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Project Description
Computational fluid dynamics (CFD) simulations are a numerical tool to model and analyze the behavior of fluid
flow. However, accurate simulations are generally very costly because they require high grid resolu-
tions.

Figure 1: Mean (left) and standard deviation (right) of
the flow field for a variation of the viscosity.

Therefore, there is high demand for reduced order
models which reduce the computational costs of com-
puting fluid flow fields. In this project, generative
adversarial networks (GANs) [3] based on con-
volutional neural networks (CNNs) should be
employed to train such a reduced order model;
the project is in the spirit of [1, 2] where autoen-
coder type convolutional neural networks have been
employed to compute a reduced order model.

In order to train the network model, parametrized
flow data is first generated by solving the station-
ary Navier-Stokes equations

−ν∆u+ (u ·∇)u+∇p = 0 in Ω,

∇ · u = 0 in Ω,
(1)

with certain boundary conditions on ∂Ω, kinematic viscosity ν > 0, velocity u, and pressure p on a computational
domain Ω.

Certain parameters, such as the viscosity or the boundary conditions, should then be varied and a reduced
order neural network model be trained to approximate the resulting flow fields.

Tasks
• Install and familiarize with the software packages:

– The open-source CFD software OpenFOAM1.

– The Python machine learning libraries TensorFlow 2.02 and Keras3.

• Implement and train a GAN based on CNNs for a simple data set; see, e.g., the TensorFlow Tutorial on
Deep Convolutional Generative Adversarial Network4.

• Set up a software pipeline based on OpenFOAM to automatically generate fluid flow data depending on
certain parameters, such as viscosity, inflow velocity, etc.

• Based on the previous tasks, train a GAN for predicting flow flow fields based on certain input parameters.

• Optimization of the model and comparison against the reference data.

Contact
If you are interested in this project and/or have further questions, please contact Alexander Heinlein, a.heinlein@tudelft.nl.
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