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Abstract
This thesis explores the development of a machine learning model aimed at the removal of outliers in
overlay measurements. These overlay measurements give the placement error of the patterns used to
manufacture semiconductors. Reducing this error is crucial for achieving precision in positioning during
the semiconductor manufacturing processes. Some points in the overlay measurements are influenced
by contaminants and other stochastic effects which results in measurements that do not represent the
true consistent placement error. The goal is to mark these measurement points as outliers. Instead
directly labeling outliers, the problem was approached as a signal-denoising task where outliers, which
can have various shapes and sources, are treated as noise to be removed from the true overlay signal.
The core objective then became to create a model that can effectively denoise overlay measurements
in a data-driven manner. Given the absence of noise-free overlay measurements, the research adopts
the Noise2Noise approach, training our deep neural network with noisy measurement pairs to learn the
denoising process without direct access to clean data.

The model is built upon a message-passing neural network (MPNN) architecture, a variant of a
graph neural network where information is passed to neighboring vertices of a graph. This architecture
allows the model to learn directly from the measurements, which are represented by the vertices of the
graph, without interpolating the data and also allows us to incorporate physics-based information into
the model. This physics-based information was included as a vertex- and edge encoding that marked
the exposure field and the wafer borders, respectively, locations we want our model to fit differently. To
validate the model’s performance, a synthetic overlay dataset was constructed, emulating key proper-
ties of the real dataset and providing known ground truth overlay states. This synthetic dataset enabled
evaluation of our model through ablation studies.

The model trained on the synthetic overlay dataset achieved a high average 𝑅2 score of 0.976,
closely approximating noise-free overlay measurements, despite being trained solely on noisy overlay
measurements. Ablation studies indicated that the physics-based encodings slightly improved model
performance. Additionally, using a graph that included longer range connections significantly increased
the accuracy of the model while not increasing the number of parameters in the model. In one example
the model with longer range connections outperformed its counterpart which used twice the number
of message passing steps and thus also almost twice the number of parameters. Adding a random
rotation data augmentation strategy enhanced the model’s accuracy by preventing overfitting to the
training set.

On the real overlay dataset, the model demonstrated a 30% lower mean squared error in predicting
noise-free overlay measurements compared to the noisy inputs. On the synthetic dataset, this mea-
sure was 96%. This performance gap is likely due to the predictability of the noise-free overlay in the
synthetic dataset, though some of the gap may be attributed to overfitting. The results suggest that
despite not having access to clean overlay targets, the model can learn to denoise overlay measure-
ments based solely on patterns recognized from the noisy overlay data and with minimal manual priors
inserted into the model.

Overall, the thesis concludes that the machine learning model, trained using the Noise2Noise ap-
proach, provides an effective solution for denoising overlay measurements. ”Future work should focus
on refining the model and its training strategies to try to bridge the performance gap between synthetic
and real datasets, and on exploring if integration of the denoising model into the overlay calibration
pipeline can improve calibration stability in a significant manner.
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1
Scanner overlay

As this master thesis covers a method for removing outliers in the overlay error measurements on
ASML scanners, we will first elaborate on what these overlay error measurements are. Once a context
of these overlay error measurements and the outliers that occur in them has been established, we will
formulate the mathematical notation that will be used for these measurements in this report.

1.1. Introduction to scanner overlay
Semiconductor manufacturing
ASML is a manufacturer that specializes in the development of photolithography machines that are
used to make computer chips. These machines are called TwinScans or, more generally, scanners.
Photolithography is a manufacturing technique where a pattern from a blueprint, known as a mask, is
projected on a light-sensitive coating called photoresist. The pattern on the exposed photoresist is then
used to construct the components of the computer chip. Continued improvements to the lithography
process have enabled semiconductor manufacturers to produce ever more complex computer chips
with billions of transistors. Photolithography is an important step in a many-step process used to man-
ufacture modern chips. Constructing a single chip layer on a silicon wafer involves a manufacturing
procedure consisting of deposition, photoresist coating, exposure, developing, etching, implantation,
and stripping. A short summary of these steps is given in Figure 1.1. ASML’s machines are only
involved in the exposure step.

Figure 1.1: A summary of the semiconductor manufacturing process, taken from [1]. ASML develops the TwinScan machines
that perform the exposure step.

1



2 1. Scanner overlay

Layer on layer
The manufacturing steps mentioned above are repeated tens of times so that the 2D patterns produced
can be stacked to form complex 3D structures that make up the components and connections of a chip.
Over time, the size of these structures has shrunk to the nanometer level. Many challenges have been
overcome to enable the constant miniaturization, and many remain unsolved. One of those challenges
is to stack these layers on top of each other accurately. After every exposure, the wafer is removed from
the scanner, developed, and then exposed again. To ensure proper connections between consecutive
layers, every part of the layer has to be placed in the exact right place, on top of the previous layer, with
nanometer precision. In Figure 1.2, we can see the 2D metal layers of a chip stacked on top of each
other; if these layers were not accurately placed at exactly the right locations, the missing connections
would hamper the performance of the resulting chip or even make the chip non-functional.

If a TwinScan scanner had a consistent placement error, no problem would arise if the entire chip
was made on this single scanner. Every layer would have the same deviation, meaning the layers
stack properly and are connected in the right places. Chip manufacturers, however, use many different
scanners to manufacture a single chip. This means we want to calibrate the scanners so that all parts
of the pattern lay exactly in the correct place, independently of which scanner was used. The amount of
deviation, in the 𝑥𝑦-direction, of the pattern over the whole wafer is called machine-to-machine overlay
error. Reducing the machine-to-machine overlay error is a continuing challenge.

Before a scanner is delivered to the customer, it has already undergone an extensive calibration
procedure that reduces the overlay error to an agreed baseline. Over the time span of days or weeks,
overlay performance drift drifts from this initial calibration [9, 43]. This drift can come from multiple
sources, such as temperature fluctuations or degradation of the chuck on which the wafer is placed
during exposure.

Figure 1.2: An image produced by a scanning electron microscope showing the internal structures of a computer chip. We can
see that the structures are fabricated using stacked 2D layers. These layers must be properly placed, which is done, in part, by
minimizing the overlay error. Taken from [25]

.

Measuring overlay
Since a low overlay error is important for producing functioning computer chips, reducing the overlay
error is the next logical step. To do this, we must first know the current state of the overlay error; we can
then use this state to tune how the pattern is projected on the wafer and end up with a lower overlay
error. To measure the current overlay, monitor wafers with many markers printed on their surface are
exposed every few days during production [9, 43]. The exact location of these markers has been
accurately measured before the monitor exposure job and is thus known. On top of these markings, a
new photoresist layer is added, which is then exposed by the scanner we want to calibrate. This new
layer features similar markers placed on top of the old ones. Because of the scanner’s overlay error,
any pair of old and new markers will not be placed exactly on top of each other. The difference between
the marker of which the location is known and the newly placed marker is measured, resulting in 𝑑𝑥
and 𝑑𝑦 values representing the local overlay shift compared to the baseline. We thus get such a 𝑑𝑥
and 𝑑𝑦 value for each measurement location that represents the deviation from the correct location.

Overlay can be measured in two ways. The first possibility is to expose the monitor wafer in the
scanner and then also read out the resulting marks in the scanner. This read-out process is visible in
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illustration figure 1.3a. The other possibility is to still expose the pattern in the scanner but then read out
the overlay in a separate ASML product called the Yieldstar metrology system. Because the readout
process is done in a separate machine, the scanner can continue production, reducing cost [9, 43].
This is the preferred process and is used for our overlay measurements.

Either procedure results in measurements in the form of a vector field with an 𝑥𝑦-overlay vector
for every measured marker. Figure 1.3b shows the structure of this output data. This illustration is
synthetic overlay data created using the process described in section 4.3 and not an actual overlay
measurement, as these measurements are sensitive customer data.

(a) A wafer being measured in the scanner [2]. (b) An illustration showing the structure of the
overlay data.

Figure 1.3: Two images showing the overlay measurement process and generated output data, respectively. The output data is
not an actual wafer measurement but is generated using the process described in section 4.3.

Outliers in overlay data
The overlay calibration process aims to reduce the scanner’s overlay error. The input of the overlay
calibration model is the overlay data generated by measuring the monitor wafers. This overlay data
is generated by a process consisting of many steps that can potentially add inaccuracies to the data.
These inaccuracies result in ameasured overlay that does not purely correspond to a wrongly calibrated
scanner but has other sources.

One reason for these inaccuracies could be a backside contamination, where a particle on the
underside of the wafer deforms the wafer [6]. Another reason could be a particle on top of the marker,
resulting in an inaccurate readout of the marker. A further reason for inaccurate readings could be
slight temperature fluctuations in the scanner when a wafer is exposed. Because the measurements
are done at a nanometer scale, every small disturbance can change the overlay measurements.

Themeasured overlay can thus be seen as a stochastic process giving information on themachine’s
true overlay. Because these stochastic overlay measurements are the input of the overlay calibration
model, the resulting calibration is also stochastic. This means that the calibration can have unwanted
variance. A couple of methods are used to reduce this variance.

One variance reduction method is to measure a batch of multiple wafers. This batch can then be
used to average out the overlay and thus lower the calibration’s variance. Exposing, developing, and
measuring overlay on themonitor wafers is an expensive process; therefore, the batch size is preferably
kept as small as possible. A second method to reduce the calibration variance is to remove outliers in
the data. These outliers are overlay vectors on the wafer classified as errors stemming from the overlay
measurement process and deemed not to correspond to the actual machine overlay calibration. This
can be points influenced by contamination or other faults in the process. The current implementation
of the overlay calibration model already has an outlier removal mechanism. The assessment was,
however, made that this outlier removal algorithm could be improved using the vast amounts of data
available from previous overlay measurements. This thesis’s assignment is the challenge of improving
the outlier removal model based on the available data.
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1.2. Formalizing scanner overlay measurements
To discuss the overlay measurements mathematically, we will formalize the mathematical notation we
use for the measurement data and for the measurement sampling process.

The overlay measurements
The overlaymeasurements are generated by reading outmarkers projected by the scanner on amonitor
wafer; a silicon wafer which is preprocessed for these overlay measurements and is not directly used
to manufacture semiconductors. The markers on the monitor wafers are projected on this wafer by
repeating a reticle exposure. The reticle is an exchangeable plate that has the magnified pattern of the
fields we want to project edged in to it’s surface. The reticle absorbs part of the light during a projection
such that the remaining light beam exposes the pattern on the photoresist coating on top of the wafer.
Each full exposure of the reticle results in one exposed field on the wafer. These fields are repeated
over the wafer, as indicated by the black rectangles in Figure 1.4a. To save measurement time, not
every marker is read out, but some fields are read out densely and others are read out more sparsely.
The exact pattern is classified, but Figure 1.4a shows the layout used for our synthetic dataset of section
4.3. To keep track of the measurement locations, we will use the tensor

u𝑖 = (
𝑢𝑖,1
𝑢𝑖,2
⋮

𝑢𝑖,𝑀𝑖

) , 𝑢𝑖,𝑗 = (𝑢𝑥𝑖,𝑗 , 𝑢
𝑦
𝑖,𝑗), (1.1)

where u𝑖 ∈ ℝ𝑀𝑖×2 and 𝑢𝑖,𝑗 ∈ ℝ2. A single measurement location on the wafer 𝑢𝑖,𝑗 is given by the the
𝑥 and 𝑦 coordinates 𝑢𝑥𝑖,𝑗 and 𝑢

𝑦
𝑖,𝑗, where the origin of the coordinate system is the center of the wafer.

The subscript 𝑖 denotes which monitor wafer batch the locations belong to and 𝑗 to which marker on the
wafer. To distinguish between the single locations 𝑢𝑖,𝑗 and the collection of all locations u𝑖, the latter will
be written in bold. Since for each monitor wafer measured some of the measurements of the makers
can fail, resulting in no measured overlay value at that measurement point, the number of successful
measurements 𝑀𝑖 and thus the locations of all successful measurements in u𝑖 can vary with 𝑖. Since
the wafer has a radius of 0.15 meters and 𝑢𝑖,𝑗 is measured relative to the center, for all 𝑖 and 𝑗, we have
||𝑢𝑖,𝑗||2 ≤ 0.15𝑚.

For all the overlay errors at the marker locations 𝑢𝑖,𝑗, on the 𝑖th wafer, we get overlay value in the 𝑥
and 𝑦 direction, which will denote as

x𝑖 = (
𝑥𝑖,1
𝑥𝑖,2
⋮

𝑥𝑖,𝑀𝑖

) , 𝑥𝑖,𝑗 = (𝑥𝑑𝑥𝑖,𝑗 , 𝑥
𝑑𝑦
𝑖,𝑗 ), (1.2)

where just as with the locations x𝑖 ∈ ℝ𝑀𝑖×2 and 𝑥𝑖,𝑗 ∈ ℝ2. The overlay errors 𝑥𝑑𝑥𝑖,𝑗 , 𝑥
𝑑𝑦
𝑖,𝑗 are measured in

nanometers and of the order 1× 10−9𝑚, significantly smaller than the values of u𝑖. The most common
way of visualizing the measured overlay is as a vector plot, as shown in Figure 1.4b. Here, the vectors
𝑥𝑖,𝑗 have been colored according to their length, and the size of the vectors has been greatly magnified to
make overlay error visible. Each vector in the vector plot represents the shift in location of the projected
compared to the correct location. This figure is a synthetic overlay measurement made according to
the method of section 4.3.

When comparing two overlay measurements in ℝ𝑀𝑖×2 we will mostly use the 𝐿2 loss. We define this
𝐿2 loss between two overlay measurements x𝑖 and y𝑖 as

𝐿2(x𝑖 ,y𝑖) ∶=
‖
‖
⎛
⎜⎜

⎝

𝑥𝑑𝑥𝑖,1
𝑥𝑑𝑦𝑖,1
⋮

𝑥𝑑𝑥𝑖,𝑀𝑖
𝑥𝑑𝑦𝑖,𝑀𝑖

⎞
⎟⎟

⎠

−
⎛
⎜⎜

⎝

𝑦𝑑𝑥𝑖,1
𝑦𝑑𝑦𝑖,1
⋮

𝑦𝑑𝑥𝑖,𝑀𝑖
𝑦𝑑𝑦𝑖,𝑀𝑖

⎞
⎟⎟

⎠

‖
‖

2

. (1.3)
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(a) (b)

Figure 1.4: The image (a) shows a measurement layout on the wafer where the black rectangles represent the fields projected
and the blue points the measurement points represent the places u𝑖 where the markers have been read out for the overlay error
values. Image (b) shows an example of the resulting overlay errors x𝑖 at the locations u𝑖 represented by a vector plot. The layout
and values are from the synthetic dataset as described in section 4.3.

Sampling the overlay measurements
The drift in the overlay is sampled with a frequency in the order of every few days, with the exact
frequency depending on the customer’s preference. Since errors, such as contaminations or faults in
the wafer development, can occur during the overlay measurement process, most measurements are
done using four monitor wafers. There are two different chucks on which the four monitor wafers are
developed; two wafers for each chuck are thus exposed under nearly the same circumstances in just
a few minutes. Because this time span is significantly shorter than the days during which the overlay
error drift occurs, we will assume that these two overlay measurements are sampled from the same
distribution of possible overlay measurements that can occur at that moment in time with that scanner
on that specific chuck.

If resources were unconstrained, we could measure the overlay error more accurately by taking an
average x𝑖 of many overlay measurements representing the current machine state. We expect this
average to converge to the true noise-free overlay, which we will denote as y𝑖. From now on, we will
assume that the distribution from which we sample the overlay measurements x̂𝑖 and x̃𝑖 is conditional
on this true noise-free machine overlay state y𝑖. First, y𝑖 is sampled from all the possible machine
overlay states, and then the two overlay measurements measured on the same chuck are sampled
conditional on y𝑖. For these two noisy overlay measurements we will use the notation x̂𝑖 and x̃𝑖. The
sampling process is then given as

y𝑖 ∼ 𝑝(y), x̂𝑖 , x̃𝑖 ∼ 𝑝(x|y𝑖). (1.4)

Here x̂𝑖 and x̃𝑖 are assumed to be independent conditional on y𝑖 and identically distributed because
we assume no drift in the scanner’s overlay error in the short time frame of the two measurements. We
assume the expectation of the noisy overlay measurements is equal to the ground truth overlay y𝑖, that
is 𝔼 x̂𝑖|y𝑖 = 𝔼 x̃𝑖|y𝑖 = y𝑖.

The 𝑖 in the subscript of the variables indicates that the pair x̂𝑖 and x̃𝑖 are sampled from the same
scanner state at the locations u𝑖. The full dataset will thus be composed of the triples (x̂𝑖 , x̃𝑖 ,u𝑖) with
1 ≤ 𝑖 ≤ 𝑁. For the synthetic dataset, the true noise-free overlay y𝑖 is also available, so we end up
with the dataset consisting of the quadruples (x̂𝑖 , x̃𝑖 ,u𝑖 ,y𝑖) with 1 ≤ 𝑖 ≤ 𝑁. For the synthetic dataset,
𝑁 = 4000; for the real data, 𝑁 is considerably larger but classified.





2
Geometric deep learning

In the next chapters, we will use various deep-learning techniques and neural network architectures.
This chapter will give an introduction to these methods. It is based on the book ”Geometric Deep
Learning Grids, Groups, Graphs, Geodesics, and Gauges” [8] that tries to unify many deep-learning
techniques in a foundational geometric way. We will focus specifically on convolutional neural networks
and graph neural networks as they are of interest to the rest of this report.

2.1. The objective
We will first focus on supervised machine learning. In supervised machine learning, we are given the
input variables 𝑥𝑖 and want to use these variables to predict the target variables 𝑦𝑖. We assume these
variables to come as 𝑁 i.i.d. samples 𝒟 = (𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1 from the underlying data distribution. To predict
the target variables 𝑦𝑖 using the input data 𝑥𝑖, we choose a function 𝑓𝜃 from a parameterized function
class ℱ = {𝑓𝜃∈Θ}. A common class of such functions are neural networks, where 𝜃 ∈ Θ represents the
chosen network weights. To measure how well a function from the parametric family predicts the target
variables, we define the expected loss

ℛ(𝑓𝜃) ∶= 𝔼𝑥,𝑦𝐿(𝑓𝜃(𝑥), 𝑦), (2.1)

which is based on a loss function 𝐿 that quantifies how close 𝑓𝜃(𝑥) is to 𝑦. Common loss functions are
the 𝐿1(𝑦, 𝑦′) ∶= |𝑦 − 𝑦′| and the 𝐿2(𝑦, 𝑦′) ∶= (𝑦 − 𝑦′)2 loss. Because in most learning problems, the
distribution of 𝑥 and 𝑦 is unknown and we have only a finite set of samples from this distribution, we
estimate the expected loss with the empirical loss

ℛ𝑒𝑚𝑝(𝑓𝜃) ∶=
1
𝑁

𝑁

∑
𝑖=1
𝐿(𝑓𝜃(𝑥𝑖), 𝑦𝑖), (2.2)

which we can minimize with respect to 𝜃. Finding a function 𝑓𝜃 that minimizes the empirical loss and
does not overfit the input data given, meaning that it also performs well on unseen data, is one of the
main challenges in the machine learning field. If the model 𝑓𝜃 gives a low empirical loss on data it was
fitted on but a high empirical loss on unseen, the model is over-fitted. It is common to split the dataset
into a training and validation set to test if this is the case. The model is fitted using the training set, and
the performance of this fitted model is then measured using the unseen validation set.

2.2. Neural networks
With the advent of large high-quality datasets, increased computing hardware performance, and the
availability of proper software, it has been possible to construct and fit ever more complex functions
𝑓𝜃, with thousands to billions of parameters, that can learn complicated patterns and make accurate
predictions. A popular class of such functions are artificial neural networks. These neural networks are
made up of linear and nonlinear maps, defined by matrix multiplication with weights matrices 𝑊 and

7



8 2. Geometric deep learning

Figure 2.1: A graphical depiction of a relatively shallow three-layer multilayer perceptron (MLP) with an input layer, a single
hidden layer, and an output layer. Every node in a layer is ”connected” to every other node in the next layer by a weight from
the weight matrix𝑊 [18]. This MLP has an input dimension of 3, a single hidden dimension of 4, and an output dimension of 2.
Following the notation of equation 2.3 this simple MLP is equal to 𝑓connected𝜃={𝑊out ,𝑏out} ∘ 𝑓

connected
𝜃={𝑊in ,𝑏in}(𝑥), with 𝑥 ∈ ℝ3 ,𝑊in ∈ ℝ3×4 , 𝑏in ∈

ℝ4 ,𝑊out ∈ ℝ4×2 , and 𝑏out ∈ ℝ2.

bias vectors 𝑏, where a non-linear activation function 𝑎(⋅) is applied to each element of the resulting
vector. This construction allows the composed function to make non-linear predictions and gives a
large parameter space that can be tuned. A fully connected neural network layer can be written as

𝑓connected𝜃={𝑊,𝑏} (𝑥) = 𝑎(𝑊𝑇𝑥 + 𝑏). (2.3)

The fully connected layer has input size 𝑛 and output size 𝑚 for the corresponding in- and output
vectors. To conform to these size we choose 𝑏 ∈ ℝ𝑚 and𝑊 ∈ ℝ𝑛×𝑚. A common pick for the non-linear
activation functions are the tanh(⋅) function, the sigmoid function 𝜎(𝑥) = 1

1+𝑒−𝑥 , or the ReLu function
𝑅𝑒𝐿𝑢(𝑋) = max(0, 𝑥). The main criteria for an activation function is that it is differentiable almost
everywhere, such that, using backpropagation [28], the gradient of the empirical loss with respect to
the parameters of the network can be found analytically. This gradient is then used to minimize the
empirical loss and thus fit the network to the data.

2.3. Multilayer perceptrons
A common way of building larger neural network-based functions is to stack multiple fully connected
neural network layers to form a multilayer perception (MLP). MLPs are made up of three or more layers.
An input layer, one or more hidden layers, and an output layer. A simple illustration of such an MLP is
shown in Figure 2.1, where we can see that because of the matrix multiplication𝑊𝑇𝑥 every node from
a layer is ”connected” with every node in the next layer by a single weight from the weight matrix𝑊. We
define an MLP with input dimension 𝑛in, 𝑘 hidden layers with dimension 𝑛hidden, and output dimension
𝑛out using the notation of equation 2.3 as

𝑓MLP𝜃 (𝑥) = 𝑓connected𝜃={𝑊out ,𝑏out} ∘ 𝑓
connected
𝜃={𝑊hidden

𝑘−1 ,𝑏hidden𝑘−1 } ∘ … ∘ 𝑓
connected
𝜃={𝑊hidden

1 ,𝑏hidden1 }⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
𝑘−1×

∘𝑓connected𝜃={𝑊in ,𝑏in} (𝑥) , (2.4)

with 𝑊in ∈ ℝ𝑛in×𝑛hidden , 𝑏in ∈ ℝ𝑛in ,𝑊hidden
1 , … ,𝑊hidden

𝑘−1 ∈ ℝ𝑛hidden×𝑛hidden , 𝑏hidden1 , … , 𝑏hidden𝑘−1 ∈
ℝ𝑛hidden ,𝑊out ∈ ℝ𝑛hidden×𝑛out , and 𝑏out ∈ ℝ𝑛out . Because 𝑓MLP𝜃 (𝑥) is a composition of almost every-
where differentiable functions, we can calculate the gradients of 𝑓MLP𝜃 (𝑥) almost everywhere with the
chain rule, in turn, used for the loss minimization method.

2.4. Stochastic gradient descent
Our objective is to fit out model’s parameters to our data byminimizing the empirical loss. Many possible
first-order gradient optimization methods to achieve this task exist. The simplest one used in deep
learning is stochastic gradient descent (SGD). We start by picking a learning rate 𝜂 ∈ ℝ>0 and the
initial values for our parameters 𝜃. We can then write the empirical loss as a function of the parameters
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𝜃, so

𝑄(𝜃) ∶= 1
𝑁

𝑁

∑
𝑖=1
𝑄𝑖(𝜃) = ℛ𝑒𝑚𝑝(𝑓𝜃), with 𝑄𝑖(𝜃) ∶= 𝐿(𝑓𝜃(𝑥𝑖), 𝑦𝑖). (2.5)

In the standard, and not stochastic, gradient descent method, we minimize 𝑄(𝜃) by updating the pa-
rameters 𝜃 to their new values 𝜃′ with the step

𝜃′ = 𝜃 − 𝜂∇𝑄(𝜃) = 𝜃 − 𝜂
𝑁

𝑁

∑
𝑖=1
∇𝑄𝑖(𝜃). (2.6)

Since when using neural networks with many parameters and large datasets, the calculation of ∇𝑄(𝜃) is
computationally and memory-wise very expensive operation, it is common to approximate the gradient
on the full dataset ∇𝑄(𝜃) by the gradient on a single sample ∇𝑄𝑖(𝜃). The iteration step then becomes

𝜃′ = 𝜃 − 𝜂∇𝑄𝑖(𝜃). (2.7)

This greatly reduces the computation and memory resources needed for a single iteration, allowing
for minimizing the loss for datasets that do not fit into memory. So this means there is no limit to the
dataset size we can fit our function 𝑓𝜃 on. The ordering of the samples for which we calculate ∇𝑄𝑖(𝜃),
the gradient of the loss on a single data point 𝑥𝑖 and target 𝑦𝑖, is chosen randomly for each sweep
through the data, also called an epoch. This means that during a single epoch, ∇𝑄𝑖(𝜃) is calculated
once for every data pair 𝑥𝑖 and 𝑦𝑖 in the dataset for the value of 𝜃 at that iteration step, but the ordering
of 𝑖 is random. This random order gives the algorithm its name: stochastic gradient descent.

The gradient of the loss on a single data sample with respect to the parameters ∇𝑄𝑖(𝜃), can however
be a high variance estimator for ∇𝑄(𝜃), leading to worse or no convergence. To remedy this, it is
common to use mini-batches. We again randomly order {1, 2, … , 𝑁}, but now partition the results into
(almost) equally sized subsets 𝑆1, … , 𝑆𝐾 representing our data batches. The lower variance estimator
estimator formed by the average gradients of these data batches is then used in the iteration step. A
single iteration is then be written as

𝜃′ = 𝜃 − 𝜂
|𝑆𝑘|

∑
𝑖∈𝑆𝑘

∇𝑄𝑖(𝜃). (2.8)

While the expectation of the outcome of stochastic gradient descent optimization, with the right
learning rate 𝜂, can be proven to converge to the global minimum for convex functions [20], this is
not the case for our non-convex problem of empirical loss minimization. The method can get stuck
in a local minimum. Experience has however shown that convergence to a sufficient parameter set
𝜃 which gives a loss close to the minimum of 𝑄(⋅) is often reached. Reaching the exact minimum of
the empirical loss on the training set is often even undesirable because overfitting can lead to poor
performance on the validation set.

2.5. The curse of dimensionality
Designing a neural network model to learn a particular task efficiently and effectively is a hard task.
Using MLPs on large inputs such as images can quickly result in a large parameter count for the model.
If there are a relatively high number of parameters in the model compared to the size of the dataset,
overfitting can become a significant problem. Efficient neural network models often utilize priors on the
input data in the model. These priors then decrease the information the model has to learn from the
data. Many strategies exist to use the input data structure to reduce the needed model size, and the
authors of [8] split them into two fundamental principles: symmetry and scale separation.

Starting with symmetry, if, for example, we have as input a picture of a dog, we can create hundreds
of versions of this picture by slightly translating this picture in all directions. If our model is translation-
equivariant, meaning that a translation of the input results in an output with the same translation, we
do not have to learn from all these examples but can use just one. Thus, we see in this example that
we can use the structure or symmetry in the input data, adapt the model accordingly, and reduce the
amount of data needed to effectively learn a task, thereby reducing the parameter count needed to
learn this task.
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The second fundamental principle proposed by the authors of [8] is to have scale separation in the
model. The authors use the example of a Fourier transform which can separate different frequency
signals from a measurement. A signal in the input important to the model’s prediction, could occur at
various frequencies. Our model should be able to interpret effectively signals at these different frequen-
cies. If we relate this to a model classifying an image as either of a cat or a dog, we should use the
high-frequency structure of the fur and the low-frequency shape of the animal to accurately determine if
the picture is of a cat or a dog. The usual way to incorporate scale separation in a neural network-based
model is to have separate parts in the model that interpret different frequencies of signals, which are
then combined to form the output of the model.

2.6. Convolutional neural networks
Many fields in machine learning use input data with a lattice data structure which can be indexed by
integer vectors. An example of such data with such a lattice data structure is images. Convolutional
neural networks (CNNs) have excelled at many tasks for this data structure type. The success of these
models can be explained by the model criteria stated in the previous section.

Convolutional neural networks are based on the multidimensional convolution operation. This con-
volution between two 𝑀 dimensional functions 𝑥 and ℎ taking values on a discrete lattice, a repeating
arrangement of points, produces another function also defined on this 𝑀 dimensional discrete lattice.
This operation is written as

𝑓(𝑛1, 𝑛2, ..., 𝑛𝑀) = 𝑥(𝑛1, 𝑛2, ..., 𝑛𝑀)
𝑀∗ℎ(𝑛1, 𝑛2, ..., 𝑛𝑀), (2.9)

with 𝑛1, 𝑛2, ..., 𝑛𝑀 ∈ ℤ representing the discrete values of 𝑥, ℎ and 𝑓. The operation is defined as

𝑓(𝑛1, 𝑛2, ..., 𝑛𝑀) =
∞

∑
𝑘1=−∞

∞

∑
𝑘2=−∞

...
∞

∑
𝑘𝑀=−∞

ℎ(𝑘1, 𝑘2, ..., 𝑘𝑀)𝑥(𝑛1 − 𝑘1, 𝑛2 − 𝑘2, ..., 𝑛𝑀 − 𝑘𝑀). (2.10)

The multidimensional convolution operation can be seen as multiplying the signal of 𝑥 with a filter ℎ. To
limit the size of this filter, it is common to only define the values of ℎ for an equally sized𝑀-dimensional
array and set all values outside of this 𝑀-dimensional array to 0. The values in this 𝑀-dimensional
array 𝐶𝜃 ∈ ℝ2𝐾+1×⋯×2𝐾+1 are the parameter set for the convolution operation

𝑓conv𝜃=𝐶𝜃(𝑥(𝑛1, ..., 𝑛𝑀)) = 𝑎 (
𝐾

∑
𝑘1=−𝐾

...
𝐾

∑
𝑘𝑀=−𝐾

𝐶𝜃(𝑘1, ..., 𝑘𝑀)𝑥(𝑛1 − 𝑘1, ..., 𝑛𝑀 − 𝑘𝑀)) , (2.11)

with 𝐾 ∈ ℕ0 and some activation function 𝑎(⋅) that is differentiable almost everywhere. If we take 𝑀
equal to 2, 𝐾 equal to 1, and use the identity function for 𝑎(⋅), we get the operation illustrated in Figure
2.2a. Implementations of CNNs also often use ”channels,” representing multiple arrays with the same
dimensions, such as for different color values in image data. This more general convolution operation
then allows for different numbers of input and output channels. For the sake of brevity, we will ignore
these channels in the CNN operation and use 1 input- and output channel as in equation 2.11.

The multidimensional convolution operation has the same output dimension as the input dimension,
and by choosing 𝐾 small, the operation processes only local information. The operation has consider-
ably fewer parameters than a fully connected layer with the same input and output sizes would have
because it shares the parameters of 𝐶𝜃 over the whole input. The output on the convolution operation
is translation equivariant as any translation to input results in an output equal to the equally translated
output made with the untranslated input. These priors in CNN models use the data structure of the
input data to reduce the necessary amount of parameters needed to learn a task. Using this convolu-
tional layer, we no longer have every node in the input connected to the output with a single weight;
instead, in a single CNN layer there are only connections to local data defined by the convolution filter;
however, by stacking multiple convolutional layers, information can still travel further distances over
the input domain.

The U-Net architecture [41] is an example of using scale separation in a CNN model. The very
successful and popular architecture uses multiple convolutional layers together with up- and down-
sampling layers to operate at multiple resolution levels, as seen in Figure 2.2b. The coarser grids can
capture the low frequency signals and the finer grids the higher frequency signals.
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State-of-the-art CNN-based architectures, such as U-NET, use additional techniques, including skip
connections [45] and batch normalization [23] to achieve state-of-the-art results. These CNN-based
architectures show how the principles of data symmetry and scale separation from the previous section
can be used to build models that make prior assumptions on the input data structure to improve model
performance.

(a) The convolution of the 3 × 3 filter 𝐶(𝜃) on the input 𝑥
resulting in the output 𝑥 ⋆ 𝜃 [8].

(b) An illustration of the U-Net architecture which is a state-of-
the-art CNN architecture that uses multiple convolutional layers
together with scale separation [8].

Figure 2.2: The convolution operation on the left and the popular CNN-based architecture U-Net [41] on the right.

2.7. Graph neural networks
While CNN-based structures have been shown to incorporate effective priors for data sampled from an
𝑛 dimensional lattice, not every data format naturally translates well to such a lattice. This observation
has led to the increasing popularity of graph neural networks (GNNs), which perform their calculations
on graphs instead of on a lattice. The same lessons learned from CNNs, such as the benefits of spatial
equivariance and scale separation, can also be used for GNNs. Many types of graph neural networks
exist, but the most general [8] and the one used in the upcoming chapters is the message-passing
neural network [5]. Such a message-passing neural network will receive as the input data a graph and
a set of feature vectors. The edges of the graph indicate some relation between the vertices. The
feature vectors represent information on the edge or vertex of the graph. These feature vectors can
be linked to either a unique vertex of the graph or a unique edge of the graph. Our message-passing
neural network does not alter the graph but incrementally updates the feature vectors on the vertices
and edges.

The input graph and feature vectors
Each data sample is represented by an undirected graph 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) composed of a set of vertices
𝑉𝑖 and a set of edges 𝐸𝑖 containing unordered pairs of vertices {𝑢, 𝑣} with 𝑢, 𝑣 ∈ 𝑉𝑖. Two vertices
𝑢, 𝑣 ∈ 𝑉𝑖 are neighbors if {𝑢, 𝑣} ∈ 𝐸𝑖. We then define the neighborhood of the vertex 𝑣 as the set of all
neighbors of 𝑣 i.e. 𝒩𝑣 = {𝑢 | {𝑢, 𝑣} ∈ 𝐸𝑖}. For each vertex 𝑢 ∈ 𝑉, we choose a corresponding vertex
feature vector 𝑥𝑢 ∈ ℝ𝑛vertex . To include the edge features, for every ordered edge (𝑢, 𝑣) which has
{𝑢, 𝑣} ∈ 𝐸, we choose an edge feature vector 𝑒𝑢,𝑣 ∈ ℝ𝑛edge . The vertex feature vectors should include
information about the vertex it is linked to, and the edge vectors should include information about the
relation between the two vertices its edge connects.

In our definition of message-passing in the report given by the algorithm 1, we thus have an undi-
rected graph 𝐺𝑖, but directed edge features 𝑒𝑢,𝑣. It is also possible to define this algorithm for undirected
edges features by taking 𝑒𝑢,𝑣=𝑒𝑣,𝑢 for all {𝑢, 𝑣} ∈ 𝐸𝑖 or choose a directed graph 𝐺𝑖 and use the directed
in-neighborhood 𝒩in

𝑣 = {𝑢 | (𝑢, 𝑣) ∈ 𝐸𝑖} for the message-passing step. These alternative definitions
will, however, not align with our eventual model.

The message-passing step
Now that we have defined the input graph and the node- and edge feature vectors, we can define the
message-passing step. There are multiple ways to do this message-passing step with edge features.
The implementation we will use will update both the vector feature vectors 𝑥𝑣 and the edge feature
vectors 𝑒𝑢,𝑣 as described in [5]. Like with CNNs, the message-passing step uses local information to
update the input data while keeping the same data format. Where CNNs use a convolutional filter to
gather this local information, the message-passing step uses the neighborhood of a node to gather local
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information. Again, just like with CNNs, the parameters are stored in an operation applied repeatedly
over the whole input. This form of parameter sharing reduces the need for a higher parameter count.

The pseudo-code for the message-passing step with both vertex- and edge feature updates can be
seen in algorithm 1. First, the edge feature vectors 𝑒𝑢,𝑣 are updated using the learnable function 𝜓𝜃(⋅)
with as input the vertex feature vectors 𝑥𝑢 and 𝑥𝑣 of the vertices the edge connects, together with the
old edge feature vector 𝑒𝑢,𝑣. Following this update of edge feature vectors, the vertex feature vectors
are updated. This is done with the learnable function 𝜙𝜃(⋅), taking the input arguments of the previous
vertex feature vector 𝑥𝑣 and the output of a permutation invariant function⊕. This permutation invariant
function aggregates all the updated edge features 𝑒𝑢,𝑣 that point to the vertex 𝑢. The function⊕ needs
to be permutation invariant as there should be no ordering of the neighbors. The most common options
for the permutation invariant function are the sum, mean, or max functions. The learnable functions
𝜓𝜃(⋅) and 𝜙𝜃(⋅) are often implemented by concatenating all the input vectors and then applying the
multi-layer perceptron of equation 2.4. This then allows you to choose the output dimension of both
the vertex- and node feature vectors freely.

Algorithm 1: The message-passing step, with both node- and edge feature vector updates.
𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖)

for {𝑢, 𝑣} ∈ 𝐸𝑖 do
𝑒′𝑢,𝑣 ← 𝜓𝜃(𝑥𝑢 , 𝑥𝑣 , 𝑒𝑢,𝑣)
𝑒′𝑣,𝑢 ← 𝜓𝜃(𝑥𝑣 , 𝑥𝑢 , 𝑒𝑣,𝑢)

end
for 𝑣 ∈ 𝑉𝑖 do

𝑥′𝑣 ← 𝜙𝜃 (𝑥𝑣 , ⨁𝑢∈𝒩𝑣 𝑒′𝑢,𝑣)
end

The spread of information
In Figure 2.3, we see an illustration of the message-passing step. The feature vector 𝑥0 is updated by
first calculating the updated edge feature vectors for all the neighbors seen in green and then combin-
ing these values to update the feature vector 𝑥0 itself. In a single message-passing step, the feature
vector 𝑥𝑣 is updated with information of the neighboring vertex feature vectors {𝑥𝑢|𝑢 ∈ 𝒩𝑣}. A net-
work architecture that utilizes the message-passing step is commonly made up of multiple consecutive
message-passing steps, where every step has its parameters for the learnable functions 𝜓𝜃(⋅) and
𝜙𝜃(⋅). If we want every vertex feature vector to have the opportunity to receive information from every
other vertex feature vector, we would thus need the number of message-passing steps to be equal to
or bigger than the graph’s diameter. This diameter of the graph is defined as the maximum distance
between two nodes in the graphmax𝑢,𝑣∈𝑉 𝑑(𝑢, 𝑣). This distance 𝑑(𝑢, 𝑣), in turn, is defined as the num-
ber of edges in the shortest path from 𝑢 to 𝑣. The number of message-passing steps influences both
how far information can travel over the graph and the number of parameters in the model as every
message-passing step has a set of parameters for the learnable functions 𝜓𝜃(⋅) and 𝜙𝜃(⋅).
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Figure 2.3: An illustration of the message-passing step of algorithm 1, where the feature vector 𝑥0, shown in red, is updated
using the updated edge feature vectors of all edges connecting 𝑥0 to its neighbors, shown in green. These edge feature vectors
are updated using the learnable function 𝜓𝜃(⋅) and its outputs are combined by the premutation invariant function ⨁ to a single
vector. This single vector and the old feature vector of 𝑥0 are the inputs for the learnable function 𝜙𝜃(⋅). The output of this
function gives the new value of the feature vector 𝑥0. This illustration was sourced from [13].





3
Related work

To better understand the work related to our objective of developing a machine learning-based method
for removing outliers in overlay data, we summarize work related to our topic. We have split the work
we found into three sections. The first section is on works that use overlay data. The second section
looks broader into machine learning methods to remove outliers, which is further split up into a review
of outlier classification methods and methods for denoising data. Here, we find a training method we
would like to use. Since the reference neural network could not be directly used, we looked into neural
network architectures compatible with our overlay data structure in the third section. We summarize
the results of the related work chapter and how this has influenced our model design. In the last section
of this chapter, we split up the central objective of this thesis, into several sub-questions.

3.1. Literature related tomachine learningmethods for overlay out-
liers

There are a limited number of works available that use overlay in a machine learning or outlier context.
The most relevant paper to our problem of outlier removal in overlay data is [40], which discusses
statistical methods for outlier removal. The authors highlight the need for better techniques due to the
increased sensitivity of higher-order overlay modeling to large outliers. They compare the accuracy of
two common outlier removal methods used for overlay data and their own robust regression model.
All methods involve removing outliers based on residuals after fitting a linear model. Their method
shows increasing accuracy but does not leverage the large data sets available, which we envision
could be improved with machine learning methods. Additionally, we found [42], which explores a deep
learning method for predicting overlay using dense measurements. The authors enhance their model
by incorporating leveling measurements as inputs to their neural network, which provide a height map
of the wafer, increasing the 𝑅2 from the original values of 0.72 to 0.81.

3.2. Machine learning methods for outlier removal
Anomaly detection
For our study into related work for machine learning-based outlier removal models, we will use the
systematic literature review ”Machine Learning for Anomaly Detection: A Systematic Review” [36],
which reviews papers covering the detection of anomalies in datasets. We will use the term outliers
interchangeably with anomalies in a dataset. In this overview, the authors define an anomaly as ”the
problem of finding patterns in data that do not conform to expected behavior” [11]. The review authors
use a further split of these anomalies into three classes [11]: point anomalies, contextual anomalies,
and collective anomalies. Point anomalies are data points that are anomalies if you compare them to
the full dataset, contextual anomalies are anomalies if you compare them to other points that are close in
somemetric, and collective anomalies are sets of multiple associated data instances that are anomalies
compared to the full dataset. Our overlay dataset can have all three types of outliers. If a single marker
is contaminated, the single overlay value could differ significantly from its neighborhood and form a
point anomaly. Overlay values could also be within the normal overlay range but constitute an anomaly
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in the context of neighboring overlay values. Suppose the backside of the wafer is contaminated with
a particle. In that case, an area may be misprinted, leading to overlay values deviating in multiple
measurement points from the true machine overlay, forming a collective anomaly.

Where statistical anomaly detection techniques build a statistical model for ordinary behavior of the
dataset and judge anomalies accordingly, the review’s authors describe machine learning techniques
for anomaly detection as the effort to ”automate the process of knowledge acquisition from exam-
ples” [7]. The authors of the review analyzed 290 papers discussing machine learning techniques for
anomaly detection and label them with the three categories [16, 11]; supervised anomaly detection,
semi-supervised anomaly detection and unsupervised anomaly detection. Here, the category super-
vised anomaly detection is used when the outliers get labeled, semi-supervised anomaly detection
when the non-outliers get labeled (s.t., there is, in turn, only a single label for outliers), and the cate-
gory unsupervised anomaly detection is used when no labeling is used in the training set. We will only
consider unsupervised techniques for our outlier dataset as there is currently no labeling of the overlay
dataset that is more accurate than the current outlier detection technique. Manual labeling could, in
turn, introduce a bias stemming from the labeling process. The review’s authors further categorize all
the 290 papers into what machine learning model was used, and we can conclude that a wide range of
models apply to anomaly detection. Popular classification methods include support vector machines,
Bayesian networks, various types of neural networks, and K-nearest neighbors. Other popular ma-
chine learning methods used are different types of clustering or different regression types. Most of
these methods are then verified by calculating scores such as true positive rate, true negative rates,
and/or accuracy on a labeled validation set. For our method to calculate such scores, we would thus
need to label a validation set for outliers with the possibility of adding bias based on this labeling.

Image denoising
In a way, the overlay data is similar to image data, where every wafer measurement represents an
image, and every measurement location represents a pixel with a color value determined by the overlay
value. There are some differences, such as the measurement locations having a sparse layout, there
being only two values for eachmeasurement location, and the values not being limited in size. However,
machine learning methods for outliers in image data could still be interesting because of the similarities
to our overlay data.

In the image domain, the term outlier or anomaly is most of the time not used; instead, classically,
the assumption was that there is a clean image 𝑦 sampled from the distribution of clean images 𝑝(𝑦), to
which independent identically distributed (I.I.D.) Gaussian noise is added [14], to form the noisy image
𝑥 = 𝑦 + 𝑧, 𝑧 ∼ 𝑁(0, 𝜎𝐼). The success of a denoising function 𝑓(⋅) is then measured by how low the
mean squared error (MSE) for the method is, defined as 𝔼(||𝑓(𝑥) − 𝑦||22). While it is easy to filter the
noise and form a smoother image, it is hard to filter out the noise 𝑧 and retain the detail from the clean
image 𝑦. Because the distribution of the noise 𝑥|𝑦 is known, most classical denoising methods try to
approximate the distribution of clean images 𝑝(𝑦) to form, using the Bayes rule, the distribution of a
clean image 𝑦 given a noisy image 𝑥 [35], so

𝑝(𝑦|𝑥) ∼ 𝑝(𝑥|𝑦) ⋅ 𝑝(𝑦). (3.1)

Once the approximation for the likelihood of 𝑝(𝑦|𝑥) of clean images conditional on the noisy images is
constructed, we can approximate the clean image 𝑦 using maximum likelihood estimation. The most
difficult part of this classic Bayesian method is to find an approximation for the prior 𝑝(𝑦), the distribution
of clean images. Over time, these approximations have used various techniques [14], such as energy
regularization, linear approximation techniques such as principal component analysis, and nonlinear
approximation, such as ones using wavelets. The increasing complexity of these approximations, to-
gether with other non-Bayesian new classical methods, led to better but diminishing results, which, in
2009, resulted in the question, ”Is Denoising Dead?” [12] being posed.

This question ended up being answered with a resounding no as the rise of deep learning methods,
where a highly over-parameterized function 𝑓𝜃(⋅) is used to achieve a low empirical loss on a (very)
large dataset, allowed for a new solution for the image denoising problem. Instead of approximations
for 𝑝(𝑦) by which we try to minimize using the Bayesian method the mean squared error, we minimize
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the empirical loss on the training set

ℛ𝑒𝑚𝑝(𝑓𝜃) ∶=
1
𝑁

𝑁

∑
𝑖=1
𝐿(𝑓𝜃(𝑥𝑖), 𝑦𝑖) (3.2)

as before given in equation 2.2 for the loss of a supervised learning task. Minimizing this loss can then
be achieved by tuning the parameter set 𝜃 of a parameterized function 𝑓𝜃 using optimization methods
like the batched stochastic gradient descent algorithm of equation 2.8. If for the loss function 𝐿 we
chose the 𝐿2 loss, we are directly minimizing an estimator for the mean squared error 𝔼(||𝑓𝜃(𝑥)−𝑦||22).
We call this method supervised learned denoising as we use, in the training set, pairs of noisy image
𝑥𝑖 and target clean images 𝑦𝑖. Because the success of this method depends in large part on the
effectiveness of the parameterized function 𝑓𝜃, the development of ever better-performing function
families 𝑓𝜃, like CNN-based models, has led to increased performance of supervised learned denoising
methods, where they now significantly outperform any classic denoising method for Gaussian additive
noise on common benchmark datasets [14].

Since this method of supervised learned denoising does not use any assumptions on the distribution
of the noise 𝑝(𝑥|𝑦), it works for a wide range of noise distributions, not just I.I.D. Gaussian noise. This
property of learned denoising methods is especially useful to us since collective anomalies, as defined
in the previous sections, can be seen as highly correlated noise and not at all as I.I.D. noise.

A remaining challenge that stops us from using the supervised learned denoisingmethod is the need
for noisy and clean signal pairs. Multiple methods for training a denoising neural network without clean
signals have been developed [34, 32, 4]. All these methods share the fact that certain assumptions
on the noise distribution have to be made to approximate the clean signal without using these clean
directly signals. The method that most closely aligns with our assumptions on the overlay dataset
is the training Noise2Noise method [34]. The Noise2Noise method trains an image-denoising neural
network by using pairs of noisy images 𝑥̂𝑖 , 𝑥̃𝑖 sampled from the distribution 𝑝(𝑥|𝑦𝑖) of noisy images with
the same underlying clean image 𝑦𝑖, thus no longer needing the actual clean images 𝑦𝑖. The authors
successfully train denoising models on synthetic and real-world image datasets consisting of these
noisy image pairs. The Noise2Noise method performs only slightly worse than the usual supervised
learned denoising method. In the Noise2Noise method the authors replace the clean targets 𝑦𝑖 in
equation 3.2 with the second noisy sample 𝑥̃𝑖 from the noisy pair sample pair 𝑥̂𝑖 , 𝑥̃𝑖 to minimize the
training loss

1
𝑁

𝑁

∑
𝑖=1
𝐿(𝑓𝜃(𝑥̂𝑖), 𝑥̃𝑖). (3.3)

The authors of the Noise2Noise paper show that given that the loss 𝐿 is chosen as the 𝐿2 loss, 𝔼(𝑥̂𝑖|𝑥̃𝑖) =
𝑦𝑖, and infinite data equation 3.2 and equation 3.3 have the same minimum for 𝜃 [34]. These sampling
conditions are identical to the sampling conditions we made in section 1.2. Thus, minimizing this loss
allows training a neural network for denoising without needing a distribution for the clean images 𝑝(𝑦), a
distribution for the noise 𝑝(𝑥|𝑦), or clean samples 𝑦𝑖. Instead, these distributions are indirectly ”learned”
from the data.

The authors of the Noise2Noise paper give multiple examples of their denoising method applied to
real image datasets. Given different assumptions on the noise of the dataset, different norms are used
in the training loss. If the noise is made to be mean zero or assumed to be mean zero, so 𝔼(𝑥̂𝑖|𝑥̃𝑖) = 𝑦𝑖,
the 𝐿2 norm in the loss of equation 3.3 leads to the best denoising neural network. If, instead, the noise
is created by replacing some pixels with random values, the noise is no longer mean zero as the
average of these random pixel values adds some bias. In these situations, the 𝐿1 norm is shown to
be the correct norm to use in the training loss if less than 50% of the pixels are corrupted, and the 𝐿0
norm works when more than 50% of the pixels are corrupted. In an example of Monte Carlo-generated
images, heavy tails of the noise distribution lead to problems in convergence during training. To remedy
these convergence problems a relative 𝐿2 loss function, defined as (𝑓𝜃(𝑥̂𝑖)− 𝑥̃𝑖)2/(𝑥̂𝑖+𝜖)2 with 𝜖 small,
is used. For a dataset of MRI images, a different special loss function is developed based on how MRI
images are generated. From these examples, we can conclude that while supervised and Noise2Noise
training for denoising can lead to denoising models that perform almost equally well compared to the
supervised counterpart, special attention to the noise distribution and accompanying norm used during
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training with the Noise2Noise method should be given to lead to this equal performance. Either a bias
is introduced by the wrong loss function which does not correspond to the noise distribution, or a loss
function can destabilize the convergence of the optimization method.

3.3. Learning on spatially sparse data
We deemed the Noise2Noise method of the previous section to be a promising method for detecting the
noise caused by outliers in the overlay data. This noise detection of measurements could then be used
to form an outlier removal model that is interpretable and based on the data without manual labeling.
One issue preventing the immediate implementation of the Noise2Noise model used by the original
authors is that their model is based on convolutional neural networks. As seen in section 2.6 these
CNN models use a learnable convolutional filter that uses local data structures. This convolutional
filter assumes the input data is laid out in a lattice structure, which is true for the images used in the
Noise2Noise paper but not for our overlay data. To our knowledge, the Noise2Noise method has only
been used with CNN-based models. One option would be to interpolate the overlay data to a lattice
structure. While certainly possible, this would introduce biases caused by the interpolation process.
Any interpolation would smooth the overlay measurements between measurement points, while the
real overlay pattern is not expected to be smooth, especially on field edges. We prefer a model that
works with spatially sparse data, so measurements in an arbitrary spatial layout. We would also like to
choose a model architecture that allows us to insert a priori information about the exposure process,
such as the field layouts and the location of the edge of the wafer.

The point cloud approach
One approach would be to interpret the measured locations as a 2D point cloud with the overlay values
attached to the points in the point cloud. Many deep learning architectures have been developed for
tasks like point cloud shape classification, point cloud object detection, and point cloud segmentation
[19]. One of the first model architectures for learning on 3D point clouds is PointNet [38]. The main
issue this method tackles is that a point cloud has no natural ordering for its data points like an image
or piece of text has, and to normal neural network architectures like an MLP, the ordering of the input
vector matters. This problem is solved by separating the local features of the data point and the global
features of the total point cloud. The local features are processed for every point, and from this, the
global feature is created by combining the local feature vectors using a permutation invariant function
⊕. For the permutation invariant function ⊕, the authors used the max pool operation that takes the
maximum values at each location in the vector of all the feature vectors. These local and global feature
vectors are then concatenated and used to make a final prediction for each data point. Using this
permutation invariant function causes the global features and the predicted scores to be identical for
every ordering of the input data points. PointNet++ [39] improves on the PointNet architecture by not
just considering the information at the points and the global information of the point cloud but also at
intermediate levels. They develop a method that iteratively selects a subset of the points in the point
cloud and executes a Pointnet layer on all the points in a ball around every point in this subset.

The practice of combining the feature vectors of points that are in some sense nearby with a per-
mutation invariant function⊕ is very similar to the message-passing neural network (MPNN) of section
2.7. The PointNet++ architecture can, while it was originally not, be implemented using a message-
passing neural network where the nodes in the graph are the data points, and directed edges go from
all the points in the ball to the point in the center of the ball.

Learning on meshes
The MeshGraphNet model [37], uses such a message-passing neural network, and defines a graph
with both vertex and edge feature vectors, on which it uses the message-passing steps of section 2.7 to
predict the next step in physics simulations. The reasoning for this approach is that physics simulations
are often done on meshes, graphs with locations in space for the nodes, because these meshes can
capture complicated geometries and allow for variable resolution such that locations of interest can
have a higher resolution. Meshes can also describe complex objects like a piece of cloth or a deformed
steel beam. Learning physics simulations directly on a mesh passes on these advantages compared
to learning physics simulations with CNNs on a uniform mesh.

The MeshGraphNet model is tailored to time-dependent physics problems and trained to predict the
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first and, when necessary, second-order derivatives of a physics simulation for a single time step. These
predicted derivatives are then used in a forward-Euler integrator to generate the values for the next time
step in the approximation of the simulation. By iteratively going through this process, predictions are
made over multiple time steps. Every time step has as input the graph, the node feature vectors,
and the edge feature vectors. For the graph, the same mesh is used that was for the target physics
simulation. The current values of the simulation are stored on the node feature vectors concatenated
with a one-hot encoding for the node type encoding, for example, information about whether the node
is fixed in space or part of a surface in the physics simulation. The edge feature vectors are determined
by the relative positioning of the nodes in space and the distance between the nodes. By using only
relative positioning information, the model is made to be location invariant, preventing overfitting to a
certain location in the simulation and forcing the model to learn the general relations for node interaction
at different distances. The authors use, for the graph neural network model, an Encode-Process-
Decode architecture [5], which is made up of multiple steps of the message-passing step of algorithm
1. TheMeshGraphNet outperformed the samemodel implemented with the CNN-based neural network
architecture U-NET [41] for the task of learning physics simulations, and further outperformed the same
model implementation using Graph Convolutional Network layers [30].

As discussed in section 2.7, the spread of information on a graph in a message-passing neural
network depends on the number of message-passing steps used. Thus, when the message-passing
number is lower than the graph diameter, the possibility arises that necessary information is missing for
an accurate approximation of the physics simulation. The authors of the MeshGraphNet also noticed
this effect and showed that the error generally reduces as the number of message-passing steps is
increased. This problem is even more noticeable when the number of nodes in the mesh becomes
very large, on the order of thousands of nodes. Two works in the literature tackle this issue. Both
methods add longer-range connections to the input graphs. [33] create a single ”multimesh” comprising
7 different meshes with an increasing node count from 12 to 40,962 nodes, then interlinked at the
intersecting nodes. [17] also usesmeshes with different node counts but does not connect them directly.
Instead, the information flows between the different meshes using up- and down-sample graphs on
which message-passing steps are performed. The first solution is the easiest to implement, while the
second solution has the potential to be more computationally efficient since multiple message-passing
steps can be performed on a computationally cheap coarse mesh for every message-passing step on
a computationally expensive fine mesh.

The original MeshGraphNet paper aims to learn to predict physics simulations, meaning it learns the
numerical approximation of the solution to a partial differential equation with initial conditions. However,
the model is in no way designed to work only on simulation data. [27, 33] give an example of this
by learning to predict medium-range weather based on reanalyzed weather data, which is based on
real weather measurement data. Their model produces better weather predictions than the state-
of-the-art weather forecasts on some metrics, and [33] uses a higher node count graph with long-
range connections to outperform state-of-the-art weather forecasts on 90% of the metrics used. These
two models show that data-based machine learning physics models have the potential to outperform
hand-crafted partial differential equation-based models while, for this example, also using orders of
magnitudes less energy.

3.4. The research gap
From the available public literature studied, we found [40] as the only paper discussing outlier removal
methods for overlay data. This paper states the importance of removing outliers in the overlay dataset,
and the methods used are interesting but do not leverage the large amount of data available. [42]
does learn to predict overlay from a large dataset using physics-based biases but has a considerably
different goal and could not directly be used to find outliers in the overlay data.

In the systematic review of [36], we found many machine learning-based methods that classify out-
liers, of which many are supervised and semi-supervised, leading to the need for manual labeling and
introducing the risk of adding a human bias. Because the overlay dataset is similar to an image dataset,
we looked into image denoising techniques, which could, in turn, be used to create an unsupervised
overlay outlier removal technique. Many classic image denoising methods make strict assumptions
about the image’s noise distribution and estimate the prior of all clean images [35]. Recently developed
supervised learned denoising techniques drop the need to know the noise distributions and approxi-



20 3. Related work

mate the image distributions manually, but can learn to denoise given a large dataset of noisy-clean
image pairs [14]. This would still not fit our data as we do not have any ”clean” overlay measurements,
so we shortly discussed three unsupervised learning-based denoising methods [34, 32, 4], of which
we deemed the Noise2Noise method [34] to fit our dataset best. It only requires the minimal assump-
tion that the noise is mean zero, while some caution should be taken when selecting the loss function.
Since the authors of the Noise2Noise paper apply the training method to image data, which is laid out
in a uniform 2D grid, a CNN-based architecture is utilized. To our knowledge, this denoising method
has not been utilized for overlay data.

The overlay data has a sparse layout of the measurement points on the wafer, and we thus choose
an alternative neural network architecture since we do not want to interpolate the smooth overlay data to
a uniform grid. One option would be to use an architecture designed for point clouds [39, 39]. These two
architectures are similar to message-passing neural networks that define a convolution operation based
on the neighborhood of a node in a graph, and using such a message-passing neural network allows for
incorporating a priori physics-based biases into the model. A message-passing neural network model
shown to learn and generalize physics simulations effectively is the MeshGraphNet model [37]. The
MeshGraphNet model uses anMPNN-based Encode-Process-Decode architecture [5] with a numerical
integrator step and an input graph that encodes the geometry of the input mesh using the relative edge
encoding such that the model is spatially equivariant, in turn reducing the chance of overfitting. The
node- and edge feature vectors can be encoded with extra a priori information. This means that we
can use these encodings to mark the edge of an exposure field and the edge, locations where the
overlay error is expected to be non-continuous and of increased amplitude respectively [31]. It will
be interesting to see if these encodings will increase denoising performance. The temporal numerical
integrator of the MeshGraphNet model will not be necessary since we are not predicting in time steps
and do not use an underlying partial differential equation. The large number of nodes in the input
graph could lead to a lower model accuracy [17] since information spread could then become limited
by the number of message-passing steps. We would like to investigate if a graph with longer distance
connections between nodes could increase performance. We will create a synthetic dataset with a
ground truth denoised target we would like to approximate to verify all these model configurations.

Research questions
The central objective of this assignment is to make an effective outlier removal model based on the
available overlay data. We have devised a possible method to perform such a task from related works.
We have summarized our findings and will give more details of the devised method in chapter 4. To
make the central objective more attainable, we have split the objective into several research questions
stated below.

1. For the synthetic overlay dataset of section 4.3:

• Does the model correctly predict the ground truth overlay?
• Which loss function is best used for training the model with the Noise2Noise method?
• Does the wafer edge encoding in the input graph lead to better denoising results?
• Does the field edge encoding in the input graph lead to better denoising results?
• Does an input graph with further connections lead to better denoising results?

2. For the real overlay dataset:

• Does the model output an overlay prediction that is a lower mean squared error estimator
for the second overlay measurement, exposed under the same conditions?

• Can the model be used for effective outlier removal?
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Methodology

This chapter will describe our model, designed to remove outliers in overlay measurements based
on historical overlay data. We start with the Noise2Noise loss, which we mathematically show can
approximate learned denoising with clean overlay measurements y𝑖, without using these clean overlay
measurements. After we define the loss, we will go into the message-passing neural network model
and the data structure we will use as the input for this model. When we fit our model to the data, we will
do this on a synthetic overlay dataset we created and the real overlay dataset. We elaborate on how
the synthetic overlay dataset was created and how the real dataset was gathered. In the final section
of this chapter, we will discuss how we fit the model to the data.

4.1. The Noise2Noise method
As discussed in section 3.4, we want to train a parameterized function 𝑓𝜃(⋅) that takes as input a noisy
overlay measurement x𝑖 performed on a test wafer and predicts, as accurately as possible, the clean
noise-free overlay measurement y𝑖 representing the actual machine overlay state. Because we do
not have any clean noise-free overlay measurements y𝑖, we will instead use the Noise2Noise method
that can achieve the previously stated goal with a dataset that is made up of the noisy measurement
pairs x̂𝑖 , x̃𝑖, where these noisy measurements are sampled according to the sampling procedure of
1.2. This sampling procedure assumes that we first sample the clean overlay measurement y𝑖 from
the distribution of all clean overlay measurements 𝑝(y) and then sample x̂𝑖 , x̃𝑖 from the noisy overlay
distribution conditional on the clean noise measurement 𝑝(x|y𝑖). Thus we have

y𝑖 ∼ 𝑝(y), x̂𝑖 , x̃𝑖 ∼ 𝑝(x|y𝑖). (4.1)

To explain the Noise2Noise method, suppose we have infinite data and use the 𝐿2 norm for the loss
as defined in equation 1.3. The method describes that we should choose for 𝜃 the minimum of the
expectation

𝔼(x̂,x̃) [𝐿2 (𝑓𝜃(x̂), x̃)] . (4.2)

Using the rule of total expectation, this is equal to

𝔼x̂ [𝔼x̃|x̂ [𝐿2 (𝑓𝜃(x̂), x̃)]] . (4.3)

The class of minimizers for the number 𝑧 in the expectation 𝔼𝑥𝐿(𝑧, 𝑥) is known as M-estimators [22].
When the loss function equals the 𝐿2 loss function, this expectation is minimized by taking 𝑧 = 𝔼𝑥𝑥.
Thus this means that the expectation of equation 4.3 and in turn the expectation of equation 4.2 is
minimized when 𝑓𝜃(x̂) = 𝔼x̃|x̂x̃ = 𝔼 x̃|x̂. Because the analytic distribution of x̂𝑖 and x̃𝑖 is not known, and
we only observe a finite number of samples from this distribution, we approximate the expression of
equation 4.2 with its estimator

1
𝑁

𝑁

∑
𝑖=1
𝐿2 (𝑓𝜃(x̂𝑖), x̃𝑖) . (4.4)

21



22 4. Methodology

Given infinite data, so 𝑁 → ∞, we expect this estimator to converge to the same value as equation
4.2. This estimator is in that case minimized when 𝑓𝜃(x̂𝑖) = 𝔼 x̃𝑖|x̂𝑖. Because of the assumed sampling
process of equation 4.1, conditioning x̃𝑖 on x̂𝑖 is identical to conditioning x̃𝑖 on y𝑖, so 𝔼 x̃𝑖|x̂𝑖 = 𝔼 x̃𝑖|y𝑖.
In section 1.2, we made the further assumption that the noise in the overlay measurement, caused
by outliers and measurement errors, is mean zero, thus 𝔼 x̃𝑖|y𝑖 = y𝑖. Putting this all together, we can
conclude that following our assumptions, equation 4.4 is minimized for infinite data when

𝑓𝜃(x̂𝑖) = y𝑖 . (4.5)

Turning this around, the closer equation 4.4 is to its minimum, achieved myy minimizing the loss with
respect to 𝜃, the closer we expect 𝑓𝜃(x̂𝑖) to be to y𝑖.

Since the number of nodes in an overlay measurement 𝑀𝑖 can vary for each wafer pair 𝑖, it is hard
to compare the 𝐿2 (𝑓𝜃(x̂𝑖), x̃𝑖) between wafers. That is why we will use for the training loss the mean
squared error where the mean is taken over all the measurement nodes so

𝑀𝑆𝐸(𝑓𝜃(x̂), x̃) ∶=
1

∑𝑁𝑖=1𝑀𝑖

𝑁

∑
𝑖=1
𝐿2 (𝑓𝜃(x̂𝑖), x̃𝑖) . (4.6)

Since this is just a constant multiple of equation 4.4, it will not change the optimization problem.
If we find the function that perfectly denoises x̃𝑖 s.t. 𝑓𝜃(x̃𝑖) = y𝑖, the mean squared error of equation

4.6 will not be zero. Instead this loss function is zero if the function 𝑓𝜃(⋅) predicts, from the first noisy
sample x̃𝑖, the second noisy sample x̂𝑖 s.t. 𝑓𝜃(x̃𝑖) = x̂𝑖. In the objective of equation 4.3, it is not possible
to attain this equality if 𝑉𝑎𝑟(x̂𝑖) > 0, and thus it is, in turn, impossible to achieve zero loss. For finite
data the function can overfit to the specific noise samples and thus achieve zero loss. To measure how
well the function 𝑓𝜃(⋅) is denoising we will instead use, when available, the ground truth mean squared
error

𝑀𝑆𝐸(𝑓𝜃(x̂), y) ∶=
1

∑𝑁𝑖=1𝑀𝑖

𝑁

∑
𝑖=1
𝐿2 (𝑓𝜃(x̂𝑖),y𝑖) , (4.7)

which is equal to zero when we find a perfect denoising function 𝑓𝜃(⋅).

4.2. The model architecture
In the previous section, we stated the training loss we want to use to fit the function 𝑓𝜃(⋅). We will
in this section elaborate how we implement the function 𝑓𝜃(⋅). In section 3.4, we decided we wanted
to use a message-passing neural network (MPNN) with an Encode-Process-Decode architecture [5],
where the input graph has edge and vertex encodings that represent both the physical layout of the
measurement points and physics-based prior information for the relation between the nodes. For this
model, we must define an input graph 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) consisting of the nodes 𝑉𝑖 and edges 𝐸𝑖 on which the
message-passing steps will be performed. For each node 𝑣 ∈ 𝑉𝑖, we also need to define a node feature
vector v𝑣 and further, for every edge {𝑣, 𝑢} ∈ 𝐸, we must define two directed edge feature vectors e𝑢,𝑣
and e𝑣,𝑢. This input graph and the feature vectors are then processed in the MPNN to output overlay
measurement for every measurement location.

The input graph
For each measurement x̂𝑖, we need to construct a graph 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖), which is then used by our
message-passing neural network. The graph nodes will represent the measurement points. So for
a wafer measurement pair 𝑖, we define the nodes of the input graph as 𝑉𝑖 = [𝑀𝑖]. We have great
freedom to choose the set of edges 𝐸𝑖. An edge in the graph represents a connection between the
nodes, so ideally, the most related nodes should be connected with an edge. At the same time, too
many edges could make training and inference slow without much higher accuracy. We will assume
that measurements close to each other on the wafer are more related, so should share an edge. We
would also like 𝐺𝑖 to be a connected graph, meaning that there is a path of edges connecting every
pair of nodes in the graph. One option would be to use a k-nearest neighbors graph, which is a graph
in which two vertices 𝑣, 𝑢 ∈ 𝑉 are connected by an edge if the distance between 𝑣 and 𝑢 is among
the k-th smallest distances from 𝑣 to other nodes from 𝑉. The resulting graph is not guaranteed to
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Figure 4.1: The graph used for the message-passing neural network, where the edges 𝐸𝑖 of this graph are a union of the edge
sets 𝐸fine𝑖 , 𝐸medium𝑖 , and 𝐸coarse𝑖 shown in red, green, and black respectively. These edge sets are, in turn, Delaunay triangulations
of the vertex sets 𝑉𝑖, 𝑉medium𝑖 , and 𝑉coarse𝑖 where the measurement locations u𝑖 are used for the triangulation. This graph with
both short and long edges was chosen such that, in theory, information can be gathered both locally and from further distances
using a minimal number of message-passing steps.

be connected, and to not deviate too far from the meshes of the MeshGraphNet paper, which inspired
our model, we will instead use a Delaunay triangulation [24]. This triangulation is often used to create
meshes in finite element method solvers. Other ways of constructing the graphs where not tested.

Inspired by [33], we will construct the graph from multiple graphs that have a different amount of
nodes and thus also different length edges. The longer edges in the resulting graph should increase
the speed of information spread and in turn, the model’s accuracy even if fewer message-passing steps
are used [17]. The finest mesh created will be the Delaunay triangulation of all the vertices, where we
will denote this set of edges as 𝐸fine𝑖 = 𝐷𝑒𝑙𝑎𝑢𝑛𝑎𝑦(𝑉𝑖 ,u𝑖), where 𝑉𝑖 denotes the set of vertices used
for the triangulation and u𝑖 contains the location of all the measurement points on the wafer. The
second medium mesh will be created using a strict subset of 𝑉𝑖. This subset 𝑉medium𝑖 ⊂ 𝑉𝑖 contains,
for each field exposed 5 nodes chosen in an X-shape with one measurement point in the middle of
the field and 4 near the corners. The resulting set of edges 𝐸medium𝑖 = 𝐷𝑒𝑙𝑎𝑢𝑛𝑎𝑦(𝑉medium𝑖 ,u𝑖), for the
synthetic dataset, can be seen in the green mesh of Figure 4.1. The last set of edges is made by first
defining 𝑉coarse𝑖 ⊂ 𝑉medium𝑖 , the measurement points closest to the center of each field, and then creating
𝐸coarse𝑖 = 𝐷𝑒𝑙𝑎𝑢𝑛𝑎𝑦(𝑉coarse𝑖 ,u𝑖). The mesh created using this method is visible in black in Figure 4.1.
The full process defined in formulas is thus:

𝑉𝑖 = [𝑀𝑖] (4.8)
𝑉𝑖 ⊃ 𝑉medium𝑖 ⊃ 𝑉coarse𝑖 (4.9)

𝐸fine𝑖 = 𝐷𝑒𝑙𝑎𝑢𝑛𝑎𝑦(𝑉𝑖 ,u𝑖) (4.10)
𝐸medium𝑖 = 𝐷𝑒𝑙𝑎𝑢𝑛𝑎𝑦(𝑉medium𝑖 ,u𝑖) (4.11)
𝐸coarse𝑖 = 𝐷𝑒𝑙𝑎𝑢𝑛𝑎𝑦(𝑉coarse𝑖 ,u𝑖) (4.12)

𝐸𝑖 = 𝐸fine𝑖 ∪ 𝐸medium𝑖 ∪ 𝐸coarse𝑖 (4.13)
𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) (4.14)

The vertex and edge feature vectors
Using the message-passing step of section 2.7 we can encode for every node 𝑣 ∈ 𝑉 a feature vector
v𝑣, and for every edge {𝑢, 𝑣} ∈ 𝐸 two directional feature vectors e𝑣,𝑢 and e𝑢,𝑣. These feature vectors
will contain data we want the MPNN to use for its predictions. The overlay vectors 𝑥̂𝑖,𝑗 ∈ ℝ2 form the
main input for the denoising MPNN 𝑓𝜃(⋅) and each overlay vector 𝑥̂𝑖,𝑣 is added to the vertex feature
vector v𝑣 of its measurement index 𝑣. The authors of the MeshGraphNet model further use the vertex
feature vectors to store the types of vertex, such as which nodes are stationary in the simulation. The
MeshGraphNet model uses the edge feature vectors to store the geometry of the input mesh, as the
graph on which the calculations are done does not have a spatial geometry of itself. We will use their
way of encoding the mesh geometry and similarly give a special encoding to vertex and edge feature
vectors we want our model to fit differently.
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We will start with encoding the geometry of the mesh. A possible approach would be to take the
coordinates of the measurement points, 𝑢𝑖,𝑣 ∈ ℝ2 for 𝑣 ∈ 𝑉𝑖, and directly concatenate them into the
vertex feature vectors v𝑣. This would allow themodel to fit to specific coordinates on the wafer instead of
recognizing patterns that repeat over the whole wafer, which could lead to overfitting. The alternative
approach proposed by the authors of MeshGraphNet is to only use relative position information of
vertices connected by an edge. This is done by concatenating relative position information between
two nodes {𝑢, 𝑣} ∈ 𝐸 into the edge feature vectors e𝑢,𝑣 and e𝑣,𝑢. The relative position information we will
use for the edge feature vector e𝑢,𝑣 is the relative location 𝑢𝑖,𝑢 − 𝑢𝑖,𝑣 ∈ ℝ2 and the Euclidean distance
between the measurement points ||𝑢𝑖,𝑢 − 𝑢𝑖,𝑣||2 ∈ ℝ, as used in the MeshGraphNet model. This way
of encoding ensures that our model is location invariant, meaning it will make the same prediction,
independent of the location if all other variables are the same. This should prevent overfitting as the
MPNN learns to make accurate predictions that generalize to different locations.

For our edge and vertex feature vectors with a special encoding, we have selected 2 areas that
we would like to mark. The first area is the edge of the wafer, where we expect higher variance in
the overlay error [31]. The second area marked is the borders between the exposed fields where we
expect the overlay error to be non-continuous [31]. We have decided to mark the edge of the wafer by
using a one-hot encoding for the vertex feature vectors close to the border defined as:

𝑘wafer edge𝑣 = {
1 if ||𝑢𝑖,𝑣||2 > 0.141
0 else

(4.15)

This value of 0.141 was chosen such that only vertices near the wafer edge got a special encoding as
can be seen in Figure 4.2. We have decided to mark the borders between fields by giving a one-hot
encoding to the edges conditional to if this edge crosses a field border, so we write this as:

𝑘field border𝑢,𝑣 = {
1 if 𝑢 and 𝑣 are from the same exposure field
0 else

(4.16)

These two encodings have been visualized in the mesh of Figure 4.2.

Figure 4.2: A visualization of the wafer edge vertex encoding 𝑘wafer edge𝑣 and the field border encodings 𝑘field border𝑢,𝑣 on the mesh
of Figure 4.1.

The total input for the model is summarized in Table 4.1, where all the features are concatenated
into the feature vectors s.t. v𝑣 ∈ ℝ3 and e𝑣,𝑢 ∈ ℝ4.
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Table 4.1: The features which concatenated together form the vertex feature vectors v𝑣 for 𝑣 ∈ 𝑉 and edge feature vectors e𝑣,𝑢
and e𝑢,𝑣 for {𝑣, 𝑢} ∈ 𝐸.

Feature vector Features
v𝑣 𝑥̂𝑖,𝑣 , 𝑘wafer edge𝑣
e𝑣,𝑢 𝑢𝑖,𝑢 − 𝑢𝑖,𝑣 , ||𝑢𝑖,𝑢 − 𝑢𝑖,𝑣||2, 𝑘field border𝑣,𝑢

From input to output
Now that we have defined for each overlay measurement x̂𝑖, how we construct the computation graph
for our MPNN 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖), how we encode the vertex features {v𝑣}𝑣∈𝑉𝑖 , and how we encode the edge
features {e𝑣,𝑢 ,e𝑢,𝑣}{𝑢,𝑣}∈𝐸𝑖 , we will define how our model 𝑓𝜃(⋅) uses these inputs to give a prediction.
The architecture we chose is an adaptation of the MeshGraphNet model [37], which uses, in turn,
an Encoder-Processor-Decoder message-passing neural network architecture proposed by [5]. For
our adaptation of the MeshGraphNet model, we changed the input dimensions to our vertex- and edge
feature vector size and the output size to be equal to that of the denoised overlay measurement, namely
ℝ2×𝑀𝑖 . We further removed the forward Euler step of the MeshGraphNet model as we are not predicting
the next time step of a known differential equation. The resulting architecture is described in the pseudo-
code of Algorithm 2 and can be divided into the encoder step, the processor step, and the decoder step.

The encoding step takes the vertex- and edge feature vectors from respectively ℝ3 and ℝ4 to their
embedding in ℝ128, where this embedding dimension is the same as in the MeshGraphNet model. The
encoder is made up of a single message-passing step of section 2.7. For the permutation invariant
function ⨁ we use the sum ∑ is used as this is also the function used in the MeshGraphNet model.
For the learnable functions 𝜓𝜃(⋅) and 𝜙𝜃(⋅) we use 𝑓MLP𝜃0,1 ∶ ℝ10 → ℝ128 and 𝑓MLP𝜃0,2 ∶ ℝ131 → ℝ128. These
functions first concatenate all their inputs to a single vector and then perform the Multi-Layer Perceptron
of section 2.3 with a hidden dimension of 128 and use the 𝑅𝑒𝐿𝑢(𝑥) = 𝑚𝑎𝑥(0, 𝑥) function as activation
function. In our implementation, the multilayer perceptrons also have a layer normalization step [3],
which has been shown to increase the speed of convergence during training. In the pseudo-code, all
parameter sets 𝜃 are given indexing to indicate which parameters are used in the MLP.

The processing step uses 𝑁MPS repeated message-passing steps to iteratively update the vertex-
and edge embedding vectors e′𝑢,𝑣 ∈ ℝ128 and v′𝑣 ∈ ℝ128. The learnable functions are implemented in
the same way as for the encoder step, but now with differing input dimensions, so for all 𝑙 ∈ [𝑁MPS]
we have 𝑓MLP𝜃𝑙,1 ∶ ℝ384 → ℝ128 and 𝑓MLP𝜃𝑙,2 ∶ ℝ256 → ℝ128. A second difference with the message-passing
step in the encoder is that the embedding vectors are updated by adding the output of the MLP to the
last value of the embedding vector. These iterative updates are called residual connections in the deep
learning literature and have been shown to help with the convergence of ”deep” neural networks with
many consecutive layers [21]. The number of message-passing steps 𝑁MPS for our model is 20. This
number was chosen after the results of section 5.1.

The decoder step consisting of a single MLP 𝑓MLP𝜃𝑙+1 ∶ ℝ
128 → ℝ2 which uses the vector embeddings

v′𝑣 to predict the overlay values 𝑥out𝑣 at each measurement location index 𝑣 ∈ 𝑉. These vectors 𝑥out𝑣
are the entries in the output tensor 𝑓𝜃(⋅). The set of all weights 𝜃 in 𝑓𝜃(⋅) are all the weights in the
Multi Layer Perceptrons, so 𝜃 = {𝜃0,1, 𝜃0,1, 𝜃1,1, 𝜃1,2, … , 𝜃𝑁MPS ,1, 𝜃𝑁MPS ,2, 𝜃𝑁MPS+1}. Our model with 20
message-passing steps has 3.8 million tunable parameters.

We implemented our model using the PyTorch Geometric [15] Python package for training large
Graph Neural Networks. We started with an open-source PyTorch Geometric implementation of the
MeshGraphNet model [26] and made our model changes to this implementation.
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Algorithm 2: Our overlay denoising model which uses a Encoder-Processor-Decoder
message-passing neural network architecture [5].
// The input of our model is the graph 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖), used for the message

passing steps, and the vertex- and edge feature vectors {v𝑣}𝑣∈𝑉𝑖 and
{e𝑣,𝑢 ,e𝑢,𝑣}{𝑢,𝑣}∈𝐸𝑖

// The encoder step consisting of a single message passing step
embedding the edge and vertex feature vectors.

for {𝑢, 𝑣} ∈ 𝐸𝑖 do
e′𝑢,𝑣 ← 𝑓MLP𝜃0,1 (v𝑢 ,v𝑣 ,e𝑢,𝑣)
e′𝑣,𝑢 ← 𝑓MLP𝜃0,1 (v𝑣 ,v𝑢 ,e𝑣,𝑢)

end
for 𝑣 ∈ 𝑉𝑖 do

v′𝑣 ← 𝑓MLP𝜃0,2 (v𝑣 , ∑𝑢∈𝒩𝑣 e
′
𝑢,𝑣)

end

// The processor step consisting of 𝑁MPS message passing step with
residual connection.

for 𝑙 ∈ {1, … , 𝑁MPS} do
for {𝑢, 𝑣} ∈ 𝐸𝑖 do

e′𝑢,𝑣 ← e′𝑢,𝑣 + 𝑓MLP𝜃𝑙,1 (v
′
𝑢 ,v′𝑣 ,e′𝑢,𝑣)

e′𝑣,𝑢 ← e′𝑢,𝑣 + 𝑓MLP𝜃𝑙,1 (v
′
𝑣 ,v′𝑢 ,e′𝑣,𝑢)

end
for 𝑣 ∈ 𝑉𝑖 do

v′𝑣 ← v′𝑣 + 𝑓MLP𝜃𝑙,2 (v′𝑣 , ∑𝑢∈𝒩𝑣 e
′
𝑢,𝑣)

end
end

// The decoder step consisting of a single MLP that outputs the
predicted overlay value for each vertex.

for 𝑣 ∈ 𝑉𝑖 do
𝑥out𝑣 ← 𝑓MLP𝜃𝑁MPS+1

(v′𝑣)
end

Data augmentation during training
Significant overfitting occurred during training on synthetic and real datasets, so we added the option
to randomly augment the data during training. Due to the relative location encoding of the edge feature
vectors, the model is location equivariant. Translations of the input data will not change the feature
vectors and, in turn, the model’s output. However, The model is not rotation equivariant, which means
that rotating the overlay data will not guarantee the output is the same as the original output rotated by
the same angle. If we want our model to learn to give rotation equivariant predictions, we can achieve
this by performing random rotation data augmentation during training.

Specifically, we have implemented this by, for each wafer measurement pair 𝑖, sampling the rotation
angle 𝜙 and using this angle for the 2D rotation matrix 𝑅, so

𝜙 ∼ 𝑈(0, 2𝜋), 𝑅 = [cos𝜙 − sin𝜙
sin𝜙 cos𝜙 ]. (4.17)

We then use this rotation matrix to rotate, for all measurement locations 𝑗 ∈ [𝑀𝑖], both the location
relative to the center of the wafer 𝑢𝑖,𝑗, the input overlay vector 𝑥̂𝑖,𝑗, and the target overlay vector 𝑥̃𝑖,𝑗, so
the new values for vectors are

𝑢∗𝑖,𝑗 = 𝑅𝑢𝑖,𝑗 , 𝑥̂∗𝑖,𝑗 = 𝑅𝑥̂𝑖,𝑗 , 𝑥̃∗𝑖,𝑗 = 𝑅𝑥̃𝑖,𝑗 . (4.18)
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4.3. The synthetic overlay dataset generation
Noise2Noise training allows a neural network to denoise real-life measurements for which no ground
truth denoised measurement version is known. However, this lack of ground truth complicates the
validation process since the model output can not be directly compared to any ground truth noise-free
target. Another problem is that overlay measurements are sensitive customer information and cannot
be published here. To remedy these two concerns, we have created a synthetic overlay dataset with
an interfield, intrafield, and radial effect in the overlay data we also expect in our real overlay dataset
[31]. This synthetic overlay dataset can then be used to verify parts of our model and is used for all
overlay plots in this thesis.

The synthetic overlay sampling process
Following the sampling process described in section 1.2, we will first sample the ground truth machine
overlay state y𝑖 and thereafter sample the noisy overlay measurements x̂𝑖 and x̃𝑖 conditional on y𝑖,
thus as

y𝑖 ∼ 𝑝(y), x̂𝑖 , x̃𝑖 ∼ 𝑝(x|y𝑖). (4.19)

where in this the section sampling method for the distributions 𝑝(y) and 𝑝(x|y𝑖) is defined for the
synthetic dataset. For the ground truth noise-free overlay value y𝑖 we will split the overlay into three
distinct commonly observed overlay error sources called the interfield, intrafield, and radial overlay error
[31]. A method for sampling these three overlay sources will be defined, after which they are added
together. So the sampling process for y𝑖 in the synthetic dataset is

yinterfield𝑖 ∼ 𝑝(yinterfield), (4.20)
yintrafield𝑖 ∼ 𝑝(yintrafield), (4.21)
yradial𝑖 ∼ 𝑝(yradial), (4.22)

y𝑖 = yinterfield𝑖 + yintrafield𝑖 + yradial𝑖 . (4.23)

Once y𝑖 has been sampled, we can continue to sample the noisy overlay measurements x̂𝑖 and x̃𝑖. The
noise added to these samples has been split up into global noise nglobal𝑖 representing larger defects,
and local noise nlocal𝑖 representing measuring uncertainty at each measurement point. The global noise
nglobal𝑖 is independent of y𝑖, but the local noise nlocal𝑖 is dependent both on y𝑖 and on nglobal𝑖 . So the
sampling process for x̂𝑖 and x̃𝑖 in the synthetic dataset is

n̂global𝑖 ∼ 𝑝(nglobal), ñglobal𝑖 ∼ 𝑝(nglobal), (4.24)

n̂local𝑖 ∼ 𝑝(nlocal|y𝑖 , n̂
global
𝑖 ), ñlocal𝑖 ∼ 𝑝(nlocal|y𝑖 , ñ

global
𝑖 ), (4.25)

x̂𝑖 = y𝑖 + n̂global𝑖 + n̂global𝑖 , x̃𝑖 = y𝑖 + ñglobal𝑖 + ñglobal𝑖 . (4.26)

The overlay measurements are done at different locations u𝑖 on the wafer. The photolithography
process exposes fields on the wafer. Each field contains many markers spread out over the field. Not
every marker is read in the measurement process; some fields are more densely read out than others.
The precise layout is classified, but we will use a self-made layout of 5167 measurement locations
spread out over alternating densely and sparsely sampled fields, as shown in Figure 4.4. The synthetic
dataset can, however, be created for any layout specified. Unlike with the real dataset, the locations
u𝑖 for the synthetic dataset are all the same for each batch 1 ≤ 𝑖 ≤ 𝑁

This model for generating the synthetic overlay data was designed to have the core components of
an overlay measurement and representative defects that are hard to distinguish from the signal ground
truth overlay. The synthetic overlay data has not been fitted to real overlay data but has been created
by trial and error. There are considerable differences between the real and the synthetic datasets. Two
main differences are that 𝑦𝑖 seems relatively too smooth in the synthetic dataset and that the noise in
the real dataset is made up of significantly more diverse types of shapes coming from many differing
sources. Since the model used to denoise real overlay data will not be trained on synthetic data this
should not impact its performance.
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The noise pattern
For the stochastic patterns in the overlay dataset, we would like to use a smooth signal with details
at different coarseness levels that can be sampled from a randomized procedure. For this, we imple-
mented a fractal-like noise pattern by [44]. Their algorithm adds together uniformly sampled random
matrices, which are to an increasing level using cubic interpolation and then magnified. The code for
these patterns can be read in appendix C. A sample of these noisy matrices and the final result from
addition can be seen in Figure 4.3. The values in the resulting array can be negative and positive and
are normalized by dividing by the standard deviation of the array.

= + +

Figure 4.3: A graphical representation of how the fractal-like pattern is created by adding up the different matrices sampled from
a uniform distribution increasingly augmented using interpolation and magnification. The code for these samples is available in
appendix C.

Ground truth overlay
The ground truth overlay y𝑖 in our synthetic overlay model comprises three sources of overlay error.
The first modeled source of overlay error is the so-called interfield overlay error. This is defined as the
overlay error that occurs over the whole wafer and can, for example, come from the degradation of the
chuck on which the wafer is placed. To simulate this interfield overlay error, we sample two fractal-
like noise matrices and interpolate these linearly at the measurement locations u𝑖 to end up with the
synthetic interfield overlay values 𝑑𝑥𝑖,𝑗 and 𝑑𝑦𝑖,𝑗. These values are then combined for all measurement
points on the wafer to form the ground truth interfield overlay yinterfield𝑖 for each wafer pair 𝑖. Figure
4.4 illustrates this process and the resulting pattern. All scaling factors and full implementation of the
process are available in appendix C.

, →

Figure 4.4: The interfield overlay yinterfield𝑖 represents a continuous deformation over the whole wafer. This illustration shows how
we sample the overlay values for the 𝑑𝑥 and 𝑑𝑦 directions and the resulting overlay pattern.

The second source of ground truth overlay error modeled is intrafield overlay yintrafield𝑖 . This overlay
pattern represents a deviation in how every field is printed and can, for example, come from drift in the
calibration of the optics. Because this overlay error is the same for every field, it is sampled from two
noise patterns and repeated for every field. The process of generating the intrafield overlay pattern
and the resulting overlay is depicted in Figure 4.5.
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, →

Figure 4.5: The intrafield overlay yintrafield𝑖 is made up of the overlay error that occurs repeatedly for each field that is exposed
on the wafer. Thus, to construct the synthetic intrafield overlay, we sample the 𝑑𝑥𝑖,𝑗 and 𝑑𝑦𝑖,𝑗 from two noise arrays and repeat
this overlay for each field of the wafer as illustrated above.

The last overlay pattern incorporated in the ground truth overlay is a radial overlay pattern yradial𝑖 .
Because the wafer is clamped and this wafer clamp tends to wear faster on the edge than in the center,
bigger overlay values are expected near the edge of the wafer. This results in overlay measurements
that mostly point inward or outward, orthogonal to the wafer edge. To simulate this effect, we first create
outward pointing vectors by taking the distance vectors of the measurement locations 𝑢𝑖,𝑗, multiplying
them by their length raised to the 16th power, and then normalizing their lengths to [0, 1], defined as

𝑟𝑖,𝑗 = 𝑢𝑖,𝑗 ⋅
(||𝑢𝑖,𝑗||2)

16

max1≤𝑗≤𝑛 (||𝑢𝑖,𝑗||2)
16 , (4.27)

where 𝑢𝑖,𝑗 is the vector of the measurement location relative to the center of the wafer. The 16th power
was chosen so that the spread of radial overlay was similar to the pattern on real wafers. The resulting
vectors are then multiplied by the noise pattern to make their length and in- or outward orientation
stochastic. Figure 4.6 illustrates this process and the resulting overlay pattern.

∗ →

Figure 4.6: An illustration of how the ground truth radial overlay pattern yradial𝑖 is created. First, outward vectors 𝑟𝑖,𝑗 are created
according to equation 4.27. These vectors are then multiplied by an interpolated noise pattern and scaled to the nanometer level
to create the pattern visible on the right.
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The interfield, intrafield, and radial overlay pattern are subsequently added together to form a single
ground truth overlay y𝑖 sample, so

y𝑖 = yinterfield𝑖 + yinterfield𝑖 + yradial𝑖 . (4.28)

An illustration of this addition and the resulting overlay pattern can be seen in Figure 4.7. The parame-
ters used to weigh each overlay pattern and all the code for the synthetic data generation process are
available in appendix C.

= + +

Figure 4.7: The ground truth overlay representing the scanner state is then created by adding up the interfield overlay pattern,
the intrafield overlay pattern, and the radial overlay pattern.

Added Noise
After the ground truth has been established, the two samples of synthetic overlay data can be created by
adding the noise n𝑖 to the ground truth overlay. Firstly the global noise n

global
𝑖 is generated. This global

noise spans multiple measurement points and represents contaminations during exposure. Because
these errors can come from contaminations on the underside of the wafer [6], they often form ”bumps” in
the overlay, resulting in outward-pointing overlay vectors surrounding the contamination point. These
defects can come in many different shapes and sizes, and we would thus like nglobal𝑖 also to have a
wide range of possible shapes and sizes, such that the model can demonstrate it can even recognize
complicated stochastic defect patterns.

First, the number of global outliers is determined by sampling a 𝐺𝑒𝑜(0.3) distribution, after which
each global outlier gets a 𝑥− and 𝑦−coordinate sampled from 𝑈(−0.15, 0.15). The basis shape for the
global outliers is the bivariate normal probability density function with covariance matrix (0.0025+𝜎)⋅𝐼2,
𝜎 ∼ 𝐸𝑥𝑝(0.01) and mean vector equal to the 𝑥− and 𝑦−coordinate of the outlier. For the radial pattern,
the gradient vectors at the measurement locations on the probability density function are used which
is then combined with two samples of the fractal-like noise multiplied by the bivariate normal density
function. The resulting outlier pattern is then scaled by an amplitude sampled from 0.4+𝐸𝑥𝑝(0.5). The
Matlab code that produced these outliers is available in appendix C. Figure 4.8 shows two examples
of synthetic global errors nglobal𝑖 , where the examples were chosen because they had a large amount
of these synthetic defects. The amount of outliers is over-represented in the synthetic dataset. This
should mean fewer samples are needed to train the model, greatly lowering the required computational
resources.

After adding these defects, we generate the local noise nlocal𝑖 , which is independently sampled for
each overlay measurement point 𝑗. This is done by sampling two bivariate normal distributions. The
first bivariate normal sample is added to the second sample which is multiplied by the length of the
ground truth measurement together with the defects from the global noise to create radius-dependent
noise. This was done because, without this radius-dependent noise, large measurements in the ground
truth would be relatively undisturbed by noise and ended up too smooth when compared to the real
overlay measurements. Thus, we can write the local noise as

𝑛local𝑖,𝑗 = 𝑧1 + ||𝑦𝑖,𝑗 + 𝑛global𝑖,𝑗 ||2 ⋅ 𝑧2, 𝑧1 ∼ 𝑁(0, 𝜎1 ⋅ 𝐼2), 𝑧2 ∼ 𝑁(0, 𝜎2 ⋅ 𝐼2), (4.29)
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Figure 4.8: Two samples of synthetic global outliers nglobal𝑖 . The defects in the overlay measurement process form global overlay
errors, which affect multiple overlay measurement points. These samples were chosen because of their relatively high numbers
of outliers to illustrate the different shapes and sizes.

where ||𝑦𝑖,𝑗+𝑒global𝑖,𝑗 ||2 is the length of the ground truth overlay samples and global noise artifacts added
together at each measurement location 𝑗.

Figure 4.9: A sample nlocal𝑖 from the local noise. We can see that in the bottom right, the variance seems to be higher, caused
by larger values of ||𝑦𝑖,𝑗 + 𝑛global𝑖,𝑗 ||2 in this area. This local noise pattern was generated using the global noise depicted in the
left illustration of Figure 4.8.

Resulting overlay
The resulting overlay sample is generated by adding up the global noise, local noise, and the ground
truth overlay, so

x𝑖 = y𝑖 + nglobal𝑖 + nlocal𝑖 . (4.30)
Figure 4.10 shows this process and the resulting overlay sample. Just like with the real overlay dataset,
we then produce two samples x̃𝑖 and x̂𝑖 from a single ground truth machine overlay state y𝑖 by sampling
two different global and local noise patterns

x̃𝑖 = y𝑖 + ñglobal𝑖 + ñlocal𝑖 ,
x̂𝑖 = y𝑖 + n̂global𝑖 + n̂local𝑖 .

Two overlay patterns and the ground truth overlay pattern used to generate them can be seen in Figure
4.11.
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Figure 4.10: A sample from the synthetic overlay distribution is created by adding the global and local noise samples to the
ground truth overlay pattern.

The synthetic dataset has been generated using 𝑁 = 3400 samples. It is made up of the quadru-
ples (y𝑖 , x̃𝑖 , x̂𝑖 ,u𝑖) with 1 ≤ 𝑖 ≤ 𝑁 where u𝑖 contains all measurement locations on the wafer and in
the synthetic dataset are identical for every 𝑖. We split this dataset into a training and validation set
containing 2800 and 600 data quadruples, respectively.

As we have seen in section 4.1 the requirement for the Noise2Noise method with the 𝐿2 loss to
converge to y𝑖 is that 𝔼 x̂𝑖|x̃𝑖 = y𝑖. Because in the overlay sampling process y𝑖 is sampled before x̃𝑖,
and furthermore, x̃𝑖 and x̂𝑖 are independent conditioned on y𝑖, we have 𝔼x̂𝑖|x̃𝑖 = 𝔼x̂𝑖|y𝑖. In the synthetic
overlay dataset, this requirement is thus satisfied if 𝔼 nlocal𝑖 |y𝑖 = 0 and 𝔼 nglobal𝑖 |y𝑖 = 𝔼 n

global
𝑖 = 0.

The first statement is clearly true since n𝑖 is generated using samples of mean zero bivariate normal
distributions. Since the sampling method for nglobal𝑖 is rather complicated, there is no concise way of
proving the defects are mean zeros. The generation method is, however, not made to be biased in
a certain overlay direction; furthermore, empirically, we see that nglobal𝑖 → 0. Thus, it seems safe to
assume for the synthetic dataset, we have 𝔼 x̂𝑖|x̃𝑖 = y𝑖.

→ ,

Figure 4.11: A single ground truth overlay pattern is used to create two samples of synthetic overlay. Here, the ground truth
overlay represents the true machine overlay state, and the two synthetic samples represent the overlay measured on two test
wafers exposed in the machine.

4.4. The real overlay dataset
The real overlay dataset is constructed from all overlay measurements exposed in the same measure-
ment batch and measured on the same chuck. We can further double the dataset size by alternating
the two noisy overlay measurements x̂𝑖 and x̃𝑖, which has been shown to increase the performance
of the resulting denoiser trained with the Noise2Noise loss [10]. Unlike the synthetic dataset, ground
truth overlay machine states y𝑖 are not expected to be independently distributed. A limited amount of
scanners are used to expose the monitor wafer on which the overlay measurements are performed.
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Since these scanners drift in overlay performance over time, a time correlation is expected. We will
shuffle these measurements during training and then assume the resulting shuffled dataset is I.I.D. To
validate that the denoising neural network generalizes to unseen scanners, we split the dataset into a
training and validation dataset by scanner. So, overlay measurements in the validation set come from
scanners not in the training set. The training and validation contain, respectively, roughly 80% and
20% of the monitor wafer measurements.

After generating the synthetic dataset we found that the real overlay dataset contains some very
large outliers which are orders of magnitudes larger than those in the synthetic dataset and which, if
left in, dominate the loss of equation 4.4. We found that the model, during training, learned to denoise
these specific measurements in the training set without lowering the loss on the validation set, thus
overfitting to these large overlay measurements. This is why we will mask these measurements in the
loss on the real dataset. The contribution of a measurement point 𝑗 to the loss is multiplied by zero if
either

|𝑥̂𝑑𝑥𝑖,𝑗 | > 4𝜎̂𝑑𝑥𝑖 , |𝑥̂𝑑𝑦𝑖,𝑗 | > 4𝜎̂
𝑑𝑦
𝑖 , |𝑥̃𝑑𝑥𝑖,𝑗 | > 4𝜎̃𝑑𝑥𝑖 , |𝑥̃𝑑𝑦𝑖,𝑗 | > 4𝜎̃

𝑑𝑦
𝑖 . (4.31)

Here 𝜎̂𝑑𝑥𝑖 is the standard deviation of all 𝑑𝑥 values of the overlay measurement x̂𝑖. Because of this
masking technique, the neural network will not be trained to denoise these extremely large overlay val-
ues, but we can reject them automatically. To store which values are masked we will use the variables
𝑚𝑖,𝑗 for 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑖 ≤ 𝑀𝑖, where

𝑚𝑖,𝑗 = {
1 if |𝑥̂𝑑𝑥𝑖,𝑗 | > 4𝜎̂𝑑𝑥𝑖 or |𝑥̂𝑑𝑦𝑖,𝑗 | > 4𝜎̂

𝑑𝑦
𝑖 or |𝑥̃𝑑𝑥𝑖,𝑗 | > 4𝜎̃𝑑𝑥𝑖 or |𝑥̃𝑑𝑦𝑖,𝑗 | > 4𝜎̃

𝑑𝑦
𝑖

0 else.
(4.32)

Masking the loss of these values is preferred over not using them as, when masked, the large values
are still part of the input and can thus be interpreted by the model. While we see our masking method
in no way as the only or perfect solution to our overfitting problem, it did reduce our overfitting problem
on the real dataset.

4.5. Training our model
During training with the Noise2Noise method, we used the loss of equation 4.6. Which we now equiv-
alently will write as the sum of the vectors wise losses

𝑀𝑆𝐸(𝑓𝜃(x̂), x̃) ∶=
1

∑𝑁𝑖=1𝑀𝑖

𝑁

∑
𝑖=1

𝑀𝑖
∑
𝑗=1
|| (𝑓𝜃(x̂𝑖))𝑗 − x̃𝑗||2, (4.33)

where with (𝑓𝜃(x̂𝑖))𝑗 we denote the 𝑗th measurement vector in the output 𝑓𝜃(x̂𝑖). For the real dataset
we will use the masked loss which we define as

𝑀𝑆𝐸(𝑓𝜃(x̂), x̃) ∶=
1

∑𝑁𝑖=1 ∑
𝑀𝑖
𝑗=1𝑚𝑖,𝑗

𝑁

∑
𝑖=1

𝑀𝑖
∑
𝑗=1
𝑚𝑖,𝑗 ⋅ || (𝑓𝜃(x̂𝑖))𝑗 − x̃𝑗||2, (4.34)

where𝑚𝑖,𝑗 is 0 if the measurement is masked and otherwise 1. This loss is equivalent to equation 4.33
if the mask is all ones.

Tominimize these losses, we use the Adam optimization method [29], which is similar to the batched
stochastic gradient descent method of equation 2.8 in that it is a first-order gradient-based optimiza-
tion method, but has shown to outperform batched SGD method in many example datasets. For this
method, we used the learning rate equal to 1e−4 and a batch size of 8. This batch size was chosen to
be as large as possible while not using more VRAM than our GPU allowed for. Our models are trained
on a single NVIDIA V100 32GB GPU, where training time was about 1 day on the synthetic overlay
dataset and multiple days on the real overlay dataset.
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Results

The results of our model have been split up into the results of the model on the synthetic overlay
dataset of section 4.3 and on the real overlay dataset of section 4.5. Since, for the synthetic dataset,
the ground truth noise-free overlay state we want to approximate is known, we can test the effectiveness
of our model’s design decisions with multiple ablation studies on this dataset. To compare the model’s
performance of the two datasets, we prove a lower bound for the Noise2Noise loss, which we can then
use to normalize the loss for both datasets. This result is then used to compare the model trained on
the synthetic dataset, where we have a ground truth noise-free overlay state, to the model trained on
the real dataset, where we do not have this ground truth noise-free overlay state.

5.1. Results on the synthetic overlay dataset
For the loss during training, we use the mean squared error 𝑀𝑆𝐸(𝑓𝜃(x̂), x̃) between the predictions of
our model 𝑓𝜃(x̂𝑖) and the noisy samples x̃𝑖. In our synthetic dataset, we also have access to the ground
truth overlay samples y𝑖, so can also calculate the ground truth mean squared error 𝑀𝑆𝐸(𝑓𝜃(x̂), ỹ)
between the model predictions 𝑓𝜃(x̂𝑖) and the ground truth overlay samples y𝑖. To measure if our
model generalizes well outside of the training set, to which we have fitted our model, we will only give
these measures for the validation set, to which our model has not been fitted. The mean squared error
number does not have a clear interpretation; thus, instead, we will use the 𝑅2 value of the model on the
validation set to illustrate the performance of our model. The 𝑅2 value is the proportion of the variation
of the residuals of your model and the variance of the variable you are predicting and is defined as

𝑅2 = 1 −
∑𝑖(𝑦𝑖 − 𝑓𝑖)2
∑𝑖(𝑦𝑖 − 𝑦)2

. (5.1)

So if your function 𝑓 perfectly predicts 𝑦𝑖 for every value of 𝑖, the 𝑅2 value is equal to 1, and if the
function is just the mean of all the values of 𝑦𝑖, the 𝑅2 is 0. Our model’s output 𝑓𝜃(x̂) and ground truth
samples y𝑖, consist of 𝑀𝑖 measurement points, and each measurement point has a 𝑑𝑥 and 𝑑𝑦 value
we predict. Because on the synthetic dataset, the values for 𝑀𝑖 are all the same, we can, for each
prediction point, calculate the 𝑅2 value and then take the average of all these values to end up with an
average 𝑅2 statistic. For our model on the validation set, this average 𝑅2 statistic equals 0.977. From
this, we can conclude that the model has learned to predict overlay measurements, on average, close
to the ground truth overlay measurements without ever seeing these ground truth noise-free overlay
measurements.

When we train our model, the model parameters are constantly updated, leading to changing model
performance over iterations, which we can see in the loss graph of figure 5.2. Because the validation
set is finite and the mean squared error is just an estimator of the expected risk, additional variance
in the resulting score is introduced. During training, we save the model parameters every 5 epochs
of roughly 300 total epochs. Whenever we calculate the 𝑅2 metric, we pick the saved parameter set
with the lowest loss value. When comparing models, we will mostly show the loss plots as they better
illustrate the variance of the model’s performance over iterations.

35
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We can alternatively study our model output using example samples. In Figure 5.1, we see a
representative sample x̂𝑖 from the validation set, our denoising function 𝑓𝜃(⋅) applied to this sample,
the corresponding ground truth overlay value y𝑖, and the difference between the prediction and the
ground truth y𝑖 − 𝑓𝜃(x̂𝑖). Our model removed both the normal independent noise as the two simulated
outliers in the top and bottom right of the input x̂𝑖. When we look at the prediction error y𝑖 − 𝑓𝜃(x̂𝑖),
we see that the error is relatively small compared to the signal, but that this error is largest at the two
locations of the two simulated outliers. This is somewhat expected as the model here has to estimate
the signal convoluted by these outliers. Three more examples of the model denoising synthetic overlay
measurements are available in appendix B.

(a) x̂𝑖 (b) 𝑓𝜃(x̂𝑖)

(c) y𝑖 (d) y𝑖 − 𝑓𝜃(x̂𝑖)

Figure 5.1: Our denoising model applied to a noisy overlay sample. Figure (a) shows the noisy input sample x̂𝑖, (b) shows the
output of our model 𝑓𝜃(x̂𝑖) on this sample, (c) shows the ground truth overlay y𝑖 from which the sample x̂𝑖 was created, and (d)
shows the error between the prediction and ground truth overlay defined as y𝑖 −𝑓𝜃(x̂𝑖). The sample used is from the validation
set and is representative of our model’s performance, where the error is often largest at the locations of the artificial outliers.

Comparing Noise2Noise training with supervised training
We trained our model using the Noise2Noise loss of equation 4.6 so, by minimizing 𝑀𝑆𝐸(𝑓𝜃(x̂), x̃) on
the training set. For our synthetic dataset, we have access to the ground truth noise-free samples y𝑖
and can alternatively train our model by minimizing the ground truth mean squared error𝑀𝑆𝐸(𝑓𝜃(x̂),y)
of equation 4.7 on the training set. The performance of two models during training with these two
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different losses, which we will call Noise2Noise training and supervised training, can be seen in figure
5.2. We can see that both models converge to a loss relatively close to 0, but the model trained using
the supervised method is consistently better than the one trained using the Noise2Noise method. The
average 𝑅2 value for the model trained with the Noise2Noise loss is, as stated before, equal to 0.977.
The average 𝑅2 value is slightly higher at 0.981 for the model trained with the supervised method.
We see two possible explanations for this slightly worse performance of the model trained with the
Noise2Noise method.

The first explanation is that it could be that the conditions of the Noise2Noise method discussed in
section 4.1 are not met because 𝔼 x̃|y𝑖 ≠ y𝑖 and thus we converge to 𝔼 x̃|y𝑖 instead of y𝑖. We discussed
this condition for synthetic data in section 4.3, reasoned why we thought it would be true, and observed
that it seemed to be true empirically because the average of x̃|y𝑖 converged to y𝑖, but have not proven
equality.

The second explanation, which we think is more likely, is that we do not converge to the supervised
solution because this is only guaranteed for infinite data. The authors of the Noise2Noise method show
that the expected squared difference between the solution of the Noise2Noise method converges to 0
if 𝑁 → ∞ but that this value is non-zero if 𝑁 < ∞. We thus expect this performance gap to shrink for a
larger dataset.

Figure 5.2: The loss curve during training of our model. Here we compare two different training methods, namely one model
trained on the Noise2Noise loss using the two noisy samples pairs x̂𝑖 , x̃𝑖, and one trained using a supervised loss using the
noisy-clean measurement pairs x̂𝑖 ,y𝑖.

The effect of the a priori physics-based information
In section 4.2, we discussed how we encoded the edge- and vertex feature vectors, which form the
input for our message-passing neural network. To the encodings used in the MeshGraphNet model,
which inspired our model, we added two additional encodings that incorporate our a priori physics-
based assumptions of the overlay data. The wafer edge encoding of equation 4.15 added a one-hot
encoding to the vertex feature vectors equal to one for vertices close to the edge where we expect
higher variance measurements. The field border encoding of equation 4.16 added a one-hot encoding
to the edge feature vectors equal to one if that edge crossed a field border.

To test if these encodings achieve the desired effect and increase the accuracy of our model, we
trained our model in four different configurations with the two encoding types enabled or disabled.
Figure 5.3a shows the ground truth mean squared error of these four different model configurations
during training. While the model with both of the two encodings is on average the best performing, and
the model without any of the two encodings is on average the worst performing, these results are not
conclusive as even after smoothing is applied, the differences are about as big as the noise levels in
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the loss. While the extra encodings do increase the length of the feature vectors and thus the number
of parameters in the MLPs of the encoding step of algorithm 2, the increase to the total parameter count
is 0.006% at most.

Since the encodings are applied to specific locations on the wafer, we would expect accuracy to
increase at these specific locations when the encodings are added to the model input. To investigate if
this is the case, we calculated the 𝑅2 score for all the nodes and averaged the value for the 𝑑𝑥 and 𝑑𝑦
prediction to get a score at every node. Using bilinear interpolation, we then interpolated these values
to create Figure 5.3b. In this figure, we see that the error at some of the more isolated nodes along
the top and bottom of the edge of the mesh seems to be reduced by the wafer edge encoding. There
further seems to be a slight reduction in the error on the field border for the models with field border
encoding enabled. These results are, however, again not conclusive.

(a) (b)

Figure 5.3: The performance of four models trained on the synthetic dataset with and without the wafer border- and wafer edge
encoding visualized by the ground truth validation loss (a), and a bi-cubic interpolation of the 𝑅2 score at each measurement
point on the validation set (b).

We hypothesized that removing the field border encodings did not affect the model’s accuracy sig-
nificantly because the model could retrieve the field borders from alternative information in the compu-
tation graph and the feature vectors. Our measurement layout, visible in Figure 1.4a, with its alternation
densely- and sparsely sampled fields, together with how the edge sets 𝐸medium𝑖 and 𝐸coarse𝑖 of section
4.2 are constructed using the field layout, could enable the model to retrieve the field border informa-
tion independently of the field border encoding. To test this hypothesis, we created a synthetic dataset
following the procedure of section 4.3 but now with a uniform, evenly spaced measurement layout and
fitted to this data, our model that uses just the edges of 𝐸fine𝑖 for its computation graph. The results
with this setup can be seen in Figure 5.4. Figure 5.4a shows, as we expected, a larger loss reduction
for the model with field border encodings, and Figure 5.4b affirms the effect further as the models with
field border encodings have a clear lower error near the field borders. The error reduction along the
edge of the wafer we attributed to the wafer edge encoding seems to have disappeared with this setup.
The model could have learned to recognize the wafer edge as the number of neighbors for each vertex
is smaller here, and this is potentially more consistently the case for the more uniform graph of the
uniform measurement layout.

We could conclude from this experiment that the a priori physics-based encodings are not as nec-
essary in our model because the model has alternative ways of retrieving the encoded information.
The encodings do, however, seem to increase accuracy somewhat. Still, more importantly, for our real
dataset, the computation graph is not the same for each measurement pair in the real data as some
measurements may be missing in a sample. We would thus prefer our model to fit our encodings in-
stead of the computation graph, which is no longer constant on the real data. Because of this, we have
decided to include the encodings in the model.
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(a) (b)

Figure 5.4: The same graphs as of figure 5.3 but now with a synthetic overlay dataset with a uniform evenly spaced measurement
layout and fitted to this data a model that uses just the edges of 𝐸fine𝑖 for its computation graph

The effects of our multiscale graph
The MeshgraphNet model [37], which inspired our model, used as its computation graph the mesh
used for the finite element method that created the target physics simulation. Because during a single
time step, information can only flow from a node to its neighbors, simple meshes with ”short” edges
such as the one used in the MeshGraphNet model can limit information spread and, in turn, decrease a
model’s accuracy on a task where wider context is needed [17]. This problem is especially relevant for
meshes with a high node count such as ours. We will test if our multiscale computation graph, which
is a combination of three different Delauney meshes with different average edge lengths as defined
by equations 4.8-4.14, does indeed increase the model accuracy compared to the model with just the
single Delauney mesh with edges 𝐸fine as defined in equation 4.10. Because our multiscale graph
should reduce the problem of limited information spread, we will compare the two graphs with different
numbers of message-passing steps 𝑁mps.

We will first investigate the diameters of the graphs. If we want every node to be theoretically able
to exchange information with every other node in the graph, the number of message-passing steps
should be at least equal to the graph diameter. The diameter of the graph constructed with just the
edges 𝐸fine𝑖 is 54 and the diameter of our multiscale graph is 18, a significant reduction. The difference
in information transport can also be seen in Table 5.1. These illustrations show how many nodes the
green starting node can theoretically exchange information with, using the two different graphs for, a
given number of message-passing steps. We see that information can travel way faster along our
multiscale graph. When using 15 message-passing steps, the information from the starting vertex
feature vector can spread to all nodes of the multiscale graph, where this happened to less than a third
of the nodes of the graph constructed from the edges 𝐸fine𝑖 . On the left of the table, we further see that
the speed of information travel is faster along the edges of the wafer and slower in the densely sampled
fields because of differing edge lengths in the mesh of the graph constructed from 𝐸fine𝑖 . Information
can travel more uniformly on the multiscale graph.
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Table 5.1: An illustration of how fast information can transport along the graph for the graph using just 𝐸𝑖 for its edges, and
along our multiscale graph defined by equations 4.8-4.14. The spread of information is shown for the same starting vertex and
a different number of message-passing steps 𝑁mps .

𝑁mps graph using only 𝐸fine𝑖 full graph
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10
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20
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Because our multiscale graph considerably increases the speed of information travel, we expect this
to lead to an increased accuracy of our model. To test if our multiscale graph does indeed increase the
accuracy of the model, we trained our model with the configurations of Table 5.1 for which the smoothed
ground truth validation loss can be seen in Figure 5.5. We can see that the model with the multiscale
graph always outperformed the version that used the graph with edges 𝐸fine𝑖 with the same number
of message-passing steps and thus the same parameter count. The proportion of nodes reached in
Table 5.1 seems to give a good indication of the model’s accuracy. For example, 15 message-passing
steps with the fine graph reach about the same number of nodes as 6 message-passing steps with the
multiscale graph, and both model configurations give similar accuracy.

Figure 5.5: The ground truth validation loss curves during training of our model configurations. The model configurations are the
same as the number of messages passing steps and the two graph types used in Table 5.1. Smoothing was applied to the loss
curves, making the results easier to interpret.

Whenwe investigated the error for themodel using 6message passing steps trained using the graph
with edges 𝐸fine𝑖 and the multiscale graph with edges 𝐸𝑖, we noticed that the biggest error reduction
was at the locations of the simulated continuations. This difference can be seen in Figure 5.6, which
shows the error for both models on a single representative sample. Since the number of parameters is
identical between the models, the ability to better remove simulated contaminations must be the results
of a larger context window made possible by the multiscale graph.

We conclude that our multiscale graph increases the speed of information transport and thereby al-
lows the use only 20 message-passing steps for a sufficiently accurate denoiser, thus, in turn, reducing
the necessary parameter count and increasing training and inference speed. While the extra edges
in the multiscale graph lead to more calculations performed during training and inference and thereby
a 10% speed reduction, the lower message-passing number more than compensates for this speed
reduction. Using the multiscale graph does not increase the parameter count.

Studying measures to prevent overfitting
When training our model in the early stages of the project on the synthetic dataset, after about 60
epochs, the training- and validation loss started to diverge, leading to reduced performance on the
validation set, as can be seen in the blue line of Figure 5.7. A clear example of overfitting. One feature
of our model that should prevent overfitting is that the model is translation invariant. If we translate the
model input in space, the model’s output will not change. Our model is not invariant or equivariant for
rotations. When the input wafer is rotated in space, the relative locations 𝑢𝑖,𝑢 −𝑢𝑖,𝑣 in the edge feature
vectors e𝑢,𝑣 change. Since the vectors that form the overlay measurements represent shifts in the 𝑥
and 𝑦 directions on the wafer, we also rotate the input and target overlay vectors when we rotate the
wafer. For the rotated measurement locations u∗𝑖 and the rotated measurements x̂

∗
𝑖 where the values
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Figure 5.6: The prediction error ||(𝑓𝜃(x̂𝑖))𝑗 − 𝑦𝑖,𝑗|| on a single sample x̂𝑖, for our model trained using the graphs with the edges
𝐸fine𝑖 and our multiscale graph with edges 𝐸𝑖. This plot was generated using the same sample x̂𝑖 as was used for Figure 5.1.

have been transformed by some orthogonal rotation matrix 𝑅 s.t. 𝑢∗𝑖,𝑗 = 𝑅𝑢𝑖,𝑗 and 𝑥̂∗𝑖,𝑗 = 𝑅𝑥̂𝑖,𝑗, we, in
general, do not have rotation equivariance

(𝑓𝜃(x̂
∗
𝑖 ,u∗𝑖 ))𝑗 = 𝑅 (𝑓𝜃(x̂𝑖 ,u𝑖))𝑗 , (5.2)

where (⋅)𝑗 represent the 𝑗th measurement and the fact that the measurement locations u∗𝑖 and u𝑖 are
also an input to our model is emphasized by writing them as inputs to 𝑓𝜃.

Thus, we saw an opportunity to reduce our overfitting problem by using this observation. One option
was to make our model rotation invariant for the measurement locations û𝑖, which we can achieve by
only keeping the distance between measurement point ||𝑢𝑖,𝑢−𝑢𝑖,𝑣|| in the encoding of the edge feature
vectors e𝑢,𝑣 and discarding the relative location vector 𝑢𝑖,𝑢−𝑢𝑖,𝑣. If we make this change, we guarantee

(𝑓𝜃(x̂𝑖 ,u∗𝑖 ))𝑗 = (𝑓𝜃(x̂𝑖 ,u𝑖))𝑗 , (5.3)

but not equality of equation 5.2 for rotation equivariance. This could still prevent some overfitting as
the amount of input data is reduced.

The second option we explored is to use data augmentation during training as is described in section
4.2, where we rotate both the locations and themeasurements of the input and the target during training.
Since the fit to our augmented data will not be perfect, we can still not guarantee equality of equation 5.2.
We will, however, increase the number of examples of our training set, which could lead to improved
denoising performance.

To test if these two approaches reduced the overfitting of our model, we implemented them and
trained them on the synthetic dataset. Figure 5.7 shows the resulting validation loss from these exper-
iments. The first thing we can see is that adding the data augmentation step to our model significantly
improved the performance of the resulting model. Our second observation is that only using the dis-
tance between nodes as input to the model gave almost the same performance as the full model. Thus,
it seems that the model already ignored the values 𝑢𝑖,𝑢−𝑢𝑖,𝑣 in the edge feature vectors, and removing
them did not change the model performance. This could result from how the synthetic dataset was
made and may not generalize to the full dataset, but this has not yet been tested. If we use both the
data augmentation step and remove 𝑢𝑖,𝑢 − 𝑢𝑖,𝑣 from e𝑢,𝑣, the measurement location information given
to the model is not augmented as ||𝑢𝑖,𝑢 − 𝑢𝑖,𝑣|| = ||𝑅𝑢𝑖,𝑢 − 𝑅𝑢𝑖,𝑣||, and only the measurements are
rotated.

This left us with a choice of which model we would like to use. One could argue that removing 𝑢𝑖,𝑢−
𝑢𝑖,𝑣 from the edge feature vectors slightly reduces the parameter count, reduces the input information,
and does not decrease the model’s performance, so it should reduce overfitting. We, however, suspect
that on the real dataset, this location information is more important as the patterns in this dataset are
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more complex. Thus, we left it in the model. The data augmentation step clearly increased model
performance, so it was included in the model.

Figure 5.7: The validation 𝐿2 loss during training of four different variations of our model using two strategies aimed at reducing
overfitting in our model. The first strategy is to introduce data augmentation as defined in section 4.2. The second strategy is to
only include the distance between measurement locations and not the relative location vectors in the model input.

Predicting noise instead of signal

During training with the Noise2Noise method the loss is calculated between 𝑓𝜃(x̂𝑖) and x̃𝑖, where x̂𝑖
and x̃𝑖 are from the same distribution with mean y𝑖. Since x̂𝑖 and x̃𝑖 are from the same distribution
we would expect x̂𝑖 to be more similar to x̂𝑖 than the the random initialization of 𝑓𝜃(x̂𝑖) is to x̃𝑖. This
observation led us to investigate an alternative model we will denote as 𝑔𝜃(⋅), where

𝑔𝜃(x̂𝑖) ∶= x̂𝑖 + 𝑓𝜃(x̂𝑖), (5.4)

and 𝑓𝜃(⋅) is the original model defined in chapter 4. When fitting 𝑔𝜃(⋅) we achieve a low loss if 𝑓𝜃(x̂𝑖) ≈
y𝑖 − x̂𝑖 instead of when 𝑓𝜃(x̂𝑖) ≈ y𝑖. Thus, our model is then trained to predict the overlay noise y𝑖 − x̂𝑖
instead of the overlay signal y𝑖.

During initial training, our model using 𝑔𝜃(⋅) failed to converge, unlike 𝑓𝜃(⋅). This was due to a single
wafer measurement x̂𝑖. An error in the synthetic data generation led to an overlay measurement 1000
times larger than others, affecting. This skewed loss dominated the training, causing 𝑔𝜃(⋅) to focus on
this error rather than generalizing well to the validation set. Thus, 𝑔𝜃(⋅) is more sensitive to large input
overlay values compared to 𝑓𝜃(⋅). After we removed the wafer measurement pair with the extreme
value in the synthetic dataset, the alternative function 𝑔𝜃(⋅) did converge during training as can be
seen in the loss curve of Figure 5.8. We can see that the performance of 𝑔𝜃(⋅) and 𝑓𝜃(⋅) is virtually
identical on the synthetic overlay dataset. On the real overlay dataset, the results of this experiment
are quite different as there 𝑔𝜃(⋅) is considerably faster to train as illustrated in section 5.2.
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Figure 5.8: The validation 𝐿2 loss during training of our model based on 𝑓𝜃(⋅) as defined in chapter 4 and the alternative function
𝑔𝜃(⋅) defined by equation 5.4. Where these models are trained on our synthetic overlay dataset

The orthogonality of the Noise2Noise loss
When we trained our models we noticed that the Noise2Noise loss 𝑀𝑆𝐸(𝑓𝜃(x̂), x̃) always seemed to
be equal to the ground truth loss 𝑀𝑆𝐸(𝑓𝜃(x̂), ỹ) plus some constant, as can be seen on the model
validation losses of Figure 5.9. To mathematically investigate this phenomenon, we wondered if we
could rewrite the expectation of the Noise2Noise 𝐿2 loss to some constant plus the ground truth 𝐿2
loss. This leads to the following calculation where we use the vectors in ℝ2𝑀𝑖 instead of the tensors in
ℝ2×𝑀𝑖 for the overlay values.

𝔼x̂,x̃||𝑓𝜃(x̂) − x̃||2 = 𝔼x̂,x̃,y||(𝑓𝜃(x̂) − y− (x̃− y)||2 (5.5)
= 𝔼x̂,y||𝑓𝜃(x̂) − y||2 + 𝔼x̃,y||x̃− y||2 − 2𝔼x̂,x̃,y⟨𝑓𝜃(x̂) − y, x̃− y⟩ (5.6)
= 𝔼x̂,y||𝑓𝜃(x̂) − y||2 + 𝔼x̃,y||x̃− y||2 − 2𝔼x̂,y [⟨𝑓𝜃(x̂) − y, 𝔼x̃|y[x̃] − y⟩] (5.7)
= 𝔼x̂,y||𝑓𝜃(x̂) − y||2 + 𝔼x̃,y||x̃− y||2 − 2𝔼x̂,y [⟨𝑓𝜃(x̂) − y,y− y⟩] (5.8)
= 𝔼x̂,y||𝑓𝜃(x̂) − y||2 + 𝔼x̃,y||x̃− y||2 (5.9)

Here we used the law of total expectation and the assumptions on the sampling processmade in section
1.2, namely that conditioning x̃ on y and x̂ is the same as conditioning x̃ on just y, and that 𝔼x̃|yx̃ = y.
The resulting equation shows that the Noise2Noise loss 𝐿2 is indeed separated from the ground truth
𝐿2 loss by a constant. It is also an alternative proof for the fact that minimizing the Noise2Noise 𝐿2 loss
with respect to 𝜃 is identical to minimizing the ground truth 𝐿2 loss for infinite data given that 𝔼x̃|yx̃ = y.
We proved this without the need for M-estimators [22] as is used in the proof of the original Noise2Noise
paper [34]. This proof, however, only works for the 𝐿2 loss, whereas the proof in the Noise2Noise paper
works for all losses with an M-estimator. The above calculation further shows the theoretical minimum
of the Noise2Noise 𝐿2 loss. When our sampling assumptions are met, we have for any parameter set
𝜃:

𝔼x̂,x̃||𝑓𝜃(x̂) − x̃||2 ≥ 𝔼x̃,y||x̃− y||2. (5.10)

This inequality and the equality above still use the variable y, which is not observable in the real overlay
dataset. Reusing the above calculations but now for x̂ instead of 𝑓𝜃(x̂) and using the fact that x̂ and x̃
are I.I.D. conditional on y we get:
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𝔼x̂,x̃||x̂− x̃||2 = 𝔼x̂,x̃,y||(x̂− y− (x̃− y)||2 (5.11)
= 𝔼x̂,y||x̂− y||2 + 𝔼x̃,y||x̃− y||2 − 2𝔼x̂,x̃,y⟨x̂− y, x̃− y⟩ (5.12)
= 𝔼y [𝔼x̂|y||x̂− y||2 + 𝔼x̃|y||x̃− y||2] − 2𝔼x̂,y [⟨x̂− y, 𝔼x̃|y[x̃] − y⟩] (5.13)
= 𝔼y [2𝔼x̃|y||x̃− y||2] − 2𝔼x̂,y [⟨x̃− y,y− y⟩] (5.14)
= 2𝔼x̃,y||x̃− y||2 (5.15)

Thus, this allows us to estimate the ground truth 𝐿2 loss without any access to the ground truth random
variable, namely as

𝔼x̂,y||𝑓𝜃(x̂) − y||2 = 𝔼x̂,x̃||𝑓𝜃(x̂) − x̃||2 − 12𝔼x̂,x̃||x̂− x̃||2. (5.16)

And we can now also rewrite our inequality for the Noise2Noise 𝐿2 loss without the random variable y
as

𝔼x̂,x̃||𝑓𝜃(x̂) − x̃||2 ≥ 1
2𝔼x̂,x̃||x̂− x̃||2. (5.17)

As the mean squared error is an unbiased estimator for the expectation of the 𝐿2 norm between two
random variables, we can conclude from equation 5.16 that𝑀𝑆𝐸(𝑓𝜃(x̂), x̃)−

1
2𝑀𝑆𝐸(x̂, x̃) is an unbiased

estimator the ground truth 𝐿2 loss 𝑀𝑆𝐸(𝑓𝜃(x̂), y). In figure 5.9, we can see that our estimator follows
the ground truth 𝐿2 loss very closely while training our model on the synthetic dataset. This estimator
will thus allow us to estimate the ground truth 𝐿2 loss for our real overlay dataset with the assumptions
of section 1.2, which we made for both the synthetic and real dataset, without any ground truth overlay
for this dataset.

Figure 5.9: To verify our calculations above we trained our model and kept track of the Noise2Noise 𝐿2 loss 𝑀𝑆𝐸(𝑓𝜃(x̂), x̃),
the ground truth 𝐿2 loss 𝑀𝑆𝐸(𝑓𝜃(x̂), y), the mean squared error between the ground truth overlay and the noisy overlay
𝑀𝑆𝐸(y, x̃), our ground truth free estimate for this value 1

2𝑀𝑆𝐸(x̂, x̃), and our ground truth free estimate for the ground truth
𝐿2 loss 𝑀𝑆𝐸(𝑓𝜃(x̂), x̃) −

1
2𝑀𝑆𝐸(x̂, x̃).

5.2. Results on the real overlay dataset
Interpreting results on the real overlay dataset
Unlike the synthetic overlay dataset, for the real overlay dataset, we do not have any ground truth
overlay states y𝑖 in the dataset. We do still make the sampling assumptions of section 1.2, and in-
stead of trying to approximate the measurement y𝑖 which we previously construct ourselves, we now
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approximate the conditional expectation 𝔼 x̂𝑖|x̃𝑖 and make this our target y𝑖 ∶= 𝔼 x̂𝑖|x̃𝑖. Using these
assumptions in section 5.9, we found a lower bound for our 𝐿2 Noise2Noise expected risk, namely

𝔼x̂,x̃||𝑓𝜃(x̂) − x̃||2 ≥ 1
2𝔼x̂,x̃||x̂− x̃||2. (5.18)

If our model 𝑓𝜃(⋅) perfectly predicts y𝑖 s.t. for any 𝑖 𝑓𝜃(x̂𝑖) = y𝑖 we achieve equality. If our model, on
the other hand, does not remove any noise and is just the identity function, we get

𝔼x̂,x̃||𝑓𝜃(x̂) − x̃||2 = 𝔼x̂,x̃||x̂− x̃||2. (5.19)

We can thus judge how well our denoising function 𝑓𝜃(⋅) is performing by how close 𝑀𝑆𝐸(𝑓𝜃(x̂), x̃)
is to 1

2𝑀𝑆𝐸(x̂, x̃) and whether it is lower than 𝑀𝑆𝐸(x̂, x̃). To make this easier, we will, for the real
dataset, normalize the losses 𝑀𝑆𝐸(𝑓𝜃(x̂), x̃) by 𝑀𝑆𝐸(x̂, x̃), where both measures are calculated either
on the training or validation set. We found that 𝑀𝑆𝐸(x̂, x̃) differs considerably between these sets,
and by normalizing 𝑀𝑆𝐸(𝑓𝜃(x̂), x̃) by 𝑀𝑆𝐸(x̂, x̃), we are left with proportion on the means squared
error removed, which can be compared between the validation and training set. Because the overlay
measurements of the monitor wafers are sensitive information we will not show these measurements
or the output of our denoising function on these measurements.

Predicting noise instead of signal
When we first trained our model 𝑓𝜃(⋅) with the masked loss of equation 4.34, we found that while the
validation loss did decrease over time, it took almost a week of training to consistently achieve a loss
lower than 𝑀𝑆𝐸(x̂, x̃) and thus achieve a better denoising function than the identity function. This
decrease in loss can be seen in the blue line of Figure 5.10. When we then inspected the output of
the resulting denoising function, we found that the function made little changes for many monitor wafer
measurements, as the output was very close to the input. This gave us the idea to use instead of 𝑓𝜃(⋅),
the function 𝑔𝜃(⋅) as defined by equation 5.4, so

𝑔𝜃(x̂𝑖) ∶= x̂𝑖 + 𝑓𝜃(x̂𝑖). (5.20)

If for this function we take 𝑓𝜃(⋅) = 0, we end up with the identity function, meaning that the identity
function no longer needs to be approximated.

When we trained our model based on 𝑔𝜃(⋅), we found very different convergence behavior com-
pared to our baseline function 𝑓𝜃(⋅), unlike our previous experiment on the synthetic dataset. After
a single epoch the validation loss 𝑀𝑆𝐸(𝑔𝜃(x̂), x̃) was already lower than 𝑀𝑆𝐸(x̂, x̃) and 𝑔𝜃(⋅) thus a
better denoiser than the identity function. After tens of hours the validation loss𝑀𝑆𝐸(𝑔𝜃(x̂), x̃) reached
its minimum instead of more than two weeks for𝑀𝑆𝐸(𝑓𝜃(x̂), x̃). The minimum achieved was also lower
than the minimum achieved by 𝑓𝜃(⋅), indicating better denoising performance. The reduction in vali-
dation loss was initially fast but, after a few epochs, relatively noisy compared to the loss reduction.
Because 𝑔𝜃(⋅) was considerably faster to train and gave better performance compared to 𝑓𝜃(⋅), we
continued with 𝑔𝜃(⋅) as the denoising function on the real dataset.

Comparing the denoising performance of our model on the real and synthetic
overlay dataset
To compare the performance of our best performing denoising models on both the synthetic- and real
overlay datasets, we created the two plots of Figure 5.11. Both plots show the Noise2Noise 𝐿2 training
and validation loss during training of themodels on their respective datasets. Here themodel on the real
data used the model 𝑔𝜃(⋅) of equation 5.4, does not used the random rotation augmentation method,
and has the measurements with highest loss filtered out during training. The latter to design decisions
are treated in appendix A. Both losses are normalized by 𝑀𝑆𝐸(x̂, x̃) calculated on their respective
validation set such that we can compare them. Both models denoise better than the identity functions
as their loss is lower than 𝑀𝑆𝐸(x̂, x̃). The model trained on the synthetic dataset is relatively closer
to the minimal possible loss 1

2𝑀𝑆𝐸(x̂, x̃) and thus removes a larger part of the noise in the input. The
model trained on the real overlay dataset seems to start overfitting after 15 epochs, while the model
trained on the synthetic dataset does not seem to overfit significantly, even after 300 epochs.

We can use equation 5.16 to convert our Noise2Noise mean squared error 𝑀𝑆𝐸(𝑔𝜃(x̂), x̃) to the
ground truth mean squared error 𝑀𝑆𝐸(𝑔𝜃(x̂), y), where y then equals the mean 𝔼 x̂𝑖|x̃𝑖; the noise free
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Figure 5.10: The masked mean squared error validation loss during training of our model based on 𝑓𝜃(⋅) as defined in chapter 4
and with the alternative function 𝑔𝜃(⋅) defined by equation 5.4. Both models are trained and validated on our real overlay dataset
without the data augmentation procedure of section 4.2.

overlay state for each measurement pair. The mean squared error on the real dataset is calculated
using the masking of equation 4.34, meaning that the most extreme overlay measurements are already
removed from the error calculation and such that these few extreme overlay measurements do not
dominate the error. Using this, we can conclude that for the real overlay data 𝑔𝜃(x̂𝑖) is on average a
30% lower mean squared error estimator for y𝑖 than x̂𝑖 is. On our synthetic overlay dataset 𝑓𝜃(x̂𝑖) is
on average a 97% lower mean squared error estimator for y𝑖 than x̂𝑖 is. We think this difference is
largely caused by how the synthetic dataset is created, which makes denoising the synthetic dataset a
relatively simpler task. This gap in denoising performance could possibly be made smaller with a better
training strategy and/or model 𝑔𝜃(⋅).

(a) (b)

Figure 5.11: The Noise2Noise 𝐿2 validation loss during training of our model 𝑓𝜃(⋅) on the synthetic overlay dataset (a), and
of 𝑔𝜃(⋅) trained on the real overlay dataset (b). Both loss plots are normalized by 𝑀𝑆𝐸(x̂, x̃) calculated on their respective
validation set. The model 𝑔𝜃(⋅) does not use the data augmentation procedure of section 4.2, but does skip large loss iterations
as explained in appendix A.
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Conclusions and recommendations

This thesis developed a machine-learning model for outlier removal in overlay measurements. As
outliers for overlay measurements are not clearly defined, we instead made a model that denoised the
overlay measurements. Because no noisy and noise-free overlay measurement pairs exist, our model
was trained using the Noise2Noise method, which instead used noisy measurement pairs to learn
to denoise overlay measurements. The model is based on a message-passing neural network with
an Encoder-Processor-Decoder architecture. Because our overlay dataset does not have reference
noise-free overlay measurements, we constructed a synthetic overlay dataset. This synthetic overlay
dataset was designed to have some of the core properties of the real overlay dataset such that we
could validate the features added to our model on this dataset. The research was guided by several
key questions regarding the model’s effectiveness as posed in section 3.4. These questions are split
up into questions for the model trained on the synthetic overlay dataset and the model trained on the
real overlay dataset.

6.1. Conclusions on the model trained on the synthetic overlay
dataset

Our first question was if our model 𝑓𝜃(⋅) could, for the synthetic overlay dataset, learn to properly de-
noise noisy overlay measurements pairs x̂𝑖 and x̂𝑖 without access to the target noise-free overlay mea-
surements y𝑖. We can answer this question with a resounding ”yes”, as our model scores an average
𝑅2 score of 0.976 for predicting the noise-free overlay measurement from the noisy overlay measure-
ments. From samples of the model’s output, we can see that predictions 𝑓𝜃(x̂𝑖) closely approximate
their noise-free overlay target y𝑖 and that both the added normal noise and simulated contaminations
are accurately removed from the input overlay measurements. While our model trained without clean
overlay targets performed slightly worse than the same model trained with clean overlay targets, which
achieved an average 𝑅2 score of 0.981, we think this difference stems from the fact that our dataset
is of finite size and thus slightly worse performance is expected. This would mean that the difference
in performance is not caused by the wrong norm during Noise2Noise training, and thus, as we proved
using our overlay sampling assumptions, the 𝐿2 norm is the proper norm to use for the Nois2Noise
training on our data.

Because the synthetic overlay dataset includes the clean overlay targets y𝑖, we were able to test
multiple model features of our model using ablations studies. We first performed an ablation study on
the physics-based encoding in our model, namely the marking of vertexes close to the border of the
wafer and the marking of graph edges that cross exposure field borders. We found that the model’s
performance reduced slightly at the locations of the encodings when when these encodings where re-
moved from the model. However, these differences in performance were small compared to the noise
of the loss when the model was trained. We hypothesized that this small difference was because the
model used the spatial information in the mesh to fit the field and wafer borders instead. This hypoth-
esis was confirmed by the fact that the accuracy improvement of the field border encoding increased
significantly when all further information on the field borders was removed in the mesh encoding. The
physics-based encodings should make the model robust to different measurement layouts in the real
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dataset where some overlay measurements on the wafer fail resulting in a mesh which is no longer
constant.

To determine if our multiscale graph, which incorporates longer edges to enhance the speed of
information travel, improves accuracy compared to a graph with only shorter edges, we trained models
with various numbers of message-passing steps on synthetic data and these two different computation
graphs. Our multiscale graph notably decreased themaximal path length betweenmeasurement points
within the network, enabling accurate denoising with fewer message-passing steps. This reduction
leads to fewer parameters and faster training and inference times. Despite the additional calculations
required by the extra edges in the multiscale graph, the overall model speed improves due to the
reduced number of message-passing steps. This demonstrates that the multiscale graph structure
significantly enhances computational efficiency and reduces the number of necessary parameters.

We further found that our random rotation augmentation during training on the synthetic overlay
dataset prevented our model from overfitting, leading to significantly better denoising performance on
the validation set. Surprisingly, our alternative approach to decreasing overfitting, which removed the
relative location vectors in the spatial encoding of the mesh, did not seem to change themodel’s training
behavior and thus also did not decrease overfitting. We decided not to remove this information from
the model’s inputs as the information may be necessary on the real dataset, for which we expect more
complicated behavior. This has, however, not been tested.

When we made a slight modification to our model, which we define as 𝑔𝜃(x̂𝑖) ∶= x̂𝑖 + 𝑓𝜃(x̂𝑖) and
interoperate as predicting the noise instead of signal, we found on the synthetic dataset no significant
performance difference. We did find, through an error in our dataset, that the function 𝑔𝜃(⋅) is more
sensitive to extreme values in the training set.

When investigating the relation between the ground truth 𝐿2 loss and our Noise2Noise 𝐿2 loss, which
we use to train our model and is the only loss available on the real dataset, we found an estimator for
the ground truth loss that could be calculated without access to the ground truth data. This estimator
could also be used as an alternative proof for the Noise2Noise method with the 𝐿2 loss.

6.2. Conclusions on the model trained on the real overlay dataset
Since we validated most of our model features on the synthetic overlay data, we assumed their effec-
tiveness would generalize to the real overlay dataset. We did, during training, find that the real overlay
dataset contained very large overlay values which dominated the training loss and led to overfitting on
these values. After masking the measurement locations where these extreme values occurred in the
loss, we found that the validation loss decreased when training our model.

An interesting observation was that, if we learned to predict the overlay noise with 𝑔𝜃(⋅) instead of
the overlay signal with 𝑓𝜃(⋅), we got, unlike for our model applied to the synthetic dataset, very different
validation loss curves. The minimum on the validation set for 𝑔𝜃(⋅) during training was reached in days
instead of weeks when training 𝑓𝜃(⋅), and this minimum loss is also slightly lower for 𝑔𝜃(⋅) than for
𝑓𝜃(⋅). We can thus conclude that the prior of 𝑔𝜃(⋅), which can be interpreted as that the noise added
to the overlay measurement is easier to learn than the denoised signal, better fits the real overlay data
than the synthetic overlay. We found that after this minimum validation loss was achieved, both models
started to overfit on the real overlay data. For our fastest training model, 𝑔𝜃(⋅), this significant overfitting
already began after just 15 epochs of training.

Using our estimator for the ground truth loss, we can compare our model’s performance on both
datasets. Here, the target of our synthetic dataset is the noise-free measurement y𝑖 the ground truth
overlay state to which noise was added, for our real dataset this target is defined as the mean 𝔼 x̂𝑖|x̃𝑖;
the noise-free overlay state for each measurement pair. For the real overlay data 𝑔𝜃(x̂𝑖) is on average
a 30% lower mean square error estimator for 𝔼 x̂𝑖|x̃𝑖 than x̂𝑖 is. On our synthetic overlay dataset 𝑓𝜃(x̂𝑖)
is on average a 97% lower mean square error estimator for y𝑖 than x̂𝑖 is. There is quite a significant
gap between these two scores. We see two possible explanations for this gap. The first could be
that our model was not complex enough to approximate the noise-free overlay measurements or was
hindered by overfitting. The second explanation could be that when sampling x̂𝑖 from the noisy overlay
distribution 𝑝(x𝑖|y𝑖) a significant part of the information on y𝑖 is lost. We think both explanations for the
difference in scores play a role, but it is hard to distinguish to what proportion both explanations are
responsible for the performance gap.

If we compare the outputs of our denoising models on their respective datasets, we can make some
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interesting observations. On the synthetic dataset, our model properly removed both the normal noise
and the simulated outliers we defined. For the real dataset, our model removes what appears to be
local contaminations and more global shifts in the overlay caused by the stochastic state of the scanner.

6.3. Recommendations
Our model learned to accurately predict the target ground overlay state on the synthetic dataset overlay
dataset. The main unanswered question about the model’s features is the effect of the relative location
vector encoding. This encoding was taken from the MeshGraphNet model on which we based our
model, but when removed, it did not seem to change the model’s performance on the synthetic dataset.
It would be interesting to study further if this is just the case for our synthetic dataset or would also be
the case for other datasets and applications.

Our model removes a significantly lower proportion of the wafer-to-wafer noise from the real overlay
dataset than from the synthetic overlay dataset. How big of a proportion of the wafer-to-wafer noise can
theoretically be removed is unknown. This means how much better a more complex or better-trained
model could perform is also unknown.

One major indication of room for improvement is that our current model for the real dataset suffers
from overfitting. This was most significant when we did not mask out the largest losses, but even
masking overfitting remains a major concern as a relatively small number of overlay measurements
make a relatively big contribution to the loss. When weminimize the loss, we thus are mainly minimizing
the loss on this small subset of wafer measurement leading to overfitting. Normally, this problem could
be solved by using some sort of relative loss that normalizes the losses such that the contributions are
more equal. In the Noise2Noise paper, the authors mentioned that they had this exact problem when
denoising images that used the unbounded HDR value for the pixel values. They warn that replacing
the mean square error with the relative mean square error changes the expectation the Noise2Noise
method will converge to. Instead, they develop an alternative loss that does not alter the converge point
of the method and is in the limit equal to the relative mean square error for positive numbers. This new
loss gives their model a great performance improvement. Their loss function is, however, only convex
for positive numbers and thus does not work as a loss function for our data. We think that a similar loss
function that works for our data could bring major improvements by reducing overfitting. Some sort of
normalization of the measurements, which limits the contribution of the largest loss values to the total
loss could also be investigated.

An alternative way to reduce overfitting would be adding data augmentationmethods during training.
This approach worked very well for our synthetic data and also prevented overfitting on the real dataset,
but it led to worse overall performance. We hypothesize that rotating a single overlay measurement
conceals that the 𝑑𝑥 and 𝑑𝑦 values of the measurement come from separate measurements, which
is lost if the vector is rotated. A possible solution would be only to rotate the wafers by multiples of
90 degrees and use mirroring. A different data augmentation technique could be to remove a random
proportion of the input measurement points and thus create multiple different input graphs and feature
vectors from a single monitor wafer batch.

We see two possible methods to use our model and reduce the output variance of the overlay
calibration model. The first would be to classify outliers in x̂𝑖 by the length of the vectors of the predicted
noise x̂𝑖 −𝑔𝜃(x̂𝑖). We would expect this method to generate an accurate classifier for outliers, and we
perceive the chance that this method adds significant bias to the calibration model to be very small.
The second way to integrate the model would be to use the outputs of our model 𝑔𝜃(x̂𝑖) and 𝑔𝜃(x̃𝑖) as
input to the overlay calibrationmodel. This method has the possibility of significantly reducing the output
variance of the model but comes with the risk of adding some bias to the calibration. Both methods have
not been tested and should be rigorously validated before implementation. These implementations
would come with the usual risks of a black box model.
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A
Additional results on the real overlay

dataset

Random rotation data augmentation on the real data
In section 5.1 we saw large improvements when we used our random rotation data augmentation pro-
cedure during training on the synthetic dataset. To see if this is also the case for the real dataset we
trained two models 𝑔𝜃(⋅) with and without data augmentation on the real dataset. The resulting val-
idation loss curves can be seen in Figure A.1. The data augmentation technique seems to prevent
overfitting as the training loss and validation loss now remain similar for 70 epochs instead of 30, but
the technique also seems to introduce some bias as the model trained without the data augmentation
achieves a lower validation loss at its respective minimum.

We hypothesize that the source of this bias is the fact that on the real dataset, each measurement
vector is made up of two separate 𝑑𝑥 and 𝑑𝑦 measurements. This means that if only the 𝑑𝑥 marker is
contaminated the 𝑑𝑦 marker does not also need to be contaminated and thus need not give a wrong
large measurement. If you now rotate the measurement vector by a random angle we no longer get
the separate values from the measurements but some combination, and information is lost. More tests
should be performed to see if this is the case.

Figure A.1: The masked mean square error validation loss during training of our model 𝑔𝜃(⋅) for our model trained with and
without the random rotation technique of section . Both models are trained and validated on our real overlay dataset.
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58 A. Additional results on the real overlay dataset

Ignoring large loss values during training
In section 5.1, we saw that large values in the training set of the synthetic dataset led to very high loss
values which in turn led to unstable or non-convergence of the validation loss. When training our model
on the real dataset we saw similar high loss values for some batches. This gave us the idea to skip
the optimization step of batches with extremely high loss values, which we hoped would lead to more
stable training like when we removed the faulty measurement from the synthetic dataset. This could
lead to some bias as the measurements causing large losses would no longer be trained on but we
hoped the extra training stability would make up for this fact. We decided to skip the optimization step
if a batch loss was larger than 3 ⋅ 𝑀𝑆𝐸(x̂, x̃) as with this number most batches were still included but
not the most extreme values.

We can see the result of this experiment in Figure A.2, that while our technique does seem to have
slightly stabilized our validation loss during training, it did not increase the model’s performance.

Figure A.2: The masked mean square error validation loss during training of our model 𝑔𝜃(⋅) where we compare the base model
with a model where the optimization step was skipped if the batch loss was bigger than 3 ⋅ 𝑀𝑆𝐸(x̂, x̃). Both models are trained
and validated on our real overlay dataset without the data augmentation procedure of section 4.2.



B
Example model outputs on the validation

set of the synthetic data
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60 B. Example model outputs on the validation set of the synthetic data

(a) x̂𝑖 (b) 𝑓𝜃(x̂𝑖)

(c) y𝑖 (d) y𝑖 − 𝑓𝜃(x̂𝑖)

Figure B.1: Our denoising model applied to a noisy overlay sample. Figure (a) shows the noisy input sample x̂𝑖, (b) shows the
output of our model 𝑓𝜃(x̂𝑖) on this sample, (c) shows the ground truth overlay y𝑖 from which the sample x̂𝑖 was created, and (d)
shows the error between the prediction and ground truth overlay defined as y𝑖 − 𝑓𝜃(x̂𝑖).
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(a) x̂𝑖 (b) 𝑓𝜃(x̂𝑖)

(c) y𝑖 (d) y𝑖 − 𝑓𝜃(x̂𝑖)

Figure B.2: Our denoising model applied to a noisy overlay sample. Figure (a) shows the noisy input sample x̂𝑖, (b) shows the
output of our model 𝑓𝜃(x̂𝑖) on this sample, (c) shows the ground truth overlay y𝑖 from which the sample x̂𝑖 was created, and (d)
shows the error between the prediction and ground truth overlay defined as y𝑖 − 𝑓𝜃(x̂𝑖).
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(a) x̂𝑖 (b) 𝑓𝜃(x̂𝑖)

(c) y𝑖 (d) y𝑖 − 𝑓𝜃(x̂𝑖)

Figure B.3: Our denoising model applied to a noisy overlay sample. Figure (a) shows the noisy input sample x̂𝑖, (b) shows the
output of our model 𝑓𝜃(x̂𝑖) on this sample, (c) shows the ground truth overlay y𝑖 from which the sample x̂𝑖 was created, and (d)
shows the error between the prediction and ground truth overlay defined as y𝑖 − 𝑓𝜃(x̂𝑖).



C
Synthetic overlay data creation

Fractal noise pattern
All the synthetic overlay data has been implemented using a fractal-like noise pattern created by [44].
The fractal-like noise pattern is created by the following Matlab function where m,n are the dimensions
of the resulting matrix.
function im = generate_fractal_noise(n, m)

im = zeros(n,m);
i = 0;
w = sqrt(n*m);

while w > 3
i = i + 1;
d = interp2(randn(n, m), i-1,'cubic');
im = im + i * d(1:n, 1:m);
w = w - ceil(w/2 - 1);

end
end

Interfield overlay pattern
The Matlab function used to generate the interfield overlay pattern of figure 4.4, where X_wafer,
Y_wafer are the coordinates of the measurements on the wafer.
function overlay_interfield = noise_interfield(X_wafer, Y_wafer)

% create the fractal like noise arrays
n = 16;
m = 16;
noise_X = linspace(-0.15, 0.15, n);
noise_Y = linspace(-0.15, 0.15, m);
noise_array_U = generate_fractal_noise(n, m);
noise_array_V = generate_fractal_noise(n, m);

% Interpolate at the wafer coordinates and standerdize
U = interp2(noise_X,noise_Y,noise_array_U,X_wafer,Y_wafer);
U = (U/std(U));
V = interp2(noise_X,noise_Y,noise_array_V,X_wafer,Y_wafer);
V = (V/std(V));

overlay_interfield = [U V];
end
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64 C. Synthetic overlay data creation

Intrafield overlay pattern
The Matlab function used to generate the intrafield overlay pattern of figure 4.5, where X_field,
Y_field are the coordinates of the measurements relative to the center of their respective fields.

function overlay_intrafield = noise_intrafield(X_field, Y_field)

% create the fractal like noise arrays
n = 8;
m = 8;
noise_X = linspace(-0.15, 0.15, n);
noise_Y = linspace(-0.15, 0.15, m);
noise_array_U = generate_fractal_noise(n, m);
noise_array_V = generate_fractal_noise(n, m);
noise_array_U = (noise_array_U/std(noise_array_U(:)));
noise_array_V = (noise_array_V/std(noise_array_V(:)));

% Interpolate at the field coordinates and standerdize
U = interp2(noise_X,noise_Y,noise_array_U,X_field,Y_field);
U = U / max(abs(U(:)));
V = interp2(noise_X,noise_Y,noise_array_V,X_field,Y_field);
V = V / max(abs(V(:)));

overlay_intrafield = [U V];
end

Radial overlay pattern
TheMatlab function used to generate the radial overlay pattern of figure 4.6, where X_wafer, Y_wafer
are the coordinates of the measurements on the wafer.

function overlay_radial = noise_radial(X_wafer, Y_wafer)

% generate radial pattern and normalize radii to (0,1]
R = sqrt(X_wafer.^2 + Y_wafer.^2);
U = R.^16 .* X_wafer;
V = R.^16 .* Y_wafer;
norm_factor = max(sqrt(U.^2 + V.^2));
U = U / norm_factor;
V = V / norm_factor;

% generate fractal noise and interpolate to measurement points
n = 8;
m = 8;
zoom = 2;
noise_X = linspace(-0.15 * zoom, 0.15 * zoom, n);
noise_Y = linspace(-0.15 * zoom, 0.15 * zoom, m);
noise_array_U = generate_fractal_noise(n, m);
noise_array_U = (noise_array_U/std(noise_array_U(:)));
noise_R = interp2(noise_X, noise_Y, noise_array_U, X_wafer, Y_wafer);

% multiply the noise pattern with the radial pattern pairwise
U = U .* noise_R;
V = V .* noise_R;
overlay_radial = [U V];

end
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Global overlay noise pattern
The Matlab function used to generate the global noise or defects of figure 4.8, where X_wafer,
Y_wafer are the coordinates of the measurements on the wafer.

function overlay_global_noise = global_noise(X_wafer, Y_wafer)

% sample the number of global defects
number_of_defects = geornd(0.3);
U = zeros(size(X_wafer));
V = zeros(size(Y_wafer));

if number_of_defects > 0
for i = 1:number_of_defects

% Sample derfect location, sigma (radius), amplitude (size of
vectors), and split of radial and noise in the defect.

X_loc = -0.15 + 0.3 * rand(1);
Y_loc = -0.15 + 0.3 * rand(1);
sigma = 0.0025 + exprnd(0.01);
amplitude = 0.4 + exprnd(0.5);
radial_noise_split = 0.4 * exprnd(1);

% construct Gaussian surface from pdf
X_gauss = linspace(-0.15,0.15,200);
Y_gauss = linspace(-0.15,0.15,200);
[X_gauss, Y_gauss] = meshgrid(X_gauss, Y_gauss);
Z_func = exp(-1/(sigma^2)*((Y_gauss-Y_loc).^2 + (X_gauss-

X_loc).^2));

% create radial defect pattern from gradient of the pdf
[X_grad, Y_grad] = gradient(Z_func);
U_radial = - interp2(X_gauss, Y_gauss, X_grad, X_wafer,

Y_wafer);
V_radial = - interp2(X_gauss, Y_gauss, Y_grad, X_wafer,

Y_wafer);
R_radial = sqrt(U_radial.^2+V_radial.^2);
U_radial = U_radial / max(R_radial);
V_radial = V_radial / max(R_radial);

% Generate noise of defect and multiply with pdf at
measurement locations. Then normalize the radii to [0,1].

n = 8;
m = 8;
noise_X = linspace(-0.15, 0.15, n);
noise_Y = linspace(-0.15, 0.15, m);
noise_array_U = generate_fractal_noise(n, m);
noise_array_V = generate_fractal_noise(n, m);
noise_array_U = (noise_array_U/std(noise_array_U(:)));
noise_array_V = (noise_array_V/std(noise_array_V(:)));
U_noise = interp2(noise_X,noise_Y,noise_array_U,X_wafer,

Y_wafer).* interp2(X_gauss,Y_gauss,Z_func,X_wafer,Y_wafer);
V_noise = interp2(noise_X,noise_Y,noise_array_V,X_wafer,

Y_wafer).* interp2(X_gauss,Y_gauss,Z_func,X_wafer,Y_wafer);
R_noise = sqrt(U_noise.^2+V_noise.^2);
U_noise = U_noise / max(R_noise);
V_noise = V_noise / max(R_noise);
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% Add the defect to the overlay using the radial and noise
split sampled before, and multiply by the amplitude.

U = U + amplitude * (radial_noise_split * U_radial + (1-
radial_noise_split) * U_noise);

V = V + amplitude * (radial_noise_split * V_radial + (1-
radial_noise_split) * V_noise);

end
end

overlay_global_noise = [U V];
end

Local overlay noise pattern
The Matlab function used to generate the local noise of figure 4.9, where X_wafer, Y_wafer are the
coordinates of the measurements on the wafer and overlay is the ground truth overlay together with
the global noise and defects.

function overlay_local_noise = local_noise(X_wafer, Y_wafer, overlay)

% Sample 2d multivariate noise for every measurement
base_noise = mvtrnd(eye(2),7,length(X_wafer));

% Sample 2d multivariate noise for every measuremennt and multiply it
with the radius of the base overlay to get radius dependent noise.

radius_dependent_noise = sqrt(overlay(:,1).^2 + overlay(:,2).^2) .*
mvnrnd(zeros(2,1), eye(2),length(X_wafer));

% Add the two noises where the radius dependent noise is normalized to
about 1

overlay_local_noise = base_noise + 4e9 * radius_dependent_noise;
end

Combing the overlay patterns
The Matlab code with all the scaling parameters chosen that combine all the different synthetic noise
patterns in to a ground truth overlay with two samples of added noise. All the functions used have been
described above, X_wafer, Y_wafer are the coordinates of the measurements on the wafer, and
X_field, Y_field are the coordinates of the points relative to their field center.

% ground truth overlay
overlay_interfield = 0.08e-9 * noise_interfield(X_wafer, Y_wafer);
overlay_intrafield = 0.35e-9 * noise_intrafield(X_field, Y_field);
overlay_radial = 0.50e-9 * noise_radial(X_wafer, Y_wafer);
overlay_no_noise = overlay_interfield + overlay_intrafield +

overlay_radial;

% sample 1
global_noise_1 = 0.70e-9 * global_noise(X_wafer, Y_wafer);
overlay_1 = overlay_no_noise + global_noise_1;

local_noise_1 = 0.06e-9 * local_noise(X_wafer, Y_wafer, overlay_1);
overlay_1 = overlay_1 + local_noise_1;

% sample 2
global_noise_2 = 0.70e-9 * global_noise(X_wafer, Y_wafer);
overlay_2 = overlay_no_noise + global_noise_2;
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local_noise_2 = 0.06e-9 * local_noise(X_wafer, Y_wafer, overlay_2);
overlay_2 = overlay_2 + local_noise_2;
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