations.
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List of Symbols

Symbol Definition

Ap Floor area of property p

CET1 Core equity capital

CET1 ratio0 Initial CET1 ratio

CET1 ratioS CET1 ratio under flood scenario S

δ′ Vector of coefficients for control variables

∆ELS Difference in expected loss under flood scenario

∆RWAS Scenario-specific change in risk-weighted assets

h Flood depth

Ki ,b Initial capital requirement factor

KS Flood S scenario-specific capital requirement

KS,i,b Capital requirement for loan i of bank b under flood scenario S

L Loss variable in VaR calculation

LGLi Loss Given Loss

LGLS,i LGL under flood scenario S

LGDi ,b LGD of loan i at bank b before flood

LGDS,i,b LGD of loan i at bank b under scenario S

LGDS,i LGD under flood scenario S

LTV0,i Initial Loan-to-Value ratio

LTVS,i LTV under flood scenario S

max damaget Maximum structural damage per m2 for property type t

mSLGD Scenario-specific LGD multiplier

mSPD PD multiplier under scenario S

mSRW Scenario-specific RWA multiplier

p Property index

Φ CDF of standard normal distribution

Φ−1 Inverse CDF of standard normal distribution (quantile function)

PDα Worst-Case Default Rate

property valuep Observed collateral value of property p

ρ Correlation factor for systematic risk

RWAi ,b Initial RWA for loan i of bank b

RWASi,b RWA for loan i of bank b under flood scenario S

sales ratioSp Liquidation value to market value ratio under scenario S

t Property type

τ Inflation correction factor

T Final reporting period

θ(h)St Damage function for flood depth h, property type t in scenario S

ui ,b,t Error term

V aRα Value at Risk at confidence level α

V aRα(PD) VaR of default probability

wb Weight of bank b in system exposure

wi Weight of loan i in bank exposure

Xi ,b,t Vector of control variables

yi ,b,t Default status of borrower i at bank b at time t

Zi ,b,t Vector of primary independent variables

ZS,i,b,T Independent variables under scenario S at time T
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Symbol Definition

β′ Vector of coefficients for primary independent variables

φSp Fraction of collateral value of property p lost due to flooding in

scenario S

α Confidence level

Table 2: List of used symbols.

5



Contents

Preface 2

1 Introduction 7

1.1 Research Questions and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Credit Risk Modelling 10

2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Theoretical Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Loss Distribution Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Capital requirement and Risk Weighted Assets . . . . . . . . . . . . . . . . . . . . 14

2.3 Probability of Default (PD) and Loss Given Default (LGD) Modelling . . . . . . . . . . . . 17

2.3.1 Probability of Default (PD) modeling . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 LGD modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Residential Real Estate (RRE) Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Regulations 22

3.1 Regulatory Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Basel Accords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Basel I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Basel II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.3 Basel III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.4 Basel IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Climate-Related and Environmental Risks (CER) Regulation . . . . . . . . . . . . . . . . . 25

3.3.1 ECB Guide on climate-related and environmental risks (November, 2020) . . . . . . 26

3.3.2 EBA Report on Environmental & Social Risks in Prudential Framework (October,

2023) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.3 EBA Guidelines on the management of ESG risks - Final Report (January, 2025) . . 27

4 Climate and Environmental Risks 29

4.1 Risk Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Flood Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Scenario-based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.3 Flood Damage Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.4 Credit Risk Impact Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Concluding Remarks 43

6



1 Introduction

Risk management supports the stability and integrity of the banking industry. Within this field, credit risk

measures the potential losses incurred when borrowers fail to meet their financial obligations, playing a

pivotal role in the process. Effective credit risk management is crucial, influencing not only the health of

financial institutions but also the broader economic ecosystem.

Traditionally, credit risk in the banking sector has been viewed through a regulatory or financial lens. In

recent years, climate and environmental risk has emerged as a relevant external driver that affects traditional

risk categories, including credit risk. Climate risk is defined as the potential for problems for societies or

ecosystems from the impacts of climate change. The assessment of climate risk is based on formal analysis

of the consequences, likelihoods and responses to these impacts. This broad category can be divided into

two types of risks. Physical risks arise from the direct impacts of climate-related events, such as increased

flooding, storms and wildfires. Transition risks are associated with the economic adjustments required as

societies shift towards low-carbon technologies and policies.

The increasing prevalence of climate risks is undeniable, translating into both physical impacts [1–5] and

transitional consequences [14, 15]. There are significant implications across many sectors, including credit

risk management within the Dutch banking industry. Recognizing this, regulatory frameworks have begun to

adapt. The Basel Accords are the official regulatory standards issued by the Basel Committee on Banking

Supervision, designed to ensure that financial institutions maintain adequate capital and follow sensible oper-

ational practices. The latest iteration of these regulations, known as Basel IV, was finalized at the beginning

of 2023. The integration of climate and environmental risk into credit risk models is primarily being shaped at

the European level. Requirements formulated in the so-called Capital Requirements Regulation (CRR) and

Capital Requirements Directive (CRD) are being translated into binding supervisory expectations through

the EBA Guidelines on ESG Risk Management [7,16], which will apply from January 2026. Additionally, the

ECB’s Guide to Internal Models emphasizes that banks must consider climate and environmental risks when

developing and maintaining their internal credit risk models [17].

Despite these regulatory guidelines, the development and adoption of climate risk within bank’s internal

credit risk models are still in their early stages. Implementation varies widely among financial institutions,

some are already testing and validating integration strategies, while others remain in denial about the need

to adapt [12]. This difference in responses highlights that the integration of climate risk in the banking

sector is still in its early phase.

A particularly interesting aspect within this context is the exposure class of residential mortgages. The

consequences for banks must be considered when collateral—often regarded as the bank’s main security

when granting a mortgage loan—is severely affected by flooding or when new climate policies significantly

impact borrowers’ repayment capacity. Although residential mortgages represent a critical exposure class,

the development of robust models that integrate climate and environmental risks remains in an early stage.

This is not only due to limited data availability, but also because methodological approaches are still evolving.

One of these climate-related risks still in its early stages of integration is flood risk. Better quantification of

its potential impact on mortgage credit risk is needed in order to support more accurate and forward-looking

risk assessments. Currently, some climate-related risk drivers are excluded from credit risk modelling—not

because they are deemed negligible, but because the available data and modelling techniques do not yet

support their proper incorporation. This thesis aims to contribute to bridging that gap by exploring improved

methods to quantify flood risk within credit risk models for residential mortgages.

For several years, banks have been exploring the integration of climate-related risks into credit risk manage-

ment. One of the major Dutch banks involved in this field is ABN AMRO (ABN AMRO Bank N.V.). Like

any modelling journey, this process involves challenges, one of which is quantifying the impact of climate

risks, including flood risk. This thesis will support ABN AMRO in refining the assessment of flood risk within
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credit risk modelling for residential mortgages.

This research will therefore focus on providing new insights within this context, specifically examining one

type of climate risk, defining the research topic as follows

Integrating Physical Climate Risk into Credit Risk Modelling: Analysis and Refinement of Flood Risk

Assessment for ABN AMRO’s Mortgage Portfolio

This literature study is organized to review the foundational aspects of credit risk and climate risk within

the banking sector. It begins with a deep dive into credit risk modeling, exploring fundamental concepts,

theoretical foundations and key metrics such as Probability of Default (PD) and Loss Given Default (LGD).

Additionally, the credit risk exposure of retail mortgages is briefly discussed. Following this, an overview of

regulatory frameworks is provided—including the Basel Accords and recent developments in climate-related

and environmental risk (CER) regulation—which serves as a bridge to more refined modelling approaches

and offers a conceptual framework within which these can be developed. The next section introduces climate

and environmental risks, with a particular focus on flood risk and its relevance to credit risk modeling. The

final section presents a review of a state-of-the-art flood risk integration methodology in the Netherlands,

offering theoretical insights and practical implications for incorporating flood risk into credit risk metrics,

thereby forming the basis for the modeling phase of this research.

1.1 Research Questions and Scope

This research investigates how flood risk is currently quantified and integrated into ABN AMRO’s credit

risk models for retail mortgages, with a specific focus on the role of modelling assumptions. The central

research question guiding this study is formulated as follows

To what extent do the assumptions underlying ABN AMRO’s current flood risk quantification

affect its integration into retail mortgage credit risk models, and how can this be evaluated and

improved?

To systematically address this question, the following sub-questions are defined. Together, they represent

the structure of the research process, with each sub-question contributing a necessary component to the

overall analysis. Moreover, the sub-questions are ordered chronologically, reflecting the intended sequence

in which they will be addressed throughout the research. When answered collectively, they provide a com-

prehensive response to the main research question.

1. What is the current structure of ABN AMRO’s flood risk quantification for retail mortgage models?

• How is flood damage estimated and translated into collateral value impact?

• In what way is flood risk currently translated into credit risk parameters such as LGD and PD?

• What data sources are used for flood risk modeling?

2. What are the key assumptions underlying the current quantification and integration of flood risk into

retail mortgage credit risk models?

• What types of assumptions are made throughout the model structure?

• How can these assumptions be categorized (e.g., data-related, methodological, scenario-based)?

• How are assumptions interconnected or dependent on each other within the model structure?

3. What mathematical or statistical methods can be used to evaluate the robustness and sensitivity of the

identified assumptions?

• Which techniques can be applied to test assumption sensitivity?
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• Can uncertainty quantification or simulation-based methods be applied in this context?

• How can the selected methods support a better understanding of model reliability and the impact of

assumptions?

4. Based on the selected methodology, what can be concluded about the robustness and sensitivity of key

assumptions?

• Which assumptions or parameters appear highly sensitive within the current model structure?

• Which assumptions or parameters have minimal influence on model outcomes?

5. What recommendations can be formulated—based on the research findings—for enhancing the quantifi-

cation and integration of flood risk in ABN AMRO’s retail mortgage models?

• Which insights from the model evaluation suggest directions for improvement?

• What conceptual refinements could support more robust flood risk integration in the future?

The reasoning behind the order of the sub-questions is to first obtain a comprehensive understanding of the

current situation, followed by a detailed mapping of all assumptions embedded within it. Next, appropriate

mathematical and statistical techniques are identified to assess these assumptions, after which results are

generated based on the selected methodology. Finally, these findings are translated into a set of recom-

mendations, with the aim of providing ABN AMRO’s Climate and Environmental Risk team with valuable

insights and concrete, actionable suggestions. By answering the sub-questions in this specific sequence, a

reasoned and evidence-based answer to the main research question may be formulated.

Before these research questions can be addressed, first a solid knowledge foundation must be established

across several domains: credit risk and climate risk. This includes a more in-depth understanding of how

residential real estate exposures are modelled within credit risk frameworks, as well as a focused introduction

to flood risk as a key component of physical climate risk. Finally, it is essential to explore existing research

at the intersection of these two domains. Establishing this theoretical foundation is the primary objective of

the initial phase of this research—of which this literature report is the main deliverable.
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2 Credit Risk Modelling

Credit risk modeling is a fundamental aspect of financial risk management, providing methodologies to

quantify and mitigate risks associated with lending activities. These models aim to estimate the financial

losses that may occur if borrowers are unable to meet their repayment obligations. Given its central role

in ensuring financial stability, credit risk modeling has evolved into a structured field, incorporating both

theoretical frameworks and empirical applications.

This section provides an overview of the key components of credit risk modeling. It begins with a set

of fundamental concepts and terminology that are essential for understanding the structure and function

of credit risk models (§ 2.1). Next, the theoretical foundation is discussed, including the statistical and

mathematical principles underlying capital requirements and loss estimation (§ 2.2). This is followed by a

high-level overview of common modeling techniques for Probability of Default (PD) and Loss Given Default

(LGD), with a focus on practices observed in the Dutch banking sector (§ 2.3). Finally, the section explores

the specific characteristics of residential mortgage exposures, identifying key risk drivers that influence credit

risk modeling within this exposure class (§ 2.4).

To establish a foundational understanding, it is essential to first revisit the concept of financial risk in general.

Risk is formally defined as follows:

Definition 1. Risk is any event or action that may adversely affect an organization’s ability to achieve its

objectives and execute its strategies.

This definition can be categorized into distinct types of risk [18]:

• Market Risk: The risk of changes in the value of a financial position or portfolio due to movements

in underlying components such as stock prices, bond prices, exchange rates, or commodity prices .

• Credit Risk: The risk of not receiving promised repayments on outstanding investments due to the

default of a borrower. This risk is the focus of this research.

• Operational Risk: The risk of losses resulting from inadequate or failed internal processes, people,

systems, or external events.

• Liquidity Risk: The risk associated with the lack of marketability of an investment, where it cannot

be sold quickly enough to prevent a loss.

• Model Risk: The risk of using a misspecified or inappropriate model to measure financial risk.

This research specifically addresses credit risk, which represents the likelihood of a borrower failing to meet

contractual obligations, resulting in financial losses for the lender. Credit risk is crucial in the context of

financial institutions, particularly in lending activities such as mortgages, loans and credit facilities.

2.1 Fundamentals

The field of credit risk modeling covers a wide variety of models, exposure classes and methodologies that

often differ significantly between institutions. Despite this diversity, establishing a clear and consistent

framework of foundational terminology is essential to ensure effective communication and understanding.

This section introduces a set of key terms that frequently appear in credit risk modeling, including throughout

this report. A simple illustrative example is also included to clarify how these metrics might look in practice.

• Exposure Class: A regulatory category that groups similar types of loans based on their characteristics

and risk profiles. Common exposure classes include retail mortgages, corporate loans and exposures

to governments or financial institutions. Each class follows different regulatory rules and modeling
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requirements. For example, residential mortgages form a separate exposure class with their own

capital requirements and risk drivers.

• Probability of Default (PD): The likelihood that a borrower will fail to repay their loan within a

specific period, usually one year. It reflects how risky the borrower is. PD is one of the key metrics in

credit risk modeling. The way in which this value is determined depends on the regulatory approach a

bank is required to follow. Under more advanced regulatory approaches, banks are allowed to develop

their own PD models using internal historical data. These models are typically tailored to specific

exposure classes and reflect the characteristics of the bank’s own portfolio.

• Exposure at Default (EAD): The amount of money that is at risk at the moment the borrower

defaults. For a simple loan, this is just the outstanding balance. For credit cards or other flexible

credit lines, it also includes the unused part that the borrower might still withdraw before defaulting.

In that case, the amount is adjusted using a so-called Credit Conversion Factor (CCF). So in general

the EAD is given by

EAD = Drawn Balance + (Undrawn Balance · CCF)

Estimating EAD accurately is important, especially for products where the borrower still has room to

borrow more before defaulting. For the exposure class of residential mortgages specifically, EAD is

typically set equal to the outstanding loan balance, as no additional credit can be drawn.

• Loss Given Default (LGD): The percentage of the loan that is lost if the borrower defaults, after

taking into account any money the bank recovers—such as by selling collateral (e.g. a house). It is

calculated as

LGD = 1−
Recovery Amount

Exposure at Default

The recovery amount depends on many factors, like the value of the collateral and how easy it is to

sell. A higher LGD means that the bank loses more money if things go wrong. Just like PD, LGD can

be estimated using internal models, based on historical recovery data, or can be set by regulation.

• Expected Loss (EL): The amount of money the bank expects to lose on a loan. It combines three

components: how likely a borrower is to default (PD), how much is lost if that happens (LGD) and

how much money is at risk (EAD), so it is given by the following

EL = PD · LGD · EAD (1)

This expected loss is treated as a regular cost of doing business. Banks usually include it in the interest

rate they charge or account for it by setting money aside (called provisions).

• Unexpected Loss (UL): The part of the loss that goes beyond what the bank expected. Even if the

expected loss is low, actual losses can sometimes be much higher—especially during a crisis. UL is

used to calculate how much extra capital a bank needs to keep as a safety buffer. The idea is: if

things go worse than expected, the bank should still be able to absorb the shock without getting into

trouble.

• Stress Testing: A way to check what would happen to the bank’s loans if the economy suddenly

takes a turn for the worse. For example, what if house prices fall sharply, or unemployment rises?

In a stress test, banks simulate such scenarios and estimate how much the PD, LGD, EAD, and the

corresponding losses would increase. This helps them prepare for extreme but plausible situations and

is also required by regulators.

To make these definitions more concrete, the following example illustrates how the different components

— PD, LGD, EAD, and EL — interact in a simplified mortgage case. It shows how a bank estimates the
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potential loss on a loan by combining these key metrics.

Example 2.1. Consider the following simplified mortgage case: a borrower receives a mortgage of $400,000

to buy a house worth $500,000. This means the initial Loan-to-Value (LTV) ratio is 80%. Over time, the

borrower repays part of the loan, and at some specific time the outstanding balance is reduced to $360,000.

This remaining amount is the Exposure at Default (EAD) — the amount that would still be at risk if the

borrower defaults.

Now assume the borrower defaults. The bank repossesses the property and sells the house. Let’s say it

manages to sell the house for $342,000, which is lower than the original house value—typically due to the

urgency and price pressure associated with a forced sale, or adverse economic cycle conditions. This means

the bank recovers part of the exposure, but not all of it. There is a loss of:

Loss = $360,000− $342,000 = $18,000

Based on this, the Loss Given Default (LGD) can be calculated as the percentage of the EAD that is lost:

LGD = 1−
Recovery Amount

Exposure at Default
= 1−

342,000

360,000
= 0.05

Next, assume the Probability of Default (PD) is estimated to be 25%, i.e. 0.25. This means there is a 1 in

4 chance that a similar borrower will default within a year.

Now that we have PD, LGD and EAD, we can calculate the Expected Loss (EL):

EL = PD · LGD · EAD = 0.25 · 0.05 · 360,000 = $4,500

This means that on average, the bank expects to lose $4,500 on this mortgage. This expected loss is usually

covered by the interest charged on the loan or through provisions set aside for credit losses.

With a clearer understanding of the fundamental components of credit risk modeling, the focus now shifts

to a deeper exploration of the theoretical framework behind these concepts. The following section discusses

the mathematical and regulatory principles that form the foundation of credit risk models.

2.2 Theoretical Foundation

A key objective of credit risk modeling is to determine how much economic capital a bank should hold

internally to remain solvent during severe financial stress. This internally determined capital serves as

a cushion against unexpected losses. In parallel, banks are also required to hold regulatory capital —

a minimum amount of capital mandated by international regulatory standards. This regulatory capital

underpins the capital ratio that banks must meet to safeguard financial stability.

The required amount of regulatory capital is expressed in terms of Risk-Weighted Assets (RWA), which

adjust a bank’s exposures for their associated risk. A fixed percentage of these RWA must be covered by

regulatory capital; currently this requirement is set at 8% [8]. In other words, the RWA figure appears in

the denominator of the capital ratio and plays a key role in determining whether a bank meets its regulatory

obligations.

The calculation of RWA relies on the Capital Requirement K, which represents the risk-sensitive capital

buffer required per unit of exposure. Informally, K reflects the proportion of an exposure deemed sufficiently

risky to require additional capital. There are different levels of flexibility in how banks may determine these

values, which correspond to different approaches. The so-called Standardized Approach (SA) applies fixed
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regulatory risk weights, whereas the Internal Ratings-Based (IRB) approach allows banks to use internal

models to estimate risk components such as PD, LGD and EAD. These approaches will be discussed in

more detail in regulatory section 3.

Given that these concepts may be difficult to grasp without prior exposure to credit risk modeling, this

section aims to provide the theoretical and mathematical foundations necessary for their understanding.

The key concepts presented here will also serve as the basis for Section 3, which provides a broader overview

of the regulatory framework and its historical development. Since the capital formulas used in IRB models

consist of several components, this section starts from the most fundamental element: the potential losses

a financial institution might face. This naturally leads to the question of how such losses are distributed and

what underlying assumptions shape their behaviour.

2.2.1 Loss Distribution Function

The estimation of economic capital relies on the probability distribution function of credit losses, commonly

referred to as the loss distribution of a credit portfolio or credit loss function [19, 20]. This distribution

represents the range of possible losses a bank may incur due to credit risk. A visual representation of this

distribution is given in Figure 1.

Figure 1: Credit Loss Function [20].

The loss distribution is characterized by its skewed nature, where small losses are significantly more probable

than large ones. The x-axis represents the potential credit losses, while the y-axis denotes the probability

density of these losses occurring. Several key risk measures are directly linked to this distribution. Expected

Loss (EL) corresponds to the average credit loss a bank expects over a given time horizon. It is considered

a normal cost of doing business and is typically covered by pricing strategies and provisions. In contrast,

Unexpected Loss (UL) represents the deviation from the expected loss due to uncertainty in credit outcomes.

Banks must hold capital to absorb UL, to be able to withstand crisis credit events.

A critical measure associated with stress scenarios is the Value at Risk (VaR), which is defined as the

maximum potential loss a bank is expected to sustain with a given confidence level over a specific time

horizon. Mathematically, VaR at confidence level α is given by

P (L > VaRα) = 1− α, (2)

where L represents the loss variable under consideration. In credit risk management, VaR is often referred to

as C-VaR, the Credit Value at Risk, a convention that will also be followed here. By regulation, a confidence

level of α = 0.999 is generally applied in credit risk assessments to ensure adequate capital buffers against

unexpected losses.

13



The difference between the EL and the C-VaR defines the stress loss, representing the probability that actual

losses exceed both EL and UL. This corresponds to the right tail of the loss distribution. The relationship

between UL, EL and C-VaR naturally links to the regulatory capital requirements. The next section explains

how these requirements are calculated under the Basel framework.

2.2.2 Capital requirement and Risk Weighted Assets

Under the Basel framework, capital requirements are directly linked to unexpected losses (UL). How this

relationship is established—along with a simplified outline of the derivation of regulatory capital—will be

explained throughout this section. It is important to note that under the Standardized Approach (SA),

prescribed regulatory risk weights are applied to determine capital requirements. In contrast, under the

Internal Ratings-Based (IRB) approach, capital requirements are calculated based on risk parameters such

as PD and LGD. For the IRB approach, the regulatory formula defined in CRE31, paragraph 31.14 [8], for

retail residential mortgage exposures that are not in default, is given by the following equation:

Capital requirement = K = LGD ·Φ
(
Φ−1(PD)√
1− ρ

+

√
ρ

1− ρ ·Φ
−1(0.999)

)
− PD · LGD, (3)

where Φ denotes the cumulative distribution function (CDF) of the standard Gaussian distribution and

Φ−1 denotes its inverse, the quantile function of the standard Gaussian, which maps a probability p to the

corresponding quantile value. PD denotes the probability of default, LGD represents the loss given default

and ρ is referred to as the correlation, a parameter that captures systematic risk and serves as a proxy for

exposure to the general economy. Under the currently applicable regulatory framework, a fixed correlation

value of ρ = 0.15 is prescribed for retail residential mortgage exposures. To illustrate, for corporate loans

this correlation is generally set to a higher value by regulators, as corporate loans are assumed to be more

sensitive to the general economy than residential mortgages 1.

The capital requirement equation (3) may seem to appear out of nowhere, but its derivation is based on

a quite extensive mathematical framework. A detailed exploration is not necessary for the scope of this

study, a simplified derivation can be provided to offer some intuitive understanding, using the following

definitions [10]:

K = V aRα(PD) · LGD, (4)

V aRα(PD) = PDα − PD, (5)

PDα = Φ

(√
ρΦ−1(α) + Φ−1(PD)√

1− ρ

)
. (6)

where V aRα(PD) denotes the Value-at-Risk of the default probability at confidence level α, and PDα is the

critical value of PD at confidence level α, commonly referred to as the Worst-Case Default Rate (WCDR)

or downturn PD.

Using these expressions, the capital requirement as specified by regulation follows directly:

1Note that: ρ cannot be zero, as this would imply K = 0. To prevent banks from underestimating systematic risk, Basel II

established minimum values for ρ across different exposure classes.
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K = V aRα(PD) · LGD,

= (PDα − PD) · LGD,

=

(
φ

(√
1

1− ρΦ
−1(PD) +

√
ρ

1− ρΦ
−1(α)

)
− PD

)
· LGD,

= LGD · φ
(√

1

1− ρΦ
−1(PD) +

√
ρ

1− ρΦ
−1(α)

)
− PD · LGD.

Finally, the connection between the capital requirement (3) and the loss distribution presented in Figure

1 can be further clarified. The right-hand side of Equation (3) corresponds to the expression for the

Expected Loss, i.e. EL = PD · LGD. It is important to note that, for explanatory purposes, EL is
now expressed as a percentage of the EAD, whereas the actual EL can be represented as an absolute

value (1). This absolute value is obtained by multiplying the percentage by the EAD. The left-hand side,

LGD · Φ
(
Φ−1(PD)√
1−ρ +

√
ρ
1−ρ ·Φ

−1(0.999)
)
, corresponds to the so-called conditional expected loss, which is

equivalent to the previously introduced Credit Value at Risk (C-VaR). This can also be expressed as the

product of the conditional probability of default and loss given default, i.e. C-V aR = PDα · LGD, with
α = 0.999. Taking this into account, referring back to Figure 1, as previously mentioned, the unexpected

loss is obtained by subtracting the expected loss from the C-VaR, i.e. UL = C-V aR − EL. This completes
the framework, as this exactly corresponds to the subtraction observed in the capital requirement (3). It

follows that the capital requirement corresponds to the unexpected loss component, confirming the earlier

statement that these metrics are directly linked.

After determining the capital requirement (3) as a percentage of the exposure, the next step is to calculate

the Risk-Weighted Assets (RWA). This is done by multiplying K by the Exposure at Default (EAD) and

a factor of 12.5. This factor represents the reciprocal of the minimum capital ratio of 8% 2, ensuring

consistency with regulatory requirements. The formula is given by:

RWA = 12.5 ·K · EAD. (7)

Another key metric is the Common Equity Tier 1 (CET1) ratio [9], it is used to assess a bank’s financial

strength. It reflects the proportion of a bank’s capital, consisting of its highest quality assets, relative to its

risk-weighted assets. The formula for calculating the CET1 ratio is:

CET1 ratio =

(
CET1 capital

RWA

)
· 100% (8)

where we have that the CET1 capital represents the bank’s core equity capital, such as it’s common shares

and share surplus, retained earnings and capital from subsidiaries.

Regulatory requirements require that banks maintain a minimum CET1 ratio to ensure they have sufficient

capital to absorb losses and continue operating during periods of financial stress. The minimum CET1 ratio

requirement is > 4.5%.

To make the capital requirement formula more tangible, the following example illustrates its application

using a hypothetical retail mortgage exposure and standard Basel parameters.

Example 2.2. For retail mortgage exposures, banks are allowed to develop their own internal models for

estimating the Probability of Default (PD), Loss Given Default (LGD), and Exposure at Default (EAD).

2The factor of 12.5 ensures consistency with the regulatory capital framework set by the ECB and is based on the reciprocal

of the minimum capital ratio of 8%. This is discussed in more detail in Section 3. See also [8].
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This is part of the so-called Advanced Internal Ratings-Based (A-IRB) approach. More details on this are

provided in the regulatory section 3. For this example, the input values are assumed to be given.

To illustrate the calculation of regulatory capital and Risk-Weighted Assets (RWA) under the IRB approach,

we consider a simplified case in which the bank has only one retail mortgage exposure. In reality, the capital

requirement is computed per individual loan, after which the results are aggregated across all exposures to

determine the total RWA. However, for illustrative purposes, we focus here on a single exposure.

Regarding the confidence level, a value of α = 0.999 is commonly used in IRB-based credit risk capital

calculations to ensure sufficient capital is held for extreme but plausible credit events.

Let’s assume a bank has a retail mortgage exposure with the following characteristics

• Probability of Default (PD): 1% or 0.01

• Loss Given Default (LGD): 40% or 0.40

• Exposure at Default (EAD): €100,000

• Correlation ρ = 0.15 (Basel-prescribed for retail mortgages)

• Confidence level α = 0.999,

The capital requirement K is given by the IRB formula

K = LGD ·Φ
(
Φ−1(PD)√
1− ρ

+

√
ρ√
1− ρ

·Φ−1(0.999)
)
− PD · LGD,

recall equation (3). This leads to the following calculations

Φ−1(PD) = Φ−1(0.01) ≈ −2.33

Φ−1(0.999) = 3.09√
1− ρ =

√
0.85 ≈ 0.922,

√
ρ ≈ 0.387

−2.33
0.922

≈ −2.527,
0.387

0.922
· 3.09 ≈ 1.297

Φ(−2.527 + 1.297) = Φ(−1.23) ≈ 0.109

K = 0.40 · 0.109− 0.01 · 0.40 = 0.0436− 0.004 = 0.0396

So the capital requirement is approximately 3.96% of the EAD. Next, we compute the Risk-Weighted Assets

(RWA):

RWA = 12.5 ·K · EAD = 12.5 · 0.0396 ·€100, 000 = €49, 500

Finally, if the bank has €8,000 in CET1 capital for this exposure:

CET1 ratio =

(
€8, 000
€49, 500

)
· 100% ≈ 16.16%

Since this is above the minimum required CET1 ratio of 4.5%, the bank satisfies the regulatory requirement.

Banks have some degree of flexibility in modeling PD, LGD and EAD, leading to potential variation in capital

requirements across institutions. As evident from the capital requirement (3), accurate estimation of PD

and LGD is crucial for banks to balance capital efficiency and risk coverage, ensuring that they hold sufficient

capital without excessive reserves that could limit financial performance.
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2.3 Probability of Default (PD) and Loss Given Default (LGD) Modelling

The development of Probability of Default (PD) and Loss Given Default (LGD) models is tailored to each

individual bank. This section provides a general overview of examples of typical structures used by Dutch

banks. While implementation details may vary, the core framework and regulatory context share many

common elements across institutions operating within the Netherlands. The two key metrics, PD and LGD,

will both be discussed separately to provide a general understanding of their typical modeling approaches.

2.3.1 Probability of Default (PD) modeling

The Probability of Default (PD) is a key metric in credit risk modelling, used not only in the calculation

of regulatory capital under the Internal Ratings-Based (IRB) approach, as discussed in Section 2.2.2, but

also in areas such as credit acceptance, economic capital modelling, loan pricing, provisioning and portfolio

monitoring. Although the way PD is modelled is bank-specific, there is a common structure in terms of

general steps that are typically applied. At the start of the PD modelling process, a selection of relevant

risk drivers is made. Based on this selected set of drivers, a statistical model is used to produce a certain

score. This score is used to define different risk profiles—also referred to as ‘pools’. These pools are

then calibrated, followed by final adjustments, ultimately resulting in the final PD used in each of the

aforementioned applications. The PD estimation process is therefore generally structured in two phases:

risk differentiation and risk quantification, both of which will be briefly explained in this section.

Phase 1: Risk differentiation (ranking)

In the first phase, statistical models such as logistic regression are employed to rank borrowers according to

their credit risk. These models take loan- or borrower-specific risk drivers x1, x2, . . . , xk as input and produce

a continuous score that reflects the relative likelihood of default. For example, in a logistic regression setting,

the output score is given by

score(x) =
1

1 + exp(−(β0 + β1x1 + β2x2 + · · ·+ βkxk))

Although this score lies between 0 and 1 and resembles a probability, it does not yet represent the final PD.

Rather, it provides a risk ranking that allows the institution to assign exposures to so-called discrete rating

grades or pools, each bounded by lower and upper score thresholds.

Phase 2: Risk quantification (calibration)

In the second phase, each rating grade is assigned a PD estimate that reflects the average default experience

observed historically for exposures in that grade. This is typically based on the Long-Run Average Default

Rate (LRA DR), computed as the average of annual default rates over a sufficiently long and representative

period of time. The use of long-run averages ensures that the PDs reflect both benign and adverse credit

conditions.

After assigning the LRA DR, institutions may apply appropriate adjustments (AA) to account for structural

breaks, data inconsistencies or observed jumps in default rates. Finally, a Margin of Conservatism (MoC) is

added to reflect estimation uncertainty, particularly in cases of data limitations or model uncertainty. The

final output—referred to as the regulatory PD—is then used in capital requirement calculations.

To make the process more intuitive, a hypothetical example is provided below.

Example 2.3. Consider a bank estimating the probability of default (PD) for residential real estate (RRE)

exposures under the IRB approach. The institution collects historical data on 100,000 mortgage loans,

including borrower- and loan-specific variables such as loan-to-value ratio (LTV), borrower age, debt-to-

income ratio (DTI) and delinquency history.
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Step 1: Risk differentiation: A logistic regression model is trained to estimate a credit risk score for each

borrower. For a particular borrower, the model outputs a score of 0.014. Although this value lies between

0 and 1, it does not yet represent a final PD—it serves to rank borrowers by relative credit risk.

Step 2: Score segmentation: Based on the score distribution, the bank defines ten rating grades (pools),

with pools A through I equally spaced between 0.0000 and 0.0400, and pool J capturing all scores above

0.0400. The segmentation is shown below:

Rating grade Score range

A [0.0000 – 0.0040)

B [0.0040 – 0.0080)

C [0.0080 – 0.0120)

D [0.0120 – 0.0160)
...

...

H [0.0280 – 0.0320)

I [0.0320 – 0.0400)

J [0.0400 – 1]

Our example borrower (score = 0.014) is assigned to rating grade D.

Step 3: Calibration using the LRA DR: The bank calculates the long-run average default rate (LRA DR)

for each pool using historical default data over a 10-year period. For pool D, the LRA DR is estimated at

0.15%.

Step 4: PD best estimate: Based on current performance data and model calibration, the bank estimates

the best estimate PD for pool D to be slightly lower than the LRA DR, at 0.14%.

Step 5: Margin of Conservatism (MoC): To account for data limitations and estimation uncertainty, a

conservatism margin of 0.02 percentage points is added.

The final regulatory PD for rating grade D is therefore:

PDfinal = 0.14% + 0.02% = 0.16%

This PD is subsequently used as an input in the IRB capital requirement calculation.

Each exposure class relies on a distinct set of risk drivers for PD estimation. For residential real estate

portfolios, relevant drivers may include the loan-to-value ratio, borrower age, loan size and delinquency

history. These variables serve as inputs to the risk differentiation model, which produces a credit risk score

used to assign exposures to rating pools. Historical performance data is then used to calibrate PDs for each

grade, with appropriate adjustments and conservative uplifts applied as needed, in line with ECB expectations

and Basel requirements.

2.3.2 LGD modeling

Loss Given Default (LGD) quantifies the percentage loss a bank incurs in the event of a borrower’s default.

While the general definition is consistent across institutions, the modelling of LGD can differ significantly,

depending on factors such as data availability, portfolio characteristics, and internal methodologies. This

section illustrates an example of a commonly applied modelling technique, in which LGD is decomposed

into three components: the probability of cure, the Loss Given No Cure (LGNC), and the Loss Given Cure

(LGC).

The rationale for this decomposition lies in the fact that, when a borrower defaults, it does not necessarily

result in a full loss of the outstanding exposure. Several mitigating factors can reduce the realised loss, in-
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cluding the possibility that the borrower cures (i.e. returns to a performing status), enters into a restructured

agreement, benefits from third-party guarantees, or provides collateral that can be liquidated to recover part

of the exposure. As a result, an LGD model must distinguish between different default outcomes and their

respective loss implications.

The first component, the probability of cure, estimates the probability that a borrower who has defaulted

will return to a non-default status within a defined period. This probability, known as the cure rate, reflects

the fraction of defaulted exposures that do not result in a write-off. It is a crucial input to determine the

weighting between LGNC and LGC in the overall LGD formula. The cure rate is often estimated using

logistic regression models, similar to Probability of Default (PD) models. These models require careful risk

driver selection, including borrower characteristics, loan terms and macroeconomic indicators.

The second component, the LGNC, estimates the expected percentage loss for loans that do not cure.

Rather than focusing directly on losses, this component can be framed in terms of the earnings the lender

expects to recover from the exposure at default. These earnings may include proceeds from the sale of the

collateral, remaining savings or deposits, recoveries from insurance policies, or any other financial inflows

following default. LGNC is then expressed as the complement of the expected recovery ratio

LGNC =
Total expected loss

EAD
= 1−

Total expected earnings

EAD

This ratio expresses the share of the exposure at default that remains unrecovered in non-cured cases.

The third component, the LGC, captures the small but mostly non-zero loss that may still occur in cured

cases. Even though the borrower repays the full principal, a loss may arise due to delayed cashflows. The

lender receives the expected payments later than planned, resulting in an economic loss driven by the time

value of money. This can be represented by:

LGC = ∆r

Here, ∆r reflects the difference in return between receiving payments as originally scheduled and receiving

them with delay. Since no principal is lost and other costs are limited, LGC tends to be low and relatively

stable.

The three components are then finally combined into a single LGD estimate using a weighted average

structure

LGD = (1− Cure Rate) · LGNC + Cure Rate · LGC

This structure ensures that the overall LGD reflects the probability-weighted losses across both cured and

non-cured paths. To make this more intuitive, an illustrative example is presented below.

Example 2.4. Consider a portfolio of residential mortgage loans, where borrowers are classified as in default

after missing three consecutive monthly payments. Let the outstanding amount at the moment of default,

i.e. the Exposure at Default (EAD), to be €200,000.

Historical data indicates that 20% of defaulted loans cure within the defined observation period, resulting in

a cure rate of 0.20. Accordingly, 80% of the loans are classified as non-cured.

For the non-cured loans, the lender expects to recover €130,000 through collateral liquidation, offsetting

deposits, insurance payouts or other sources. The resulting loss is €70,000, leading to:
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LGNC =
200,000− 130,000

200,000
=
70,000

200,000
= 0.35

For the cured loans, the full principal is eventually recovered, but a small loss is still incurred due to delayed

payments. Suppose this timing-related loss is estimated at €6,000 per loan. Then:

LGC =
6,000

200,000
= 0.03

The final LGD is obtained by combining the two components according to the weighted average structure:

LGD = (1− 0.20) · 0.35 + 0.20 · 0.03 = 0.28 + 0.006 = 0.286

⇒ LGD = 28.6%

While banks often rely on internally developed LGD models tailored to their specific portfolios, the underlying

metric is generally structured around some form of combination of the three components discussed: the

probability of cure, LGNC and LGC. This structure ensures that the resulting LGD reflects both the larger

loss in non-cured cases and the smaller, timing-related loss in cured cases. Moreover, the use of EAD as a

denominator ensures comparability across loans of varying sizes.

2.4 Residential Real Estate (RRE) Exposure

Since the focus of this research is on the exposure class of residential mortgages—i.e. residential real estate

(RRE)—it is useful to first provide some background on the common factors that influence credit risk

models within this class. These factors are commonly referred to as risk drivers, as they affect key credit

risk metrics.

Each bank develops its own set of significant risk drivers, with internal modeling and weighting applied to

each. However, a common set of drivers can be identified that is applicable to RRE portfolios [8, 13,21].

These common risk drivers can be grouped into four main categories: borrower characteristics, loan and

transaction characteristics, property characteristics, and external factors. Each category represents a differ-

ent aspect of the risk profile and contributes in its own way to the overall risk assessment.

In this section, the most relevant risk drivers will be given and briefly explained for each category.

I. Borrower Characteristics

• Creditworthiness of the borrower : Includes credit history, existing debt and behavioural scoring models.

For RRE, the borrower’s creditworthiness influences the probability of default (PD) in internal rating

models.

• Income and employment status: A stable income is essential for mortgage repayment. Metrics such as

the Debt-to-Income (DTI) and Debt Service-to-Income (DSTI) ratios are widely used, these metrics

are given by

DTI =
Total Debt

Gross Annual Income
, DSTI =

Annual Debt Payments

Gross Annual Income
. (9)

High DTI or DSTI values are associated with increased credit risk in RRE portfolios.

• Type of borrower : Whether the borrower is a salaried employee, self-employed or retired can affect

income stability and thus risk exposure in RRE lending.

II. Loan and Transaction Characteristics
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• Loan amount: A larger mortgage relative to income or property value increases the risk of default and

loss given default (LGD) in case of foreclosure.

• Loan-to-Value (LTV) ratio: A key risk driver for RRE. It measures the size of the loan relative to the

collateral value:

LTV =
Loan Amount

Collateral Value
(10)

Higher LTVs are typically associated with increased LGD, as they reduce the collateral buffer in case

of a property price decline.

• Loan-to-Income (LTI) ratio: Expresses the loan amount as a multiple of the borrower’s income,

indicating affordability:

LTI =
Loan Amount

Gross Annual Income
(11)

In RRE portfolios, high LTI values can signal vulnerability to income shocks, which typically impacts

the PD.

• Loan maturity : Longer maturities imply longer exposure to macroeconomic volatility. For RRE, this

affects both default timing and prepayment behaviour.

• Interest rate type: Variable-rate mortgages (VRMs) expose borrowers to interest rate risk, potentially

increasing payment shock and default risk in RRE loans.

• Presence of guarantees: Guarantees (e.g. from a government scheme) reduce the effective risk to the

lender in case of borrower default.

III. Property Characteristics

• Property value: The market and stressed value of the property is central to estimating LGD. This is

also a key input for LTV calculations.

• Property quality and maintenance: Poorly maintained homes are more likely to lose value, reducing

collateral recoverability in RRE loans.

• Energy performance: Properties with higher energy efficiency often have higher market value and lower

utility costs, improving affordability and reducing default likelihood. In the EU, Energy Performance

Certificates (EPCs) are used to capture this effect.

IV. External Factors

• Economic conditions: Variables such as GDP growth, interest rates, and unemployment directly affect

default probabilities and borrower affordability in RRE.

• Housing market developments: Supply-demand imbalances, price trends, and liquidity in the housing

market determine both collateral value and loss severity in case of default.

• Regulations: Loan caps, minimum down payments, and macroprudential measures influence lending

standards and indirectly affect the risk profile of RRE portfolios.

• Social risks: Demographic shifts (e.g. ageing population, urbanisation) and behavioural changes (e.g.

preference for renting) influence demand and price dynamics in the residential housing market.

Understanding these risk drivers is essential for lenders to effectively assess and manage the credit risk

associated with residential mortgages. It is also important to have a clear overview of the metrics that

directly impact credit risk models within RRE, as this helps build a deeper understanding for later decisions

on integrating climate risk into RRE models.
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3 Regulations

To safeguard the financial system from excessive risk-taking and instability, regulatory frameworks have

evolved to ensure that banks maintain sufficient capital buffers, manage risks effectively and operate trans-

parently. This section outlines key regulatory structures relevant to this research, providing a clear foundation

for the regulatory terminology used throughout.

3.1 Regulatory Framework

One of the key institutions in global banking regulation is the Bank for International Settlements (BIS),

founded in 1930 and headquartered in Basel, Switzerland. The BIS acts as a hub for central banks, promoting

international financial cooperation and monetary stability [22]. Within the BIS, the Basel Committee on

Banking Supervision (BCBS) was established to develop consistent regulatory standards for banks worldwide.

This committee has introduced several regulatory frameworks, known as the Basel Accords, which define

capital adequacy and risk management requirements.

The Basel Accords provide a series of internationally recognized guidelines designed to enhance financial

stability by standardizing capital and risk management requirements across the banking sector [22]. These

frameworks have evolved over time in response to financial crises, addressing emerging risks and regulatory

shortcomings. However, since the BCBS is not a regulatory authority, its frameworks must be implemented

by national and regional regulators.

In the European Union (EU), banking regulation builds upon the Basel Accords and is further shaped by

several key institutions. The European Central Bank (ECB) and the European Banking Authority (EBA)

play central roles in ensuring financial stability and regulatory compliance. The ECB, apart from its role in

monetary policy, is responsible for banking supervision through the Single Supervisory Mechanism (SSM).

The SSM acts as a framework that standardizes banking oversight across the eurozone. It ensures that

all participating countries apply banking regulations consistently and that large, cross-border banks are

monitored centrally [23].

Within this framework, the ECB directly supervises large and systemically important banks — that is, banks

whose failure could threaten the stability of the European financial system. Smaller banks remain under the

supervision of national regulators, who operate within the SSM but retain responsibility at the national level.

In the Netherlands, this role is fulfilled by De Nederlandsche Bank (DNB), which oversees smaller Dutch

banks and assists the ECB in supervising larger institutions such as ING, ABN AMRO, and Rabobank [24].

By working together within the SSM, the ECB and national regulators like the DNB aim to maintain a stable

and resilient European banking sector.

The European Banking Authority (EBA)3, established in 2011, plays a crucial role in harmonizing banking

supervision across EU member states. It helps ensure that regulatory frameworks, such as the Basel Accords,

are applied consistently within the EU. The legal rules themselves—such as the Capital Requirements Di-

rective (CRD) and the Capital Requirements Regulation (CRR)—are drafted by the European Commission

and adopted by the European Parliament and Council. These texts are based on the Basel Accords but

are adapted to fit the European legal and institutional framework. Based on the CRD and CRR, the EBA

develops EBA Guidelines to support uniform interpretation and application across member states. In addi-

tion, the ECB sometimes publishes its own non-binding guides to clarify how it interprets these rules in its

supervision. Unlike the ECB, the EBA does not directly supervise banks, but instead provides a common set

of supervisory guidelines that both the ECB and national regulators, such as DNB, are expected to follow.

3Previously coordinated by the Committee of European Banking Supervisors (CEBS), but after the 2008 financial crisis

reshaped into the EBA for stronger regulatory enforcement.
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Figure 2: Overview of the Banking Regulatory and Supervisory Framework in the Netherlands

3.2 Basel Accords

The Basel Accords are the international regulatory frameworks developed by the Basel Committee on Banking

Supervision (BCBS). This section provides a high-level overview of key developments, focusing on aspects

relevant to this research, aiming to establish a basic understanding of the currently permitted credit risk

models.

3.2.1 Basel I

Basel I, introduced in 1988, marked the first global effort to establish minimum capital requirements for

banks. It primarily focused on credit risk, categorizing assets into broad risk classes with fixed risk weights.

Under this framework, banks were required to maintain a minimum capital adequacy ratio (CAR) of 8%,

meaning they had to hold at least 8 cents of capital for every euro of risk-weighted assets (RWA) [25].

For example, residential mortgages were assigned a fixed risk weight of 50%, meaning that only half of the

mortgage exposure counted toward the bank’s total RWA, regardless of the borrower’s creditworthiness [26].

While this approach provided a simple and standardized method for capital regulation, it lacked risk sensitivity,

as it did not differentiate between loans with different default probabilities or loss severities.

3.2.2 Basel II

To address these limitations, Basel II was introduced in 2004 [27], offering a more risk-sensitive approach.

The assumption that all loans within the same category should receive a fixed risk weight was abandoned.

Instead, banks were given two options to determine capital requirements for credit risk:

• Standardised Approach (SA): This method assigns fixed risk weights to exposures based on external

credit ratings, without considering the bank’s own risk assessment.

• Internal Ratings-Based (IRB) approach: Banks were allowed to use internal models to estimate their

own risk weights, making capital requirements more sensitive to actual credit risk.

The IRB approach introduced two variants [21]:
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• Foundation IRB (F-IRB): Banks were permitted to estimate the probability of default (PD) for their

exposures, but were required to use standard supervisory values for other parameters, such as the loss

given default (LGD) and exposure at default (EAD), as defined by regulators.

• Advanced IRB (A-IRB): Banks were allowed to fully estimate their own risk parameters, including the

probability of default (PD), loss given default (LGD), and exposure at default (EAD), based on their

internal data and models.

Basel II additionally introduced three pillars: 1 -Minimum Capital Requirements, 2 - Supervisory Review, and

3 - Market Discipline. In short, the first two pillars ensure that, even within the IRB approaches, minimum

capital requirements per exposure class remain in place and that models are regularly assessed to ensure

their reliability, even under stressed conditions. In addition to establishing a more risk-sensitive framework,

Basel II also formalized the capital requirement (K), risk-weighted assets (RWA) and Common Equity Tier

1 (CET1) calculations, as discussed previously in equations (3), (7) and (8) for retail mortgage exposures

specifically. These formulas, particularly relevant under the IRB approach, remain fundamental in regulatory

capital assessments today, linking capital requirements directly to estimated credit risk parameters PD, LGD,

and EAD. The third pillar establishes disclosure requirements, which for example includes mandating that

banks publicly report whether they use the SA or IRB approach, as well as details on their capital structure

and sectoral exposures. This transparency allows market participants and regulators to better assess a bank’s

financial stability.

3.2.3 Basel III

The 2008 financial crisis exposed weaknesses in Basel II, particularly its reliance on internal risk models,

which underestimated systemic risk and led to insufficient capital buffers. In response, Basel III was intro-

duced in 2010, maintaining the three-pillar structure of Basel II but introducing improvements to strengthen

financial stability [28]. In short, the improvements under the first pillar included higher capital requirements,

the introduction of the capital conservation buffer and countercyclical buffer, and the implementation of a

leverage ratio to prevent excessive risk-taking. Under the second pillar, regulatory oversight was strength-

ened by introducing mandatory stress testing and incorporating liquidity risk assessments. For the third

pillar, transparency requirements were expanded, obligating banks to disclose their leverage ratios, capital

composition and liquidity coverage to ensure greater market discipline.

3.2.4 Basel IV

Basel IV, often referred to as the finalization of Basel III [29], again builds upon the existing three-pillar

structure. Below is an overview of the key improvements introduced under each pillar.

Pillar 1 – Minimum Capital Requirements: The already existing Standardized Approaches (SA) have been

refined under Basel IV. In short, the SA refinements include the creation of more specific risk categories

and the incorporation of additional parameters in the calculation of risk weights within these categories.

For example, for certain exposure classes, the creditworthiness of the borrower now plays a greater role in

determining risk weights. Another refinement includes tighter conditions for the use of external credit ratings

(i.e. ratings from agencies such as Moody’s or S&P).

Additionally, Basel IV introduces an output floor, requiring that internally modeled risk-weighted assets

(RWAs) cannot be lower than 72.5% of the standardized approach calculations. This measure ensures that

banks relying on internal models do not significantly underestimate their risks. For retail mortgage exposures

specifically, under the Standardized Approach, the risk weights depend on the loan-to-value (LTV) ratio of

the asset loan (10), with the corresponding values shown in Figure 3. These exposures refer to residential

mortgages where repayment is primarily based on the borrower’s income rather than rental or investment

cash flows, which aligns with the exposure class that this research focuses on. Consequently, due to the
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output floor requirement, the IRB risk weights must be at least 72.5% of the risk weights presented in the

table.

dependent on cash flows generated by the property: 
(1) An exposure secured by a property that is the borrower’s primary residence;

(2) An exposure secured by an income-producing residential housing unit, to an individual 
who has mortgaged less than a certain number of properties or housing units, as 
specified by national supervisors;

(3) An exposure secured by residential real estate property to associations or cooperatives 
of individuals that are regulated under national law and exist with the only purpose of 
granting its members the use of a primary residence in the property securing the 
loans; and

(4) An exposure secured by residential real estate property to public housing companies 
and not-for-profit associations regulated under national law that exist to serve social 
purposes and to offer tenants long-term housing.

Risk weights for regulatory residential real estate exposures that are not materially dependent 
on cash flows generated by the property 

20.82 For regulatory residential real estate exposures that are not materially dependent on cash flow 
generated by the property, the risk weight to be assigned to the total exposure amount will be 
determined based on the exposure’s LTV ratio in Table 11 below. The use of the risk weights in 
Table 11 is referred to as the “whole loan” approach. 

 Whole loan approach risk weights for regulatory residential real estate exposures that are not materially dependent 

on cash flows generated by the property  
 Table 11  

     LTV ≤ 50%   50% < LTV ≤ 

60%  
 60% < LTV ≤ 80%   80% < LTV ≤ 90%   90% < LTV ≤ 100%   LTV > 100%  

 Risk weight   20%   25%   30%   40%   50%   70%  

        

20.83 As an alternative to the whole loan approach for regulatory residential real estate 
exposures that are not materially dependent on cash flows generated by the property, 
jurisdictions may apply the “loan splitting” approach. Under the loan splitting approach, 
the risk weight of 20% is applied to the part of the exposure up to 55% of the property 
value and the risk weight of the counterparty (as prescribed in CRE20.89(1)) is applied to 
the residual exposure.37 Where there are liens on the property that are not held by the 
bank, the treatment is as follows: 
(1) Where a bank holds the junior lien and there are senior liens not held by the bank, to 

determine the part of the bank’s exposure that is eligible for the 20% risk weight, the 
amount of 55% of the property value should be reduced by the amount of the senior 
liens not held by the bank. For example, for a loan of €70,000 to an individual secured 
on a property valued at €100,000, where there is also a senior ranking lien of €10,000 
held by another institution, the bank will apply a risk weight of 20% to €45,000 
(=max(€55,000 - €10,000, 0)) of the exposure and, according to CRE20.89(1), a risk 
weight of 75% to the residual exposure of €25,000. 

(2) Where liens not held by the bank rank pari passu with the bank’s lien, to determine the 
part of the bank’s exposure that is eligible for the 20% risk weight, the amount of 55% 
of the property value, reduced by the amount of more senior liens not held by the 
bank (if any), should be reduced by the product of: (i) 55% of the property value, 
reduced by the amount of any senior liens (if any, both held by the bank and held by 
other institutions); and (ii) the amount of liens not held by the bank that rank pari 
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Figure 3: Risk Weights for Retail Mortgage Exposures under the Standardized Approach, based on the

Loan-to-Value (LTV) Ratio of the Underlying Asset [30].

Furthermore, Basel IV restricts the use of the Internal Ratings-Based (IRB) approach for certain asset classes

with low default rates, such as large corporates with revenues exceeding €500 million and financial institu-

tions. These exposures must now be assessed using the standardized approach, ensuring more consistent

and reliable risk calculations across banks.

Finally, stricter data requirements have been introduced for internal models, particularly regarding historical

data coverage and input floors for Probability of Default (PD) and Loss Given Default (LGD) estimates.

This includes a minimum PD input floor of 0.05% for most exposure classes [17].

Pillar 2 – Supervisory Review Process: Supervisors are provided with detailed guidelines to assess banks’

internal models and risk management practices. Basel IV introduces new validation requirements for internal

models, including stricter back-testing and benchmarking against external data. Banks must now conduct

more frequent reviews of their Probability of Default (PD) and Loss Given Default (LGD) estimates, ensuring

that assumptions remain conservative and aligned with real-world default data [17].

Pillar 3 – Market Discipline: Basel IV expands the scope of disclosures related to credit risk. Banks are

now required to provide more detailed transparency on their risk-weighted asset calculations, including a

comparison between their internally modeled RWAs and those calculated under the standardized approach.

Disclosures must also cover the impact of the output floor on capital requirements and the assumptions

used in internal models [29].

3.3 Climate-Related and Environmental Risks (CER) Regulation

Understanding the regulatory landscape surrounding Climate and Environmental Risks (CER) is essential for

this research, as it defines the expectations for how internal credit risk models should incorporate these risks.

Three key regulatory documents have been selected based on their significance and timeline. The ECB

Guide on Climate-Related and Environmental Risks (2020) [9] provides the earliest complete published regu-

latory perspective, outlining broad expectations for how banks should manage CER. Rather than prescribing

methodologies, it sets foundational principles that later regulations build upon. The EBA Report on the Role

of Environmental and Social Risks in the Prudential Framework (2023) [16] evaluates the extent to which

ESG risks have been integrated into the prudential framework and presents recommendations for further

improvement. The most recent document, the EBA Guidelines on ESG Risks Management (2025) [7],

introduces practical methodologies for banks to measure, manage, and integrate ESG risks into their credit

risk models.

As all three regulatory documents are quite extensive and broadly applicable across various areas of the

financial sector, it is important to clarify that this section does not aim to provide a comprehensive regulatory

analysis. Instead, a focused selection has been made and summarized to highlight the aspects most relevant

to this research, particularly those concerning the integration of CER into internal credit risk models for
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residential mortgages. Each of the three regulatory documents will be discussed separately in this section,

after which a schematic summary can be found in Figure 4.

3.3.1 ECB Guide on climate-related and environmental risks (November, 2020)

In November 2020 [9], the European Central Bank (ECB) published its first comprehensive final document

outlining supervisory expectations regarding climate-related and environmental risks (CER) within the finan-

cial sector. This guide emphasizes that climate risks should not be viewed as standalone risks but rather

as drivers of existing risk categories, such as credit risk, operational risk, market risk and liquidity risk. The

document consists of 13 main expectations, several of which specifically address credit risk. The aspects

derived from the report, particularly relevant to the context of this research, can be summarized as follows:

1. Consideration of CER at all relevant stages of the credit risk modeling process, [9] - Expectation 8.

• Climate risks may lead to cash outflows or a reduction in liquidity buffers, requiring adjustments

in liquidity risk management.

• PD and LGD may increase in sectors or regions exposed to physical risks, such as real estate in

flood-prone areas, due to declining collateral values.

• Stricter energy efficiency regulations can result in higher adaptation costs and lower corporate

profits, increasing PD and reducing collateral values.

2. Integration of CER into stress testing and scenario analysis, [9] - Expectation 11.

• Stress testing and scenario analysis should account for:

– the impact of physical and transition risks on financial exposures.

– how climate risks may evolve under different future scenarios, acknowledging that historical

data may not fully capture them.

– the potential manifestation of climate risks over short, medium and long-term horizons.

3. Data collection and disclosure of CER-related information, [9] - Expectation 13.

• Institutions must define how they assess material climate risks, including disclosure frequency and

methods.

• Credit risk exposures and collateral values should be disclosed by geography, highlighting areas

with high physical risk.

3.3.2 EBA Report on Environmental & Social Risks in Prudential Framework (October, 2023)

In October 2023 [16], the European Banking Authority (EBA) published a report assessing the role of

environmental and social (E&S) risks within the prudential framework. The report aims to evaluate the extent

to which these risks have been integrated into existing risk management practices and capital requirements,

while also identifying areas where further regulatory guidance may be necessary.

The report states that at the time of publication, there were no banks which already explicitly incorporated

E&S risks into their internal ratings-based (IRB) credit risk models. Where such risks were considered, they

were primarily integrated through qualitative adjustments, such as expert judgment overrides, rather than

through structural modifications to probability of default (PD) or loss estimation models. Many institutions

assumed that these risks would be indirectly captured through existing model inputs, such as collateral valu-

ation or financial indicators, rather than requiring dedicated E&S risk factors. The absence of a standardized

approach meant that implementation varied significantly across institutions, and no clear industry consensus

had been reached regarding how to systematically integrate these risks into IRB models.
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While some banks had begun exploring the inclusion of environmental and social (ES) risk drivers in credit

models, the process remained in its early stages. A key challenge is the lack of historical data linking

environmental risk factors to credit performance, making it difficult to quantify their impact in a statistically

robust manner. Moreover, climate and environmental risks are inherently forward-looking, meaning that

even if historical data were available, they would not necessarily provide reliable insights into future credit

outcomes. Some institutions had developed climate-informed shadow PDs to supplement existing models,

while others relied on manual overrides to adjust risk assessments where necessary. Additionally, banks were

considering ways to incorporate forward-looking assessments into their risk frameworks but faced difficulties in

determining the appropriate assumptions and methodologies. Despite these efforts, practical implementation

remained limited, as banks struggled with both data availability and regulatory uncertainty.

To address these gaps, the EBA recommended that banks take a cautious approach when dealing with miss-

ing or unreliable E&S risk data. The report suggested that financial institutions should consider applying

adjustments where uncertainty exists, ensuring that climate and environmental factors are not underesti-

mated in risk assessments. Furthermore, the EBA proposed that expert-based qualitative variables could be

used in rating systems where quantitative metrics were not yet fully developed. In the longer term, the EBA

intends to explore the potential for formally incorporating specific E&S risk drivers into existing regulatory

guidelines for credit risk modeling. However, further empirical research and industry collaboration will be

necessary to establish a more standardized approach to integrating these risks into prudential frameworks.

3.3.3 EBA Guidelines on the management of ESG risks - Final Report (January, 2025)

The 2023 EBA report highlighted the need for a more formal and conceptual approach to ESG risk man-

agement [7]. In response, at the beginning of 2025, the EBA published the Guidelines on the Management

of ESG Risks [7] final report, introducing explicit reference methodologies to standardize the identification,

measurement, management and monitoring of ESG risks. This report is based on Article 87a (5) of the

Capital Requirements Directive (CRD VI), which mandates the EBA to issue guidelines on these matters.

For large institutions, the guidelines will generally apply from 11 January 2026, while small and non-complex

institutions will have an extended transition period until 11 January 2027. A structured way to summarize

the content of this report is by distinguishing between modeling requirements and data requirements. The

aspects most relevant to this research can be summarized as follows [31]:

Modeling Requirements

• ESG factors must be explicitly embedded into credit underwriting, risk classification, and portfolio

management. Banks can no longer treat ESG risks separately but must integrate them into existing

credit risk models.

• Materiality assessments should analyze the financial impact of ESG risk drivers on counterparties,

sectors, regions, and loan (sub-)portfolios. Banks must assess how environmental risks impact different

regions and loan portfolios. For example, flood risks may affect collateral values, increasing credit risk

in certain areas.

• The guidelines stress the importance of quantifying environmental risks, including physical and transi-

tion risks. Banks must move from qualitative assessments to measurable financial impacts, integrating

climate risk scores and adjusting PD/LGD estimates accordingly.

• Clarity on using proxies and scenario analysis, allowing flexibility as data improves. Since ESG data is

evolving, banks may use proxies and scenario-based analysis to estimate risks. Overlays can be applied

temporarily, similar to how banks handle novel risk factors.

Data Requirements

• Data collection is now based on the ESG risk materiality assessment, allowing flexibility in granularity.
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Instead of collecting all ESG data, banks may prioritize data based on a materiality assessment, ensuring

focus on key risk areas.

• The alignment with CSRD disclosures is emphasized, meaning banks should use publicly available data,

especially on emissions and climate plans. Banks should rely on CSRD-reported ESG data, which

simplifies data collection but also requires frequent model updates as new data becomes available.

• The use of proxies when data is unavailable is allowed, but a reduction over time is expected. Banks

may use proxies for missing ESG data, but these should be gradually phased out as direct ESG reporting

improves.

• Specific data points are required, such as GHG emissions, energy consumption, social standards and

governance issues.4 Banks must collect GHG emissions, energy usage, and governance-related factors,

ensuring borrower engagement where necessary. CSRD data should be prioritized for compliance.

A schematic summary of the three discussed documents is presented in Figure 4.

Figure 4: Overview and Timeline of Climate-Related and Environmental Risk (CER) Regulations.

Overall, the actual adoption of Climate and Environmental Risk (CER) integration within the Dutch banking

industry remains limited. However, with the upcoming enforcement of stricter regulatory requirements, the

urgency for further research on this topic within the Dutch banking sector becomes increasingly important.

This necessity sets the stage for the next section, which examines the current state of progress within a

specific area of climate and environmental risk.

4GHG emissions refer to the amount of greenhouse gases released by an entity’s operations. Social standards include factors

like employee rights, working conditions and community impact. Governance issues relate to internal controls, board structure

and transparency. The CSRD (Corporate Sustainability Reporting Directive) is an EU regulation that mandates standardized

sustainability disclosures from companies.
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4 Climate and Environmental Risks

This section provides the theoretical basis for climate and environmental risks, beginning with their definitions

and relevance to the financial sector. This research will be focussing on one category of physical risks:

flood risk. For each category, a structured analysis of its definition, scope and current methodologies for

quantification and integration into financial models is provided. Particular attention is paid to the techniques

used for risk assessment and the data sources underlying these models.

4.1 Risk Taxonomy

To establish a foundational understanding, it is essential to define climate and environmental risk (CER)

in a structured way. Climate-related and environmental risks are generally understood to be defined as follows

Definition 2. Climate and Environmental Risk (CER) is the potential financial impact resulting from climate

change and environmental degradation, influencing financial stability through direct and indirect channels,

affecting asset valuations, business operations and overall market dynamics. [9]

Climate-related and environmental risks can be broadly categorized into two categories: physical risks and

transition risks, each with distinct implications for financial stability and economic activity. Both categories

are briefly introduced below.

Physical risks result from the direct impacts of climate change and environmental degradation on economic

assets and infrastructure. These risks can be divided into acute risks, which result from extreme weather

events such as hurricanes, floods and drought, and chronic risks, which result from long-term shifts in

climate patterns, including sea level rise, temperature rise and biodiversity loss. The financial implications

of physical risks include direct asset damage, business disruptions and supply chain vulnerabilities, which can

ultimately lead to broader macroeconomic instability.

Transition risks arise from the process of shifting to a lower-carbon and more sustainable economy. These

risks are caused primarily by regulatory changes, technological advances, shifts in market sentiment and

changing consumer preferences. Institutions may face financial losses due to changes in asset valuations,

increased operating costs or reduced market demand for carbon-intensive industries. If the transition occurs

in a disordered manner - for example, through abrupt policy implementations or rapid shifts in investor

behavior - the financial system may face increased volatility and systemic risk.

Both physical and transition risks interact with existing financial risk categories, such as credit risk, market

risk, liquidity risk and operational risk. The extent of their impact depends on institutions’ exposure to

climate-sensitive sectors and the effectiveness of risk mitigation strategies. To better illustrate the impact

of climate and environmental risks on financial institutions, Figure 5 presents an overview table of the key

risk drivers categorized into physical and transition risks, published by the ECB [9]. In particular, credit risk

is significantly influenced by these risk factors, as changes in climate conditions or policy transitions can alter

default probabilities (PD), loss given default (LGD) and collateral valuations.

In this research, the focus is specifically on physical risks—more precisely, flood risk—which will be discussed

in the following section. Flooding is a particularly relevant hazard in the context of residential real estate

in the Netherlands, given the country’s low elevation and vulnerability to rising water levels. It can directly

affect property values and increase default risk. Moreover, flood risk is increasingly acknowledged in both

regulatory and academic contexts as a key driver of climate-related financial losses.

4.2 Flood Risk

Flood risk is commonly defined as a function of two key components: the probability of a flood event

occurring and the impact it would generate if realized. While flood probability depends on geographic and
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Table 1 
Examples of climate-related and environmental risk drivers 

Risks affected 

Physical Transition 

Climate-related Environmental Climate-related Environmental 

 

• Extreme weather 
events 

• Chronic weather 
patterns 

• Water stress 

• Resource scarcity 

• Biodiversity loss 

• Pollution 

• Other 

• Policy and 
regulation 

• Technology 

• Market sentiment 

• Policy and 
regulation 

• Technology 

• Market sentiment 

Credit The probabilities of default (PD) and loss given default 
(LGD) of exposures within sectors or geographies 
vulnerable to physical risk may be impacted, for 
example, through lower collateral valuations in real 
estate portfolios as a result of increased flood risk. 

Energy efficiency standards may trigger substantial 
adaptation costs and lower corporate profitability, 
which may lead to a higher PD as well as lower 
collateral values. 

Market Severe physical events may lead to shifts in market 
expectations and could result in sudden repricing, 
higher volatility and losses in asset values on some 
markets. 

Transition risk drivers may generate an abrupt 
repricing of securities and derivatives, for example for 
products associated with industries affected by asset 
stranding. 

Operational The bank’s operations may be disrupted due to 
physical damage to its property, branches and data 
centres as a result of extreme weather events. 

Changing consumer sentiment regarding climate 
issues can lead to reputation and liability risks for the 
bank as a result of scandals caused by the financing 
of environmentally controversial activities. 

Other risk types 
(liquidity, business 
model) 

Liquidity risk may be affected in the event of clients 
withdrawing money from their accounts in order to 
finance damage repairs. 

Transition risk drivers may affect the viability of some 
business lines and lead to strategic risk for specific 
business models if the necessary adaptation or 
diversification is not implemented. An abrupt repricing 
of securities, for instance due to asset stranding, may 
reduce the value of banks’ high quality liquid assets, 
thereby affecting liquidity buffers. 

Source: ECB. 

Methodologies to estimate the magnitude of climate-related risks for the financial 
system in general, and institutions specifically are being developed rapidly. Available 
estimates suggest that both physical16 and transition17 risks are likely to be 
significant. Although the majority of studies have focused on climate-related risks, 
such as the decline in asset values across carbon-intensive sectors, other 
environmental factors related to the loss of ecosystem services, such as water stress, 
biodiversity loss and resource scarcity, have also been shown to drive financial 
risk.18 19 There is also evidence of an interconnection between climate-related 

                                                                    
16  Roughly one-fifth of assessed equity and loan exposures at Dutch financial institutions are to extreme 

water stress regions. See “Values at risk? Sustainability risks and goals in the Dutch financial sector”, 
Report, DNB, 2019. Some 8.8% of mortgage exposures are located in flood risk zones in another 
jurisdiction. See “Transition in thinking: The impact of climate change on the UK banking sector”, 
Prudential Regulation Authority report, Bank of England, 2018. 

17  For example, the ESRB (2016) finds that European financial institutions’ (including banks, pension funds 
and insurers) exposures to fossil fuel firms exceed €1 trillion and estimates potential losses of between 
€350 billion and €400 billion, even under an orderly transition scenario. Losses from asset stranding 
could amount to USD 6 trillion for the EU-28 in a delayed policy action scenario (IRENA, 2017). Looking 
at a sample of €720 billion, the ECB finds that 15% of the exposures are to the most carbon-intensive 
firms (ECB, 2019). The ACPR (2019) found that exposures of major French banking groups to the most 
carbon-intensive sectors amounted to 12.7% of the total exposures. A transition risk stress test in the 
Netherlands showed that the banking sectors’ CET1 ratio could drop by over 4% in a severe but plausible 
transition scenario (DNB, 2018). 

18  See, for example, “Summary for policymakers of the global assessment report on biodiversity and 
ecosystem services”, Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem 
Services, 2019. 

19  See “Values at risk? Sustainability risks and goals in the Dutch financial sector”, Report, DNB, 2019. 

Figure 5: Examples of climate-related and environmental risk drivers, categorized into physical and transition

risks [9].

climate factors, the impact is determined by the extent of economic and financial damages inflicted on

affected areas. The interplay between these factors makes flood risk assessment an important component

of disaster preparedness, urban planning and financial stability analysis.

Given the Netherlands’ unique vulnerability to flooding—particularly due to its below-sea-level geography

and the exclusion of flood damage from standard property insurance policies—the potential implications for

financial institutions are considerable. Although the Dutch government actively invests in flood defense and

mitigation measures [6], the risk of extreme flood events remains relevant. Existing studies have attempted

to quantify how extreme flood events could impact bank capital positions, offering valuable insights into the

intersection of climate risk and financial stability.

Understanding flood risk at a granular level is essential for assessing its potential consequences for property

values, credit markets and financial institutions. The following section outlines a state-of-the-art methodol-

ogy used to model flood exposure, estimate financial losses and evaluate their impact on key banking metrics

in the Netherlands. A specific study will be used as a reference point, the discussion paper Floods and Fi-

nancial Stability: Scenario-based Evidence from Below Sea Level by Francesco G. Caloia, Kees van Ginkel,

and David-Jan Jansen (2023) [11], which examines the potential financial stability risks posed by floods in

the Netherlands. This paper was conducted by a joint research group affiliated with Erasmus University

Rotterdam, the University of Amsterdam (UvA), and Vrije Universiteit Amsterdam (VU). Additionally, the

study was later published by De Nederlandsche Bank (DNB) as a working paper, aiming to provide insights

relevant to financial supervision and policy development.

The study employs a scenario-based methodology to assess how flood-related property damages could im-
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pact bank capital through increased credit risk. It builds upon findings from major studies on flood scenario

modeling, flood damage estimation and financial exposure assessment, integrating insights from both hydro-

logical and economic research. The relevance of this study is underscored by its large-scale dataset, covering

approximately EUR 650 billion in real estate exposures—referring to outstanding loan amounts—across more

than three million residential properties.

4.2.1 Scenario-based Approach

As can be inferred from its title, this paper operates based on a set of stress scenarios. In the context of

flooding in the Netherlands, it is natural to define these stress scenarios in terms of dike breaches, as failures

in the flood defense system represent the primary mechanism through which large-scale inundations occur.

This approach is also adopted in this study, where a total of 38 flood scenarios are analyzed. Of these, 32

scenarios represent single-breach flood events, while the remaining 6 correspond to extreme multi-breach

scenarios, as identified in the research by Dutch flood experts [32]. The single-breach scenarios are based on

the Landelijk Informatiesysteem Water en Overstromingen (LIWO) [33], an open-source system that models

thousands of potential flood events across the country. From this dataset, the study selects scenarios with

the highest expected economic impact, specifically those where estimated property damages exceed EUR

500 million. In contrast, the extreme multi-breach scenarios originate from an expert study conducted in

2007, which examines the consequences of simultaneous dike failures across multiple regions.

This section provides a detailed overview of the methodology employed in the paper. First, the dataset used

in the study is introduced, outlining the sources and characteristics of the financial and geographic data.

Next, the study’s flood damage estimation process is examined, explaining how flood scenarios were selected

and how property damages were calculated. Finally, the methodology used to quantify the impact on credit

risk modeling and bank capital adequacy is discussed, focusing on how flood-induced property devaluations

influence credit risk metrics, such as loss-given-default (LGD) and probability of default (PD), ultimately

impacting banks’ capital positions.

This methodological overview is particularly relevant for this thesis, as it informs the questions concerning

how flood risk is currently quantified and incorporated into credit risk models, while also illustrating a set

of assumptions made in this process. By reviewing an established scenario-based approach, this section

provides a publicly available reference point for identifying potential directions for model refinement.

4.2.2 Data

The methodology in this study is based on a combination of three key data sources, each contributing to

different aspects of the flood risk assessment and its financial implications. By integrating granular loan-

level data, administrative property data, and regulatory bank disclosures, the study provides a comprehensive

foundation for analyzing the credit risk impact of flood-related property devaluations.

Loan-level data. A core component of the study is the use of loan-level data, which provides detailed

information on mortgage and commercial real estate exposures of Dutch banks. These datasets, generally

sourced from financial institutions, contain specific information on individual loan contracts, such as the

outstanding loan amount, repayment structures, and borrower-specific characteristics (e.g. income and

credit history). Additionally, this part of the dataset captures loan developments, allowing for the tracking

of trends in loan-to-value (LTV) ratios and other credit risk parameters. This data is crucial for assessing

how flood-induced property devaluations affect mortgage portfolios.

Property Microdata. To estimate the impact of flooding on property values, the study incorporates ad-

ministrative microdata from Statistics Netherlands (CBS). This dataset contains essential property-level

information, including the official property valuation (WOZ value), which is determined by municipalities for
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taxation purposes. Additionally, it includes structural characteristics of properties, such as floor area (m2),

geographic location at the postal-code level, and classification into residential or commercial real estate. By

integrating this data with flood scenario modeling, the study can estimate the extent of property damage in

different locations and assess how such damages translate into changes in collateral values.

Supervisory Bank-specific data. To quantify the financial implications of flood risk, the study utilizes su-

pervisory data reported by Dutch banks under the Common Reporting (COREP) and Financial Reporting

(FINREP) frameworks. These regulatory filings provide critical insights into the financial health of banks,

including balance sheet compositions, capital adequacy metrics, and asset quality assessments. Specifically,

this dataset includes information on banks’ total loan exposures, profitability measures related to mortgage

lending and the level of capital held against potential credit losses. By linking this data with loan-level

and property valuation data, the study evaluates how flood-related shocks could affect key banking stability

indicators.

Data Category

Loan-Level Data Property Microdata Supervisory Bank-Specific Data

Loan contract details (amount, out-

standing debt)

WOZ property valuation (municipal

assessment)

Bank balance sheets (total loan ex-

posures)

Loan type (fixed vs. variable rate) Structural characteristics (floor

area, number of floors)

Profitability metrics (loan perfor-

mance, earnings)

Insurance coverage information Geographic location (postal code

level)

Capital adequacy (CET1 ratios,

buffers)

Borrower characteristics (income,

credit history)

Property classification (residential

vs. commercial)

Asset quality assessments (risk-

weighted exposures)

Quarterly loan trend data

Table 3: Overview of data sources used in the study, categorized into three main types, with corresponding

examples of data entries.

Table 3 provides a summarized overview of the data sources used in the study, grouped into categories, with

examples of relevant data entries included for each. By combining three complementary data sets, the study

enables a detailed assessment of how extreme flood events could translate into financial vulnerabilities for

the banking sector. While the paper does not specify the technical integration procedure in detail, it outlines

how each source contributes to distinct steps in the modeling chain: property damage estimation, credit risk

parameter calculation and capital adequacy analysis. The granularity of the data allows for scenario-based

stress testing, providing a forward-looking analysis of the potential credit risk implications of climate-related

flooding.

4.2.3 Flood Damage Methodology

As previously mentioned, the methodology by Caloia et al. [11] is based on stress-testing flood scenarios,

considering floods originating from either the sea or major rivers, specifically in areas currently protected by

flood defenses. The methodology relies on two primary scenario types, each differing in severity and source.

The first type consists of 32 single-breach flood scenarios, in which localized failures in flood defense systems

result in the inundation of specific areas. These scenarios were obtained from the Landelijk Informatiepunt

Water en Overstromingen (LIWO), an open-source national database containing over 5,000 flood scenarios.

To select the most relevant scenarios, two criteria were applied. First, the study includes only areas vulnerable
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to breaches in primary flood defense systems, classified as ‘type B’ floods. In other words this refers to

flooding in areas where the water system is classified as ”main” (e.g. major rivers such as the Rhine and

Meuse) and where flood protection is present. Despite the presence of flood defenses, these areas remain at

risk due to extreme weather events or failures in the protection system. Notably, property damages resulting

from this flood type are typically excluded from coverage by standard insurance policies. Second, within each

region, the scenario leading to the highest estimated property damage—exceeding a threshold of EUR 500

million—was selected. This approach ensures a focus on tail risks, highlighting the worst-case impacts on

financial stability rather than the average expected damages.

Additionally, as second type the study incorporates six extreme multiple-breach flood scenarios. These

scenarios, developed by Dutch flood experts in 2007, depict instances where multiple dike breaches occur

simultaneously, representing highly unlikely but still conceivable extreme flood events. The objective of

including these cases is to assess the potential implications of severe flooding on the financial sector under

worst-case conditions.

To provide a visual perspective, Figures 6 and 7 illustrate the extent of flooding in the case of different

scenarios. Figure 2: Scenario set for single-breach floods

Note: This figure gives an overview of 32 scenarios with single-breach floods. In each scenario, a local breach in the

system of flood defence leads to a flood in a specific part of the country. The source for the flood scenarios is the LIWO,

which is an open-source information system. From the LIWO, we select the scenarios that have the largest impact in each

compartment of the flood protection system. In addition, we use a cut-off value of EUR 500mn. for overall estimated

damages.
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Figure 6: Scenario set for single-breach floods.

A crucial aspect of the impact assessment is the estimation of flood depths in the classified affected areas.

The LIWO system provides data at a high spatial resolution, offering flood depth estimates at a minimum

scale of 100×100 meters. However, since the financial data used in this paper is only available at the level

of four-digit postal codes, the flood depth data had to be aggregated accordingly, despite originally being

available at a much finer resolution of 100×100 meters. Therefore, this study uses a mean water depth per

postal code to align the flood impact data with financial exposure data. While this aggregation allows for

compatibility between both datasets, it introduces a limitation.

To estimate the inundation depth at the postal-code level, the study employs a multi-step aggregation

method. First, it isolates built-up areas within each postal-code zone, excluding land use types such as

agricultural fields and infrastructure, which are not directly relevant for property damage estimation. The

mean water depth is then computed over the remaining built-up area. Notably, locations within a postal-code

region that remain dry during a flood event are assigned a depth of zero, ensuring that the computed average
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Figure 3: Scenario set for extreme multiple-breach floods

(a) Extreme scenarios 1 to 5 (b) Extreme scenario 6

Note: This figure gives an overview of six scenarios for extreme multiple-breach floods. Dutch flood experts constructed

these six extreme multiple-breach scenarios in 2007. These six scenarios are intended to represent extreme impacts that

are still theoretically conceivable, yet very unlikely.
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Figure 7: Scenario set for extreme multiple-breach floods. [11]

depth reflects the overall conditions affecting properties within the area. While this simplification is necessary

for linking flood data with financial exposures, it introduces another limitation: localized variations in water

depth within a postal-code area are not captured, potentially leading to an overestimation or underestimation

of damages in certain sub-regions.

A key step in quantifying the financial impact of flood risk on retail exposures involves establishing a parameter

that links flood risk to collateral value. Part of this parameter, is a flood damage parameter adopted from a

previous national study, specifically the most recent Standard Method for Calculating Flood Damage in The

Netherlands (SSM2017) (Slager and Wagenaar, 2017 [34]). This methodology estimates the maximum

possible damage to a residential property, expressed per square meter, depending on the type of property. A

distinction is made between structural damage to the building itself and damage to the household contents.

Since this study focuses solely on the collateral value of properties, only the structural damage component

to the building itself is considered. This parameter is denoted as ’max damaget ’ in the following formulas.

To quantify the flood-induced reduction in collateral value, this study defines a parameter φSp , representing

the fraction of a property’s collateral value lost due to flood damage under scenario S for property p. This

is given by

φSp = min

(
damageSp

property valuep
, 1

)
, (12)

where property valuep represents the observed collateral value of the property in the loan-level dataset, i.e.

its current market value. This upper bound of 1 makes sense, as the reduction in a property’s collateral value

due to flood damage cannot exceed its total value. Within the previous formula, the total flood-induced

damage to property p in scenario S is computed as

damageSp = θ(h)
S
t ·max damaget · Ap · τ, (13)
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where the parameters can be described as follows

• θ(h)St is the damage function, a value between 0 and 1 that determines the fraction of the maximum

possible damage as a function of the inundation depth h. Different property types have distinct

damage curves, originally specified by Slager and Wagenaar (2017). The function θ(h)St is scenario-

specific and property-type-specific, meaning that for each flood scenario S and property type t, it

assigns a damage fraction based on the floodwater depth at that location. Due to data limitations,

this study applies a small adjustment specifically for apartments by using a weighted average of the

damage functions for ground-floor and first-floor apartments, rather than directly adopting the original

values from SSM2017. To illustrate the damage functions applied in this study, Figure 8 presents the

relationship between inundation depth and the fraction of maximum possible damage for residential

real estate. The figure shows that the damage fraction increases non-linearly with water depth, with

apartments exhibiting a steeper increase compared to single-family homes.

• max damaget represents the maximum structural damage (in euros per m
2, in 2011 prices) that a

given property type t can sustain in the event of flooding. As previously mentioned, this value is derived

from SSM2017, considering only the component related to direct damages to the building itself.

• Ap denotes the floor area (in m
2) of property p, sourced from administrative microdata provided by

Statistics Netherlands (CBS).

• τ is an inflation correction factor that adjusts the estimated damage values from their original reference

year (2011) to align with 2020 price levels, ensuring consistency with the loan-level data.

The computed parameter θ(h)St is crucial as it directly links to the estimation of loan-to-value (LTV) ratios

under flood scenarios, forming the basis for subsequent credit risk modeling. Notably, the values of φSp are

restricted to the interval [0, 1) to prevent cases where flood-induced losses would exceed the entire collateral

value of a property.
Figure A.2 Flood damage functions
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Note: The figure shows the various damage functions used in this paper. The top panel focuses on residential real estate

(either single-family homes or apartments), the bottom panel shows damage curves for four types of properties (retail

properties, industrial properties, offices, residential properties) that serve as collateral for commercial real estate loans.

The horizontal shows the inundation depth (in meters), while the vertical axis shows the damage fraction (parameter ✓

in the main text). The damage functions are based on Slager and Wagenaar (2017).
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Figure 8: Relationship Between Inundation Depth and Damage Fraction for Residential Properties. [11]

Example 4.1. To illustrate the application of the damage calculation methodology, consider a hypothetical

flood scenario in Rotterdam. The damage estimation framework is applied to a specific property affected by

the flood, using the relevant parameters and equations outlined in the methodology.
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• Scenario (S): A single-breach flood scenario in Rotterdam, indexed as S = 10, corresponding to for

example LIWO single-breach scenario ID 19637 (see Figure 6).

• Property (p): Within this flooded region, let a specific property be selected as property number 42,

located in a residential area of Rotterdam. The parameter p = 42 serves as the property index,

uniquely identifying this property.

• Type of property (t): Property number 42 is classified as a single-family home. The parameter t

represents the property type, in this case, ”single-family home”.

• Inundation depth (h): The inundation depth at property number 42 corresponds to the water level at

that specific location. This data is derived from flood simulations (SSM2017) and presented in water

depth maps. Assume that the water depth at property index 42 is h = 3.25 meters.

• Damage factor (θ(h)St ): The damage factor depends on the property type (t) and inundation depth

(h). Suppose a reference table indicates that for a single-family home (t) at a water depth of 3.25

meters (h), the corresponding damage factor is θ(h) = 0.4.

• Maximum damage (max damaget): The maximum possible damage per square meter also depends

on the property type (t). According to Slager and Wagenaar (2017), the maximum structural damage

for a single-family home is €2,500 per m2 (in 2011 price levels).

• Property area (Ap): The total floor area of property number 42, the single-family home, is Ap = 120

m2.

• Price level correction factor (τ): To adjust for inflation and align damage estimates with 2020 price

levels, a correction factor of τ = 1.15 is applied.

Using these parameters, the estimated flood damage for property number 42 (p = 42) is calculated as:

damage1042 = 0.4 · 2500 €/m2 · 120 m2 · 1.15

= 138, 000€

Thus, the estimated damage for this specific scenario (S = 10), property (p = 42), being a single-family

home (t = single-family home), in this flood scenario equals €138,000.

Using this, the flood-induced decline in the collateral value can be calculated. In this case, the estimated

damage is damageSp = 138, 000. Let the property value be assumed to be €600,000. Substituting these

values gives φSp = min
(
138,000
600,000 , 1

)
= 0.23. This implies that the collateral value of property index 42 has

decreased by 23% as a result of the flood event in scenario S = 10.

The methodology outlined above aligns with prior flood damage modeling approaches but introduces key

modifications tailored to the financial sector. Unlike standard SSM2017 applications, which estimate dam-

ages for all properties in an affected area, this method focuses exclusively on properties serving as collateral

for bank loans. Additionally, the use of mean inundation depths per four-digit postal-code areas—rather

than high-resolution grid-based flood data—reflects the need to align the geographical scale of flood data

with that of bank exposure datasets. Although the paper does not provide full transparency on the technical

integration between datasets, it implicitly raises important questions about the assumptions underlying this

step. Understanding the nature and justification of these assumptions can be important for evaluating the

robustness of the resulting risk estimates and is directly relevant to the broader research question of how

flood risk is operationalized within credit risk models.
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4.2.4 Credit Risk Impact Methodology

The methodology by Caloia et al. [11] further quantifies flood risks specifically in relation to banking metrics,

utilizing key credit risk parameters. In the flood damage methodology, a connection is established between

collateral value and flood risk, which in the context of credit risk translates into effects on the credit

risk parameters Loss Given Default (LGD) and Probability of Default (PD), as discussed in Section 2.3.

Additionally, a link is made to another key measure in financial supervision, the CET1 ratio, as described in

(8). The analysis is conducted using end-2020 data as the starting point, with a one-year horizon.

1. LGD Impact

A key component in assessing the credit risk impact of flood-induced damages is the Loss Given Default

(LGD). Flood-related property devaluations increase the Loan-to-Value (LTV) ratio, which in turn raises

LGD estimates. The study defined a new parameter LTV Si , the LTV of a loan i under flood scenario S as

follows

LTV Si = LTV
0
i ·

1

1− φSp
(14)

where LTV 0i is the starting-point LTV, and φ
S
p denotes the flood-induced decline in collateral value, as

previously defined (12).

To determine whether a bank can recover its outstanding loan exposure through collateral liquidation, the

metric Loss Given Loss (LGL) is introduced. The LGL measures the fraction of the exposure that remains

uncovered after selling the property in a distressed sale scenario. It is defined as

LGLi = max

(
0,
exposure − l iquidation value

exposure

)
(15)

where the l iquidation value is the estimated value at which the property can be sold post-damage. The

LGL under flood scenario S is further refined as

LGLSi = max

(
0,
LTV Si − sales ratioSp

LTV Si

)
(16)

Here, the sales ratio denotes the ratio between the liquidation value under flood-scenario S and the current

market value of the property. The market value of a property is the price it would fetch under normal

conditions. The liquidation value, on the other hand, is the price actually obtained in a forced sale, which

is often lower than the market value due to the urgency of the sale. In the paper, it is assumed that the

calculation of liquidation value additionally takes into account the costs required to prepare the property for

sale due to flood damage. In other words, it can be calculated as follows

sales ratioSp = sales ratio
0
p · (1− φSp ) =

pre-flood liquidation value

current value of the property
· (1− φSp ). (17)

Using the computed LGL, the LGD of loan i in flood scenario S is given by

LGDSi = (1− probabi l i ty of cure) · LGLSi + costs (18)

where:

• 1− probabi l i ty of cure denotes the fraction of loans that remain in default after restructuring and
management of arrears.
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• Costs refer to the administrative expenses incurred by the bank when selling the collateral property,

which represent a fraction of the current exposure.

To ultimately link the scenario-specific LGD to the actual LGD, the final step introduces the scenario-specific

LGD multiplier mSLGD. This multiplier reflects how the overall LGD changes under a given flood scenario S,

accounting for differences in exposure across banks and loan types. The multiplier is computed as

mSLGD =
∑
b

∑
i

wbwi
LGDSi,b
LGDi ,b

, (19)

where
LGDS

i,b

LGDi ,b
represents the relative change in LGD for loan i at bank b under flood scenario S. The weights

wb and wi play an important role in this calculation, as the objective of the paper is to estimate the overall

impact of floods on Dutch bank capital. The bank weight wb represents how much exposure a particular

bank has relative to the total exposure across all banks in the system. Larger banks with more outstanding

loans will naturally have a greater weight, as they hold a larger share of the total credit risk. Because this

paper focuses on systemic risk, it uses a sample of eight major Dutch banks, covering the vast majority of

the Dutch mortgage market. The loan weight wi accounts for the relative size of an individual loan within a

bank’s total exposure. This means that larger loans, or loans with a higher outstanding balance, contribute

more to the final LGD calculation than smaller ones.

By combining these weights, the LGD multiplier captures how each bank is affected by the flood scenario

in proportion to its exposure. A bank with significant lending in flood-prone areas will experience a stronger

impact than one with limited exposure to these regions. To provide further intuition, the following presents

a hypothetical example illustrating the impact of LGD, using the collateral value parameter φSp = 0.23 from

the previous example.

Example 4.2. Suppose that the initial loan characteristics and flood-induced impact are defined as follows

• Loan-to-Value ratio (LTV 0i ): The initial Loan-to-Value ratio is 60%, i.e. 0.6.

• Flood-induced decline in collateral value (φSp ): The reduction in property value due to flooding is

assumed to be 0.23.

• Exposure: The outstanding loan balance for the given property is €250,000.

• Initial sales ratio (Sales ratio0p): Before the flood event, the sales ratio is 0.90.

• Probability of cure: The probability that a loan recovers after initial delinquency is assumed to be 0.15.

• Costs: Administrative costs incurred by the bank in the event of forced liquidation amount to €3,000.

Relative to the exposure, this equals 0.012.

Using the just defined LGD methodology, the following values are obtained for loan i after the flood

1. Post-flood Loan-to-Value ratio: LTV Si = 0.6 ·
1

1−0.23 = 0.779

2. Post-flood sales ratio: sales ratioSp = sales ratio
0
p · (1− φSp ) = 0.90 · (1− 0.23) = 0.693

3. Post-flood Loss-Given-Loss: LGLSi = max
(
0,
LTV S

i
−sales ratioSp
LTV S

i

)
= max

(
0, 0.779−0.6930.779

)
= 0.086

4. Loss-Given-Default: LGDSi = (1 − probabi l i ty of cure) · (LGLSi + costs) = (1 − 0.15) · 0.086 +
0.012 = 0.0851

Thus, the LGD for this individual loan i under flood scenario S is 0.0851. To compute the LGD multiplier,

the initial LGD for loan i before the flood is required. Assume that LGDi = 0.04. Now, extending the

analysis to the banking system. Suppose a specific bank b is analyzed with the following characteristics
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• wb (Bank-level exposure share): 0.10 (this bank holds 10% of the total outstanding mortgage loans

in the system)

• The bank has 1,000 loans in the affected postal code. For simplicity, assume that all loans have the

same characteristics as loan i .

The entire financial system consists of multiple banks (assumed to be 8 in total). To simplify the example, it

is assumed that none of the other banks have loan exposure in the affected postal code, meaning their LGD

remains unchanged at the initial value. The scenario-specific LGD multiplier can be calculated as follows

mSLGD =

∑
b

∑
i wbwiLGD

S
i,b∑

b

∑
i wbwiLGDi ,b

=
(0.10 · 1 · 0.0851) + (0.90 · 1 · 0.04)
(0.10 · 1 · 0.04) + (0.90 · 1 · 0.04) =

0.00851 + 0.036

0.004 + 0.036
=
0.04451

0.04
= 1.113.

Thus, the scenario-specific LGD multiplier is 1.113. This implies that, on average across the financial system,

the LGD has increased by 11.3% as a result of the flood scenario S.

Note that this example is intended purely for illustrative purposes, to provide an intuitive understanding of

how flood scenarios might impact the LGD metric, and no particular significance should be attached to the

hypothetical values used.

2. PD Impact

Following the discussion on how flood damage can reduce collateral value and consequently affect the Loss

Given Default (LGD), attention should also be given to another key dimension of credit risk: the Probability

of Default (PD). At first glance, PD might appear less directly relevant in the context of physical damage

to real estate. After all, the primary impact of a flood is a reduction in collateral value, which immediately

increases the potential losses in case of default (LGD). However, empirical research demonstrates that the

likelihood of a borrower defaulting on their loan (PD) is often highly correlated with the Loan-to-Value (LTV)

ratio [11]. This means that an increase in the LTV ratio caused by flood-related property damage not only

amplifies the potential losses upon default but can also increase the probability of that default occurring.

For this reason, the paper extends its analysis by incorporating a statistical model to estimate how changes

in the LTV ratio, resulting from flood-induced real estate damage, influence the probability of borrowers

defaulting on their loans.

The probability that a borrower defaults, conditional on the different flood scenarios, is estimated using the

following regression model

yi ,b,t = cb + β
′Zi ,b,t + δ

′Xi ,b,t + ui ,b,t , (20)

where yi ,b,t is the dependent variable, representing the default status of borrower i at bank b at time t. This

is a binary variable that takes the value 1 in case of default and 0 otherwise.

The term cb is the constant, representing the baseline default probability when all other variables in the

model are set to zero. In practice, this serves as an intercept that captures the average probability of

default, incorporating all unobserved influences not explicitly included in the model.

The term β′Zi ,b,t represents the key independent variables affecting the probability of default, where

• Zi ,b,t is a vector of primary independent variables that are expected to have a direct effect on the

probability of default under flood scenarios. In this study, these include the Loan-to-Value (LTV)

ratio, the mortgage interest rate and regional GDP growth. The LTV ratio plays a central role as it

is directly impacted by flood-induced property devaluation.
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• β′ is a vector of coefficients that quantify the magnitude and direction of the effect of each independent

variable in Zi ,b,t on the probability of default yi ,b,t . A positive coefficient indicates that an increase

in the corresponding independent variable raises the likelihood of default, while a negative coefficient

implies the opposite.

The term δ′Xi ,b,t accounts for so-called control variables, including

• Xi ,b,t being a vector of additional variables that may influence the probability of default but are not

the primary focus of this study. Including these variables allows for isolating the direct impact of flood-

induced changes in the LTV ratio. Control variables include mortgage type, interest type, remaining

loan term, initial LTV, property type and whether the mortgage benefits from the National Mortgage

Guarantee (NHG) 5.

• δ′ is a vector of coefficients that capture the effect of the control variables in Xi ,b,t on the probability

of default.

Finally, ui ,b,t is the error term, representing unobserved factors and random variation that affect the proba-

bility of default but are not explicitly included in the model.

Based on the estimated probability of default (20), a PD multiplier is derived to quantify the relative increase

in default probabilities under flood scenario S. The system-wide PD multiplier for scenario S is given by

mSPD =

∑
b

∑
i wbwiE(yi ,b,T |ZSi,b,T ,Xi ,b,T )∑

b

∑
i wbwiE(yi ,b,T |Zi ,b,T ,Xi ,b,T )

(21)

where yi ,b,T represents the default status of borrower i at bank b at the final reporting period T . Since it is

a binary variable (1 for default, 0 otherwise), its expected value E(yi ,b,T |...) corresponds to the probability
of default at a specified moment T and under scenario S.

ZSi,b,T is the vector of independent variables under the flood scenario S. The key difference compared to the

baseline vector Zi ,b,T is that the LTV ratio has been adjusted to reflect flood-induced property devaluation.

As in the LGD case, it is again the case that wb represents the bank-level weight, which reflects each bank’s

exposure as a share of total system-wide exposure, and wi represents the loan-level weight, which accounts

for each individual loan’s exposure relative to the total exposure of the corresponding bank.

The PD multiplier provides a system-wide measure of how flood-induced changes in collateral values propa-

gate into increased probabilities of default. This multiplier also plays an important role in the final quantifi-

cation of the financial impact as a result of flood scenarios, which will become clear in the next part.

3. CET1 ratio Impact

To assess how flood scenarios could impact the financial health of banks, it is essential to examine their

regulatory capital. A key metric in this regard is the Common Equity Tier 1 (CET1) ratio, which as discussed

earlier, measures a bank’s core equity capital relative to its risk-weighted assets (RWA), recall equation (8).

A lower CET1 ratio signals a weaker capital position, potentially increasing financial vulnerability.

The denominator of the CET1 ratio, RWA, essentially quantifies the riskiness of a bank’s assets. The RWA

is computed as the product of Exposure at Default (EAD), a constant regulatory factor of 12.5% and the

capital requirement factor K. This aligns with the Basel regulatory framework, as discussed in Section 3.

Recall that the capital requirement factor K depends on both bank-specific and scenario-specific values of

Loss Given Default (LGD) and Probability of Default (PD).

5The National Mortgage Guarantee (NHG, or Nationale Hypotheek Garantie) is a Dutch government-backed scheme that

provides a safety net to both lenders and borrowers in case of payment difficulties due to circumstances beyond the borrower’s

control.
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As discussed, the occurrence of a flood can change the LGD and PD for exposed loans. To capture this,

the concept of scenario-specific RWA (RWAS) is introduced, representing the RWA that would result if

a particular flood scenario S occurs. To quantify the relative change in RWA due to a flood scenario, a

scenario-specific RWA multiplier (mSRW ) is defined as follows

mSRW =

∑
b

∑
i wbwiRWA

S
i,b∑

b

∑
i wbwiRWAi ,b

=

∑
b

∑
i wbwiK

S
i,b∑

b

∑
i wbwiKi ,b

,

where RWASi,b denotes the RWA for loan i of bank b under flood scenario S, and RWAi ,b represents the

initial RWA. Similarly, KSi,b and Ki ,b denote the scenario-specific and initial capital requirement factors,

respectively. The weights wb and wi account for the relative importance of each bank and loan. Essentially,

this multiplier quantifies the average relative change in RWA across all banks and their real estate loan

portfolios under scenario S.

Since the capital requirement factor K depends on the LGD and PD, the previously calculated scenario-

specific multipliers for LGD (mSLGD) and PD (m
S
PD) are the key drivers behind variations in K and, conse-

quently, in RWA. More specifically, for residential mortgages, the scenario-specific capital requirement factor

is given by

KS = LGD ·mSLGD ·Φ
(
Φ−1(PD ·mSPD)√

1− ρ
+

√
ρ

1− ρ ·Φ
−1(0.999)

)
− PD ·mSPD · LGD ·mSLGD, (22)

where Φ is the cumulative standard normal distribution function, and ρ represents the asset correlation

parameter as defined in the Basel framework. A higher LGD and/or PD under scenario S leads to a higher

KS, which in turn increases RWAS, resulting in an RWA multiplier greater than one.

Finally, the impact of these scenario-induced RWA changes on the CET1 ratio is examined. The formula is

given by:

∆CET1 ratioS =
CET1

RWA
−
CET1− ∆ELS

RWA+ ∆RWAS
(23)

where ∆ELS represents the difference between the expected loss under the flood scenario and the starting-

point expected loss and ∆RWAS denotes the scenario-specific change in risk-weighted assets. CET1 repre-

sents a bank’s core capital, previously denoted as CET1-capital in Equation (8), but abbreviated as CET1

in this formula for conciseness. To better understand this formula, its derivation is as follows

∆CET1 ratioS = CET1 ratio0 − CET1ratioS =
CET1

RWA
−
CET1S

RWAS
(24)

=
CET1

RWA
−
CET1− ∆ELS

RWA ·mSRW
=
CET1

RWA
−
CET1− ∆ELS

RWA+ ∆RWAS
. (25)

This derivation clarifies how the CET1 ratio is affected by both expected credit losses (∆ELS) and changes

in risk-weighted assets (∆RWAS). The first term, CET1RWA , represents the initial CET1 ratio in the absence

of a flood scenario, while the second term incorporates the effects of flood scenario S. Specifically, a higher

∆ELS leads to a reduction in CET1 capital, and a higher ∆RWAS increases the denominator, amplifying

the decline in the CET1 ratio. Alternatively, the final expression in the denominator can also be conveniently

rewritten as RWAS = RWA ·mSRW , utilizing the previously defined scenario-specific RWA multiplier.
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In summary, the entire methodology essentially builds up to this final dependency, the flood-scenario-specific

CET1 ratio (23). It begins with the construction of a parameter that represents the general impact of

flooding on collateral values, φSp (12). This fraction is then incorporated into the scenario-specific Loan-

to-Value ratio, LTV Si (14). The adjusted loan-to-value subsequently influences both the LGD and PD

modeling each in its own way, ultimately resulting in the scenario-specific multipliers mSLGD (19) and m
S
PD

(21), respectively. In the final step these multipliers are used, in line with Basel regulatory formulas, to

compute the capital requirement KS (22), which feeds into the adjusted risk-weighted assets RWAS, and

finally determines the overall impact on the CET1 ratioS.

It is also important to acknowledge certain limitations of the methodology. First, the model does not

incorporate potential mitigating factors, such as insurance payouts, government relief schemes, or other

compensatory mechanisms that may reduce actual credit losses. Second, the approach is based on scenario

analysis and does not attempt to estimate the probability of the flood event occurring. As a result, it does

not quantify the full expected impact, but rather the conditional impact under the assumption that a specific

flood scenario takes place.

The objective of this section was to provide a detailed overview of how a Dutch state-of-the-art, publicly

available flood risk integration methodology is structured. From the initial construction of the flood-induced

collateral depreciation parameter to the final impact assessment on the CET1 capital requirements, it is

clear that numerous assumptions are made throughout the entire process. Many of these assumptions could

benefit from further investigation, ensuring that the overall modeling approach remains as precise, robust

and comprehensive as possible.
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Concluding Remarks

This literature study has laid the theoretical foundation for the next phases of the thesis project. It has

explored key components of credit risk modelling, reviewed relevant regulatory developments and examined

flood risk as a specific case of physical climate risk. By bringing together insights from these domains, it

provides the necessary background to begin evaluating the assumptions underlying ABN AMRO’s current

flood risk integration.

While this report was written independently from ABN AMRO’s internal data and modelling practices,

it provides a structured overview of state-of-the-art, publicly available modeling approaches relevant to

this research. The methods and insights discussed—particularly in the context of scenario-based flood

impact studies—serve as a conceptual and methodological reference point. While the approach discussed

is insightful, it also has limitations, such as the omission of mitigating factors and the focus on scenario-

based impacts without considering flood probabilities. These very limitations also contribute to the ability

to objectively analyze how ABN AMRO has incorporated climate risks into its models. In other words, they

provide a useful basis for properly answering the research sub-questions: understanding how flood risk can

be incorporated into credit risk models (SQ1), identifying ABN AMRO’s underlying assumptions (SQ2), and

evaluating their calculated impact (SQ3).

In the next phase of this research, the focus will shift to identifying, implementing, assessing and quantifying

the assumptions underlying ABN AMRO’s internal model quantification method. This will ultimately support

the development of practical, data-driven recommendations for flood risk integration.
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Appendix
 

 
Exposure Class Relevance / Impact  Climate Risk 

Type 
Example Hypothesis Climate Data & Metrics Example Credit Risk Models Examples        

Mortgages 
(Residential Real 
Estate - RRE) 

• Floods/subsidence 
• Higher insurance costs 

Physical  
+  
Transi8on 

Flood risk integra/on improves PD 
models for mortgage loans in high-
risk areas. 

• Flood maps 
• Subsidence models 
• Energy efficiency data 

• Scoring models: Logis8c regression 
(PD), ML algorithms (NN) 

• Risk Models: Monte Carlo 
Simula8ons, VaR Models 

A home in a low-lying area is classified as high-risk by new flood 
maps. As a result, insurers demand higher premiums and some 
banks refuse to refinance. 
> Credit risk impact: The value of collateral drops, and the risk of 
default increases as households are unable to bear the higher 
housing costs. 

Commercial Real 
Estate (CRE) 

Deprecia8on due to floods, storms, 
heat waves. 

Physical Integra/on of storm and heat 
forecasts improves valua/on models 
for commercial real estate. 

• Climate hazard indices 
• Storm and heat forecasts 

• Moody's KMV model (op8on-
based) 

• Merton model (default probability 
based on business value) 

An office building in the center of a city suffers damage during a 
heat wave due to cooling system overload, leading to increased 
opera8ng costs and temporary closure. 
> Credit risk impact: Property values drop and the likelihood of 
tenant payment problems increases. 

Agricultural loans Reduced crop yields due to drought, 
extreme rainfall. 

Physical Use of drought and rainfall data 
improves default predic/ons for 
agricultural loans. 

• Drought indices 
• Rainfall forecasts 
• Soil moisture data 

• Logis8c regression 
• Credit scores (agriculture-specific) 

A farmer loses a large por8on of the crop due to a prolonged 
drought, despite irriga8on. 
> Credit risk impact: Decreased yield reduces repayment capacity, 
increasing the probability of default. 

Car loans • Damage from floods, storms  
• Stricter emission rules  

Physical 
+  
Transi8on 

Integra/on of emissions regula/ons 
and storm risks improves 
predic/ons of future defaults on 
auto loans. 

• Regional flood risks 
• Storm risks 
• Trends in emission 

regula8ons 

• Credit Scores (Consumer Auto 
Loans) 

• Decision trees 

A consumer owns a diesel car that depreciates faster due to new 
emissions taxes and limited access environmental zones in ci8es. 
> Credit risk impact: The residual value of the vehicle is lower than 
expected, which can lead to a higher loss provision in case of 
default. 

SME loans Loss of income from opera8ons/cash 
flow due to 
• Disasters (e.g., flood, storm) 
• Regulatory Compliance  

 

Physical 
+  
Transi8on 

Integra/on of regional climate data 
quan/fies business risks from floods 
and storms. 

• Frequency data of 
regional disasters 

• Regulatory compliance 
levels 

• Credit scores (SMB specific) 
• Hybrid models (macroeconomic 

and climate risk data) 

A small bakery in a city that is badly hit by floods is losing 
customers and has extra costs to repair (items in) the store. This 
results in a temporary or long-term drop in income. 
> Credit risk impact: The risk of default rises as the company's 
revenue decreases, while loan repayments remain the same. 

Business loans 
(High-Carbon) 

Higher costs due to 
• CO2 taxes 
• Stricter regula8ons 

Transi8on Integra/on of CO₂ emission 
predic/ons improves risk models for 
companies in carbon-intensive 
sectors. 

• CO₂ emissions data 
• Energy consump8on 

profiles 

• Moody's EDF model 
• Reduced-form models (firm-

specific risk factors) 

A cement manufacturer must meet stricter emission standards, 
leading to expensive investments in cleaner technologies or 
penal8es for non-compliance. This significantly reduces profit 
margins. 
> Credit risk impact: The financial health of the company 
deteriorates, increasing the risk of default. 

Municipal Bonds Decrease in debt repayment due to 
disasters such as floods/droughts. 

Physical Integra/on of drought and flood 
data improves risk assessment of 
municipal bonds. 

• Regional flood maps 
• Drought risk indices 
• Scarcity projec8ons for 

water 

• Reduced-form models (credit risk 
municipal bonds) 

• Macroeconomic risk models 

A municipality in a coastal area is hit by a major flood. The costs of 
repair and infrastructure reconstruc8on are rising, while tax 
revenues are falling as businesses and residents leave. 
> Credit risk impact: The municipality has fewer resources to repay 
its bond debt, increasing the risk of default. 

Renewable Energy 
Projects  

Variability in performance due to 
weather condi8ons. 

Physical Integra/on of drought and storm 
forecasts improves financing models 
for renewable energy projects. 

• Drought and storm 
forecasts 

• Site-specific climate data 
 

• Project financing models 
(renewable energy specific) 

• Monte Carlo simula8ons (project 
risk assessment) 

A wind farm produces less electricity due to unexpectedly low 
wind speeds, which leads to lower revenues. Addi8onal damage 
from storms causes high repair costs and longer down8me. 
> Credit risk impact: Lower revenues and higher maintenance 
costs increase the risk of default by the wind turbine company. 
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