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Model – Steady State Flow

Liquid module quantities:

• Energy head: H = p
ρg + z

• Volumetric flow rate: Q = Av

Example: Small System (incompressible, viscous)
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Model – Steady State Flow

Example: Small System (incompressible, viscous)





H1 = c1
QA + Q1 − Q2 = 0

QA = 0
HA = H1

HA = H2

H2 − H3 =
λL

8A/O

Q2|Q2|
A2g

Q2 = Q3

HB = H3

HB = H4

QB = 0
QB + Q3 + Q4 = 0

H4 = c2
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Model – Steady State Flow

Apply Newton-Raphson method:

f(u(k+1)) ≈ f(u(k)) + J(u(k))
�
u(k+1) − u(k)

�
= 0

where u(k) = [Q
(k)
1 H

(k)
1 . . . Q

(k)
n H

(k)
n ]� and J(u(k)) is the Jacobian
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Model – Steady State Flow
Apply Newton-Raphson method:

Example: Small System




0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 −1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0 0 0
0 0 0 −1 0 1 0 0 0 0 0 0
0 0 0 0 −c3 1 0 −1 0 0 0 0
0 0 0 0 1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 −1 0 0
0 0 0 0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1







Q1

H1

QA

HA

Q2

H2

Q3

H3

QB

HB

Q4

H4




=




c1
0
0
0
0
c4
0
0
0
0
0
c2



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Model – Transient Flow
Viscous , compressible in pipes

∂v

∂t
+ g

∂H

∂x
+

λ

8A/O
v |v | = 0

∂H

∂t
+

c2

g

∂v

∂x
= 0

c = pressure wave speed
Solution method:

1 Solve internal pipe points at
Δt/2

2 Solve internal pipe points at
Δt

3 Solve rest of system + pipe
boundaries at Δt using
Newton-Raphson
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Model – Transient Flow

Example: Sewage System
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Current Situation – Robustness

Example: Steady Flow H

Now:

H2 − H3 =
λL

8A/O

Q2|Q2|
A2g

has an infinite number of solutions. Fix: Prescribe H on A or B .
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Current Situation – Robustness

Example: Transient Flow H

Component phases can cause trouble.
Fix: Take H from previous time-step.
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Current Situation – Robustness

Example: Steady State Q





H1 = c1
H1 = HA

QA + Q1 + Q2 = 0
QA = 0
H2 = HA

H2 = c2

Fix??
Can also happen in transient flow simulations.
Furthermore, if c1 �= c2 then contradiction!
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Current Situation – Performance

What are we working with?

(a) Drinking water (b) Noord-Holland 1
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Current Situation – Performance

What are we working with?

(a) Drinking water (b) Noord-Holland 1

Small (but many), asymmetric, sparse and banded� LU-decomposition
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Current Situation – Performance
Current solution method

1 Determine component ordering
2 For each time step

(a) If phase change: detect if and where H is undetermined; apply fix
(b) Solve internal pipe points
(c) Solve system using Newton-Raphson � IMSL matrix solver

Matrix: solve using LU-decomposition with Markowitz pivoting:
Select pivot which minimises fill-in

(a) 2D Laplacian (b) L (c) U
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Current Situation – Maintainability

Some systems are unsolvable:

• Underdetermined

• Contradictory

Lead to singular matrices

Why is this a problem?:

• International Mathematics and Statistics Library (IMSL) matrix
solver crashes or loops

• Limited troubleshooting

• Paid license
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Research Goals

• Robustness: prevent or handle singular matrices

• Performance: no concessions

• Maintainability: open source library with permissive license

Goal:
Find and implement numerical library which satisfies these requirements
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Research Approach – Robustness
Goal: prevent singular matrices
• Physical model
• Structurally singular systems

Definition

Let M ∈ Rn×n. M is called structurally singular if every N ∈ Rn×n,
with Nij = 0 whenever Mij = 0, is singular.





H1 = c1
H1 = HA

QA + Q1 + Q2 = 0
QA = 0
H2 = HA

H2 = c2
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Research Approach – Robustness

Let the matrix M ∈ R6×6 be
defined by

Mij =

�
1, if variable j in equation i
0, otherwise





H1 = c1
H1 = HA

QA + Q1 + Q2 = 0
QA = 0
H2 = HA

H2 = c2

M =




1 0 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 1
0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 0 1 0



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Research Approach – Robustness

6

5

4

3

2

1

Q2

H2

QA

HA

Q1

H1 



H1 = c1
H1 = HA

QA + Q1 + Q2 = 0
QA = 0
H2 = HA

H2 = c2

M =




1 0 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 1
0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 0 1 0



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Research Approach – Robustness

Goal: detect ’singular’ matrices
Determinant not useful in finite precision.

Definition: Condition Number

Let M ∈ Rn×n. The condition number of M is defined as

κ(M) = �M� · �M−1�

Use estimation techniques.
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Research Approach – Robustness

Goal: detect ’singular’ matrices
Determinant not useful in finite precision.

Singular Value Decomposition

Let M ∈ Rn×n. The SVD is given by

M = UΣV�

where Σ = diag(σ1,σ2, . . . ,σn) and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Note that: κ2(M) =
σmax

σmin
Alternatives: QR-decomposition, . . .
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Research Approach – Performance

Test cases

(a) Noord-Holland 1 (b) Noord-Holland 2
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Research Approach – Performance

Test cases

H-detect IMSL solver Matrix build Miscellaneous
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(a) Noord-Holland 1
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(b) Noord-Holland 2
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Research Approach – Performance
Performance improvements:
• Fill-in reduction by component ordering; now Breadth-First Search
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Research Approach – Performance
Performance improvements:
• Fill-in reduction by component ordering; now Breadth-First Search
• Fill-in reduction via matrix reordering: e.g., Cuthill-McKee
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Research Approach – Performance

Performance improvements:

• Fill-in reduction by component ordering; now Breadth-First Search

• Fill-in reduction via matrix reordering: e.g., Cuthill-McKee

• Fill-in reduction via pivoting: e.g., Markowitz

At each step minimise

(r
(k)
i − 1)(c

(k)
j − 1)

where r
(k)
i = nnz(M(k)(i , :)) and c

(k)
j = nnz(M(k)(:, j))
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Research Approach – Performance

Performance improvements:

• Fill-in reduction by component ordering; now Breadth-First Search

• Fill-in reduction via matrix reordering: e.g., Cuthill-McKee

• Fill-in reduction via pivoting: e.g., Markowitz

• (LU-decomposition + condition number estimation vs.
SVD,QR ,. . . )
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Research Approach – Performance

Other potential improvements:

• Newton-Raphson alternatives: Quasi-Newton, Picard iteration

• Algorithm that detects undetermined nodes
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Research Approach – Maintainability

Requirements:

• Open source

• Permissive license

• (Free)

Candidates:

• Linear Algebra Package (LAPACK)

• PLASMA, MAGMA

• Multi-frontal Massively Parallel Solver (MUMPS)

Which offers best performance?
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Summary and Approach
Summary:
• The Wanda model: steady and transient flow
• Current situation: robustness, performance, maintainability

Approach:
1 Prevent singular matrices:

• detect structural singularities
• physical model

2 Matrix solver performance vs. other routines
3 Implement LAPACK

• condition number estimation
• rank-revealing decomposition
• Matrix reordering
• Evaluate performance

4 If necessary, implement PLASMA, MAGMA, MUMPS
5 Other improvements

• Algorithm which detects undetermined nodes
• Newton-Raphson alternatives
• . . .
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Planning

1 March: Detect structural singularities, matrix solver performance
vs. other routines (using test cases)

2 April: Replace IMSL by LAPACK, detect singular matrices,
improve matrix ordering

3 May: Condition number estimation, rank-revealing
decompositions, evaluate performance and robustness

4 June: Test PLASMA, MAGMA, MUMPS

5 July: Report draft, other improvements

6 August: Finish report, presentation
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