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Summary

The work described in this report is the literature survey part of the master thesis project
”Modeling of immiscible incompressible turbulent two-phase stratified pipe flow”. The lit-
erature survey is focused on the current state-of-the-art of modeling turbulent two-phase
stratified flow. This report meant to identify and validate the most suitable candidate
model for inclusion in the multiphase flow models that are being developed in the Scien-
tific Computing group of the Delft Institute for Applied Mathematics. For that reason,
experiments that have been carried out in the Laboratory for Aero- and Hydrodynamics
of Faculty of Mechanical, Maritime and Materials Engineering of Delft University of Tech-
nology are used together with the results of (Eggels| [1994). The algorithm developed in
the Scientific Computing group is based on a specific version of the Mass-Conserving Level
Set (MCLS) method, which is the starting point of this thesis. This algorithm is going to
be improved with necessary boundary conditions for discretization of the equations that
describe immiscible incompressible two-phase flow in a circular pipe geometry.

In this report, three different turbulence models, standard k& — ¢ model, Reynolds Stress
Model (RSM), and Large Eddy Simulation (LES), are introduced. Direct Numerical Simu-
lation (DNS) and LES are chosen to estimate the computational resources for single-phase
pipe flow test case with friction Reynolds number of 395. In section [4] the physics of
stratified two-phase flow is described and the importance of representing the interface
between two immiscible phases to obtain conservation of mass is explained in section [0}
In order to develop a three-dimensional numerical model for immiscible two-phase pipe
flow, cylindrical coordinates are used to obtain a boundary-fitting grid. In section [6] the
MCLS method, which combines the Level Set (LS) method and the Volume of Fluid (VOF)
method, is described in order to conserve mass while representing the interface.

The turbulence model that can be used for this study depends mainly on the available
computational resources of the Scientific Computing group. Accordingly, problem com-
plexities of different models are analyzed in detail. Estimating problem complexity (i.e.,
the number of total grid points required) for single-phase turbulent flow gives a rough
estimate for the number of unknowns and an inference about the complexity of two-phase
flow. The comparison of computational costs showed that DNS is possible for two-phase
stratified pipe flow test case only for low Reynolds numbers. For high Reynolds number
flows, DNS is not feasible and LES is considered to be the promising technique since the
computational resources required for DNS becomes excessive. Therefore, LES needs to be
investigated elaborately for turbulent two-phase stratified pipe flow test case.



1 Introduction

Any flow that consists of more than one fluid or a fluid and a solid is called a multiphase
flow. Multiphase flow can be classified according to the state of different phases such as
gas and liquid flow, liquid and solid flow or gas and particle flow. If the state or the phase
are the same, but the material properties are different (i.e. oil and water; liquid-liquid)
for the flow, then the flow is also classified as a multiphase flow.

In general, multiphase flow has two general topologies: disperse flow and separated flow.
Disperse flow consists of particles, drops or bubbles in the flow. However, in separated
flow, as the name suggests, the streams of different fluids are separated by interfaces.

Almost every process technology has involvement with multiphase flow, thus, it occurs in
many areas in industry, such as oil and gas recovery, (nuclear) power generation, food and
chemical production. For safe transport and processing, the multiphase flow is required
to be stable and predictable. Therefore, computational fluid dynamics (CFD) plays an
important role at this point to simulate the environment and find the most cost-effective
and efficient system design.

For many two-phase flow applications, the fluids flow in a single pipeline configuration.
In long distance pipelines (e.g. steam and water or natural gas and oil flows), in power
generation, petrochemical and process plants, the flow regime is so called stratified flow
(Fig. . With an increase in the flow rate, waves occur on the interface of the two fluids.
The stratified flow in the pipeline first changes to stratified wavy flow (Fig. , then to
slug flow (Fig. , as the gas velocity increases. If necessary precautions are not taken,
these waves can get high enough to reach the top of the pipe. After that point, the gas
flow can be blocked and the flow becomes discontinuous, which leads to formation of slugs.
This should be avoided at all times since it can lead to pressure fluctuations and damage
in the pipeline system; especially at the bends. Therefore, being able to predict the onset
of the transition from wavy to slug flow is very important.
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Figure 1: Gas-liquid flow regimes in horizontal pipes.

In this study, modeling of immiscible incompressible turbulent two-phase stratified flow
is investigated. The aim of this thesis is to make a start with turbulence modeling for
stratified two-phase flow. Different models are used and compared in order to find the
most appropriate model, which predicts the onset of instability of the interface and the



formation of slugs. The main challenge for modeling turbulent two-phase flow is the
turbulent conditions for bulk motion. Turbulence plays an important role in the transition
of stratified flow to wavy flow. Moreover, waves on the interface have an influence on the
dynamics of the interface, which leads to turbulence. Therefore, modeling turbulent two-
phase flow is difficult compared to modeling turbulent single phase flow. There are quite
a few turbulent models have been developed for turbulent single phase flow. However, not
all of these models are extended to turbulent two-phase flow. Hence, models for turbulent
two-phase flow are still not well established as models for single phase flow.

Turbulence models for turbulent incompressible single-phase flow are assessed in section
in order to compare computational cost and accuracy of different models before assessing
the turbulent incompressible immiscible stratified two-phase flow in section [5| This way
an insight is obtained for the number of unknowns required to model the flow and for
the two-phase case, which is similar to the single-phase in terms of wall and inlet-outlet
boundary conditions, and the inner region flow regime. The minimum computational cost
that is possible with the large eddy simulation (LES) method for the single-phase flow is
calculated in section [3| to be able to make inferences about the two-phase case, and to
decide how to proceed with the turbulent two-phase flow modeling. In particular, DNS
and LES are investigated carefully, especially, near-wall treatment and at the interface in
order to realize and decrease the computational cost of the problem.

In the Laboratory for Aero- and Hydrodynamics of Faculty of Mechanical, Maritime and
Materials Engineering of Delft University of Technology, experiments have been performed
to predict the formation of slugs and the transition from laminar to turbulent flow. The
configuration and flow parameters of the experiments are used in this thesis, and the results
of the thesis are validated with the results of the experiments. Moreover, the computational
technique used in the work of Eggels| (1994)) (e.g., grid estimation procedure) is compared
in Appendices [A] and [B] with the methodology that is used in this thesis. In that manner,
the model can be validated and limitations of all models can be identified clearly.

In this thesis, first, single phase flow is going to be simulated with DNS and then, if
possible, two-phase flow will be simulated with DNS. It is feasible to use DNS to simu-
late two-phase flow within a reasonable amount of time with the available computational
resources since the Reynolds number E| is low enough. For this reason, DNS is going to
be used to compare the results with experiments. However, the computational cost of
DNS increases rapidly for high Reynolds number flows and the available resources in the
Scientific Computing group of the Delft Institute for Applied Mathematics is not enough
to simulate a high Reynolds number two-phase flow with DNS. Therefore, LES is realized
as the most promising technique for turbulent two-phase flow.

'Re = ulL /v is the Reynolds number, u is the mean velocity of the fluid, L is the characteristic length
scale of the flow geometry (e.g., the pipe diameter), and v is the kinematic viscosity of the fluid.



2 Problem Description

When the flow becomes turbulent due to the high velocities of the fluids, it becomes
challenging to model the turbulent behavior near the interface correctly. The turbulent
flow near the interface affects the momentum transfer between the phases, which is the
critical and peculiar phenomenon of turbulent two-phase flows.

Although, stratified flow is considered to be the simplest case for gas-liquid flow, it is not
completely understood. The difficult part is the formation of waves at the interface and
the interaction between this deformed interface and the two fluids. Experimental studies
have been carried out for stratified wavy gas-liquid flow. However, it is quite challenging
to get an accurate result for the velocity profile close to the interface (Vallée et al., 2008)).

In order to solve the Navier-Stokes equations for turbulent flow, equations should be for-
mulated. Pressure and velocity of a fluid, which are governed by Navier-Stokes equations,
can be decomposed into mean and fluctuating parts Eq. with Reynolds decompos-
tion Pl The continuity and the Navier-Stokes equations can be described only with the
mean value by taking average of the Egs. @ and in time. As a result of averaging,
the Reynolds Averaged Navier-Stokes (RANS) equations are obtained and new unknown
terms, Reynolds stresses appear in the equations, which need to be modeled (see Eq. )
This leads to a closure problem, which means that the number of unknowns is larger than
the number of equations. Moreover, when new equations are developed for these unknown
terms, more unknown terms appear in the equations. In fact, the closure problem suggests
that there is a need for infinite number of equations in order to describe the turbulence
statistically.

Numerical methods for solving the governing equations and the closure problem for tur-
bulent two-phase flow are quite complex. In most of the cases, two-phase flows show
oscillatory behavior and requires to solve costly transient problem (Ghorai and Nigam),
2006). The waves on the interface have an effect of changing the flow from laminar to
turbulent. The turbulent fluctuations in two phases will influence the dynamics of the
interface.

For single-phase flow, different turbulence models can be used for specific type of problems.
However, it is not that straightforward to use turbulence models for turbulent two-phase
flow since the momentum transfer at the interface cannot be handled easily (Ghorai and
Nigam) 2006). The most common numerical approach for single-phase turbulent flow used
in engineering applications is based on the RANS equations (see Eq. ), in which the
effect of turbulence fluctuations are modeled. This approach yields different models, such
as two-equation models (k — € model), which can be used to predict many flows that are
fully turbulent except flows with strong separation, swirling, or rotation. Another model
that rises from the application of Reynolds averaging is the Reynolds Stress Model (RSM),
which can be used for free shear flows with strong anisotropy, flows with sudden changes
in the mean strain rate.

Direct numerical simulation (DNS) is the most accurate and easy-to-implement numerical
approach to the solution of turbulent flow. In DNS, all of the scales of turbulent motion

2A mathematical technique that decomposes the instantaneous quantities into time-averaged and fluc-
tuating quantities.



are resolved in space and time explicitly. The range is from macro-structure scales (energy-
carrying) to micro-structure scales (dissipative motions), which makes DNS a very costly
method. The number of grid points is proportional to the Re%/* (see Eq. ) Therefore,
DNS is applicable only to simple geometries, and is limited to the flows with low Reynolds
numbers. It is often used to validate the results of other turbulence models together with
experiment results.

In LES, only the dissipative motions, the micro-structures, are modeled and the rest of
the motions are resolved. It simulates the problem with a reasonable accuracy, which is
comparable to the accuracy of the DNS with less computational effort. LES can be used
for flows having the effect of irrotational strains and normal stress due to being isotropic.

In the experiment, a circular pipe, which has a diameter of 0.05 m and a length of 10 m, has
two fluids flowing at ambient pressure and temperature. Each of the phases flow through
the pipe with a different viscosity and density. The flow characteristics are determined by
the shear stresses and gravity, which are affecting the interface and flow near the walls.
When the flow rate is at a moderate level, the effect of gravity is observed on the flow, i.e.
the stratification occurs and the phase with the higher density flow through the bottom
region and the phase with the lower density flow through the top region. Both fluids
are assumed to be incompressible and separated by an interface. The flow becomes fully
developed over a length of 7.5 m.

There can be fluctuations at the interface between two phases when the gas flow rate
increases, though, the liquid layer is fully laminar. For air and water this occurs when
the air phase becomes turbulent; Reu; =~ 3500. The water phase is turbulent when
Reyater = 3400. The Reynolds number Re is defined as Rey = uyDyy, / vy, where uy is the
bulk velocity of the fluid, Dy, is the hydraulic diameter, and vy is the kinematic viscosity
of the fluid. In air phase, Dy, = 4Ay/ (Swg + Sint), and in water phase Dy, = 4A;/Sy,
where A, and A; are the cross-sectional areas respectively for gas and liquid phases, and
Swgs Swi, and S, are the wetted perimeters ﬂ For the turbulent non-wavy stratified case
(intermittency factor ~0.99; which is the fraction of time that motion is turbulent) the
Reynolds number is ~3400. The friction Reynolds number E| for the single phase pipe flow
is Re; = 395 (Birvalski, 2015).

The grid-point requirements for DNS of single phase channel flow, Npyg, is (Wilcox et al.,
1998))
Npns ~ (3Re)*/4, (1)

Even for the single phase case that has relatively low Reynolds number, the computational
cost of DNS is large. For the two-phase case with Reyqter =~ 3400, the computational cost
is even larger.

The grid-point requirements for LES of single phase channel flow can be estimated with

3The wetted perimeter is the length of the total surface in contact with the fluid. For a single-phase
pipe flow, the wetted perimeter is equal to wD, where D is the diameter of the pipe.

1t is defined as the ratio of inner (close to the wall) and outer length scales (further away from the wall),
Re; = u*0/v =§/6,, where u* and §, are defined in Egs. and respectively, and § represents the
outer layer length scale for the flow.



respect to the requirement of DNS (Wilcox et al., [1998])

0.4
Nrgs ~ | —5 | Nons- (2)
(Rew)

The number of grid points required for numerical simulation varies when using wall-
modeled and wall-resolved LES. These different approaches of LES are discussed in more
detail in the subsection 3.3

The object of this study is to distinguish the advantages of turbulent models by getting
more insight into the current state-of-the-art of modeling turbulent two-phase stratified
flow. The results from an experiment, which has been carried out in the Laboratory for
Aero- and Hydrodynamics of Faculty of Mechanical, Maritime and Materials Engineering
of Delft University of Technology, are used to validate the results of this study (Birvalski,
2015). The main aim of this master thesis is to simulate the flow in this experiment
and compare measured and computed velocity profiles. The main difficulty to resolve the
flow is the feasibility of performing such a simulation using either DNS, LES or another
turbulence model for turbulent two-phase flow.

In this thesis, LES is found to be applicable from a computational point of view. However,
it is not known how to model the momentum transfer between gas and liquid phases, which
is very crucial. In order to validate this work, results of this study should be as close as
possible to the results of the experiment that includes the effect of momentum transfer
between the phases. First, the computational cost and accuracy of DNS and LES in single-
phase flow need to be analyzed. After analyzing the single-phase pipe flow with DNS and
LES and checking the feasibility of LES for the turbulent two-phase flow, the immiscible
incompressible turbulent two-phase stratified flow is going to be modeled with LES, in
which the momentum transfer between the phases is initially going to be ignored because
of the fact that there is not a robust method to simulate turbulent two-phase stratified
flow and to make the problem slightly easier.



3 Introduction to Turbulence Modeling for Single-Phase Flow

Turbulent flow is three dimensional, chaotic, diffusive, quasi-random, dissipative and in-
termittent. In turbulent flow, the field parameters are not steady, but random functions of
space and time and are characterized by velocity fluctuations in all directions. The tensor
notation (in particular, the Einstein summation convention EI) of conservation equation of
mass for an incompressible fluid with constant viscosity is:

8ui o

where u and p are velocity and pressure fields respectively. The flow is governed by
incompressible Navier-Stokes equations and the conservation equation for momentum:

ou 0 op 0
T () = < 4 o (2usig) + g, 4

where p, i, s;; and g are the density, viscosity, strain-rate tensor and gravity respectively.
The strain-rate tensor is as follows:

1 6uz an
Sl] N 5 (630] + 6$1> ' (5)

Together with the continuity Eq. , the equations of motion can be written as:

du ou; dp 0%u;

Yot T on; ~ om  Momox,

+g. (6)

The Navier-Stokes equations are non-linear and difficult to solve analytically. The exact
solution can be obtained only by doing simplifications, which are usually not realistic.
Therefore, it is hard to get more insight into the nature of turbulence by analytically
solving these equations.

Due to the large computational resources required to resolve the flow at the appropriate
length and time-scale, there is a need to model the equations. The need to model addi-
tional equations for the new unknown terms is called Turbulence Modeling. These are the
turbulence models based on Reynolds Averaged Navier-Stokes (RANS) equations (time
averaged) in the order of increasing complexity:

Algebraic (zero equation) models: mixing length (first order model),

One equation models: k-model, v;-model (first order model),

Two equation models: k — ¢, k — w? (first order model),

Algebraic stress models: ASM (second order model),

Reynolds stress models (second order model).

5In Einstein summation convention, subscripted variables only appear twice in any term, and these sub-
scripted variables are assumed to be summed over. It is used to simplify expressions including summations
of vectors, matrices, and tensors.



In this study, k¥ — € and Reynolds stress models are investigated together with DNS and
LES. DNS and LES are analyzed more elaborately than other models for single-phase
turbulent pipe flow.

DNS, in which all details of the flow are resolved, is not feasible for high Reynolds number
flows. However, for moderate Reynolds number flows its results can be used to validate the
results of turbulence models, and it is also used to identify the physical processes involved
in the problem.

In LES, the computational cost is smaller than DNS but larger than Reynolds stress
models. Large scales are resolved and the small scales of the flow are modeled accordingly.
For large fluctuating flows, LES is expected to be more reliable and accurate than Reynolds
stress models (e.g. flow over bluff bodies, which has unsteady separation and vortex
shedding (Popel 2001)).

At the end of each section, the properties of different methods are summarized and their
limitations are discussed and compared.

10



3.1 Reynolds Averaged Navier-Stokes (RANS)
3.1.1 Two Equation Model: k —¢

In order to solve turbulent flow, it is considered to be statistically stationary, which means
the joint probability distribution - which represents the likelihood of occurrence of two
events at the same time and together (i.e. the probability of event = occurring at the
same time with event y) - of the flow does not change when time is shifted. As a result,
the mean and variance of the flow parameters are constant over time and do not have a
pattern. By this means, the velocity field u; and the pressure field p can be decomposed
into a mean (time-averaged) and fluctuating part:

wi =i +u;, p=p+p. (7)

u l, . “lu .
a W ]
f 'L|"1i nu'ln| I Fil f.’i | ]f‘w Il‘n ﬂ _'J| I,r.r! /
AN AR
Ny
t
(a) Statistically stationary (b) Statistically unsteady

Figure 2: Statistically stationary flows, where u;:=instantaneous velocity, %;:=mean ve-
locity (time-averaged velocity), and u; := u; — u;:=velocity fluctuation.

The aim is to obtain set of equations to describe the average properties of the turbulent
flow. The time average is defined as:

to+T
7= lim — / fdt. (8)

T—o0 T to

Introducing the decomposition @:

i tu)) oo @) 0p+p) | 0w+ )
0w +u;)
= 0. (10)

Applying the decomposition (i.e. the flow is statistically stationary, Fig. and the
rules of averaging, the following Reynolds Averaged Navier-Stokes (RANS) equations are
obtained:

Oui | g0l o O O (0w Cnr (11)
p 8t ]890]- N 81‘1 afL’j ’u(?a:j P i)
o(w; + u;)
=0 (12)
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However, application of the Reynolds decomposition leads to new unknowns, which are
called Reynolds stresses and turbulent fluxes. The Reynolds stress tensor is defined as:

Tij 1= pu;u; (13)

ij
—2/15’7']-, where ST] is the mean-rate of strain tensor. By using the turbulent-viscosity

. . . . . ! o ouj |
In Newtonian fluids, the molecular shear stress is given by: 7/ = —purp [ 8;%- R } =

hypothesis (Boussinesq), the deviatoric (anisotropic) Reynolds stress (pu;u; - %pkézj) is

proportional to the mean rate of strain (Avila, [2015):

RANS, —— 2 ou;  O0u;
7J i

| = 2035, (14)

where a in the superscript refers to the anisotropic part of Reynolds stress, and vp(Z,t)
is the turbulent viscosity. Thus, the momentum equation is as follows:

ou; _ Ou; 10, 2 0 ou; 8@-
huthat] T — 2 v 1
ot +uj(9xj p Ox; P+ 3pk) * ox; [Veff <6xj * 8:(:1)] ’ (15)

where verr = v+uvp(Z,t). By specifying vp(Z,t), which is not a constant (since a constant
do not change the same equation with the same unknowns), the closure problem is solved
(instead of p and k, g =D+ %pk‘ is only used) (Avila, 2015).

The k — € model is investigated since it is the most widely used turbulence model and
included in all commercial CFD codes. It can be summarized as follows:

1. RANS + turbulent-viscosity hypothesis: vp = I*u*,
Velocity scale: u* o vk,
Length scale: I* o< k%/2 /e,

2.
3.
4. Turbulent viscosity is defined by vy = C,k*/e,C), = 0.09,
5. The RANS are solved for u(Z), p(%), together with

6.

Model equations for k(%) and ¢(Z),

A transport equation for the turbulent kinetic energy k = %u;u; can be derived as follows:

e Subtract the RANS from the Navier-Stokes equations to obtain transport equation
for the fluctuation velocity field u;-,

e Take the dot product of the following equation with u;
ok ok 9T, Dk

= U P—¢ — =—+4V-T,=P—¢, 16

ot Z@:ci €T; ¢ Dt * ! ‘ ( )
P .= —Tlf}AN s % is the production term,

J

ou, ou’ \ . C
€=V (azl_ a?-) is the dissipation term,
J J
Iy
b U, Ok
T

— Vg, is the energy flux term.

12



The dissipation and energy flux terms are unknown. Thus, these terms have to be modeled.
The energy dissipation rate and energy flux terms are modeled respectively e = C'pk>/? /lm,
Cp = 0.08, T' = —(vp/oy)VEk, op = constant = 1. Boundary conditions for k can be
imposed as Dirichlet at the inlet, Neumann at the outlet, zero at walls. Near the wall, the
production term and the dissipation term are almost equal (P ~ €) (Avila} 2015)).

The empirical equation for the dissipation (e) is;

De v Pe €2
ﬁ =V. |:O_€v€:| + 061? - CEQE, (17)

where the model constants can be determined by studying simple flows or by comparison
with experimental data: C,, = 0.09, Ce = 1.44, Cep = 1.92, 0}, = 1.0, 0. = 1.3 (Avila,
2015)).

The implementation of & — € model yields six variables; ui, us, u3, P, k, € and six
equations:

D L Pe €2 .
?t] =V [I/effvuj] - Cﬁl? - Ce2?a J= 1,273 (18)
D

Dk _y. [”Tw:] + P (20)
Dt Ok

De vr Pe €

= \V4 |:Ue Ve} +Ca 2 Ce2 ’ (21)

3.1.2 Wall Treatment

Viscous effect in the near-wall region is an important challenge in CFD. Modeling equation
raises another challenge, which is how to resolve fluctuating flow parameters near-wall
without using a very fine mesh.

In the presence of a solid wall, vorticity is generated and a turbulent boundary layer will
occur. Close to the wall, the wall shear stress 7,, and the viscosity v play an important
role. This region is called the wiscous sublayer, whereas the outer region, where large
scale turbulent eddy shear dominates, is called the outer layer. In between these two
layers, there exists an overlap layer called the log-law region, where velocity profile shows
a logarithmic variation (see Fig. |3| and Fig. . In the viscous sublayer region, the effects
of the pressure gradient and convection are assumed to be negligible. The important
parameters in that region are density, viscosity, wall shear stress and normal distance
from the wall. On the other hand, in the outer region, where the convection and pressure
gradient are dominant, the effect of viscosity is assumed to be negligible.

In the near-wall region new parameters are defined that are called the viscous scales (Popel,
2001). A reference length scale (viscous length scale) and velocity scale (friction velocity)
is defined as follows:

w= (22)

13



and the viscous length scale:

P v
0= — = 23
v Tw u* ( )

These can be used to define a dimensionless velocity and a dimensionless length (wall unit)

as: (24)

°Y (25)

where u is the velocity component parallel to the wall, y is the distance normal to the
wall, and v is the kinematic viscosity of the fluid.

104 1073 0.01 0.1 0.3 1
| | | | | |
y/é
OUTER LAYER

overlap region

log-law region

INNER LAYER
viscous wall region
buffer layer

viscous sublayer
o+
y
| | | [ | | I
1 5 10 30 50 100 1,000 10,000

Figure 3: The law of the wall: layers defined in terms of y/d for turbulent channel flow at
Re, = 10* (Pope, 2001)).

viscous sub layer buffer region log region

Figure 4: Near-wall mean velocity profiles, wall regions and layers.

The law of the wall defines that the average dimensionless velocity of a turbulent flow is
proportional to the logarithm of the distance (dimensionless length or wall unit) from a

certain point to the wall (Fig. |4)).
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The first layer is called the viscous sublayer (see Fig. and at high Reynolds number
the viscous sublayer is very thin (y* < 5). Thus, special near-wall treatments need to be
applied. There are two possibilities for turbulence models in order to resolve the flow in
the near-wall region; the low Reynolds number method, in which the mesh is very fine
close to the wall, and the high Reynolds number method, in which wall functions are
implemented. The second approach is less costly in terms of computations. However,
important information about the physics of the problem is lost.

Over some region of the wall layer, viscous effects are large due to the no-slip boundary
condition at the wall. These problems yield unsatisfactory results. In low Reynolds
number, a way to overcome these problems is to introduce damping effects (Sondak, 1992).

Another option is to use wall functions, in which the flow in the near-wall region is mod-
eled. By using wall functions, empirical laws are provided such that these laws make it
possible to express the mean velocity parallel to the wall and turbulence parameters. Wall
functions, which are based on the law of the wall and valid only in the log region, provide
boundary conditions for the momentum and turbulent transport equations near the wall,
instead of conditions at the wall itself. As a result, the viscous sublayer does not have
to be resolved and the fluctuating flow parameters near the wall can be resolved without
using a very fine mesh.

3.1.3 Wall Functions

It is important to model the flow in the near-wall region accurately because walls are
the main source of vorticity and turbulence. Thus, in order to get an accurate result,
wall functions or some other method should be used. In wall functions, the first point
of the grid is assumed to be in the logarithmic layer and called y,, which is an artificial
parameter. The accuracy of the result depends on the choice of y,. If the first grid-point
is too close (i.e. located in the linear sublayer y™ < 5), then the dimensionless velocity is
equal to dimensionless length (Avilal 2015):

ut =y". (26)

If the mean flow is parallel to the wall, then the log-law relations apply (log-law region:
yT > 30) and the law of the wall for mean velocity yields (Sondak, 1992);

1
ut = =In(Ey"), (27)
K
where u™ is the dimensionless velocity, & is the von Kérmdan constant ~ 0.41, F is an

empirical constant = 9.793, and y* is the dimensionless length (Avilaj 2015).

In the buffer layer, 5 < y™ < 30, none of the laws hold. Therefore, when 3y < 11, linear
approximation is more accurate, and when y™ > 11, the logarithmic approximation is
more accurate (Absi, 2009).

A no slip condition is imposed at the wall (i.e. w # 0). In order to set boundary conditions
for k and € at the grid-point adjacent to the wall, the friction velocity and the wall shear

stress should be computed. Substituting Eqs. and into Egs. and yields
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(Popel, [2001)):

1 *
L= (E“ y) , (28)
for the log-law region, and

Lty (29)

for the viscous sublayer (Sondak, [1992).

In the log region, production and dissipation of turbulent kinetic energy are almost equal
P = pe. The production term for a simple two dimensional boundary layer, when the
y = w2 direction is normal to the wall, is P := —7r'du/dy (Sondak, 1992), thus,

-7 dy = pe. (30)
The turbulent shear stress can also be expressed as:
du k? du
t
= pu— = Cpup——. 31
T = [t dy wP e dy (31)

Solving this equation for €, Eq. , by using Egs. and yields the turbulent
kinetic energy (Sondak, (1992):

)2
p= 0 (32)
VCu
where ) is the friction velocity and the dissipation is
£\3
€& = ()" (33)
KYp

3.1.4 Realizable k£ — ¢ and other low-Re Turbulence Models

Realizable k — ¢ model uses the same turbulent kinetic energy equation as the standard
k — € model. However, the equation for € is improved: A variable C), is used instead of a
constant C), (Bakker, 2005]).

The turbulent viscosity is vp = C,k? /e, where:

1
Cuw= T wk
0+As

€

is now variable. (34)

Ap, As, and u* are functions of velocity gradients.

This approach results in a new transport equation for the dissipation rate, €:

de ~__0Oe 0 v\ Ok Pe €2

Another model is the k —w model, which was developed from the realization that most of
the problems in k — € model are due to the modeling of the ¢ equation. It is not easy to
solve the € equation since it has a local extremum close to the wall. In the £ — w model,
the so-called turbulent frequency w = €/k is used to replace the € equation by a similar
equation for w. This gives rise to the £ — w model, which has a better accuracy near the
wall but worse at free-stream.
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3.1.5 Estimation of Unknown Parameters

Estimation of an initial condition for the turbulent kinetic energy is important to accu-
rately predict flows, especially in high Reynolds number simulations.

3
k=3 @)*, (36)
where [ is the (initial) turbulent intensity. Dissipation cannot be measured. It is generally

modeled by: 32
=t (37)

where [* is the characteristic turbulent size.

3.1.6 Overview

Two additional equations need to be solved for the two turbulence quantities (i.e. k and
€) in the k — € model of the RANS equations. By using these two quantities, a length
scale (I* = k%2 /¢), a velocity scale (u* = v/k), and turbulent viscosity (vr = C,k?/e) are
defined. Thus, the model is complete and flow dependent properties; such as [,,,(z), are
not needed (Pope, 2001)).

The k—e model is the simplest complete turbulence model (computationally less expensive
when used with wall functions). It is available in most of the commercial CFD packages,
and has been used for different types of problems such as multiphase flows, heat transfer,
and combustion. It can be accurate for simple flows, but it is usually inaccurate for complex
flows (complex strain fields or substantial body forces, thin shear flows (McDonough)
2007)). The inaccuracy of the model comes from the turbulent-viscosity hypothesis and e
equation (Pope, [2001]).

For specific types of problems, the wall treatment also should be modified to obtain correct
results. In turbulent flow, wall treatment is very important. The wall have several effects
on the flow:

e Low Reynolds number: the turbulence Reynolds number Rej := k?/(ev) goes to
zero as getting close to the wall,

e High shear rate: the highest mean shear rate du/0dy is at the wall,

e Two-component turbulence: as the distance to the wall gets smaller, the turbulence
becomes two-component, and

e Wall blocking.

Due to these effects of the wall, the standard k — e turbulence model needs modifications
to get an accurate result (Popel 2001)).

3.2 Reynolds Stress Model (RSM)

The new terms appearing in the RANS equations are modeled. The Reynolds Stress
Model (RSM) directly solves for the Reynolds stresses R;; = 7;; = pu;u; and for another
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quantity that provides a length or time scale of the turbulence (e.g. turbulent dissipation
€). The main idea of the Reynolds stress model is that the stress tensor R;; is calculated
locally.

The Reynolds decomposed Navier-Stokes Eq. @, contains information about the mean
and instantaneous flow. By averaging this equation, the Reynolds Averaged Navier-Stokes
equations Eq. are obtained, which only have information about the mean flow be-
havior.

In order to get information about the instantaneous fluctuations, the RANS equations are
subtracted from the decomposed Reynolds Navier-Stokes equations:

ou, ' 8 / » O / 8u ﬁu;cu; op' 82u;
=— 38
Pl ot T gy T %, T Y an, T oy PENRL A (38)
O(u; + uy)
— =0. 39
Multiplying the i free index equation with u;
3u ’ a’U, 11 OUy ’ 5uku ’ 8’U,;€U; / 8p / 82 '
, . — 40
[ Ugr TG T g T = T | T T g T g (40)
Now multiply the other free index (i.e. j) with u,:
au o . O ,Ou ,ou Y o . 0%
— J J 77k 77k p 5
] . . o — : (41
P [ Bt T g T g T o T oy | T ian, T Mg (4

After adding Eqgs. and together and averaging, the following equation for the
Reynolds stress is obtained:

!
Buzu] T 8"Uziuj nau] T, u/ Buz 0 u/u/ u/
ox Uk 9y kg Qxy Ik

_[ , op 3p] 2auau 0%u;

42
P ul@x] tu Jaxz ox axk+ 8$k8xk (42)

The pressure term in the right hand side can be simplified as follows:

9] oy 1 (0pu; Opuj " Ou;  Ou,
_ Zp-l-u Pl S (2% PN P2 T ) (43)
Ox; I dx; p\ Oz ox; p \Ox; Ox;
The first part of Eq. (43) is the transport part and the second part is the strain part of

the velocity pressure gradient. By substituting these simplified expressions, the Reynolds
stress equations are obtained:

aulu o ——0u; ——0u; 0 ——F 1 [y op'u;
j PR 1 ] _ / ! ] o /‘ / 1 o / / / = 1 ]
ot + Uk ory Yitly oxy U5t oxp axk Uk p\ Oz * ox;
/ ! / / / 2 17
p [ Ou, 8uj ou; 8uj 0 (0
— -2 . 44
+ 1% (8% * 8$l Val'k axk + V@:Ekal‘k ( )
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The exact transport equations for the transport of the Reynolds stresses, R;j, can be
expressed as:

DRZ‘]‘

Dt

where P;; is the rate of production tensor, T;; is the turbulent transport (turbulent con-
vection) tensor, II;; is the velocity pressure gradient tensor, €;; is the dissipation tensor,
and D;; is the viscosity diffusion tensor (Bakker, |2005)). Unfortunately, there is not just
one equation expressing the Reynolds stresses, because these equations depend on new
unknowns. The number of new unknowns increases much faster than the number of new
equations derived.

= P;; +Ti; +11;; — €;; + Dy, (45)

From all the terms in these equations, P;; is exact. It does not need any modeling.
However, T;;, II;;, €;; and D;; are not exact, thus, they need to be modeled to close the
equations (Bakker, [2005))(Pope, 2001)).

3.2.1 The Pressure-Strain Rate Tensor

The pressure-strain rate, §);; is the most important term to be modeled (George, 2013).
It is modeled as a local function of R;j;, €, and 0u;/0x;,

p [ Ou;  Ouj
Q=2 . 4
T <3%'j " 3%) (46)

The trace of Q;; is zero (i.e. Q;; = 2p'V -u/p =0). Therefore, the term is not included
in the equation for the kinetic energy (obtained by contraction by setting i = j). It redis-
tributes energy between Reynolds stresses. Redistribution is an important phenomenon,
it ensures that the Reynolds stresses are balanced. Production and dissipation of energy
is balanced by the redistribution of the pressure strain rate tensor (Pope] 2001).

For incompressible flow, the coupling of pressure and velocity can be obtained by using
the continuity equation together with the divergence of the momentum equation to get a
Poisson equation for pressure. By applying Reynolds decomposition to that equation, the
Poisson equation for pressure is obtained:

1 2/ 6“7 81}“; 82 ro 7
“VIp = 2ot = o (i — ) 47
pV g Oxj Ox;  Ox;0x; (uzu] ulu]) (47)

The fluctuating pressure can be decomposed into three parts:

p =p" +p) +ph. (48)
The rapid pressure p(") satisfies:
Lo ) _ 0 0
z TN = _9 ) 49
pv b Oxj Ox; (49)
The slow pressure p(®) satisfies:
1 2, (s) 62 o 77
;V pl®) = —axiamj (uiuj - uiu]) , (50)
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and the harmonic pressure p” satisfies the Laplace equation VZp") = 0. Boundary condi-
tions for p(™ defined according to p(") and p®), such that p/ satisfies the required boundary

conditions. The pressure strain tensor can also be decomposed into QE;), Ql(»;), and le)
The basic model for €;; (LRR-IP):

—— 2 2
Qij = —CRé (uiuj - 3]6‘(5”) — 02 <Pl] — 3P(51]) . (51)

The rapid pressure strain tensor contributes to the mean velocity gradients. In homoge-
neous turbulent flow, the rapid pressure is proportional to duy/0z;. The slow pressure
strain rate tensor is significant in most of the cases except rapid distortion. The harmonic
component is important only close to the wall; it is zero in homogeneous turbulence (Pope,
2001). It redistributes the normal stresses close to the wall (perpendicular to the wall),
and increases the parallel stresses to the wall.

3.2.2 Reynolds Stress Transport

The turbulent transport (convection) term can be modeled together with the transport

part of the velocity-pressure gradient by using the gradient-diffusion model: Tj;;, = T% )+

1

b,
18 = — i, 52
78 = — (ag + aggj‘) , (53)
T= (’“%‘) . (54

where Cy is a constant for the model. There is a more general model, which includes an
anisotropic diffusion coefficient by using the Reynolds stress tensor:

o k—— Ouu:
T = Cs—— | “tfu,——2 | .
ik = C. . <€ukul o > (55)

where Cs = 0.22. In order to model only Tl(ju ), another model is needed which is symmetric
with respect to all three indices.

3.2.3 Viscosity Diffusion Tensor

The viscosity diffusion (negligible except in near-wall region), D;; can be modeled as
follows by using a scalar turbulent diffusivity in order to prevent numerical instabilities:

0 pr 0wy
Dis = 3ur ( , (56)

Ok 8xk
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where the constant o3, = 0.82 (the value for oy, is different than the one in k — e model),
and pr = pCL(VQk)/G.

For high Reynolds number flows, the dissipation can be modeled as follows (as a result of
local isotropy):

2
€ij = geéij. (57)

This model is not very accurate for moderate Reynolds number flows. Moreover, the
dissipation is anisotropic close to walls. Thus, in that case another model will be needed.
In RSM, terms are usually modeled independent of Reynolds number except for near-wall
treatments (Popel 2001). In general, the dissipation can be modeled as follows:

De 0 k—— Oe Pe €
—=—|C-uu,=— +Cq— — Ceoa— |, 58

Dt Ox; < e it Oz, Ta k - k) (58)
where C. = 0.15, C,q = 1.44, and C = 1.92. There are two main differences in this
model compared to the k£ — € model: the production term P is calculated directly from
the Reynolds stress equations, and the diffusion term has an anisotropic part.

The turbulence kinetic energy can be modeled by taking the trace (contraction of the
transport equation by setting ¢ = j) of the Reynolds stress tensor:

k= v (59)

3.2.4 Comparison of k£ — ¢ Model and Reynolds Stress Model

In RSM, the turbulent-viscosity hypothesis is not used. Hence, the major problem of
the k — € is eliminated ﬁ It is not possible to predict any RANS approach since it uses
extensive modeling and has wide range of length and time scales. The & — € model does
not give accurate results when the flow has complex strain fields or substantial body
forces (McDonoughl 2007). RSM can be used at that point to get more accurate results.
However, the source terms in RSM are more complex than the ones in k — ¢ model.
Moreover, compared to k — € model, which has six independent unknowns (Reynolds
stresses), RSM has relatively more unknowns (George, 2013).

e In general, RSM is more accurate,
e RSM is computationally more expensive and difficult,
e RSM underestimates long range effects in the flow,

e Many more new unknowns are produced in transport equation of Reynolds stress;
75 unknowns in total (Georgel, 2013]),

e In k — ¢ model, there are less unknowns and less equations to be solved compared
to RSM,

STurbulent (or eddy) viscosity hypothesis is reasonable for simple turbulent shear flows, boundary
layers, channel flows, mixing layers, etc. It performs poorly for flows with large pressure gradient, strong
separation, and large streamline curvature.
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e k — ¢ model overestimates turbulence,
e k — ¢ model has low computational cost.

There are seven turbulence equations to be solved (for u;u; and €) in the RSM instead of
two (for k and €) in the case of the k — € model. In general, the CPU time required to
simulate the problem with RSM is twice the amount required for the k£ — ¢ model (Pope,
2001)).

3.2.5 Overview

For every independent Reynolds stress there is one transport equation. Thus, there are
six partial differential equations to be solved, which is a costly procedure. In RSM, the
Reynolds stresses are treated as a functional of the velocity (i.e. the stress depends on the
velocity everywhere and for all past times). For a three-dimensional flow, the RSM provides
seven equations, one for a turbulence length scale and six for the Reynolds stresses.

RSM can be used in the following types of flow:
e Free shear flows with strong anisotropy,
e Flows with sudden changes in the mean strain rate,
e Flows where the strain fields are complex,

e Flows with strong streamline curvature,

Secondary flow,
e Buoyant flow.

As it was stated in the previous section, the wall treatment in turbulent flows is very
important. Due to these effects of the wall, the Reynolds stress turbulence model also
needs improvements Pope| (2001)).

3.3 Large Eddy Simulation (LES)

The turbulence model LES lies in between RANS and DNS in terms of computational
cost. DNS consumes too much resources while resolving the dissipative range, where most
of the energy and anisotropy is contained in the large scales. RANS methods model all the
turbulence spectrum, and results are in agreement with experiments at very high Reynolds
number. However, due to extensive modeling in RANS, the results cannot be predicted.
The RSM has a very large computational cost, and is not very widely used compared to
k — € model. The € equation modeling poses the same problems as in the k¥ — ¢ model in
some types of problems, and it is unable to predict the effect of irrotational strains and not
good at predicting normal stress due to being isotropic (McDonough, 2007)). Thus, another
method called LES is used to resolve the large scale three dimensional unsteady turbulent
motions of the flow explicitly while the interactions in the small scales (dissipative range)
are modeled.
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Large Scales Small Scales

Produced by mean flow Produced by large scales
Inhomogeneous, anisotropic Homogeneous, isotropic
High energy, long life Low energy, short life
Diffusive Dissipative

— Difficult to model: Universal model not | — Simple to model: Universal model may
possible work

In general LES can be divided into four parts:

1. Filtering operation: Decompose velocity field in large (resolved) and small scale
(SGS:= sub-grid scale); U(x,t) = U(z,t) + u (z,t), U(x,t), which is three dimen-
sional and time dependent, represents the large eddies,

2. The filtered velocity is described by Navier-Stokes equations and SGS stress tensor,
3. Closure is provided by using the SGS stress tensor model (eddy viscosity model),
4. The filtered equations are solved for the velocity and pressure fields.

The grid size in LES is usually smaller than RANS in order to capture the small scale.
For RANS models, results do not depend on grid sizes (i.e. when the desirable mesh size
is achieved, finer mesh does not give better result). However, in LES models, results have
grid dependency, the smaller the sizes of the grids the better the accuracy of the result.
When the mesh is very fine, the result can converge to the result of DNS, in which all the
flow is resolved instead of modeled.

3.3.1 Filtering

Separation of small and large scales is carried out by applying low pass filtering. After-
wards, the filtered velocity field can be resolved on a relatively coarse grid, where the
necessary grid spacing Az is defined proportional to the filter width A (e.g. Az = 0.5A in
contrast to Az = 27 in DNS, where 7 is the Kolmogorov length scale). The ideal situation
for A can be shown to be A < g, where (g is the size of the smallest energy motions.

A

-

4

Figure 5: Filter
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Large eddies (coarse structures) are bigger than A, however, small eddies (fine structures)
are smaller than A.

At a given point x in the computational domain, the filtering operation is expressed as:
Tl t) = / G, 2)U(z — r, D)dr. (60)

where G is the specified filter function, and the integral is all over the entire flow domain.
The filter function satisfies

/G(r, x)dr = 1. (61)

The simplest filter is the homogeneous filter: G(r,xz) = G(r) (at every point the same
filter is applied). Gaussian, box, and spectral filters are the the most commonly used
filters (Avila, [2015).

The residual velocity field is defined by

u' (z,t) = Uz, t) — Uz, t). (62)
Thus, the velocity field is decomposed similarly as the Reynolds decomposition;

Ulz,t) = Ul(x,t) +u (z,t). (63)
' (z,t) is time dependent. Hence the filtered residual is not zero: u'(z,t) # 0.

The filtered velocity can be expressed by a convolution in one dimension
o o0
Ux) = / G(r)U(z —r)dr. (64)
—0o0

Conservation equations need to be formulated for the filtered velocity field (homogeneous
filter, G(r) is considered). In order to obtain the equations, the filtering operation is
applied to the Navier-Stokes equations. The filtered continuity equation is

oU; oU;
( a@) =50 =0 (65)

Thereby, under the assumption that filtering and differentiation commute, gradient of the
residual velocity field is

’

Ou, 0 —

For the momentum equation the filtering operation results in the following equation:

8Uj anUj B 82Uj 1 0p
ot + or; yﬁxiaxi B p oz’ (67)

where p(z,t) is the filtered pressure field. The residual stress tensor is introduced in order
to make this equation similar to the Navier-Stokes equation (U;U; # u;4;):

7’1‘R = Uin — Uz Uj, (68)
Ui Tz-}j +Ui Uj. (69)

=
I
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The residual kinetic energy is

1
ky = 575}, (70)

and the anisotropic residual stress tensor is defined as

2
Tirj = Tilj - gkrém (71)

When the filtered pressure is expressed as p = p+2/3pk,, the isotropic part of the residual
stress is obtained. The modified filtered momentum equation is

ou; -~ oU;  9°U; 0 1dp

ot + 181‘2‘ 6@8% dx;  pox;

(72)

The filtered Eq. is not closed as it was the case in k£ — ¢ model and RSM. Thus,
the equation should be closed by modeling the residual stress tensor 7;;. The residual
stress tensor introduces additional dissipation: It removes energy from large scales and
the energy is transferred to the smaller scales. The filtered velocity U; depends on the

filter (type, width) indirectly through the model for 7/;

The convective flux is defined as

UU; =0, U+ 7} =T, Uj + 7]; + k:"ém, (73)

where the decomposition of the residual stress is

T]j = Li; + C;j + Ry, (74)
Lij = U, U; - U; U, (75)
Cij = Uiu; + w;Uj, (76)
Rij = u;u;. (77)

The tensors L;;, C;;, and R;; are called the Leonard stresses, the cross stresses, and the
SGS Reynolds stresses, respectively (Wilcox et al.l [1998).

3.3.2 The Smagorinsky Model

The anisotropic residual stress tensor can be modeled as follows in order to close the
filtered equation:
7'7“‘ — _2V1“Sij> (78)

v]

where Sij = \/2@5 ?ij is the characteristic filtered rate of strain, v, = l%gij is the eddy

viscosity of the residual motions, and S;; := % (?g; + %—gf) is the filtered rate of strain
tensor.

The model for eddy viscosity can be expressed as:

= lg.15S, (79)
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where lg is the Smagorinsky length scale, which only affects the small scales and is pro-
portional to the filter width, i.e. Ig = CsA, and Cg is the Smagorinsky coefficient. The
second part, [gS expresses the velocity part.

The rate of transfer of the energy to the residual motion is
ra = & =2
P, = _TijSij = QI/TSijSZ'j =15 >0, (80)

which means energy is always removed since v, > 0 (i.e. the energy is transferred only
from filtered to the residual motion).

The mean energy transfer is balanced by the dissipation € for high Reynolds number flows
and a filter width in the energy containing range (production subrange) and dissipation
range (viscous subrange); in the inertial subrange (i.e. lg; > A > Ipy):

c=P, = 1,5 = 125", (81)

The LES equation itself does not depend on the chosen filter. The filter only affects

—01];/0;.

3.3.3 Wall Treatment

There are two specific approaches for wall treatment, LES with near-wall resolution (LES-
NWR) and LES with near-wall modeling (LES-NWM). In LES-NWR, the flow is resolved
everywhere up to 80% of the energy, also taking into account the energy in the viscous
layer (the filter and the grid spacing are fine enough). However, the flow is not resolved
in near-wall region in LES-NWM. Thus, 80% of the energy is not obtained in the viscous
layer.

The viscous layer is the region, where the production, dissipation, kinetic energy, and
Reynolds stress anisotropy reach their maximum values (at y* < 20) (Pope, 2001). The
filter width should be of the same order of the viscous length scale § in order to resolve
the viscous sublayer in near-wall region with LES-NWR. Therefore, the number of grid
points required increases drastically, proportional to Re>" (Pope, 2001). When the flow
in the near-wall region is resolved, the number of grid point increases dramatically, which
makes LES-NWR inappropriate for high Reynolds number flows.

On the other hand, LES-NWM is independent of the Reynolds number since the grid
spacing and the filter width are proportional to the flow length scale . The reason for
that is the modeling of the flow in near-wall region, instead of resolving it.

3.3.4 Dynamic Model

The Smagorinsky model is improved such that inhomogeneous turbulence can be modeled.
Close to the wall and for laminar flow the value of Cg = 0. Moreover, it has a different
value for different types of flows (e.g. for high Reynolds number flows Cs =~ 0.15). Another
model is needed in order to specify a general value for Clg.
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The grid filtering with homogeneous isotropic filters:
U(z.t) == /U(w — 7, t)G(|r|; A)dr, (82)

where the filter width, A is proportional to the grid spacing h, and the equations are
solved for U.

The test filter E, which is usually equal to 2A can be expressed as:

U@@;:/U@—nwew¢AMn (83)

where U is unknown in the LES. T hus, a doubly filtered velocity field is defined as
T(a,t) = /U(x e DG (|r|; A)dr

:3/U@—noaw¢£mn (84)

The effective double filter is

~ A, for the sharp spectral filter
0 _o\1/2
<A2 + A2) , for the Gaussian filter.

(85)

By adding and subtracting the doubly filtered velocity, a decomposition of the velocity is
obtained of the form ~
U:U+(U—U)+u. (86)

The smallest resolved motions U - ﬁ (eddies of size between A and i) can be found by
using U. They are resolved by using the grid filter A, but they are not captured with the
test filter.

Now by using Germano’s Identity the residual stresses can be defined with the single and
double filtering operations separately:

tH=TU; - U;U; (grid filter), (87)
T, = UU; - U;U; (double filter). (88)

The terms TU] and TUJ cannot be computed from the LES model. Thus, by applying
the test filter to Eq. and subtracting it from the double filter residual stress Eq. ,
the resolved stress equation can be obtained, which is possible to be computed from the
LES model.

P

Liy=Ty;-R=T,0;-T,0;. (89)

)

The resolved stress L;; contributes to the residual stress from the largest unresolved mo-
tions.

The Smagorinsky model for the anisotropic part is

1 9
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By using the same model for the filter width of i (double filter) the following expression
is obtained o

T35 = Ty Tkkéw = —2csA 8. (91)
~2~~
For simplification assume cg is uniform and define M;; := 2A S S” —2A S SU Then the
Smagorinsky model of the anisotropic part of the resolved stress is:

L= T8 — 7 = cs My, (92)

where the anisotropic part of [fij is
a 1

Now, the optimal value for cg should be selected, which provides the best approximation.
It is important to note that L£f; and £S have five independent components. Therefore,
mean-square error mmlmlzatlon is used in order to find a suitable cg value that satisfies
all the components:

M;; Lij
My My
In channel flow, the value of cg that is obtained by using Eq. leads to fluctuations
because of the low correlation between the rate of strain and the stress. Therefore, another
method can be used to obtain stable results for LES. With this method, the value for cg
is obtained by taking averages:

cs = (94)

(MlJ‘CU )avg
(M Myy) (95)

avg

cs =

and this method yields good results for transitional and fully turbulent channel flow (Pope,
2001). It also provides the right value at the wall and for the laminar flow. Moreover,
there is no need for additional wall treatment if the grid is fine enough to resolve the
near-wall region.

3.3.5 Overview

The smallest finite difference cells in LES can be larger than the Kolmogorov length
scale. Therefore, larger time steps can be taken compared to DNS. This leads to less
computational effort (in terms of memory and CPU) than DNS since it models the smallest
eddies. The number of grid nodes required for a channel flow with LES, Ny gg is calculated

by using Eq. .

In order to decrease the total time to solve the problem with LES, wall functions can be
imposed as a boundary condition, which will reduce the resolution requirements. If the
law of the wall is used in the viscous sublayer, then the number of grid points decreases.
However, using the law of the wall as a boundary condition cannot predict fluctuating
values in the log-law region. Thus, the law of the wall may not be sufficient to see the
changes of the kinetic energy and dissipation in LES (Wilcox et al., [1998)). On the other
hand, it is expensive to resolve the the near-wall region at high Reynolds number flows.
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Wall stress models can be used to provide necessary wall stresses to the LES. In this way,
computational cost will significantly decrease with the usage of the model.

For free shear flows, although the small-scale turbulence in the initial part of the shear
layer is not adequately resolved, LES is still a good choice since the computational cost of
LES is independent of the Reynolds number. For pipe flows, LES is not quite practicable
since the motions that contain energy near the wall are hard to resolve. However, for this
difficulty one can use LES-NWM to model the near-wall region and decrease the cost of
the problem.

An important difference between LES and RANS is that LES is time dependent, whereas
RANS is time averaged. The main differences between the Reynolds stress equations
and filtered equations are the field (U;,p, and ’7’27;) properties, which are random, three
dimensional, and time dependent. The transition from laminar to turbulent flow can be

captured with LES.

The computational time of incompressible fully developed smooth pipe flow at Re =
100, 000 for LES is between 400-480 hours, for k£ — ¢ model it is between 55-60 hours, and
for Reynolds stress model it is between 80-100 hours (Vijiapurapu and Cui, [2010).

3.4 Estimating Problem Complexity for Different Turbulence Models

Modeling of multiphase turbulent flows with high accuracy is more difficult modeling
single-phase turbulent flows. Although, the interface between two immiscible phases can be
described quite precisely with available models, the influence of the turbulent fluctuations
in one of the phases may have great influence on the dynamics of the interface. Therefore,
it is very important to clarify the effect of the turbulence in all phases.

With an increase in the air velocity, the interface becomes oscillatory without showing
regular wave patterns. This is caused by the turbulence in the gas phase. Around a gas
velocity of 3.5 m/s waves start to appear on the interface. The transition from smooth
interface to wavy interface also depends on the velocity of the liquid phase.

There are some studies about turbulent two-phase stratified pipe flow but not much of
them have been carried out with LES since it is not a common practice in turbulent two-
phase stratified pipe flow. Therefore, in order to have an idea about the flow properties,
first, DNS and LES are used for single-phase turbulent pipe flow, then, necessary inferences
are made about turbulent two-phase pipe flow. However, an estimation approach for the
RANS equations are not considered since the limitations (which are almost negligible)
imposed by RANS are quite less than the limitations imposed by DNS and LES. Also,
the Reynolds number is too low for doing RANS. By estimating the number of total grid
points required for single-phase turbulent flow, a minimum requirement and an insight
about the complexity of turbulent two-phase flow is obtained.

3.4.1 Computational Costs

The experiments that have been carried out by Birvalski| (2015) are used for validation.
In these experiments, the diameter of the pipe is D = 50 mm, and the length of the pipe
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is L = 200D = 10 m. The superficial water flow rates are 0.0085 m/s and 0.0255 m/s,
and the superficial air velocity varies from 0 to 5.4 m/s (non-wavy surface between 0 and
1 m/s) to obtain both laminar and turbulent flow respectively.

As the velocity of the air varies in the experiments, the velocity of the liquid also varies
due to the momentum transfer between the phases at the interface. When the air velocity
is ug = 1.04 m/s, the gas phase is turbulent, and the liquid in the two-phase flow also
becomes (stratified) turbulent at a liquid velocity uy, = 0.1126 m/s with an intermittency
factor 0.99 and a Reynolds number Rej, = ur,D/v = 3421. The Reynolds number for the
air at that velocity is Reg = 3632 (Birvalski, [2015).

The length of the problem domain that is resolved should be long enough to accommodate
the largest turbulence structures. In channel flow, eddies are stretched parallel to the
channel walls, and their length is approximately equal to 2H, where H is the height
of the channel (Wilcox et al. [1998]). For pipe flow, in order to compute the required
pipe length for an accurate model that includes the largest turbulent structures, the two-
point correlation coefficient of the velocity fluctuations in the streamwise direction can
be calculated. According to the result in the work of [Eggels (1994)), the required pipe
length to resolve the larges scale structures for the given Reynolds number should be
L, = 25D = 125 mm, where L, is the required length in parallel wall direction, namely
x.

First, the approach is directed towards LES of channel flow in this thesis to get an initial
insight for the pipe flow. The required number of grid points in turbulent channel flow
can be estimated for DNS with the equation below
L 101 3/4

Np=—~—=10R 96
where Ax is the grid spacing, length scales L represents the flow geometry (e.g., the
pipe diameter), n is the Kolmogorov length scale (smallest eddies), [ [m] represents the
largest eddies in the flow, and Re; &~ Rep /170 ~ 3421/170 ~ 20 for water and Re; ~
Req /170 ~ 3632/170 ~ 21 for air D Thus, the total number of grid points for water in
three dimensions Ng is proportional to

N} ~10Re* ~ 10(20)%* ~ 8.5 x 107, (97)
and for air

N} ~10Re* ~ 10(21)%* ~ 9.5 x 10°. (98)

According to the studies, at Rer, = 3421 the LES can be resolved near-wall region since
the CPU time does not differ significantly compared to the modeled near-wall region case
(Gnambode et al., [2015). The number of grid points is proportional to
L Ll A l
=—=—-———=20—. 99
Ax | AAzx A (99)
where the ratio of the flow geometry to the largest length scale is approximated as L/l ~
10 for wall-bounded shear-driven turbulent flows (Eggels, 1994). The filter length A is

Np,

In general case, the Reynolds number is expressed as Re = U, D /v where Uy, being the mean velocity,
D is the pipe diameter. The Reynolds number Re; = ul/v can be approximated by using (I ~ %D) and
(u ~ 1=Us), hence, Re; = ul /v ~ Re/170.
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assumed to be double the grid spacing, i.e., A =~ 2Az, in order to keep the range of grid
scale motions as large as possible.

For LES, the ratio of I/A plays an important role in computations (instead of Re; as it
is the case for DNS). The computational cost increase rapidly as the ratio gets larger.
Furthermore, LES computations give realistic results when the ratio is large (e.g., [/A >
10). The reason behind this is the increase in the range of turbulent length scales that
are resolved and the decrease in the range of length scales that are used in SGS stress
tensor when the ratio increases. However, in the study of [Eggels (1994)), the computations
of LES are considered to be realistic when the ratio is even smaller (i.e., [/A > 2). As
the ratio gets smaller, the SGS closure model becomes important, whereas the range of
resolved grid scale decreases. In the study of Eggels (1994), when the value of the ratio
is around 1, computations are considered to be unrealistic. The smallest value that gives
realistic LES results used in their study is 1.8.

In our case, the ratio is taken as [/A = 5, and the length scale in the radial direction
for the pipe flow case L, is equal to the pipe diameter L, = D = 50 mm and in the
streamwise direction L, = 2.5D = 125 mm. Hence, for the axial direction [ =~ 12.5 mm,
and A = 2.5 mm, which results in the following number of grid points:

!

Np, = 201 ~ 100. (100)
DNS Water
N, 11
Ng 248
N, 198
Ntotal 5x10°

Figure 6: Computational cost for DNS with only water

The estimation of the number of grid points for DNS is explained in Appendix [A] and
the estimation of the number of grid points for LES is explained in Appendix [B]in detail
for the pipe flow under consideration. The number of grid points required for DNS of
single phase water flow with non-uniform grid spacing in radial direction is N, = 11, and
with uniform grid spacing for spanwise and streamwise directions Ny = 248, N, = 198
respectively. The total number of grid cells required for DNS for the liquid phase are
approximately 5 x 10° (see Fig. |§[) For the air case, the number of grid points are quite
similar because of the small difference in the Reynolds numbers of liquid and gas phases.

For a well-resolved LES (resolved viscous sublayer), the near-wall grid resolution should be
fine enough. The first grid-point should locate in the viscous sublayer for LES-NWR, i.e.,
y* = 1. The computation of the first LES case is done with grid points that are equally
spaced, and the viscous sublayer is not resolved, i.e., the first grid-point is within the
inertial sublayer (y* = 32.8 > 30). This approach does not need any additional damping
since the first grid-point is far away from the pipe flow. The total number of grid points
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is quite small for water and air phases. The reason for this is that the boundary layer is
almost fully modeled because of the large value of wall unit, y* = 32.8.

For the second case, the grid spacing is non-uniform only in the radial direction (normal
to the wall) and three grid points are within the viscous sublayer. The aspect ratio used
in the work of [Eggels| (1994)) is first calculated and validated in Appendix [B] then used in
the non-uniform case for y™ = 1.5.

3.4.2 Estimated Reynolds Number for the Available Computational Power

With the computational resources available in the Scientific Computing group of the Delft
Institute for Applied Mathematics, which corresponds to 30 x 150 x 90 grid points, the
problem can be modeled both with DNS and LES for the given Reynolds numbers with
serial algorithms in a reasonable amount of time. However, the estimations show that
LES is quite less demanding than DNS since the Reynolds number is relatively smaller for
doing LES. Therefore, LES can be considered to be feasible for both water and air flows
considering the computational cost especially when the computational domain length is
larger.

The maximum computational capacity is slightly exceeded with DNS. On the other hand,
the maximum possible value of the Reynolds number for LES can be approximated with
the available computational power (i.e., 4x10° is the maximum number for total grid
points).

For LES with non-uniform grid spacing, the Reynolds number that was used for the calcu-
lations is not large enough to exceed the computational limitations. When the Reynolds
number is approximately equal to 4 x 10%, then the required number of grid points in
r-direction is IV, ~ 33. The dimensionless mesh width in r-direction for the calculated
number of grid points is approximately equal to 0.0166. The approach implemented in
the Appendix [B]is applied here and the required mesh width in - and z- direction can
be calculated as 0.26166 and 0.02768 respectively. For these uniform grid spacings, the
required number of grid points are 120 and 90 respectively for - and z-direction. The
available computational power is almost fully used with these number of grid points that
are obtained for the chosen Reynolds number value of 4 x 10%.
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4 The Physics and Model of Stratified Two-Phase Flow

Turbulence in two-phase flow may be very different from single phase flow. In single
phase turbulent flow, one needs to model the Reynolds stress terms to obtain the closure
relations. However, in two-phase flow many more closure relations are needed. Unlike
single phase flow, there is no universal model that describes the instability that causes the
transition to another flow pattern in two-phase flow.

In the presence of waves, the turbulence behaves differently compared to the turbulence
in shear layers. At the interface, the fluctuations occur mostly because of the effect of
the wave motion. In two-phase flow, there are two main reasons for the formation of
fluctuations. One of them is the turbulence created by shear stresses in near-wall region,
and the other one is induced by wave motions.

It is known that the turbulence due to shear in the wave region behaves similarly as the
turbulence in single-phase flow. Moreover, the physics of momentum transfer at the waves
can be identified more precisely with LES since mass, momentum, and energy transfers
occur at the interface (where the flow is resolved for large scales in LES). Therefore, LES
seems to be the promising method.

4.1 Dimensionless Parameters

The finite thickness layer, where the material properties change, between two phases is
called the interface. Surface tension occurs at the interface due to the attractive forces
acting on molecules. In two-phase flows, the change in viscosity due to different material
properties and the existence of surface tension forces at the interface lead to jumps and
discontinuities at the interface for pressure and the gradient of the velocity field.

In order to identify the dominant forces acting on the flow, these forces should be compared
using dimensionless groups. This way some forces may be neglected and the problem
becomes easier to handle. Dimensionless variables are defined by a characteristic length
L, a velocity scale U, and a time scale 7;

x=Lx*, uw=Uu", t=r7t". (101)

where z*, t*, and u* are the dimensionless variables. The Strouhal number Sl is defined
by

Ut
=7
It can be interpreted as the ratio of the time scale 7 to the convective time scale L/U.
The Reynolds number Re, which describes the ratio of inertial forces to the viscous forces,
is defined by

Sl (102)

_ LU _ LU
- -2

The Fuler number Eu, which represents the ratio of pressure gradient to inertia forces, is
defined by

Re (103)

_Ap

(104)

33



The Froude number Fr characterizes the ratio of inertia and gravity forces and it is defined
by

Fr=— (105)

where ¢ is the gravitational force acting on the flow, it can also be another type of force.
For the surface tension force, the Weber number We, which expresses the ratio of inertial
forces to surface tension forces (i.e. curvature), is used:

pLU?

We = . 106
; (106)

The Eotvés number Eo or Bond number is the ratio of gravity to surface tension forces
(capillary force scales):

— o laL2
Bo= P Pl9L” (107)
Y
where p/ is the density of the gas bubbles. The Capillary number Ca, which represents

the ratio of viscous forces to surface tension forces, is equal to:

_We _ U

= = 1
Ca o 5 (108)

The Morton number Mo is defined as:

Mo=2E_ (109)

Not all of these dimensionless parameters are relevant for this problem. For example,
the Strouhal number is commonly used in fields such as bluff body flows. However, the
Reynolds number, which represents the flow pattern (i.e. laminar or turbulent), is cer-
tainly an important parameter for this project. The Euler number, which is not very
relevant for this problem, is used to describe the losses in the flow. The Froude number
represents the behavior of surface waves and flow interactions at a cross section. Thus, it
is a relevant dimensionless parameter for this study. The Weber number is used to analyze
the formation of droplets and bubbles. It can be used in this study since the influence of
the pipe diameter on the flow regimes can be expressed with this dimensionless parameter.
The E6tvos number, which is needed when there are large gas bubbles, is used to analyze
the surface tension in the two-phase microchannel flows. The Capillary number, which is
commonly used in flows with liquid drops or plugs, is also not relevant to this study since
the viscous forces are dominant. The Morton number characterizes the shape of bubbles
or drops in a flow, thus, it is not a relevant dimensionless number.

4.2 Governing Equations and Boundary Conditions at the Interface

In order to observe the influence of the interface, two phases 1 and 2 are compared at the
boundary S, which separates them. When there occurs a phase change at the interface,
there will be a mass flux m through the boundary. Conservation of mass gives

m=p;(ur —w) -n=ps(uz —w)- n, (110)
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where n is the unit normal and w.n is the normal velocity of the interface. At first, if the
interface is defined as

S(z,t) =0, (111)
after time dt, the surface can be expressed by taking derivative of Eq. (111]),
oS
e . = ) 112
5 +w-VS=0 (112)
By defining the unit normal as
n = VS (113)
VS|
the expression for w - n is obtained:
1 0S
=————. 114
YT TS| ot (114)

The physical parameters vary through the interface. The thickness of the interface that
separates the bulk parts of two fluids is much smaller than other length scales. Thus, it
is reasonable to use functional interface, in which there are two boundary conditions for
the interface; kinematic boundary condition and dynamic boundary condition (Worner,
2003)). If there is no mass transfer, then at S = 0 the surface is impermeable ri = 0, thus,
n-u =n-w. The equation for the kinematic boundary condition Eq. is modified
as:

aS
VS = 11
5, Tu VS =0, (115)

and it is called the kinematic boundary condition. The tangential velocities at the interface
for both fluids should be in balance:

n X (u—w)=0. (116)
By using Eqs. (112)) and (116]), it can be shown that:
u=w. (117)

For steady state flow, the kinematic boundary condition can be expressed as:
u-n=0. (118)

Another condition for the interface is that the momentum (the pressure and viscous
stresses) is balanced through the interface by the force acting due to surface tension.
When two fluids are viscous, the tangential velocity across the interface is continuous
(when 1 = 0):
U = u2. (119)
This is called the dynamic boundary condition:
n-Th—n-Thy=0n(Vs-n)— Vo, (120)

where T'=7 — pld = p (Vu + VuT) — pld is the stress tensor, Id is the identity tensor,
Vs = (Id —minq) - V is the surface gradient operator and o is the surface tension. When
there is no shear stress, the expression for static interfaces is (Young-Laplace)

1 1
_ — = 4. 121
p1—p2=0K =0 <R1 + R2> (121)
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where K = Vs -n = (L + L) is the mean curvature of the interface. Normal stress

R1 Ro
balance is
n-Thn—n-Th-n=0c(Vs-n). (122)
The tangential stress balance with tangential unit vector ¢ is
n-T-t—n-Ty-t=—-Vo-t. (123)

4.3 Overview of the Governing Equations

The two phases are considered Newtonian, immiscible and incompressible. The phase
with the higher density flows on the bottom of the pipe. The governing equations for the
two-phase stratified flow are Navier-Stokes equations in both domains €, and 2, (see Fig.
7). The continuity equation for a phase with density p, is

V- -uq =0. (124)
The conservation equation for momentum is
ou,
pa 5t + paV - (Uatia) = ~Vpa + V- 7o + Fa, (125)

where 7, is the deviatoric stress tensor and Fy, represents the force per unit volume acting
on the phase a.

Sy . Py

2y Py

-

Figure 7: Schematic representation of stratified pipe flow.

Egs. (124)) and (125) for phase « are subject to the following boundary conditions (at the
interface S between phase a and 7, see Fig. [8)) are

Pa(la — W) - Mg + py(uy —w) -ny =0, (126)
Patla(Ua — W) " Mo + Pyt (Uy — W) - Ty = (127)
204
(—pald + 7a) - Na + (—pyId + ) - 1y — Vigoay + ’;—S”’vs.

ds
My

Figure 8: A fraction of the interface between phases « and ~.

36



5 Turbulence Modeling for Two-Phase Turbulent Flow

5.1 Literature Review

DNS and LES give more accurate results at low Reynolds number. The computational
effort required for DNS is not significantly more than LES for low Reynolds number (i.e.,
Re =~ 3000). It was realized during the estimation procedure that modeling the problem
with DNS is realistic even for the two-phase case. However, unlike LES, DNS is not
feasible for a higher Reynolds number flow. Therefore, LES of two-phase turbulent flow
is the major focus of this thesis in order to predict onset of instability of the interface and
the formation of slug.

Most of the DNS and LES studies in the literature are carried for channel flows. Neverthe-
less, there are few studies about LES of pipe flows. However, simulation of the turbulent
two-phase stratified pipe flow is even more sparse, and LES is not a widely used turbulence
model for this case.

The earliest study of LES for single phase pipe flow is the work of |[Eggels et al.| (1994).
Eggels| (1994) also performed LES computations for single phase pipe flows, and the results
of DNS and LES were compared with experimental results. |[Eggels and Nieuwstadt| (1993)
used LES for rotating turbulent single phase pipe flow, and LES of turbulent curved
single phase pipe flow was carried out by Boersma and Nieuwstadt| (1996). LES study for
turbulent two-phase stratified pipe flow is very limited. Therefore, initially in this thesis,
LES studies that are not necessarily for pipe flow and do not include momentum transfer
between two different phases are considered. In addition to this, studies about other
turbulence models are also compared since LES is not the common method for modeling
turbulent two-phase stratified pipe flow.

In the master thesis of Chinello (2015), the turbulence behavior of the interface in stratified
two-phase flow has modeled with the classical k—w low Reynolds number correction model
and with the modified £k — w model in order to predict more accurately. Available works
in the literature about stratified two-phase flow with RANS have analyzed and compared
in this thesis. In this thesis, the flow has simulated in 1-D and a new input parameter,
which represents the wavy motion at the interface, has implemented to the model to obtain
results close to the experimental results. In order to realize the momentum transfer in
between two phases, necessary adjustments were made to the grid and to the model. The
turbulence near the gas side of the interface has assumed to be similar to the one near
the wall, which was indicated by the DNS studies of Lombardi et al. (1996|) and Fulgosi
et al| (2003). The thesis has pointed out that there is no optimum and robust method
that simulates turbulent two-phase stratified flow.

In the study of Labourasse et al. (2007)), the flow in both phases and turbulence at the
interface is resolved using the complete filtered two-phase flow governing equations. The
mathematical formulation was based on one-fluid model, which means that the interaction
between two phases needs to be modeled. The filtering and averaging operations yield
terms for turbulence and interface. According to the study, LES is reasonable when the
small turbulent scales are much smaller than the scale of the interface and it is very hard
to analyze the behavior of the turbulence at the interface. A front-tracking method with a
defined sharp interface, which does not use the usual smoothing function of the interface,
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was used in the study to model the interface explicitly. Results showed that the volume
filtering method overestimates the momentum transfer, mass-weighted filtering process
underestimates the momentum transfer. Therefore, the work has recommended the use of
a mass-weighted filtering process for modeling two-phase turbulent flow. The interfacial
terms are very important for the turbulence behavior of the phases, and the interface can
absorb some of the energy of the turbulence and advects it to the other phase. The study
has also shown that the inertia term cannot be modeled with a viscosity assumption and
it was exhibited different behavior than the single-phase flow near the interface.

Lamarque et al.| (2010)) modeled the turbulent free-surface flow in an unbaffled stirred tank
reactor with LES. The study emphasizes the limitations of RANS methods compared to
Reynolds stress models and LES (in terms of the mean flow characteristics) for the given
problem, which consists of rotation of the stirrer. The stirrer was modeled by using
an immersed boundary method and a front-tracking method was used to capture the
free-surface vortex. In the work, most of the mean and fluctuation characteristics were
successfully computed by LES.

In the study of Berthelsen and Ytrehus| (2005), a modified two-layer turbulence model is
used in order to account for the wavy interface, which is modeled as a rough interface,
and for the turbulent viscosity in a fully developed stratified wavy two-phase flow in a
pipe. The turbulence model consists of a two-equation k-¢ model and a one-equation k-
model with an interfacial roughness has provided the results for the interfacial shear stress
without the use of wall functions. In the method, the immersed interface method has been
used to treat interfacial boundary conditions. A parameter, which has a small effect on
the results, has been used to represent the interfacial roughness. The results have been
shown to be in an agreement with experimental results.

Ghorai and Nigam (2006) stated in their study that modeling of smooth stratified flow
is not a problem since the smooth friction factor can be easily expressed. However, for
wavy stratified flow, there are two possible approaches to take: First one is to propose
a global empirical correlation for the interfacial friction factor, and the second approach
is to define the interface as an interfacial roughness by using the idea behind shear flow.
The interfacial roughness has been estimated by defining a ratio between the interfacial
friction factor and the wall friction factor.

In the study of Ullmann and Brauner| (2006), the momentum transfer at the interface was
considered to be the crucial issue in modeling of two-phase (gas-liquid) stratified flows.
The main approach used in most of the studies and also in this one was to extrapolate the
information gathered from the single phase flow and to obtain empirical correlations based
on experimental data. According to the study, the values of the liquid wall shear and the
interfacial shear was increased as waves get larger compared to the values predicted for
smooth stratified flow. The results of the study shows that the interaction between the
phases can be expressed with the closure relations that were used in the study.

The numerical simulation of slug flow in horizontal pipes was carried out by [Frank| (2003).
Two-fluid approach was used in the study and it was showed that the wall friction of the
liquid phase has a significant affect on the formation of slugs. The formation of slugs
also depends on the perturbation in the inlet boundary condition and the length of the
computational domain.
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Lakehal et al|(2012) has examined the development of large-wave structures in two-phase
turbulent pipe flow using the Level Set method for interface tracking and VLES (Very-
Large Eddy Simulation) for turbulence modeling. The VLES used in the study is based
on a k — € subgrid model in order to include the effect of sub-scale turbulence. The reason
for a more detailed subgrid scale turbulence model compared to a zero-equation model
like in LES is to filter a larger part of turbulent fluctuations. In the study of (Lakehal
et al., [2011), LES and VLES methods have been used for turbulence modeling and Level
Set method has been used to model the free surface flow, for interface tracking. it has
shown that the Level Set method predicts the transition of a gas-liquid stratified flow to
slug flow with an accuracy that is better than the two-fluid phase-average model.

5.2 Influence of Interface on Turbulence

The increase in the velocity of the gas phase can produce waves at the interface. The
wavy interface can be modeled as a solid surface with appropriate an surface roughness,
in which, the liquid phase acts as a stationary wall since it has a smaller velocity than the
gas phase. The velocity difference between two phases creates a shear stress, which can
be called as interfacial shear stress.

In addition to the interfacial shear stress, the wall shear stress also needs to be calculated
in order to model the momentum transfer between phases. However, the wall stress at the
wall is different for both liquid and gas phases. Therefore, first, a single-phase wall shear
stress is calculated by assuming only the liquid or gas phase flows in the pipe. Then, in
a later stage, the two-phase wall shear stress is calculated by applying a multiplier to the
single-phase shear stress. This method is called a separated flow model, which differs from
a homogeneous-flow model in the sense that both phases are not assumed to flow together
at the same velocity. Also, in homogeneous flow model, the two phases are assumed to
flow as a single-phase with weighted averaged properties of both phases. On the other
hand, the two-fluid model is the most complicated and detailed model, which requires
information about flow properties of both phases separately, and accurate models for the
transfer of mass, momentum, and energy between the phases at the interface.

The interface needs to be considered as a material surface when there are surfactants,
which means it has its own density and momentum. However, in this study, the density
of the interface is assumed to be zero. Hence, according to the jump conditions, mass and

momentum balance at the interface (i.e., Eqs. (110 and (120))) can be applied. For the
most general case, the mass transfer of the kth phase at the interface is defined by

mk = pF(uF — w) - nk. (128)
The mass balance for all phases is

ka = Z(pk(uk —w)-nk)=0. (129)
k

k

The balance of momentum for the kth phase throughout the interface (i.e., Eq. ((120))
yields:
Z (ukmk —nk. (k- kad)> = onfV,-n* - Vo, (130)
k
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where Vy is the surface gradient operator.
™ = ks (131)

is the deviatoric stress tensor, S% is defined as
1
S = (sk — 3tr(Sk)Id> , (132)

where S = Vu + V7w is the deformation rate tensor, and tr stands for the trace of a
tensor.

In order to extend each phase to the whole domain, there is a need to define the interface
of the kth phase as a function of position and time. For each phase a phase indicator
function or characteristic function x*(x,t) can be defined as:
1, if x € the kth phase
W) =4 . (133)

0, if x ¢ the kth phase

If the given position vector is in the interface (i.e., x € S), then the function x* =0, the
other way round is also true. The function y”* is defined such that it complies several
properties. The two phase indicator functions are related:

Y +xi =1 (134)

The gradient of the phase indicator function can be expressed in terms of the Dirac delta
function of the interface 6(x—x;,t), where x; is a point on the interface, and the interface
unit normal vector nF:

VxF = nfo(x — x;,t). (135)

Moreover, the material derivative of x* is zero, which follows from the topological equation:
ox*

-5 tw- Vx* =0. (136)

The conservation of mass equation can be augmented by using a phase indicator function
respectively:

o k .k
SV 08 ) = pFw - ) b, (137)
where 6; = —nF - V¥ is the Dirac function centered on the interface in order to describe

the behavior of each phases near the interface. By applying the phase indicator function
to the balance of momentum equation at the interface yields
o k kuk
7Xa'(; + V-(xX"[p"F @ uF + pMd — 7F]) — xF kg
= (pFuFf @ (w — u¥) — pF1Id + 7%) - n¥s;. (138)
The mass and momentum conservation equations defined by Eqs. (137) and (138]) need
to be modeled with respect to thermodynamic properties.
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An approach called one-fluid modeling, where a single set of equations is solved for all the
phases of the flow, can be used for multiphase flows by defining exactly one-fluid variable
as the sum of the phase indicator weighted phases:

o=> x"¢". (139)
k

One-fluid mass and momentum conservation equations can be written by summing all the
phases of the flow. This way, the equation for the mass conservation can be simplified by
using the mass jump condition, i.e., Eq. (129)):

Op
E+V( pu) = 0. (140)

The momentum conservation of the one-fluid approach is given by

Opu

BN + V- (pu®u+pld — 1) — pg

Z PP @ ( uP) — pMd 4 %) - nFé;. (141)

This equation can be simplified using the jump condition for the momentum, i.e., Eq.
(1130)):

at —1—V (pu@u+pld —7) — pg = Vs -n¥onks; — Vo6, (142)

The above mentioned one-fluid approach has been introduced by |[Kataoka; (1986|) in order
to obtain results for multiphase flows by using classical single-phase flow models.

The number of unknowns of the previous equations can be reduced by using filtering or
averaging methods. For this purpose, a spatial filtering operator G is defined for the LES
case. As stated in Labourasse et al. (2007)), the discontinuity due to the jump condition
can be smoothed by using any two-phase flow numerical method (i.e., front-tracking, Level
Set, and VOF) since interfaces are defined to cross computational cells in these methods.
Therefore, they use filtering over the discontinuity in their work, instead of applying
filtering operation over each phase separately.

The low-pass frequency filtering operator, called the volume filtering method, is defined
on the computational domain Q € R? by

t
U(a:,t):/ /G(A(w,t),x—x/,t—t/)U(x/,tl)d:::/dt/, (143)
—o0 JQ

where A is the cutoff length scale of the filter. The phase indicator function is filtered as
F— k. (144)

The new term « is continuous between 0 and 1 and it is called a smooth indicator function.
Moreover, the sum of o in every phases is equal to unity. The normal vector can be
expressed in the smooth indicator function as:
vak ; k
ﬁ: _”Vingv if ||VCV || 7507
0,

(145)
otherwise.
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The resolved filtered Dirac function 57 can be defined as
5i = |[n*|. (146)
The phase-weighted filtering of the variable ¢ is given as
a ¢k = xEok, (147)

By using the definitions above, the governing equations for multiphase flow can be ob-
tained. The filtered mass conservation yields

c'?ak/:k
ot

+ V- (FpFuk) = pk(w — uF) - nks;. (148)
The filtered momentum equation is given by

aakpkuk

gy +V(apuk®uk+ozp1d O(Tk) ak,;kg

= (pFuF @ (w — uk) — pFId + 7F) - nks;. (149)

Also, an additional equation for the evolution of the phase indicator function needs to be
considered:

k
% — w - nka;. (150)

The left-hand side of the equations represents the non-linear phase-weighted terms, and
the right-hand side of the equations represents the filtered interfacial terms. In order to
obtain the one-fluid model, a filtering variable ¢ is defined for single fluid:

5= xkoh. (151)
k

The summation of evolution equation over all the phases together with the Eq. ((151))
yields the following equation for mass conservation:

dpu k) .k
—_ — ;e 152
T +V. Zp uf) - nk; (152)

The momentum conservation equation of the one-fluid formulation is given by

opu
%+V(pu®u+ﬁld—ﬂ—ﬁg

= Z kuk @ (w — uk) — pFId + 7F) - nkg;. (153)

The unresolved terms in Egs. (152)) and (153) can be modeled by using the one-fluid
model proposed by |Labourasse et al.| (2007)).

The momentum of the gas phase is transferred to the liquid phase in one-fluid formulation
because of the continuity of velocity. Thus, kinetic energy is also transmitted to the liquid
phase, which is not very significant for steady flows. Most importantly, turbulence can
be carried over to the other phase through the interface. If the transition occurs from
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stratified flow to stratified-wavy flow, the interfacial momentum transfer varies due to
the existence of waves at the interface. This process makes modeling of the momentum
transfer complicated. Therefore, two-phase flow is going to be modeled with a turbulence
model by ignoring the momentum transfer and concentrate on modeling the turbulence in
both phases away from the interface.

DNS is possible for single phase turbulent flow at the specified Reynolds number. It is
also possible for low Reynolds number two-phase turbulent flows as well, although, it will
take more time and computational effort. The turbulent two-phase stratified pipe flow
problem in this thesis can be solved with DNS with the available computational resources
of the Scientific Computing group of the Delft Institute for Applied Mathematics, but it
will take too much time to simulate the whole computational domain. LES is feasible for
both single phase and two-phase turbulent flows. In addition to this, for high Reynolds
number two-phase turbulent flows, LES is the best approach for getting accurate results
with less effort.

Recent studies show that LES is the most feasible candidate for modeling high Reynolds
number turbulent two-phase stratified flow. On the other hand, DNS is also applicable
for specific types of problems, especially for low Reynolds number flows. It gives more
accurate results, which can be used to validate the simulation results with the experiment
results. In order to decrease the required resources for the simulation, a method called
VLES, which was proposed by Lakehal et al.[(2012), can be used. This approach minimizes
the modelling efforts of interface dynamics and turbulence. It is also able to predict the
turbulence in large-scale and capture transient motions of interfaces.
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6 The Baseline Method: Mass-Conserving Level Set (MCLS)
Method

6.1 Interface Model with MCLS Method

The starting point of this thesis is a specific version of the MCLS method developed for
discretization of the equations that describe immiscible incompressible two-phase flow in
a circular pipe geometry. There exists complex interface topologies in between two fluids.
This interface is a moving (internal) boundary. The interface can be modeled explicitly
(moving mesh) or implicitly (fixed mesh) or as a combination of both. It is elaborate
to simulate large numbers of different interfaces with moving meshes. Moving boundary
problems can be solved with two approaches: interface tracking and interface capturing. In
interface tracking, the moving boundary (interface) is described by meshes. On the other
hand, in interface capturing the interface is described implicitly by an artificial scalar field.

Interface tracking methods are not applicable when there is a sharp change in the topology
since the marked interface is tracked from the initial scheme, which is assumed to be not
changing throughout the simulation. It is more difficult to compute the interface when
it has arbitrary shape and topology. For this reason, in this study an interface capturing
method is considered, which is a combination of Level Set (LS) and Volume of Fluid (VOF)
methods.

In the LS method, the interface can be expressed at a given time ¢ as the zero LS of a
function called the LS function ®(z,¢). By that means, the initial surface is defined as
{z| ®(x,0) = 0}, ® > 0 inside fluid 1 and ® < 0 otherwise. The interface is shifting by
the advection of ® as a material property:

o
o Tu Ve =0, (154)

The main problem with this method is that the material volume is not conserved well.

VOF defines a function, which defines the volume of a computational grid cell, and tracks
the grid cells. Thereby, the fraction of each fluid phase in a grid cell is known. A marker
function ¥ gives the fractional volume of specified fluid in a computational cell. For
example, in a grid cell 2, ¥ is defined by

1
Ve /QXdQ. (155)

where x is the characteristic function, which has value 1 in fluid 1 and 0 elsewhere. The
value of ¥ changes very fast throughout the interface because of the definition of the
characteristic function. Therefore, it is difficult to compute ¥ after each transport step of
the interface. Although, VOF methods are conserving mass, they are not the best choice
for our problem. The reason for that is the difficulty of computing interface derivatives
due to the jumps (step-like behavior) in the marker function.

Interface tracking methods mainly deal with the dynamic behavior of the interface. In
addition to these methods, there exists a technique called the reconstruction of material
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interfaces. This method adds discrete pieces or piecewise functions of an interface to-
gether to rebuild the continuous interface. Examples for material reconstruction are sim-
ple line interface (SLIC) and piecewise linear interface construction (PLIC). Although,
these methods are very accurate, these approaches are not considered since interface re-
construction is a difficult process.

The flow-field can be solved easily with the LS method because of the relation between the
LS function ¢ and interface normals, curvature and distance to the interface. However,
mass is not conserved in the LS method when the interface advects. In order to conserve
mass, the VOF function W is used together with the LS function ® explicitly, and this is
called the Mass-Conserving Level Set (MCLS) method (Van der Pijl et al., 2005). The
interface is assumed to be piecewise linear within a computational cell, and it is defined
as:

U= f(P,VP). (156)

By using Eq. (156, the advection of the interface can be computed with less effort, and
® can be obtained directly from W. The smoothing operation of ¥ is not necessary when

using MCLS method. Moreover, in three-dimensional space the implementation of MCLS
method is much easier than VOF method (Van der Pijl et al., [2005).

In MCLS, in order to conserve mass up to a specified tolerance, the LS function is corrected
by using the fraction of ¥ in that computational cell. The fractional volume of a fluid in
a given computational cell is calculated by using the LS function ®"; ¥ = f(®, V).

For the first step, the LS function is advected, and re-initialization is carried out in order to
smooth the function ®. Next, ¥ evolves in time, while conserving mass, and this advected
VOF function can be called as ¥"*!. Then, by using U"*!, Level-Set function at new
time step ®"*t1* is corrected in order to find ¥t = f(®n*tl V@ +!) which holds for

this new Level-Set function and conserves mass (Van der Pijl et all 2005).

6.2 Navier-Stokes Mimetic Discretization

The continuity, momentum, and energy equations are the mathematical definitions of
three fundamental physical processes, and computational fluid dynamics is based on three
physical principles, which are obtained by these governing equations of fluid dynamics:

e Mass is conserved,
e Momentum is conserved,
e Energy is conserved.

Model for a specific flow problem can be established by using the appropriate fundamental
physical principles from above. From this model, necessary mathematical equations are
defined, which express these physical principles. Therefore, our discretization technique
should satisfy these principles to be able to discretize the mathematical model without
loss of accuracy.

The discretization based on mimetic finite discrete first order operators (divergence, gra-
dient, curl) mimics the properties of the original continuum differential operators; e.g.,
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conservation laws, vector and tensor calculus, and fundamental identities. The Navier-
Stokes equations in cylindrical coordinates possess some difficulties such as the coordinate
singularity that occurs at the axis r = 0. In the mimetic approach, the problem near the
axis is vanished by defining these discrete operators such that they mimic the properties
of vector analysis in continuum case (i.e. curl(grad) = 0, and div(curl) = 0). More specif-
ically, the discrete divergence and gradient operators are negative adjoint of each other
with respect to the standard L? inner products. The choice of cylindrical coordinates is
due to the fact that the computations become easier due to the orthogonality of the grids
(Barbosa and Daube, [2005).

The properties of discrete operators in Cartesian coordinates can be analyzed, and can
be realized that they also have similar definitions as already defined above in mimetic
approach. For example, in Cartesian coordinates, negative of the divergence operator -D
is the transpose of the gradient operator G with respect to suitable inner product if and
only if particular boundary condition is satisfied. D and G operators are defined by

1
D:u——-V-u,
0
1
G:¢p— ;ng, (157)

where p is the density. Inner products of these operators yields a boundary condition as
follows:

» ou - dS. (158)

For velocity and pressure, the boundary condition can be written as:

/(99 pu - dS. (159)

For Dirichlet boundary condition, p = 0 at the boundary, and the integral becomes zero.
For Neumann boundary condition, u - dS = u-n dA = 0, so the integral vanishes again.

In our approach, the discretization is carried out by using a finite difference method, which
solves the incompressible Navier-Stokes equations in a cylindrical coordinate system. It
is more difficult to use cylindrical coordinates, when the domain has a coordinate singu-
larity, i.e., r = 0. Nevertheless, it is possible to overcome this problem by using available
approaches in the literature. From those approaches, The mimetic approach is chosen
for this thesis because it has some important advantages. For example, there is no need
to approximate any additional term near the axis, and it is applicable everywhere in the
domain (Barbosa and Daube, 2005).

Discrete spatial operators are defined such that they preserve most of the properties of the
continuum operators. Mimetic finite difference operators are well-suited for this. However,
they need a proper definition for inner products and discrete spaces for a proper use.

The components of discrete vector fields U are defined as normal to the centers of the cell
faces in the space HS. The components of U are not defined at » = 0, and they are defined
with zero normal component on the boundary. The space HS is defined as follows:

HS = {H = (ui+1,j+1/2,k+1/27 Vit1/2,5,k+1/25 wi+1/2,j+1/2,k)} . (160)
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The inner product definition for the space HS is

i=I—1j=J—-1k=K—-1 ArAfGA -

(vu) -
HS - ; 2
1=0 =0 k=0

<

1 !
[ri+1ui+1,j+1/27k+1/2ui+1,j+1/27k+1/2 + TG 1 /2,k4+1/2% 54 1/2,k11)2
! !
+ Ti1/2(Vig /2,541, k+1/2Vi41 /2,541, k41/2 T Vit1/2,5,k+1/2Vi41 /2,5, k41/2
! !
t Wit1/2,j41/2,k4+1Wi11/2,j41/2,k+1 T wi+1/2,j+1/2,kwi+1/2,j+1/2,k>]' (161)

where Ar = 1/I, A0 = 27/J, and Az = H/K are the increments of staggered uniform
grid in the discretized computational domain. The discrete scalar function ¢ is defined at
the cell centers in the space HC:

HC = ¢ = (dir1/2,5+1/2,k+1/2)- (162)

The space HC has the following inner product:

i=I j=J k=K

(¢, ¢/>HC = Z Z Z <Z5i—1/2,j—1/2,k—1/2¢;_1/2,j_1/2,k_1/27’i—1/2A7“A9AZ' (163)

i=1 j=1 k=1

The discrete vector fields V is defined at the mid edges of the cells in the space HL:

HL = {V = (ij1/2,j,k> Wi j+1/2.k> Cirjk+1/2) - (164)

The discrete scalar function 1 is defined at the vertices (4, j, k) of the cells in the space
HN:

HN = {4 = (¢ )} (165)

The gradient operator is defined as the negative adjoint of the discrete divergence operator
with respect to the given inner products:

(¢, Ds(U))nc = —(G(¢, U)ns, (166)

where the gradient operator G maps HC onto HS, and the divergence operator Dg maps
HS onto HC. The curl operator Cg maps HS onto HL, where discrete vorticity components
are defined at the edge centers (Barbosa and Daube, 2005)). The usual properties of vector
analysis such as curl(grad) = 0 and div(curl) = 0 can be checked with the given discrete
operators;

Cs(G(9)) =0 V¢ in HC, (167)
D.(Cs(U)) =0 VU in HS, (168)
where Dy, is the divergence operator, which is a mapping from HL onto HN.

Artificial sources of energy and vorticity may lead to unphysical long terms in LES. Above
all, mimetic schemes are useful for LES because of vorticity preserving discretizations.
When a mimetic curl operator is applied to the discrete momentum equation, a consistent
discrete vorticity equation is obtained, which is called the vorticity preservation (Abba
and Bonaventura, [2008).

The formulation as is currently used assumes a constant viscosity. If this method is to be
used in combination with a LES model, then the formulation has to be extended (subgrid

47



scale model) to allow for a variable viscosity. Otherwise, it is not possible to simulate
the problem. Also, a boundary condition that allows to solve for the pressure difference
over the pipe as part of the problem needs to be implemented for DNS. For that reason, a
velocity flow rate needs to be specified using velocity profiles, inflow and outflow pressures.
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7 Conclusions and Future Plans

In this study, modeling of immiscible incompressible turbulent two-phase stratified flow is
investigated. The most appropriate turbulent model for this type of pipe flow is identified
by getting more insight into the current state-of-the-art of modeling of turbulent two-
phase stratified flow. The experiments, which have been carried out in the Laboratory for
Aero- and Hydrodynamics of Faculty of Mechanical, Maritime and Materials Engineering
of Delft University of Technology, are used as a reference in order to to validate the results
of this study.

Modeling of multiphase turbulent flows compared to single-phase turbulent flows with high
accuracy is more difficult. Although, the interface between two immiscible phases can be
described quite precisely with available methods, the influence of the turbulent fluctuations
in one of the phases may have great influence on the dynamics of the interface. Thus, it is
very important to clarify the effect of the turbulence in all phases. There are considerably
few studies about turbulence model of two-phase stratified pipe flow. In addition to this,
LES is not the common practice in turbulent two-phase stratified pipe flow. Therefore,
in order to have an idea about the flow properties (e.g., velocity profile), first, DNS and
LES methods are used for single-phase turbulent pipe flow, then, necessary inferences are
made about two-phase turbulent pipe flow.

The grid estimations for DNS and LES are calculated and compared in order to find the
most appropriate model, which predicts the onset of instability of the interface and the
formation of slugs. By estimating the number of total grid points required for the single-
phase turbulent flow, which gives a rough estimate of how many unknowns are there,
a minimum requirement and an inference about the complexity of the two-phase flow
are acquired. The estimations for grid resolution that are carried out in this thesis are
compared to DNS results of Eggels (1994]), which was measured for single-phase flow at
Re; = u:D/v; = 360 (close to the value used in this thesis Re, = 395). The results of the
grid estimation is validated by first checking it on the case of Eggels| (1994), then adapting
the procedure to the problem case described in this thesis (see Appendices |[Al and .

The comparison of computational costs revealed that DNS is also feasible for this pipe
flow problem. LES of turbulent two-phase flow is more feasible than DNS, but the com-
putational effort by doing LES is not significantly decreased. The reason behind that
is the small value of the Reynolds number, which is not in the optimum range for do-
ing LES. Another reason is that the boundary layer thickness is also quiet large for that
Reynolds number, which results in unrealistic grid-point estimation for LES with uniform
grid spacing. The results of estimating the required number of grid-points for single-phase
flow yield that both DNS and LES are possible for the given case. However, LES and
RANS (without any limitation) are on the safe side, but DNS is just within the limits of
available computational power. Therefore, DNS and LES are considered to be the main
consideration for the future plan of the research. For that reason, in order to accomplish
this future plan a variable viscosity is defined for the discretization method together with
the LES model. Also, a boundary condition that allows to solve for the pressure difference
over the pipe as part of the problem needs to be implemented for DNS.

The first plan for the research is to simulate single-phase pipe flow problem of Eggels
(1994) with DNS (or with LES). Afterward, the results of the simulation will be validated
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with the study of Eggels (1994). Subsequently, the same approach will be implemented in
this thesis and it is going to be validated by comparing with the results of the experiment
that has been carried out in the Laboratory for Aero- and Hydrodynamics of Faculty
of Mechanical, Maritime and Materials Engineering of Delft University of Technology.
Thereafter, immiscible incompressible turbulent two-phase stratified pipe flow problem
will be simulated with DNS, and with LES. For this part, the effect of the momentum
transfer between two phases will be neglected in order to make the problem slightly easier.
The final goal is to predict the formation of slugs using VLES as suggested by |Lakehal
et al. (2012) if only there will be enough time.
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Appendices

A Estimating Computational Cost for DNS

First, the estimation procedure, which has been carried out in the study of [Eggels (1994)
for the total number of grid points is validated in this thesis for Re; = 395. The following
relations have been defined in the work of [Eggels| (1994)):

L=5D, L=35, (169)

-1 -

I=—L=05 170
10 ; (170)

where L is the pipe length, D is the diameter of the pipe, [ is the largest length scale and
the tilde symbol “indicates a normalization in terms of the characteristic length scale (e.g.,
pipe diameter).

In the study, DNS has been carried out using 96 x 128 x 256 grid points equally spaced in
r-, 0-, and z-direction respectively. The grid spacing has been computed as Ar™ ~ 1.88,
AzT 2 7.03 in terms of viscous wall units [ﬂ The azimuthal grid spacing varies linearly
with r and it has its minimum value (ArAf#/2)*™ ~ 0.05 near the centerline of the pipe
and its maximum value (DA6/2)" ~ 8.84 at the wall ﬂ

The dimensionless grid spacing in r-direction is equal to

~  Ar 1
hy = — = . 171
"~ D 2N, (a7)
The number of grid points in r-direction is N, = 96. Therefore,
~ 1
hy = —— ~ 0.0052. (172)

2(96)
Furthermore, the dimensionless grid spacing h, (with respect to the pipe diameter) can be
also calculated with the following approach (where y* = 1), which is in agreement with
the study:
~ Ar
="
where the Reynolds number with the bulk velocity is Rep = 5300.

= 2(yH)VTA(Rep M) = 2v/74(53007%/14) ~ 0.0059, (173)

The dimensionless grid spacing in 6-direction can be calculated as follows:

~ Af 2T s

=—=—=—=0.0245 174
779 T 2N, 128 ’ (174)
where the number of grid points in #-direction is Ny = 128. It can be seen that the ratio of
the dimensionless grid spacing in #-direction and dimensionless grid spacing in r-direction

8 A superscript T corresponds to a normalization in terms of viscous wall units

9The maximum value of the grid spacing in #-direction is calculated by assuming D — Ar ~ D (sub-
tracting Ar from the pipe diameter represents distance of the center point of the last grid cell to the center
of the pipe), and for the minimum value of the grid spacing, the distance of the first grid cell to the center
of the pipe is Ar/2.
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is hy / h, ~ 4.7. Moreover, the ratio of grid spacings computed in the study of Eggels
(1994)) also has the same ratio (DAG/2)t /Art ~ 4.7

The total number of grid points in the z-direction is IV, = 256:

L
N, =256 = =, (175)
h
where h, is the dimensionless grid spacing in z-direction, and is equal to
- L 5
= — =—~0.0195. 176
N, 256 (176)

The ratio of the dimensionless largest length scale to the dimensionless grid spacing in
z-direction is [ / h, = 0.5/0.0195 =~ 25.6. The ratio of dimensionless grid spacing in z-
direction and dimensionless grid spacing in r-direction is h;/h; = 0.0195/0.0052 ~ 3.75,
which is almost same as the ratio given by the study Azt /Art = 7.03/1.88 ~ 3.74.

The same approach is implemented in this thesis. However, the Reynolds number Rep
computed with bulk velocity and characteristic length (in this case it is the pipe diameter)
has a different value, Rep = 3421. Therefore, the dimensionless grid spacing in r-direction
h, (with respect to the pipe diameter, and y™ = 1) is

H_AT

== 2(y T )VTA(Re, M) = 2v/74(342173/14) & 0.0089. (177)

Hence, the number of grid points in r-direction is

1 1
N,r, = —= = . ]_
o = 2{0.0089) ~ 7P (178)

If the same relation between dimensionless grid spacings are used, i.e., h. 2/ h, ~ 3.75, and
h@/hr ~ 4.7, then h, ~ 0.0333, and hg ~ 0.0418. In this way, the number of grid points
required in - and z-direction can be calculated respectively:

T s
Np=—= = ~ 75 179
" 4, 00418 "7 (179)

L 50
N,=>== ~ 1501 180
*  h, 0.0333 ’ (180)

where the length of the pipe is taken as one-fourth of the whole length of the pipe, i.e.,
L = 50D, thereby, the dimensionless pipe length with respect to the pipe diameter is
[ = L/D = 50. According to the study of [Eggels (1994), the two-point correlation
coefficients get small enough around L = 2.5D. If we choose our computational domain
length L equal to 2.5D, then the dimensionless length scale with respect to the diameter
is L = 2.5, which yields

N, = ~ 5. (181)

L 2.5
h, = 0.0333

The uniform grid spacing approach above mimics the estimation procedure that has used
in the work of Eggels (1994). The DNS approach below is carried out (without reverse
engineering the study of Eggels (1994))) with non-uniform grid spacing in r-direction, and
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uniform grid spacing in - and z-direction. The radial grid spacing has a minimum value
ArT™ ~ 1 near the pipe wall and reaches a maximum value Ar™ ~ 5 near the centerline of
the pipe. The azimuthal grid spacing varies linearly with r and reaches a minimum value
(ArA6/2)*T =~ 0.0258 near the centerline of the pipe and its maximum value (DA#/2)" ~
at the pipe wall.The grid spacing in axial direction Azt ~ 10.

In order not to exceed the available computational power (i.e., 30x150x90), the number of
grid points and the aspect ratio for the grid spacing in r-direction is selected accordingly.
The number of grids in #-direction is calculated as follows:

+
(DAG/2)T = (rAd)T = (f\f) ~b5 — Nyp=248. (182)
0

The number of grids in z-direction is calculated as follows:

(Az)T = Lo 10 — N,=~198, (183)
N,
where L = 5D and D = 395 in dimensionless wall units. Thus, the number of grid
points required for DNS is 11x248x198, and the aspect ratio is n = 1.16613 for the
non-uniform grid spacing in r-direction. The maximum available computational power is
actually exceeded (approximately 20%) with these number of grid points.
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B Estimating Computational Cost for LES

The characteristic grid spacing Ay, is calculated from the grid spacing in all three direc-
tions:

Ar? +r2A0% + Az2
Ach = ’
3
where Ar, rAf, and Az are the grid spacings in radial, tangential, and axial direction
respectively. The ratio of Lz E and A, is denoted by the Smagorinsky coefficient c,
which is a measure for the numerical resolution, as:

(184)

lmix
Cs = . 185
A (185)

Values of ¢ less than 0.165 give insufficient spatial resolution (Eggels, 1994). Moreover,
the ratio of l,,;; and the filter length A:
lmim _ (%QK)73/4
A 21

= 0.0825, (186)

where ak is the Kolmogorov constant and equals approximately 1.6. Hence, if the same
relation holds for the filtering length and characteristic grid spacing A > 2A.;, (see Eq.
(99)), then the following relation is obtained for the mixing length of the SGS motions:

Iie = 0.0825A  — Mz _ 5 0165, (187)
Ach,

In the work of [Eggels (1994)), the value chosen for ¢4 is approximately 0.1, which is less
than 0.165. The reason for using smaller value is that larger values of ¢; does not maintain
resolved scale motions and it gives unrealistic results in the end. The value of ¢, is
dependent on the type of flow in terms of the way how turbulence is produced. In order to
obtain the number of grids required in LES, the Eq. substituted into the Eq.
(A, has been replaced by Agp):

_ LT A LT o
L= TAA,  1A0.0825

(188)

The following relation is obtained by approximating L/l ~ 10 and ¢, ~ 0.1 for shear-driven
turbulent flow: ;

Ny ~ 12 A (189)
In the study, equally spaced 16 x 64 x 128 grid points (N, Ny, and N) have been used
for three cases, and the viscous wall layer has not been resolved in these cases. Therefore,
the first grid-point is located within the inertial sublayer (i.e., yj;bm = 32.8 > 30). The
grid spacing in r, 6, and z-direction are Ar* = 65.6, (DA#/2)T = 103.1, and AzT = 82.0
respectively.

The dimensionless mesh width (with respect to the pipe diameter) in r-direction can be
calculated as follows:

-1 1
= oN = g 00312 (190)

10The length scale Lnix represents the mixing length of the SGS motions.
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The value above can be validated by using Eq. (177) with y™ = 32.8:

P

r=0 = 2(y T )VTA(Re," /M) = 2(32.8)V/74(40000~13/14) ~ 0.0301. (191)

With the same approach the dimensionless mesh width in - and z-direction is calculated:

~ Af T

hyg= — = — — ~0.04 192
=3 = W6 0.0490, (192)
- L 5

hZ_E_T%No.ozago. (193)

The ratio of h, and h, equals to 1.25, which can be validated by taking the ratio of
Azt /Art = 1.25. Moreover, the ratio of hg and h, approximately equals to 1.57. This
ratio can also be validated by taking the ratio of (DA#/2)* and Ar™, which is also around
1.57.

In this thesis, the dimensionless mesh width in r-direction is calculated in Eq. (177 with

yT = 1. For y™ = 32.8, the dimensionless mesh width in r-direction is
- A _
hy = 37“ = 2(y " )VTA(Re, /M) = 2(32.8)V/74(3421713/14) ~ 0.2919. (194)

Thus, the number of grid points in r-direction is

1 1

oh.  0.5838

r

~2 (195)

It can be concluded that the boundary layer modeling is not feasible for this case since
the Reynolds number is not large enough and the modeled boundary layer (viscous wall
region) is almost equal to the radius of the pipe diameter. For other directions, the same
approach can be implemented by using the ratios:
he = 1.57h, =~ 0.4582, (196)
h, = 1.25h, ~ 0.3648. (197)

The number of grid points in #- and z-direction can be calculated as follows:

| =

™

Np== = ~ T 198
T, 04582 U (198)
L 50
N,===——— =137 199
* h, 0.3648 ’ (199)

where L = 50. For L = 2.5, the number of grid points in z-direction is

25
h.  0.3648

z

z‘ ~

N, = ~T. (200)

The other computation case in the work of Eggels (1994) has been carried out using
32x128x192 grid points with non-uniform grid spacing only in r-direction (uniform grid

95



spacing in other directions). The value of the dimensionless wall unit for these computa-
tions is y* = 1.5. The averaged value for the grid spacing in r-direction is (Ar™+)* = 32.8,
and for other directions the values are (DAG/2)T = 51.5, A} = 54.7.

The aspect ratio used in the non-uniform cases can be evaluated. In order to do that,
first, the total sum of each grid spacings in r-direction should be computed as follows:

(Art)* = .art = Y Arf = (ArH)*(N,) = (32.8)(32) = 1049.6 (201)
= St A= ) = (32. = 1049.6.

The value for the aspect ratio with the calculated total sum of grid spacings is approx-
imately equals to 1.16613. The same aspect ratio is used in this thesis as well, and the
number of grid points needed in r-direction can be calculated by using the same value for
the aspect ratio. The first grid-point is at h,q = 0.0135 for y+ = 1.5. The number of grid
points required in r-direction is IV, = 16, which is calculated by using the aspect ratio and
the first grid spacing hy1.

The ratio of the grid spacing in #-direction to r-direction is (DA#/2)* /(ArT)* ~ 1.5701.
Therefore, the grid spacing in f-direction is

hg = (1.5701)(h,)* = (1.5701)(0.0625) ~ 0.0981, (202)

where (h;«)* is the averaged grid spacing in r-direction. Therefore, the number of grid
points required in #-direction is Ny = 32.

The ratio of the grid spacing in z-direction to r-direction is Az /(Ar™)* ~ 1.6676. Thus,
the grid spacing in z-direction is

h. = (1.6676)(h,)" = (1.6676)(0.0625) ~ 0.1042. (203)

Hence, the number of grid points required in z-direction is N, = 480 for L = 50, and for
L = 2.5, the number of grid points required in z-direction is N, = 24.
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