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Objective:

Combine ideas from isogeometric analysis and

mimetic methods to develop a structure-preserving 

discretization for the Euler equations for

incompressible fluids.
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Project outline

• Planning:
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Project outline (cnt’d)

• Phase I questions:

– How can we use IGA to solve PDE’s?

– What structures are facilitated in elliptic PDE’s?

– How can we preserve these structures?

– Can we construct a MIMIGA method to discretize an

elliptic PDE problem?
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This presentation - literature review

• Introduction

– Isogeometric Analysis & Mimetic Methods

• Approach for elliptic PDE’s

– Exterior calculus

– DeRham complex

– Application: Scalar Poisson equation in 2D

• Conclusion

• Future work
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Introduction – Isogeometric Analysis

• Introduced by the Hughes group in 2005 to

bridge the gap between CAD and FEM 

• Isogeometric paradigm

• B-splines make an excellent basis for FEM
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Introduction – Mimetic Methods 

• PDE’s facilitate physical structures and

symmetries.

• Tools from exterior calculus and algebraic

topology are used to capture these structures.

• Growing awareness: Disrete exterior calculus, 

discrete hodge theory, exterior finite element 

method, compatible methods, mimetic finite

diference, etc
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Why exterior calculus?

• Structures become apparent.

• Distinction between topological and metric

dependencies.

• Generalized for 𝑛 dimensions.
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Differential Forms; 𝛼(𝑘)

• Differential forms are elements from the dual

vector space,

• Associated with geometric structure,

– 0-form: 𝑓(0) = 𝑓 𝑥, 𝑦

– 1-form: 𝛼(1) = 𝛼1 𝑥, 𝑦 𝑑𝑥 + 𝛼2 𝑥, 𝑦 𝑑𝑦

• “Measurement of physical variables,”

– 𝑀 =  𝜌(2) =  𝜌 𝑥, 𝑦 𝑑𝑥˄𝑑𝑦

• Space of k-forms: Λ(𝑘)
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Exterior derivative; d

• Exterior derivative d generalizes 𝛻𝑓, 𝛻 × 𝜔, 𝛻 ∙ 𝑣

𝑑𝛼(1) =
𝜕𝛼2
𝜕𝑥

−
𝜕𝛼1
𝜕𝑦

𝑑𝑥˄𝑑𝑦

• 𝑑: Λ(𝑘) → Λ(𝑘+1)

• Exact sequence, the DeRham complex

• Nilpotent, 𝑑𝑑𝛼(𝑘) = 0

• Independent of metric
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Hodge-⋆ operator;

• Maps forms to dual geometry,

• Metric dependent, 

• Double DeRham complex,
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Codifferential; 𝑑∗

• 𝑑∗ ≔⋆ 𝑑 ⋆

• Adjoint of 𝑑: ∙, 𝑑∗ ∙ = 𝑑 ∙,∙ - ∫ bc’s

• Laplace operator: ∆= 𝑑𝑑∗ + 𝑑∗𝑑

𝑑∗𝑑∗



13

Scalar Poisson equation

• E.g. Potential flow, electrostatics, 

• Given 𝑓 𝑥, 𝑦 = 2𝜋2 sin 𝜋𝑥 sin 𝜋𝑦
find 𝜑 𝑥, 𝑦 such that ∆𝜑 = 𝑓 on Ω = [0,1]2

with 𝜑 = 0 on 𝜕Ω

0-form, 

Find 𝜑(0) s.t. 𝑑∗𝑑𝜑(0) = 𝑓(0)

2-form, 

Find 𝜎(2) s.t. 𝑑𝑑∗𝜎(2) = 𝑓(2)

Same solution, different discretization
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0-form Poisson; 𝑑∗𝑑𝜑(0) = 𝑓(0)

• Weak formulation,
𝑤(0), 𝑑∗𝑑𝜑(0)

Ω
= 𝑤(0), 𝑓(0)

Ω

 

𝑑𝑤(0), 𝑑𝜑(0)
Ω
= 𝑤(0), 𝑓(0)

Ω
− 

𝜕Ω

𝑤 0 ∧⋆𝑑𝜑 0

• Well-posedness through Lax-Milgram,
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0-form Poisson; FEM

• Conforming FEM, take Λ ℎ
𝑘
⊂ Λ(𝑘)

• Use B-spline spans Λ ℎ
0
= 𝑆𝑝,𝑝

n=10, p =3
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0-form Poisson; edge functions

• Applying the exterior derivative (1D-example)

– Nodal basis: 𝜑ℎ
(0)

=  𝑖=0
𝑛 𝜑𝑖ℎ𝑖

𝑝
(𝑥) = 𝜑

𝑇
𝑅0

– Then, 𝑑𝜑ℎ
(0)

=  𝑖=1
𝑛 𝜑𝑖 − 𝜑𝑖−1 𝑒𝑖

𝑝−1
(𝑥) = 𝔼(10)𝜑

𝑇
𝑅1

Differences of coefficients
are captured in matrix 
using {-1,0,1}

New  edge type basis function
emerges with a polynomial
degree less
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0-form Poisson; edge functions (cnt’d) 

n-1=9, p-1 =2

• Extension to 2D using tensor products of nodal and edge

type basis

• Nodal/edge

– 0-form

– 1-form

– 2-form



18

0-form Poisson, Matrices

• 𝑑𝑤ℎ
(0)
, 𝑑𝜑ℎ

(0)

Ω
= 𝑤𝑇 𝔼10 𝑇  Ω 𝑅(1)

𝑇
𝑅(1) 𝔼10 𝜑

• Result: 𝔼(10)
𝑇
𝕄(11)𝔼(10)𝜑 = 𝑓

Mass matrix 𝕄(11)
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0-form Poisson, Matrices (cnt’d)

• Exact discretization of 𝑣(1) = 𝑑𝜑(0) through

incidence matrices, 𝑣 = 𝔼(10)𝜑

• Incidence matrices are nilpotent 𝔼(21)𝔼(10) = ∅, 

and satisfy the DeRham sequence

• Hodge-⋆ operator (metric) is discretized through

mass matrix 𝕄(11)
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0-form Poisson, Results
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0-form Poisson, Results (cnt’d)

P Slope

1 1.9998

2 3.0444

3 4.0945

4 5.1311

5 6.1736
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2-form Poisson; 𝑑𝑑∗𝜎(2) = 𝑓(2)

• Weak formulation; 

𝑤(2), 𝑑𝑑∗𝜎(2)
Ω
= 𝑤(2), 𝑓(2)

Ω

• Integration by parts? No, take mixed formulation:

 
𝑑∗𝜎(2) = ψ(1)

𝑑ψ(1) = 𝑓(2)

• Weak form: 

𝑑𝑞(1), 𝜎(2)
Ω
= 𝑞(1), ψ(1)

Ω
− 

𝜕Ω

𝑞 1 ∧⋆𝜎 2

𝑤(2), 𝑑ψ(1)
Ω
= 𝑤(2), 𝑓(2)

Ω

• Well posedness through Inf-Sup conditions
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2-form Poisson; FEM 

• Can we take,

– Λ ℎ
1
= 𝑆𝑝,𝑝?

– Λ ℎ
2
= 𝑆𝑝,𝑝?

• No, well-posedness depends on the DeRham
sequence. We take

– Λ ℎ
1
= 𝑆𝑝−1,𝑝 × 𝑆𝑝,𝑝−1

– Λ ℎ
2
= 𝑆𝑝−1,𝑝−1

• Which satisfy exact sequence

d
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2-form Poisson; Matrices

 
− 𝑞 1 , ψ 1

Ω
+ 𝑑𝑞(1), 𝜎(2)

Ω
= 0

𝑤(2), 𝑑ψ(1)
Ω
= 𝑤(2), 𝑓(2)

Ω

−𝕄(11) 𝕄(22)𝔼(21)
𝑇

𝕄(22)𝔼(21) ∅

ψ

𝜎
=

0

𝑓

• Or 𝕄(22)𝔼(21)
𝑇
𝕄(11) −1

𝕄(22)𝔼(21) ψ = 𝑓
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2-form Poisson; Results

P Slope

1 0.9977

2 2.0150

3 2.9672

4 4.1104

5 4.4811
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Conclusion

• Elliptic problems can be discretized using mass

matrices and incidence matrices.

• Solution spaces are chosen such that they satisfy

the DeRham complex.
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Conclusion (cnt’d)

• Comparison 0-form & 2-form Poisson:

0-form 2-form

𝔼(10)
𝑇
𝕄(11)𝔼(10) −𝕄(11) 𝕄(22)𝔼(21)

𝑇

𝕄(22)𝔼(21) ∅

Obtain solution 𝜑(0) Obtain solutions 𝜎(2), ψ(1)

- Dirichlet is essential
- Neumann is natural

- Dirichlet is natural
- Neumann is essential

Gradient exact 𝔼(10)𝜑 = 𝑣 Divergence exact 𝔼(21)ψ = 0

i.e. 𝛻 ∙ 𝑣 = 0
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Future Work

• Towards the incompressible Euler equations:

– Extend to hyperbolic problems, 

– Linear advection equation.

– Construction of periodic domain.

– Staggering velocity and vorticity in time?
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Questions


