Improving the Solution Method in Wanda

Leonard Huijzer

Delft University of Technology, The Netherlands

March 6, 2018

Water Hammer

Water Hammer

Water Hammer

Structure

- Model
- Current Situation
 - (a) Robustness
 - (b) Performance
 - (c) Maintainability
- **3** Research Approach
 - (a) Robustness
 - (b) Performance
 - (c) Maintainability
- 4 Summary and Approach
- 5 Planning

Liquid module quantities:

- Energy head: $H = \frac{p}{\rho g} + z$
- Volumetric flow rate: Q = Av

Example: Small System (incompressible, viscous)

Example: Small System (incompressible, viscous)

$$\begin{cases}
H_1 &= c_1 \\
Q_A + Q_1 - Q_2 &= 0 \\
Q_A &= 0 \\
H_A &= H_1 \\
H_A &= H_2
\end{cases}$$

$$H_2 - H_3 &= \frac{\lambda L}{8A/O} \frac{Q_2|Q_2|}{A^2g}$$

$$Q_2 &= Q_3 \\
H_B &= H_3 \\
H_B &= H_4 \\
Q_B &= 0 \\
Q_B + Q_3 + Q_4 &= 0 \\
H_4 &= c_2
\end{cases}$$

Apply Newton-Raphson method:

$$\mathbf{f}(\mathbf{u}^{(k+1)}) \approx \mathbf{f}(\mathbf{u}^{(k)}) + \mathbf{J}(\mathbf{u}^{(k)}) \left[\mathbf{u}^{(k+1)} - \mathbf{u}^{(k)}\right] = 0$$

where $\mathbf{u}^{(k)} = [Q_1^{(k)} \ H_1^{(k)} \ \dots \ Q_n^{(k)} \ H_n^{(k)}]^{\top}$ and $\mathbf{J}(\mathbf{u}^{(k)})$ is the Jacobian

Apply Newton-Raphson method:

Example: Small System

Γο	1	0	0	0	0	0	0	0	0	0	0	$\lceil Q_1 \rceil$]	$\lceil c_1 \rceil$
1	0	1	0	-1	0	0	0	0	0	0	0	H_1		0
0	0	1	0	0	0	0	0	0	0	0	0	Q_A		0
0	1	0	-1	0	0	0	0	0	0	0	0	H_A		0
0	0	0	-1	0	1	0	0	0	0	0	0	Q_2		0
0	0	0	0	$-c_{3}$	1	0	-1	0	0	0	0	H_2	_	C4
0	0	0	0	1	0	-1	0	0	0	0	0	Q_3	_	0
0	0	0	0	0	0	0	1	0	-1	0	0	H_3		0
0	0	0	0	0	0	0	0	0	-1	0	1	Q_B		0
0	0	0	0	0	0	0	0	1	0	0	0	H_B		0
0	0	0	0	0	0	1	0	1	0	1	0	Q_4		0
0	0	0	0	0	0	0	0	0	0	0	1	$\lfloor H_4 \rfloor$		$\begin{bmatrix} c_2 \end{bmatrix}$

Model - Transient Flow

Viscous, compressible in pipes

$$\frac{\partial v}{\partial t} + g \frac{\partial H}{\partial x} + \frac{\lambda}{8A/O} v |v| = 0$$
$$\frac{\partial H}{\partial t} + \frac{c^2}{g} \frac{\partial v}{\partial x} = 0$$

c =pressure wave speed

Solution method:

- 1 Solve internal pipe points at $\Delta t/2$
- 2 Solve internal pipe points at Δt
- 3 Solve rest of system + pipe boundaries at Δt using Newton-Raphson

Model – Transient Flow

Example: Sewage System P1 P2 G H P1 P2 W1 P3 C4 P4

Current Situation – Robustness

Example: Steady Flow *H*

Now:

$$H_2 - H_3 = \frac{\lambda L}{8A/O} \frac{Q_2|Q_2|}{A^2g}$$

has an infinite number of solutions. Fix: Prescribe H on A or B.

Current Situation – Robustness

Component phases can cause trouble.

Fix: Take *H* from previous time-step.

Current Situation – Robustness

$$\begin{cases}
H_1 &= c_1 \\
H_1 &= H_A \\
Q_A + Q_1 + Q_2 &= 0 \\
Q_A &= 0 \\
H_2 &= H_A \\
H_2 &= c_2
\end{cases}$$

Fix??

Can also happen in transient flow simulations.

Furthermore, if $c_1 \neq c_2$ then contradiction!

Current Situation – Performance

What are we working with?

(a) Drinking water

(b) Noord-Holland 1

Current Situation – Performance

What are we working with?

Small (but many), asymmetric, sparse and banded $\rightsquigarrow LU$ -decomposition

Current Situation – Performance

Current solution method

- Determine component ordering
- 2 For each time step
 - (a) If phase change: detect if and where H is undetermined; apply fix
 - (b) Solve internal pipe points
 - (c) Solve system using Newton-Raphson → IMSL matrix solver

Matrix: solve using LU-decomposition with Markowitz pivoting: Select pivot which minimises fill-in

Current Situation – Maintainability

Some systems are unsolvable:

- Underdetermined
- Contradictory

Lead to singular matrices

Why is this a problem?:

- International Mathematics and Statistics Library (IMSL) matrix solver crashes or loops
- Limited troubleshooting
- Paid license

Research Goals

- Robustness: prevent or handle singular matrices
- Performance: no concessions
- Maintainability: open source library with permissive license

Goal:

Find and implement numerical library which satisfies these requirements

Goal: prevent singular matrices

- Physical model
- Structurally singular systems

Definition

Let $M \in \mathbb{R}^{n \times n}$. M is called **structurally singular** if every $N \in \mathbb{R}^{n \times n}$, with $N_{ij} = 0$ whenever $M_{ij} = 0$, is singular.

$$egin{array}{ll} H_1 &= c_1 \ H_1 &= H_A \ Q_A + Q_1 + Q_2 &= 0 \ Q_A &= 0 \ H_2 &= H_A \ H_2 &= c_2 \end{array}$$

Let the matrix $M \in \mathbb{R}^{6 \times 6}$ be defined by

$$M_{ij} = \begin{cases} 1, & \text{if variable } j \text{ in equation } i \\ 0, & \text{otherwise} \end{cases}$$

$$\begin{cases}
H_1 &= c_1 \\
H_1 &= H_A \\
Q_A + Q_1 + Q_2 &= 0 \\
Q_A &= 0 \\
H_2 &= H_A \\
H_2 &= c_2
\end{cases}$$

$$M = egin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 1 & 0 & 1 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{cases}
H_1 &= c_1 \\
H_1 &= H_A \\
Q_A + Q_1 + Q_2 &= 0 \\
Q_A &= 0 \\
H_2 &= H_A \\
H_2 &= c_2
\end{cases}$$

$$M = egin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 1 & 0 & 1 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Goal: detect 'singular' matrices

Determinant not useful in finite precision.

Definition: Condition Number

Let $M \in \mathbb{R}^{n \times n}$. The condition number of M is defined as

$$\kappa(M) = \|M\| \cdot \|M^{-1}\|$$

Use estimation techniques.

Goal: detect 'singular' matrices Determinant not useful in finite precision.

Singular Value Decomposition

Let $M \in \mathbb{R}^{n \times n}$. The SVD is given by

$$M = U\Sigma V^{\top}$$

where $\Sigma = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_n)$ and $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n \geq 0$.

Note that: $\kappa_2(M) = \frac{\sigma_{\text{max}}}{\sigma_{\text{min}}}$ Alternatives: QR-decomposition, ...

Test cases

(a) Noord-Holland 1

(b) Noord-Holland 2

Test cases

0.8

0.7

0.6

0.5

0.0

0.0

0.1

H-detect IMSL solver Matrix build Miscellaneous

(a) Noord-Holland 1

(b) Noord-Holland 2

Performance improvements:

• Fill-in reduction by component ordering; now Breadth-First Search

Performance improvements:

- Fill-in reduction by component ordering; now Breadth-First Search
- Fill-in reduction via matrix reordering: e.g., Cuthill-McKee

Performance improvements:

- Fill-in reduction by component ordering; now Breadth-First Search
- Fill-in reduction via matrix reordering: e.g., Cuthill-McKee
- Fill-in reduction via pivoting: e.g., Markowitz

At each step minimise

$$(r_i^{(k)}-1)(c_j^{(k)}-1)$$

where $r_i^{(k)} = nnz(M^{(k)}(i,:))$ and $c_j^{(k)} = nnz(M^{(k)}(:,j))$

Performance improvements:

- Fill-in reduction by component ordering; now Breadth-First Search
- Fill-in reduction via matrix reordering: e.g., Cuthill-McKee
- Fill-in reduction via pivoting: e.g., Markowitz
- (LU-decomposition + condition number estimation vs. SVD,QR,...)

Other potential improvements:

- Newton-Raphson alternatives: Quasi-Newton, Picard iteration
- Algorithm that detects undetermined nodes

Research Approach – Maintainability

Requirements:

- Open source
- Permissive license
- (Free)

Candidates:

- Linear Algebra Package (LAPACK)
- PLASMA, MAGMA
- Multi-frontal Massively Parallel Solver (MUMPS)

Which offers best performance?

Summary and Approach

Summary:

- The Wanda model: steady and transient flow
- Current situation: robustness, performance, maintainability

Approach:

- ① Prevent singular matrices:
 - detect structural singularities
 - physical model
- Matrix solver performance vs. other routines
- **3** Implement LAPACK
 - condition number estimation
 - rank-revealing decomposition
 - Matrix reordering
 - Evaluate performance
- 4 If necessary, implement PLASMA, MAGMA, MUMPS
- Other improvements
 - Algorithm which detects undetermined nodes
 - Newton-Raphson alternatives
 - •

Planning

- **1 March:** Detect structural singularities, matrix solver performance vs. other routines (using test cases)
- 2 April: Replace IMSL by LAPACK, detect singular matrices, improve matrix ordering
- **May:** Condition number estimation, rank-revealing decompositions, evaluate performance and robustness
- 4 June: Test PLASMA, MAGMA, MUMPS
- 5 July: Report draft, other improvements
- 6 August: Finish report, presentation

Improving the Solution Method in Wanda

Leonard Huijzer

Delft University of Technology, The Netherlands

March 6, 2018

Bibliography

- Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen (1999). *LAPACK Users' Guide*. Third. Philadelphia, PA: Society for Industrial and Applied Mathematics.
- Golub, G. and C. Van Loan (1996). *Matrix Computations*. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press. ISBN: 9780801854149.
- Hydrodynamica van Leidingsystemem (2015). Deltares.
- IMSL Fortran Math Library (2014). RogueWave Software.
- Multifrontal Massively Parallel Solver. User's Guide (2016).
- WANDA 4.5 User Manual (2017). Deltares.
- Wylie, E. and V. Streeter (1978). *Fluid transients*. Advanced book program v. 1977. McGraw-Hill International Book Co.