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SUMMARY

The aim of this dissertation is to introduce the concept of PDE-based parameterization
using Isogeometric Analysis (IGA) techniques and to present first results. IGA is a numer-
ical technique that employs the spline- and NURBS-based geometric modeling tools of
Computer Aided Geometric Design (CAGD) as a basis for numerical simulation using the
principles of Finite Element Analysis (FEA). This work proposes techniques that employ a
parametric domain comprised of one (singlepatch) or several (multipatch) unit quadri-
laterals and find an analysis-suitable mapping operator that parameterizes the physical
domain. Here, the only input is a NURBS-based correspondence between the bound-
aries of the parametric and physical domain. To achieve this, this work adopts the prin-
ciples of Elliptic Grid Generation (EGG), a PDE-based technique from classical meshing,
and proposes discretizations that are suitable for an IGA-based computational work-
flow. The PDE-based problem formulation is motivated by the prospect of employing
the same numerical technique for the geometrical as well as the computational aspects
of the numerical simulation pipeline.
We provide means to generate robust initial guesses for the (Newton-based) iterative ap-
proach that lies at the heart of the computational algorithm. To enable its application
in large-scale numerical simulations, we provide convenient memory-saving strategies
such as matrix-free Newton-Krylov (singlepatch) and Schur complement Newton-Krylov
(multipatch).
We further augment the methodology with the concept of domain optimization, which
allows for precisely controlling the parametric properties of the PDE solution. This is
accomplished through a coordinate transformation in the parametric domain. We com-
bine the PDE-based approach with the principle of parameterization quality cost func-
tion optimization to choose an appropriate transformation. Hereby, operating in the
parametric domain rather than directly on the geometry potentially improves robust-
ness and efficiency.
For removing mapping degeneracies resulting from the truncation error, this work pro-
poses a posteriori refinement strategies based on duality considerations. They are com-
bined with an unstructured spline technology to enable computationally efficient local
refinement. The a posteriori strategies substantially improve the robustness of an IGA-
based numerical simulation framework. However, since defect correction is based on
(local) refinement, improved robustness may come at the expense of higher computa-
tional costs.
The monolithic treatment of geometry and simulation is taken advantage of by merging
the residuals corresponding to the state variable (e.g. temperature, pressure) and the
mapping into a joint IGA-residual. This allows for deriving a symbolic expression for
the gradient of a shape optimization cost function with a convoluted dependency on the
geometry. The expression is then combined with a gradient-based algorithm that opti-
mizes the shape of a domain.

xi



xii SUMMARY

To further validate the proposed techniques, we employ them for the fully automated pa-
rameterization of co- and counter-rotating twin-screw machine geometries in two and
three spatial dimensions. Hereby, the methodology takes advantage of the differentia-
bility of the PDE-problem with respect to the boundary correspondence. By regarding
the mapping as a smooth function of the rotational angle, a database is hierarchically
filled with planar parameterizations for a large number of discrete angles. Interpolation
within the partially-filled database speeds up the computation of the remaining parame-
terizations. The spline-based mappings are used for the numerical simulation of molten
polymers within twin-screw machine extruders. In this application, they are orthogonal-
ized using a control mapping. The smooth dependency of the database on the rotational
angle improves the numerical quality of volumetric twin-screw machine parameteriza-
tions, which are generated by selecting a large number of planar parameterizations and
stacking them in the z-direction.
The techniques presented in this work demonstrate the potential advantages of a com-
putational workflow that consolidates the principles of CAGD and FEA. By not only inte-
grating FEA into CAGD-based design tools but also employing FEA techniques to solve a
CAGD problem, this work pays particular attention to a bidirectional unification of both
fields.



1
INTRODUCTION

Finite element analysis (FEA) has become an indispensable numerical technique for
approximating solutions of boundary value problems (BVP) as they arise in most en-
gineering applications. The technique is well-grounded in functional analysis [Red13].
It has been successfully applied to problems in, among others, structural analysis [Yan86,
ZTNZ77], computational electromagnetism [BRI05], computational fluid dynamics [GR12]
and heat transfer [LMTS96].
In this section, we discuss the geometrical aspects of FEA and the challenges they pose
to automating engineering design and simulation workflows. Furthermore, we give a
motivation and state the key objectives of this work.

1.1. MESH GENERATION
Assuming that the BVP is posed over a simply connected open domain › ‰ Rn , n 2 {2,3},
a preceding step to performing FEA is to subdivide › into a set T of mutually disjoint
cells (e.g. triangles, quadrilaterals, hexahedrons), given no more than a parametric de-
scription of the boundary @›. The Ki 2 T are chosen such that

Int

ˆ
[

Ki 2T
K i

!

˘ ›h

and @›h is a collocation of @› (see Figure 1.1). Here, Int(¢) denotes the interior of a
closed domain and K i the closure of an open domain Ki , respectively. The process of
selecting a suitable subdivision T is referred to as meshing, a subdiscipline of Com-
puter Aided Geometric Design (CAGD). Typically, meshing strategies operate in the order
@› ! @›h ! T .
The Ki 2 T are referred to as elements and are characterized by their vertices p j 2 Rn .
Since the p j determine the properties of the (typically piecewise polynomial) bases that
are compatible with T , their choice has a profound impact on the properties of the sub-
sequent FEA. Let each Ki 2 T be the image of some reference element K̂ ‰ Rm with
m • n, under a mapping Fi : K̂ ! Ki taken from the linear span of a (typically Lagrangian

1
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Figure 1.1: An unstructured triangulation of the interior of the physical domain › fenced off by (piecewise)
NURBS-based parametric curves.

[War79]) polynomial basis. A valid mesh is one in which each Fi is a homeomorphism. A
Ki 2 T that fails to be homeomorphic to K̂ is referred to as a degenerate element (see Fig-
ure 1.2). In practice, meshes can fail to be suitable for FEA (analysis-suitable) despite be-

Figure 1.2: A degenerate structured quadrangulation. Here, elements near the southern boundary degenerate
due to extreme skewness. A total of three elements fail to be homeomorphic to the unit rectangle. The mesh is
not analysis-suitable.

ing nondegenerate. Hence, commonly-applied algorithms furthermore attempt to select
T such that the Ki 2 T have favorable numerical properties. Mesh quality metrics are
largely based on heuristics but typically avoid near-degeneracies, reduce the skewness
introduced by the deformations Fi and ensure that neighbouring cells vary smoothly in
size [Knu01]. While some applications perform FEA with Lagrangian elements of poly-
nomial order p ‚ 2, in the vast majority of cases, the Ki 2 T are piecewise linear trans-
formations of K̂ , while the Ki 2 T form a simplical complex in Rn .
Meshes can be divided into two types: structured and unstructured. In the former case,
the Ki 2 T form a regular lattice while in the latter, the cells can have irregular connec-
tivities. Clearly, the flexibility of unstructured meshes facilitates capturing complicated
domains, while structured meshes have computational advantages, such as leading to
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banded FEA matrices that allow for a more hardware-friendly implementation and par-
allelization of assembly and inversion [Dic79].

1.2. THE ROLE OF NUMERICAL TECHNIQUES IN COMPUTATIONAL

ENGINEERING WORKFLOWS
Computational science and engineering (CSE) is a field that employs, among others, FEA
techniques for modeling and analyzing complex problems arising in real-world phys-
ical systems. Besides theory and experimentation, CSE is a key driver for engineering
research and has gained increasing importance, thanks to the steadily improving perfor-
mance of modern computer hardware.
Typical CSE workflows initially select an appropriate model for the underlying physical
process. This usually leads to a BVP posed over some physical domain ›. As a next step,
the process seeks a mathematical description of the boundary contours @› in the form
of NURBS-based [PT12] parametric curves / surfaces or a (sufficiently-dense) ordered
set of points. Then, a mesh is generated which becomes the geometrical input for ap-
proximating the exact BVP-solution using FEA techniques.
Often, the boundary contours @›fi are a function of a tuple of shape parameters fi, taken
from some feasible design space ‚ ‰ Rk . The space ‚ may then, for instance, be com-
prised of all fi that parameterize the admissible contours @›fi corresponding to the de-
sign of some engineering device.
Hence, real-world applications require incorporating the steps of @›fi ! T fi ! FEA into
a fully-automated computational workflow. This is challenging both mathematically and
algorithmically because it requires a codebase capable of autonomous intervention in
case numerical artifacts occur.
Mesh generation is widely regarded as the weakest link in this chain. The reason for this
is two-fold: Firstly, numerical artifacts in T fi manifest themselves in the form of cell
degeneracy which rules out the possibility to perform FEA completely. Secondly, unlike
in the FEA step, artifacts can typically not be mitigated or removed through refinement.
Hence, the algorithmically convenient possibility of trading increased computational re-
sources in exchange for improved robustness may not be given.
A further challenge lies within aspects of computational differentiability: in light of en-
abling cost-efficient computational design, it is desirable to combine the @›fi ! FEA
pipeline with gradient- or even Hessian-based optimization routines. Hence, the chain
fi ! @›fi ! T fi ! FEA needs to be differentiated with respect to the shape parameters
fi. Unfortunately, this can be challenging or even impossible, due to the often complex
or inaccessible dependency between @›fi and T fi and the convoluted fi-dependency
it introduces in the FEA residual. Hence, algorithms that admit deriving a closed-form
expression of the differential of T fi simplify this step. However, in practice, employing
such algorithms alone can be restrictive. As such, they are often combined with (colored)
finite difference approximations [GMP05] or automatic differentiation [GWX17], adding
further complexity to the already extensive codebase.
Isogeometric Analysis (IGA) is a numerical technique that was conceived in an effort to
streamline the typical geometry-to-FEA workflow. This is accomplished by integrating
the NURBS-based geometric modeling tools that are characteristic for CAGD into FEA.
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In IGA, a NURBS-based mapping operator is directly used for a pullback of the BVP posed
on › into the parametric domain ›̂, where the same NURBS-space is employed as a ba-
sis for standard FEA techniques. This is referred to as the isoparametric principle.
By this, IGA completely bypasses the requirement for traditional mesh generation, po-
tentially circumventing the aforementioned automation challenges. However, the surface-
to-volume problem @›fi ! ›fi becomes the IGA-analogue to classical mesh generation.
Besides potentially reducing the data conversion overhead resulting from employing
tools from both CAGD and FEA in tandem, the geometry is furthermore represented ex-
actly because the step @›fi ! @›fi

h is avoided (see Figure 1.3).

Figure 1.3: Instead of finding a tesselation T , such that ›h ˘ Int(
S

Ki 2T K i ), IGA subdivides › into a (rela-
tively) small number of subdomains ›i ‰ › which are all homeomorphic to the unit quadrilateral. BVPs posed
over › are then approximately solved by performing a sequence of pullbacks from the ›i into the reference
domain using the NURBS-based mapping operators xi : (0,1)n ! ›i . Hereby, the boundary of › is represented
exactly because the NURBS-based boundary correspondence @›̂ ! › is not discretized (cf. Figure 1.1).

1.3. MOTIVATION AND OBJECTIVES
In an effort to bridge the gap between FEA and CAGD, IGA employs the geometric mod-
eling tools associated with CAGD as a basis for analysis using finite element techniques.
So far, attempts to consolidate both fields are showing promising results [DVBRS11] but
have been largely unidirectional.
Since CAGD algorithms for the surface-to-volume problem have traditionally focused on
yielding FEA-compatible tesselated approximations ›h of ›, the pipeline @› ! @›h !
›h has received the majority of research interest. Hence, algorithms that operate in the
order @› ! › ! ›h , which could be applied in an IGA-setting by skipping the last step,
are under-represented. A notable exception is transfinite interpolation [GH73, GT82],
which, as the name suggests, parameterizes › by blending the (in R2 typically four) seg-
ments of @› into the interior. While this is a cheap and differential operation, degen-
eracy of the resulting parameterization x : ›̂ ! › is common. Furthermore, it does not
straightforwardly generalize to domains that are not topologically equivalent to the unit
quadrilateral in Rn .
Motivated by a bidirectional consolidation of CAGD and FEA, the objective of this dis-
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sertation is to extend the available geometry parameterization arsenal with robust al-
gorithms that address the CAGD problem @› ! › with FEA techniques. We seek tech-
niques that are capable of parameterizing two- and two-and-a-half -dimensional do-
mains in Rn , n 2 {2,3} which are topologically equivalent to some convex ›̂ ‰ Rm , with
m • n. With the typical CSE workflow (see Section 1.2) in mind, this work is based on the
following main principles:

A. Robustness is more important than efficiency;

B. Differentiability counts;

C. Whenever possible, topology changes should be avoided.

Point A allows for sacrificing a degree of parametric quality in exchange for automation
and code simplicity. It favors a framework that can refine away mapping degeneracies
rather than attempting to repair them through additional if-else clauses within the code-
base.
Point B implies that a parameterization algorithm should always be designed with dif-
ferentiability in mind in order to avoid or minimize the requirement to fall back on finite
differencing or automatic differentiation.
Point C is of importance when more than one unit quadrilateral (a so-called patch) is re-
quired to parameterize › (hence making ›̂ a multipatch domain). It enables employing
a constant number of patches when the boundary contours change as a smooth func-
tion of, for instance, time.
In time-dependent settings, points C and B enable extrapolating functions on ›(t ) from
time-instant ti to ti¯1 in the static parametric domain rather than having to perform
a computationally expensive projection from ›(ti ) to ›(ti¯1). Furthermore, regarding
time as an additional spatial dimension enables parameterizing 2.5-dimensional solids
by sweeping a (nonconstant) parametric surface in t-direction.
To conform with principles A to C, this work presents techniques that seek a mapping
x : ›̂ ! › whose inverse is comprised of harmonic functions in ›. This can be formu-
lated as a PDE-problem, which is then approximately solved using FEA / IGA techniques
in ›̂. Hereby, avoiding topology changes is greatly facilitated by the role of patches in IGA
versus elements in FEA. While the number of vertices and the degrees of freedom (DOFs)
associated with a single FEA-element are typically of the same order, the DOFs associ-
ated with NURBS-bases defined on a single patch typically exceed the number of patch
vertices by several orders of magnitude. As such, a patch can be regarded as a macro el-
ement which enables capturing important geometrical features using a flexible NURBS-
based mapping operator rather than increasing the local number of elements which,
inadvertently, changes the topology. As a result, IGA typically employs fewer rather than
more (macro) elements.

Remark. While the need to change the required number of macro elements (patches) is
reduced, the number of DOFs per patch (which are associated with the IGA-analogue of
classical elements) may vary in each iteration. However, the absence of (macro) element
changes enables defining restriction and prolongation operators in the static parametric
rather than the physical domain.
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In order to validate their usability in computational workflows, this work’s goal is to fur-
thermore apply the proposed techniques for the fully automated parameterization of
twin-screw machine [SSK05, ME88] type geometries in two and three spatial dimensions.
Hereby, we aim to exploit many of the potential numerical advantages that result from
principles A to C. Finally, we aim to combine these principles into a fully differentiable
gradient-based shape optimization algorithm and present first results.

1.4. DISSERTATION OUTLINE
The chapters of this work are based on publications. They can be divided into two broad
categories: Academic and applied. The academic chapters develop the methodology
which is then validated for use within real-world engineering workflows in the applied
chapters. This work validates the proposed techniques by applying them to geometries
of twin-screw machine type. In the following, we give a color-coded chapter outline
whereby the color indicates whether a chapter should be considered academic (blue),
applied (red) or mixed (yellow).

Chapter 2: Elliptic Grid Generation Techniques in the Framework of Isogeo-
metric Analysis Applications
This chapter introduces the general concept of PDE-based parameterization and
presents first applications.

Chapter 3: An IGA Framework for PDE-Based Planar Parameterization on
Convex Multipatch Domains
This chapter extends the methodology from Chapter 2 to multipatch domains.

Chapter 4: Goal-Oriented Adaptive THB-Spline Schemes for PDE-Based Pla-
nar Parameterization
This chapter extends the PDE-based methodology with a posteriori strategies
aimed at autonomous intervention in case degeneracies are detected. For this,
an unstructured spline technology is adopted. Furthermore, the framework is
extended with techniques to control the parametric properties of the resulting
mapping.

Chapter 5: The Role of PDE-Based Parameterization Techniques in Gradient-
Based IGA Shape Optimization Applications
This chapter introduces a gradient-based shape optimization algorithm in which
the geometry parameterization becomes part of the problem formulation rather
than a preceding step, by adding it in the form of an additional PDE-constraint.
It adopts most of the techniques introduced in the preceding chapters and com-
putes the gradient using an adjoint formulation.
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Chapter 6: Spline-Based Parameterization Techniques for Twin-Screw Ma-
chine Geometries
This chapter introduces a fully automated parameterization framework for twin-
screw machine geometries which is largely based on the techniques from Chap-
ter 2.

Chapter 7: Boundary-Conforming Finite Element Methods for Twin-Screw Ex-
truders using Spline-Based Parameterization Techniques
This chapter further develops the framework from Chapter 6 and applies it to
twin-screw machine extruder geometries. For this, the techniques from Chapter
3 are adopted.

The chapters employ the same basic notation. However, it is slightly varied depending
on the category (academic vs. applied) and the current requirements. By default, we
employ the abuse of notation

(Vh)n ˘ Vh £¢¢ ¢£Vh| {z }
n terms

. (1.1)

For better readability, we avoid the parenthesis when no confusion is possible, i.e., (Vh)2 ˘
V 2

h . The same is true for tensorial bases, i.e., (Vh)2£2 ˘ V 2£2
h .

Whenever necessary, the chapters recapitulate the current notation in a separate section
entitled Chapter Notation.
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2
ELLIPTIC GRID GENERATION

TECHNIQUES IN THE FRAMEWORK

OF ISOGEOMETRIC ANALYSIS

APPLICATIONS

This chapter is based on the publication from [HMV18]. It develops the basic principles
of PDE-based parameterization within the context of Isogeometric Analysis (IGA) appli-
cations and provides a gentle mathematical introduction to many of its core concepts.
Besides computational aspects, practical topics such as choosing / adjusting the para-
metric properties of the boundary contours are discussed. The methods developed in
this chapter constitute the main ingredients of the twin-screw machine geometry pa-
rameterization frameworks from Chapters 6 and 7.

Generating an analysis-suitable computational grid from a description of no more
than the boundaries of the geometry › is a frequently occurring problem in nu-
merical analysis. Most classical meshing techniques for finite volume, difference
or finite element applications, such as the Advancing Front Method [Sch97], De-
launay Triangulation [She96] and elliptic or hyperbolic meshing schemes [TSW98],
operate with straight-sided elements for generating structured and unstructured
computational meshes. Generating high quality meshes from curved elements is
still considered a challenging task. A recent development is the introduction of
Isogeometric Analysis (IGA) [HCB05], which employs NURBS [PT12], the de facto
standard in computer aided design (CAD) and computer aided geometric design
(CAGD), both for the representation of the geometry › and as a basis for the finite
element analysis on ›. A mathematical description of the geometry › is accom-
plished via an operator xh : ›̂ ! ›h that maps the unit quadrilateral in Rn (typically

9
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with n 2 {2,3}) onto an approximation ›h of ›, utilizing a linear combination of
higher-order spline functions. The numerical computations are then transferred
from › to ›̂ by performing a pullback. Hereby, splines may allow for an accurate
description of › with fewer elements, potentially reducing the computational effort
associated with this step. Furthermore, an analytical description of the geometry
can be turned back into a traditional (structured or unstructured) grid by perform-
ing a large number of function evaluations in xh . This can, for instance, be utilized
for local refinement without the need for remeshing.
On the other hand, employing curved instead of linear elements requires more so-
phisticated parameterization techniques. For instance, verifying that the resulting
mapping is folding-free is a more involved process than in the classical case.
For the purpose of creating folding-free mappings utilizing spline functions, we
present an algorithm that adopts the principles of Elliptic Grid Generation (EGG),
a PDE-based parameterization technique from the rich literature of classical grid
generation. The basic principles of EGG are adapted in order to be compatible with
the principles of IGA. In R2, EGG has particularly appealing properties since the
mapping x : ›̂ ! ›, which follows from the exact solution of the governing PDE-
problem, is a bijection [Cas91]. Hence, an approach that seeks an analysis-suitable
mapping by computing a sufficiently accurate approximation xh of x, is plausible.
This chapter presents an algorithm that is capable of generating valid mappings
from a large number of geometry contours, including complicated geometries as
they arise in industrial applications. This is accomplished by combining EGG with
automated reparameterization techniques and a sophisticated numerical approach
for solving the governing (nonlinear) equations. The algorithm is equipped with the
means to verify the bijectivity of the resulting mapping and with automated defect
correction methods in case bijectivity is violated.
We present strategies for generating folding-free mappings for solids resulting from
swept surfaces by combining the planar EGG approach with interpolation in the
third spatial component. All applications are provided with example geometries.

2.1. INTRODUCTION
A mathematical description of the target geometry › forms an integral part of any ap-
plication within numerical analysis. Unfortunately, most applications only provide a de-
scription of @› which necessitates solving a surface to volume problem @› ! ›h (with
›h ’ ›) before finite element analysis (FEA) techniques can be applied. This preced-
ing step tends to contribute substantially to the overall computational costs and often
constitutes a robustness bottleneck in the steps @› ! @›h ! ›h ! FEA. This is further
exacerbated by the usage of linear (i.e., straight-sided) elements which may necessitate
a high element density along the boundary to achieve an accurate approximation @›h
of @›.
Elliptic grid generation (EGG) is a popular PDE-based method for generating structured
meshes for complex geometries from no more than a description of their boundaries.
Traditionally, the parametric description of @›, which is typically provided by the CAD-
pipeline, is turned into a sufficiently dense point cloud which then serves as the Dirichlet
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data of the PDE-problem whose solution is approximated utilizing a finite difference ap-
proach. Due to the structured nature of this approach, the total amount of mesh vertices
is of the same order as the product of the amount of points used in each coordinate di-
rection. Whenever an accurate representation @›h of @› is desired, this can lead to a
disproportionately large number of vertices, potentially making the approach (and sub-
sequent numerical simulation) unfeasible. This is further exacerbated by the nonlinear
nature of the governing equation, which require an iterative approach.
Isogeometric Analysis (IGA) [HCB05] is a recent development in the field of numerical
analysis that attempts to bridge the gap between CAD and FEA. Instead of approximat-
ing the geometry by a tessellation, the parametric description of @› is directly used to
build a NURBS-based mapping operator for ›. This attempt to synergize CAD and FEA
comes with the potential of addressing many of the aforementioned feasibility concerns.
In this chapter, we present an algorithm that employs the basic principles of EGG in an
IGA-setting. We give a short motivation in Section 2.2, while Sections 2.4 to 2.8 develop
techniques aimed at addressing the potential feasibility concerns. In Section 2.10, we
propose numerous possible applications within the realm of IGA as well as classical FEA
and demonstrate the applicability of the approach in a number of test cases.
It is assumed that the reader is familiar with B-spline functions and hierarchical spline
bases [HCB05, Vuo12, FŠJ15].

2.2. MOTIVATION

Solving the surface to volume (or curve to surface in R2) problem @› ! ›h (with ›h ’
›) remains a challenging task, despite increased efforts to address it within the IGA-
community in recent years. To the best of our knowledge, there exists no golden stan-
dard and different types of geometries often require specially-tailored parameterization
methods. In the planar case, the parameterization of a geometry › is built from a bivari-
ate tensor-product B-spline space with known boundary control points. The objective
is then to choose the inner control points such that the resulting mapping is (i) bijective
and (ii) of high parametric quality as measured by some grid quality functional. Conse-
quently, most parameterization methods are based on minimizing a parametric quality
cost function. Let ›̂ ˘ (0,1)2 and let x ˘ (x(»,·), y(»,·))T be a mapping that satisfies
xj@›̂ ˘ @›h . Furthermore, let

J ˘
•

x» x·
y» y·

‚
(2.1)

and

G ˘ J T J ˘
•

x» ¢ x» x» ¢ x·
x» ¢ x· x· ¢ x·

‚
·

•
g11 g12
g21 g22

‚
(2.2)
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be the Jacobian and the metric tensor associated with the mapping, respectively.
In the following we list the most common quality functionals [Win81, XMDG13, GENN12].

(Area) orthogonality:
Z

›̂
g 2

12d» or
Z

›̂
g11g22d»

Liao:
Z

›̂
g 2

11 ¯ g 2
22 ¯ 2g 2

12d»

Winslow:
Z

›̂

g11 ¯ g22

det J
d»

Uniformity:
Z

›̂
kx»»k2 ¯kx··k2 ¯kx»·k2d»

Harmonic energy:
Z

›̂
kL (x)k2 d», (2.3)

where

L (x) ˘ g22x»» ¡ 2g12x»· ¯ g11x··. (2.4)

Most algorithms minimize either a single or a linear combination of the above cost func-
tions over the unknown inner control points [XMDG13, FŠJ15].
Unfortunately, performing unconstrained minimization does not guarantee bijectivity
of x (see Figure 2.1). An exception to this is the Winslow functional which, as a down-
side, needs to be initialized with an already bijective mapping (due to the presence of
det J in the denominator). To overcome this shortcoming, constrained minimization

Figure 2.1: A geometry parameterization based on the Liao-function in the unconstrained case (left) and the
constrained (right). Unlike in the constrained case, the mapping fails to be bijective in the unconstrained case.

methods are proposed in [GENN12], [XMDG11] and [XMDG10]. They replace the con-
dition det J ¨ 0 in ›̂ by simpler linear or nonlinear constraints that constitute sufficient
conditions for bijectivity. A major challenge, however, is finding an initial guess that is
feasible with respect to the chosen constraint.
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Our main interest lies in the fast on-the-fly generation of analysis-suitable parameteriza-
tions within real-world modelling, simulation and optimization workflows for engineer-
ing applications, and hence, we focus not only on generating analysis-suitable param-
eterizations of high numerical quality but also on aspects of computational efficiency
and robustness. This applies both to the efficiency of the process of generating the pa-
rameterizations themselves and to their suitability for enabling efficient simulations on
heterogeneous high-performance computing (HPC) platforms. In practice, these range
from a single workstation to large-scale clusters with hundreds or even thousands of
compute nodes.
Hence, our parameterization strategy tries to avoid topology changes, so that an op-
timized mapping between the collection of patches and available hardware resources,
that takes into account the physical proximity of devices and the speed of their intercon-
nects, can be pre-calculated at the beginning of the simulation. To fully exploit the large
computing power of modern multi- and many-core hardware architectures at the patch
level, the workload per patch needs to be sufficiently high, which motivates our striving
for fewer patches with ideally hundreds of thousands of degrees of freedom rather than
many patches with only a few hundred.
Our parameterization algorithm is moreover designed with reliability and robustness in
mind. That is, it is supposed to produce mappings that are both analysis-suitable and
of sufficiently high numerical quality for a wide range of planar geometries without the
need for human interaction and/or manual quality post-checks. As mentioned above,
we aim at employing fewer rather than more patches. For the test cases considered in
this chapter, the optimal topology is usually self-evident. Contrary to methods relying
on the quality functionals from (2.3), our method approximately solves a PDE problem
based on the principles of Elliptic Grid Generation (EGG).
In the following we present a brief introduction to EGG.

2.3. ELLIPTIC GRID GENERATION
Elliptic grid generation (EGG) addresses the frequently occurring problem of generating
an analysis-suitable description of the geometry from a description of only its bound-
aries. The technique is commonly applied in finite difference and finite volume settings
for the generation of structured grids.
Assuming the geometry › ‰ R2 is an open, simply connected domain that is topologi-
cally equivalent to the unit quadrilateral ›̂ ˘ (0,1)£(0,1), there exists a bijective mapping
x : ›̂ ! › with inverse x¡1 : › ! ›̂ provided a homeomorphic boundary correspondence
xj@›̂ ˘ @›̂ is available. Usually, the mathematical operator x is not unique, which is why,
besides computing a valid (i.e. bijective) mapping, EGG attempts to furthermore satisfy
favorable numerical properties, such as a large degree of parametric smoothness.
As elliptic problems are known to yield smooth solutions, EGG imposes the Laplace
equation on the components of the inverse-mapping x¡1. Assuming that the free topo-
logical variables are given by the tuple x¡1 ˘ » ˘ (»,·)T , the equation takes the form

¢»(x) ˘ 0 in › s.t. x¡1j@› ˘ @›̂. (2.5)

Since one is generally not interested in x¡1, the above problem is inverted and scaled
in order to yield an equation for x that is suitable for a computational approach. The
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resulting equations read

L (x) ˘ 0 s.t. xj@›̂ ˘ @›, (2.6)

with the functional L (¢) as defined in (2.4).
The rationale behind imposing the Laplace equation on x¡1 (as opposed to x) follows
from the observation that the mapping inverse maps into a convex domain. As a result,
the solution of (2.6) is bijective [Cas91, Chapter 9].
Furthermore, it can be shown [GENN12] that the solutions of (2.5) and (2.6) are equal
to the unique minimizer of the Winslow functional from (2.3). Also, (2.6) justifies us-
ing the harmonic energy functional from (2.3). As the exact solution of (2.6) is bijective,
algorithms based on the principles of EGG belong to the minority of approaches that
can reliably produce bijective mappings without the need for constraining. To the best
of our knowledge, the only other planar parameterization method with this property is
proposed in [NC16].
Generally, equation (2.6) cannot be solved analytically. In the following, we present a
numerical approach which is based on the principles of IGA.

2.4. DISCRETIZATION
Traditionally, the system of equations (2.6) is approximately solved with a finite dif-
ference approach, yielding a discrete set of grid points with known connectivity (see
[TSW98]). This approach makes sense whenever a structured representation of the ge-
ometry with linear elements is desired as in most classical settings.
In an IGA-setting, the most natural choice of tackling (2.6) is a Galerkin approach over
some pre-chosen spline space Vh ‰ H 2(›̂). This space can either result from a tensor-
product B-spline basis or a (truncated) hierarchical spline basis [GJS12], where the for-
mer has the advantage of being structured and the latter has the advantage of allowing
for local refinement, potentially converging to a bijective mapping x with fewer degrees
of freedom (see Section 2.8). The approximation of x is then of the form

xh(»,·) ˘
NX

k˘1
zk wk (»,·), (2.7)

where the basis {w1, . . . , wN } spans Vh and the zk 2 R2 denote the corresponding control
points. We denote the spline-based mapping by xh as opposed to x in order to stress that
it should be regarded as an approximation of x. The approximate nature of xh , apart from
the truncation error introduced by the scheme, results from the condition xj@›̂ ˘ @›,
which may have to be discretized, too (see Section 2.5).
The discretized weak counterpart of (2.6) leads to

find xh 2 V 2
h such that

Z

›̂

¾h ¢L (xh)d» ˘ 0, 8¾h 2 (V –
h )2 and xh j@›̂ ˘ @›h , (2.8)

with @›h ’ @› and V –
h · Vh \H 1

0 (›̂). Here, H 1
0 (›̂) denotes the subset of all functions with

zero trace in H 1(›̂). With this approach, any solution of (2.8) will automatically be in the
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form of (2.7), as is mandatory in an IGA-setting.
Decomposing {w1, . . . , wN } into zero and nonzero trace functions in H 1

0 (›̂) enables defin-
ing the index-sets of inner and boundary control points II ˘ {i 2 N j wi 2 H 1

0 } and
IB ˘ {1, . . . , N } \ II , respectively. The sum from (2.7) is split into two terms. They cor-
respond to the unknown (inner) and known (boundary) control points, i.e.,

xh ˘
X

i2II

zi wi

| {z }
unknown

¯
X

j 2IB

z j w j

| {z }
known

, (2.9)

where, the z j follow from the discretization of the Dirichlet data (see Section 2.5). With
(2.9) in mind, we associate the nonlinear residual F(¢) with (2.8), whereby our objective
is to determine its root, i.e.,

F(c) ˘ 0. (2.10)

Here c 2 R2N0 is a concatenation of the zi from (2.9), while N0 denotes the dimension of
V –

h j.
The requirement Vh ‰ H 2(›̂) results from the presence of second order derivatives in
(2.8). In IGA, choosing a compatible basis is straightforward (unlike in a classical FEA
setting). To allow for (locally) reduced (i.e., C 0(›̂)) regularity, we perform partial integra-
tion on the weak form of (2.5). This leads to

find xh 2 V 2
h such that

Z

›h

@¾h

@xh
:

@»
@xh

dx ˘ 0, 8¾h 2 (V –
h )2 and xh j@›̂ ˘ @›h , (2.11)

where A : B denotes the Frobenius inner product between matrices A and B .
Here, the integral has been carried out over ›h as opposed to ›̂ in order to enable partial
integration. Upon pullback into ›̂, the integral quantity from (2.11) takes the form

Z

›h

@¾h

@xh
:

@»
@xh

dx ˘
Z

›̂

1
det J (xh)

(. . .)d». (2.12)

Like (2.8), (2.11) leads to a nonlinear root-finding problem in c. Hence, an iterative solu-
tion approach is mandatory, requiring an initial guess.
In the case of system (2.8), any initial guess c0 may be substituted into the residual. In
(2.12), however, the Jacobian determinant det J (xh) appears in the denominator. Hence,
the initial guess must satisfy

8(»,·)T 2 ›̂ : det J (xh)(»,·) ¨ 0, (2.13)

in order to avoid division by zero.
This implies that it already needs to be a bijection itself. Clearly, this defeats the purpose
of the approach. However, system (2.12) can be utilized to improve the parametric prop-
erties of an already bijective mapping that was, for instance, produced by (2.8). A better
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option in this case is directly minimizing the Winslow functional:

mw ˘
g11 ¯ g22

det J
. (2.14)

The minimization problem takes the form

Z

›̂
mw d» ! min

xh 2V 2
h

, s.t. xh j@›̂ ˘ @›h , (2.15)

which can typically be performed without constraining since (det J )¡1 naturally penal-
izes (nearly) unfeasible solutions. It is seen that (2.15), like (2.12), is compatible with
locally reduced regularity but requires a bijective initial guess. However, it is superior to
(2.12) since it seeks the global minimizer of (2.15) over V 2

h , which may not coincide with
the root of (2.12).
Hence, starting with a basis of reduced regularity is not a viable choice in practice. In-
stead, Section 2.9 proposes ways to acquire a mapping with reduced regularity from a
mapping that is initially C ‚1(›̂)-continuous.

2.5. CONTOUR APPROXIMATION AND THE CHOICE OF BASIS
Section 2.3 assumes that a parametric description xj@›̂ of @› is given. However, xj@›̂ may
be incompatible with Vh \ V –

h . Denoting the images of southern, eastern, northern and
western sides of @› by ¡1, ¡2, ¡3 and ¡4, respectively, we assume that the corresponding
boundary transformations, fi : °̄i ! ¡̄i , with

[

i
¡̄i ˘ @› and

[

i
°̄i ˘ @›̂ (2.16)

parameterize a Jordan curve in R2.
The fi (s) come in the form of analytic functions or splines curves. Here, we also con-
sider the case in which xj@›̂ is only discretely available as a collection of points P ˘
{p1,p2, . . . ,pM } ‰ R2 (as is common in engineering applications).
In the following, we present techniques for choosing spline spaces capable of resolving
the contours to a user-defined accuracy. The resulting fits correspond to the Dirichlet
data in (2.9).
Sections 2.5.1 to 2.5.3 consider tensor-product B-spline spaces. The generalization to
hierarchical splines is sketched in Section 2.5.4.

2.5.1. ANALYTIC CONTOURS

For an analytic function input, we approximate @› using an L2(@›̂)-projection. Given
the initially uniform knot vectors ¥» and ¥· with corresponding bivariate p ‚ 2 (where p
denotes the polynomial degree) B-spline space Vh,0 ‰ C 1(›̂), we project the components
of fi onto Vh,0 \ V –

h,0. To avoid mismatches, the corner control points are constrained to
the function evaluations of the fi at the end points.
Let f–

i be the constrained least-squares fit of fi . We introduce the following element-wise
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average residual function:

E(f–
i ) ˘

X

† j

1
j† j j

Z

† j

°°f–
i (») ¡ fi (»)

°°2 d», (2.17)

where the † j denote the one-dimensional elements on @›̂ (which follow from the unique
values of the knot vectors) and j† j j their lengths in the parametric domain. The resid-
ual from (2.17) measures the quality of the fit both globally and locally. We assess the
element-wise quality using the contribution of each summand to the overall sum, serv-
ing as a local refinement criterion. An element is marked for refinement whenever the
average residual magnitude exceeds some threshold value –. Here, an element is refined
by adding a new knot in the center. We repeat the steps of project ! dyadically refine
marked elements until all local contributions are deemed sufficiently small.
Once the algorithm terminates, a sequence of nested spline spaces Vh,i , i 2 {0, . . . ,m} with
corresponding boundary control points {zi

j } and segmentations of @›̂ into disjoint ele-
ments is available. We employ the resulting hierarchy of refinements to construct robust
initial guesses for a computational approach of (2.8) in Section 2.6.3.

2.5.2. B-SPLINE CONTOURS
When the contours are splines themselves, we may choose the basis spanning Vh as the
tensor-product of the bases associated with the input spline curves. As the knot vec-
tors corresponding to the sides (¡1,¡3) and (¡2,¡4) may differ, we take the union of the
knot vector pairs associated with each coordinate direction. This can lead to a basis of
large cardinality, potentially making further computations less feasible. Here, the prin-
ciples from Section 2.5.1 may be a remedy. We employ the same approach to compute
an approximation of the given contours to any desired accuracy, the only difference be-
ing that a quadrature scheme needs to be defined with respect to the knot vector union
corresponding to the Vh,i and the input spline curve. This ensures that the functions
involved are C 1-continuous on the unified knot spans.

Remark. Only the right hand side vector of the linear system associated with the least-
squares fit needs to be assembled in this way. The mass matrix can still be assembled
over the knot spans associated with Vh,i .

As the input contours may result from a dense knot vector, this step can be computa-
tionally expensive. However, considering that the projection corresponds to a univariate
integral, the computational costs are still negligible compared to the expected costs of
solving equation (2.8). With this approach, we were often able to reduce the basis cardi-
nality by a factor of four or more with insignificant loss of quality.

2.5.3. POINT CLOUD CONTOURS
Many engineering applications provide no more than an ordered set of points as input.
Often the point coordinates are a function of, for instance, a set of shape parameters
fi 2 ‚ that tune the design of an engineering device.
When this is the case, we split the input point cloud into four parts

P i ˘ {pi
1,pi

2, . . . ,pi
Mi

} ‰ R2, i 2 {1,2,3,4}, (2.18)



2

18 CHAPTER 2. EGG IN THE FRAMEWORK OF IGA APPLICATIONS

each being assigned to one side of @›̂. As before, we assume that the first and last points
of the P i correspond to the convex corners of the domain. The next step is constructing
a spline fit. The fit can either be exact or approximate. Selecting any monotonically
increasing sequence {»1 ˘ 0,»2, . . . ,»Mi ¡1,»Mi ˘ 1} of parametric values, the objective is
constructing four spline curves fi for which

°°°fi (» j ) ¡ pi
j

°°° , j 2 {1, . . . , Mi }

is either zero (exact) or below a threshold (approximate). This is accomplished by recur-
sively constructing the fi from spline bases of successively increasing cardinality, remi-
niscent of Section 2.5.1. As before, the individual contributions to the mismatch serve as
a criterion for local dyadic refinement.
Alternatively, we may collocate each point cloud using a FITPACK [Die95] routine and
approximate the collocation with the techniques from Section 2.5.2. Again, this yields
a hierarchy of refinements with dyadic structure. The dyadic refinement exactly dic-
tates the location of knots. This is advantageous when taking the union of two or more
differing knot vectors to, for instance, prolong several mappings to a unified grid. The
dyadic structure tends to reduce the knot density compared to an approach with arbi-
trarily placed knots.
In practice, a collocation greatly benefits the robustness. Since the least-squares matrix
associated with a direct fit may be (nearly) rank-deficient, an underdetermined problem
is avoided. However, since it requires an exact fit through the (possibly dense) point sets
P i , higher computational costs can be expected.

Remark. A stabilized direct regression is proposed in Section 6.5.

Figure 2.2: A partition of ›̂ into elements follows from hierarchical refinements of the °i ‰ @›̂ into the bound-
ary elements Ai , i ˘ 1,2,3,4. The boundary refinements are extended into the interior in the canonical way
shown above. The various colors correspond to the levels in the element hierarchy.
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2.5.4. HIERARCHICAL SPLINE SPACES
Equation (2.8) is compatible with (truncated) hierarchical spline spaces. Let

Bh ˘ {w1, . . . , wN } ‰ H 2(›̂)

be a tensor-product reference spline basis. The analogue of the dyadic knot refinement
from Sections 2.5.1 to 2.5.3 selects functions wi 2 Bh that are nonvanishing on @›̂ and
marks them for refinement whenever the projection residual over their supporting ele-
ments exceeds a threshold. They are then replaced by their finer counterparts from the
spline hierarchy. This process is depicted in Figure 2.2.
The potential advantage of employing hierarchical spline spaces are the degree of free-
dom (DOF) savings made possible by local refinement. This enables capturing compli-
cated boundary contours without introducing potentially unwanted DOFs in the inte-
rior. On the other hand, predicting which parts of the interior require refinement for
properly approximating (2.8) is difficult.
In the remainder of this chapter, we restrict ourselves to tensor-product spline spaces.
Appropriate schemes for computing xh from a (truncated) hierarchical basis are devel-
oped in Chapter 4.

2.6. COMPUTATIONAL APPROACH
After the procedure from Section 2.5 has been completed, we are in the possession of a
sequence of domain segementations of mutually disjoint elements

H i ˘ {K1, . . .Km}, s.t. Int

ˆ
[

K j 2H i

K̄ j

!

˘ ›̂, 8i 2 {0,1, . . . ,m}, (2.19)

with corresponding spline spaces Vh,i , i 2 {0,1, . . . ,m} and steadily improving approxi-
mations @›h of @› from the Vh,i \ V –

h,i .
Sections 2.6.1 and 2.6.2 propose computational approaches for solving equation (2.10)
while Section 2.6.3, discusses the choice of the initial guesses. The computational ap-
proaches have been implemented in the Python-library Nutils [vZvZV¯19].

2.6.1. TRUNCATED NEWTON APPROACH
Equations (2.8) or (2.12), discretized over some appropriately chosen spline space Vh ,
lead to a root-finding problem of the form

F (c) ˘ 0, (2.20)

where c refers to the internal (unknown) degrees of freedom.
Due to the nonlinear nature of this equation, an iterative approach to finding its root c is
mandatory. Even though algorithms based on the principles of EGG traditionally employ
a Picard-based approach (as in [LB07] and [Man89]), we shall present an approach that
is based on Newton’s method. Defining

Fk · F
‡
ck

·
(2.21)



2

20 CHAPTER 2. EGG IN THE FRAMEWORK OF IGA APPLICATIONS

and
•

@F

@c

‚k
·

@F

@c

flflflfl
c˘ck

, (2.22)

a Newton-step is computed as the solution of
•

@F

@c

‚k
–ck ˘ ¡Fk . (2.23)

The next iterate becomes

ck¯1 ˘ ck ¯•–ck , (2.24)

where • 2 (0,1] is a damping factor. The Nutils-internal Newton-solver is equipped with
sophisticated line-search capabilities. Assuming that

°°°F
‡
ck ¯•–ck

·°°° ˘ A ¯ B•¯C•2 ¯ D•3, (2.25)

the constants A,B ,C ,D are estimated from the current and updated tangents and resid-
uals and • is selected such that (2.25) is minimized in the Euclidean norm in order to
reduce the required number of residual evaluations.
The above procedure is repeated until

°°F
¡
cn¢°°

2 ˙ †, (2.26)

where † is some convergence threshold.

2.6.2. PSEUDO TIME-STEPPING
Should the Newton-approach fail to converge, the solver can fall back on the technique
of pseudo time-stepping [CKK03] which trades a higher chance of convergence for an
increased computational effort. In practice, we rarely have to fall back on this approach
thanks to the reliability of the truncated Newton-approach in combination with a robust
initial guess (see Section 2.6.3).
Pseudo time-stepping seeks the steady-state solution of

@
@t

xh(t ) ˘ ¡L (xh(t )), (2.27)

with L (¢) as defined in (2.4).
We discretize in space utilizing a Galerkin approach and in time utilizing a backward
Euler scheme. This leads to:

•
M 0
0 M

‚
ck¯1 ¡ ck

¢tk
˘ ¡Fk¯1, (2.28)

where M denotes the mass matrix corresponding to the canonical basis of Vh \ H 1
0 (›̂).

The drawback of this discretization is its nonlinear right-hand side term. We circumvent
this issue with a first order expansion around Fk

Fk¯1 ’ Fk ¯
•

@F

@c

‚k
–ck , where –ck ˘ ck¯1 ¡ ck . (2.29)
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Substitution and rearrangement yields
ˆ

1
¢tk

•
M 0
0 M

‚
¯

•
@F

@c

‚k
!

–ck ˘ ¡Fk . (2.30)

As proposed in [KK98], the time step selection is based on the following recursive for-
mula

¢tk ˘ ¢tk¡1

°°Fk¡1°°
2°°Fk

°°
2

. (2.31)

Again, the iteration is terminated once
°°°F

‡
ck

·°°°
2

˙ †. (2.32)

2.6.3. CHOOSING AN INITIAL GUESS
The computational approaches from Subsections 2.6.1 as well as 2.6.2 are iterative and
thus require an initial guess c0. The quality of c0 makes a tremendous difference in the
convergence success or failure, as well as the amount of iterations needed. We shall ded-
icate this section to constructing robust initial guesses.
The preprocessing step from Section 2.5 leaves us with the nested sequence of spline
spaces Vh,k , k 2 {0, . . . ,m} and corresponding known boundary control points. They
each lead to a problem of the form

Fk (ck ) ˘ 0, (2.33)

where the subscript k in Fk indicates the level in the hierarchy.
We may utilize this hierarchical structure to our advantage. The idea is to solve F0 (c0) ˘ 0
and manipulate its solution to serve as an initial guess for the problem Fm ˘ 0. An ini-
tial guess for F0 is generated utilizing transfinite-interpolation [Coo67]. It is then solved
using the techniques from Section 2.6.1 or 2.6.2. Depending on the complexity of the ge-
ometry, the truncated Newton approach typically converges within about 4¡6 iterations.
As the dimension of Vh,0 is significantly smaller than Vh,m , a large number of iterations
does not compromise feasibility. After finding the root c0, we prolong the correspond-
ing mapping from the zeroth level in the hierarchy to Vh,m and impose the discrepancy
between the boundary control points (BCPs) of the prolonged coarse-grid solution and
the BCPs at the m-th level as a Dirichlet boundary condition on a linear elasticity [Fal08]
problem. When the boundary @› is complicated, the required number of refinement re-
cursions m is large. To improve the quality of the initial guess, we may then solve some of
the intermediate problems in the hierarchy before proceeding to the m-th level. A good
guideline is choosing the steps such that the dimension of the problem quadruples after
each level.
In the following, we illustrate this approach by applying it to the target contours de-
picted in Figure 2.3. Here, the left and right subfigures depict the least-squares fit of the
contours with respect to Vh,0 and Vh,m , respectively. Figure 2.4 plots the mapping at the
zeroth level in the refinement hierarchy. Here, the Vh,k are spanned by bicubic B-spline
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Figure 2.3: Contours corresponding to the first (left) and last level in the hierarchy (right). The figure zooms in
onto a small protrusion on the southern boundary that is not properly resolved by the coarse spline fit, while
being well-captured using the fine-grid knot vector. The boundaries that correspond to the various sides of the
parametric domain ›̂ have been highlighted in different colors for convenience.

Figure 2.4: The domain segmentation (left) and mapping (right) at the first level in the hierarchy. The color
depicts the value the Jacobian determinant assumes at each point.

Figure 2.5: Domain segmentation corresponding to the highest level in the hierarchy (left), the initial mapping
acquired with the linear elasticity method (right).

bases with maximum regularity. The mapping is prolonged to the canonical B-spline
basis of the grid depicted in Figure 2.5 (left). Figure 2.5 (right) shows the mapping gener-
ated from the linear elasticity problem, which serves as an initial guess for the m-th level.
Plotting the Jacobian determinant reveals that the initial guess succeeds in being bijec-
tive and is therefore already analysis-suitable. Solving Fm(cn) ˘ 0 thus only potentially
improves the parametric quality in this case. Figure 2.6 (right) shows the parametric
properties of the initial guess by the narrow gap of the geometry compared to an inferior
prolongation method (left).



2.7. REPARAMETERIZATION TECHNIQUES

2

23

In practice, the solver typically converges within 3 ¡ 4 iterations on the finest level. We
have found this hierarchical approach to greatly improve the robustness as well as the ef-
ficiency of the algorithm. When the boundary control points are not the result of one of
the methods from Section 2.5 but are fixed from, e.g., the CAD-input, the problem may
be tackled with an artificially created hierarchy. This is done by removing knots from
the input knot vectors and acting with the Moore-Penrose pseudo inverse [BH12] of the
prolongation operator T : Vh,0 ! Vh,m on the boundary control points. Heuristically, the

Figure 2.6: The parametric properties by the narrow gap of the geometry upon prolonging the coarse-grid solu-
tion to the fine grid using different techniques. The first is acquired by acting with the canonical prolongation
matrix on the internal DOFs and simply replacing the boundary DOFs (left). In the second case, the inner
DOFs are shifted as a result of a deformation field, which is the solution of a linear elasticity problem (right).
Note that the first method fails to yield a bijection.

initial guess acquired with the linear elasticity approach often succeeds in being bijec-
tive. Since this approach only requires solving one negligibly small nonlinear and one
linear problem, when successful, it is an inexpensive method for finding an analysis-
suitable parameterization. One may also choose to use it for simulation without further
optimization. In this case we might regard the linear elasticity mapping as a perturba-
tion of the optimized mapping. This furthermore suggests that linear elasticity may be
an inexpensive mesh-update strategy.
Distortions in the mapping have a less severe effect on numerical quality for higher val-
ues of the polynomial degree p [LEB¯10].

2.7. REPARAMETERIZATION TECHNIQUES
The parametric properties of the contours have a significant influence on the parametric
quality of xh . In the following we discuss various (re-)parameterization techniques and
give recommendations about which technique should be used in which setting. When
@› comes in the form of point clouds P i , i 2 {1, . . . ,4}, reparameterization is accom-
plished by reassigning monotone increasing parametric values to the pi

j 2 P i . When the
input comes in the form of an analytic function or spline curve, reparameterization re-
quires taking the function composition with a monotone function g : [0,1] ! [0,1]. While
this is possible in theory, we have found it to be algorithmically impractical. Hence, in
the following we consider a point cloud input. If an analytic or spline input needs to be
reparameterized, we first convert it into a dense point cloud by performing a large num-
ber of function evaluations.
For arbitrary geometries, an (approximate) arc length parameterization is the default
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Figure 2.7: The final mapping (left) and its parametric properties by the narrow gap (right).

choice. Given P ˘ {p1,p2, . . . ,pK }, this is easily accomplished by properly choosing the
collocation abscissae {0 ˘ »1,»2, . . . ,»K ˘ 1}. Defining li recursively by

li ˘ li¡1 ¯kpi ¡ pi¡1k, (2.34)

starting with l1 ˘ 0, and ending on lK , we define

»̂i ˘
li

lK
. (2.35)

An approximate arc length (or chord length) parameterization corresponds to choosing
»i ˘ »̂i . In many settings, we have observed that an arc length based parameterization
leads to unsatisfactory results.
Figure 2.9 shows the contours of a geometry with challenging characteristics. The chal-
lenge arises as a result of the simultaneous presence of very wide and very narrow gaps.
As discussed in Section 2.2, a lot of effort has gone into IGA-compatible parameterization
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techniques in recent years. However, to the best of our knowledge, only a small number
of publications deal with the impact of the parametric properties of the boundary con-
tours on the final mapping. In [XMGR14], Xu et al. propose a technique that changes the
parametric properties of a curve while retaining its shape. This is accomplished by repre-
senting the curve in a related NURBS-basis over a different knot vector. The parametric
properties can be tuned to some quality functional with one given degree of freedom.
On the other hand, [XLM¯18] attempts to tackle challenging geometries by segmenting
them into a large number of Bézier patches via quadrangulation on the Bézier control
net. The parametric properties of each patch are then optimized based on a local quality
functional.
In the following, we present a reparameterization technique designed for tube-like shaped
geometries subject to extreme aspect ratios as the one in Figure 2.9. Here, ensuring that
the same parametric value is assumed by the narrow gaps on opposite boundaries is a
crucial aspect for the numerical quality of the mapping (see Figure 2.8).

Figure 2.8: Depiction of the expected grid lines for chord length parameterized (left) and constrained chord
length parameterized (right) boundary contours. The parametric properties of the boundary contours are of
major importance whenever extreme aspect ratios are involved. The chord length parameterization may to
lead to unsatisfactory results, whereas the more flexible constrained chord length parameterization produces
superior results.

To this end, we have often successfully employed a more flexible variant of the chord
length approach, which we shall henceforth refer to as the constrained chord length pa-
rameterization.
Let the two point clouds P1 ˘ {p1

1,p1
2, . . . ,p1

n} and P2 ˘ {p2
1,p2

2, . . . ,p2
m} be assigned to the

two sides of @›̂ associated with the same coordinate direction. The constrained chord
length selects the parameters ¥2 ˘ {»2

1 ˘ 0,»2
2, . . . ,»2

m ˘ 1} associated with P2 based on the
values of ¥1 ˘ {»̂1

1 ˘ 0, »̂2
1, . . . , »̂1

n ˘ 1}, which result from a chord length parameterization
(cf. equation (2.35)). Given a threshold distance † ¨ 0 and assuming that a tuple (p1

i ,p2
j )

with
°°°p1

i ¡ p2
j

°°° • † exists, let

(n0,m0) ˘ argmin
(i , j )2{1,...,n}£{1,...,m}

°°°p1
i ¡ p2

j

°°° . (2.36)

After the tuple (n0,m0) has been found, we set »2
m0

˘ »1
n0

. We continue in the same fash-
ion on the two subsets of P1 and P2 with lower and higher indices as (n0,m0), respec-
tively. In practice, we usually remove a few points from the resulting subsets such that
(in terms of chord length) two matched tuples of points have a predefined minimum dis-
tance with respect to one another. This process is repeated in a hierarchical fashion until
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no more points that are eligible for matching are found. The procedure is illustrated in
Figure 2.9.

Figure 2.9: The constrained chord length technique seeks the minimum distance between the elements of
the two input point clouds, which are then matched. Upon completion, this step is repeated on the point
clouds pairs with higher and lower indices and so on. Red crosses indicate that no more point pairs eligible for
matching have been found.

After the algorithm terminates, the set ¥2 is partially known. It remains to determine
the values of the »2

i with unmatched index. Let I known
2 ˘

'
i 2 N j »2

i is known
“

(which
includes the first and last point). We assign a value to the remaining »2

i by carrying out
a spline interpolation of

'
»̂i

2 j i 2 I known
2

“
against

'
»i

2 j i 2 I known
2

“
. For this, we use a

monotone cubic interpolation [FC80] yielding the monotone reparameterization func-
tion g (»). The remaining parametric values are then given by »2

i ˘ g (»̂2
i ).

Upon completion, the tuples (¥i ,Pi ) serve as an input for the techniques from Section
2.5. Figure 2.10 depicts parameterizations corresponding to the contour from Figure 2.9
with constrained and unconstrained chord length parameterization, respectively. The
plot of the Jacobian determinant reveals that the chord length parameterized geometry
fails to be bijective, whereas bijectivity is achieved with the constrained approach. A
zoom-in onto the narrow gap shows the properties of the isolines in the constrained and
unconstrained case. The lines have to be deemed unsatisfactory in the unconstrained
case, whereas the constrained approach yields an outcome that can be considered supe-
rior both computationally (bijectivity is achieved) and numerically (the grid lines should
are orthogonal to the boundary). On the other hand, the unconstrained mapping is com-
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Figure 2.10: The resulting mapping without (left) and with (right) constrained chord length parameterization

Figure 2.11: A zoom in on the narrow part of the geometry shows its grid lines before and after parameteriza-
tion.

prised of 2366 DOFs, while the corresponding number is 3953 in the constrained case.
This is likely due to the parametric velocity not being (approximately) constant over the
parametric interval [0,1], requiring a locally higher density of basis functions to reach the
approximation tolerance. Hence, the resulting computational costs are slightly higher.

Remark. In our experience, a suitable parameterization of @›h is a critical aspect of
ensuring the quality of xh , regardless of the parameterization technique employed. The
reparameterization technique discussed in this subsection yields the best results in a
wide range of applications. Since it operates on a discrete point-cloud, however, it is an
inherently discrete process, which can yield qualitatively different outcomes for similar
inputs. The technique is further developed in Chapter 6.
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2.8. POST PROCESSING
Upon convergence, the mapping xh(»,·) is post processed. Due to the approximate
nature of (2.8), numerical errors can compromise the theoretically predicted bijectivity
property of the exact solution. The task of the post processor is detecting defects caused
by numerical errors. Defects manifest themselves as sign changes in the Jacobian deter-
minant [Pro15]

det J (x) ˘ det
•

@x

@»

‚
. (2.37)

Assuming that ›h is positively oriented, the objective of the post-processor is verifying
that det J is strictly positive.
In practice, this is accomplished by projecting det J onto a spline space that contains
it, as in [GENN12], and requiring that all the projection weights di are positive. Thanks
to the positivity of spline functions, this is a sufficient condition for bijectivity but not
a necessary one. Heuristically, we have observed that det J ¨ 0 implies di ¨ 0 in many
cases. However, in the presence of extreme aspect ratios (as in Figure 2.10), this suffi-
cient condition can be too restrictive. In practice, we may replace the harsh requirement
det J ¨ 0 in ›̂ by det J ¨ 0 on all quadrature points of the numerical integration scheme
utilized for the subsequent isogeometric analysis on ›h . We fall back onto this require-
ment whenever the sufficient condition is impractically restrictive.
If the post check finds a defect (a negative Jacobian determinant), we locally refine the
basis in a small region centered around the location of the defect and add another level
m ¯ 1 to the hierarchy. The defective mapping is prolonged to the refined basis and
passed back to the solver where it serves as an initial guess. This process is repeated
until no more defects are detected. We have often successfully corrected defects while
freezing the weights corresponding to basis functions supported on elements which are
far removed from the location of the defects. By this, fewer DOFs need to be recomputed
which reduces the computational costs.

Remark. A more in-depth discussion of refinement strategies is given in Chapter 4.

As an example, we consider the geometry depicted in Figure 2.12. Here, Vh is the result
of a knot vector with 19 elements in both coordinate directions. The figure reveals that
a defect is located at the upper part of the narrow gap of the geometry. Zooming in
onto this part, Figure 2.13 plots the parameterization before and after defect correction.
Figure 2.14 depicts the corresponding refinements in the parametric domain.

2.9. LOWER ORDER REGULARITY
As discussed in Section 2.4, using spline spaces with global C 0(›̂)-continuity can be
computationally impractical (requiring a bijective initial guess). In certain settings, a
steep angle in the boundary contour is best modeled as a C 0-continuity resulting from a
repeated knot. Here, an option is segmenting the geometry and applying the PDE-based
problem formulation patchwise. However, it may not always be evident how to segment.
Furthermore, segmentation is not always differentiable, making it impractical when the
methodology is applied for, e.g., gradient-based shape optimization. Figure 2.15 will
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Figure 2.12: The parameterization of a challenging geometry. On first glance the parameterization seems fine,
the plot of the Jacobian determinant, however, shows that it assumes negative values.

Figure 2.13: Defective part of the geometry (left) and the same part after defect correction (right).

serve as an example geometry for the discussion that follows. The depicted contours
@›h of this O-type parameterization are taken from a bicubic spline basis. Knots have
been added in the parametric domain to properly capture the C 0-continuities which are
marked by red crosses. This leads to a homeomorphic boundary correspondence be-
tween the various sides of ›̂ and ›h . However, in order to be compatible with (2.8),
the boundary correspondence needs to be diffeomorphic. We lower the knot multiplic-
ity by one wherever it exceeds p ¡ 1 and restrict the Dirichlet extension to the newly-
formed spline space. Henceforth we shall refer to the two spaces formed in this way
by Vh,i ‰ C i (›̂), i 2 {1,2}. Figure 2.16 shows a zoomed-in picture of the C 0-continuity
before and after smoothing. The smoothed contours are passed to (2.8). With Section
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Figure 2.14: The elements that make up ›̂ after refinement. The post processor has locally performed dyadic
refinement of the knot vectors in both coordinate directions.

Figure 2.15: Target contours containing C 0-continuities.

2.6.3 in mind, we compute the solution xh 2 V 2
h,0 from its smoothed counterpart using

a mesh update strategy. The boundary discrepancy between both mappings is imposed
as a Dirichlet boundary condition to a linear elasticity problem. Should bijectivity be
retained, the solution is passed to (2.15) as an initial guess to further improve the para-
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Figure 2.16: Part of the boundary contours before and after smoothing.

metric properties.
Should the linear elasticity solution fail to be bijective, we can perform the above steps
with a Dirichlet boundary condition that is dampened by a factor fi ˙ 1. This process is
repeated until the target contours are attained.
Figure 2.17 depicts the geometry that corresponds to the contours from Figure 2.15.

Remark. An approach that supports spline spaces with global C 0(›̂) continuity while
not requiring a bijective initial guess is proposed in Chapter 3.

Figure 2.17: The mapping corresponding to the contours from Figure 2.15 with C 0 continuities.

2.10. APPLICATIONS
In this section, we discuss possible applications of the algorithm within both IGA and
classical FEA settings.

2.10.1. APPLICATION TO CONSTRAINED OPTIMIZATION
While the proposed methodology produces analysis-suitable parameterizations in a wide
range of applications, it lacks the flexibility of exactly controlling the parametric proper-
ties of the outcome. In [GENN12], the mapping is optimized by choosing the inner con-
trol points based upon the optimization of various quality functionals. As a constraint,
the optimizer requires that the projection of det J onto a spline space which contains
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Figure 2.18: The EGG algorithm (left) and the approach from (2.38) (right) applied to the same geometry. Even
though both outcomes are feasible with respect to a nonlinear sufficient condition for bijectivity, the EGG
mapping is highly regular, while (2.38) yields a distorted outcome. This is not surprising as (2.38) is solely
aimed at yielding a feasible initial guess, regardless of parametric quality.

it only carries positive weights. This constitutes a sufficient condition for bijectivity. A
major hurdle is finding an initial guess that satisfies this requirement. Let d(c) be the vec-
tor of projection weights. As before, c contains the inner control points from (2.9). The
authors propose computing an initial guess as the result of the following optimization
problem:

max
c

z,

s.t. d(c) ‚ z1, (2.38)

where 1 is a vector of ones. In the following, we refer to (2.38) as the max Z problem. If
the optimization routine returns a maximizer with z ¨ 0, a feasible initial guess has been
found. An optimization routine (typically IPOPT [BZ09]) then further optimizes a quality
cost function under the constraint d(c) ¨ 0.
When solving (2.8) yields a bijective outcome, initializing the quality cost function op-
timization with the EGG-solution is a plausible alternative to optimizing (2.38). Figure
2.18 shows the result of applying EGG and max Z to the same geometry. Both mappings
are feasible with respect to the constraint d(c) ¨ 0.
In the following, we study the quality of both initial guesses as measured by substitut-
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ing them into a number of widely-employed cost functions. Hereby, lower values mean
that the initial guess is closer to the optimum, which typically means fewer optimiza-
tion iterations. Table 2.1 shows the results of substituting into the Liao, Winslow and
Area-Orthogonality functionals (see Section 2.2). Generally, the EGG mapping yields a
lower outcome. A further striking difference is the required number of iterations, which
amount to almost 30 in the case of (2.38), while the iterative Newton solver converges
in only five for the EGG mapping. We conclude that EGG is a viable alternative to (2.38)

# Iterations Liao Winslow Area-Orthogonality
EGG 5 1.25 £ 107 38.73 5.54 £ 105

max Z 27 2.88 £ 108 70.25 5.76 £ 106

Table 2.1: A table showing the results of substituting both mappings from Figure 2.18 into various parame-
terization quality cost functionals, along with the required number of iterations for achieving feasibility with
respect to the sufficient condition.

for initializing constrained optimization. We have noted the sequence of steps transfi-
nite interpolation ! EGG mapping ! cost function optimization to be both robust and
computationally efficient in practice.

2.10.2. TIME-DEPENDENT GEOMETRIES AND SWEPT SURFACES
We are again considering the geometry from Figure 2.17.
Assuming that we perform numerical simulation by discretizing using IGA in the spa-
tial component and finite differences (with fixed time step) in time, part of the com-
putational approach is generating an analysis-suitable mapping for the geometry at the
current time instant. For the O-grid, the northern and southern boundaries are disre-
garded and a periodic knot vector is utilized in the ·-direction. If the boundary corre-
spondence is a smooth function of time, previous mappings may be reused for forming
better initial guesses at the current time instant through extrapolation. Assuming the
grid to be fixated at the eastern (casing) and sliding along the western boundary (rotor),
we can construct high-quality initial guesses by extrapolating the mappings from previ-
ous time steps to the current time step. Assuming ¢t corresponds to some fixed angular
increment ¢µ, after each iteration we act with the canonical rotation matrix on the in-
ner contour-interpolation cr (·) and reparameterize to let · ˘ 0 coincide with cr (·)y ˘ 0.
After the first mapping x1(»,·) has been computed utilizing the principles from Section
2.6, the internal DOFs of x1 serve as an initial guess for computing x2. This constitutes
a zeroth order extrapolation. Once more mappings become available, higher order ex-
trapolations can be constructed. Here, we restrict ourselves to a sequence of length six,
i.e., we construct an initial guess for xn from {xn¡6, . . . ,xn¡1} or a subset thereof. A se-
quence of length l is utilized to construct a (l ¡ 1)th-order spline extrapolation for each
internal DOF which is then evaluated at the current time instant and utilized as an initial
guess. This operation is computationally efficient since each DOF can be treated inde-
pendently. Note also that this operation is compatible with variable time steps.
Figure 2.19 shows a realization of the sliding O-grid algorithm from Section 2.10.2 with
¢µ ˘ 0.003 after 0 and 125 iterations. In practice, the truncated Newton iteration con-
verges after only one iteration once enough grids for a 5th-order extrapolation are avail-



2

34 CHAPTER 2. EGG IN THE FRAMEWORK OF IGA APPLICATIONS

Figure 2.19

able. This is a remarkable result since the computational costs are reduced to the same
level as algebraic methods (solving one linear system), while retaining the favorable
properties of EGG, such as bijectivity.
Noting that above time stepping process essentially computes planar slices of a swept
surface (whose boundary is parameterized by a mutually disjoint family of contours
@›h(t ), t 2 [0,T ]), we replace the temporal axis t by the z-axis and perform first-order
interpolation (in z) between the tuples (xi ,xi¯1), 8i 2 {1, . . . ,125}. Figure 2.20 depicts
the resulting swept surface geometry. The positivity of the Jacobian determinant reveals
that the interpolation, too, is analysis-suitable. The non-smooth nature of the first order
interpolation, however, is clearly visible. This methodology is essentially equivalent to
performing a collocation on a family of problems Ft (ct ) ˘ 0, 8t 2 [0,T ]. Here, we require
that Fn¢t (cn¢t ) ˘ 0, where n 2 Z and ¢t denotes the spacing. If a p ˘ 1 basis resulting
from a uniform knot vector with spacing ¢t is utilized in t-direction, the problem be-
comes separable (in t ) enabling us to replace a volumetric problem by a sequence of
planar problems, as above. Using higher-order bases in t-direction leads to a higher-
order interpolation between the slices. However, for p ‚ 2, the system loses separability.
Should the collocation fail to yield a bijection, despite all its constituent slices xi being
bijective, we refine in t and add more collocation points. Fortunately, we can utilize
our database of m planar slices to construct excellent initial guesses for the additional
required slices via interpolation.

2.10.3. PARAMETERIZING THE INTERIOR OF A SCREW-MACHINE

Figure 2.21 (left) shows the contours of a screw machine geometry. The objective is gen-
erating a parameterization of the interior between the two rotors and the casing repre-
sented by two circular arcs (meeting at the so-called CUSP points) utilizing two or more
mappings. The figure also shows two smaller circular arcs, that together with parts of
the left and right rotors constitute the contours of a geometry, henceforth referred to as
the separator, whose singlepatch mapping is depicted on the right. We generated the
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Figure 2.20: First order interpolation of the first 126 cross-sections.

Figure 2.21: Contours of a challenging geometry that can only be parameterized using two or more patches.

mapping using the Newton-approach from Section 2.6.1 in conjunction with the repa-
rameterization technique from Section 2.7. As a next step, we generate a separating
line connecting the two CUSP-points of the casing. We select the CUSP-point preim-
ages {p1,p2} ‰ @›̂ and connect them by a curve. The most straightforward choice is a
straight line, which already yields decent results. The continuous nature of xh , however,
also allows for a more flexible choice. In this case, we traverse the parametric domain
such that the geometry is split most-evenly into two disjoint parts by the narrow gaps of
the separator. The procedure is illustrated in Figure 2.22. The splitting curve is exported
as a dense point cloud and utilized to split the target geometry into two parts. As a next
step, two geometry contours are formed using the splitting curve, parts of the left and the
right rotors and connecting line segments (see Figure 2.23). We generate mappings for
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Figure 2.22: Generating a high-quality splitting curve utilizing the bijective mapping.

Figure 2.23: Four-patch target geometry.

the geometries, fenced off by these contours, using the same technique employed in the
generation of the separator, whereby both geometries utilize the same knot vector in the
·-direction. The result is depicted in Figure 2.24 (left). In Figure 2.24 (right) the red line

Figure 2.24: Two-patch mapping for the middle part of the geometry depicted in Figure 2.23 (left). The right
picture shows the segment at which the two geometries meet. It is clearly seen that the two mappings are
conforming but only C 0-continuous across the interface.
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shows the segment at which the two mappings meet. Since the mappings are conform-
ing at the interface curve, we merge them through C 0-coupling. Upon completion, the
separator is the image of a single-patch mapping with a p-fold repeated internal knot
at » ˘ 0.5, where p denotes the polynomial order. As a next step, we remove the steep
angles at the interface curve by finding the root of system (2.12) using the merged two-
patch parameterization as an initial guess. A zoom-in on the resulting mapping is shown
in Figure 2.25. Finally, two C-type mappings are generated for the parts to the left and

Figure 2.25: Upon combination of the two mappings into one and remeshing, the steep angles are significantly
smoothed.

right of the separator. The final geometry, which is the image of a total of three maps, is
depicted in Figure 2.26.

Figure 2.26: The final parameterization of the interior of the screw machine geometry which utilizes a total of
three mappings.

2.10.4. APPLICATIONS WITHIN CLASSICAL MESHING
Classical finite difference, volume or element applications typically utilize structured
grids comprised of linear elements. Even though the approach proposed in this chapter
is based on curved as opposed to linear elements, the mapping operator can be utilized
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to generate linear meshes of any desired accuracy.
Given a bijective spline-based mapping xh , a straight-sided mesh is acquired by per-
forming a large number of function evaluations and connecting the resulting point cloud
by linear edges. Thanks to the flexibility of higher-order spline functions, the tolerance
of the boundary approximation @›h tends to be attained with fewer elements than in the
linear case, which potentially reduces the computational costs. We perform an adequate
number of function evaluations in xh in order to retain a sufficiently accurate collocation
of @›h with linear edges. Hereby, the spacing can be locally tuned to reach the desired
accuracy with less elements.
A further application is a tunable grid resolution. Often, it is desirable to have a higher
element density, for instance, along the boundary contours in tangential direction. As
an example we again consider the familiar geometry from Figure 2.27. We introduce the

Figure 2.27: The bijective geometry with curved elements.

ordered sets

¥ ˘ {0,1/¢»,2/¢», . . . ,1},

with ¢» ˘ 1/401 and

H ˘ {0,·0(¢·),·0(2¢·), . . . ,1},

with

·0(·) ˘
1
2

ˆ
arctan

¡
6(·¡ 1

2 )
¢

arctan(3)
¯ 1

!

(2.39)

and ¢· ˘ 1/35. A straight-sided boundary layer mesh is acquired by evaluating xh in
the (»,·) 2 ¥ £ H and connecting neighbouring nodes with edges. The resulting grid is
depicted in Figure 2.28. Besides tuning the mesh properties, this methodology allows
for generating meshes with vertices whose number exceed the DOFs of the spline map-
ping by several orders of magnitude. As a single evaluation of xh is cheap, generating
dense meshes is computationally inexpensive. It should be noted that this process es-
sentially collocates xh . Hence, bijectivity may be lost if the number of sampling points is
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Figure 2.28: A classical mesh acquired from the geometry depicted in Figure 2.27 by performing a large num-
ber of function evaluations (left). The right picture is a zoom-in onto the narrow gap showing the boundary
element distribution.

too low. Finally, we mention that the mapping can also be utilized to generate unstruc-
tured meshes. This is accomplished by performing (for instance) a triangulation in the
parametric domain and carrying out function evaluations in the vertices. The value of
the Jacobian determinant in the vertices can in turn serve as a local refinement criterion.

2.11. CHAPTER CONCLUSIONS
In this chapter, we presented an algorithm that embeds the principles of EGG into an
IGA-framework. This was accomplished by discretizing the weak form of the governing
equations with a Galerkin approach using spline basis-functions with global C ‚1(›̂)-
continuity and solving the resulting nonlinear system with a truncated Newton-approach.
Furthermore, we presented automated reparameterization techniques to improve the
parametric properties of challenging geometries like, for instance, geometries with ex-
treme aspect ratios.
The hierarchical Newton approach greatly contributes to the overall stability. The algo-
rithm reliably produces analysis-suitable singlepatch parameterizations for a wide range
of geometries and typically converges within 3 ¡ 5 nonlinear iterations.
Even though self-intersections are uncommon, defects resulting from the truncation er-
ror can be located on internal elements. So far, the choice of Vh is solely based on ac-
curately resolving the boundary contours but does not prevent self-intersections in the
interior. Currently, self-intersections are resolved by the defect-correction techniques
from Section 2.8.
The constrained chord length reparameterization technique introduced in Section 2.7
has been successfully applied to generate parameterizations for tube-like shaped ge-
ometries, (see Figure 2.10), as well as the multipatch parameterization from Figure 2.26.
Due to its discrete nature, small perturbations in the input data may already yield con-
siderably different reparameterizations. Hence, the technique is only C ¡1-continuous
with respect to the input. This prevents it from being applied to problems in which
the parameterization of the boundary contours @›h(t ) needs to be homeomorphic in
t , such as the sliding grid and swept surface parameterizations from Section 2.10.2. In
such cases, computing reparamterizations at discrete time instants n¢t , n 2 Z and per-
forming a regression over t may be an option. Hereby, it is of major importance that the
regression restricted to t ˘ t0 is monotone for each t0 2 [0,T ].
Finally, we proposed a methodology compatible with spline spaces Vh ‰ H 1(›̂). This
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allows for parameterizing geometries in which the spline-based boundary correspon-
dences between the various sides of @›̂ and @› are only homeomorphic, rather than
diffeomorphic. Despite its repeated successful application, the method proposed in Sec-
tion 2.9 is relatively involved. An approach that allows for spaces Vh ‰ H 1(›̂) while not
requiring a bijective initial guess constitutes a possible topic for further research.
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3
AN IGA FRAMEWORK FOR

PDE-BASED PLANAR

PARAMETERIZATION ON CONVEX

MULTIPATCH DOMAINS

This chapter is based on the publication from [HMV19]. The development of this work
was motivated by our striving for a practically viable parameterization algorithm that
supports spline spaces with reduced regularity (i.e., global C ‚0 continuity). While C 0

bases are compatible with the methodology from Section 2.9, the appearance of the Ja-
cobian determinant in the denominator of the residual makes it impractical for a frame-
work that automatically generates a large number of parameterizations for a wide range
of different input contours. This is due to the need to initialize with a nondegenerate
mapping (which is typically not available) and numerical issues related to the possibility
of dividing by zero, such as a frequent need for truncating the Newton step, condition-
ing issues of the associated matrices and convergence failure. The approach presented
in this chapter overcomes these shortcomings and finds a major application within the
fully automated generation of spline-based parameterizations for twin-screw machine
extruders (see Chapter 7). It enables improving the methodology from Section 2.10.3 and
Chapter 6, which requires finding a splitting curve which connects both CUSP points of
a twin-screw machine geometry and is strictly contained within the interior of the phys-
ical domain. Here, this curve establishes itself as part of the solution to a PDE problem.
Furthermore, the proposed framework is compatible with domains comprised of several
unit quadrilaterals.

The first step towards applying Isogeometric Analysis (IGA) techniques for the ap-
proximate solution of PDE problems is generating an analysis-suitable mapping
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operator between parametric and physical domains, using one or several patches,
from no more than a (spline-based) description of the boundary contours of the
planar physical domain. A subclass of the multitude of the available parameteriza-
tion algorithms are those based on the principles of Elliptic Grid Generation (EGG)
which, in their most basic form, attempt to approximate a mapping operator whose
inverse is composed of harmonic functions. The main challenge lies in finding a
problem formulation that is suitable for a computational approach. A common
strategy is approximating the mapping by means of approximately solving a PDE
problem. PDE-based EGG has been successfully applied in classical finite differ-
ence and finite volume settings and first generalization attempts to spline-based
descriptions (as is mandatory in IGA) have been made. Unfortunately, all of the
practically viable PDE-based approaches impose certain requirements on the em-
ployed spline basis, in particular global C ‚1 continuity.
This chapter discusses an EGG algorithm for the generation of planar parameter-
izations with locally reduced smoothness (i.e., with support for spline bases with
global C 0 continuity). A major use case of the proposed algorithm is that of multi-
patch parameterizations, made possible by the support for reduced regularity. We
propose a specially-tailored solution algorithm that exploits many characteristics of
the PDE problem and is suitable for large-scale applications. It is discussed for the
singlepatch case before generalizing its concepts to multipatch settings. This chap-
ter is concluded with three numerical experiments and a discussion of the results.

3.1. INTRODUCTION
The automated generation of analysis-suitable planar parameterizations for IGA-based
numerical simulation is a challenging, yet important problem as generally no more than
a spline- or NURBS-based description of the boundary contours is available. Hence, the
main challenge lies in generating a folding-free (i.e., bijective) parameterization of the
interior with numerically favorable properties such as orthogonal isolines and a large
degree of parametric smoothness. Furthermore, a practical algorithm should be compu-
tationally inexpensive, and, if possible, exhibit little sensitivity to small perturbations in
the parametric description of the boundary contours.
Let › denote the open, simply connected target domain and let ›̂ be an open para-
metric domain, topologically equivalent to ›. Furthermore, let xh : ›̂ ! › denote the
mapping operator that we attempt to build from the finite-dimensional spline space Vh
with basis Bh ˘ {w1, w2, . . . , wN }. In the following, the operator [¢] acting on a finite-
dimensional spline space returns its canonical basis, which we assume to be clear from
context. Hence, we have [Vh] ˘ Bh .
Here, xh extended to the closure of ›̂ satisfies the relation xh j@›̂ ˘ @›. Note that xh is of
the form:

xh(»,·) ˘
X

j 2IB

z j w j (»,·) ¯
X

i2II

zi wi (»,·), (3.1)

where II and IB denote the index-sets of the vanishing and nonvanishing basis func-
tions on @›̂, respectively. Formally, IB \ II ˘ ; and IB [ II ˘ {1, . . . , N }. With this,
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the objective of all parameterization algorithms is properly selecting the inner control
points zi 2 R2, while the boundary control points z j 2 R2 are known from the boundary
correspondence and typically held fixed.
In [GENN12], Gravesen et al. study planar parameterization techniques based on the
constrained minimization of a quality functional over the inner control points. To avoid
self-intersections, a nonlinear and nonconvex sufficient condition for det J ¨ 0, where J
denotes the Jacobian of the mapping, is added as a constraint. The numerical quality of
the resulting parameterization depends on the choice of the employed cost functional
and the characteristic properties of ›. While this approach is not guaranteed to yield
acceptable results for all types of geometries (see section 3.4), it is known to yield good
results in a wide range of applications with proper parameter tuning. A drawback is the
relatively large number of required iterations (typically » 30) and the need to find an ini-
tial guess that also satisfies the constraints (for which another optimization problem has
to be solved first). The proposed minimization is tackled with a blackbox nonlinear opti-
mizer (such as IPOPT [BZ09]) that comes with all the drawbacks of nonlinear, nonconvex
optimization such as the danger of getting stuck in local minima.
Another class of parameterization methods suitable for nontrivial geometries are PDE-
based, most notably, the class of methods based on the principles of Elliptic Grid Gen-
eration (EGG). Methods based on EGG attempt to generate a mapping x : ›̂ ! › such
that the components of x¡1 : › ! ›̂ are harmonic functions on ›. For this, a nonlinear
partial differential equation is imposed on x. Let » ˘ (»,·)T denote the local coordinates
in ›̂. The PDE problem takes the form

L (x) ˘ g22x»» ¡ 2g12x»· ¯ g11x·· ˘ 0, s.t. xj@›̂ ˘ @›, (3.2)

with

g11(x) ˘ x» ¢ x», g12(x) ˘ x» ¢ x· and g22(x) ˘ x· ¢ x· (3.3)

the entries of the metric tensor of the mapping (which is nonlinear in x). Given a homeo-
morphic spline-based boundary correspondence @›̂ ! @› and assuming that ›̂ is con-
vex, it can be shown that the exact solution of (3.2) is a bijection, justifying a numerical
approximation for the purpose of generating a geometry description [Aza09].
EGG has been an established approach in classical meshing for decades and first at-
tempts to apply it to spline-based geometry descriptions were made in [Man89], where
the equations are approximately solved by a collocation at the abscissae of a Gaussian
quadrature scheme with cubic Hermite splines. In [LB07], the collocation takes place at
the Greville abscissae and the resulting nonlinear equations are solved using a Picard-
based iterative scheme, allowing for a wider range of spline bases. However, as a down-
side, the consistency order of Greville-based collocation is not optimal. In [HMV18a],
the equations are discretized with a Galerkin scheme and a Newton-based iterative ap-
proach is employed for the resulting root-finding problem, allowing for C ‚1(›̂) contin-
uous bases. Numerical convergence is accelerated by generating initial guesses utilizing
multigrid techniques and convergence is typically achieved within four (unconstrained)
nonlinear iterations.
Unfortunately, none of the aforementioned approaches allow for spline bases with lo-
cally reduced (i.e., global C 0(›̂)) regularity, hence requiring a diffeomorphic boundary
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correspondence between the various sides of ›̂ and ›. Since in certain applications em-
ploying globally C 0(›̂) continuous bases is desirable or unavoidable, notably in multi-
patch settings or when the boundary correspondence is piecewise homeomorphic (but
not diffeomorphic), the requirement of higher-order regularity is restrictive. To allow
for globally C 0(›̂) continuous bases, one may instead minimize the Winslow functional
[Win81]. Unfortunately, this leads to a formulation in which the Jacobian determinant
appears in the denominator. Hence, an iterative solution scheme has to be initialized
with a bijective initial guess in order to avoid division by zero, restricting it to use cases
in which a bijective initial guess is available (which is usually not the case).
Motivated by our striving for a computationally inexpensive parameterization algorithm
that does not require a bijective initial guess and allows for spline spaces with locally re-
duced regularity, in this chapter, we augment the discretization proposed in [HMV18a]
with auxiliary variables, leading to a mixed-FEM-type problem. To allow for large-scale
problems, we present a solution strategy that tackles the resulting nonlinear root-finding
problem with a Newton-Krylov-based [KK04] Jacobian-free iterative approach that only
operates on the nonlinear part (corresponding to the primary, not auxiliary variables) of
the equation. Besides singlepatch problems, we will address potential use cases of the
algorithm within multipatch settings (in particular with extraordinary vertices), made
possible by the support of C 0-continuous spline bases. We conclude this chapter with a
number of test cases and a discussion of the results.

3.2. PROBLEM FORMULATION
In [HMV18a], the following discretization of the governing equations (see equation (3.2))
is proposed:

find xh 2 V 2
h s.t.

Z

›̂

¾h ¢L (xh)d» ˘ 0, 8¾h 2 (V –
h )2 and xh j@›̂ ˘ @›, (3.4)

where V –
h · Vh \ H 1

0 (›̂).
Similarly, [HMV18b] introduces a scaled version of (3.4), namely:

find xh 2 V 2
h s.t.

Z

›̂

¾h ¢L̃ (xh)d» ˘ 0, 8¾h 2 (V –
h )2 and xh j@›̂ ˘ @›, (3.5)

where

L̃ (x) ˘
L (x)

g11 ¯ g22| {z }
‚0

¯ †|{z}
¨0

. (3.6)

Here, † ¨ 0 is a small positive parameter that is usually taken to be † ˘ 10¡4. The mo-
tivation to solve (3.5) rather than (3.4) is based on the observation that numerical root-
finding algorithms typically converge faster and that a suitable convergence criterion is
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less geometry-dependent, thanks to scaling invariance. Note that the scaling is allowed
because the exact solution is unchanged. Therefore, we base our reformulation of the
problem on (3.5).
In order to reduce the highest-order derivatives from two to one, we introduce a new op-
erator in which we replace first and second order derivatives of x by the zeroth and first
order derivatives of U : ›̂ ! R2£2. With U ˘ [u,v], we have

U (U ) ˘
kvk2 u» ¡ (u ¢ v)

¡
u· ¯ v»

¢
¯kuk2 v·

kuk2 ¯kvk2 ¯†
. (3.7)

Note that U satisfies:

U (@»x) ˘ L̃ (x), where
£
@»x

⁄
i , j ˘

@xi

@» j
(3.8)

denotes the differential @x(›̂) of x.
A possible reformulation of (3.5) with auxiliary variables reads:

find (Uh ,xh) 2 V̄ 2£2
h £V 2

h s.t.
Z

›̂

'h : (Uh ¡@»xh)d»¯
Z

›̂

¾h ¢U (Uh)d» ˘ 0, 8('h ,¾h) 2 V̄ 2£2
h £ (V –

h )2

and xh j@›̂ ˘ @›. (3.9)

Here, V̄h spanned by
£
V̄h

⁄
˘ {w̄1, . . . , w̄N̄ }, denotes the auxiliary variable basis and A : B

the Frobenius inner product between matrices A and B .

Remark. For convenience, we assume that all components of @»xh , are projected onto
the same auxiliary space V̄h , hence the appearance of V̄ 2£2

h in (3.9). However, the frame-
work is also compatible with differing auxiliary bases. In this case, V̄ 2£2

h is replaced by a
suitable tensorial space in (3.9).

Note that the choice of (3.7) is not unique. Here, we have chosen to divide x»· equally
among u· and v». In general, any combination

x»· ! ´u· ¯ (1 ¡´)v», (3.10)

with ´ 2 R is plausible.
System (3.9) now constitutes a discretization of (3.2) that allows for globally C ‚0(›̂)-
continuous spline spaces at the expense of increasing the problem size from 2 £ jII j
to 2£jII j¯4£j

£
V̄h

⁄
j, where, as before, II refers to the index-set of inner control points.

Let us remark that in certain settings, it suffices to invoke auxiliary variables in one co-
ordinate direction only. Let U »(u,v) ˘

£
u,v·

⁄
. A possible problem formulation for the

»-direction reads:

find (uh ,xh) 2 V̄ 2
h £V 2

h s.t.
Z

›̂

`h ¢
µ

uh ¡
@xh

@»

¶
d»¯

Z

›̂

¾h ¢U
‡
U »(uh ,xh)

·
d» ˘ 0, 8(`h ,¾h) 2 V̄ 2

h £
¡
V –

h
¢2

and xj@›̂ ˘ @›, (3.11)
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and similarly for the ·-direction.
The above approach is useful when C 0-continuities only need to be introduced in a sin-
gle coordinate direction. In such cases, an approach based on (3.11) reduces the total
number of degrees of freedom (DOFs).

3.3. SOLUTION STRATEGY
Systems (3.9) and (3.11) are nonlinear and have to be solved with an iterative algorithm.
We will discuss a solution algorithm that is loosely based on the Newton-based approach
proposed in [HMV18a] (see Chapter 2). However, we tweak it in order to reduce com-
putational costs and memory requirements by exploiting many characteristics of the
problem at hand. First, we discuss the case in which ›̂ is given by a single patch, after
which we generalize our solution strategy to multipatch settings (in particular, allowing
for topologies that contain extraordinary vertices).

3.3.1. SINGLEPATCH PARAMETERIZATIONS
With (3.1) in mind, we may write

xh(c) ˘ x–
h(c) ¯ xD , where x–

h(c) 2
¡
V –

h
¢2 (3.12)

with c 2 R2N0 a vector of unknowns with respect to [
¡
V –

h

¢2], referring to the zi 2 R2 from
(3.1). Here, N0 denotes the cardinality of

£
V –

h

⁄
, while

xD ˘
X

j 2IB

z j w j (3.13)

is the Dirichlet extension of the boundary condition, c.f. (3.1). Meanwhile

Uh ¡! Uh(d) 2 V̄ 2£2
h , (3.14)

where d 2 R4N̄ is an unknown vector of weights with respect to the basis spanning V̄ 2£2
h .

With (3.12) and (3.14), we can reinterpret (3.9) as a problem in c and d. This leads to a
residual vector of the form

R(d,c) ˘
µ

RL(d,c)
RN L(d)

¶
, (3.15)

where RL 2 R4N̄ refers to the linear part in (3.9) (the projection of x» and x· onto the
auxiliary spline space) and RN L 2 R2N0 to the nonlinear (the term involving U ).
The Newton approach from [HMV18a] requires the assembly of the Jacobian

JR ˘

0

@
@RL
@d

@RL
@c

@RN L
@d ;

1

A ·
µ

A B
C ;

¶
(3.16)

of (3.9) during every iteration. The matrices A and B , corresponding to the linear part
in (3.9), are not a function of c and d and thus have to be assembled only once. In fact,
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A is block diagonal with blocks given by the parametric mass matrix M̄ over the basis£
V̄h

⁄
˘ {w̄1, . . . , w̄N̄ }. We have:

M̄ ˘
‡

¯̀ , ¯̀ T
·

L2(›̂)
and A ˘ I 4£4 › M̄ , (3.17)

where I n£n denotes the identity matrix in Rn and ¯̀
i ˘ w̄i 2

£
V̄h

⁄
.

Likewise, B is block diagonal with blocks

M̄» ˘
‡

¯̀ ,`–T
»

·

L2(›̂)
and M̄· ˘

‡
¯̀ ,`–T

·

·

L2(›̂)
, (3.18)

where `– is a vector containing the wi 2
£
V –

h

⁄
. We have:

B ˘

0

BB@

¡M̄»

¡M̄»

¡M̄·

¡M̄·

1

CCA . (3.19)

For given c and d, the Newton search direction is computed as the solution of a system
of the form

µ
A B
C ;

¶µ
–d
–c

¶
˘

µ
a
b

¶
, (3.20)

where C ˘ C (d) is, unlike A and B , not constant and has to be reassembled in each it-
eration. We form the Schur complement of A, in order to yield an equation for –c only,
namely:

C A¡1B| {z }
D

–c ˘ C A¡1a ¡ b. (3.21)

In order to avoid the computationally expensive assembly of D , we solve (3.21) with a
Newton-Krylov [KK04] algorithm which only requires evaluating matrix-vector products
of the form Dv. They can be approximated with finite differences rather than explicit
assembly of D . Since

C s ˘
RN L (d ¯†s) ¡ RN L(d)

†
¯O (†), (3.22)

we have

Ds ’
RN L(d ¯†A¡1Bs) ¡ RN L(d)

†
(3.23)

and

C A¡1a ’
RN L(d ¯†A¡1a) ¡ RN L(d)

†
, (3.24)

for † small. The optimal choice of † is discussed in [KK04].
We compute products of the form q ˘ A¡1t from the solution of the system Aq ˘ t, which
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has for t ˘ Bs (see equation (3.23)) and t ˘ a (see equation (3.24)) the form of a (separa-
ble) L2-projection.
Product q ˘ A¡1Bs satisfies

q(s) ˘ argmin
h

1
2

Z

›̂

°°Uh(h) ¡@»x–
h(s)

°°2 d», (3.25)

and similarly for q ˘ A¡1a.
As such, A is block diagonal and composed of separable mass matrices M̄ ˘ m̄» › m̄·

A ˘

0

B@

m̄» › m̄·
. . .

m̄» › m̄·

1

CA , (3.26)

where m̄» and m̄· refer to the univariate mass matrices resulting from the tensor-product
structure of

£
V̄h

⁄
. Therefore, we have

A¡1 ˘

0

BB@

(m̄¡1
» ) › (m̄¡1

· )
. . .

(m̄¡1
» ) › (m̄¡1

· )

1

CCA . (3.27)

We follow the methodology from [GC14], where a computationally inexpensive inver-
sion of the bivariate mass matrix (which is never explicitly assembled) is achieved by
repeated inversion with the univariate mass matrices m̄» and m̄·. Here, we use a direct
approach by computing Cholesky decompositions [SS89]. An inversion can be done in
only O (N̄ ) arithmetic operations and Cholesky decompositions have to be formed only
once, thanks to the fact that A is constant. Similarly, we can exploit the separable nature
of the blocks that make up B in order to efficiently multiply with B .
After solving (3.21), –d is found as the solution of

A–d ˘ a ¡ B–c. (3.28)

Upon completion, the vector n · (–d,–c)T constitutes the Newton search direction. We
update the current iterate (d,c)T by adding •n, where the optimal value of • 2 (0,1] is
estimated through a line search routine. Above steps are repeated until the norm of n is
negligibly small. Upon completion, we extract the c-component from the resulting so-
lution vector which contains the inner control points of the mapping operator xh , while
the d-component serves no further purpose and can be discarded.
It should be noted that a single matrix-vector product Ds is slightly more expensive than,
for instance, C s, due to the requirement to invert A. However, thanks to the separa-
ble nature of A (and B), the costs in (3.23) are dominated by function evaluations in
RN L . In general, we have to regard U (Uh) as dense (i.e., not compactly supported in ›̂).
However, U (Uh) is tested against compactly supported functions ¾h 2 (V –

h )2, c.f. (3.9).
Hence, the assembly costs of RN L(d) are of the same order as assembling the nonlinear
residual corresponding to an approach without auxiliary variables. Note, however, that
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if the space V̄h is h-refined with respect to Vh , RN L has to be assembled over the finer
element subdivision of ›̂, which means additional computational costs. In practice, an
implementation that exploits all discussed characteristics of the problem formulation is
somewhat slower than applying Newton-Krylov to an H 2(›̂)-conforming discretization.
However, we regard this as a minor shortcoming given the additional potential use cases,
made possible by the reduced continuity requirements.
There exist many possible choices of constructing an initial guess for the c-component
of the iterative scheme. Common choices are algebraic methods, most notably transfi-
nite interpolation [GH73]. Once the c-component has been computed with one of the
available methods, a reasonable way to compute the corresponding d-part is through a
(separable) projection of @»xh onto V̄ 2£2

h .
A slightly superior initial guess can be generated using multigrid techniques as demon-
strated in [HMV18a]. The problem is first solved using a coarser basis and an algebraic
initial guess, after which the coarse solution vector is prolonged and subsequently used
as an initial guess. This is compatible with the techniques discussed in this section.
However, instead of prolonging the full coarse-grid solution vector, we only prolong the
c-component and compute the corresponding d-component using an L2(›̂)-projection
to ensure that the residual vector evaluated in the initial guess equals zero on the entries
that correspond to the projection onto the auxiliary spline space.

3.3.2. MULTIPATCH
The reformulation with auxiliary variables has a particularly interesting application within
multipatch settings, especially when extraordinary patch vertices are present. Most of
the techniques from subsection 3.3.1 are readily applicable but there exist subtle differ-
ences which we address in the following.
Let ›̂ be an open, convex, polygonal multipatch domain. We assume that ›̂ is covered
by the closure of a set of mutually disjoint images {›̂1, . . .›̂n} of the unit quadrilateral
›̃ ˘ (0,1)2 under the bijective mappings m̂i : ›̃ ! ›̂i , i 2 {1, . . . ,n}. Hence,

›̂ ˘ Int

ˆ
n[

i˘1
›̂i

!

, (3.29)

where ›̂i denotes the closure of ›̂i and Int(¢) the interior of a closed domain.
For convenience, we assume that each ›̂i is an affine transformation of the reference
unit quadrilateral ›̃. Therefore

m̂i („) ˘ Qi „¯ bi , (3.30)

where Qi 2 R2£2 is an invertible (and orientation preserving) matrix, bi 2 R2 some trans-
lation and the vector „ ˘ („,”)T contains the free local coordinate functions in ›̃.

Remark. The automated generation of a multipatch structure is a nontrivial task, which
is not discussed in this chapter. For an overview of possible segmentation techniques,
which can be applied when a multipatch covering of ›̂ is not self-evident or given, we
refer to [BJ17, XKFC18, FJ19].
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Let x : ›̂ ! › be such that x¡1 : › ! ›̂ is composed of harmonic functions on ›. Given a
convex ›̂ and assuming that the boundary correspondence xD : @›̂ ! @› is homeomor-
phic and › has no concave corners, Rado’s theorem [SY97] applies and a harmonic x¡1

is bijective.
In the case of multipatch, pairs of faces (°fi

i ,°fl
j ) ‰ @›̂i £@›̂ j and sets of vertices {pi , . . . ,pl } ‰

@›̂i £ . . . £ @›̂l may coincide on ›̂. The objective is to build primal and auxiliary spline
spaces with elements from H 1(›̂). We construct such spaces starting from the patchwise
discontinuous spaces V disc

h,i and V̄ disc
h,i , acquired upon performing a push-forward of the

locally defined spline bases Bloc
h,i and B̄loc

h,i with elements from H 1(›̃). We have:

£
Vh,disc

⁄
˘

n[

i˘1

n
W j – m̂¡1

i j W j 2 Bloc
h,i

o
(3.31)

and similarly for V̄h,disc. The spaces Vh and V̄h then follow from taking the intersections
of V disc

h,i and V̄ disc
h,i with C 0(›̂).

Remark. The wi 2 [Vh] (and similarly for V̄h) are conveniently generated by identifying
the indices of functions from

£
Vh,disc

⁄
that coincide on the interfaces of ›̂. They are then

coupled in order to ensure that all wi 2 Vh are single-valued on ›̂ by default. Clearly, for
this to be possible, the knot vectors used for neighbouring patches need to be compati-
ble, which we assume to be the case.

In the multipatch setting, we solve (3.9) by evaluating the associated integrals through a
sequence of pullbacks from the ›̂i ‰ ›̂ into the reference domain ›̃. Thanks to the affine
nature of the pullback, replacing »-derivatives by local „-derivatives is straightforward.
As such, the solution of (3.9) is associated with a collection of mappings {x̃1

h , . . . , x̃n
h }, with

x̃i
h : ›̃ ! ›i ‰ ›, whose elements satisfy

x̃i
h ’ xj›̂i

– m̂i . (3.32)

As the right hand side of (3.32) is a composition of bijective mappings, the bijectivity of
the x̃i

h is conditional on the quality of the approximation xh : ›̂ ! › of x. If the x̃i
h are

bijective, they jointly form a parameterization of ›.
Unlike in the singlepatch setting, the L2(›̂)-projection associated with the linear part of
the residual vector is not separable (unless the ›̂i form a structured topology). As such,
the evaluation of vector products A¡1Bs (see equation (3.23)) becomes more involved. A
possible workaround is explicit assembly and inversion of the Jacobian of the system (see
equation (3.20)), leading to increased computational times and memory requirements.
A possible alternative is approximating products of the form A¡1Bs by a sequence of
patchwise separable operations. In the following, we sketch a plausible approach.
Similar to the singlepatch case, products of the form q ˘ A¡1Bs satisfy

q(s) ˘ argmin
h

1
2

nX

i˘1

Z

›̂i

°°Uh(h) ¡@»x–
h(s)

°°2 d». (3.33)
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Let

U disc
h (qdisc) 2 V̄ 2£2

h,disc, (3.34)

where qdisc is defined with respect to
h
V̄ 2£2

h,disc

i
.

In order to approximate q ˘ A¡1Bs, we select qdisc as the solution of:

qdisc(s) ˘ argmin
h

1
2

nX

i˘1

Z

›̂i

°°°U disc
h (h) ¡@»x–

h(s)
°°°

2
d». (3.35)

We perform a patchwise pullback of the L2-projections into the reference domain where
they are solved with the techniques from Section 3.3.1. Thanks to the affine nature of the
pullback, the geometric factor associated with ›̂i is constant and given by

det Ji ˘ detQi . (3.36)

Therefore, separability is not lost and the same efficiency as in the singlepatch case is
achieved.

Remark. Requiring that each m̂i : ›̃ ! ›̂i is affine may be too restrictive in practice.
In general, any transformation whose geometrical factor is of the form det Ji („,”) ˘
fi („)gi (”) may be used. The individual factors then serve as the geometrical factors in
the assembly of the univariate mass matrices that correspond to the projection from
(3.35). By this, separability is retained.

We restrict the solution of (3.35) to V̄ 2£2
h by performing a weighted sum of components

that coincide under coupling. Let '̄i 2
£
V̄ 2£2

h

⁄
result from the coupling of {'̃fi, . . . ,'̃°} ‰

V̄ 2£2
h, disc and let the elements of the set {Sfi, . . . ,S°} satisfy

Sfl ˘
X

i j

Z

›̂

£
'̄fl

⁄
i j d», '̄fl 2 {'̃fi, . . . ,'̃°}. (3.37)

If the {'̃fi, . . . ,'̃°} receive the weights gfi, . . . , g° under the projection from (3.35), we set

qi ˘
Sfigfi ¯ . . . ¯ S°g°

Sfi ¯ . . . ¯ S°
. (3.38)

Relation (3.38) induces a canonical restriction operator from V̄ 2£2
h, disc to V̄ 2£2

h that is used
to approximate q from qdisc.

3.4. NUMERICAL EXPERIMENTS
In the following, we present several numerical experiments, demonstrating the function-
ing of the proposed algorithm. First, we present two singlepatch problems after which
we present a more involved multipatch parameterization.
In all cases, the auxiliary variable spline space V̄h results from one uniform h-refinement
of Vh .
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Figure 3.1: Solution of the L-bend problem with the mixed-FEM algorithm.

3.4.1. L-BEND
As a proof of concept, we present results for the well-known singlepatch L-bend prob-
lem. Wherever possible, we shall compare the results to a direct minimization of the
Winslow functional

W (x) ˘
Z

›̂

g11 ¯ g22

det J
d», (3.39)

whose global minimizer (over V 2
h , with appropriate boundary conditions) coincides with

a numerical approximation of the solution of (3.2) in the limit where N ! 1 [Aza09]. For
the L-bend problem, we employ uniform knot vectors in both directions with a p-fold
knot repetition at » ˘ 0.5 in order to properly resolve the C 0-continuity. Here, we utilize
a bicubic basis, i.e., p ˘ 3. Since a repeated knot is only introduced in »-direction, we
solve (3.11) rather than (3.9). Figure 3.1 shows the resulting parameterization along with
the element boundaries under the mapping. The Schur complement solver converges
after 3 iterations which amounts to 106 evaluations of RN L . As can be seen in the fig-
ure, the parameterization is symmetric across the straight line connecting the upper and
lower C 0-continuities, which is expected behaviour from the shape of the geometry. We
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regard this as a positive sanity check for the functioning of the algorithm. Furthermore,
we observe that despite the presence of knot repetitions at » ˘ 0.5, the parameteriza-
tion is highly regular in the interior. Again, this is a positive result since the solution is
expected to be an approximation of the global minimizer of (3.39) (over V 2

h ), which, in
turn, approximates a mapping that is diffeomorphic in the interior. A substitution of the
solution vector cPDE of the system of equations (3.11) in (3.39) gives

W (cPDE) ’ 3.01518, (3.40)

whereas the global minimizer cW of (3.39) over the same basis yields

W (cW) ’ 3.01425. (3.41)

This constitutes another positive sanity check as the results are very close, while a substi-
tution of the PDE solution is slightly above the global minimum. Hence, the PDE prob-
lem trades the possibility of using a degenerate initial guess for an increased problem
size and a slight reduction in parameterization quality, as measured by (3.39). Note that
(3.39) is compatible with bases of reduced regularity by default (without the need to in-
troduce auxiliary variables).
Hence, the PDE solution comes with all the undesired characteristics of inversely har-
monic maps such as the tendency to yield bundled / spread isolines near concave /
convex corners. This does not occur in parameterizations based on the techniques of
[GENN12] (see Figure 3.2). However, the L-bend example is rather contrived since a
good parameterization is easily constructed with algebraic techniques. Here, the results
only serve as a proof of concept.

Remark. We address the mitigation of aforementioned undesirable features in Chapter
4.

3.4.2. TUBE-LIKE SHAPED GEOMETRY
In many cases, segmentation along knots with p-fold repetition and continuation with,
for instance, techniques from [HMV18a] on the smaller pieces is a viable choice. How-
ever, in some cases, a segmentation curve along which to split the geometry into smaller
parts may be hard to find. One such example is depicted in Figure 3.3 (left), which is a ge-
ometry taken from the practical application of numerically simulating a twin-screw ma-
chine. For convenience, the » ˘ 0.5 isoline, across which the mapping is C 0-continuous,
has been plotted in red. The usefulness of the proposed algorithm becomes apparent in
this case: instead of having to generate a valid » ˘ 0.5 isoline, the isoline establishes itself
from the solution of the PDE problem.
As in the L-bend problem, we observe that the resulting parameterization is highly regu-
lar across the » ˘ 0.5 isoline, despite the continuity properties of Vh and the spiked upper
and lower boundaries.
The proposed algorithm produces superior results to the constrained optimization ap-
proach from [GENN12] (see Figure 3.3, right). In fact, here we initialized the optimization
by the PDE solution, as the solver struggles to find a feasible initial guess through opti-
mization. This confirms the finding from [HMV18a] that EGG-based approaches may be
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Figure 3.2: Solution of the L-bend problem with constrained minimization of the Area Orthogonality functional
(see [GENN12]).

a viable alternative to finding feasible initial guesses for approaches based on optimiza-
tion. Furthermore, we note the striking difference in the required number of iterations,
which amount to over 100 (constrained) in the optimization, while the PDE solver con-
verges in only 7 iterations.
The poor performance of the optimization approach can be explained by the tiny gaps
of the geometry, leading to natural jumps in the magnitude of the Jacobian determinant.
As most cost functions are functions of the gi j , they are very sensitive to jumps in det J .
This is further evidenced by the poor grid quality in the narrow part of the geometry (see
Figure 3.4, right). In our experience, this is not the case for the PDE solution (see Figure
3.4, left) and we successfully employed the approach for the automatic generation of a
large number of similar geometries.
Finally, it should be noted that a comparison to the global minimizer of the Winslow
energy is not possible since the gradient-based optimizer we employed failed to further
reduce the cost function from the evaluation of the PDE solution.
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Figure 3.3: PDE-based parameterization (left) and area-orthogonality minimized parameterization (right) of a
tube-like shaped geometry.

Figure 3.4: Zoom-in on the PDE-based parameterization and area-orthogonality minimization parameteriza-
tion.

3.4.3. MULTIPATCH PROBLEM - THE BAT GEOMETRY
A further interesting application of the proposed algorithm is that of a multipatch pa-
rameterization. In Section 3.4.2, we have successfully employed the algorithm to a ge-
ometry with a C 0-continuity across the » ˘ 0.5 isoline, which might as well be regarded
as a two-patch parameterization with coupling along aforementioned interface. Clearly,
a topology with an uneven number of patches that contains extraordinary vertices is of
major interest. We are considering the diamond-shaped triple-patch domain depicted
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in Figure 3.5 (left). The target boundaries form the bat-shaped contour depicted in Fig-
ure 3.5 (right). Note that, as required in Section 3.3.2, the parametric domain forms a
convex subset of R2. For convenience we have highlighted the positions of the various
boundaries under the mapping in different colors. Of course, of major interest shall be
how the dotted red interfaces in Figure 3.5 (left) are deformed under the mapping. Figure

Figure 3.5: Diamond shaped multipatch domain (left) and the target boundaries (right). Here, n1 ˘ 10, n2 ˘ 11
and n3 ˘ 12 denote the number of (uniformly-spaced) elements in each coordinate direction. There are no
internal knot repetitions.

3.6 (left) shows the mapping we utilize to initialize the Newton-Krylov solver while Fig-
ure 3.6 (right) shows the resulting geometry. Even though better initial guesses are easily
constructed, here we have chosen to initialize the solver with a degenerate mapping in
order to demonstrate that bijectivity is not a necessary condition for convergence.

Remark. As transfinite interpolation does not readily generalize to multipatch, we typ-
ically construct initial guesses by solving a forward Laplace problem first. I.e., the com-
ponents of xh approximate harmonic functions in ›̂.

The Newton-Krylov solver converges after six nonlinear iterations. The dotted red curves
in Figure 3.6 (right) show the internal interfaces of ›̂ under the mapping. We see that
the patch interfaces are mapped into the interior of ›. The resulting geometry param-
eterization is bijective. However, the isolines make steep angles by the internal patch
interfaces. This results from the additional pull back of x̃j›̂i

into ›̃ via the operator m̂i

(see equation (3.32)), which generally introduces a C 0-continuity in the composite map-
ping. Higher-order smoothness across patch interfaces is generally difficult to achieve
and usually accomplished by constructing bases whose elements possess higher-order
continuity sufficiently distant from the extraordinary vertices. However, note that such
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Figure 3.6: The mapping that is passed on to the solver (left) and the resulting parameterization (right).

bases may not allow for patchwise-affine transformations such that L2(›̂i )-projections
may lose their separability property. For strategies to build bases with higher-order reg-
ularity across patch interfaces, we refer to [BJM16].

3.5. CHAPTER CONCLUSIONS
We have presented an IGA-suitable EGG algorithm that is compatible with spline bases
Vh possessing reduced regularity (whereby reduced stands for global C ‚0(›̂)-continuity)
by introducing a set of auxiliary variables. We proposed an iterative Newton-Krylov ap-
proach operating on the Schur complement of the linear part of the resulting nonlinear
system of equations, which operates efficiently and reduces memory requirements. As
such, it is suitable for large-scale problems. Unlike similar C 0-compatible EGG-based
approaches, the iterative solution method does not have to be initialized with a bijective
mapping, significantly improving its usability in practice. However, this major advantage
comes at the expense of increasing the problem size. The impact is partially mitigated
by the specially-tailored iterative solution algorithm.
We have presented three numerical experiments, two with a single patch and one re-
sulting from a triple-patch configuration. In the singlepatch case, we concluded that
a substitution of the PDE solution into the Winslow functional (equation (3.39)) yields
an outcome that is close to the global minimizer (over V 2

h ), which is generally hard to
find through direct minimization, due to the presence of det J in the denominator, c.f.
(3.39). As such, we concluded that the algorithm operates as expected and offers a vi-
able alternative to direct minimization of (3.39). However, it also comes with all the
well-documented pathologies of inversely harmonic maps, such as the tendency to yield
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bundled / spread isolines near concave / convex corners [Aza09].
Convergence is typically reached within only a few iterations. The required number of
iterations can be further reduced by employing multigrid techniques (see [HMV18a]).
A major use case of the proposed algorithm is that of multipatch applications. In Section
3.4.3, we presented results of the application to a triple-patch topology, where we suc-
cessfully generated a patchwise bijective parameterization by approximating the com-
position of an inversely harmonic mapping and patchwise affine transformations. The
position of internal patch interfaces under the mapping do not have to be imposed man-
ually but follow naturally from the composite PDE solution.
Finally, we observed that the composition with affine transformations results in nons-
mooth transitions at patch interfaces. Higher-order regularity across interfaces can be
achieved by a clever coupling of inter-patch DOFs sufficiently distant from extraordinary
vertices.
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4
GOAL-ORIENTED ADAPTIVE

THB-SPLINE SCHEMES FOR

PDE-BASED PLANAR

PARAMETERIZATION

The mappings produced by the PDE-based parameterization approach may fail to fulfil
the theoretically-predicted bijectivity property due to the truncation error of the numer-
ical scheme. As mentioned in Chapter 2, this may be repaired by refining the underlying
spline space. However, determining which regions should be marked for refinement is
nontrivial. This may lead to over- or under-refinement and hinders automation, making
the incorporation of a posteriori refinement into an automated parameterization frame-
work difficult. This chapter is motivated by our striving for a more robust approach. For
this, this chapter employs an unstructured spline technology and determines the region
of refinement using duality considerations, avoiding over- and under-refinement. Fur-
thermore, the parametric properties of the outcome are controlled through an appro-
priate coordinate transformation. While parametric control is discussed in the classical
literature [Ste93, TSW98], the combination with a posteriori refinement is a scarce topic.
To the best of our knowledge, the only publication that addresses this point can be found
in [Aza09], where uniform h-refinement is performed in a classical finite difference set-
ting.
This work considers geometries with complex boundary contours in order to highlight
the advantages of local refinement. However, the techniques discussed can also be ap-
plied in a structured spline setting. The test cases can hence be considered a robustness
stress test for the proposed a posteriori refinement strategies.
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4.1. INTRODUCTION
Isogeometric analysis (IGA), first introduced by Hughes et al. in [CHB09], is a numer-
ical technique that aims to bridge the gap between computer aided design (CAD) and
(isoparametric) finite element analysis (FEA). This is accomplished by building the ge-
ometry mapping from the same spline basis that is used to approximately solve PDE-
problems posed over the geometry. As such, spline-based parameterization techniques
have received an increased amount of interest in the mathematical community in recent
years. Since the CAD pipeline typically provides no more than a spline-based descrip-
tion of the boundary contours of the target geometry, the purpose of all parameterization
algorithms is to generate a bijective (folding-free) geometry parameterization from the
boundary CAD data. Analogous to mesh quality in classical FEA, the parametric quality
of the surface parameterization has a profound impact on the numerical accuracy of the
isogeometric analysis [XMDG10]. Therefore, besides bijectivity, proficient parameteri-
zation algorithms aim at generating parameterizations of high numerical quality.
One of the most important applications of IGA lies in shape optimization problems.
Since the geometry changes at every shape optimization iteration, algorithms that are
differentiable with respect to the design variables (i.e., the boundary control points) have
a further advantage since they allow for employing gradient-based shape optimization
algorithms which tend to converge in fewer iterations than their zeroth-order counter-
parts. Another advantage of differentiability is efficiency: as the inner control points are
a smooth function of the boundary control points, there is no need for full remeshing
after each iteration since cheaper mesh update strategies can be employed. This is also
true for settings in which the boundary contours change as a smooth function of time.
Traditionally, parameterizations for IGA-applications are built from tensor-product spline
spaces. Unfortunately, structured spline technologies do not allow for local refinement
as knot insertion in one parametric direction automatically refines a whole row / col-
umn of the underlying spline space. For the geometry description, this may result in a
very dense spline basis whenever many degrees of freedom (DOFs) are required to prop-
erly resolve the boundary contours. As a result, the total number of unknowns (the inner
control points) may become infeasibly large, leading to a severe slow-down of the mesh-
ing process and / or the isogeometric analysis.
To address above efficiency concerns, this chapter introduces a PDE-based planar pa-
rameterization framework that uses THB-splines [GJS12], an unstructured spline tech-
nology which allows for local refinement, potentially reducing the required total num-
ber of DOFs. A major challenge of unstructured spline technologies is deciding where
local refinement is required and where a lower resolution suffices. For this, we employ
the principles of dual weighted residual (DWR) [Ran04], an a posteriori refinement tech-
nique for PDE problems based on duality considerations. Furthermore, we augment the
problem formulation with a mechanism that allows for changing the parametric proper-
ties of the PDE solution in order to fine-tune the parametric properties of the mapping
operator.

4.1.1. CHAPTER NOTATION
In this chapter, we denote vectors in boldface. The i -th entry of a vector x is denoted by
xi or simply xi and similarly for the i j -th entry of matrices. We make extensive use of
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vector derivatives. Here, we interchangeably use the denotation

@tx ·
@x

@t
, with

•
@x

@t

‚

i j
˘

@xi

@t j
(4.1)

for the partial derivative.
Furthermore, we frequently work with spline vector spaces Vh . Here, [Vh] refers to the
canonical (THB-)spline basis of Vh , which we assume to be clear from context.

4.1.2. PROBLEM STATEMENT

Let › denote the target geometry and ›̂ ˘ (0,1)2 the parametric domain. In general, we
assume that › is topologically equivalent to ›̂. By x : ›̂ ! ›, we denote the mapping
operator whose components are built from the linear span of the (THB-)spline basis
[Vh] ˘ {w1, . . . , wN }. The mapping operator x : ›̂ ! › is of the form:

x(»,·) ˘
X

i2II

ci wi (»,·) ¯
X

j 2IB

c j w j (»,·), (4.2)

where II and IB refer to the index-sets corresponding to vanishing and nonvanishing
basis functions on @›̂, respectively and ck 2 R2, 8k 2 II [ IB . Here, II corresponds to
the subspace V –

h ˘ Vh \ H 1
0 (›̂). Note that II and IB are mutually disjoint and

II [IB ˘ {1, . . . , N }.

In general, we assume that the c j in (4.2) are chosen such that xj›̂ is a Jordan curve that
parameterizes @›.
Then, the purpose of any parameterization algorithm is to choose the ci in (4.2) such
that

1. x : ›̂ ! › is bijective,

2. x is a parameterization of high numerical quality,

while the c j are typically held fixed.

4.1.3. RELATED WORK
Existing parameterization techniques can be divided into three broad categories:

1. Algebraic (direct) methods;

2. methods based on (constrained and unconstrained) quality cost function opti-
mization;

3. PDE-based methods.

Algebraic methods (1.) generate a mapping from the solution of a linear system of equa-
tions or the evaluation of a closed-form expression. The most-widely used algebraic
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method is based on the Coon’s patch approach [FH99]. Given the four (known) bound-
ary curves x(»,0), x(1,·), x(»,1) and x(0,·), the mapping is constructed by projecting the
components of

xCoons ˘ (1 ¡»)x(0,·) ¯»x(1,·)

¯ (1 ¡·)x(»,0) ¯·x(»,1)

¡
£
1 ¡» »

⁄•
x(0,0) x(0,1)
x(1,0) x(1,1)

‚•
1 ¡·

·

‚
(4.3)

onto the spline space Vh . Whenever [Vh] is a tensor-product spline basis, the inner con-
trol points can also be computationally inexpensively computed from an explicit for-
mula, see [FH99], while in an unstructured setting equation (4.3) can be used.
Another class of algebraic methods results from minimizing a convex, quadratic cost
function Q(x) over the inner control points ci , i 2 II . As before, the boundary control
points follow from the boundary contours and are held fixed. Q(x) is typically given by a
positively-weighted sum of several cost functions. As such, it takes the form:

Q(x) ˘
X

i
‚i|{z}
‚0

Qi (x), (4.4)

while the minimization problem becomes:
Z

›̂
Q(x)dS ! min

x2V 2
h

, s.t. xj@›̂ ˘ @›. (4.5)

Possible choices for the Qi (x) in (4.4) are [FŠJ15]:

Qlength(x) ˘
°°x»

°°2 ¯
°°x·

°°2 and Quniformity(x) ˘
°°x»»

°°2 ¯ 2
°°x»·

°°2 ¯
°°x··

°°2 , (4.6)

where the latter requires Vh ‰ C 1(›̂). The minimization of (4.5) converges after one iter-
ation of a Newton-type optimization algorithm and can hence be considered of type (1.)
as well as type (2.). For an overview of type (1.) approaches, we refer to [GENN12].
Another convex but quartic cost function is the Liao-functional [Ste93]

QLiao ˘ g 2
11 ¯ 2g 2

12 ¯ g 2
22, (4.7)

where the gi j denote the entries of the metric tensor of the mapping, with

gi j ˘ x»i ¢ x» j and » ˘ (»1,»2)T · (»,·)T . (4.8)

The minimization of above cost functions is computationally efficient, thanks to con-
vexity, however, the resulting mappings are often folded, i.e., they do not satisfy:

det J ¨ 0, 8(»,·)T 2 ›̂, where J (x) ˘ @»x (4.9)

denotes the Jacobian of x.
The minimization of nonconvex quality functionals is computationally more demanding
but tends to yield better results when convex optimization leads to a folded mapping
[Ste93]. Typical nonconvex quality functionals are:
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• The area functional

Qarea ˘ det J 2, (4.10)

which aims to minimize the variance of det J over ›̂;

• the orthogonality functional

QOrthogonality ˘ g 2
12 or QAreaOrthogonality ˘ g11g22, (4.11)

which is aimed at orthogonalizing the parameter lines;

• the eccentricity functional

Qeccen ˘
µ

x» ¢ x»»

g11

¶2
¯

µ
x· ¢ x··

g22

¶2
, (4.12)

which penalizes fast accelerations along the parameter lines.

Unfortunately, minimization of the above functionals, in many cases, leads to folding,
too. To the best of our knowledge, there are two main ways to prevent the grid from
folding:

(a) Penalization;

(b) constrained minimization.

Option (a) attempts to prevent grid folding through the modification of existing cost
functions with a penalty term, such as

• the Modified Liao functional

QML ˘
µ

g11 ¯ g22

det J

¶2
. (4.13)

Adding the Jacobian determinant in the denominator serves the purpose of mitigating
the tendency to fold, since the cost functional possesses an infinite barrier close to the
boundary of the feasible region.
The most widely-used penalty cost functional is the so-called

• Winslow functional

QW ˘
g11 ¯ g22

det J
. (4.14)

With x · (x, y)T , the Winslow functional (4.14) follows from performing a pullback of the
problem

1
2

Z

›

°°»x
°°2 ¯

°°»y
°°2 dx ! min

x
, s.t. »j@› ˘ @›̂ (4.15)
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into ›̂. An approach based on the Winslow functional can be regarded as the mapping
inverse counterpart of an approach based on the length functional (4.6).
In option (b), the minimization is carried out with an added constraint that constitutes
a sufficient condition for (4.9). For tensor-product B-spline bases, in [XMDG11], Xu et
al. propose a linear convex sufficient condition L(x) ¨ 0 for bijectivity. It is added as a
constraint to the minimization problem. If convex cost functions are utilized, this leads
to a linear programming problem, which can be computationally inexpensively solved
using convex optimization routines. Unfortunately, the set

'
x 2 V 2

h j xj@›̂ ˘ @› and L(x) ¨ 0
“

may be empty or the constraint may be very restrictive, limiting its applicability to rela-
tively simple shapes.
In an effort to allow for more complicated shapes, [XMDG11] and [GENN12] propose
nonlinear nonconvex sufficient conditions for bijectivity. Since the Jacobian determi-
nant det J is a piecewise-polynomial function of higher polynomial degree itself, it can
be projected onto a spline basis that contains it. If all the weights are positive under the
expansion, this constitutes a sufficient condition for bijectivity. The nonlinear sufficient
condition N (x) ¨ 0 is added as a constraint and the optimization is carried out with a
blackbox nonlinear optimization routine (typically, IPOPT [BZ09]) that comes with all
the drawbacks of nonconvex optimization such as the danger of getting stuck in local
minima. A further disadvantage is the need for an initial guess that satisfies the con-
straints, for which another nonconvex optimization problem has to be solved first.
While the extension of (penalized or unpenalized) cost function minimization to THB-
splines is straightforward, this is not the case for constrained methods, since the con-
straints are designed for structured splines only. To the best of our knowledge, the only
comprehensive overview of planar parameterization techniques for THB-splines can be
found in [FŠJ15], where the application of most of the mentioned (unpenalized) cost
functions is studied in a THB-setting. As the optimization is carried out without con-
straints, folding occurs in the majority of test cases. The paper concludes that the only
method potentially capable of dealing with arbitrarily-complex shapes is based on com-
puting x by approximating the inverse of a map h which is comprised of a pair of har-
monic functions in ›, i.e.,

¢h ˘ 0 in ›, s.t. hj@› ˘ @›̂. (4.16)

The authors propose a two-step approach: First a large number of tuples
¡
h(x j ),x j

¢
, with

x j 2 › is computed using an isogeometric boundary element method [RS07, SS10], after
which the pairs are utilized to approximate h¡1 through a least-squares minimization
problem with regularization terms.
Above methodology is equivalent to minimizing the Winslow functional (4.14), which
follows straightforwardly from deriving the Euler-Lagrange equations of the minimiza-
tion problem (4.15). As h is a pair of harmonic functions with convex target domain, it
follows from the Radó-Kneser-Choquet theorem that h is a diffeomorphism in the inte-
rior of › [GENN12], justifying an approximation of its inverse for the purpose of com-
puting a domain parameterization.
A major advantage of the two-step approach from [FŠJ15] over a direct minimization of
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(4.14) is that the latter requires a folding-free initial domain parameterization to avoid
division by zero. In the vast majority of cases, however, such a bijection is not available,
limiting the method’s scope to improving the parametric properties of an already bijec-
tive mapping.
An advantage of minimizing (4.14), however, is that if the global minimum over V 2

h has
been found, it is clearly bijective, while bijectivity may be lost in the indirect approach,
due to numerical inaccuracies.
The observation that the impractical minimization of the Winslow functional (4.14) is
equivalent to solving an inverse Laplace problem has lead to the development of (3.)
PDE-based parameterization methods. To acquire a PDE-problem posed over ›̂, we per-
form a pullback:

¢x» ˘ 0 in ›̂, s.t. xj@›̂ ˘ @›, (4.17)

where ¢x denotes the Laplace-Beltrami [Kre91] operator with respect to x. Problem
(4.17) suffers from the same shortcoming of the Winslow-approach: the appearance of a
Jacobian determinant in the denominator. However, we may scale the equation by mul-
tiplying with any nonsingular 2 £ 2 tensor T . Choosing T ˘ (detx»)2x» (which is nonsin-
gular thanks to the theoretically predicted bijectivity of the PDE-solution), the Jacobian
determinant can be removed from (4.17), leading to the following quasi-linear second-
order PDE problem [HMV18b]:

A(x) : H(xi ) ˘ 0 in ›̂, for i 2 {1,2} s.t. xj@›̂ ˘ @›, (4.18)

where

H(u)i j ˘
@2u

@»i @» j
and A(x) ˘

1
g11 ¯ g22 ¯†

µ
g22 ¡g12

¡g12 g11

¶
, (4.19)

with the gi j as in (4.8) and † a small positive constant that serves numerical stability
(typically, † ’ 10¡4). Furthermore, A : B denotes the Frobenius inner product.

Remark. The purpose of dividing by g11¯g22¯† in (4.19) is achieving scaling invariance.

In [HMV18a], equation (4.18) is discretized with a Galerkin approach. The resulting
equations are tackled with a Newton-based iterative approach, which is initialized with
an algebraic initial guess.
The advantages and disadvantages of solving (4.18) over a direct minimization of (4.14)
are the same as in the indirect approach from [FŠJ15]. Hence, folding resulting from
insufficient numerical accuracy can be resolved by recomputing the mapping from a re-
fined spline space.
In this chapter, we will present several schemes for approximately solving (4.18) with
THB-spline bases. A major challenge in a THB-setting is deciding where a high resolu-
tion is needed. Since the approach is PDE-based, we adopt the a posteriori refinement
strategy of dual weighted residual, which is the topic of Section 4.3.1.

4.2. SOLUTION STRATEGIES
In this section we present several solution strategies to approximately solve (4.18). As the
resulting equations are nonlinear, we base our solution strategy on iterative approaches.
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Initial guesses are always constructed using an algebraic method (see Section 4.1).
Let

U f ˘
'

v 2 V 2 j v ˘ f on @›̂
“

(4.20)

and let U f
h be the set resulting from replacing V by the finite-dimensional Vh ‰ V in

(4.20). We have

U f
h ˘

'
v 2 V 2

h j v ˘ f on @›̂
“

. (4.21)

Remark. For U f
h in (4.21) to be nonempty, we have to assume that f restricted to @›̂ is

contained in V 2
h , which may necessitate a projection of the Dirichlet data onto the finite-

dimensional (THB-)spline space V 2
h .

Let xD be such that xD j@›̂ parameterizes @›. For convenience we assume that xD 2 V 2
h \

U 0
h . In an IGA-setting, (4.18) suggests a discretization of the form:

find xh 2 U xD
h s.t. F (xh ,¾h) ˘ 0 8¾h 2 U 0

h , (4.22)

with

F (x,¾) ˘
2X

i˘1

Z

›̂

¿i (¾,x)A(x) : H(xi )dS, (4.23)

for some ¿ : U 0 £ V 2 ! L2(›̂,R2). Unless stated otherwise, in the following, we assume
¿(¾,x) ˘ ¾.
As second order derivatives appear in (4.23), in (4.20) we take V ˘ H 2(›̂).

4.2.1. NEWTON APPROACH
In the following, we briefly recapitulate the approach from [HMV18a], which is desig-
nated for tensor-product NURBS bases but can also be applied in a THB-setting. By

B 0(u, . . . , z) ·
@B(u ¯†z, . . .)

@†

flflflfl
†˘0

, (4.24)

we denote the Gateaux derivative of any differentiable form B(¢, . . .) with respect to its
first argument. Given xk 2 U xD

h , we compute the Newton increment from

find –xk 2 U 0
h s.t. F 0(xk ,¾h ,–xk ) ˘ ¡F (xk ,¾h), 8¾h 2 U 0

h . (4.25)

Upon completion, we update xk¯1 ˘ xk ¯•–xk for some • 2 (0,1], whose optimal value is
estimated using a line search routine. Above steps are repeated until the residual norm
is deemed sufficiently small.
Optionally, derivative evaluations of the form F 0(xk ,¾h ,v) may be approximated using
finite differences:

F 0(xk ,¾h ,v) ’
F (xk ¯†v,¾h) ¡ F (xk ,¾h)

†
, (4.26)

for † small. Solving (4.25) using a suitable Krylov-subspace method only requires com-
puting derivative evaluations F 0(xk ,¾h ,v), which may be approximated using (4.26), lead-
ing to a Newton-Krylov algorithm that avoids the expensive assembly of the Jacobian
matrix in (4.25). The optimal choice of † in (4.26) is discussed in [KK04].
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4.2.2. PSEUDO-TRANSIENT CONTINUATION
In this technique, we seek the steady-state solution of the problem

find xh(», t ) 2 U xD
h , s.t. h@t xh ,¾hi ˘ ¡F (xh ,¾h), 8¾h 2 U 0

h , (4.27)

with

h@t xh ,¾hi ˘
Z

›̂

¾h ¢@t xhdS. (4.28)

Here, we only consider the choice ¿(¾,x) ˘ ¾. We discretize in time using backward Eu-
ler. Introducing –xk ˘ xk¯1 ¡ xk , with F (xk¯1,¾h) ’ F (xk ,¾h) ¯ F 0(xk ,¾h ,–xk ), we com-
pute the temporal increment from

find –xk 2 U 0
h , s.t.

D
–xk

–t k ,¾h

E
¯ F 0(xk ,¾h ,–xk ) ˘ ¡F (xk ,¾h), 8¾h 2 U 0

h , (4.29)

where –t k denotes the time-step during the k-th iteration. As proposed in [KK98], we
base the time-step selection on the following recursive formula

–t k ˘ –t k¡1

°°F(xk¡1)
°°

2°°F(xk )
°°

2
, with kF(x)k2

2 ˘
X

¾h 2
h
U 0

h

i
F (x,¾h)2. (4.30)

The iteration is terminated once kxk ¡ xk¡1k is sufficiently small (in a suitable norm).

4.2.3. PICARD ITERATION
In the following, we present a Picard-based iterative scheme that is loosely based on the
default approach from the rich literature of classical meshing techniques [TSW98]. As
opposed to Sections 4.2.1 and 4.2.2, we base the scheme on a linearize then discretize
approach, rather than the converse. Note that for given x ˘ (x, y)T , we have

A(x) ˘ C T (x)C (x), with C (x) ˘
1

p
g11 ¯ g22 ¯†

ˆ @y
@· ¡ @y

@»
¡ @x

@·
@x
@»

!

. (4.31)

As such, A(x) is symmetric positive semi-definite (SPSD) for all x and symmetric posi-
tive definite (SPD) for x : ›̂ ! › bijective. Let us introduce the operator K : C 2(›̂,R2) £
C 2(›̂,R2) £R¯ ! C 0(›̂,R2) with components

Ki (x,y,„) ˘ A„(y) : H(xi ) ¡„¢»yi , where A„(y) ˘ A(y) ¯„I 2£2. (4.32)

Note that for „ ¨ 0, A„(x) is SPD and that for all choices of „, Ki (x,x,„) ˘ A(x) : H(xi ). For
given „ ¨ 0, we seek x as the limit k ! 1 of the recursive sequence

find xk¯1 s.t. K(xk¯1,xk ,„) ˘ 0, and xk¯1 ˘ xD on @›̂. (4.33)

To discretize (4.33), let us introduce the semi-linear form G¿ : V 2 £V 2 £R¯£U 0 ! R with

G¿(x,y,„,¾) ˘
2X

i˘1

Z

›̂

¿i (¾,y)
¡

A„(y) : H(xi ) ¡„¢»yi
¢

dS. (4.34)
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Given xk , we compute xk¯1 2 U xD as the solution of

find xk¯1 2 U xD s.t G¿(xk¯1,xk ,„,¾h) ˘ 0, 8¾h 2 U 0, (4.35)

where, as before, U xD ˘ {v 2 V 2 j v ˘ xD on @›̂}.
The discretization of (4.35) follows straightforwardly from replacing V by the finite di-
mensional Vh ‰ V . Equation (4.35) leads to a decoupled (block-diagonal) system of el-
liptic equations in nonvariational (or non-divergence) form [LP11]. Inspired by [Gal17],
here we consider the choices

¿Id(¾,y) ˘ ¾, ¿div(¾,y) ˘ °(y)¢»¾ and ¿ls
i (¾,y) ˘ A„(y) : H(¾i ), (4.36)

where

°(y) ˘
trace(A„(y))

A„ : A„(y)
. (4.37)

A Picard scheme results from iterating on (4.35) until kxk¯1 ¡ xkk is negligibly small.

Remark. Adding artificial diffusion in (4.32) stabilizes the linearized discrete equation
from (4.35). In the absence of stabilization (i.e., „ ˘ 0), (4.35) can be ill-posed in rare
cases, depending on the previous iterate xk . This is also true for a Newton-based ap-
proach. Whenever an invalid iterate is encountered in the Newton approach, we fall
back on the techniques from this section.
For „ ¨ 0, well-posedness of (4.35) with the choices from (4.36) is discussed in [Gal17]
and [BHW19]. Stabilizing a Newton-based approach constitutes a topic for future re-
search.

(a) The unrefined domain. (b) The uniformly refined domain.

Figure 4.1: The THB-refined parametric domains used in the computations of the parameterizations from
Figures 4.2 and 4.3.
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(a) Reference mapping acquired from minimizing
the Winslow functional over the domain from Fig-
ure 4.1a.

(b) The parameterization for the choice ¿ ˘ ¿Id.

(c) The parameterization for the choice ¿ ˘ ¿ls. (d) The parameterization for the choice ¿ ˘ ¿div.

Figure 4.2: Parameterizations acquired using the various discretization techniques.

refinement
method

Direct ¿ ˘ ¿Id ¿ ˘ ¿ls ¿ ˘ ¿div

h 4.784 4.849 4.913 4.974
h/2 4.787 4.790 4.815

Table 4.1: Evaluation of the Winslow functional with the various parameterizations.

4.2.4. DIRECT APPROACH
Assuming a bijective initial guess x0 2 U xD

h is available, we may alternatively compute
an approximately inversely harmonic parameterization by a direct minimization of the
Winslow functional (4.14). Let

LW (x) ˘
Z

›̂
QW(x)dS (4.38)

denote the evaluation of the Winslow function (see equation (4.14)), whose domain is the
set of all bijective x. To conform with the topic of this chapter, we compute the minimizer
over U xD

h as the solution of the following discretized PDE problem:

find xh 2 U xD
h s.t. L0

W (xh ,¾h) ˘ 0, 8¾h 2 U 0
h . (4.39)



4.2. SOLUTION STRATEGIES

4

73

(a) Winslow. (b) The refined parameterization for ¿ ˘ ¿Id.

(c) The refined parameterization for ¿ ˘ ¿ls. (d) The refined parameterization for ¿ ˘ ¿div.

Figure 4.3: Parameterizations acquired using the various discretization techniques over the uniformly refined
domain.

We solve (4.39) with one of the approaches from Sections 4.2.1 and 4.2.2. Typically x0 is
the solution of one of the indirect methods presented in Sections 4.2.1 to 4.2.3. In prac-
tice, we have often encountered convergence failure even when x0 is bijective. As a rule
of thumb, we retry solving (4.39) with a refined x0, resulting from an indirect approach,
if converge is not reached after a few iterations.

Remark. If a measure of quality of the solution results from substituting into (4.38), a
direct approach yields the best outcome.

4.2.5. EXAMPLE: PUZZLE PIECE
Figure 4.2 shows the various parameterizations of a puzzle piece geometry, resulting
from solving the discretized equations with the Newton-approach from Section 4.2.1 and
the different choices of ¿ : U 0 £ V 2 ! L2(›̂,R2) from (4.36). For Newton, stabilization is
avoided, i.e., „ ˘ 0. All methods lead to a bijective outcome. However, the figure shows
noticeable differences in the parametric properties between the various methods, in par-
ticular in the protruded parts and in particular in Figure 4.2d. Upon uniform refinement,
the differences become less pronounced, suggesting that all schemes are consistent. Ta-
ble 4.1 shows the outcomes of substituting the various parameterizations into (4.38).
Not surprisingly, the choice ¿ ˘ ¿div fares the worst while the table suggests that ¿ ˘ ¿I d
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is the best choice. Upon refinement, the ¿ ˘ ¿I d and ¿ ˘ ¿l s parameterizations become
virtually indistinguishable from the global minimizer over the coarse space, which is also
reflected in table 4.1.
As documented in the literature [Ste93], all parameterizations suffer from the well-known
pathologies of inversely harmonic maps, such as the tendency to yield large elements
within protruded parts. Fortunately, in a THB-setting this can be compensated for by
performing local refinement in the affected regions. Mitigating the impact of these patholo-
gies will be the topic of Section 4.4.

4.3. A BASIC SCHEME BASED ON A POSTERIORI REFINEMENT
One of the main challenges of PDE-based parameterization is selecting an appropriate
finite-dimensional spline space Vh . For this, we employ the technique of Dual Weighted
Residual, which will be the topic of Section 4.3.1.

4.3.1. DUAL WEIGHTED RESIDUAL
Dual Weighted Residual, is an a posteriori refinement strategy that is based on duality
considerations. Consider a semi-linear differential form A(u,`) (which is linear in `).
We consider the problem

find u 2 V – s.t. A(u,`) ˘ f (`), 8` 2 V –, (4.40)

for some linear functional f (¢) and a suitably-chosen vector space V , with V – ˘ V \
H 1

0 (›̂). We seek an approximate solution uh 2 V –
h with Vh ‰ V by solving a discretized

counterpart of (4.40)

find uh 2 V –
h s.t. A(uh ,`h) ˘ f (`h), 8`h 2 V –

h . (4.41)

Let L(u) be such that

¢L(uh) · L(u) ¡ L(uh) (4.42)

is a quantity of interest (which for instance measures the global quality of the approxi-
mation). Furthermore, let

‰(u,ˆ) ˘ f (ˆ) ¡ A(u,ˆ) (4.43)

denote the residual.
If z is the solution of

find z 2 V – s.t. A0(u,`, z) ˘ L0(u,`), 8` 2 V –, (4.44)

we have

¢L(uh) ˘ ‰(uh , z ¡ˆh) ¯ Rh(e), (4.45)

for arbitrary ˆh 2 V –
h and some Rh that is quadratic in e · u ¡uh [Ran04]. In practice, we

neglect Rh and approximate z by the solution of the discrete adjoint equation

find zh 2 V̄ –
h s.t. A0(uh ,¾h , zh) ˘ L0(uh ,¾h), 8¾h 2 V̄ –

h , (4.46)
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for some adjoint (THB-)spline space V̄h ‰ V . Hence,

¢L(uh) ’ ‰(uh , zh ¡ˆh) ˘
X

wi 2[Vh]
‰(uh , wi (zh ¡ˆh)) ·

X

i
ri (uh), (4.47)

thanks to semi-linearity of A(¢, ¢) and the partition of unity property associated with [Vh].
The motivation to use an adjoint spline space that differs from Vh is the fact that substi-
tuting any zh 2 V –

h in (4.47) results in ¢L(uh) ˘ 0, making it a lousy approximation due to
Galerkin orthogonality.
The appeal of using (4.47) is that a scalar quantity of interest ¢L(uh) is transformed into
an integral quantity over ›̂, which in turn is decomposed into the basis function wise
contributions ri (uh). The vector r(uh) may then be utilized in the selection of basis func-
tions for goal-oriented refinement (see Section 4.3.4).

Remark. If uh is a very inaccurate approximation of u, the discrete adjoint solution zh
will be inaccurate regardless of the choice of V̄h . Heuristically, we have rarely encoun-
tered this situation in the examples considered in this work. In case refinement is inef-
fective, the procedure should be restarted with a uniformly refined initial basis.

4.3.2. APPLICATIONS TO PDE-BASED PARAMETERIZATION
In this section, we apply the methodology from Section 4.3.1 to the PDE-based param-
eterization problem (4.22). Let xD be the canonical extension of the Dirichlet data as
introduced in (4.22). With xh ˘ xD ¯ x0, we may write (4.22) in the equivalent form

find x0 2 U 0
h s.t. F (xD ¯ x0,¾h) ˘ 0, 8¾h 2 U 0

h . (4.48)

In the formalism of (4.41), we hence have A(x,¾) ˘ F (xD ¯ x,¾) and f (¾) ˘ 0. Alterna-
tively, we may absorb the dependence on xD in f (¢). As before, the relation between Vh
and U f

h follows from (4.21).
We would like to design scalar cost functions (L(u) in (4.42)) to aid us in refining an a
priori chosen basis [Vh] such that after recomputing the solution over the refined space
V R

h ¾ Vh ,

1. xR
h is bijective;

2. xR
h approximates x well.

In a discrete setting, we may relax the condition that xR
h be bijective by the condition that

xR
h has a positive Jacobian determinant in all quadrature points ¥ ˘ {»q

1 , . . . ,»q
M }.

As such, let xh be the solution of (4.48) over the space Vh and let

¥¡ ˘
'
»q

i 2 ¥ j det J (xh) ˙ 0 in »q
i

“
. (4.49)

To address (potential) lack of bijectivity, we propose the following goal-oriented cost
function:

L¥(x) ˘
X

»q
i 2¥¡

det J (x)(»q
i ), (4.50)
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such that

¢L¥(xh) ˘ L¥(x)| {z }
‚0

¡L¥(xh)| {z }
•0

‚ 0, (4.51)

with equality if and only if ¥¡ ˘ ;. Here, the inequality L¥(x) ‚ 0 follows from the Radó-
Kneser-Choquet theorem (see Section 4.1) while L¥(xh) • 0 follows from (4.49). Accord-
ing to (4.47), we may approximate

¢L¥(xh) ’ ¡F (xh ,zh ¡ˆh) ˘
X

wi 2[Vh]
¡F

¡
xh , wi (zh ¡ˆh)

¢
·

X

i
ri (xh). (4.52)

Typically, we choose ˆh as the L2(›̂,R2)-projection of zh onto U 0
h .

Remark. Even though subtracting a nonzero ˆh 2 U 0
h does not alter the outcome on

the right hand side of (4.52), it does influence its decomposition into the basis function
wise contributions ri (xh).

Using the basis function wise decomposition of the quantity of interest ¢L¥(xh), the pro-
cedure selects a subset of the wi 2 [Vh] and marks them for refinement. We propose se-
lection criteria in Section 4.3.4.
After refinement of Vh , we recompute the mapping from the enriched basis V R

h and if
necessary repeat above steps until discrete bijectivity (over ¥) has been achieved.

Remark. For better performance, we always use the prolonged coarse-grid solution as
an initial guess for recomputing the mapping under the refined basis.

Upon completion, we may choose to settle for the (possibly inaccurate but with respect
to the »q

i 2 ¥ analysis-suitable) resulting mapping xR
h , or we may choose to further im-

prove its accuracy with respect to the exact solution. As the exact solution of the PDE
problem is equal to the minimizer of the Winslow function (see Section 4.1.3)

LW (x) ˘
Z

›̂

g11 ¯ g22

det J
dS,

by choosing ¡LW (x) as a cost function, we acquire the quantity of interest

¢LW (xh) ˘ ¡LW (x) ¯ LW (xh) ‚ 0, (4.53)

with equality for kx ¡ xhkH 1(›̂) ˘ 0. As such, (4.53) may serve as a measure for the dis-
tance of xh to x. As before, we approximate (4.53) by substituting the discrete adjoint
solution zh in (4.47) and base refinement criteria on the basis function wise contribu-
tions to (4.53). The steps of refinement, recomputation and adjoint estimation may be
repeated until the estimate j¢LW (xh)j ’ j¡ F (xh ,zh ¡ˆh)j is deemed sufficiently small.
The above methodology is compatible with the direct approach from Section 4.2.4. A
typical workflow consists of computing a bijection xh under the cost function (4.50) us-
ing the PDE-based approach and continuing to improve parametric quality using (4.53).
Furthermore, once a bijective xh has been found, it may serve as an initial guess for the
direct approach from Section 4.2.4.
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4.3.3. CHOICE OF ADJOINT BASIS

Problem (4.46) requires choosing a suitable dual spline space V ¾ V̄ h 6˘ Vh , which typi-
cally results from uniformly refining Vh (in either h or the polynomial degree p), leading
to a » 4-fold increase in the number of DOFs associated with the (linear) discrete ad-
joint equation. In a THB-setting, we have the luxury of choosing V̄h reminiscent of the
role of K -refinement [HCB05] in a structured spline setting. Let (p,fi) be the degree and
regularity of Vh (which we assume to be equal in both directions for convenience) and
let T denote the corresponding decomposition of ›̂ into elements. We define V̄K (Vh) as
the richest (dimensionality-wise) THB space of degree p ¯ 1 and regularity fi ¯ 1 that is
compatible with the elements in T . Typically, we have jV̄K (Vh)j ’ jVh j, where j ¢ j denotes
the dimension of a vector space.
While taking V̄h ˘ Vh/2 yields more accurate adjoint solutions zh 2 (V̄ –

h )2, we have found
the choice V̄ h ˘ V̄K (Vh), to be sufficient for refinement based on both (4.49) and (4.53).
As such, solving the discrete adjoint equation becomes a cheap operation.

4.3.4. REFINEMENT STRATEGIES

The decomposition into basis function wise contributions ri (xh) introduced in (4.47)
is particularly useful in a THB-setting since elementwise refinement may not change
the dimension of the underlying THB spline space. In the following, we present several
strategies for using r(xh) to mark basis functions wi 2 [Vh] for refinement. We define the
vectors w and r̃ with

wi ˘
Z

›̂
wi dS and r̃i ˘

ri

wi
. (4.54)

Furthermore, we let r̃max ˘ maxi jr̃i j and I ˘ {1, . . . , jVh j}. Inspired by [PO03], we define

I fi
max ˘ {i 2 I j jr̃i j ‚ flr̃max} (4.55)

as the index-set of absolutely weighted contributions that exceed the value flr̃max, for
some fl 2 [0,1]. The i 2 I fi

max then constitute the indices corresponding to basis func-
tions whose supporting elements E k 2 T , from the k-th level in the element hierarchy,
are replaced by finer counterparts E k¯1 from the (k ¯ 1)-th level. Note that the function
may, due to preceding refinements of other functions, be already partially supported by
E l 2 T , with l ‚ k ¯ 1. In this case only the coarsest supporting elements E k are re-
fined. As a result, upon constructing the canonical THB-spline space over the refined
T , wi 2 [Vh] is replaced by several functions from the next level in the hierarchy, leading
to a local increase of the DOFs. Basis function wise refinement ensures that always at
least one function is removed from the basis and replaced by several finer ones.
Since both (4.50) and (4.53) are strictly positive quantities of interest, disregarding nega-
tive contributions in (4.54) is a plausible strategy, too. Heuristically, this strategy mildly
reduces the total number of required DOFs until bijectivity is achieved. However, this
comes at the expense of a larger number of the required a posteriori refinements, which
are limited to typically no more than 3 ¡ 4 using (4.55).
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4.3.5. RESULTS

To demonstrate the appeal of local refinement made possible by THB splines, in the fol-
lowing, we present parameterizations for the U.S. state of Indiana, the German province
of North Rhine-Westphalia and the country of Austria, all of which have complicated
boundaries but relatively simple interior. The initial basis [Vh] results from refining an
initial grid comprised of 7 £ 7 elements by the boundaries until the contours of › are
approximated sufficiently well. In all cases, Vh is a bicubic hierarchical space. We take
V̄h ˘ V̄K (Vh) (see Section 4.3.3) and base refinement on (4.55) with fl ˘ 0.2.

Figure 4.4: The domain with canonical bicubic basis of 2338 DOFs (left) and the THB-spline parameterization
of the U.S. state of Indiana (right).

Figures (4.4) to (4.6) clearly demonstrate the DOF savings made possible by local refine-
ment. Not surprisingly, refinement especially affects the protruded and concave areas
close to the boundaries.
At every refinement level, parameterizations were computed using the Newton-Krylov
approach from Section 4.2.1. They were post-processed with the direct approach from
Section 4.2.4 once bijectivity had been achieved.
The iterative solver typically converges after 4 ¡ 5 nonlinear iterations on the coarsest
level plus another 2¡3 iterations per a posteriori refinement. Once bijectivity is achieved,
initializing the direct approach from (4.39) with the PDE solution typically leads to con-
vergence after fewer than 3 iterations.
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Figure 4.5: The domain with bicubic basis of 2676 DOFs (left) and the THB-spline parameterization of the
German province of North Rhine-Westphalia (right).

Figure 4.6: The domain with bicubic basis comprised of 9640 DOFs (left) and the THB-spline parameterization
of Austria (right).

4.4. DOMAIN OPTIMIZATION
As demonstrated in Section 4.3.5, the approach from Section 4.3 can handle challenging
geometries. However, it lacks the flexibility of precisely controlling the parametric prop-
erties of the outcome, which may lead to undesirable features, such as large elements
(see Figures 4.2 and 4.3). As such, in the following we present a framework that allows
for more flexibility, where we pay particular attention to mitigating the aforementioned
pathologies associated with inversely harmonic maps.
Instead of mapping inversely harmonically into a domain ›̂ with a Cartesian coordinate
system, we now define it through a parameterization s : ›̂ ! ›̂. For convenience, we
assume that the boundary correspondence sj@›̂ : @›̂ ! @›̂ is the identity. Suppose that
x⁄ : ›̂ ! › solves the equation

¢x» ˘ 0, s.t. xj@›̂ ˘ xD (»), (4.56)

for x. Then, if x(») is the solution of

¢xs(») ˘ 0, s.t. xj@›̂ ˘ xD (s(»)), (4.57)

it clearly satisfies x ˘ x⁄ – s, thanks to the fact that xD – s ˘ xD on @›̂ (i.e., the boundary
condition does not change upon pullback). As such, we may approximate compositions
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x⁄ – s by solving the discretized counterpart of (4.57).
Introducing the set of vectors

pi j (s) ˘ ¡T ¡1 @2s

@»i @» j
, with T ˘ @»s and (i , j ) 2 {1,2} £ {1,2}, (4.58)

it can be shown that with s ˘ s(»), (4.57) can be reformulated as [TSW98, Chapter 4]

A(x) :
µ

H(xi ) ¯ P 1(s)
@xi

@»
¯ P 2(s)

@xi

@·

¶
˘ 0 i 2 {1,2}, s.t. xj@›̂ ˘ xD j@›̂. (4.59)

Here, the matrices P 1 and P 2 satisfy

P k
i j (s) ˘ pi j

k (s), k 2 {1,2}. (4.60)

Therefore, we introduce

F (x,¾,s) ˘
2X

i˘1

Z

›̂
¿(¾,x)i A(x) :

µ
H(xi ) ¯ P 1(s)

@xi

@»
¯ P 2(s)

@xi

@·

¶
detT (s)

| {z }
H̃(xi ,s)

dS, (4.61)

and for given s(»), we solve

find xh 2 U xD
h s.t. F (xh ,¾h ,s) ˘ 0 8¾h 2 U 0

h , (4.62)

in order to approximate x⁄ – s. Unless stated otherwise, we utilize the Newton approach
from Section 4.2.1 with ¿(¾,x) ˘ ¾. We can apply the Picard approach from Section 4.2.3
by replacing H(xi ) ! H̃(xi ,s) in equation (4.34). In the following, we present several
strategies for choosing s to improve the parametric properties of the composite map-
ping.

4.4.1. EXPLOITING THE MAXIMUM PRINCIPLE
Clearly, for well-posedness of (4.62), s : ›̂ ! ›̂ should not fold. As the control mapping
maps into a convex domain, we may exploit the fact that if it is the solution to a second
order elliptic problem in divergence form, it is necessarily a bijection [BMN01]. Thus, let
s ˘ (s1,s2)T be such that

r» ¢
¡
Dr»si

¢
˘ 0 i 2 {1,2}, in ›̂, s.t. s(») ˘ » on @›̂, (4.63)

where D : ›̂ ! R2£2 is an SPD diffusivity tensor. In the following, we assume that an ac-
curate approximation x⁄

h of x⁄ has been computed using the methodology from Section
4.3. In order to mitigate the impact of the well-known pathologies of inversely harmonic
maps (see Section 4.2), we may select D in (4.63) such that the value of

LArea(xh) ˘
Z

›̂
det J (xh)2dS (4.64)
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is expected to decrease with respect to x⁄ (see (4.10)). Note that
¡
det J (x⁄ – s)

¢2 ’
¡
det@sx⁄

h
¢2 det J (s)2

˘
¡
det@sx⁄

h
¢2 ¡

g11g22 ¡ g 2
12

¢
»!s

•
1
2

¡
det@sx⁄

h
¢2 ¡

g11 ¯ g22
¢2
»!s , (4.65)

where the subscript » ! s indicates that the gi j between brackets refer to the metric in-
duced by s(»). Given that s(») ˘ » initially, (4.65) suggests a convex optimization problem
of the form

LPoissonArea(s,k) ! min
s2V 2

h

, s.t. s(») ˘ » on @›̂, (4.66)

where

LPoissonArea(s,k) ˘
Z

›̂

¡
det@»x⁄

h
¢k ¡

k@»s1k2 ¯k@»s2k2¢
dS, (4.67)

for recomputing s(»). As such, we are solving the discretized equations corresponding to
(4.63) with

D ˘
¡
det@»x⁄

h
¢k I 2£2. (4.68)

Even though the exact solution of (4.63) does not fold, the discretized counterpart may
fold due to extreme diffusive anisotropy. This can be counteracted by reducing the value
of k. Alternatively, (4.67) can be utilized for DWR-based a posteriori refinement to achieve
bijectivity and accuracy of s : ›̂ ! ›̂.
Upon completion, we compute xh 2 V 2

h using the control mapping s : ›̂ ! ›̂, with a
posteriori refinement if necessary.

k 0 0.5 1 1.5
LArea(xh) £ 10¡2 3.291 2.077 1.439 1.299

Table 4.2: Evaluation of LArea(xh ) for various values of k.

Figure 4.7 shows puzzle piece geometry parameterizations for various values of k, while
Table 4.2 contains the outcomes of substituting into (4.64). Both clearly demonstrate
that the methodology has the desired effect, with more drastic outcomes for larger val-
ues of k. Figure 4.8 shows the isolines of s(») before and after reparameterization with
k ˘ 1.5. All parameterizations were computed with the reference basis corresponding to
Figure 4.7a. No a posteriori refinements were necessary.
Figure 4.9 shows parameterizations of the U.S. state of Indiana for k ˘ 0 and k ˘ 1. Con-
trary to Table 4.2, with

LArea(xh) ˘ 1.049 £ 102 for k ˘ 0 and LArea(xh) ˘ 1.008 £ 102 for k ˘ 1,

the effect is very mild. Restricting the integrals to · ˙ 1/7, however, the difference be-
comes more pronounced with

LArea(xh) ˘ 17.167 and LArea(xh) ˘ 14.118,
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(a) (b)

(c) (d)

Figure 4.7: Several parameterizations of the puzzle piece with reparameterization based on (4.63) and (4.68)
with the reference parameterization k ˘ 0 (a), reparameterization with k ˘ 0.5 (b), k ˘ 1 (c) and k ˘ 1.5 (d).

(a) (b)

Figure 4.8: Plots showing the reference domain (a) and the reparameterized domain based on (4.63) and (4.68)
with k ˘ 1.5 (b). The figure clearly shows that the elements are contracted wherever det@»x⁄

h is large.
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(a) (b)
(c)

Figure 4.9: Parameterization of the U.S. state of Indiana with k ˘ 0 (a), k ˘ 1 (b) and the corresponding repa-
rameterized domain (c).

respectively. Unsurprisingly from the shape of the geometry, the difference is most strik-
ing close to the lower boundary, which can also be seen in the figure. A posteriori refine-
ment was necessary in Figure 4.9b.
Heuristically, reparameterization based on the maximum principle proves to be one of
the most robust and effective choices for a wide range of geometries while being com-
putationally efficient. This is thanks to the fact that it addresses the known patholo-
gies of inversely harmonic maps, while also yielding smooth solutions, which preserves
smoothness of the composite mapping.

4.4.2. CONSTRAINED DOMAIN OPTIMIZATION
The concept of reparameterizing the domain in order to alter the parametric proper-
ties of the recomputed geometry parameterization can be further extended in a way
more reminiscent of the well-known cost function minimization approach (see Section
4.1). Given an accurate approximation x⁄

h of x⁄ (see Section 4.4.1), we define the metric
Gs!x ˘ @sxT @sx, which is initially given by

Gs!x ˘ @»x⁄T @»x⁄ ’ @»x⁄T
h @»x⁄

h .

Hence, in order to optimize xh(»), we optimize s(») in the metric induced by Gs!x. With

g s
i j ˘

£
@»sT Gs!x@»s

⁄
i j and J s

i j ˘ (@»x⁄
h@»s)i j , (4.69)

we define domain optimization cost functions Qs
i (s) by replacing gi j ! g s

i j and Ji j ! J s
i j

in the Qi introduced in equation (4.4) (see Section 4.1). We may nevertheless choose to
add terms of the form Qi (s), which should then be regarded as regularization terms. Let
U ä

h ˘ {v 2 V 2
h j v ˘ » on @›̂}. A domain optimization problem takes the form

Z

›̂
Q(s)dS ! min

s2U ä
h

, s.t. C(s) ‚ 0, (4.70)
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with

Q(s) ˘
X

i
‚s

i Qs
i (s) ¯

X

j
‚ j Q j (s). (4.71)

Here, the constraint C(s) ‚ 0 ensures that the minimizer of (4.70) does not fold. In the
following, we list all choices of C(s) that come to mind.
Given the element segmentation T of ›̂, by V p,fi(T ) we denote the canonical THB-
space with order p and regularity fi that is compatible with T . Note that fi • p ¡ 1.
Clearly, if Vh has order p and regularity fi • p ¡ 1, this implies that

det@»s 2 V 2p¡1,fi¡2(T ).

As such, we also have

det@»s 2 V 2p¡1,¡1(T ).

Hence, we can base the constraint on Bézier extraction, in which we require that all
weights of projecting det@»s onto V 2p¡1,¡1(T ) be positive. Let d̂ be the corresponding
vector of weights. We have

d̂(s) ˘ M̂¡1 f̂(s) ¨ 0, where f̂i (s) ˘
Z

›̂

ˆ̀i det@»sdS, (4.72)

with

ˆ̀i 2
£
V 2p¡1,¡1(T )

⁄
and M̂i , j ˘

Z

›̂

ˆ̀i ˆ̀ j dS. (4.73)

Note that M̂ is block-diagonal with jT j blocks of size (2p,2p). Hence, we computa-
tionally efficiently assemble M̂¡1 simply by computing the inverse of all separate blocks
leading to a sparse block-diagonal matrix. As such, the computational costs of testing
whether the condition d̂ ¨ 0 is fulfilled reduces to the assembly of f̂ along with one sparse
matrix-vector multiplication. Assembly of the constraint gradient of d̂(cI ), where cI is
a vector containing the inner control points of s, requires the assembly of @cI f̂ and a
sparse matrix-matrix multiplication. The assembly is hence feasible. However, for large
values of p this may lead to an infeasibly large number of constraints.
Inspired by [GENN12], we formulate an alternative constraint by projecting det@»s onto
the coarser THB-space V 2p,fi¡2(T ). Similar to (4.72), this leads to a constraint of the
form

d(s) ˘ M¡1f(s) ¨ 0, where fi (s) ˘
Z

›̂

`i det@»sdS, (4.74)

with

`i 2
£
V 2p¡1,fi¡2(T )

⁄
and Mi , j ˘

Z

›̂

`i ` j dS. (4.75)
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Increasing the values of p and fi, unlike for (4.72), the length of d in (4.74) increases only
slowly (thanks to K -refinement). On the other hand, the matrix M is not block-diagonal
and neither is it separable (unlike in a structured spline setting). As such, the assembly
of the constraint gradient is prohibitively expensive. Here, a remedy is to introduce the
vector of slack variables e ¨ 0. The constraint from (4.74) can be reformulated as follows:

Cfi(s,e) ˘ f(s) ¡ Me ˘ 0, with e ¨ 0. (4.76)

Hence, we avoid inversion with M at the expense of introducing an additional inequal-
ity constraint and changing the existing inequality constraint to an equality constraint.
Note that we have:

@Cfi(s,e)
@(cI ,e)

˘
•

@f

@cI
,¡M

‚
and

@e

@(cI ,e)
˘ [0, I ] , (4.77)

where I denotes the identity matrix of appropriate dimension.
Given a set of abscissae ¥ ˘ {»c

1, . . .»c
m} ‰ R2, an alternative constraint C¥ (s) follows from

requiring that

†L
i • det@»s(»c

i ) • †U
i , 8i 2 {1, . . . ,m}, (4.78)

where Rm 3 †L,U ‚ 0 are lower and upper thresholds. Note that (4.78) is nonlinear and
nonconvex but not a sufficient condition for bijectivity of s. However, it makes bijectivity
likely for m sufficiently large.
Finally, assuming that s is built from a structured basis [Vh] resulting from a tensor prod-
uct of the univariate bases

{N ä
1 , . . . , N ä

n } and {Mä
1 , . . . , Mä

m},

we may alternatively utilize the linear constraint proposed in [XMDG11]. Typically, we
take [Vh] as the cardinality-wise largest structured basis compatible with T . Given

s(») ˘
X

i , j
ci , j N ä

i (»)Mä
j (·), (4.79)

let the cones C1(s) and C2(s) be generated by the half rays R¯¢1
i , j and R¯¢2

i , j with

¢1
i , j ˘ ci¯1, j ¡ ci , j and ¢2

i , j ˘ ci , j ¯1 ¡ ci , j ,

respectively. The constraint is based on the observation that if C1(s) and C2(s) only in-
tersect in » ˘ 0, then s is bijective. In a direct optimization of xh , above constraint may
be impractical since for most xD , the set

'
xh 2 U xD

h j C1(xh) \C2(xh) ˘ {0}
“

is empty or the constraint is too restrictive. However, in the case of optimizing s, for
s0 ˘ », the cones C1(s0) and C2(s0) are generated by R¯(1,0)T and R¯(0,1)T , respectively.
A linear constraint CL(s) follows from requiring that C1(s) and C2(s) be contained in the
cones generated by

'
R¯ £ (1,¡1 ¯†)T ,R¯ £ (1,1 ¡†)T “

and
'
R¯ £ (1,1 ¯†)T ,R¯ £ (¡1,1 ¡†)T “

,
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(a) In this geometry, the constraint is violated despite the bijectivity of the mapping, demonstrating the
restrictiveness of CL (xh ).

(b) In the case of the unreparameterized domain, the linear constraint is much less restrictive.

Figure 4.10: Depiction of the bijectivity constraint CL . In (a), the constraint is violated since C 1(xh )\C 2(xh ) 6˘
{0} despite the bijectivity of the mapping. In (b) we see that the Cartesian domain is located exactly in the
center of the feasible region generated by the cones with µ(¢1

i , j ) 2 (¡…/4,…/4) and µ(¢2
i , j ) 2 (…/4,3…/4).

respectively. Here † ¿ 1 is a small positive parameter. Clearly, s0 is located exactly in the
center of the feasible region (see Figure 4.10), making the constraint much less restrictive
at the expense of having to compute x⁄

h first.

Remark. We can combine the proposed constraints with the principles from Section
4.4.1 to suppress overshoots due to extreme diffusive anisotropy. If C(s) ˘ CL(s), the
problem remains convex.

Figure 4.11a shows the domain corresponding to the U.S. state of Indiana (see Figure 4.4)
after optimizing with

Q ˘ Qs
AreaOrthogonality
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(a)
(b)

Figure 4.11: Result of reparameterizing the domain corresponding to the U.S. state of Indiana with Q ˘
Qs

AreaOrthogonality (a) and the resulting recomputed geometry parameterization (b).

under the constraint C(s) ˘ d̂(s) (see equation (4.72)). The domain mapping s(») is built
from the same THB-basis as x⁄

h , comprised of 2338 DOFs. Since Newton failed to con-
verge, we recomputed xh using the Picard approach, which converged after 21 iterations.
The result is depicted in Figure 4.11. No a posteriori refinements were required. The
reparameterization reduces the value of LAreaOrthogonality from the initial

LAreaOrthogonality(x⁄
h) ˘ 1.77 £ 102, to LAreaOrthogonality(xh) ˘ 1.36 £ 102.

Next, we optimize the domain corresponding to the puzzle piece geometry (see Figure
4.2b) with C(s) ˘ CL(s) and Q ˘ Qs

Area. Hereby, s(») is built from a structured spline space
comprised of 646 DOFs. The reparameterized domain is depicted in Figure 4.12a. Bijec-
tivity of xh is achieved with 2632 DOFs and the resulting parameterization is depicted in
Figure 4.12b. With LArea(xh) ˘ 142.710, it is roughly as effective as the reparameteriza-
tion from Figure 4.7 with k ˘ 1.
Figure 4.13 shows the German province of North Rhine-Westphalia upon reparameteri-
zation with

Q ˘ Qs
Orthogonality,

where s(») is built from a structured spline space comprised of 578 DOFs, with C(s) ˘
CL(s). Initially,

LOrthogonality(x⁄
h) ˘ 18.929, while LOrthogonality(xh) ˘ 5.160

upon recomputation. Bijectivity is achieved with 4584 DOFs, which is roughly double
the initial 2724 DOFs.
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(a)
(b)

Figure 4.12: Result of optimizing the puzzle piece domain with Q ˘ Qs
Area under the constraint C(s) ˘ CL (s) (a)

and the corresponding recomputed mapping (b).

(a) (b)

Figure 4.13: Result of reparameterizing the reference parameterization of the German province of North Rhine-
Westphalia (see Figure 4.5), with Q(s) ˘ Qs

Orthogonality(s). The reparameterized domain is shown in (a), while
(b) shows the recomputed parameterization.

Finally, Figure 4.14 shows the result of reparameterizing the same geometry with

Q ˘ Qs
AreaOrthogonality

and the same constraints. Initially,

LAreaOrthogonality(x⁄
h) ˘ 51.244, while LAreaOrthogonality(xh) ˘ 30.896

upon recomputation. Bijectivity is achieved with only 2928 DOFs.

4.4.3. DIRECT OPTIMIZATION
As an alternative to operating in the parametric domain, we may choose to directly opti-
mize the geometry parameterization with respect to a quality cost function. As an advan-
tage, we avoid the (possibly expensive) recomputation of xh . In order to avoid folding,
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(a) (b)

Figure 4.14: Result of reparameterizing the reference parameterization of the German province of North Rhine-
Westphalia (see Figure 4.5), with Q(s) ˘ Qs

AreaOrthogonality(s). The reparameterized domain is shown in (a),
while (b) shows the recomputed parameterization.

constraints should be employed. As a disadvantage, the linear constraint CL(xh) cannot
be used and the initial guess x⁄

h may fail to satisfy the conditions d̂(xh) ¨ 0 (cf. (4.72)) and
d(xh) ¨ 0 (cf. (4.74)) despite being bijective. Heuristically, for complicated geometries,
this is usually the case. In such cases, the only viable constraint is C¥(xh) (cf. (4.78)).
We optimize the puzzle piece geometry with Q(xh) ˘ QArea(xh) under the constraint
d̂(xh) ¨ 0, where the initial guess x⁄

h is the parameterization from Figure 4.7a. Figure 4.15

(a)
(b)

Figure 4.15: The puzzle piece geometry after 21 iterations of minimizing Q(xh ) ˘ QArea under the constraint
d̂(xh ) ¨ 0 (b) and the corresponding domain (a). The minimization was initialized with the parameterization
from Figure 4.7a.

shows the resulting parameterization. Convergence is achieved after 21 constrained it-
erations. The reparameterization reduces LArea from the initial LArea(x⁄

h) ˘ 3.29 £ 102

to LArea(xh) ˘ 0.96 £ 102, which is slightly more pronounced than the reduction from
Figure 4.7 with k ˘ 1.5. However, the resulting parameterization is less regular com-
pared to Figure 4.7d, which can be remedied by adding a regularization of the form
Q(xh) ˘ QArea(xh) ¯ flQUniformity(xh). Next, we optimize the U.S. state of Indiana with



4

90 CHAPTER 4. ADAPTIVE THB-SPLINE SCHEMES FOR PDE-BASED PARAMETERIZATION

(a)

(b)

Figure 4.16: The parameterization of the U.S. state of Indiana after 30 iterations of minimizing Q(xh ) ˘ QArea
(b) and the corresponding domain (a). The minimization was initialized with the parameterization from Figure
4.9a.

Q(xh) ˘ QArea(xh) under the constraint C¥ (xh) ‚ 0 with

†L
i ˘ fiL £ det J (x⁄

h)(»c
i ) and †U

i ˘ fiU £ det J (x⁄
h)(»c

i ), (4.80)

(see equation (4.78)).
Figure 4.16 shows the resulting parameterization after 30 iterations. With

LArea(x⁄
h) ˘ 1.049 £ 102 and LArea(xh) ˘ 0.989 £ 102,

the reduction is mild, yet somewhat more pronounced than in Figure 4.9. Here, ¥ results
from uniform sampling with 36 points per element. The choice of the relaxation factors
0 • fiL • 1 and 1 • fiU in (4.80) tunes to which degree trading an increase in LArea for a
decrease in the employed cost function is acceptable. Here, more conservative choices
lead to less cost function reduction but to more uniform cell sizes and vice versa. Fur-
thermore, values of fiL closer to 1 prevent the grid from folding, even if fewer sampling
points are used. We used fiL ˘ 0.05 and fiU ˘ 4.

4.4.4. ACHIEVING BOUNDARY ORTHOGONALITY
Many applications favor parameterizations with isolines that are orthogonal to the bound-
ary contours. One way to achieve this is allowing ‚s

i ˘ ‚i (»)s in (4.71) and taking ‚s
Orthogonality

large close to @›̂. We are considering the example of achieving orthogonality at the
northern and southern boundaries of the geometry depicted in Figure 4.17. To this end,
we minimize the cost function

Q(s) ˘ (1 ¯‚O(»))Qs
Orthogonality,
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(a) (b)

Figure 4.17: Reference parameterization of a tube-like shaped geometry which is to be orthogonalized by the
northern and southern boundaries.

where ‚O(») takes on large values close to the northern and southern boundaries of @›̂.
We employ the constraint C(s) ˘ CL(s), where s(») is built from a structured spline space
comprised of 594 DOFs. The resulting paramterization is depicted in Figure 4.18. The

(a) (b)

Figure 4.18: Result of reprameterizing the geometry mapping from Figure 4.17 by weakly enforcing boundary
orthogonality through a large penalty term (b) and the corresponding reparameterized domain (a).

figure indeed shows a large degree of orthogonalization, which is somewhat weaker in
the protruded parts of the geometry. This is due to orthogonality only being enforced
weakly through a penalty term. More pronounced boundary orthogonalization may be
achieved by taking ‚O larger close to @›̂.
Let °e ,°w ,°s and °n refer to the eastern, western, southern and northern parts of @›̂,
respectively. For a more drastic boundary orthogonalization, we follow the approach
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from [TSW98, Chapter 6], which consists of solving the problem

¢x⁄
h

f ˘ 0 s.t. f ˘ 0 on °e , f ˘ 1 on °w and
@ f
@n

˘ 0 on °s [°n (4.81)

on an initially folding-free geometry parameterization x⁄
h . Here, n denotes the unit out-

ward normal vector on @›. Upon completion, the control mapping s ˘ (s1,s2)T · (s, t )T

is computed from

s(»,·) ˘ f (»,0)H0(·) ¯ f (»,1)H1(·) and t (»,·) ˘ ·, (4.82)

where

H0(·) ˘ (1 ¯ 2·)(1 ¡·)2 and H1(·) ˘ (3 ¡ 2·)·2 (4.83)

are cubic Hermite interpolation functions. It can be shown that with this choice of s
and t , the solution of (4.57) is orthogonal at °s and °n . We approximately solve for f
by computing the solution fh of the discretized counterpart of (4.81) over some struc-
tured spline space Vh . Hereby, the Neumann boundary conditions are weakly imposed
through partial integration. The control mapping follows from replacing f ! fh in (4.82).
Should orthogonality at °w and °e be desired, we simply exchange the roles of s ! t ,
(°s ,°n) ! (°w ,°e ) and » ! ·.

Remark. Unlike f , fh may fail to be monotone increasing on °s or °n , leading to a folded
control mapping s(»).

(a) (b)

Figure 4.19: Result of reprameterizing the geometry mapping from Figure 4.17 using the approach proposed
in [TSW98, Chapter 6] (b) and the corresponding reparameterized domain (a).

Figure 4.19 shows the recomputed parameterization of the same geometry using the
preceding methodology, along with the reparameterized parametric domain, which has
been computed from the same structured spline basis as in Figure (4.18). The figure
shows an outstanding boundary orthogonalization, which comes at the expense of larger
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elements in the protruded parts compared to Figure 4.18. We introduce another control
mapping s0(»), which we compute from the solution of

Z

›̂
(det@sxh)k (g11 ¯flg22)s!s0 det@»sdS ! min

s02V 2
h

, s.t. s0(») ˘ s(») on @›̂, (4.84)

where s ˘ (s, t )T and xh correspond to Figures 4.19 (a) and (b), respectively. Here, the gi i
correspond to diagonal entries of the metric tensor associated with the diffeomorphism
between sj›̂ and s0j›̂. As before, k ¨ 0 tunes to which degree the spread in cell size is
penalized, while fl ¨ 1 tunes the degree to which s0 is contracted / expanded in the direc-
tion of @·s, in order to compensate for large / small cells in xh . Taking fl large essentially
freezes s0 in the direction of @»s, such that boundary orthogonality is preserved. Note
that in (4.84), we are essentially solving the discrete counterpart of

rs ¢ (Drss0
i ) ˘ 0, i 2 {1,2}, s.t. s0(») ˘ s(»), with D ˘ (det@sxh)k

µ
1 0
0 fl

¶
. (4.85)

Figure 4.20 shows the geometry parameterization along with the reparameterized do-

(a) (b)

Figure 4.20: Result of reprameterizing the geometry mapping from Figure 4.19 using the principles from Sec-
tion 4.4.1 (b) and the corresponding reparameterized domain (a).

main upon recomputation with k ˘ 0.75 and fl ˘ 300. Compared to Figure 4.19, the
figure shows a much better cell size distribution, in particular close to the boundaries.
Large cells can be further penalized by increasing the value of k.

4.5. CHAPTER CONCLUSIONS
In this work, we presented a goal-oriented adaptive THB-spline framework for PDE-
based planar parameterization. For this, we adopted the a posteriori refinement tech-
nique of dual weighted residual and proposed several goal-oriented refinement cost
functions. This resulted in numerical schemes that combine iterative solution tech-
niques with THB-enabled local a posteriori refinement strategies, hence avoiding over-
refinement in computing a folding-free geometry parameterization.
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In order to fine-tune the parametric properties of the resulting mapping, we combined
aforementioned schemes with the concept of domain optimization. Hereby, the (con-
vex) parametric domain, which constitutes the target domain of the mapping inverse, is
reparameterized in order to alter the parametric properties of the recomputed mapping.
For this, we proposed several optimization constraints that avoid the loss of bijectivity.
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5
THE ROLE OF PDE-BASED

PARAMETERIZATION TECHNIQUES

IN GRADIENT-BASED IGA SHAPE

OPTIMIZATION APPLICATIONS

This chapter is based on the publication from [HJMV20]. It is motivated by the obser-
vation that the PDE-based formulation of the surface-to-volume problem @› ¡! › en-
ables deriving a symbolic expression for the differential of the mapping with respect to
the boundary correspondence @›̂ ! @›. This, in turn, leads to a relatively straight-
forward expression from which the differential of some objective function, which has
a convoluted dependency on @›, can be assembled. While a function evaluation may
be relatively expensive, due to the need to solve a nonlinear problem for the mapping,
computing the differential is cheap. Hence, optimization routines that employ approx-
imate Hessian update strategies that require computing the function evaluation and its
differential in tandem during each iteration, are especially well-suited for the proposed
methodology.

This chapter proposes a shape optimization algorithm based on the principles of
Isogeometric Analysis (IGA) in which the parameterization of the geometry enters
the problem formulation as an additional PDE-constraint. Inspired by the isopara-
metric principle of IGA, the parameterization and the governing state equation are
treated using the same numerical technique. This leads to a scheme that is compar-
atively easy to differentiate, allowing for a fully symbolic derivation of the gradient
and subsequent gradient-based optimization. To improve the efficiency and ro-
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bustness of the scheme, the basis is re-selected during each optimization iteration
and adjusted to the current needs. The scheme is validated in two test cases.

5.1. INTRODUCTION
Isogeometric analysis (IGA) was introduced by Hughes et al. in [HCB05] as a numeri-
cal technique that bridges the gap between Computer Aided Design (CAD) and the nu-
merical analysis of Partial Differential Equations (PDEs). This is accomplished by using
the same function space to represent the geometry › and to discretize the PDE problem
posed over ›. Most of the available CAD software generates no more than a spline-based
description of the boundary contours @› of ›. Therefore, suitable parameterization al-
gorithms are indispensable for generating bijective (folding-free), analysis-suitable ge-
ometry parameterizations from the boundary CAD data.
The parameteric quality of the mapping has a profound impact on the accuracy of the
isogeometric analysis [XMDG10]. Therefore, besides bijectivity, proficient parameteri-
zation algorithms aim at generating parameterizations of high numerical quality.
A variety of parameterization techniques have been proposed in the literature such as
Coon’s Patch [FH99], Linear Spring [GENN12] and approaches based on (constrained
and unconstrained) quality cost function optimization [GENN12, XMDG11, FŠJ15]. While
mappings based on Coon’s Patch and Linear Spring follow from a closed-form expression
and are hence cheap to compute and straightforwardly differentiable, they often lead to
folded (non-bijective) mappings. The same is true for unconstrained optimization. Con-
strained optimization approaches on the other hand typically have a higher success rate.
However, this comes at the expense of a large number of (constrained) iterations (typi-
cally about » 30) and the notorieties associated with nonconvex optimization, such as
the danger of getting stuck in local minima. A third class of approaches attempts to gen-
erate a mapping whose inverse is composed of harmonic functions in ›. This approach
is based on the observation that harmonic functions exhibit a large degree of smooth-
ness, which benefits the numerical quality of the resulting mapping. Furthermore, it can
be shown that inversely harmonic mappings (IHMs) are bijective, thanks to the maxi-
mum principle [Rad26, Kne26]. Many approaches for approximating IHMs have been
proposed in the literature [NJ10, FŠJ15], notably the PDE-based approach called Elliptic
Grid Generation (EGG) [Aza09, HMV18]. EGG is of particular interest in shape optimiza-
tion problems thanks to the parametric smoothness and bijectivity of IHMs as well as
differentiability, made possible by the PDE-based problem formulation.
Traditionally, IGA parameterizations are taken from tensor-product spline spaces. Un-
fortunately, structured spline technologies do not allow for local refinement. This may
result in infeasibly-large function spaces. Therefore, unstructured spline technologies
such as THB-splines [GJS12] are gaining an increased amount interest in the IGA com-
munity, thanks to local refinement. An EGG-based planar parameterization framework
that supports THB-splines has been proposed in [HAM20] (see Chapter 4).
Since its birth in 2005, IGA has been successfully applied to wide variety of problems in-
cluding: thermal analysis [KOŁ14], linear elasticity problems [HCB05], structural vibra-
tions [CRBH06], incompressible flows [BH08] and inviscid compressible flows [Jae15].
As a mature numerical method, it is ready to be used in more complex industrial pro-
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cesses. As a result, several publications that apply IGA to shape optimization problems
have appeared in the literature [YHC13, NG13, WFC08, MEGG11]. Combining IGA and
shape optimization is very appealing as the spline-based description of @› can be used
directly to compute a mapping for ›, completely bypassing the need to first convert @›
into a piecewise-linear curve that acts as an input for classical mesh generators.
There are two main groups of shape optimization algorithms: gradient-free (like for ex-
ample genetic algorithms [Hol84]) and gradient-based methods (for example interior
point methods [WB06, BZ09]). The latter group generally requires fewer underlying PDE
evaluations at the expense of having to compute the gradient of the objective function
during each iteration. Therefore, differentiability of the IGA parameterization algorithm
constitutes a significant advantage. An additional feature of differentiability is efficiency:
as the inner control points are a smooth function of the boundary control points, there
is no need for full remeshing after each iteration since cheaper mesh update strategies
can be employed. This is also true for settings in which the boundary contours change
as a smooth function of time.
In order to combine the appealing features of EGG and THB-enabled local refinement,
this Chapter adopts the parameterization framework proposed in [HAM20] (see Chap-
ter 4) and presents an IGA-based shape optimization algorithm in which the param-
eterization is added to the optimization problem formulation in the form of an addi-
tional PDE-constraint. In line with the isoparametric principle of IGA, we numerically
treat this additional constraint in the same way as the governing quantity (temperature,
pressure, etc) of the underlying optimization problem. Including the mapping explicitly
as a PDE-constraint facilitates differentiation, allowing for gradient-based optimization,
while also guaranteeing analysis-suitability, thanks to the bijectivity of IHMs. To improve
the efficiency, the proposed algorithm employs THB-enabled adaptive local refinement
strategies during every optimization iteration, resulting in a variable discretization basis.
We validate the proposed methodology by presenting two test cases.

5.2. CHAPTER NOTATION
In this chapter, we denote vectors in boldface while matrices receive a capital letter and
may furthermore be enclosed in square brackets for better readability. The i -th entry of
vector x is denoted by xi or simply xi and similarly for the i j -th entry of matrices. We
make extensive use of vector derivatives. Here, we interchangeably use the denotation

[@tx] ·
•

@x

@t

‚
, with

•
@x

@t

‚

i j
˘

@xi

@t j
(5.1)

for the partial derivative and similarly for the total derivative. In the case of taking the
derivative of a scalar, brackets are avoided. However, the argument is treated as a 1 £ 1
matrix and hence the derivative has dimension (1,m), where m is the dimension of t.
When integrating locally defined quantities u(») : ›̂ ! Rn over the physical domain ›,
we avoid mentioning the push-forward with the mapping x : ›̂ ! › for convenience, i.e.,

Z

›

u – x¡1dS ˘
Z

›̂

u(»)det
£
@»x

⁄
d» ¡!

Z

›

u(x)dS, (5.2)

and assume that the reader is aware of the mathematical subtleties involved.
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5.3. PROBLEM FORMULATION
We are considering the shape optimization problem of a planar domain ›(fi) whose
contours @›(fi) are parameterized by the n-tuple of design variables fi ˘ (fi1, . . . ,fin). If
the design variables are taken from the design space ‚, the optimization problem reads:

J
¡
ufi,›fi,fi

¢
! min

fi

s.t. gi (ufi,›fi,fi) ‚ 0, 8i 2 {1, . . . , N 6˘}

h j (ufi,›fi,fi) ˘ 0, 8 j 2 {1, . . . , N˘}

fi 2 ‚,

(5.3)

where the gi and h j are problem-specific constraints. Here, J (¢, ¢, ¢) denotes the objective
function and ufi : › ! R some state variable whose physical meaning depends on the
application (temperature, pressure, etc). We regard ufi as a scalar quantity for conve-
nience. However, generalizations to vectorial quantities are straightforward. Note that
the dependencies of the variables contained in J (¢, ¢, ¢) are concatenated in descending
order, i.e., in general ufi ˘ ufi(›fi(fi),fi) and ›fi ˘ ›fi(fi). The state variable ufi follows
from a PDE-problem posed over ›fi and may contain additional dependencies on fi
(such as source terms), hence the dependency on the tuple (›fi,fi). Tackling (5.3) com-
putationally requires introducing a bijective geometry parameterization xfi : ›̂ ! ›fi,
where ›̂ denotes the parametric domain which is assumed to be static. Here, we restrict
ourselves to geometries that are topologically equivalent to ›̂ ˘ (0,1)2 for convenience.
However, the generalization to multipatch settings is straightforward. Let

U f ˘ {v 2 U j v ˘ f on @›fi
D } (5.4)

for some suitably-chosen vector space U and some @›fi
D µ @›fi on which Dirichlet data

is prescribed. Deriving the weak form of the PDE-problem governing ufi leads to

find ufi 2 U ufi
D s.t. B

¡
ufi,xfi,fi,`

¢
˘ 0, 8` 2 U 0, (5.5)

for some differential form B(¢, ¢, ¢, ¢). Here, ufi
D denotes the Dirichlet data as a function of

the design variables. By introducing the mapping xfi, the objective function takes the
form

J (ufi,›fi,fi) ! J
¡
ufi,xfi,fi

¢
· Jfi, (5.6)

where ufi satisfies (5.5). With the dependencies of ufi and xfi in mind, the gradient of
(5.6) reads:

dJfi

dfi
˘

@Jfi

@ufi

µ
@ufi

@xfi
dxfi

dfi
¯

@ufi

@fi

¶
¯

@Jfi

@xfi
dxfi

dfi
¯

@Jfi

@fi
. (5.7)

We see that (5.7) requires taking the derivative of xfi with respect to fi, while the state
variable ufi needs to be differentiable with respect to xfi. These two derivatives often
constitute the most challenging step in computing the gradient because differentiating
xfi or with respect to xfi can be nontrivial, depending on the parameterization technique
used. On the other hand, differentiation with respect to ufi is relatively straightforward
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because the implicit function theorem can be used on (5.5). Hence, if we take xfi as the
solution of a PDE problem, differentiation is simplified, allowing for a symbolic deriva-
tion of all terms involved in (5.7). To this end, we adopt the principles of Elliptic Grid
Generation, which will be the topic of the next section.

5.4. ELLIPTIC GRID GENERATION
Elliptic grid generation (EGG) is a PDE-based technique aimed at generating analysis-
suitable geometry parameterizations xfi : ›̂ ! ›fi given only a parametric description of
the boundary contours @›fi as a function of the state vector fi. Let the free topological
variables in ›̂ be given by the tuple » ˘ (»1,»2)T ˘ (»,·)T . Then, the equations of EGG
read [HAM20]:

A(xfi) : H(xfi
i ) ˘ 0 in ›̂, for i 2 {1,2} s.t. xfij@›̂ ˘ @›fi, (5.8)

where

H(u)i j ·
@2u

@»i @» j
and A(xfi) ˘

1
g11 ¯ g22 ¯†

µ
g22 ¡g12

¡g12 g11

¶
, (5.9)

with gi j ˘ xfi
»i

¢ xfi
» j

the entries of the metric tensor and † a small positive constant (typ-

ically, we take † ˘ 10¡4). Here, A : B denotes the Frobenius inner product between ma-
trices A and B . The solution of (5.8) is a mapping xfi whose inverse (xfi)¡1 constitutes a
pair of harmonic functions on ›fi. As (xfi)¡1 maps into a convex parametric domain ›̂,
it follows from the maximum principle that xfi is a bijection between ›̂ and ›fi, where
xfij@›̂ parameterizes @›fi [Rad26, Kne26]. This property justifies limiting the choice of
xfi from the set of bijective parameterizations to the subset of mappings that satisfy (5.8).
While many alternative approaches that do not require solving a PDE problem have been
proposed in the literature [NJ10, FŠJ15], we base a computational approach on (5.8)
since it facilitates differentiating xfi with respect to the design variables (see (5.7)).
For a viable computational approach, we derive the weak counterpart of (5.8). Here,
we adopt the approach from [HMV18]. Given a differential function xfi

D : @›̂ ! R2 that
parameterizes @›fi, the mapping xfi is the solution of:

find xfi 2 V xfi
D s.t. F (xfi,¾) ˘ 0, 8¾ 2 V 0, (5.10)

with

F (xfi,¾) ˘
2X

i˘1

Z

›̂
¾i A(xfi) : H(xfi

i )dS. (5.11)

In (5.10), we used

V f · {v 2 V 2 j v ˘ f on @›̂}, with V ˘ H 2(›̂) and f 2 V 2. (5.12)

The discretization of (5.10) follows straightforwardly from replacing V by the finite-dimensional
V fi

h ‰ V in (5.12). We denote the resulting set by V fi,f
h . As f 2 V fi

h £ V fi
h · V fi

h by assump-
tion, the discretization additionally requires replacing the Dirichlet data xfi

D by a proper
collocation xfi

D,h 2 V fi
h \V fi,0

h . As such, the fully discretized problem reads:

find xfi
h 2 V fi,xfi

D,h s.t. F (xfi
h ,¾h) ˘ 0, 8¾h 2 V fi,0

h . (5.13)
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Remark. Due to the appearance of second order derivatives in (5.13), we have to assume
that xfi

h is built from a space with global C 1(›̂)-continuity. For an approach that allows
for lower regularity (and is hence compatible with multipatch parameterizations), we
refer to [HMV19] (see Chapter 3).

Since (5.13) is a nonlinear root-finding problem, we tackle it with a Newton-based itera-
tive approach. Unlike xfi, its discretized counterpart xfi

h may fold due to the truncation
error introduced by the numerical scheme. Grid folding can be repaired by refining V fi

h
in the affected regions and recomputing xfi

h from the enriched space. This makes using
an unstructured spline technology like THB-splines particularly appealing, thanks to lo-
cal refinement. For more details on the choice of V fi

h and the algorithm that tackles the
nonlinear root-finding problem (5.13), we refer to [HAM20] (see Chapter 4).

5.5. COMPUTATIONAL APPROACH
In this section we propose a computational approach for numerically treating the opti-
mization problem (5.3).

5.5.1. DISCRETIZATION
We discretize the optimization problem (5.3) by approximating

J (ufi,xfi,fi) ’ J (ufi
h ,xfi

h ,fi) · Jfi
h , (5.14)

where ufi
h 2 U fi

h is the solution of the discretized weak state equation (5.5) while xfi
h 2 V fi

h
is the solution of (5.13) for given fi. Here, ›fi

h is parameterized by xfi
h and approximates

the domain ›fi whose contours are parameterized by the fi-differentiable xfi
D : @›̂ ! R2

which we consider a given function. The distance

D(@›fi
h ,@›fi) ·

°°°xfi
D,h ¡ xfi

D

°°°
L2(@›̂)

(5.15)

serves as a measure of the approximation quality.
Likewise, we approximate the gradient by replacing (ufi,xfi) ! (ufi

h ,xfi
h ) in (5.7), i.e.,

dJ
dfi

’
@Jfi

h

@ufi
h

ˆ
@ufi

h

@xfi
h

dxfi
h

dfi
¯

@ufi
h

@fi

!

¯
@Jfi

h

@xfi
h

dxfi
h

dfi
¯

@Jfi
h

@fi
. (5.16)

At this point, it should be noted that for given fi, the exact evaluations of J (¢, ¢, ¢) and the
components of its gradient are independent of the particular choice of the coordinate
system xfi. As such, the quality of the approximations introduced in (5.14) and (5.16) de-
pend solely on the numerical accuracy of ufi

h , which in turn is affected by the parametric
quality of xfi

h and the distance of @›fi
h to the exact @›fi.

We numerically treat (5.3) based on a variable basis approach (VBA) rather than a static
basis approach (SBA). In SBA, ufi

h and xfi
h are constructed from the static tuple (Uh ,V h),

while in VBA the tuple (U fi
h ,V fi

h ) may be chosen differently during each iteration and is
tuned to the current needs. We make a choice based on the following principles:

A.
°°°xfi

D,h ¡ xfi
D

°°°, with xfi
D,h 2 V fi

h \V fi,0
h is sufficiently small;
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B. xfi
h 2 V fi

h , resulting from xfi
D,h in combination with (5.13), is a bijection and prefer-

ably of high numerical quality;

C. ufi
h 2 U fi

h approximates ufi well.

As such, for given fi, we select the tuple (U fi
h ,V fi

h ) such that points A to C are satisfied
with a minimal number of degrees of freedom (DOFs).
In SBA, a necessary condition for local optimality follows straightforwardly from the dis-
cretized counterpart of (5.3) over the static tuple (Uh ,V h). In contrast, VBA necessitates
basing such a condition on (5.3) before discretization. Hence, numerical assessment of
local optimality in (5.3) is obligatory, due to the approximate nature of Jfi

h and its gradi-
ent. This may be regarded as a drawback since it can generate false positives / negatives
caused by the truncation error at the current iterate. On the other hand, VBA allows for
fi-specific feature-based basis selection for approximating both xfi and ufi, leading to a
highly flexible scheme. When performing shape optimization in combination with EGG,
a static V h may be inappropriate for particular choices of fi which results in grid-folding
(impeding the evaluation of Jfi

h ), hence justifying VBA-enabled feature-based basis se-
lection in applications which are geometrically complex.

Remark. If we regard the truncation error ¿(fi) in ufi ˘ ufi
h ¯ ¿(fi) as a random variable

drawn from some probability distribution, above methodology possesses many proper-
ties reminiscent of stochastic gradient descent [Bot10]. As such, the convergence tol-
erance should be designed with the expected magnitude of ¿(fi) (and its contribution
to the gradient) in mind and hence taken generously. Here, we regard this as a minor
shortcoming since we consider complex and highly nonconvex, nonlinear optimization
problems in which the model error as well as the notorieties associated with nonconvex
optimization (such as the danger of getting stuck in local minima) pose a greater threat
to solution quality than the truncation error in practice. Furthermore, in most practi-
cal applications, a particular state vector need not be optimal in order to be considered
adequate.

5.5.2. GRADIENT-BASED OPTIMIZATION USING AN ADJOINT FORMULATION
In the following, we present a scheme that is suitable for gradient-based optimization,
where all terms involved are assembled from expressions that have been derived fully
symbolically. For given fi, we assume that a suitable tuple (U fi

h ,V fi
h ) has been chosen

based on principles A to C (see section 5.5.1). Particular methodologies for satisfying
these principles depend on the application and are discussed in Section 5.6. In the fol-
lowing, the operator [¢] returns the canonical basis of a vector space, which we assume
to be clear from context. Reminiscent of (5.12), we introduce

V fi,f
h · {v 2 V fi

h j v ˘ f on @›̂} and U fi, f
h · {v 2 U fi

h j v ˘ f on @›̂D }, (5.17)

where, as before, f 2 V fi
h and f 2 U fi

h by assumption. In (5.17), @›̂D µ @›̂ refers to the
preimage of @›fi

D,h µ @›fi
h under the mapping xfi

h . As opposed to (5.4), here U fi
h is de-

fined in the static parametric domain for convenience. Equation (5.17) allows for the
decomposition into boundary (B) and inner (I ) bases:

£
V fi

h
⁄

˘
h
V fi,B

h

i
[

h
V fi,I

h

i
, with V fi,I

h ˘ V fi,0
h and V fi,B

h ˘ V fi
h \V fi,I

h , (5.18)
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and similarly for U fi
h . Given xfi

D,h 2 V fi,B
h (see Section 5.5.1), we introduce the mapping

xfi
h ˘ xfi

0 ¯ xfi
D,h , with xfi

0 ˘
X

¾i 2
h
V fi,I

h

i
cI

i ¾i and xfi
D,h ˘

X

¾ j 2
h
V fi,B

h

i
cB

j ¾ j , (5.19)

where the cB
j are known. We introduce the vector of weights cA (where the subscript A

stands for all), which is the concatenation of the vectors cI and cB(fi), containing the
cI

i and cB
j , respectively. Similarly, we introduce

ufi
h ˘

X

`i 2
h
U fi

h

i
di `i with the corresponding vector of weights (dA )i ˘ di . (5.20)

With the introduction of the tuple (cA ,dA ), the discrete objective function is rewritten
in the form

Jfi
h (xfi

h ,ufi
h ,fi) ¡! Jfi

h (cA ,dA ,fi) , (5.21)

with

cA ˘ cA (cI ,cB), cI ˘ cI (cB), cB ˘ cB(fi) and dA ˘ dA (cA ,fi). (5.22)

With above concatenated dependencies in mind, the transposed gradient approxima-
tion reads:

dJfi
h

dfi

T

˘
•

dcA

dfi

‚T
ˆ•

@dA

@cA

‚T @Jfi
h

@dA

T

¯
@Jfi

h

@cA

T !

¯
•

ddA

dfi

‚T @Jfi
h

@dA

T

¯
@Jfi

h

@fi

T

, (5.23)

where we denoted matrix quantities in square brackets.
Introducing the discrete EGG residual vector Ffi

h with

¡
Ffi

h
¢

i ˘ F (xfi
h ,¾i ), for ¾i 2

h
V fi,I

h

i
and F (¢, ¢) as defined in (5.11), (5.24)

we use the implicit function theorem [KP12] to derive an expression for the gradient of
cA . We have:

•
dcA

dfi

‚T
˘

"•
dcI

dfi

‚T
,
•

@cB

@fi

‚T
#

, with
•

dcI

dfi

‚
˘ ¡

• @Ffi
h

@cI

‚¡1 • @Ffi
h

@cB

‚•
@cB

@fi

‚
. (5.25)

Similarly, we define the residual vector Bfi
h of the discretized weak state equation (see

(5.5)), with entries
¡
Bfi

h
¢

i ˘ B
¡
ufi

h ,xfi
h ,fi,`i

¢
, for `i 2

h
U fi,I

h

i
. (5.26)

The implicit function theorem yields

•
@dA

@cA

‚
˘ ¡

• @Bfi
h

@dA

‚¡1 •@Bfi
h

@cA

‚
and

•
ddA

dfi

‚
˘ ¡

• @Bfi
h

@dA

‚¡1 •@Bfi
h

@fi

‚
. (5.27)
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Substituting in (5.23) leads to

dJfi
h

dfi

T

˘
•

dcA

dfi

‚T
b ¡

•@Bfi
h

@fi

‚T

a ¯
@Jfi

h

@fi

T

, (5.28)

with

a ˘
• @Bfi

h

@dA

‚¡T @Jfi
h

@dA

T

and b ˘ ¡
•@Bfi

h

@cA

‚T

a ¯
@Jfi

h

@cA

T

. (5.29)

Vector a is computed by solving the following linear system:

• @Bfi
h

@dA

‚T

a ˘
@Jfi

h

@dA

T

. (5.30)

Vector b then follows from substituting a in (5.29). Furthermore, we have

•
dcA

dfi

‚T
b ˘

"•
dcI

dfi

‚T
,
•

@cB

@fi

‚T
#"

bI

bB

#

˘
•

@cB

@fi

‚T
q, (5.31)

where

q ˘ ¡
• @Ffi

h

@cB

‚T

e ¯ bB with e ˘
• @Ffi

h

@cI

‚¡T

bI . (5.32)

We compute the matrix-vector product

e ˘
• @Ffi

h

@cI

‚¡T

bI from the solution of
• @Ffi

h

@cI

‚T

e ˘ bI . (5.33)

Finally, it should be noted that the matrix [@ficB] in (5.31) depends on the collocation
operator

…fi : V \V 0 ! V fi,B
h , with …fi(xfi

D ) ˘ xfi
D,h (5.34)

and typically involves a sparse matrix - matrix inverse product. Upon transposing, the
order of multiplication is reversed and the transposed inverse moves to the front. There-
fore, we can treat matrix-vector products of the form [@ficB]T k by inverting a sparse
linear system and subsequent multiplication by a sparse matrix. We will present tan-
giable examples of this step in Section 5.6.
In the following, we recapitulate all the necessary steps for computing the tuple

¡
Jfi

h ,dfi Jfi
h

¢

for given fi.

S.1: Choose an appropriate spline space tuple (U fi
h ,V fi

h ).

S.2: Compute xfi
D,h from xfi

D using …fi.

S.3: Solve the nonlinear root-finding problem Ffi
h (cI ) ˘ 0, yielding the analysis-suitable

mapping xfi
h .
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S.4: Solve the root-finding problem Bfi
h ˘ 0 using a suitable numerical algorithm. This

yields the state variable ufi
h .

S.5: Substitute (xfi
h ,ufi

h ,fi) in J (¢, ¢, ¢) to compute Jfi
h .

S.6: Compute a ! b ! e ! q and finally dfi Jfi
h using (5.28) to (5.33).

Due to the approximate nature of the tuple (ufi
h ,xfi

h ), we allow for a small amount of slack
in the assessment of numerical feasibility, i.e., we replace

gi (ufi,xfi,fi) ‚ 0 ¡! gi (ufi
h ,xfi

h ,fi) ‚ „ 8i 2 {1, . . . , N 6˘}

h j (ufi,xfi,fi) ˘ 0 ¡! ¡„ • h j (ufi
h ,xfi

h ,fi) • „ 8 j 2 {1, . . . , N˘},
(5.35)

with „ ¨ 0 in (5.3). The procedure that carries out S.1 to S.6, along with the relaxed
constraints, is passed to a gradient-based optimization routine (such as IPOPT).

5.5.3. GRADIENT ASSEMBLY COSTS
In the following, we analyse the computational costs of assembling the gradient. The
majority of the costs result from assembling sparse matrices, as well as solving sparse
linear systems, such as in (5.30). In order to compute xfi

h , we simultaneously assemble
the quantities

Ffi
h (ci

I ) and

"
@Ffi

h

@ci
I

#

(5.36)

during a joint element loop at the beginning of the i -th Newton iteration (see Section
5.4). As such, this routine automatically yields the matrix

£
@cI Ffi

h

⁄
at the last step. In

the following, we assume that @›fi
D ˘ ; for convenience, i.e., ufi

h is free of Dirichlet
data or the data is enforced with Nitsche’s method [HH02]. If Bfi

h is linear, assembling£
@dA Bfi

h

⁄
is a precursor to computing ufi

h and hence available. If Bfi
h is nonlinear, we rec-

ommend basing an iterative algorithm on Newton’s method and computing the residual
and its derivative in tandem, as in (5.36). As such, additional cost factors are assembling£
@cA Bfi

h

⁄
and solving a number of sparse linear equations. Due to the nonlinear nature

of Ffi
h , the cost of computing dfi Jfi

h is of the same order as a discrete evaluation of J (¢, ¢, ¢)
(regardless of the length of fi).
Finally, we note that the discrete constraint gradients associated with the gi and h j are
efficiently computed by replacing Jfi

h by the corresponding term in (5.23) and repeating
steps (5.28) to (5.33). Hereby the required matrices can be reused from the assembly of
the gradient.

5.5.4. MEMORY-SAVING STRATEGIES IN LARGE-SCALE APPLICATIONS
In light of enabling large-scale optimization as well as the prospect of extending the
presented methodology to volumetric applications, in the following, we discuss ways
to avoid the memory-consuming assembly of the matrices involved in computing ufi

h ,
xfi

h and Jfi
h and their derivatives.

Memory-saving strategies are based on the observation that matrices only appear in the
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form of matrix-vector products during the assembly of dfi Jfi
h . Let B ˘ B(. . . ,q, . . .). Then,

we have
•

@B(. . . ,q, . . .)
@q

‚
a ’

B(. . . ,q ¯†a, . . .) ¡ B(. . . ,q, . . .)
†

, (5.37)

for † ¨ 0 small. As such, in steps (5.28) to (5.33), matrix-vector products can be approx-
imated using (5.37). Since Krylov-subspace (KS) methods such as GMRES [SS86] only
require matrix-vector products, we combine a KS-method with (5.37) for solving linear
systems as they appear in, e.g., equation (5.30). Reminiscent of Newton-Krylov [KK04],
this principle may be extended to the computation of ufi

h and xfi
h , hence completely by-

passing matrix assembly in steps S.1 to S.6. Hereby, we regard the cumulative error con-
tribution to dfi Jfi

h ’ dfi Jfi as negligible compared to other sources (such as the model
error and the truncation resulting from the numerical scheme). The optimal choice of †
is discussed in [KK04].

5.6. EXAMPLES
In this section we apply the methodology from Section 5.5.1 to selected test cases. We
consider the first example a validation test case, in which the exact minimizer can be
computed exactly (up to machine precision). Hereby, we compare the results of VBA (see
Section 5.5) to the exact minimum. Furthermore, we compare the VBA results to those
resulting from taking the tuple (U fi

h ,V fi
h ) static (SBA). In the second case, we consider

the design of a cooling element, whereby the plausibility of the outcome can only be
assessed using physical reasoning.
Both examples have been carefully selected in order to be geometrically challenging.
We implemented the scheme from Section 5.5 in the open-source Python library Nutils
[vZvZV¯19].

5.6.1. A VALIDATION EXAMPLE WITH KNOWN EXACT SOLUTION
We are considering the example of a domain fenced-off by four parametric curves that
are given by an envelope function multiplied by a cosine, whereby the amplitude of the
cosine is a degree of freedom in fi ˘ (fi1,fi2,fi3,fi4). We define the function

d(s) ˘
µ

g (s) ¡ g (0)
g (0.5) ¡ g (0)

¶

| {z }
envelope function

µ
1 ¡ cos(!…s)

2

¶

| {z }
trigonometric component

, where g (s) ˘ exp

ˆ

¡

¡
s ¡ 1

2
¢2

2¾2

!

, (5.38)

with (!,¾) ˘ (6,0.2). Note that d(0) ˘ d(1) ˘ 0 and d(0.5) ˘ 1, d(s) and the envelope func-
tion are depicted in Figure 5.1. Let @›̂ ˘ °̄S [°̄E [°̄N [°̄W , where the °fl, fl 2 {S,E , N ,W }
denote the southern, eastern, northern, and western boundary of @›̂, respectively. The
contour parameterization xfi

D : @›̂ ! @›fi reads:

xfi
D (») ˘

8
>>><

>>>:

(»1,fi1d(»1))T » 2 °̄S
(1 ¡fi2d(»2),»2)T » 2 °̄E
(»1,1 ¡fi3d(»1))T » 2 °̄N
(fi4d(»2),»2)T » 2 °̄W

, (5.39)
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Figure 5.1: Plot of d(s) (see (5.38)) and the corresponding envelope function over the interval s 2 [0,1].

while

‚ ˘ {fi 2 R4 j 0 • fi • 2
5 1}, (5.40)

where 1 is a vector of ones.
Here, we base …fi : V 2 \V 0 ! V fi,B

h (see Section 5.5) on an L2(@›̂) projection. For given
V fi,B

h , we hence have
•

@cB

@fi

‚T
˘ ¡

•
@Dfi

@fi

‚T •
@Dfi

@cB

‚¡T
, where Dfi

i ˘
Z

@›̂

¾B
i ¢

‡
xfi

D ¡ xfi
D,h(cB)

·
d° (5.41)

and ¾B
i 2

h
V fi,B

h

i
. In (5.41), we take matrix-vector products in the same way as in Section

5.5. We base our state variable residual on the following PDE problem:

¡¢xfi ufi ˘ ¡¢xfi f fi in ›̂, s.t. ufiflfl
@›̂ ˘ f fi, where f fi ˘ det

•
@xfi

@»

‚
(5.42)

and ¢xfi denotes the Laplace-Beltrami operator corresponding to xfi. Clearly, the exact
solution of (5.42) satisfies ufi ˘ f fi. We derive the weak form of (5.42) and implement the
boundary conditions using Nitsche’s method. This leads to

¡
Bfi

h
¢

i ˘
¡
r(ufi

h ¡ f fi),r`i
¢
›fi

h
¡

Z

@›fi
h

`i
@ufi

h

@n
d°¡

Z

@›fi
h

(ufi
h ¡ f fi)

@`i

@n
d°¯·i

Z

@›fi
h

(ufi
h ¡ f fi)`i d°,

(5.43)

with `i 2
£
U fi

h

⁄
. Here, @/@n denotes the outward normal derivative with respect to ›fi

h
and ·i À 1 is a penalty parameter. We use

·i ˘
‰

cI ¡1
i Ii ¨ 0

0 else , where Ii ˘
Z

@›fi
h

`i d° and c ˘ 103. (5.44)
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The objective function reads:

Jfi ˘
Z

›̂

ufidS ¯
1
2

kfik2 )̆ Jfi
h ˘

Z

›̂

ufi
h dS ¯

1
2

kfik2 (5.45)

and there are no further constraints. Since ufi ˘ @»xfi, we have
Z

›̂

ufidS ˘ Area(›fi) ˘ 1 ¡
X

i
fii A, where A ˘

Z

[0,1]

d(s)ds. (5.46)

We compute the exact value of A up to machine precision, which yields A ’ 0.2374. The
exact minimum over fi 2 ‚ is assumed at fi⁄ ˘ A1 and yields Jfi⁄ ’ 0.8873. The contours
of the resulting domain ›fi⁄ are depicted in Figure 5.2.

Figure 5.2: The contours of the domain ›fi⁄ that correspond to the exact minimizer fi⁄.

For increasingly fine (U fi
h ,V fi

h ), the minimum of the discretized optimization problem
should converge to the exact minimum, allowing us to test the consistency of the scheme.
In the following, we discuss how to choose the tuple (U fi

h ,V fi
h ) during each iteration. We

start by dividing ›̂ into a structured set of elements, resulting from the bivariate knot
vector ¥ p1,p2 ˘ ¥p1 £H p2 , where the pi denote the polynomial degree. Here, we restrict
ourselves to bicubic bases, i.e., p1 ˘ p2 ˘ 3, with maximum regularity. With points A to C
(see Section 5.5) in mind, we repeatedly refine the

`i 2
h
V fi,B

h

i
, where, as before, V fi

h £V fi
h ˘ V fi

h ,

until the Dirichlet data is approximated sufficiently well.
Here, V fi

h is initialized to the coarse-grid basis resulting from ¥ p1,p2 . Let the i -th contri-
bution to the projection residual be denoted by ri (xfi

D,h), where

R(xfi
D,h)2 ˘

1
2

Z

@›̂

°°°xfi
D ¡ xfi

D,h

°°°
2

d° ˘
1
2

X

i

Z

@›̂

`i

°°°xfi
D ¡ xfi

D,h

°°°
2

d° ·
1
2

X

i
r 2

i (xfi
D,h). (5.47)
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Here, we made use of the fact that the `i form a partition of unity on @›̂.
We refine `i 2 V fi,B

h whenever ri (xfi
D,h) exceeds a threshold „i . The threshold is of the

form

„i ˘
„

q°°`i
°°

L2(@›̂)

, (5.48)

where „ is a small positive constant that tunes the accuracy of xfi
D,h .

As a next step, we compute xfi
h using the methodology from Section 5.4. As the choice of

V fi
h , at this point, is solely based on accurately resolving the boundary contours, it may

be too optimistic (in terms of the number of inner DOFs) for computing a folding-free
mapping. In the case of folding, we apply a posteriori refinement to defective elements,
i.e., elements E ‰ ›̂ on which

det
•@xfi

h

@»

‚
(p) ˙ 0

for some p 2 E , by refining all `i 2
£
V fi

h

⁄
that are non-vanishing on E . The defective

mapping is prolonged to the refined space and serves as an initial guess for recomputing
it from the enriched space. This step may be repeated until V fi

h is such that xfi
h 2 V fi

h
is folding-free. Note that, although the proposed methodology is robust in practice, it
may lead to over-refinement. The methodology may be combined with the refinement
strategies proposed in [HAM20] (see Chapter 4), which avoid over-refinement.

Remark. Here, we base the selection of V fi
h on a posteriori strategies, which necessitates

recomputing xfi
h after each refinement. Choosing the coarse-grid basis properly (i.e., not

too coarse), we typically did not encounter more than 1 ¡ 2 a posteriori refinements in
the cases considered in this work. Fortunately, the defective mappings can be used as an
initial guess for the recomputed one, significantly reducing computational costs.
Reliable a priori refinement strategies are however desirable and constitute a topic for
future research.

After achieving bijectivity, additional refinement can be performed in order to further
improve the quality of the mapping. A posteriori strategies that rely on the Winslow
functional [CI97] are discussed in [HAM20].
Upon completion, we are in the possession of an analysis-suitable xfi

h : ›̂ ! ›fi
h from the

appropriately refined V fi
h . As a next step, we choose a suitable space U fi

h . Heuristically,
there exists a strong correlation between the regions in which V fi

h has been refined in
order to yield an analysis-suitable xfi

h and the regions that ought to be refined in order
to accurately approximate ufi. As such, we initialize U fi

h to the current choice of V fi
h . In

this chapter, we always base U fi
h on V fi

h or a (possibly repeated) uniform h-refinement
thereof. However, for more flexibility, we briefly recapitulate possible feature-based re-
finement strategies.
In all cases, plausible a priori (aPr) strategies refine elements that are too large (on ›fi

h ),
while a posterori (aPos) strategies depend on the underlying PDE problem. In the case
of (5.42), aPos refinement can be based on the strong residual norm

mSR ˘
Z

›fi
h

¡
¢ufi

h ¡¢ f fi(xfi
h )

¢2 dS ¯F (ufi
h j@›̂), (5.49)
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where F (¢) : U fi,B
h ! R¯ is a suitably-chosen penalty term that gauges how well the

boundary condition is resolved by Nitsche’s method. Note that (5.49) requires that the
entries of xfi

h are elements from C 2(›̂), which is satisfied if we utilize bicubics with max-
imum regularity. Equation (5.49) may then be decomposed into the basis function wise
contributions (as in (5.47)) or serve as a cost function for dual weighted residual (DWR)
based aPos refinement [Ran04].
Alternatively, the weak residual norm mWR, with

mWR ˘
X

i
c2

WR,i and cWR,i ˘ B(ufi
h ,xfi

h ,fi,ˆi ) (5.50)

may be utilized. Here, the ˆi are taken from a space Ū ¾ U fi
h that results from uniformly

refining U fi
h in p or h. For more details, we refer to [GENN12].

Upon completion of an adequate state variable approximation ufi
h , we are in the position

to assemble the tuple
¡

Jfi
h ,dfi Jfi

h

¢
utilizing the principles from Section 5.5. All the required

steps are summarized in Figure 5.3.

Compute xfi
D,h

(fi,xfi
D )

xfi
D,h adequate ? Refine V fi,B

h

Compute xfi
h xfi

h adequate ? aPos refine V fi
h

U fi
h ˆ V fi

haPr refine U fi
h

Compute ufi
h ufi

h adequate ? aPos refine U fi
h

Assemble
¡

Jfi
h ,dfi Jfi

h

¢
Return

no

yes

no

yes

no

yes

Figure 5.3: Block diagram summarizing all the steps required for computing the tuple
‡

Jfi
h ,dfi Jfi

h

·
.

In the following, we present the results of a computational approach for various values of
„ (see equation (5.48)) and uref, where uref refers to the number of aPr h-refinements of
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U fi
h with respect to V fi

h . For this, the procedure that corresponds to Figure 5.3 has been
passed to a SLSQP [Kra88] routine. In all cases, we use the initial guess fi0 ˘ 0.

„
uref 0 1 2

10¡2 8.2 £ 10¡3 4.6 £ 10¡4 7.7 £ 10¡6

10¡4 3.7 £ 10¡3 1.6 £ 10¡4 5.5 £ 10¡6

10¡6 2.7 £ 10¡4 1.3 £ 10¡5 5.2 £ 10¡7

(a) Table showing jmin Jfi
h ¡ min Jfij.

„
uref 0 1 2

10¡2 4 2 3
10¡4 4 3 3
10¡6 2 3 3

(b) #iterations required until
convergence.

Table 5.1: Tables showing jmin Jfi
h ¡ min Jfij (a) and the required number of iterations until convergence is

reached (b) for various combinations of („,uref).

„
uref 0 1 2

10¡2 483.5 389 452
10¡4 735.5 676 676
10¡6 1145 1460 1460

(a) Average #DOFs for xfi
h .

„
uref 0 1 2

10¡2 241.75 625 2641
10¡4 367.75 1169 4337
10¡6 572.5 2737 10609

(b) Average #DOFs for ufi
h .

Table 5.2: Tables showing the average of the number of DOFs involved in computing xfi
h (a) and ufi

h (b) (over
all iterations) for various combinations of („,uref).

Table 5.1 shows the discrepancy between the exact objective function minimum and its
numerical approximation jmin Jfi

h ¡ min Jfij (a) and the required number of iterations
until convergence is reached (b), for all possible combinations of „ ˘ (10¡2,10¡4,10¡6)
and uref ˘ (0,1,2). In all cases, we initialized

£
V fi

h

⁄
to a bicubic B-spline basis with 7

elements per coordinate direction and maximum regularity. Finally, Tables 5.3 and 5.4

ne

uref 0 1 2

12 8.4 £ 10¡3 5.4 £ 10¡4 6.5 £ 10¡6

16 7.2 £ 10¡3 4.1 £ 10¡4 1.1 £ 10¡5

23 4.7 £ 10¡3 2.4 £ 10¡4 8.3 £ 10¡6

(a) Table showing jmin Jfi
h ¡ min Jfij.

ne

uref 0 1 2

12 4 3 2
16 4 3 2
23 4 3 2

(b) #iterations required until
convergence.

Table 5.3: Tables showing jmin Jfi
h ¡ min Jfij (a) and the required number of iterations until convergence is

reached (b) in the SBA case for various combinations of (ne ,uref).

show the corresponding results from a static basis approach. Hereby, ne denotes the
number of elements we used per coordinate direction. Their values have been carefully
selected to yield roughly the same number of DOFs associated with both xfi

h and ufi
h as
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the average number of DOFs in the VBA-results.
Table 5.1 (a) clearly demonstrates the consistency of the scheme, whereby discrepancies
as low as » 0.5 £ 10¡6 are achieved. Comparing the VBA to the SBA results, tables 5.1
(a) and 5.3 (a) demonstrate that VBA outperforms SBA in terms of accuracy, where an
up to » 10-fold error reduction of VBA over SBA can be observed. The total number of
iterations required until convergence is achieved is comparable for VBA and SBA and
never exceeds the number of four iterations.

ne

uref 0 1 2

12 450 450 450
16 722 722 722
23 1352 1352 1352

(a) #DOFs for xfi
h .

ne

uref 0 1 2

12 225 729 2601
16 361 1225 4489
23 676 2401 9025

(b) #DOFs for ufi
h .

Table 5.4: Tables showing the number of DOFs involved in computing xfi
h (a) and ufi

h (b) in the SBA case for
various combinations of (ne ,uref).

5.6.2. DESIGNING A COOLING ELEMENT
We are considering the design of a cooling element of dimension ¢x ˘ 2 and ¢y ˘ 1.
In this example, there are four active coolers whose positions can slide in the direc-
tion tangential to @›fi and to a lesser extend in the normal direction (see Figure 5.4).
Further degrees of freedom are their radii Ri . Hence, the state vector is given by fi ˘
(x1,x2,x3,x4,R1,R2,R3,R4), which is comprised of 12 DOFs. The surface cooling rate for
the i -th active cooler Ci reads:

hi
¡(x) ˘

1
20

R3
i

kx ¡ xi k2

¡
ufi

h (x) ¡ T1
¢

, (5.51)

where T1 ˘ 0 denotes the ambient temperature. A heat source delivers a constant heat
influx given by

Ntot ˘ NW
in ¯ N int

in , (5.52)

where NW
in denotes the influx at the western boundary, while N int

in denotes the influx de-
livered directly to the cooling element through an additional source term which satisfies

N int
in ˘

Z

›fi

A exp
µ
¡

kx ¡ x0k2

2¾2

¶
dS, (5.53)

where A ˘ Ntot
4…¾2 , x0 ˘ (1.5,0.25)T and ¾ ˘ 0.1. Note that changing the domain of integra-

tion from ›fi to R2 in (5.53) yields a value of N int
in ˘ Ntot/2. As Ntot is a constant quantity,

we necessarily have NW
in ˘ Ntot ¡ N int

in . The surface heat flux density hW : ¡fi
W ! R at the
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Figure 5.4: The cooling element design template. Here, the centers of the active coolers are depicted by small
black dots. Their positions constitute degrees of freedom in the design space, as well as their radii.

western boundary ¡fi
W ‰ @›fi is of the form hW (y) ˘ FW (›fi)sin(…y). Therefore, we have

NW
in ˘ Ntot ¡ N int

in ˘
Z

¡fi
W

FW sin(…y)d°. (5.54)

Hence

FW (›fi) ˘
Ntot…

2

0

@1 ¡
Z

›fi

1
4…¾2 exp

µ
¡

kx ¡ x0k2

2¾2

¶
dS

1

A . (5.55)

The relationship between ufi and the (uniform) temperature of the heat source T fi reads:

Ntot ˘ A1(›fi)
Z

¡fi
W

(T fi ¡ ufi)sin(…y)d°¯ A2(›fi)
Z

›fi

(T fi ¡ ufi)exp
µ
¡

kx ¡ x0k2

2¾2

¶
dS, (5.56)

where

A1(›fi) ˘
…
2

µ
1 ¡

W (›fi)
4…¾2

¶
and A2(›fi) ˘

W (›fi)
8…2¾4 , (5.57)

with

W (›fi) ˘
Z

›fi

exp
µ
¡

kx ¡ x0k2

2¾2

¶
dS. (5.58)

Inverting (5.56) gives:

T fi(ufi,›fi) ˘
Ntot ¯ A1(›fi)

R
¡fi

W
ufi sin(…y)d°¯ A2(›fi)

R
›fi ufi exp

‡
¡ kx¡x0k2

2¾2

·
dS

2
… A1(›fi) ¯W (›fi)A2(›fi)

.

(5.59)
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Remark. The rationale behind A1(›fi) and A2(›fi) in (5.59) can be understood as fol-
lows: given Ntot ˘ 1, suppose the cooling element width were to be contracted to ¢x ! 0.
We have lim¢x!0 W (›fi) ˘ 0. In the limit, the temperature of the heat source should be
fully determined by the first term on the right hand side of (5.56), which is the case be-
cause lim¢x!0(A1, A2) ˘ ( …

2 ,0). As such, a constant influx of 1 ˘ Ntot ˘ NW
in means

T fi ¡ ufij¡fi
W

˘ 1.

Conversely, suppose ›fi were to be replaced by R2. Then, the dependency is divided
equally among both terms since for

W (›fi ˘ R2) ˘ 2…¾2, we have (A1, A2) ˘
µ

…
4

,
1

4…¾2

¶
.

So, for T fi ¡ ufi ˘ 1, both terms contribute the same factor of 1
2 to the right hand side of

(5.56).

The weak state equation is based on the following PDE-problem:

¡d¢ufi ˘ ¡ f ufi ¯ A exp
µ
¡

kx ¡ x0k2

2¾2

¶
in ›fi

s.t. d
@ufi

@n

flflflfl
@›fi

˘
‰

¡hcooling ¯ FW sin(…y) x 2 ¡̄fi
W

¡hcooling x 2 @›fi \ ¡̄fi
W

, (5.60)

where

hcooling ˘
4X

i˘1
hi

¡ and f ˘ 10¡3 denotes the internal dissipation rate. (5.61)

The i -th entry of the discretized weak state equation residual reads:

¡
Bfi

h
¢

i ˘ d
¡
rufi

h ,r`i
¢
›fi

h
¯

Z

›fi
h

f ufi`i dS

¯
Z

›fi
h

A exp
µ
¡

kx ¡ x0k2

2¾2

¶‡…
2

`i ¡`i

·
dS ¯

4X

j ˘1

Z

@›fi
h

`i h j
¡d°¡

…
2

Ntot`i , (5.62)

with A as in (5.53), d ˘ 0.8,

`i ˘
Z

¡fi
W

`i sin(…y)d° and `i 2
£
U fi

h
⁄

. (5.63)

We are minimizing the manufacturing costs of the cooling element such that the heat
source temperature does not exceed the value of Tmax ˘ 80. The problem reads:

J
¡
ufi,›fi,fi

¢
! min

fi

s.t. Tmax ¡ T fi ‚ 0

fi 2 ‚,

(5.64)
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where

J
¡
ufi,›fi,fi

¢
˘

Z

›fi

1dS ¯
4X

i˘1
CCER2

i , with CCE ˘
100
…

. (5.65)

Furthermore, the feasible design space ‚ is the space of all fi such that the active coolers
do not overlap and the genus of ›fi does not change (allowing for shape optimization
without topology changes). This leads to a total of 30 (partly nonlinear) inequalities.
A major challenge is deciding where to place the active coolers and what radii to use.
Increasing the radius means additional cooling but also additional manufacturing costs
and decreased cooling element area, decreasing the heat capacity and the channel heat
conductivity. Furthermore, placing a cooler close to the internal heat source (see (5.53))
reduces the amount of internal influx, increasing the influx amplitude FW (see (5.54)) at
¡fi

W for compensation.
We are considering the case Ntot ˘ 10 and follow the same approach as in Section 5.6.1
with „ ˘ 0.5 £ 10¡3 and uref ˘ 1. Since xfi is a continuous function of the input state
vector, we improve the efficiency by storing the tuples (fii ,ci

A ,V fi,i
h ) (see Section 5.5)

after each iteration. Whenever some fii with kfi ¡ fii k ˙ † is found in the database, the
corresponding mapping xfi,i

h 2 V fi,i
h is prolonged to the coarsest element segmentation of

›̂ that is compatible with both V fi,i
h and the current V fi

h . Upon completion, it is restricted

to V fi
h , which yields the vector cR

A ˘
¡
cR

B ,cR
I

¢T . The weights corresponding to the inner
DOFs, cR

I , are extracted and then used as an initial guess for the root-finding problem
(5.13). We have noticed this to lead to a tremendous speedup, in particular during the
last iterations, in which fi varies only slightly. Hereby, the required number of iterations
is reduced from typically four to as few as one.

Remark. This principle may be extended to higher than zeroth-order database interpo-
lation.

Here, we use † ˘ 0.05. A feasible initial guess is created by picking one of the coolers
and increasing its radius until T fi ˙ Tmax. The initial design is depicted in Figure 5.5. As
in section 5.6.1, the routine that computes Jfi

h , dfi Jfi
h and the constraints is passed to an

SLSQP optimizer.
Figures 5.6 (a) to 5.6 (d) show the cooling element after 4, 7, 10 and 13 iterations. Con-
vergence is reached after 15 iterations and the corresponding design is depicted in Fig-
ure 5.7. The final design reduces the manufacturing costs from the initial Jfi

h ˘ 10.66 to
Jfi

h ˘ 6.29.
A striking difference between the initial and all intermediate designs is the improved
heat conductivity within the channel, leading to a more homogeneous temperature (and
one that is higher on average). This is not surprising. As the cooling efficiency is linear in
the difference between the temperature at the boundaries and the ambient temperature
T1 ˘ 0, a higher average temperature implies higher average cooling efficiency.
The final design places a modestly-sized cooler C1 at the center of the southern bound-
ary and a similarly-sized cooler C2 at the western part of the northern boundary. To its
right, a slightly larger cooler C3 is placed while a small cooler C4 is placed at eastern
boundary close to y ˘ 0.4.
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Figure 5.5: The initial guess passed to the minimization routine.

(a) (b)

(c) (d)

Figure 5.6: The cooling element after 4 (a), 7 (b), 10 (c) and 13 (d) iterations.

Compared to the initial design, one big cooler has been replaced by several modestly-
sized ones, improving the channel heat conductivity and by that the cooling cost effi-
ciency. The slightly larger size of C3 compared to C2 can be explained by the internal
heat source centered at x0 ˘ (1.5,0.25)T . The small radius of C4 may be explained by
the fact that increasing its size reduces the amount of internal influx area, leading to a
larger influx at ¡fi

W instead. As such, we regard the final design as plausible, adding more
credibility to the proposed numerical scheme.
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Figure 5.7: The final cooling element design after 15 iterations.

5.7. CHAPTER CONCLUSIONS
In this chapter, we proposed an IGA-based shape optimization algorithm in which the
parameterization is included in the problem formulation in the form of an additional
PDE-constraint. This has enabled us to derive a fully symbolical expression for the gra-
dient of the objective function, allowing for gradient-based optimization. The discretiza-
tion of the equations has been accomplished with the so-called variable basis approach
(VBA) in which a new THB-spline basis is chosen during each iteration based on the
current requirements, such as accurately resolving the geometry contours and particu-
lar features of the state equation solution. This leads to a highly flexible scheme in which
folding due to numerical truncation is automatically repaired through THB-enabled lo-
cal refinement.
We have tested the scheme by applying it to two examples. In the first example, we
compared the numerical solution to the known exact solution and concluded that the
scheme is consistent. Comparing the VBA-approach to an approach in which the basis
is taken static (SBA) furthermore revealed that VBA-enabled feature-based refinement
leads to a » 10-fold error reduction over SBA at a comparable total number of DOFs.
This discrepancy may be further increased by employing more proficient a priori and a
posteriori refinement techniques. In the second example, we considered the design of
a cooling element. Unlike in the first example, the exact minimizer was unknown, how-
ever, the optimization routine converged to a design that we consider plausible. In both
cases, the scheme succeeded in fully automatically parameterizing a wide range of ge-
ometries which would be too complex for other symbolically-differentiable parameteri-
zation strategies (such as Coon’s Patch) at the expense of leading to a nonlinear problem.
Finally, we briefly discussed possible memory-saving strategies for large-scale optimiza-
tion and (possible) future implementations of the scheme with support for volumetric
applications. Furthermore, the scheme is straightforwardly enhanced to support mul-
tipatch parameterizations by adopting the mixed FEM EGG algorithm introduced in
[HMV19] (see Chapter 3).
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6
SPLINE-BASED

PARAMETERIZATION TECHNIQUES

FOR TWIN-SCREW MACHINE

GEOMETRIES

This chapter is based on the publication from [HMV18b] and constitutes the first large-
scale application of the techniques presented in Chapter 2. In particular, it improves and
automates the methodology from Section 2.10.3 and introduces a framework capable of
generating parameterizations for the interior of counter-rotating rotary-screw compres-
sor geometries at every rotational angle µ.
The proposed framework is augmented with the techniques from Chapter 3 and applied
to co-rotating twin-screw extruders in Chapter 7.

The fully automated generation of computational meshes for twin-screw machine
geometries constitutes a mandatory aspect for their numerical simulation but proves
to be a challenging task in practice. Therefore, the successful generation of compu-
tational meshes requires sophisticated mathematical tools. Commercially available
classical mesh generators can produce high quality meshes from no more than a
description of the rotor contours. However, since we are particularly interested in
numerical simulations using the principles of Isogeometric Analysis (IGA), a spline-
based geometry description rather than a classical mesh is needed.
In this chapter, we propose a practical approach for the automated generation of
spline-based twin-screw machine geometry parameterizations in two spatial di-
mensions. For this purpose, we adopt the principles of Elliptic Grid Generation and
present a parameterization algorithm that is compatible with an automated simu-
lation pipeline based on the principles of IGA.
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To demonstrate the proposed techniques, we apply them to an example geometry
and present the resulting parameterizations. Furthermore, we generate a volumet-
ric parameterization by stacking a large number of planar cross section in the z-
direction. Finally, we give a qualitative explanation of how the discussed techniques
can be utilized to perform shape optimization on a variable rotor-pitch.

6.1. INTRODUCTION

Figure 6.1: Rotary-screw compressor (Wikipedia, file: Lysholm_screw_rotors.jpg) (left) and a cross section
showing the rotor profiles with casing (right).

The generation of analysis-suitable meshes for twin-screw geometries constitutes the
first step towards the numerical simulation and shape optimization of twin-screw ma-
chines. However, the full automation of this process remains difficult, often contribut-
ing substantially to the software development and computational costs. On the one
hand, this is caused by the inherent difficulty of generating a mesh from no more than
a description of the boundary contours, and, on the other hand, further aggravated by
the challenging characteristics of twin-screw geometries, such as tiny clearances and
rapidly changing gap sizes (see Figure 6.1). To the best of our knowledge, there exist two
commercial structured mesh generators that only require a description of the geometry
contours as input: twin-mesh [TM] and SCORG [SCO], both being capable of exporting
directly into ANSYS CFX format [ANS]. We are particularly interested in using Isogeo-
metric Analysis (IGA) [HCB05] techniques to perform shape optimization on twin-screw
machine geometries with variable rotor pitch. Even though the commercial mesh gen-
erators produce high-quality classical meshes, they cannot be used in an IGA-setting
where a spline-based parameterization of the target geometry is mandatory. This is the
main motivation for the techniques presented in this chapter.
The general idea of spline-based parameterization techniques is finding a continuous
mapping operator x : ›̂ ! ›, comprised of higher-order spline functions, that maps the
entire parametric domain ›̂ onto the target geometry › (or an approximation thereof).
The spline-based parameterization x is then directly used for IGA-based simulation. Un-
like in the classical case, application-specific features such as boundary layers are typ-
ically added after the geometry description has been completed. This is accomplished
by performing knot refinement on x (see section 6.2) and has a negligible impact on the
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overall computational costs.
A volumetric parameterization is accomplished by generating a large number of planar
parameterizations at various discrete rotational angles µi and stacking them in the z-
direction. For such an approach to make sense, it is required that the parameterization
pipeline yields mappings whose components are continuous functions of the rotational
angle µ. Hereby, higher-order continuity furthermore tends to improve parameteriza-
tion quality. This translates to the requirement of smoothly varying control points of the
mapping x as a function of the rotation angle µ. Therefore, it is furthermore desirable
to, if possible, avoid topology changes in the planar slices, even though this may be a
challenging task. Variable pitches are conveniently accomplished by a tighter or wider
stacking of the discrete slices.
It should be mentioned that a spline-based description can be turned back into a classi-
cal mesh by performing a large number of function evaluations in x and connecting the
resulting point cloud by linear edges. Hereby, the evaluation points determine the prop-
erties of the mesh and have to be chosen wisely. However, this topic will not be covered
in this chapter.
For the purpose of generating folding-free planar parameterizations using spline func-
tions, we adopt the principles of Elliptic Grid Generation (EGG) and present a numerical
scheme that is suitable for an IGA-based computational approach. In Section 6.2, we
briefly review the concept of (B-)spline basis functions while in Section 6.3, we present
the various possible topologies along with their advantages and disadvantages. In sec-
tion 6.4, we discuss the principles of EGG and in sections 6.7 and 6.8, we develop the
computational approach along with the parameterization strategy we employ for the
test cases presented in section 6.9

6.2. B-SPLINES
B-splines are piecewise-polynomial functions that can be constructed so as to satisfy
various continuity properties at the places where the polynomial segments connect.
Their properties are determined by the entries of the so-called knot vector

¥ ˘ {»1,»2, . . . ,»n¯p¯1}. (6.1)

The knot vector is a non-decreasing sequence of parametric values »i ‰ [0,1] that deter-
mine the boundaries of the segments on which the spline basis is polynomial. Selecting
some polynomial order p, the p-th order spline-functions Ni ,p are constructed recur-
sively, utilizing the relation (with 0

0 · 0)

Ni ,q (») ˘
»¡»i

»i¯1 ¡»i
Ni ,q¡1(») ¯

»i¯q¯1 ¡»
»i¯q¯1 ¡»i¯1

Ni¯1,q¡1(»), (6.2)

starting from

Ni ,0 ˘
‰

1 if »i • » ˙ »i¯1
0 otherwise , (6.3)

and iterating until q ˘ p. The support of basis function Ni ,p is given by the interval
Ii ,p ˘ [»i ,»i¯p¯1] and the amount of continuous derivatives across knot » j is given by
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Figure 6.2: The univariate B-spline basis resulting from the knot vector ¥ from (6.5).

p ¡ m j , where m j is the multiplicity of » j in Ii ,p . In practice, »1 ˘ 0 is repeated p ¯ 1
times as well as »n¯p¯1 such that »1 ˘ . . . ˘ »p¯1 ˘ 0 and »n¯1 ˘ . . . ˘ »n¯p¯1 ˘ 1. As a
result, the basis ¾ ˘ {N1,p , . . . , Nn,p } forms a non-negative partition of unity on the entire
parametric domain [0,1], that is:

nX

i˘1
Ni ,p (») ˘ 1, with Ni ,p (») ‚ 0 (6.4)

for all spline functions Ni ,p [HCB05]. Figure 6.2 shows the p ˘ 3 B-spline basis resulting
from the knot vector

¥ ˘
'
0,0,0,0, 1

7 , 2
7 , 3

7 , 4
7 , 5

7 , 6
7 ,1,1,1,1

“
. (6.5)

The extension to bivariate spline bases is now straight-forward: given two univariate
bases ¾¥ ˘ {N1, . . . , Nn} and ¾H ˘ {M1, . . . Mm}, we build a bivariate spline space Vh with
corresponding basis [Vh] ˘ {wi , j j (i , j ) 2 {1, . . . ,n} £ {1, . . . ,m}}, by means of a tensor-
product, where

wi , j (»,·) ˘ Ni (»)M j (·). (6.6)

The knots corresponding to the bases ¾¥ and ¾H , with knot vectors ¥ and H (without
knot repetitions), respectively, hereby become the boundaries of the polynomial seg-
ments, which can be regarded as the counterparts of classical elements.
We construct the mapping of a B-spline surface as follows:

x ˘
X

i

X

j
ci , j wi , j , (6.7)

where the ci , j 2 R2 are referred to as the control points. We refer to the ci , j with i 2 {1,n}
or j 2 {1,m} as the boundary control points, while the remaining ci , j are called inner con-
trol points. As x is a linear combination of the wi , j 2 [Vh], it inherits the local continuity
properties of the basis. This implies that many geometrical features can be better cap-
tured by a clever choice of the knot multiplicities in ¥ and H .
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An additional appealing feature of spline basis functions is the possibility of knot refine-
ment. Let

f ˘
X

i
ai Ni ,p (6.8)

be a function from the linear span of the spline basis ¾¥ ˘ {N1,p , . . . , Nn,p }. We can refine
¾¥ by adding additional knots to ¥, resulting in the refined basis ¾¥̃. It can be shown that
span¾¥ ‰ span¾¥̃. For an algorithm to prolong the ai to the refined basis, see [HCB05].
This principle is straightforwardly generalized to bivariate tensor-product bases.
In the following, we drop tensorial indices and introduce a global index with (i , j ) !
i ¯ ( j ¡ 1)m. The mapping then simplifies to

x ˘
X

i
ci wi . (6.9)

For many geometries, a parameterization with only one mapping operator is not pos-
sible, which is why several mappings that jointly parameterize the geometry have to be
employed. The individual geometry segments that result from each of the mappings are
referred to as patches.

6.3. CHOICE OF TOPOLOGY
As discussed in section 6.1, we would like to parameterize the geometry from figure 6.1
(right) for all rotational angles µ. The discrete angles µi then either correspond to the
screw-machine at time-instances ti in the planar case or to some cross-section of the
screw-machine in the z-direction. A volumetric parameterization can therefore be ac-
quired by parameterizing the geometry for a large number of µi and interpolating the
planar cross-sections in the z-direction.

Figure 6.3: The various possible topologies for the parameterization of the fluid-part of the screw-machines.
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Figure 6.3 shows the possible topologies that come to mind. Here, black lines indicate
boundaries at which the grid is held fixed and red lines indicate boundaries that slide
along the grid. The various patches are highlighted in different colors. Since the target
geometry is of genus two (it has two holes), at least two patches are needed. In the fol-
lowing, we refer to the two points at which both casings meet as the CUSP-points.
Even though Figure 6.3 (right) takes advantage of the symmetries of the geometry, topol-
ogy changes are unavoidable. For instance, since the blue patch bounded by the region
surrounding the CUSP-points and the two rotor lobes (henceforth referred to as the sep-
arator) is static while the others rotate, patches (such as the grey patch) will eventually
disappear, making a computational simulation with IGA-techniques difficult.
In Figure 6.3 (center), two O-type patches are employed which leads to a sliding interface
(in the separator region). Sliding interfaces are numerically difficult to handle since el-
ement conformity is difficult to achieve. In an IGA-setting, the CUSP-points themselves
pose an additional problem: as the patches slide along, the CUSP-point C 0-continuities
can only be captured by adding repeated knots to the knot vectors. If several cross sec-
tions are interpolated in the z-direction for a volumetric parameterization, they all have
to be prolonged to a unified knot vector, soon leading to an infeasibly-dense trivariate
knot vector.
Therefore, we are aiming for the topology of figure 6.3 (left) in which the patches are held
fixed at the casings while the rotors slide along and the separator is parameterized with
one static patch. Here, no topology changes are required and no sliding interface exists.
In all cases, we need to generate the dotted white curve connecting the two CUSP-points,
in order to parameterize the separator using two patches with mutual element confor-
mity as well as conformity to the C-type patches.

6.4. ELLIPTIC GRID GENERATION
Having discussed the aimed-for topology in section 6.3, we need a tool to generate analysis-
suitable (i.e., bijective or folding-free) parameterizations at every discrete rotational an-
gle µi , given no more than a boundary correspondence @›̂ ! @›(µi ).
For this, we base our approach on the class of Elliptic Grid Generation (EGG) methods.
EGG is a proficient approach in settings where computationally inexpensive algebraic
methods such as [Coo67], [GH73] and [GT82] fail due to the complexity of the target ge-
ometry. However, due to the higher chance of success, higher computational costs can
be expected.
Assuming › is topologically equivalent to the unit quadrilateral ›̂ ˘ [0,1] £ [0,1] ‰ R2, a
mathematical operator x : ›̂ ! › that maps @›̂ onto @›, and is furthermore folding-free,
exists and can be constructed. For this purpose, EGG imposes the Laplace-equation on
the components of the inverse mapping x¡1. Assuming the free topological variables are
given by the tuple » ˘ (»,·), the equation takes the form:

¢x¡1 ˘ 0 in › s.t. x¡1j@› ˘ @›̂. (6.10)

This system of equations is inverted and scaled in order to yield an equation for x that is
suitable for a computational approach. The resulting equations read [TSW98]:

L (x) ˘ 0 in ›̂ s.t. xj@›̂ ˘ @›, (6.11)
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where

L (x) ˘ g22x»» ¡ 2g12x»· ¯ g11x··, (6.12)

with g11(x) ˘ kx»k2, g12(x) ˘ x» ¢ x· and g22(x) ˘ kx·k2. Since the target space of x¡1 is
always convex, the bijectivity of the exact solution of (6.11) follows from the maximum
principle [Cas91]. This justifies seeking a sufficiently accurate approximation xh of x
for the purpose of generating an analysis-suitable mapping. This property distinguishes
EGG from most other meshing techniques, which may tend to produce folded meshes,
due to them being less grounded in mathematical theory.

6.4.1. DISCRETIZATION
Traditionally, (6.11) is approximately solved using a finite difference approach [TSW98].
However, since this only yields a finite collection of grid points that can serve as the
vertices of a classical mesh, we have to look for different options. We discretize the equa-
tions with FEA-techniques. First, we introduce the operator

L̃ (x) ˘
L (x)

g11 ¯ g22 ¯†
, where † ˘ 10¡4. (6.13)

As a next step, we select a p ‚ 2 bivariate B-spline basis [Vh] ˘ {w1, . . . , wN } with global
C 1(›̂)-continuity (i.e., the wi 2 [Vh] possess at least one continuous derivative in ›̂). By
V –

h , we denote the subset of Vh consisting of functions that vanish on @›̂ (corresponding
to the inner control points from Section 6.2). We discretize (6.11) as follows:

find xh 2 V 2
h s.t.

Z

›̂

¾h ¢L̃ (xh)d» ˘ 0, 8¾h 2 (V –
h )2 and xh j@›̂ ˘ @›h , (6.14)

where @›h is some approximation of @› compatible with (Vh \ V –)2.
Let I ˘ {1, . . . , N } and let II be the index-set corresponding to V –

h ‰ Vh . Furthermore, let
IB ˘ I \ II . The mapping xh 2 V 2

h is of the form:

xh ˘
X

i2II

zi wi ¯
X

j 2IB

z j w j . (6.15)

Here, the zi 2 R2 denote the inner control points and the z j 2 R2 the boundary control
points. The latter follow from a regression of the input point cloud and are taken such
that xh j@›̂ ’ @› (see Section 6.5). As the z j are known, the objective is to find the zi such
that xh satisfies (6.14). Equation (6.14) leads to a nonlinear root finding problem of the
form

F(c) ˘ 0, (6.16)

where the vector c ˘ (. . . ,zi , . . .)T is the concatenation of the unknown inner control
points zi .
The scaling introduced in (6.13) leads to a more scalable convergence criterion kF(c)k •
–, that is, the value of – that corresponds to a converged solution is less sensitive to the
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characteristic length-scale of the geometry (and can therefore be taken approximately
equal in all cases). The choice of Vh and the optimal selection of the inner control points
zi shall be the topic of section 6.5, while the computational approach for solving (6.16)
will be the topic of section 6.7.

6.5. CONTOUR APPROXIMATION AND CHOICE OF BASIS
Given four input point clouds Pfi ˘ {pi

fi}Ifi
i˘1, fi 2 {s,e,n, w} which are assigned to each side

°fi of @›̂, the selection of a suitable spline basis [Vh] and the corresponding boundary
control points z j (see section 6.2) constitutes a preliminary step before (6.16) is tackled
computationally. For this purpose we select a coarse initial spline space Vä (whose basis
is the result of two coarse univariate knot vectors) and four sets of monotone increasing
parametric values {»i

fi}Ifi
i˘1, each starting on »1

fi ˘ 0 and ending on »Ifi
fi ˘ 1. Let ms (») ˘

(»,0), me (») ˘ (1,»), mn(») ˘ (»,1) and mw (») ˘ (0,»). The objective is to select the z j
such that xh(mfi(»i

fi)) ’ pi
fi. To this purpose, a least-squares regression is carried out that

minimizes the functional

R(@›,d) ˘
1
2

X

fi2{s,e,n,w}

IfiX

i˘1

°°°xh(mfi(»i
fi)) ¡ pi

fi

°°°
2

(6.17)

over the vector of boundary control points d ˘
¡
. . . ,z j , . . .

¢T . Hereby, it is advisable to con-
strain the corner control points to the corners of the input point clouds in order to avoid
mismatches. In practice, (6.17) can suffer from instabilities. This is usually a result of
the local amount of DOFs exceeding the local amount of points. Hence, the collocation
matrix Mfi ˘ NfiN T

fi , where

[Nfi]i j ˘ `fi
i (mfi(» j

fi)), with [Vh] 3 `fi
i

flfl
°fi

6˘ 0, (6.18)

may become (nearly) rank-deficient.
We add a small least-distance penalty term to (6.17) in order to improve the stability:

R̃(@›,d) ˘
1
2

X

fi2{s,e,n,w}

0

@
IfiX

i˘1

°°°xh(mfi(»i
fi)) ¡ pi

fi

°°°
2

¯‚
Z

°fi

°°°°
@xh

@t

°°°°
2

d°

1

A , (6.19)

where @/@t denotes the directional derivative in tangential direction. Here, ‚ ¨ 0 is a
small penalty factor whose value should be chosen small enough not to noticeably al-
ter the outcome of (6.19), while avoiding instabilities. In practice, ‚ ˘ 10¡4 is a robust
choice.
After (6.19) has been minimized, the mismatch

rfi,i ˘
°°°xh(mfi(»i

fi)) ¡ pi
fi

°°° (6.20)

serves as a local refinement criterion. Whenever rfi,i exceeds the approximation toler-
ance „ ¨ 0, we place an additional knot in the center of the knot span that contains »i

fi
associated with the knot vector of side °fi. By this, we locally increase the resolution of
the basis. Here, we only allow for (locally) dyadic refinement in order to acquire knot
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vectors with a predefined structure. This reduces the total number of knots when taking
the union of several knot vectors.
Above steps are repeated until the convergence criterion is reached. Upon completion,
we are in the possession of the coarse- and fine-grid bases [Vä] and [Vh] with correspond-
ing vectors of boundary control points dä and d, respectively. The fine-grid basis then
constitutes the coarsest possible basis to resolve the boundary condition

xj@›̂ ’ @› (6.21)

to a user-defined accuracy, which is tuned by the choice of „.
The tuple (Vä,dä) serves as a means to build initial guesses for the computational ap-
proach that solves (6.16) (see Section 6.7).
It should be noted that the choice of Vh is purely based on its capabilities to properly
approximate @›. However, this choice may not appropriately approximate the solution
of (6.11) at every point in ›̂. Heuristically, folding due to insufficient accuracy is uncom-
mon. Should it nevertheless happen, we dyadically refine Vh by adding knots wherever
a folds occurs and prolong d to the refined space (V R

h )2. Equation (6.16) is solved with
V R

h to yield a better approximation. This step is repeated until the approximation yields
a bijective mapping.

6.6. CHOICE OF PARAMETRIC VALUES
The parametric values {»i

fi}Ifi
i˘1 from section 6.5 have a profound influence on the para-

metric quality of the resulting parameterization and have to be chosen wisely. By default,
the input point clouds are chord length parameterized. Defining li recursively by

li ˘ li¡1 ¯kpi ¡ pi¡1k, (6.22)

starting with l1 ˘ 0 and ending on l Ifi , we let

»̂i
fi ˘

li

l Ifi

. (6.23)

A chord length parameterization then corresponds to taking »i
fi ˘ »̂i

fi.
Using (6.23) ensures that the parametric velocity at the boundaries is (approximately)
constant. In the presence of extreme aspect ratios (tiny gaps), however, we have found
(6.23) to lead to unsatisfactory results. To ensure the quality of the resulting parameteri-
zation, we require that (approximately) the same parametric value is assumed on either
side of the gaps (see figure 6.4). For this purpose, we employ the matching algorithm
proposed in [HMV18a] to two opposite point clouds Pw ,Pe (or Pn ,Ps ) in order to match
pairs of points that are too close. Let Iw ˘ {2, . . . , Iw ¡ 1} and Ie ˘ {2, . . . , Ie ¡ 1}. Upon
completion of the matching, we are in the possession of a finite set of matched tuples

I m ˘
'
(i , j ) j pi 2 Pw and p j 2 Pe have been matched

“
. (6.24)

The tuples (i , j ) 2 I m , i 2 Iw , j 2 Ie can be utilized to build a reparameterization func-
tion that improves the parametric properties of the mapping. We assign the parametric
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Figure 6.4: Skewed isolines due to poorly parameterized boundary contours and improved parametric proper-
ties resulting from reparameterization. Near the tiny gaps, it is of major importance that the same parametric
value is assumed on both sides.

values {»̂i
w }Iw

i˘1 to the points pi 2 Pw . Furthermore, we set » j
e ˘ »̂i

w whenever (i , j ) 2 I m .
The question remains what parametric value to assign to the unmatched points p j 2 Pe .
Given the set

I k ˘
n

j j » j
e is known

o

(note that I k contains »1
e ˘ 0 and »Ie

e ˘ 1), we carry out a monotone cubic spline-interpolation
[FC80] of the values {»̂i

e }i , i 2 I k versus the known values {»i
e }i , i 2 I k , to yield the

monotone reparameterization function »0
e (»). The »i

e then follow from evaluating »0
e in

the »̂i
e , that is

»i
e ˘ »0

e

‡
»̂i

e

·
. (6.25)

In practice, reparameterization is a crucial ingredient for the successful parameteriza-
tion of the target geometry and should therefore always be employed along with the nu-
merical approach that is the topic of Section 6.7.

6.7. COMPUTATIONAL APPROACH
After completion of the regression from section 6.5, possibly in conjunction with repa-
rameterization (see section 6.6), we are in the position to tackle the root-finding prob-
lem from equation (6.16). The point cloud regression yields the tuples (Vä,dä) and
(Vh ,d) of coarse- and fine-grid spaces with corresponding boundary control points. We
tackle (6.16) with a truncated Newton-approach. We first solve the coarse-grid problem
Fä(cä) ˘ 0 using transfinite interpolation [Coo67] to generate an initial guess c0

ä. Both
the coarse- and the fine-grid problem are of the form G(c) ˘ 0, where G is nonlinear in
c. Given some initial guess c0, the new iterate is computed using the following recursive
relation:

@G

@c

flflflfl
c˘ci

–c ˘ ¡G(ci ) and ci¯1 ˘ ci ¯•–c. (6.26)

Here 0 ˙ • • 1 is a truncation parameter whose optimal value is estimated from the cur-
rent and updated tangents and residuals. Upon solving the coarse-grid problem Fä(cä) ˘
0, the coarse-grid solution cä is prolonged to the fine-grid space

¡
V –

h

¢2 and serves as an
initial guess for the fine-grid problem F(c) ˘ 0.
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(a) Coarse-grid solution (b) Fine-grid solution

Figure 6.5: Coarse- (a) and fine-grid (b) solution of a challenging input geometry.

In practice, the coarse-grid problem typically converges after 4 ¡ 6 iterations, while the
fine-grid problem requires an additional 2 ¡ 3 iterations. Thanks to the relatively small
number of DOFs associated with Vä, the impact of the large number of required coarse-
grid iterations is manageable. Since the required number of fine-grid iterations is ap-
proximately halved, the expected speed-up is » 50%. Furthermore, the robustness of the
approach is greatly improved: thanks to the high quality of the initial guess, failure of
convergence is extremely uncommon. As an example, Figures 6.5 (a) and (b) plot the
parameterizations corresponding to the coarse- and fine-grid solutions of a challenging
geometry. Here, we performed reparameterization (see section 6.6) on the western and
eastern boundaries, keeping the western boundary chord length parameterized while
letting the eastern boundary float. Convergence on the fine grid is reached within 3 non-
linear iterations.

6.8. APPLICATION TO TWIN-SCREW MACHINE GEOMETRIES
The computational approach discussed in section 6.7 constitutes the basic ingredient
for the parameterization approach that will be the topic of this section. When no good
initial guess is available, we employ the hierarchical approach from Section 6.7. Else,
we use the initial guess to directly solve the fine-grid problem. Selecting K uniformly-
spaced discrete angles µk from the interval [0,…/2], the objective is to compute a planar
paramterization for every µk . The approach consists of the following steps:
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Figure 6.6: Steps (i) and (ii) of the parameterization strategy.

Figure 6.7: Steps (iii) to (vi) of the parameterization strategy.

1. Generate separate O-type parameterizations for the male and female rotors with
casing for every µk .

2. Cut the O-parameterizations at the CUSP-points in order to produce two C-parameterizations
for every discrete angle.

3. Combine the cuts with the male and female rotor parts to form a contour descrip-
tion of the separator.

4. Compute singlepatch parameterizations for the separator at every discrete angle.

5. Use the singlepatch parameterized separators to generate curves, connecting the
two CUSP-points and splitting the separator in half.

6. Generate parameterizations on the left and on the right of the splitting curves us-
ing the same knot vector in ·-direction to acquire a conforming interface. Use the
same knot vector as for the C -grids in »-direction to acquire conforming separator-
C-grid interfaces.

The key steps are depicted in Figures 6.6 and 6.7.
To generate the O-type parameterizations from (i), we first generate exact (chord length
parameterized) cubic spline-fits through the input point clouds of the rotors and casings,
using one of the FITPACK [Die95] routines. We evaluate both spline fits in N uniformly-
spaced points over the parametric interval [0,1] and utilize the resulting point clouds to
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Figure 6.8: At every angle µk we act with the canonical rotation matrix on the control points of the spline-fit
and reparameterize such that the CUSP-points always correspond to the same parametric values ·1 and ·2.

build male and female reparameterization functions ·0
m and ·0

f , respectively (see section
6.6). Hereby the casings are held chord length parameterized (i.e., their reparameteriza-
tion functions are the identity) while we let the rotor parameterizations float.
At every discrete angle µk , we act with the canonical rotation matrix on the control points
of the fitted spline curves and reparameterize such that the CUSP-points always coincide
with the same parametric values ·1 and ·2. Since the casings are chord length param-
eterized, we reparameterize by a shift of ¡µk /(2…) in the parametric domain. The rotor
spline-fits have to be shifted by the same value in the reparameterized ·0-domain. There-
fore, we compute the shift in · by inverting ·0

m, f (see figure 6.8). As a next step, we utilize
the shifted spline fits to generate a large number of uniformly-spaced points which serve
as an input point cloud. We utilize the reparameterization functions ·0

m, f , which we shift
in a way similar to the spline fits, to assign parametric values to the rotor point clouds.
For the O-type parameterizations, we utilize a p ‚ 2-th order knot vector which is pe-
riodic in the ·-direction while disregarding the northern and southern boundaries. We
compute parameterizations corresponding to µk , k ˘ 1, . . . ,6 utilizing the hierarchical
approach from Section 6.7. Once completed, we continue filling the database by ex-
trapolating the inner control points corresponding to µk¡6, . . . ,µk to µk¯1 and utilize the
result as an initial guess. Upon completion of the K slices for each rotor, we add the p¯1-
times repeated knots ·1 and ·2, which correspond to the ·-values of the CUSP-points in
›̂, to the knot vectors associated with the ·-direction of the O-grids. This way, the two
separate male and female rotor O-grids are each split into two parts: one C-grid and one
grid which is discarded. By cutting in the domain, we avoid accidentally cutting the rotor
lobes twice, as a result, the cuts are not (necessarily) straight.
Upon completion, our database is filled with left and right C-grid parameterizations for
each discrete angle µk . Having completed steps (i) and (ii), a description of the separator
contours can be acquired by evaluating the exact rotor spline-fits from ·1 to ·2 (on both
sides) and combining the resulting point clouds with the C-grid cuts (see figure 6.9). The
resulting geometries are parameterized with one patch. Instead of sequentially param-
eterizing all K slices, we start off by building parameterizations for each L-th slice (with
L ¿ K ), keeping the western boundary chord length parameterized, while building repa-
rameterization functions for the eastern boundary (see Section 6.6). For each slice, we
employ the hierarchical approach from section 6.7. Let ·0

k , denote the reparameteriza-
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Figure 6.9: The exact rotor spline-fits are evaluated from ·1 to ·2 and the resulting point clouds are combined
with the C-grid cuts

Figure 6.10: A splitting curve can be generated by traversing the parametric domain from one CUSP-point to
the other. The properties of this splitting curve is tuned by changing the path taken. We choose the path such
that the separator is split most-evenly at the narrow gaps.

tion function associated with the eastern boundary of the k-th slice. Upon completion
of every L-th parameterization, we are in the possession of K /L singlepatch parameter-
izations for the separator as well as a reparameterization function ·0

k , k ˘ 1,L,2L, . . . for
every L-th slice. We build a global reparameterization function N 0(µ,·) by blending the
available ·0

k over the µ-interval (typically [0,…/2]). This ensures that the assignment of
parametric values to the input point cloud is continuous in the rotational angle µ, which,
in turn, results in mappings whose control points change as a smooth function of µ. The
restriction of N 0 to µ ˘ µk then reparameterizes the input of the k-th slice.
We use the K /L available singlepatch parameterizations and interpolate them in µ. The
inner control points of the resulting interpolation function are extracted and serve as an
initial guess for the remaining slices, in a way similar to the rotor O-grids. This reduces
the required amount of iterations, whereby the reduction depends on the density of the
database.
Upon completion of all K -slices, we traverse ›̂ from the preimage of one CUSP-point
to the other, leaving splitting-curves in our wake (see Figure 6.10). Their properties are
fully determined by the path taken. To maximize the quality of the parameterizations
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in step (vi), we traverse ›̂ such that the separator is split most-evenly on both sides of
small gaps. Upon completion, we are in the possession of a splitting-curve for all discrete
angles µk . As a last step, we utilize the resulting database to parameterize the separator
with two patches, one on each side of the splitting curve. Hereby, we employ the same
database-driven computational approach as for the singlepatch parameterized separa-
tor. To achieve element conformity between both sides of the separator and the C-grids,
we employ the same knot vector(s) in the »-direction.

6.9. RESULTS
We have implemented the approach from Section 6.8 in the FEA Python-library Nutils
[vZvZV¯19]. The geometry has been parameterized for K ˘ 200 discrete angles over the
rotational interval [0,…/2] (corresponding to a quarter rotation on the male rotor after
which the initial position is again assumed). Figures 6.11 and 6.12 show the two rotor
C-grids at µ ˘ µ1 and µ ˘ µ150, respectively. We used L ˘ 5 to fill database with 40 sin-

Figure 6.11: The two C-grids at µ ˘ µ1

glepatch parameterizations of the separator. The singlepatch parameterized separator
along with the computed splitting-curve is plotted for µ ˘ µ1, µ ˘ µ75 and µ ˘ µ150 in Fig-
ure 6.13. Here, we do not plot the isolines for improved visibility. Figure 6.14 shows the
final geometry parameterization at µ ˘ µ100 while Figure 6.16 (b) plots a zoom-in on the
conforming separator showing the parametric properties by the splitting curve. Finally,
Figure 6.15 shows the final geometry at µ ˘ µ1 and 6.16 (a) a zoom-in on the separator.
With K ˘ 200, the computation of the rotor O-grids converges after 1 iteration as soon
as enough slices for a 5-th order extrapolation are available. The 40 (L ˘ 5) initial sin-
glepatch parameterized separators typically converge within 3 iterations on the fine grid
using the hierarchical approach from section 6.7. Upon completion, we use the partially-
filled database to interpolate in µ. Taking the restriction to the current rotational angle
as an initial guess, for the remaining slices, convergence is typically reached within 1 ¡ 2
iterations. The same level of efficiency is achieved for the two-patch parameterized sep-
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Figure 6.12: The two C-grids at µ ˘ µ150

arator.

6.10. DISCUSSION
In Section 6.8, we presented a framework that employs the principles from Sections 6.4
to 6.7 for the fully automated parameterization of twin-screw machine geometries at
every rotational angle µk , given no more than a description of the boundary contours.
Here, a database-driven approach that performs inter- and extrapolation in µ reduces
the required number iterations until convergence is achieved. The quality of the inter-
polation (and by that the expected number of required iterations) greatly depends on
the ratio between K and L. In Section 6.9, we used (K ,L) ˘ (200,5). Here, we regard the
choice K ˘ 200 as realistic for an accurate numerical flow simulation. The interpolation-
enabled reduction to 1 ¡ 2 iterations is a remarkable result since it reduces the compu-
tational costs to nearly the same level as algebraic parameterization techniques, while
being more robust in practice.
The properties of the splitting curve, which are fully determined by the path taken in ›̂,
have a profound influence on the parametric properties of the two-patch parameterized
separator, cf. Figure 6.16. In (a), we clearly see the steep inter-element angles at the
splitting curve interface. In (b) this is less pronounced. Here, approximate halving of
the separator leads to decent results. However, a different selection criterion may lead
to more desirable outcomes and constitutes a topic for future research. Hereby, a good
trade-off between the steepness of the inter-elements angles by both the splitting curve
and C-grid interfaces may serve as a selection criterion.

6.10.1. SHAPE OPTIMIZATION
As stated in section 6.1, we are particularly interested in performing shape optimization
on a variable pitch-function. Given a particular rotor profile input, the goal is to mini-
mize some objective function over the three-tuple of shape parameters fi comprised of
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(a) µ ˘ µ1 (b) µ ˘ µ75 (c) µ ˘ µ150

Figure 6.13: The singlepatch parameterized separator along with the generated splitting curve for various val-
ues of µ.

Figure 6.14: The two-patch parameterized separator along with the splitting curve at µ ˘ µ100

left- and right pitches µ̇l ,r and the z-coordinate lz at which the pitch changes. We base
our approach on the observation that the planar slices at angle µk coincide with planar
cross-sections of a volumetric parameterization in the z-direction.
The idea is to parameterize the geometry at a large number of discrete angles µk with
angular increment ¢µ and fill the database with a large number of planar parameteriza-
tions xµk

h . A parameterization for a particular configuration of fi ˘
¡
µ̇l , µ̇r , lz

¢T is accom-
plished by a proper stacking of the slices in the z-direction. Hereby, a (locally) stronger
pitch requires a higher slice-density for an accurate description of the geometry, while
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Figure 6.15: The two-patch parameterized separator along with the splitting curve at µ ˘ µ1

(a) µ ˘ µ1 (b) µ ˘ µ100

Figure 6.16: A zoom-in on the two-patch parameterized separator at µ ˘ µ1 (a) and µ ˘ µ100 (b).

a lower pitch allows for less slices. A database should therefore be generated with a
slice-density that corresponds to the largest admissible pitch in the design space. Lower-
pitched segments can be parameterized using a subset of the available slices xµ

h . Since
interpolation in the z-direction is a relatively cheap operation, a decent parameteriza-
tion for a given fi comes at a relatively low cost.
Figure 6.17 shows a segment of a volumetric geometry with constant pitch, generated
by the stacking of a large number of planar slices in the z-direction. Finally, figure 6.18
shows a segment of the separator with non-constant pitch along with a dotted red line
to indicate the z-coordinate at which the pitch changes. This geometry has been con-
structed using the same planar slices as in Figure 6.17 but with a tighter stacking in the
stronger-pitched region.
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Figure 6.17: Part of a volumetric parameterization acquired by stacking a large number of planar slices.

Figure 6.18: Part of a volumetric parameterization of the separator with non-constant pitch. The coordinate at
which the pitch changes is indicated by the dotted red line.

6.11. CHAPTER CONCLUSIONS
In this chapter we presented a practical approach for the parameterization of twin-screw
machine geometries with spline functions. For this, we adopted the principles of Elliptic
Grid Generation and introduced a computational approach that is compatible with the
principles of Isogeometric Analysis. We proposed automated boundary contour repa-
rameterization techniques that further improve the quality of the resulting parameteri-
zation.
We have successfully applied the approach to a twin-screw machine geometry. We con-
cluded that the parametric properties can be improved by optimizing the properties of
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the splitting curve, a necessary ingredient for the parameterization of the separator. Fi-
nally, we have given a qualitative explanation of how the proposed techniques may be
employed for performing database-driven shape optimization on a variable rotor pitch
and presented an example of a volumetric parameterization resulting from stacking of a
large number of planar slices in the z-direction.
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7
BOUNDARY-CONFORMING FINITE

ELEMENT METHODS FOR

TWIN-SCREW EXTRUDERS USING

SPLINE-BASED

PARAMETERIZATION TECHNIQUES

This chapter is based on the publication from [HHME20]. It further develops the frame-
work presented in Chapter 6 and applies it to co-rotating twin-screw machine extruders,
a geometry of the same type as rotary-screw compressors. Basing the approach on the
algorithm from Chapter 3 overcomes the need to find a splitting-curve which connects
the two CUSP-points of the casing, cf. Chapter 6. Instead, this curve establishes itself as
part of the solution to a PDE-problem, improving the efficiency and robustness of the
framework, as well as aiding in parameterization quality.
By collocating the mapping operator, the spline-based framework forms the basis for
generating classical meshes. They, in turn, are utilized for numerical simulation.
This work is the result of a collaboration with J. Helmig and S. Elgeti from RWTH Aachen
University, Aachen, Germany and is divided into two parts. The first part develops the
geometrical aspects, while the second part considers the simulation. Here, the simula-
tion part (Section 7.3 onward) is the intellectual property of Helmig and Elgeti.

This chapter presents a novel spline-based meshing technique that allows for using
boundary-conforming meshes in unsteady flow and temperature simulations of co-
rotating twin-screw extruders. Spline-based parameterizations for a wide variety of
extruder designs are generated using Elliptic Grid Generation. They are evaluated
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in a number of discrete points to yield a coarse classical mesh. Here, the use of a
special control mapping fine-tunes the properties of the coarse mesh, such as ele-
ment orthogonality at the boundaries. The coarse mesh is used as a scaffolding to
generate a boundary-conforming, finer mesh at run-time. This makes the method
memory-efficient. Additionally, the adaptation at run-time is extremely cheap com-
pared to computing the flow solution. Furthermore, the approach circumvents
the need for expensive re-meshing and projecting solutions from grids at previous
time-instants to the current, improving efficiency and accuracy. This methodol-
ogy is incorporated into a space-time finite element framework. We present time-
dependent test cases of non-Newtonian fluids for complex screw designs in two
and three spatial dimensions. They demonstrate the potential of the method also
for arbitrarily complex industrial applications.

7.1. INTRODUCTION
Co-rotating twin-screw extruders are widely-used devices in the plastic-producing in-
dustry. They are used to distribute and disperse polymers and additives since they pro-
vide short residence times and extensive mixing. Typical screw elements are conveying
elements that are used to transport the plastic melt from the feed section towards the
die, as well as kneading and mixing elements. The latter are specially-tailored to account
for dispersive and distributive mixing.
Performing experiments to obtain detailed information about velocity, pressure, and
temperature distribution is very complex, time-consuming, and expensive, if not impos-
sible for twin-screw extruders. This makes Computational Fluid Dynamics (CFD) using
finite element analysis an appealing tool for obtaining detailed information about the
flow inside twin-screw extruders. However, numerical flow-analysis is not trivial due to
constantly-moving domains and small gap sizes. These geometry-features make mesh-
ing extremely challenging. To tackle this problem, a wide range of approaches have been
proposed.
One-dimensional models have been developed for predicting the pressure build-up [CW91]
or fill length and specific mechanical energy [VVD98]. Full 3D results have been ob-
tained using commercial software like POLYFLOW which is based on a mesh superposi-
tion method that avoids re-meshing [ZFCH09, ALA04]. A rather recent development are
methods using smoothed particle hydrodynamics [RC18, WPE¯18]. These methods are
extremely useful when only partly filled extruders are considered.
Fictitious domain methods constitute another popular choice. Meshing is avoided since
the actual geometry is embedded into a fixed background mesh. A classical example
is the method presented in [VCDV09] that is used in [DDMN¯14] to compare 3D re-
sults with 1D estimates. However, in [FHM¯12] it has been shown that classic ficti-
tious domain methods lack accuracy inside the small gap regions. This drawback can
be mitigated by, for example, XFEM. Other examples of fictitious domain methods are
the Body Conformal Enrichment method presented in [HI13] or a method that attempts
to concentrate the background mesh at the screw interface using algebraic operations
[MTH¯14] . As a drawback, such methods require additional effort to describe the screw
boundary exactly, as well as capturing the flow effects in the small gaps. Furthermore,
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load balancing for highly parallel large-scale computations is extremely difficult.
A different approach are boundary-conforming methods. The mesh represents the ge-
ometry exactly in terms of the underlying finite element discretization. This allows for
strongly imposing boundary conditions as well as constructing high-quality boundary-
layer meshes. As a drawback, generating a time-dependent boundary-conforming mesh
is challenging.
Thus, most simulations employ a snapshot technique. An individual mesh is generated
for each screw orientation. This is a valid simplification since the flow inside the extruder
can be considered to be quasi-steady. This approach has been applied in many pub-
lications, cf. [BHW00, MKGJ14]. Also, steady temperature results have been obtained
in [IKF01, KM07]. However, these methods may be restrictive when simulating time-
dependent quantities.
A continuous time-dependent mesh is needed. This requires efficient mesh-update tech-
niques to avoid constant re-meshing and, in turn, expensive projections onto to the new
mesh.
In [HBE18], we present the Snapping Reference Mesh Update Method (SRMUM), an ef-
ficient mesh update method for twin-screw extruders. It allows for computing time-
dependent temperature results without the need for re-meshing. The method employs
a structured background mesh that constantly adapts to the current screw configuration
in a boundary-conforming manner. As a drawback, SRMUM is limited to convex screw
geometries.
Instead, [HMV18a] generates analysis-suitable spline-based parameterizations. The re-
sulting meshes are suitable for numerical analysis using Isogeometric Analysis (IGA) as
introduced in [HCB05]. The approach is based on Elliptic Grid Generation, which can
handle nonconvex screw designs. The PDE-based nature of the method makes it suit-
able for gradient-based shape optimization by simply adding the parameterization as a
PDE-constraint to the shape optimization formulation, which can then be differentiated
with respect to the design variables [HMV18b]. Furthermore, classical finite element
meshes have been extracted from the spline parameterization and used to compute first
flow results inside idealized twin-screw compressors [MH18].
In this work, we aim to adapt the general concept of spline-based meshing developed
for twin-screw compressors to twin-screw extruders and combine it with certain aspects
of SRMUM. This allows for generating flexible, high quality, time-dependent and FEM-
suitable meshes.
The approach is based on taking cross sections through a volumetric extruder geometry
leading to planar extruder contours at a large number of rotational angles µi (see Figure
7.1). A spline parameterization xi is generated for the planar profiles at every discrete µi
using Elliptic Grid Generation techniques.
The spline parameterizations are evaluated in a large number of points to generate a
mesh scaffolding to adapt a SRMUM-like background mesh to the current screw shape
via interpolation. A volumetric mesh is then built from the planar meshes by stacking
them in the z-direction.
Once a spline parameterization has been generated, generating finer meshes for, e.g., re-
finement studies, is a cheap operation. Furthermore, function evaluations in the spline
mappings xi can be tuned using a control mapping, which accounts for special proper-
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Figure 7.1: A volumetric mesh for an extruder geometry is built from a large number of planar cross sections
parameterized in the plane using Elliptic Grid Generation with spline functions.

ties of the mesh, like orthogonality at the screw surface. Extracting only a mesh scaffold-
ing prevents the need to save the full volumetric mesh for all possible time instances,
which would be very time- and memory-consuming. Furthermore, the computational
costs of updating the mesh at each time instant is negligible compared to computing the
flow solution.
This chapter is structured as follows: Section 7.2 explains the meshing concept. This
includes the generation of a spline parameterization up to the analysis-suitable mesh.
The underlying physical equations that model the flow inside twin-screw extruders are
discussed in Section 7.3, as well as the space-time finite element solution method. Sec-
tion 7.4 contains two- and three-dimensional numerical examples that aim to validate
as well as highlight the advantages of the presented method.

7.2. GRID GENERATION

Since the geometry pipeline provides no more than a description of the twin-screw pro-
file (typically in the form of a point cloud), the first step towards numerical simulation
is generating a planar computational mesh. For the mesh generation, we employ the
following two-step approach: at every discrete angle µk , we first generate a spline-based
geometry description which we then evaluate it in a large number of discrete points with
known connectivity in order to yield a classical mesh. The advantages of a spline-based
description is the possibility to fine-tune the properties of the mesh by appropriately
choosing the evaluation abscissae, which follow from a precomputed control mapping.
In the following, we give a brief introduction to spline surfaces after which we discuss the
basics of the numerical algorithm employed in the meshing process and its applications
to the target geometry.
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7.2.1. B-SPLINES
As described in [PT12], B-splines are piecewise-polynomial functions that can be con-
structed so as to satisfy various continuity properties at the places where the polynomial
segments connect. Their properties are determined by the entries of the so-called knot
vector

¥ ˘ {»1,»2, . . . ,»n¯p¯1}. (7.1)

The knot vector is a nondecreasing sequence of parametric values »i ‰ [0,1] that deter-
mine the boundaries of the segments on which the spline basis is polynomial. Selecting
some polynomial order p, the p-th order spline-functions Ni ,p are constructed recur-
sively, utilizing the relation (with 0

0 · 0)

Ni ,s (») ˘
»¡»i

»i¯1 ¡»i
Ni ,s¡1(») ¯

»i¯s¯1 ¡»
»i¯s¯1 ¡»i¯1

Ni¯1,s¡1(»), (7.2)

starting from

Ni ,0 ˘
‰

1 if »i • » ˙ »i¯1
0 otherwise , (7.3)

and iterating until s ˘ p. The support of basis function Ni ,p is given by the interval Ii ,p ˘
[»i ,»i¯p¯1] and the amount of continuous derivatives across knot » j is given by p ¡ m j ,
where m j is the multiplicity of » j in Ii ,p . In practice, »1 ˘ 0 is repeated p ¯ 1 times as
well as »n¯p¯1 such that »1 ˘ . . . ˘ »p¯1 ˘ 0 and »n¯1 ˘ . . . ˘ »n¯p¯1 ˘ 1. As a result, the
corresponding basis ¾ ˘ {N1,p , . . . , Nn,p } forms a non-negative partition of unity on the
entire parametric domain [0,1], that is:

nX

i˘1
Ni ,p (») ˘ 1, with Ni ,p (») ‚ 0, (7.4)

for all spline functions Ni ,p [HCB05]. Figure 7.2 shows the p ˘ 3 B-spline basis resulting
from the knot vector

¥ ˘
'
0,0,0,0, 1

7 , 2
7 , 3

7 , 4
7 , 5

7 , 6
7 ,1,1,1,1

“
. (7.5)

The extension to bivariate spline bases is now straightforward: given two univariate
bases ¾¥ ˘ {N1,p , . . . , Nn,p } and ¾H ˘ {M1,q , . . . Mm,q }, we build a bivariate spline space
Vh with basis [Vh] ˘ {wi , j j (i , j ) 2 {1, . . . ,n} £ {1, . . . ,m}}, by means of a tensor-product,
where

wi , j (»,·) ˘ Ni ,p (»)M j ,q (·). (7.6)

The values contained in ¥ and H (without knot repetitions) hereby become the bound-
aries of the polynomial segments, which can be regarded as the counterparts of classical
elements.
We construct the mapping of a B-spline surface as follows:

x ˘
X

i

X

j
ci , j wi , j , (7.7)
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Figure 7.2: The univariate B-spline basis corresponding to the knot vector ¥ from (7.5).

where the ci , j 2 R2 are referred to as the control points. We refer to the ci , j with i 2 {1,n}
or j 2 {1,m} as the boundary control points while the remaining ci , j are called inner con-
trol points. Bluntly put, the local density of spline basis functions is determined by the
local number of knots. As such, a cleverly chosen knot vector can be utilized to properly
resolve important features of the geometry. Furthermore, as x 2 V 2 is a linear combina-
tion of the wi , j 2 Vh , it will inherit the local continuity properties of the basis. Therefore,
many geometrical features can be better captured by a clever choice of the knot multi-
plicities in ¥ and H .

7.2.2. SPLINE-BASED MESHING TECHNIQUES
In the following, we shall drop the tensor-product indexing used in (7.7) and replace it
by a single global index. As such, the mapping operator will be of the form

x ˘
X

i2II

ci wi ¯
X

j 2IB

c j w j , (7.8)

where II and IB ˘ {1, . . . , N }\II refer to the index-sets of inner and boundary basis func-
tions, respectively. The mapping x is a function from the parameter domain ›̂ ˘ [0,1]2 to
the physical geometry ›, whose boundaries @› follow from a regression of the employed
spline space with basis [Vh] ˘ {w1, . . . , wN }, resulting from the tensor-product knot vector
¥ ˘ ¥£H , to the input point cloud.
For the proper selection of ¥ and the subsequent regression, we utilize the approach
illustrated in Section 6.5. Our methodology consists of a stabilized least-squares fit of
the points against the basis and an adaptive re-selection of ¥ based on the local mag-
nitude of the projection residual. The process is repeated until the residual is deemed
sufficiently small. Upon completion, the restriction of x to @›̂ parameterizes @›. Note
that the above procedure essentially selects the boundary control points in (7.8) such
that xj@›̂ ˘ @› is a regression of the input point cloud (hence the word boundary control
points). However, the inner control points are unknown at this stage. As such, the task of
any parameterization algorithm is to properly select the ci in (7.8), such that the result-
ing parameterization is folding-free.
A computationally inexpensive, yet often sufficiently powerful method is transfinite in-
terpolation [GH73]. The inner control points follow from an interpolation of the south-
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ern and northern boundaries in combination with an interpolation from east to west.
Let °e ,°w ,°s and °n parameterize the four segments of @›. In a spline-based setting,
the mapping operator is constructed as follows:

x(»,·) ˘ (1 ¡»)°w (·) ¯»°e (·) ¯ (1 ¡·)°s (») ¯·°n(»)

¡ (1 ¡»)(1 ¡·)p0,0 ¡»·p1,1 ¡»(1 ¡·)p1,0 ¡ (1 ¡»)·p0,1, (7.9)

where the pi , j denote the corners at x(i , j ). The symbolic parameterization from (7.9)
constitutes a recipe for determining the ci in (7.8). They can be computationally in-
expensively determined by a L2-projection or a regression over the Greville-abscissae
[Joh05] corresponding to ¥ . Whenever x is an O-type parameterization, we simply re-
move the nonexistent pair of boundary contours (°n ,°s or °w ,°e ) from (7.9), as well as
the pi , j and perform unidirectional interpolation.
Transfinite interpolation is an O (N ) operation but does not guarantee a folding-free
mapping. In order to handle the complex characteristics of twin-screw extruders, it is
desirable to have a more powerful parameterization technique in our arsenal.
A second class of parameterization methods are PDE-based, notably approaches based
on the principles of Elliptic Grid Generation (EGG). The main purpose of EGG is to com-
pute a mapping x : ›̂ ! › such that the components of x¡1 : › ! ›̂ are harmonic in ›.
This is accomplished by imposing the following system of PDEs on x:

g22x»» ¡ 2g12x»· ¯ g11x·· ˘ 0, s.t. xj@›̂ ˘ @›, (7.10)

where the gi j denote the entries of the metric tensor corresponding to x. We have

µ
g11 g12
g21 g22

¶
˘

µ
x» ¢ x» x» ¢ x·
x· ¢ x» x· ¢ x·

¶
. (7.11)

A justification of this approach is based on the observation that if @› satisfies certain
regularity conditions, x will be bijective (and hence, folding-free) [Aza09]. As such, for
analysis-suitability, we compute a sufficiently accurate approximation xh of x.

7.2.3. NUMERICAL IMPLEMENTATION
A basic numerical algorithm to approximately solve (7.10) with globally C ‚1-continuous
spline bases is discussed in Chapter 2. Here, we follow a similar approach with auxiliary
variables, as introduced in Chapter 3, whose purpose shall become apparent in Section
7.2.4. We approximately solve (7.10) with a mixed-FEM approach, introducing the auxil-
iary variable x» ! u. This reduces the continuity requirements of the basis from globally
C ‚1 to C ‚0 in »-direction.
Let

uh(»,·) ˘
N̄X

i˘1
di w̄i (»,·). (7.12)

where the w̄i are the canonical basis functions of the auxiliary spline space V̄h .
In order to discretize (7.10), we express the »-derivatives in terms of uh and introduce a
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Figure 7.3: The topology we use for the parameterization of the geometry. Here, black boundaries are held
fixed while red boundaries slide along the grid. The two C -grids (red, green) are parameterized (if possible)
with transfinite interpolation while we use EGG (see (7.14)) for the separator (blue).

scaling. Consider

U (u,x) ˘
g22u» ¡ g12u· ¡ g12x»· ¯ g11x··

g11 ¯ g22| {z }
‚0

¯†
, (7.13)

with † ˘ 10¡4 a small term that serves numerical stability. To compute an approximation
xh of x, we solve the system

find (uh ,xh) 2 V̄ 2
h £V 2

h s.t.
Z

›̂

`h ¢
¡
u ¡@»xh

¢
d»¯

Z

›̂

¾h ¢U (uh ,xh)d» ˘ 0, 8(`h ,¾h) 2 V̄ 2
h £ (V –

h )2

and xh j@›̂ ˘ @›, (7.14)

where V –
h ‰ Vh is the subset of vanishing functions on @›̂, spanned by the w j in (7.8).

This yields the control points ci in (7.8) and di in (7.12). For a memory-efficient algo-
rithm to tackle the root-finding problem (7.14), we refer to Chapter 3.
Upon solving (7.14), we are in the possession of xh and uh . Here, xh parameterizes › and
uh serves no further purpose and can be discarded. Unlike the exact solution of (7.10),
its numerical approximation may fold due to numerical inaccuracies. Since a defect is a
direct cause of insufficient numerical accuracy, it can be repaired by increasing the local
density of spline functions wherever the defect is located and recomputing the mapping
operator from the enriched spline space. In practice, we have observed folding to be a
rare occurrence.

7.2.4. APPLICATIONS TO THE GEOMETRY
For the parameterization of the main geometry, we choose the topology illustrated in
Figure 7.3. The topology consists of two C -type parameterizations connected by a third
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Figure 7.4: The first step towards a three-patch parameterization is finding a valid parameterization of a single
rotor-casing O-grid. A valid parameterization is one in which vertical isolines do not cross upon a pullback of
the circular casing onto a reference line segment.

parameterization (blue), henceforth referred to as the separator. The topology is de-
signed such that upon rotation, the rotor lobes slide along the grid in the parametric
domain while the grid is held fixed at the casings. Furthermore, the casings are held arc-
length parameterized while the parametric properties of the rotor lobes depend on the
rotation angle.
As such, the first step in building a three-patch parameterization is finding a valid O-
grid parameterization of a single rotor plus casing. We take the circular casing and map
it onto a straight line segment. A valid parameterization is one in which the vertical
isolines do not intersect under the mapping (see Figure 7.4). To find a valid lobe param-
eterization, we employ the matching algorithm from Section 2.7 to the rotor and casing
point clouds. The points are matched based on their Euclidean distance in a hierarchi-
cal fashion and matched points receive the same parametric value. Upon completion,
we have a monotone reparameterization function »0 : [0,1] ! [0,1] and we assign the
parametric value »i ˘ »0(»̂i ) to the i -th point in the rotor point cloud. Here, the »̂i result
from a chord length parameterization of the point cloud. The steps described above are
carried out for µ ˘ 0 only. The reparameterization function can be reused for different
rotational angles by performing an appropriate periodic shift that is based on the value
of µ.
The coordinates of the points along with their parametric values are utilized for a regres-
sion of the left and right rotor O-grids to a suitable spline basis. Here, the knot vector is
chosen such that the regression residual is below a user-defined threshold (see Section
6.5). Upon completion, the boundary curves are known and we utilize interpolation (see
(7.9)) to form folding-free O-grid parameterizations for both rotor casing pairs.

Remark. In case finding a valid O-grid parameterization through interpolation fails, we
can fall back on EGG, as in Chapter 6.

Next, we cut the left and right rotor O-grids at the parametric values that correspond to
the casing CUSP points to form the left and right rotor C -grids.
We repeat above steps for a large number of discrete angles £ ˘ {µ1, . . . ,µK } taken from
the interval that corresponds to a rotation after which the initial position is again ob-
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tained (typically the interval [0,…]). Upon completion, our database is filled with C -grid
parameterizations for all discrete angles £. We combine the C -grid boundaries along
with the rotor lobe parts that were cut from the rotor-casing O-grids in order to gener-
ate one boundary description of the separator, as shown in Figure 7.3. Clearly, a spline
regression of the northern and southern boundaries has to be performed with a locally
C 0-continuous spline basis, due to the spiked nature of the input point clouds. There-
fore, we assign the parametric value » ˘ 0.5 to the CUSP-points and utilize a knot vector
with p-fold internal knot repetition at » ˘ 0.5 for the »-direction.
The next step is assigning suitable parametric values to the points contained in the east-
ern and western input point clouds. Unfortunately, we have observed that chord length
parameterization leads to unsatisfactory results. In order to ensure that similar para-
metric values are assumed on either sides of small gaps, we again apply the matching
algorithm from Section 2.7. In contrast to the C -grid case, we do not keep one side chord
length parameterized but let both sides float. If two points p l

i and pr
j have been matched,

we assign the parametric value

· ˘ 1
2 (·̂l

i ¯ ·̂r
j )

to both of them. Here, the values of ·̂l
i and ·̂r

j correspond to chord length parameteri-
zations. Upon completion, we have two reparameterization functions that we utilize to
assign parametric values to the input point clouds, similar to the C -grid case.
We perform the above steps for each L-th discrete angle µk 2 £. Typically we take L ˘ 5.
A global reparameterization function is constructed by blending each L-th reparame-
terization function over the µ-interval. Blending enables achieving smoothness in the
parametric properties of the separator contours as a function of µ, which would be lost
if we reparameterized at every µk , due to the discrete nature of the reparameterization
algorithm.
Upon completion, we start filling our database with separator parameterizations utiliz-
ing the EGG algorithm from (7.14). The auxiliary spline space V̄h is of Raviart-Thomas
type [BdFS] on each of the macro elements [BS13] » 2 [0,0.5]£[0,1] and » 2 [0.5,1]£[0,1],
with C 0 interface coupling. To be precise, let

[Vh] ˘ ¾p1
¥ £¾p2

H and
£
V̄h

⁄
˘ ¾q1

¥̄
£¾q2

H̄
(7.15)

be built from the knot vectors

¥ p1,p2 ˘ ¥p1 £H p2 and ¥̄
q1,q2 ˘ ¥̄q1 £H̄ q2 , (7.16)

respectively. Here, the pi and qi denote the polynomial orders used in each direction. If

¥p1 ˘ { 0, . . . ,0| {z }
p1¯1 times

,»1, . . . ,»q ,0.5, . . . ,0.5| {z }
p1 times

,»r , . . . ,»s , 1, . . . ,1| {z }
p1¯1 times

}, (7.17)

we take ¥̄
q1,q2 ˘ ¥̄p1¯1 £H p2 , with

¥̄p1¯1 ˘ { 0, . . . ,0| {z }
p1¯2 times

,»1, . . . ,»q ,0.5, . . . ,0.5| {z }
p1¯1 times

,»r , . . . ,»s , 1, . . . ,1| {z }
p1¯2 times

}. (7.18)
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In our examples, [Vh] is bicubic, i.e., p1 ˘ p2 ˘ 3.
The root-finding problem is initialized with a transfinite mapping (see (7.9)). Conver-
gence can be further accelerated using multigrid techniques (see Chapter 6). We fill our
database in a hierarchical fashion. As soon as the database contains separator param-
eterizations for a sufficiently large subset of angles from £, we perform database inter-
polation in order to generate initial guesses for the remaining angles to further speed up
the process.
After the algorithm has finished, we have a three-patch parameterization for the geom-
etry at every µk 2 £. A classical mesh can be generated by evaluating the spline mapping
in a large number of uniformly-spaced points. The properties of the mesh can be fur-
ther tuned by using a control mapping. This particularly benefits the mesh quality in the
separator. By the tuple (xk ,sk ), we denote the mapping operator and the correspond-
ing control mapping for the separator at µ ˘ µk . The control mapping sk („,”) 2 Ṽ 2

h is a
function from the unit square onto itself. Typically, we take

£
Ṽh

⁄
coarser than [Vh]. The

control points with respect to
£
Ṽh

⁄
follow from solving the following minimization prob-

lem:

1
2

Z

[0,1]2

µ
@(xk – sk )

@„
¢
@(xk – sk )

@”

¶2
d„d” ! min

sk 2Ṽ 2
h

, (7.19)

subject to boundary conditions. The cost function from (7.19) maximizes orthogonal-
ity in the composite mapping xk – sk . The integral is approximated with a collocation
technique. The boundary conditions follow from the requirement that sk be a mapping
from the unit square onto itself. Here, we only let sk slide in ·-direction (see Figure 7.5)
as this leads to better results for tube-like shaped geometries such as the separator. A
sufficient linear condition for the aforementioned requirement is easily formulated and
imposed as a constraint on (7.19). The minimization problem is tackled with an SLSQP
[Kra88] algorithm while the gradient of the cost function is approximated with a col-
ored finite difference approach. To speed up convergence, control mappings of previous
slices can be utilized to initialize the next control mapping. We compute a control map-
ping for the separator at all discrete angles µk 2 £. We do not compute control mappings
for the C -grids (i.e., the control mapping is the identity). Upon completion, we build
a mesh scaffolding for the separator from the composite mapping xk – sk by evaluating
it in a large number of uniformly-spaced points. By n„,”, we denote the number of el-
ements in „ and ” direction, respectively. An adaptive background mesh is generated
by adding additional vertices via linear interpolation within the mesh scaffolding point
cloud. The vertex positions are computed on the fly and do therefore not have to be
stored explicitly (see Figure 7.6). For the background mesh, we denote the number of el-
ements in radial and screw direction by nr and ns with nr ‚ n„ and ns ‚ n”, respectively.
The ratios nr /n„ ‚ 1 and ns /n” ‚ 1 are hence based on a trade off between memory
requirements and grid quality, where ratios closer to 1 typically lead to better meshes
(for a given number of elements) while increasing the memory requirements. The con-
verse holds for larger ratios, whereby it is important to take n„,” sufficiently large so that
the resulting mesh scaffolding collocates the folding-free xk – sk sufficiently accurately
and therefore does not fold itself. For the C-grids, the mesh scaffolding cannot fold due
to an insufficient number of elements in „-direction, thanks to the precomputed repa-
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Figure 7.5: The control mapping serves the purpose of altering the parametric properties of the composite
mapping. Here, we have chosen to orthogonalize the grid lines.

Figure 7.6: The composite mapping xk – sk is evaluated in a number of uniformly-spaced abscissae and the
resulting points (red) serve as a scaffolding for the remaining mesh vertices. Hereby it is important to make a
good trade off between memory requirements and grid quality (more evaluation points tend to increase grid
quality).

rameterization function (see Figure 7.4). Hence, we take n„ ˘ 1 and add vertices un-
til nr (C ) ˘ nr (separator)/2 to yield a boundary-conforming mesh on both sides of the
CUSP points. The storage requirements for the C-grids are thus fully determined by n”,
whose value is chosen to properly resolve the rotor boundaries. Typically, for the C-grids,
we simply take ns ˘ n”.
In order to construct a 3D mesh, we linearly connect the 2D meshes, where na deter-
mines the number of elements in z-direction. Every slice in z-direction knows its initial
angle, which is used to interpolate between the stacked planar slices of the scaffolding.
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7.3. GOVERNING EQUATIONS AND SOLUTION METHOD
7.3.1. GOVERNING EQUATIONS FOR FLOW AND TEMPERATURE OF PLASTIC

MELT
We choose to represent the molten polymer in the extruder as viscous, incompressible
and temperature-dependent fluid. A time-dependent computational domain, denoted
by ›t ‰ Rnsd , is considered. It is enclosed by its boundary ¡t , where t 2 (0,T ) is an in-
stance of time and nsd the number of space dimensions. The velocity u(x, t ) and pressure
p(x, t ) are governed by the incompressible Navier-Stokes equations:

r¢u ˘ 0 on ›t , 8t 2 (0,T ), (7.20)

‰
µ

@u

@t
¯ u ¢ru

¶
¡r¢¾ ˘ 0 on ›t , 8t 2 (0,T ), (7.21)

where ‰ is the fluid density. The stress tensor ¾ is used to close the set of equations:

¾(u, p) ˘ ¡pI ¯ 2·
¡
°̇,T

¢
"(u), (7.22)

"(u) ˘
1
2

¡
ru ¯

¡
ruT ¢¢

, (7.23)

with · being the dynamic viscosity. It is constant for a Newtonian fluid and varies for
Generalized Newtonian models with respect to temperature T and shear rate °̇.
Using single-phase Navier-Stokes equations implies the assumption that the extruder is
fully filled. However, in practice it might occur that the flow channels inside the twin-
screw extruder are only partially filled. In order to account for this, one would have to
extend the model to also include the air phase, which results in solving a multi-phase
flow problem. Popular numerical methods for multi-phase flow are the levelset [OS88]
or the volume of fluid method [HN81]. For simplicity, only single-phase flow will be
considered within this work.
The temperature T (x, t ) inside the extruder is governed by the heat equation:

‰cp

µ
@T
@t

¯u ¢rT
¶

¡•¢ T ¡ 2·ru : " (u) ˘ 0 on ›t , 8t 2 (0,T ). (7.24)

The Dirichlet and Neumann boundary conditions for temperature and flow are defined
as:

u ˘ g f on (¡t ) f
g , (7.25)

n ¢¾ ˘ h f on (¡t ) f
h , (7.26)

T ˘ g T on (¡t )T
g , (7.27)

n ¢•rT ˘ hT on (¡t )T
h . (7.28)

(¡t )i
g and (¡t )i

h are complementary portions of ¡i
t , with i ˘ f (Fluid), T (Temperature).

It is of course true that plastic melts exhibit viscoelastic behavior. We assume, how-
ever, that this is negligible in this context, since the residence time in the twin-screw
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extruder is small. We use Generalized Newtonian models to account for shear-thinning
and shear-thickening behavior of the polymer melt. Using Generalized Newtonian mod-
els implies that the viscosity depends on the invariants of the rate of strain tensor ", such
as the shear rate °̇:

°̇ ˘
p

2" (u) : " (u). (7.29)

Within this work we use two different models, namely the Carreau and the Cross-WLF
model.
The Carreau model is a very popular shear-thinning model in the plastic community
[CDK79]. It is defined as:

·
¡
°̇

¢
˘ ·1 ¯

¡
·0 ¡·1

¢‡
1 ¯

¡
‚°̇

¢2
· n¡1

2 , (7.30)

where ‚ is the relaxation time, n is the power index, ·0 is the viscosity at zero shear rate
and ·1 is the viscosity at infinite shear rate.
The Cross-WLF model considers along with the effects of the shear rate also the influ-
ence of temperature on the viscosity [RO14]. We neglect the infinite viscosity such that
the Cross model is defined as:

·
¡
°̇,T

¢
˘

·0 (T )

1 ¯
‡

·0(T )°̇
¿⁄

·(1¡n) , (7.31)

where ¿⁄ is the critical shear stress at the transition from the Newtonian plateau. ·
¡
°̇,T

¢

depends on the temperature now. This relation is modeled via the WLF equation:

·0(T ) ˘ D1 exp

ˆ

¡
A1

¡
T ¡ Tr e f

¢

A2 ¯
¡
T ¡ Tr e f

¢

!

, (7.32)

with D1 being the viscosity at a reference temperature Tr e f and A1 and A2 are parame-
ters that describe the temperature dependency.

Remark. In most of the available literature, Stokes equations are used to model the fluid
inside a twin-screw extruder. However, Reynolds numbers around 0.1 occur in our appli-
cations s.t. the Stokes equations are not necessarily a valid assumption any more. Thus,
we model the fluid using the Navier-Stokes equations which also include the advective
term. It is noteworthy that the nonlinearity introduced due to the advective term is small
compared to the one introduced by using Generalized Newtonian models.

7.3.2. SPACE-TIME FINITE ELEMENT DISCRETIZATION
We need to discretize the equations in space and time in order to capture the transient
fluid flow. Additionally, the rotating screws introduce a constantly moving and deform-
ing domain. A natural approach accounting for all of these requirements is the DSD/SST
(Deforming Spatial Domain / Stabilized Space-Time) method [TBL92]. In DSD/SST, the
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weak form is written not only over the spatial domain, but instead the space-time do-
main. Thus, we do not need to modify the equations to account for the deforming do-
main.
In the following, we will define the finite element function spaces for the DSD/SST method.
The time interval (0,T ) is divided into subintervals In ˘ (tn , tn¯1), where n defines the
time level. We set ›n ˘ ›tn and ¡n ˘ ¡tn . Thus, a space-time slab Qn is defined as the
volume enclosed by the two surfaces ›n , ›n¯1 and the lateral surface Pn . Pn is described
by ¡t as it traverses In .
We use first-order interpolation for all degrees of freedom. Thus, a SUPG/PSPG stabiliza-
tion technique is used in order to fulfill the LBB condition [DH03]. The finite-element
interpolation and weighting function spaces for velocity, pressure and temperature for
every space-time slab are defined as

(S h
u )n ˘ {uh 2 [H 1h(Qn)]nsd j uh .̆

g f ,h on (Pn)g}, (7.33)

(V h
u )n ˘ {wh 2 [H 1h(Qn)]nsd j wh .̆

0 on (Pn)g}, (7.34)

(S h
p )n ˘ (V h

p )n ˘ {ph 2 H 1h(Qn)}, (7.35)

(S h
T )n ˘ {T h 2 H 1h(Qn) j T h .̆ g T,h on (Pn)g }, (7.36)

(V h
T )n ˘ {vh 2 H 1h(Qn) j vh .̆ 0 on (Pn)g }. (7.37)

The stabilized space-time formulation for equations (7.20) and (7.21) then reads:
Given (uh)¡

n , find uh 2 (S h
u )n and ph 2 (S h

p )n such that:
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(7.38)

holds for all wh 2 (V h
u )n and qh 2 (V h

p )n .
The stabilized space-time formulation for the heat equation (7.24) reads:
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Given (T h)¡
n , find T h 2 (S h

T )n such that:
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holds for all vh 2 (V h
T )n . The following notation is used:

‡
uh

·§

n
˘ lim

‡!0
uh (tn §‡)

Z

Qn

. . . dQ ˘
Z

In

Z

›tn

. . . d›d t
Z

Pn

. . . dP ˘
Z

In

Z

¡tn

. . . d¡d t

(7.40)

The stabilization parameters ¿MOM, ¿CONT and ¿TEMP are based on expressions given in [PB17].
We use a Newton-Raphson method to solve equation (7.38) and (7.39). The flow and
temperature fields are coupled strongly using a fixed-point iteration until convergence
is reached. The stress contributions in the SUPG/PSPG stabilization terms (fifth term in
equation (7.38) and fourth term in equation (7.39) ) are zero, since they involve second-
order derivatives. We improve the consistency of our method by employing a least-
squares recovery technique for these terms [JCWS99]. In order to solve the resulting
linear system of equations within each Newton iteration, we use a GMRES solver with
an ILUT preconditioner.

7.4. NUMERICAL EXAMPLES
7.4.1. TWO-DIMENSIONAL ISOTHERMAL FLOW
We want to show that simulations based on the new method for grid generation pro-
duces the same high-quality results as already established methods like SRMUM or XFEM.
Therefore, we simulate the isothermal flow of a plastic melt, described by the Carreau
model, in a 2D cross section of a twin-screw extruder. The Carreau parameters are given
in Table 7.1. The screw geometry is generated based on an adapted version of Booy’s
description as presented in [FHM¯12, HBE18]. The screw parameters are given in Table
7.2. The rotation speed of the screws is !s ˘ 60 rpm in mathematically positive direc-
tion. We set the rotational velocity on the screws as a Dirichlet boundary condition and
a no-slip condition on the barrel. In [FHM¯12], Stokes flow was used. Since we use
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Navier-Stokes equations to model the flow, we employ a density of ‰ ˘ 1 kg /m3 in or-
der to make the results comparable. We employ a time step size of ¢t ˘ 0.00625s or

·0 1290 Pa s
·1 0 Pa s
n 0.559 -
‚ 0.112 s

Table 7.1: Carreau parameters.

Screw radius Rs 15.275 mm
Center line distance Cl 26.2 mm
Screw-screw clearance –s 0.2 mm
Screw-barrel clearance –b 0.15 mm

Table 7.2: Screw geometry parameters.

2.25 –/s. The resulting flow can be considered as quasi-steady or instantaneous because
the time-scales of the momentum diffusion are very small compared to the process itself.
The resulting Reynolds number inside the small gap region is Re ˘ 0.000003. Therefore,
it is sufficient to compare the solution at individual screw orientations. Two screw ori-
entations, namely µ ˘ 0– and µ ˘ 112.5– have been used in [HBE18]. It is demonstrated
that µ ˘ 112.5– is the more complex orientation. Thus, we will only compare results
for that orientation. In order to verify the general applicability of the method, we use
4 different mesh resolutions. One advantage of the presented method is that we have
to construct the spline parameterization only once and can then extract the scaffolding
for all desired mesh resolutions. The region of special interest is the intermeshing area
between the two screws. A high pressure drop drives the flow solution resulting in high
velocities and high shear rates, see Figure 7.7b. Thus, resolving this part correctly is ex-
tremely important. Therefore, we only refine our mesh inside this region and keep the
mesh resolution inside the two C-grids constant. The only exception is the first mesh,
where we slightly reduce the resolution for the C-grid in order to avoid highly stretched
elements. We evaluate the spline-parameterization of the C-grids as well as the sepa-
rator for all mesh points on the screw, meaning ns ˘ n„. Inside the separator we use a
scaffolding with 12 elements in „-direction. This number is kept constant throughout
the refinement of the background mesh. All mesh quantities are given in Table 7.3. In
the following, we will refer to them by the total number of elements in screw direction
’ns total’.
We compare the velocity results inside the intermeshing area along a line in y-direction
at x ˘ 2.077 mm. The line is visualized in red for mesh 280 in Figure 7.7a. As a reference
solution, we use flow results computed with the same time step size on a SRMUM mesh
with 1000 elements in screw and 20 elements in radial direction. The plot over line for the
normalized y-velocity yvel /Vp , with Vp ˘ 2…Rs!s is shown in Figure 7.8. Looking at the
overall plot over line in Figure 7.8a, we can not observe major differences between the

mesh ns C-grid ns separator ns total nr # elements n„ n” total
1 200 80 280 6 3360 12 280
2 300 160 460 10 9200 12 460
3 300 300 600 12 14400 12 600
4 300 600 900 18 32400 12 900

Table 7.3: Mesh discretization for 2D convergence study.
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(a) Mesh and plot over line.

(b) Pressure distribution.

Figure 7.7: Mesh as well as pressure results for the orientation µ ˘ 112.5–.

results computed on different meshes compared to the reference solution. The veloci-
ties differ by less than 1 %. However, the peak velocities differ more. Figure 7.8b shows
that this difference decreases with increasing mesh resolution. The results are also in
accordance with the results presented in [FHM¯12].

7.4.2. TWO-DIMENSIONAL TEMPERATURE-DEPENDENT FLOW INSIDE MIX-
ING ELEMENTS

In the previous section, we have shown that the meshes based on the spline-based pa-
rameterization technique produce valid results. However, the true advantage over SR-
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(a) (b)

Figure 7.8: Velocity plots over line for orientation µ ˘ 112.5– – (a) velocity profile over entire line (b) close view.
The numbers in the legend denote meshes based on ns total, see Table 7.3. The reference solution r e f is
computed with the time step based on a SRMUM mesh with 1000 elements in screw and 20 elements in radial
direction.

MUM only becomes apparent in the context of non-convex screw shapes - shapes that
SRMUM cannot handle at all. We use two different screw configurations that are in-
spired by the screw design that has already been given in Table 7.2. The resulting screw
geometries are given in Figures 7.17 and 7.18.

mesh ns C-grid ns separator ns total nr # elements
1 150 60 210 4 1680
2 300 120 420 8 6720
3 600 240 840 16 26880

mesh n„ n” total nsl i ces … memory savings
1 12 210 101 22 %
2 12 420 101 61 %
3 12 840 101 81 %

Table 7.4: Mesh discretization for 2D mixing elements for Config. 2.

Config. 2 can be considered slightly more complex since the screw geometry has sharper
edges compared to Config. 1. We employ several meshes for Config. 1 that will be later
used in order to perform a mesh convergence study. Mesh details are given in Table 7.4
and 7.5, including the memory savings obtained by only storing a scaffolding. Note, that
the mesh for Config. 2 is slightly finer than the second mesh of Config. 1. This is due to
the more complex shape of the screw profile, which necessitates using more grid points
to properly capture the sharp edges.
Similar to the previous section, we evaluate the spline parameterization along with the
computed control mapping. Also in this non-convex case, the reparameterization is
used to ensure that the C-grid parameterization with transfinite interpolation does not
fold. Inside the separator, we again evaluate the spline control mapping composition
in a uniform grid comprised of 12 elements in „-direction and n” ˘ ns in ”-direction.



7

162 CHAPTER 7. FINITE ELEMENT METHODS FOR TWIN-SCREW EXTRUDERS

(a) Config. 1

(b) Config. 2

Figure 7.9: Two 2D screw configurations for different mixing elements.

The resulting interpolated fine meshes inside the separator are given for different an-
gles for Config. 1 in Figure 7.10 and Config. 2 in Figure 7.11. In order to evaluate the
mesh quality, we use the scaled Jacobian determinant calculated by the ’Mesh quality’
filter in Paraview [Aya15]. We obtain highly distorted elements in particular in the vicin-
ity of concave corners, but the scaled Jacobian determinant is never negative. This is
extremely important because the finite-element discretization can cope with highly dis-
torted elements but fails in case of negative determinants.
In the following, we aim to demonstrate the advantage of the presented meshing method.
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ns C-grid ns separator ns total nr # elements
400 140 540 8 8640

n„ n” total nsl i ces … memory savings
12 540 101 63 %

Table 7.5: Mesh discretization for 2D mixing elements for Config. 2.

(a) 0.0– (b) 32.4– (c) 129.6–

Figure 7.10: Scaled Jacobian determinant inside the separator or intermeshing area for Config. 1 for different
angles on mesh 2.

In case of isothermal flow, it is not crucial to have matching discretization for consec-
utive screw orientations due to the quasi-steady behavior of the flow. However, tak-
ing temperature effects into account results in equations where a solution at the next
time step strongly depends on the previous one. Therefore, we simulate a temperature-
dependent plastic melt inside the two 2D mixing elements. The melt is modeled using
the Cross-WLF model. The parameters are given in Table 7.6. Note, that the parame-
ters have been selected for testing purposes but are in inspired by those of polypropy-
lene. The plastic melt has density ‰ ˘ 700 kg /m3, specific heat cp ˘ 2400 J/(kg K ) and
thermal conductivity • ˘ 10.0 W /(m s). The screws rotate in mathematically positive
direction with ! ˘ 60 rpm. For the flow, we set a no-slip condition on the barrel and the
rotational velocity as Dirichlet condition on the screws.
Concerning the temperature, the screws are considered to be adiabatic. On the barrel
we set a Dirichlet temperature condition as Tbar r el ˘ 473K ¯(10x)/0.03K /m and by that,

D1 5.0e+13 Pa s
¿⁄ 2500.0 Pa
n 0.29 -
Tr e f 263.15 K
A1 28.32 -
A2 51.60 K

Table 7.6: Cross-WLF parameters.
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(a) 0.0– (b) 32.4– (c) 129.6–

Figure 7.11: Scaled Jacobian determinant inside the separator or intermeshing area for Config. 2 for different
angles.

(a) Refinement in space with ¢t ˘ 0.0625s. (b) Refinement in time on mesh 2.

Figure 7.12: Mesh and time step refinement study for Config. 1 without viscous dissipation. The temperature
results are compared along a line from the lower to upper cusp point at time t ˘ 1.625s.

generate a linear increase of the temperature from the left to the right barrel. The initial
condition is T0 ˘ 473K . It is important to note that this constitutes a test case that has no
connection to a real twin-screw extruder application. It merely demonstrates the valid-
ity of the method, as cold/hot melt is constantly pushed from left to right and vice versa.
We use different time step sizes to show that the solutions are independent of the time
step. Thus, we have to interpolate linearly between slices for most of the resulting screw
orientation. Assuming that each individual slice is bijective, a linear interpolation in z-
direction will lead to a bijective volumetric mesh.

CONFIG. 1:
We investigate the temperature field for Config. 1 for different time steps on different
meshes. In a first step we neglect the effects of viscous dissipation to solely demon-
strate how the hot and cold melt is pushed from left to right and vice versa. We use
three different meshes to show that the results are mesh independent. Therefore, we
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(a) t ˘ 1.625s (b) t ˘ 1.675s

(c) t ˘ 1.725s (d) t ˘ 1.775s

Figure 7.13: Temperature field for Config. 1 for selected time steps demonstrating relevant physical effects
without viscous dissipation. The results have been computed on mesh 2 using a time step of ¢t ˘ 0.003125s.

compare the temperature results along a line between the lower and upper cusp point at
time t ˘ 1.625s. The time step size is ¢t ˘ 0.00625s. The results are given in Fig. 7.12a.
Mesh convergence is clearly visible. The results on the coarsest mesh already show very
good agreement to the ones obtained on the finest mesh. In the following, we investi-
gate the choice of an appropriate time step size. We compute the temperature results on
mesh 2 for four different time steps, 7.12b. We can observe a difference between results
for the different time step sizes especially inside the small gap region. However, even
for ¢t ˘ 0.0125s we obtain results with a reasonable error for industrial applications.
The difference between results obtained with ¢t ˘ 0.0625s and the finest time step size
¢t ˘ 0.0015625s are less than 1 %.
Figure 7.13 shows the temperature field at different angles computed on mesh 2 with
¢t ˘ 0.003125s. As already described, cold melt is transported by the screws from left to
right. Inside the recessed portion of the screw in the lower part of the left barrel, cold
melt is transported into the intermeshing area, see Figure 7.13a. At time t ˘ 1.675s, the
cold fluid has been transported into the intermeshing area and starts to be convected
into the lower part of the right barrel. The flow direction inside the small gaps between
the screw is negative, pushing warmer melt into this area. In the following time steps,
t ˘ 1.725s and t ˘ 1.775s, more and more warm melt is pushed through the small gap
into the lower part of the intermeshing area, leading to a temperature increase there. The
temperature field emerges smoothly in time showing the good quality of the underlying
meshes as well as numerical methods. In the following, we include viscous dissipation.
Thus, we expect the melt to heat up due to high shear rates inside the small gaps. Again,
we analyze the effect of the mesh and time step size. The results are shown in Fig. 7.14.
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(a) Refinement in time on mesh 2. (b) Refinement in space with ¢t ˘ 0.0625s.

Figure 7.14: Mesh and time step refinement study for Config. 1 including viscous dissipation. The temperature
results are compared along a line from the lower to upper cusp point at time t ˘ 1.625s.

(a) t ˘ 1.625s (b) t ˘ 1.675s

(c) t ˘ 1.725s (d) t ˘ 1.775s

Figure 7.15: Temperature field for Config. 1 for selected time steps demonstrating relevant physical effects
including viscous dissipation. The results have been computed on mesh 2 using a time step of ¢t ˘ 0.003125 s.
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(a) t ˘ 1.5s (b) t ˘ 1.55s

(c) t ˘ 1.6s (d) t ˘ 1.675s

Figure 7.16: Temperature field for Config. 2 for selected time steps demonstrating relevant physical effects
including viscous dissipation.

Similar to the case without viscous dissipation, we see a good convergence in time and
space. However, the difference of the solution between the coarsest and finest time step
increases especially inside the small gap region. This shows the additional complexity
introduced to the simulation by viscous dissipation. The temperature field at different
angles computed on mesh 2 with time step ¢t ˘ 0.003125s is shown in Figure 7.15. Com-
paring the results with and without viscous dissipation, we can clearly observe the effects
of the heating of the melt due to viscous dissipation. At time t ˘ 1.675s, heated melt in-
side the small gap is pushed into the lower part of the intermeshing area. This continues
for the following time steps, leading to a major increase of temperature in that area. The
temperatures are more than four degrees above those resulting from neglecting viscous
dissipation. However, the convective behavior of the melt is similar to the case with no
viscous dissipation.

CONFIG. 2:
For Config. 2, we analyze the temperature and flow behavior at an earlier stage, see
Figure 7.16. Based on the numerical experiments for Config. 1, we use a time step of
¢t ˘ 0.003125s. In this configuration, the cold melt is not transported inside the re-
cessed portion, but is pushed into the intermeshing area due to a larger gap region be-
tween screw and barrel, see Figure 7.16a. Between time t ˘ 1.55 s and t ˘ 1.6s, the melt
is pushed upwards out of the cold temperature part, which decreases the temperature
in the upper part between the screws. At time t ˘ 1.675s we can observe an increase of
temperature in the lower part of the intermeshing region. The direction of flow inside
the screw-screw gap has changed sign and the melt is pushed downwards through the
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gap. Again, the melt is heated up especially inside this small gap due to high shear rates.
All these observations are in line with what one would expect by purely looking at flow
results.
The results for the two configurations show the potential of the presented spline-based
meshing approach. We are able to generate high-quality meshes for extremely challeng-
ing moving domains. Only generating a certain amount of slices and interpolating all
other meshes seems to be a valid approach. Due to the space-time approach of the
method, this unsteady 2D test case is already a proof of concept for 3D. Furthermore,
it is noteworthy that the time spent for updating the mesh was less than 0.1 %. The sim-
ulations have been run on 24 cores on the Intel Xeon based RWTH cluster using an MPI
parallelization. For example, computing one revolution for Config. 1 on mesh 2 using
a time step of ¢t ˘ 0.00625s takes 115s. The time spent for the mesh update was only
0.02s.

Remark. The appeal of the presented methodology becomes apparent when perform-
ing mesh refinement studies as well as time step size studies. The spline parameteriza-
tion for the screw only has to be generated once at the beginning. For a mesh refinement
study only the scaffolding needs to be regenerated which is a simple evaluation of the
spline parameterization. A time step refinement study is even simpler. Given a scaffold-
ing for instances of £ in the interval [0,…], we can simply compute the mesh at any time
instance by interpolating between the generated instances. Thus, it is not necessary to
generate any new mesh in case one aims to adapt the time step size.

7.4.3. THREE-DIMENSIONAL APPLICATION CASE
Within this section, we aim to show the functioning of the spline-based parameterization
technique for real 3D applications. Once again, we consider the temperature-dependent
flow of a plastic melt through a complex screw geometry. The plastic melt is modeled us-
ing the Cross-WLF model. The model parameters employed are based on a polypropy-
lene from the product portfolio of a leading raw material manufacturer. The parame-
ters are given in Table 7.8. The plastic melt has density ‰ ˘ 710 kg /m3, specific heat
cp ˘ 2400 J/(kg K ) and thermal conductivity •0 ˘ 0.5 W /(m s).

Screw radius Rs 0.156 m
Center line distance Cl 0.262 m
Screw-screw clearance –s 0.004 m
Screw-barrel clearance –b 0.004 m
Pitch length pl 0.28 m

Table 7.7: Geometry parameters of a 3D mixing screw
element for temperature-dependent flow.

D1 1.2e+14 Pa s
¿⁄ 25680.0 Pa
n 0.29 -
Tr e f 263.15 K
A1 28.32 -
A2 51.60 K

Table 7.8: Cross-WLF parameters.

The 2D screw geometry cross section is a simplified combination of the two 2D configu-
rations of the previous section, see Figure 7.17. The screw geometry parameters are given
in Table 7.7. The 3D setup is shown in Figure 7.18. For simplicity we only consider a sin-
gle screw element. The screws rotate in mathematically positive direction with ! ˘ 120
rpm. The computational domain is extended at the inflow and outflow. By that, a solely
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Figure 7.17: 2D cross section.

ns C-grid ns separator ns total nr na # elements n„ n” total nsl i ces …
150 70 220 12 300 1584000 220 16 101

Table 7.9: Mesh discretization for 3D mixing elements.

positive velocity in z-direction is guaranteed at the outflow. This is important since we
set a natural boundary condition and thus, negative velocities might cause instabilities.
Furthermore, this setting is also similar to a industry-like twin-screw extruder where the
screw section leads to the die. The extended inflow circumvents high shear rates in the
inflow area, which would result in an unnaturally high temperature increase. The exten-
sion is achieved by relaxing the 2D screw surface over a distance of 0.28 m to a circle with
a radius of 0.06 m. For the mesh, we simply interpolate between the original 2D mesh
and a structured mesh between the two circles. We use a background mesh with ns ˘ 220
elements on the screw, split into 70 elements inside the separator and 150 for the C-grid.
nr ˘ 12 elements are used in radial direction. A full pitch length is discretized using 200
elements in axial direction and the inflow and outflow extensions are discretized with
50 elements each. The scaffolding generated by the spline parameterization consists of
all points in circumferential direction, ns ˘ n” and n„ ˘ 16 inside the separator. In or-
der to account for the rotation, the scaffolding is evaluated for 101 equally distributed
instances of £ in the interval [0,…]. Storing only the scaffolding instead of the full mesh
for each instance results in memory savings for the mesh of 75 %. All mesh parameters
are listed in Table 7.9. We simulate a scenario with a mass flow rate of ṁ ˘ 25560 kg /h.
This is achieved by setting a uniform inflow velocity at the inlet. The barrel is heated
with Tbar r el ˘ 473K ¯10K ⁄ z/1.12m and the screws are considered to be adiabatic. The
inflow temperature is Ti n f l ow ˘ 473 K . In order to obtain a good initial condition for
the temperature, we compute a steady solution where we neglect the viscous dissipation
term and increase the conductivity by a factor of 10. The time step size is ¢t ˘ 0.005s
which is chosen based on the results of the previous section. The results have been com-
puted on 360 cores on the Intel Xeon based Juelich cluster. Computing one revolution
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Figure 7.18: 3D sketch of extruder including in/outflow extension.

takes 5832s, whereas the part spent for the mesh update is only 0.77s which shows the
efficiency of the presented meshing approach. The flow results are presented in Figure
7.19. Operating with the chosen design results in a pressure build-up over the screw el-
ement, see Figure 7.19b, which could be used to transport the fluid into, for instance,
an injection mold. The velocity in z-direction is given in a plane at y ˘ 0.074 m in Fig-
ure 7.19a. A strong backflow behavior can be observed in the small gaps between the
screws. This is desirable for twin-screw extruders since it increases their mixing capa-
bilities. Inside the extruder we observe Reynolds numbers up to Re ˘ 0.1, which justi-
fies using Navier-Stokes equations. The temperature field reaches a periodic state after
roughly 10 revolutions. The temperature results for half a rotation are shown in Figure
7.20. The melt is heated inside the high shear regions in the small gaps between the
screws. Furthermore, we can observe how cold melt is pushed forward inside the high
velocity regions, especially inside the wide parts of the intermeshing region.

7.5. CHAPTER CONCLUSIONS
Within this work, we presented an efficient and robust meshing strategy that allows
to use boundary-conforming finite element methods to compute the unsteady flow of
plastic melt inside co-rotating twin-screw extruders. It is suitable for arbitrarily-shaped
screw geometries. The method is a combination of spline-based meshing techniques
based on EGG and SRMUM. 2D spline-based geometry descriptions are generated for
a certain number of screw orientations. The spline description is evaluated at discrete
points to obtain a point cloud that is used as a scaffolding to adapt a structured back-
ground mesh to the actual screw configuration. In contrast to algebraic grid generation,
the advantage of the proposed approach is two-fold: on the one hand, it allows for fine
tuning of the mesh properties by employing a control mapping (see Section 7.2.4). On
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(a) Pressure results for the entire domain. (b) Contour for the velocity in z-direction at y ˘
0.074 m.

Figure 7.19: Flow results for t ˘ 5.0s.

the other hand, refinement studies are easily accomplished by evaluating the composite
spline-mapping in a increasing number of points. Additionally, storing only a limited
number of points instead of a full 3D mesh rotation saves a lot of memory. The actual
mesh update at run-time is very cheap and requires only a fraction of the time spent for
the actual solve of the flow solution.
A finite element method based on the Deformable-Spatial-Domain/Stabilized Space-
Time (DSD/SST) finite element formulation was used. A 2D test case simulating the
flow of an isothermal polymer in a twin-screw extruder cross section served as a valida-
tion case for the presented framework including the new meshing strategy. Convergence
of the solution has been demonstrated as well as accordance to results from literature.
Furthermore, two complex, mixing-element-like, screw shapes have been used to show
the robustness of the meshing technique in 2D. We computed unsteady temperature-
dependent flow of the plastic melt inside the aforementioned screw shapes. The use of a
space-time finite element method already proofs, that the presented method is capable
of computing unsteady flow results using boundary-conforming meshes in 3D. We addi-
tionally computed the flow of a temperature-dependent plastic melt in 3D for a complex
screw shape in a single element twin-screw extruder to further demonstrate the great
potential of the presented approach.
In the future, we aim to compute flow results for a larger variety of screw designs. This
will be used in order to compare the quantities like residence time distributions or mix-
ing behavior. The advantages of the method already shown for unsteady temperature
results can also be exploited by computing solutions of advection-diffusion equations,
in order to characterize mixing behavior of the individual screw design.
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(a) t ˘ 5.00s (b) t ˘ 5.04s (c) t ˘ 5.08s

(d) t ˘ 5.12s (e) t ˘ 5.16s (f) t ˘ 5.20s

Figure 7.20: Temperature distribution in mixing element displayed on three planes: xy-plane at y ˘ 0.074 m;
a plane with normal n = (1.0,¡1.5,0.0) and point r on the plane with r ˘ (¡0.07,0.0,0.0); a plane with n ˘
(0.0,¡1.0,1.0) and r ˘ (0,0,0.56).
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8
CONCLUSION

In this chapter we recapitulate the main findings of this work and suggest possible topics
for future research.

8.1. GENERAL CONCLUSIONS
This work extends the available NURBS-based geometry parameterization arsenal by
techniques that employ the principles of FEA / IGA to a PDE-based problem formula-
tion for the surface to volume problem @› ¡! ›. The techniques are based on the three
basic principles from Section 1.3, which we restate here for convenience:

A. Robustness is more important than efficiency;

B. Differentiability counts;

C. Whenever possible, topology changes should be avoided.

In the following, we discuss the manifestations of Points A to C in the techniques de-
veloped by this work as well as the key advantages we see in employing a PDE-based
problem formulation for the geometrical aspects of an IGA-based CSE workflow.

• As a main manifestation of Point A, the provided techniques approximate a ge-
ometry parameterization whose inverse is comprised of harmonic functions in ›.
Hereby, the theoretically predicted bijectivity property enables removing mapping
degeneracies through (local or structured) refinement. This possibility is first ad-
dressed in Section 2.8 and further developed in Chapter 4, where THB-splines are
combined with local refinement based on duality considerations. The algorith-
mically convenient possibility of trading computational costs in exchange for ro-
bustness is a key aspect of the techniques presented in this work. Besides being
the main topic of Chapter 4, a posteriori refinement is extensively employed to
improve the computational robustness of the twin-screw machine parameteriza-
tion frameworks developed in Chapters 6 and 7. It plays a key role in Chapter 5
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where it enables adopting the so-called variable basis approach which performs
repeated THB-refinement during each shape optimization iteration and enables
tuning the IGA basis to the currents needs. Overall, the improved robustness re-
sulting from (local) refinement is a main contributor for the development of the
autonomously operating techniques from Chapters 5 to 7.

• The monolithic treatment of geometry and simulation, made possible by the PDE-
based problem formulation, streamlines the computational workflow and simpli-
fies the codebase. This is mainly owed to employing a large subset of the widely-
used (and hence readily-available) FEA / IGA techniques for the geometrical as-
pects of the numerical simulation pipeline, such as dual weighted residual (cf.
Section 4.3), (Schur complement) Newton-Krylov (cf. Sections 3.3.1, 3.3.2, 4.2.1
and 5.5.4), mixed finite element techniques (Chapter 3), THB-splines (Chapter 4)
and multigrid techniques (Chapters 2 and Chapter 6).

• The methods developed by this work largely conform with Point B. Hereby, differ-
entiability (with respect to the boundary correspondence xD : @›̂ ! @›) is greatly
facilitated by the PDE-based problem formulation. As a main use case, Chapter
5 proposes a shape optimization algorithm in which the gradient of the objective
function, which exhibits a complex dependency on the continuously changing ge-
ometry, is assembled from an expression that has been derived fully symbolically.
This is accomplished by adding the governing PDE-equations corresponding to
both geometry and state variable to the problem formulation in the form of addi-
tional equality constraints. The chapter derives expressions for the constituents of
the gradient from the combined IGA-residual by making use of the implicit func-
tion theorem. It then computationally efficiently assembles the gradient using an
adjoint method, completely bypassing the need to fall back on finite-differencing
or automatic differentiation. Once an objective function evaluation is completed,
the additional costs associated with computing the gradient are low. Hence, algo-
rithms that employ Hessian update strategies, which typically compute the objec-
tive function and gradient in tandem, are particularly well-suited.

• Differentiability is a key aspect of the twin-screw machine geometry parameteri-
zation frameworks from Chapters 6 and 7. The chapters ensure that the Dirichlet
data @› is (C ‚1)-continuous in the rotational angle µ by blending a fixed num-
ber of uniformly-spaced reparameterization functions over the entire µ-interval
(see Sections 6.8 and 7.2.4). As a result, the PDE-solution becomes a differen-
tial function of µ. This enables an approach that hierarchically fills an initially
empty database with planar parameterizations for a large number of discrete an-
gles µi . The continuous dependency allows for interpolation within the partially-
filled database, which, in turn, reduces computational costs. It furthermore en-
ables generating volumetric parameterizations by taking a large number of planar
parameterizatons from the database and stacking them in the z-direction. This
process essentially collocates a (in z-direction) diffeomorphic volumetric param-
eterization by sweeping a family of planar parameterizations in z-direction.

• Chapters 6 and 7 avoid topology changes by employing a parametric domain com-
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prised of three macro elements (patches) in combination with a sliding grid ap-
proach. Along with the µ-continuous Dirichlet data, this is a main contributor to
the database-driven approach developed in the chapters. Furthermore, in combi-
nation with differentiability (Point B) it constitutes a key ingredient for generating
volumetric parameterizations, which sweep the three families of planar parame-
terizations (the two C -type grids and the separator) over the full µ interval. Hereby,
the number of patches is fixed but the number of elements per patch may vary and
are tuned by the knot vector which is adaptively reselected based upon the current
needs.

8.2. OUTLOOK
In the following, we conceptualize several topics for future research and present first
results.

8.2.1. MULTIPATCH DOMAIN OPTIMIZATION
The concept of domain optimization introduced in Section 4.4, which enables control-
ling the parametric properties of the PDE-solution, is not limited to singlepatch do-
mains. The multipatch approach from Section 3.3.2 assumes that the mutually disjoint
›̂i which cover the parametric domain

›̂ ˘ Int

ˆ
n[

i˘1
›̂i

!

(8.1)

are transformations of the unit quadrilateral ›̃ ˘ (0,1)2 ‰ R2 under a set of affine maps
m̂i : ›̃ ! ›̂i . Lifting this restriction enables choosing a set mi : ›̂i ! ›̂, i 2 {1, . . . ,n}
such that the parametric properties of the resulting patchwise composite mappings xi

h :
›̃ ! ›, with xi

h(„) ’ x̃j›̂i
– mi – m̂i („) (cf. (3.32)) are tuned as desired. This induces a

global control mapping s : ›̂ ! ›̂, with sj›̂i
˘ mi . A reparameterization is conveniently

achieved by differentiating with respect to the components of s(») instead of », in the
residual from (3.9). Since s : ›̂ ! ›̂ maps the convex parametric domain onto itself,
methods that select a suitable reparameterization may exploit the maximum principle,
as in Section 4.4.1. We seek a reparameterization as the unique minimizer of the follow-
ing convex optimization problem:
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, s.t. s(») ˘ » on @›̂, (8.2)

where Vh ‰ H 1(›̂) as before. Here, we have made use of the chain rule for an expression
of the differential of s with respect to the reference coordinate system in ›̃. Figures 8.1
and 8.2 show the bat-shaped geometry from Section 3.4.3 before and after reparameter-
ization, along with the corresponding parametric domains.
Figure 8.2 reveals that reparameterization with (8.2) has a regularizing effect on the para-
metric properties of the mapping. In particular, the reparameterization weakly enforces
higher-order interface continuity (sufficiently distant from the extraordinary vertex) with-
out the need to manually couple DOFs. However, the reparameterization increases the
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Figure 8.1: The bat-shaped geometry parameterization in the absence of reparameterization.

Figure 8.2: The bat-shaped geometry upon reparameterization of ›̂.
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variance in the size of elements. As in Section 4.4.1, the isoline distribution can be tuned
by extending the minimization problem from 8.2 with an appropriately-chosen diffusion
tensor.

8.2.2. MULTIPATCH WITHOUT AUXILIARY VARIABLES

The non-affine nature of the pullbacks introduced in Section 8.2.1 prevent a compu-
tationally efficient approach based on the techniques from Chapter 3. Besides aspects
of computational efficiency, an approach that avoids auxiliary variables may serve the
prospect of combining multipatch with unstructured spline technologies, such as THB-
splines. Preliminary numerical evidence suggests that the approach from Section 8.2.1
(and thus Chapter 3) is subject to the same inf-sup stability requirement as, for instance,
the Stokes problem [BBF¯13]. This justifies selecting the auxiliary variable spline space
as uniformly h-refined with respect to the primal space on each macro element [BS13].
To the best of our knowledge, the only investigation of the inf-sub stability requirements
corresponding to the isogeometric treatment of the Stokes problem with THB-splines
is given in [BJ18]. The findings from [BBF¯13] and [BJ18] suggests that, in an approach
that combines multipatch and THB-splines, an h-refined auxiliary space is stable. How-
ever, due to the unstructured nature of THB-splines, the separability of the matrices from
(3.17) and (3.18) is lost. This prevents eliminating the auxiliary variables from the prob-
lem formulation or necessitates direct inversion of the associated matrices using, for
instance, a sparse factorization.
Here, an approach that employs a globally C 0(›̂)-continuous spline basis, while cou-
pling higher-order patch interface derivatives using discontinuous Galerkin (DG) [CKS12,
LMMT15] techniques, may be a remedy. Not only does a DG-based approach avoid ar-
tificially inflating the problem size, it also requires no separate treatment of structured
and unstructured spline spaces. A number of recent studies that investigate the finite el-
ement treatment of second-order elliptic equations in nonvariational form, which may
be applicable to a linearization of the governing EGG equations, have appeared in the
literature. To the best of our knowledge, Lakkis et al. made the first contribution in
[LP11]. The approach introduces auxiliary variables for the Hessian instead of the gradi-
ent of the primal variable. C 0-DG schemes for classical FEA applications are developed
in [DP13] and [FHN17], where interior penalty terms are employed for suppressing un-
physical flux jumps across element edges. In an IGA-context, such penalizations may
then be restricted to the patch interfaces, substantially reducing the number of DOFs
that require special DG-based treatment compared to an approach that employs classi-
cal FEA elements. Another potential advantage is weakly imposing the Dirichlet bound-
ary data, which simplifies the expression for the gradient of the objective function in
Section 5.5. As such a penalty term operates on the zeroth derivative of the mapping, it
can be disregarded for interior interfaces.
A further possibility is a H 2(›̂)-conforming multipatch approach. This requires con-
structing a finite-dimensional spline basis Vh ‰ H 2(›̂) on the (possibly unstructured)
multipatch domain ›̂. To achieve this, in particular, we mention the techniques de-
veloped by Toshniwal et al. in [TSH17]. The approach combines THB-refinement by
the patch interfaces and extraordinary vertices with the coupling of DOFs, resulting in a
basis of higher regularity over ›̂. The techniques from Chapter 4 are straightforwardly
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extended to multipatch domains by discretizing the weak form over ›̂ using the cou-
pled THB-basis. An algorithmically convenient implementation prolongs the vector of
weights from the coupled to the uncoupled basis, which is then used to assemble the
residual in the usual way. Figure 8.3 shows the parameterization of a screw geometry

Figure 8.3: Screw parameterization that avoids auxiliary variables with the techniques from [TSH17].

along with the reparameterized domain, which is comprised of six patches. The ap-
proach avoids auxiliary variables by employing a basis Vh ‰ H 2(›̂) using the techniques
from [TSH17]. It requires no DG-based coupling and is compatible with the computa-
tional approaches proposed in Section 4.2.

8.2.3. SPACE-TIME IGA FOR SWEPT SURFACES
As demonstrated in Section 2.10.2 and Chapters 6 and 7, the planar EGG equations en-
able parameterizing the interior of solids › ‰ R3 by sweeping a family of ›z ‰ R2 in
z-direction. In the case of twin-screw compressors / extruders, the planar shells are a
function of the rotational angle µ, i.e., ›z ˘ ›z(µ), parameterized by the xµ : ›̂ ! ›z(µ),
where ›̂ ‰ R2 is static. The solid is then parameterized by

X(»,·,µ) ˘ (xµ(»,·), z(µ))T , (8.3)

where (»,·,µ) 2 ›̂££.
In this section, we conceptualize the generalization of this principle to arbitrary swept
surfaces and propose a space-time solution strategy.
Let C : (0,1) ! R3 be a characteristic curve such that

n(t ) ˘
@C(t )

@t
exists 8t 2 (0,1).
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Figure 8.4: A shell ›t0 ‰ › whose coordinates are defined with respect to the normal plane of a characteristic
curve C(t ).

Furthermore, let ›t ‰ ›, t 2 (0,1) be a mutually disjoint family of two-dimensional
shells. For given t ˘ t0, we assume that ›t0 possesses a preimage ›t0

0 with respect to
a local chart °t0 : ›t0

0 ! ›t0 of the form (x1, x2) ! (x1, x2, x3(x1, x2)), where each ›t0
0 is

topologically equivalent to ›̂. Here, (x1, x2, x3) is defined with respect to the coordinate
system centered at C(t0) and the plane with normal vector n(t0), which locally defines
the x3-direction (see Figure 8.4). ›t0 constitutes a two-dimensional manifold in R3 and
for fixed t ˘ t0, the planar EGG equations can be utilized to approximate a parameteri-
zation Xjt˘t0 : ›̂ ! ›t0 of the form

Xjt˘t0 ˘
¡
xt0 (»,·), z

¡
xt0 (»,·), t0

¢¢T , (8.4)

where xt0 : ›̂ ! ›t0
0 parameterizes ›t0

0 and z(¢, ¢, t0) the x3-coordinate with respect to the
normal plane at t ˘ t0. The z-dependence results in an additional convective flux term
upon pullback of the EGG equations over ›t0 into ›t0

0 [TSW98, Chapter 4]. We denote
the operator that represents the corresponding PDE problem by Lt ,z (note that hereby,
z is regarded as having a t-dependence). This leads to a problem of the form

Lt ,z
¡
X(»,·, t )

¢
˘ 0 in ›̂£ T, s.t. Xj@¡

›̂£T
¢ ˘ @›, (8.5)

where T ˘ (0,1). Given a finite-dimensional trivariate spline space Vh and assuming that

Xh j@(›̂£T ) ˘ @› with Xh j@(›̂£T ) 2
¡
Vh \ V –

h
¢3 ,
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a possible discretization of (8.5) reads:

find Xh 2 V 3
h s.t. Xh j@(›̂£T ) ˘ @› and

Z

›̂£T

¿ (¾h) ¢Lt ,z (Xh)dV ¯
Z

›̂£T

`h (Zh ¡ z(Xh ,Yh , t ))dV ˘ 0,

8(¾h ,`h) 2 (V –
h )2 £Vh , (8.6)

where ¿ :
¡
V –

h

¢2 ! L2(›̂ £ T,R2) and Xh ˘ (Xh ,Yh , Zh)T . To reduce memory require-
ments (which is particularly important in volumetric applications), we recommend solv-
ing (8.6) using a matrix-free Newton-Krylov algorithm, as in the preceding chapters.
In R3, accompanying Newton-Krylov with a preconditioner is recommendable. Here, we
take inspiration from Chapters 6 and 7, where a volumetric problem is reduced to a se-
quence of planar problems by employing a spline space V̂h of polynomial order p ˘ 1 in
t-direction. Let Vh result from the knot vectors ¥p , H p and Z p , with p ¨ 1, while V̂h
results from ¥p , H p and Ẑ 1. Chapters 6 and 7 discretize (8.5) using a collocation tech-
nique in t (and IGA in (»,·)). Putting the collocation points into the ‡k 2 Ẑ 1 (without
knot repetitions) and discretizing in space as in the planar case, the problem breaks apart
into a sequence of mutually independent planar problems. Hence, the Jacobian of the
system is block diagonal

Ĵ ˘

0

BBB@

. . . ;
Ĵk

;
. . .

1

CCCA
(8.7)

with j{. . . ,‡k , . . .}j blocks each corresponding to the Jacobian Ĵk of a planar problem. Hence,
assembly and inversion of Ĵ is cheap compared to operating on a volumetric problem.
We define the prolongation operator

T :
£
V̂h

⁄
! [Vh] , which is of the form T ˘ I a£a › I b£b › T Z ,

for some {a,b} ‰ Z. A restriction operator

T̂ : [Vh] !
£
V̂h

⁄
, with T̂ ˘ I a£a › I b£b › T̂ Z

results from taking T̂ Z as the Moore-Penrose pseudoinverse of T Z . The collocation
along with the tuple (T, T̂ ) may then serve as a cost-effective way of preconditioning the
space-time problem, thanks to the block diagonal nature of Ĵ .
When ›̂ is a multipatch domain, we introduce auxiliary variables as in Chapter 3. Note
that the parametric properties of the solution of (8.6) can be tuned by introducing a con-
trol mapping

s : ›̂£ T ! ›̂£ T,

which can for instance be used to achieve orthogonality at the boundaries (see Section
4.4). Here, reparameterization is conveniently accomplished by replacing derivatives
with respect to (»,·, t ) by derivatives with respect to the (s1, s2, s3)T · s.
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