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Chapter 1

Introduction

All models of the physical universe are necessarily simplifications. They con-
tain both implicit and explicit assumptions, which are never fulfilled exactly
in reality, resulting in behavior that deviates from that of the object or system
they are trying to mathematically mimic. These errors may be irrelevant, for
example if they are below the scale of measurement accuracy, or they may
be grave. Building models that work by making the right assumptions for
the right problem, and following the ensuing logic, has been the pursuit of
science over the last centuries, and with great success. Nevertheless, build-
ing efficient computational models remains a challenge for many real world
applications. Now, new AI methods could hold promise to automate the
process of model order reduction, as they have successfully done with other
tasks previously restricted to human action. Model order reduction refers
to techniques for finding models that are computationally simple yet still
accurately predict reality under certain conditions.

To illustrate this potential, consider the example of the so called “pro-
tein folding problem”, i.e. the prediction of a protein’s three-dimensional
structure from its amino acid sequence. This is a task of enormous rele-
vance for drug design, biotechnology and other applications. Moreover, the
equations governing atoms and molecules are, of course, known to a great
degree of precision. Yet still, even after a decades long global research effort,
computational models have struggled to solve the problem for large proteins
which are made of of hundreds of amino acids. The reason is that solving
the problem based on first principles! is prohibitively expensive in terms of
computing power necessary. Thus, scientists have been developing surrogate
models, either by simplifying physical laws or by directly inferring from ex-
perimental data of known protein structures. But the problem turned out
to be more difficult than most, and progress was slow — until 2020, when
the DeepMind’s AlphaFold 2 Al managed to achieve results described as
“transformational” 1], handily outclassing the previously leading models.|[2]

If this type of success can be repeated in other areas, deep learning could
establish itself as a useful additional tool for modeling. It would give scientists
and engineers the ability to automatically infer reduced order models for

T.e. by solving Schrodinger’s equation for all particles in all of the molecules of the
protein, plus all those in the near vicinity such as surrounding water molecules etc.
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Figure 1.1: Performance of best 100 entries in 14" CASP protein folding
challenge in 2020, relative to the scoring of AlphaFold 2. Data taken from
CASP website [3].

problems both whether well studied and novel, directly from measurement
or simulation data.

In this research project, we will investigate training a generative adver-
sarial artificial neural network (GAN) to act as a reduced order model for
fluid modeling problems. The field of computational fluid dynamics (CFD) is
crucial for a plethora of technical and scientific applications, including energy
generation, transportation, geoscience and medicine. If successful, this would
be especially useful for design space exploration in engineering contexts, such
as shape optimization.

This report is intended to provide three things. First, an overview of
the most relevant background, both in terms of fluid modeling and machine
learning. Second, a survey of the state of the art and relevant research in
the area of interest. And third a presentation of the initial experiments
conducted in preparation for the research project, as well as an outline of the
research to come.



Chapter 2

Incompressible Flow

Gases and liquids together make up a vast share of the matter on earth’s
surface, and as such, fluids have long been an important topic of study in
physics. Today, computational fluid modeling (CFD) is a mature field, with
many highly developed numerical methods at the disposal of scientists and
engineers. Some of the most important applications include modeling flow
around structures (aviation, transportation, architecture), through turbo-
machinery (wind power, hydro power, jet engines), flow in the earth system
(meteorology, hydrology) as well as through biological systems (e.g. the
heart).

In this chapter, we will present a brief outline of the mathematical theory
of fluids. We will restrict our discussion of the topic to incompressible flow,
which is sufficient for modeling liquids as well as gaseous flow so long as
flow velocity is small compared to sonic speed. Remarks on the numerical
treatment will be given in Section 5.1.

2.1 Governing Equations

Fluids are generally modeled in the framework of continuum mechanics and
described by field quantities (velocity, density, temperature etc.) as a func-
tion of space and time. To derive the equations that govern fluids, we simply
apply well known conservation principles such as conservation of mass, mo-
mentum and energy, and demand that they hold for every part of the fluid.
For instance, by assuming that no mass is created or destroyed, we get

dp

o TV () =0, (2.1)

where p is the mass density of the fluid, and u is the vector describing
its velocity. This is also known as the (mass) continuity equation. For
an incompressible fluid, the density following the path of a fluid element
is constant. We express this as

Dp B
Di =
using the so called material derivative notation, i.e. the time derivative in
the Lagrangian reference frame. In a fixed Eulerian frame, this operator

0, (2.2)



translates to
D 0

— = - V. 2.3
Di T TV (23)

Using this in eq. (2.2), we can substitute into eq. (2.1) to obtain
V-u=0, (2.4)

which implies that volume is conserved.
Next, we apply newtons second law (or, equivalently, the principle of con-
servation of momentum) to an infinitesimal fluid element, which, in symbolic

tensor notation, yields
Du

"Dt
Here, the left side corresponds to the inertial force of a fluid element, and the
right side to the outside forces acting on it. We distinguish between forces
arising due to stress within the fluid, which are described by the (2" order)
Cauchy stress tensor o, and external, volumetric forces denoted by the vector
f, such as gravity. The divergence of a second order tensor is taken row-wise
[4].

To close the system of equations, we need a way of relating the internal
stresses to the velocity, or more specifically (when taking into account the
principle of relativity) the velocity gradients. This relation cannot be easily
derived from first principles of classical mechanics, as it depends on the
molecular properties of the specific fluid. However, we may start by trying the
simplest possible law: that stresses be a linear function of velocity gradients.
As it turns out, this supposition, first put forward by Newton, holds well for
many of the most frequently studied liquids, in particular water and air (also
known as Newtonian fluids). If we assume further that the incompressible
fluid has isotropic properties, we arrive at the following relation, written in
index notation [5, chapter 6]:

ou;  Ou;
J i

=V-.o+f. (2.5)

where p is a material constant known as the viscosity (specifically the dy-
namic viscosity), and d;; is the Kronecker delta. Here, we have implicitly
made use of the fact that the stress tensor is symmetric, a condition that
follows from the principle of conservation of angular momentum.

Substituting eq. (2.3) and (2.6) into the momentum equation (2.5), and
again making use of the incompressibility constraint, we obtain the momen-
tum equation we have been striving for:

9 1
a—‘; H Vu= (~Vp+piu)tg, (2.7)



where we have additionally assumed that the fluid has uniform viscosity, and
replaced the general volumetric force with the gravitational acceleration g.
Together with eq. (2.4), this constitutes a closed set of equations known as
the Navier-Stokes equations for incompressible, uniform fluids.

For this work, we will furthermore assume stationary flow, i.e. no changes
in velocity over time (steady state). Moreover, we will be modeling a uniform
fluid filling out the whole domain, which means that gravity has no effect.
The Navier-Stokes equations then simplify to

V-u=0 (2.8a)
pwAu—p(u-V)u= Vp. (2.8b)

This boundary value problem is a second order, nonlinear system of partial
differential equations (PDEs). The first equation represents the condition of
divergence free flow, and the second represents the force equilibrium condition
for every fluid element. Specifically, the first term on the left hand side of
(2.8b) represents the inertial forces acting on the fluid, the second terms
represents the viscous forces, and the right hand side represents an internal
source in the form of the pressure gradient. Mathematically, the pressure
can be regarded as a Lagrange multiplier enforcing the continuity constraint
(2.8a) in the variational formulation of the equations [6].

2.2 Non-Dimensional Form

By reformulating the equation in terms of a natural length scale L and ve-
locity scale U, we can non-dimensionalize the left side of (2.8b):

_ . I .
Au—Re(a-V)a=—Vp. 2.9
i~ Re(- ¥)i = ¥ (29)
where the tilde () represents non-dimensional variables and
UL UL
Re =22 - =~ (2.10)
n v

is the Reynolds number that describes the characteristic ratio of inertial to
viscous forces, with the so-called kinematic viscosity v = p/n. Formulating
a natural pressure scale is less obvious, but outside the Stokes regime it is
typically taken as pU? [7, page 53-54]. The full dimensionless system of
equation then becomes

0 (2.11a)
Vp. (2.11b)

u

Re™'Atll — (ii- V)i



Therefore we can assume that the flow conditions analyzed here are com-
pletely characterized by the Reynolds number.

2.3 Turbulence Modeling

A particular challenge in computational modeling of fluids is posed by tur-
bulent flows. Turbulence refers to the fleeting chaotic structures that occur
on small scales, down to the microscopic (see Kolmogorov microscale [8]),
in flows with high Reynolds Numbers. Despite the size, they nevertheless
can contribute significantly to transport of quantities such as momentum in
the fluid, and thereby affect the macroscopic flow. However due to the small
scales involved, correctly reproducing turbulence in a direct numerical simu-
lation (DNS) is computationally infeasible for almost any practical problem
due to the extremely fine spatial resolution that would be required. Instead,
specialized turbulence models are added to the Navier-Stokes equations, with
the goal of modeling not the turbulence itself but its net effect on macroscopic
flow.

One framework for modeling turbulence are the so-called Reynolds-averaged
Navier-Stokes equations (RANS). Reynolds-averaging refers to averaging the
equation over a time large enough for the effect turbulent fluctuations to
approximately equalize. Applying this to (2.8) gives [9, section 10.3.5]

Va=0 (2.12a)
pAa—p(a-Va=Vp+V.-7, (2.12b)

where the overline (+) marks a time averaged variable. As one can see, the
structure of the equation stayed mostly the same, but a new term V - 7
appeared in the momentum equation. The 2°¢ order tensor 7 is given by

T=—pu U, (2.13)

where ® denotes the outer product and u’ is the instantaneous velocity de-
viation from the mean, i.e. u’ = u — @. In analogy to the Cauchy stress
tensor, 7 is termed the Reynolds stress tensor.

The goal is to model only the averaged quantities, and thus u’ is an un-
known in this equation. Therefore a turbulence model is required, which
allows us to evaluate the six unknowns in 7 from the average flow quan-
tities (“closure problem”). Early experimental results lead to Boussinesq’s
hypothesis that the net effect of turbulence can be modeled as a localized
increase in viscosity (“eddy viscosity”). Based on this, the typical ansatz for



the Reynolds stress tensor is:

~(om  om\ 2

The reason for this at first glance slightly idiosyncratic form is to conform
with the definition turbulent kinetic energy

1
k= 3 (ujuf + uhub + ufub) (2.15)

which is used in many turbulence models [9, page 399]. The Boussinesq
hypothesis reduces the number of unknowns in 7 from six down to two tur-
bulence parameters, the eddy-viscosity u; and k. Many different closure
models have been developed to close the eddy viscosity model. The most
basic merely give an algebraic relation between the turbulence parameters
and the time averaged flow fields @i and p, but they are too simplistic to gen-
eralize well. Instead, most common turbulence models introduce additional
transport equations, allowing them to take into account convection and dif-
fusion of turbulence. One of the most common and well-validated models is
the so-called k-¢ model, which introduces the turbulence dissipation rate ¢
and two additional transport equations to close the system. This model will
be used for simulations in this project, see chapter 5. For more details on
this specific model, see [10], and for a comprehensive treatise of the theory
of turbulence refer to [8].



Chapter 3

Machine Learning

Enabled by the culmination of sustained exponential growth in computing
power over the last decades [11] , the field of machine learning (ML) has
made remarkable progress in the last decade. The term refers to techniques of
enabling computers to solve problems, not by directly following a set of rules
encoded by a programmer, but by inferring those rules from observation,
i.e. data. The vast majority of contemporary artificial intelligence (AI)
methods are based on some form of machine learning. Moreover, they often
rely on the concept of hierarchical representation, using consecutive layers
of information processing units that build on each other to bootstrap more
powerful representations of real world data. This paradigm is the origin of
the term deep learning. [12, page 5|

In recent years, ground-breaking results have been achieved across fields
such as computer vision as well as speech and natural language processing &
synthesis [13].

Beyond being a very active field of study itself, ML has also been suc-
cessfully applied to advance scientific frontiers in other areas of research. In
particular, ML has been explored as an alternative to conventional meth-
ods from computational science, a discipline referred to as scientific machine
learning (SciML). For a comprehensive overview, see [14]. A survey of pub-
lished work on applying ML to PDE problems will be given in Chapter 4.

Machine learning methods can be separated into two categories, super-
vised and unsupervised learning. The key difference is that in supervised
learning, each training example has a label, and the goal is generally to map
from unseen examples to the correct label. With unsupervised learning on
the other hand, data are unlabeled, and the goal is generally to, in some form,
learn the probability distribution underlying the dataset. [12, page 105]. The
focus of this work is on a specific type of machine learning framework known
as generative adversarial networks (GANs) which combines aspects of both
paradigms. It will be discussed in the last section of this chapter.

10



layer Hidden

Figure 3.1: A graph visualizing the general structure of an artificial neural
network with three hidden layers. Each node corresponds to a neuron and
each arrow to a weight.

3.1 Artificial Neural Networks

Artificial neuron networks (ANNs, hereafter also simply referred to as neu-
ral networks) are a type of machine learning architecture designed in loose
analogy to the networks formed by biological neurons found in the brains of
humans and animals. As the name suggests, ANNs are made up of individ-
ual artificial neurons, which are arranged in connected layers. An example is
visualized in figure 3.1. The principal setting in which neural networks are
applied is to model the relation underlying a set of observations and labels
i.e. to find a way of relating a feature to its proper label. We generally distin-
guish between regression tasks, where the label is continuous (e.g. predicting
the market value of a house), and classification tasks, where it is discrete
(e.g. detecting a handwritten digit).

3.1.1 Artificial Neurons

A single neuron can be represented as a mapping from a number of inputs
a; to a single output y. Specifically, this takes the form of a weighted sum of
all inputs, which is passed through a so-called activation function f: R — R
after a fixed offset known as the bias has been added. We collect the inputs
in a vector a and the corresponding weights in a vector w. Together with

11



the bias b we can thus write
h=f(w-a+b), (3.1)

where the resulting output h is called the activation level. The weights
and bias parametrize a hyperplane in the input space known as the decision
boundary, which is defined by w-a + b = 0. A geometric interpretation is
that the activation function operates on the euclidean distance d of the input
point a to the decision boundary, scaled by the norm of the weight vector:

h=f(dlw]). (3-2)

3.1.2 Network Structure

As mentioned before, the neurons in an ANN are arranged in layers. These
are typically connected in a sequential order, such that information propa-
gates uniformly from input to output, although other variations exist (e.g.
recurrent neural networks, RNNs). Each layer defines an operation acting on
the output of the previous. Data is always fed into the network at the input
layer, in analogy to sensory organs in biological cognition. Then it passes
through a number of so-called hidden layers, until it reaches the output layer
where the response of the network is read off. While the widths of input and
output layers (n and k respectively) are imposed by the problem setting, the
number and widths of hidden layers is a design parameter. If we represent
each layer (including the input) as a one dimensional structure, then the
operation that a layer j performs can be written as

2, = F (Wyzi +b), (3.3)

where ¢ is the index of the previous layer, W, is an matrix of dimensions
m; xm; (i.e. the sizes of layers ¢ and j respectively), b is a vector containing
the biases and F' is the element wise application of the activation function f.
If W is a dense matrix, we say layer j is fully connected. The connectivity
structure is an important design parameter, and will be explored further in
Section 3.2.

The whole network then is essentially a parametrized function A/ mapping
from an input space X to an output space Y:

N: XY

y=Nxw), (3:4)

where w represents all weights and biases in the network, and ¥ is the net-
work’s output. Typically, both input and output are taken as vectors in R.

12



However, if the data has a grid-like 2D or 3D structure it can make sense
to reflect that in the mathematical representation of the network. Note that
size of input and output layers may be drastically different; take for instance
the task of classifying 256 x 256 pixel images on the basis of whether or not
they depict a cat. In this case, the network will have an input layer with a
size of approx. 65000, but only a single, binary output neuron.

3.1.3 Training

A large neural network can easily have millions of trainable parameters, with
the biggest containing over 100 billion (see GPT3 language model [15]). Our
goal is to choose these in such a way that the network can approximate
the unknown law underlying our observations. This law could be a simple
functional relation, y(x), but is typically instead modeled in the more general
framework of stochastics, i.e. as conditional distribution p(y|x).

We want to approach the problem empirically, i.e. have the ANN learn
from training examples. Our training set X consists of a number Nt of
features x € X and associated labels y € Y, drawn from the probability
distribution p(x,y). As described in eq. (3.4), the ANN can generate an
output ¥ for each feature sample x. Initially, weights are typically initialized
stochastically based on some heuristic. Obviously, such an untrained network
cannot be expected to solve any given problem. In order to improve then, we
first need a measure of how good (or bad) the network is performing. This is
provided by the cost (or loss) function ¢(y, ¥), which assigns a cost to every
combination of y and y:

c:Y XY —->R

s.t. ¢(y,y) = 0. (3:5)

The goal of the learning process is to minimize the expected cost C' with
respect to the underlying data distribution. The optimization problem is
therefore

min C' = min By« .y [c(y, §(x))]. (3.6)

w w

However, we generally do not know p(x,y) exactly (otherwise we would al-
ready have solved the problem). Therefore we approximate C' by the average
training error Ct on our training set

rrgn C't = min (NL Zc(y,&(x))) : (3.7)

w
T x

13



This is not necessarily a good approximation, in fact it becomes essentially
useless in the case of overfitting (see [12, section 5.2]). To avoid this, some-
times additional so-called regularization terms are added to the cost function
(see [12, chapter 7]).

The optimization problem (3.7) is typically highly non-convex, and so-
lutions are by no means unique. In fact, just by permutation of neurons, a
single fully connected layers of size L multiplicatively contributes L! equiv-
alent solutions. At any rate, using direct methods for finding the optimum
is infeasible due to size and complexity of the problem. Instead, iterative
gradient based methods are typically used. The simplest, known as gradi-
ent descent, works by computing the derivative of the training error with
respect to every trainable parameter, and use that information to update
them all at once. This is equivalent to taking a step in the opposite direction
of the gradient of the training error (in parameter space). This guarantees
that weights are updated in the (locally) most optimal way. Using Einstein
notation, we can formulate the update for the i*" weight as

oo __, (aCT a/\/j)

Awi = Ow;

: (3-8)

@O0

85’]' Bwl

where wq are the current model parameters and n € R is a parameter scaling
the update step, also known as learning rate. The learning rate is typically
adapted as training progresses to allow for more fine-grain optimization closer
to the optimum.

A limitation of gradient descent is, that it is by no means guaranteed to
converge to a global optimum. Instead, it will often get stuck in a local min-
imum, the random initialization deciding over which. For shallow minima,
this can be overcome (literally) by adding “momentum” terms to the descent
kinetics (see [12, section 8.3]), but the core problem remains. Nevertheless,
gradient descent has in practice proven to be a very successful workhorse of
machine learning. On this issue, the authors remark in [12, page 153]:

In the past, the application of gradient descent to non-convex op-
timization problems was regarded as foolhardy or unprincipled.
Today, we know that the machine learning models [...| work very
well when trained with gradient descent. The optimization algo-
rithm may not be guaranteed to arrive at even a local minimum
in a reasonable amount of time, but it often finds a very low value
of the cost function quickly enough to be useful.

Part of the reason why the method performs well in practice despite the
limitations is down to the fact that we are not actually interested in finding

14



a global or even local minima of (3.7), as this solution would most likely not
correspond to a good solution of the original problem (3.6) (overfitting, see
again [12, section 5.2]).

Fortunately, the gradient can be evaluated relatively easily using the
back-propagation algorithm (or, more generally, automatic differentiation),
at roughly the same computational complexity as evaluating the network’s
output in the first place. So far we have discussed the case of using the
whole dataset for each weight update, a procedure known as batch gradient
descent. Instead, one may also only use a subset (“mini-batch”) or even just
a single sample, known as stochastic gradient descent (SGD).

As alluded to above, using the gradient as the direction of the update
is only optimal for an infinitesimal step size. In practice of course, we do
not want to choose 1 too small in order to keep the number of iterations
to an acceptable level. However, this introduces higher order errors that
can lead to a very suboptimal optimization path. The magnitude of these
higher order terms essentially depends on the product of activations across
the layers. Therefore it is desirable that activations are generally small in
magnitude. This is achieved elegantly by the so-called batch normalization
method. It ensures that across a batch (or mini-batch), the distribution of
each activation has zero mean and unit standard deviation [16].

While initially sigmoid functions were a popular choice of activation func-
tion in the field of machine learning, so-called rectified linear unit functions
have become the standard for modern deep networks [12, page 174]. This
is because they avoid the problem of stretching out the loss landscape w.r.t.
parameters in shallow layers, which is caused by the vanishing gradient of
sigmoid functions for large inputs (by magnitude), while retaining a non-
linearity. The general formula for the rectified linear unit is

f(z) = argmax(z,az), a € [0, 1], (3.9)

which is a modification of the original rectified linear unit (ReLU, [17]) with
a=0.If 0 <a<<1,itis also referred to as leaky ReLU [18].

For more information on optimization techniques in neural networks, refer
to [12, chapter §]

3.2 Convolutional Networks
Much of the data encountered in real world problems has tensorial structure,
such images or time series. A common way to reflect this in the structure

of an ANN is through use of convolutional layers, which can greatly improve
the performance of ANN models.

15



3.2.1 Convolutional Layers

Digital image or signal processing often employs discrete convolutions for
feature detection. Here, the “feature” is encoded in a small filter kernel or
stencil, which is shifted across the image or signal (in the following we will
focus on application to images). At each location, the data in the kernel
range is multiplied by the corresponding kernel elements and summed up.
The resulting grid is called a feature map, as it indicates the presence of the
feature in the original image. A simple example is edge detection.

Fully
connected Convolutional

Figure 3.2: Comparison between fully connected and convolutional layer.
Same colors indicate shared weights; the fully connected layer has 25 inde-
pendent weights, while the convolutional layer has only 3.

The same idea is used in convolutional layers, except now the features
to search for are determined as part of the learning process. In the regular
ANN framework, this corresponds to a sparsely connected layer (each neu-
ron is connected only to its neighborhood), where additionally weights are
shared between all neurons in the layer. The number of parameters therefore
only depends on kernel size, not on the number of nodes in the layer. This
drastically reduces the parameter space, as shown in Figure 3.2. However,
we typically apply not just one but many kernels to a single layer, and thus
we get multiple feature maps as output, which are also known as channels.
For the case of a 2D image, we can therefore represent a convolutional layer
as a 3D block, where each sublayer in the block represents a different feature
map. If another convolutional layer follows, it will act on the whole block,

16



i.e. each kernel will have not just a width and height, but also a depth equal
to that of the previous block. If we represent feature maps as vectors, we
can write the operation performed by a convolutional layer as

Yi = Z Cijx;, (3.10)
J

where {x;};—1.r are the I input channels, {y;};,—1.s are the J output channels
and {C;;} are the weight matrices defining the convolution. Each C;; has
the same sparsely diagonal structure, with each row containing the same
kernel elements. Not by coincidence, this structure is very similar to that of
matrices resulting from finite element discretizations of PDE problems (here
the kernel corresponds to the stencil). If C;; is a square matrix, then the
input and output feature maps are of the same size, corresponding to the
kernel being evaluated at every point of the input grid. Often however, the
kernel is only evaluated at larger regularly spaced intervals, a method known
as striding. This corresponds to removing rows from C;;, and effectively
downsamples the input. For the image example, a stride of two in both
directions reduces the rows in C;; and thereby the length of y; by a factor
of four (the square of the stride). Moreover, there are different strategies for
dealing with the points on the boundary, where the kernel extends beyond
the input data (e.g. padding the data with zeros). For more details, see
[19]. Another operation that is often combined with convolutions is so-called
pooling. In a pooling operation, each pixel in the feature map is replaced
with the average (mean pooling) or maximum (max pooling) of the values
in its neighborhood. For more details on convolutional layers and their use,
see and [12, Chapter 9.

3.2.2 Convolutional Architecture

Neural networks that make use of convolutional layers are called convolu-
tional neural networks (CNNs). A common feature of CNN architecture is
the repeated use of down-sampling convolutional layers, combined with a si-
multaneous increase in number of channels. The idea here is that each layer
can assemble higher level features based on the lower level ones from the pre-
vious layer. The striding also causes the receptive field to increase from layer
to layer, allowing deeper layer to detect features much larger than kernel size.
The receptive field of a kernel is made up by all pixels in the input image
which influence a given pixel in the feature map. Sometimes fully connected
layers are placed at the end of the down-convolutional pipeline to perform
nonlinear operations on the detected features.

17
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Figure 3.3: Convolutional bottleneck architecture (schematically). Visual-
ization using [20].

Consider again the example of classifying images based on whether they
contain a cat. The first layers might detect basic features such as edges and
circles, while later layers can use this information to detect more complex
features such as a snout or tail, and finally a whole cat.

For tasks where both input and output have tensorial structure, CNNs
commonly use a bottleneck architecture, similar to an autoencoder, as visu-
alized in Figure 3.2.2. It consists of an encoding pipeline, which “featureizes”
data, a bottleneck combining the high level features in latent space, and a
decoder part that synthesizes the output using transpose convolutions or up-
convolutions (sometimes misleadingly referred to as deconvolutions). Trans-
pose convolutions are convolutions where striding is applied at the output
instead of the input. The name stems from the fact that if the weights matrix
in (3.10) defines a down-convolution, then an up-convolution is defined by
its transpose (see also [19]). It should be noted here that with this method,
kernel weights of the up-convolutions are not inferred from those in the down
convolution, but are independently learned during training.

Some architectures, such as the “U-Net” introduced by Ronneberger, Fis-
cher, and Brox in [21] also introduce direct, so-called skip connections be-
tween down-convolution and up-convolution layers on the same level. This
can help if some fine-grain structure is shared between input and output, as
is the case in predicting a flow field from geometry (at the boundaries). It
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also bears resemblance to the multigrid method from scientific computing,
as explored in [22].

3.3 Generative Adversarial Networks

As deep learning was already achieving impressive results for discriminative
problems (regression & classification), the field initially struggled to repeat
the same for generative tasks. An important step in this regard was the
introduction of the framework of adversarial networks in 2014 by Goodfellow
et al. [23]. Since then, research on GANs, both theoretical and practical, has
grown to a sizable field within machine learning, and across a wide range of
generative tasks GANs have achieved state-of-the-art results. These include
synthesis of hyperrealistic human faces [24, thispersondoesnotexist.com|,
text-to-image translation [25], image-to-image translation [26, 27] as well as
multimodal combinations of these [28], among many others.

Nevertheless, it need not be withheld that alternative models for gener-
ative tasks have also been developed and show some promise, most notably
variational autoencoders [29], flow-based models [30] and diffusion models

31].

3.3.1 Motivation and Concepts

Before a neural network can be trained, one has to lay out the “grading
scheme” that is the cost function. For some types of problems, such as
classification, the choice is typically straightforward. Take again the task of
detecting whether an image contains a cat. Given a set of labeled training
data, we penalize incorrect guesses by the network, taking into account its
level of confidence with the cross-entropy cost function. A much more difficult
task, however, is to generate realistic images of cats. The key difference is
that it is difficult to define a cost function that properly accounts for the
target distribution (i.e. what exactly does it mean for something to look like
a cat).

GANs are designed to solve this problem in an elegant way. Instead
of having to hand-craft the cost function that assesses the performance of
the generator, it becomes part of the training process. This is done by
training a second ANN, known as the discriminator, to classify images based
on whether they are from the real data set or an output of the generating
network. Generator and discriminator are trained together in an adversarial
zero sum game, where the former is trying to “fool” the latter, while the
latter is trying to expose the “forgeries” of the former.
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3.3.2 Generative Problems

The canonical generative setting in which GANs are applied is finding a
useful mapping from a latent space input z to the probability distribution
p(x) underlying the training set X. This is a purely unsupervised task.
A classical example is generating novel images of ostensibly human faces.
However, GANs can also easily be extended to work with conditional dis-
tributions p(x|c) with conditional ¢ (then also known as cGAN), which is a
semi-supervised setting. For the example of facial generation, ¢ could be as
simple as an integer value representing age, or as complex as a picture of a
face whose appearance is to be artificially aged or youthened.

Conditional generative problems fall on a spectrum. On the one side there
are settings where we are actively interested in sampling the data distribution
through the latent space, such as when building a facial generator. On the
other side, we have more translative problems, which may or may not be
strictly deterministic, but for which we are typically only interested in getting
a single, high-quality result. Examples would be image upscaling [32] or
generating a city map from satellite imagery [26]. In such cases, the latent
input is superfluous and can be omitted.

In this work, we will train a GAN to perform a mapping from images
encoding geometry and boundary conditions to images showing the resulting
flow field. While the underlying PDE is deterministic, the numerical solution
introduces stochasticity into the mapping. This effect is typically small, but
can become large especially in bifurcation settings (cf. Chapter 6). In the
initial experiments, no latent space is used, see Chapter 7 for a discussion on
this.

3.3.3 Fundamentals and Training

As described above, training a GAN can be understood as a game where the
two “players” (generator and discriminator ANN) are competing against one
another. The generator G defines a mapping from the latent space to the
space of training samples, given a conditional. The discriminator on the other
hand takes in a sample x together with the corresponding conditional, and
outputs a value corresponding to its confidence in the input being “real”,
i.e. from the training set as opposed to created from the generator. Fig-
ure 3.3.2 illustrates the flow of information through the combined network.
Mathematically, we have

G(z,c;weg) € X (3.11a)
D(x,c;wp) €0, 1], (3.11Db)
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Figure 3.4: Chart schematically illustrating the information flow through a
conditional GAN during generator training. The dashed lines represent the
data used to train the discriminator.

where wg and wp are the trainable parameters of generator and dis-
criminator respectively. The adversarial minimax game can be cast as the

optimization problem
arg mgn max V(G, D), (3.12)

of the objective function V' given by
V(G, D) = Epx,e) [log D(x,¢)] + Epze [log (1 — D (G(z,¢)))], (3.13)

where we have used cross entropy as the measure of uncertainty. For the
generator then, the cost function is C' = V| whereas for the generator we
have C' = —V. Using these cost functions, the model can be optimized by
updating generator and discriminator in alternation. For such an algorithm,
it was shown in the original paper [23] that given enough model capacity
and training, G will eventually learn to perfectly mimic the underlying data
distribution, i.e

p(G(z,¢)[c) = p(x[c). (3.14)
At that point, an optimal discriminator will reach maximum uncertainty, i.e.
D(x,c¢) = 0.5. This corresponds to a global optimum of (3.12), and a Nash
equilibrium of the two-player game.
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3.3.4 GAN Architectures & Challenges

While GANs are conceptually compelling, they have proven to be notoriously
unstable during training. The learning progress of generator and discrimi-
nator has to be delicately balanced in order to avoid one of the networks
dominating the other, which can lead to very slow convergence overall. An-
other common undesirable effect is known as mode collapse, a phenomenon
where the generator becomes stuck in a state of producing only a very narrow
range of outputs [33].

In particular, there were initial difficulties making the GAN concept work
with convolutional architectures. One of the earliest successful attempts at
doing so used a very specific family of architectures, named by the authors
deep convolutional GAN (DCGAN) [34]. After extensive exploration, the
authors identified three architecture features that helped improve training
stability, which have been influential in the further development of GAN
architectures:

e Replacing all pooling operations with convolution strides.
e Removing fully connected layers.
e Batch normalization.

Moreover, the authors found the ReLLU activation function to yield the best
results in the hidden layers of the generator, while for the discriminator leaky
ReLU was found to work best.

Some further suggestions for improvement were presented in [35], includ-
ing modifications to the cost functions and methods to help the discriminator
identify unwanted modal collapse.

A more principled approach of modifying the objective function was taken
by Arjovsky et al. in [36]. The authors analyzed sources of instability, as
well as possible remedies from a theoretical perspective. Based on this work,
the same authors later proposed a new framework for adversarial learning,
the so-named Wasserstein GAN or WGAN [37]. To understand it, we must
revisit the objective function of eq. (3.13). It turns out that for an optimal
discriminator D*, the value function becomes (except for a constant factor)
the Jensen—Shannon divergence (JSD) between distribution of training and
that of generated data:

V(G,D*) = —log4 + 2 - JSD(pdata, Pg), (3.15)

where p, is the distribution defined by G(z,c) if (z,c) ~ p(z,c). Therefore
we may say that the discriminator is trained to estimate the Jensen—Shannon
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divergence between the real and generated data distributions, which is then
used as “feedback” to the generator. As the name suggests, in the Wasser-
stein GAN, JSD is replaced with the Wasserstein metric, also known as the
earth mover’s distance. This metric, the authors illustrate, has more favor-
able properties for the application, in particular it gives a useful measure even
when pgata and p, have disjoint supports (as is in practice usually the case
during early training). This, the authors note, should among other things
help prevent mode collapse. The objective is then given by

arg mC%n max W(G, D), (3.16a)
W(G7 D) = Ep(x7c) [D<X7 C)] - ]Ep(z,c) [D (G(Z7 C))] ) (316b)

which as before can be used as a cost function for training generator and
discriminator (in the WGAN context more aptly called “critic”).

Other important work has focused on analyzing and improving the opti-
mization process [38, 39, 33].

An important family of GAN architectures are the so-named StyleGANs
[40, 41, 24]. Whereas normally, the latent space is supplied to the generator
as the input layer, which is then transformed to an image from the desired
space of training data through learned operations. Instead, with StyleGAN
the latent space is first mapped through a fully connected ANN to an inter-
mediate “style” space, and the input layer is a learned constant set of feature
maps. This input is then iteratively upsampled like in a normal convolutional
generator, however at each step an operation called adaptive instance nor-
malization (AdalN) is applied. This aligns mean and variance of the input
feature maps with those from the current style space. This method shows
truly remarkable results, and can be used not just for generating images from
latent space but also for interpolating realistically between them.
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Chapter 4

Learning Fluid Dynamics

4.1 Machine Learning for Physical Modeling

The use of neural networks in finding approximate solutions to problems with
an underlying partial differential equation (PDE) is an emerging field at the
intersection of machine learning and scientific computing. Research activity
in this area can be roughly split into the following three groups, although
hybrids and variations exist.

The first group encompasses techniques that use machine learning to im-
prove upon classical numerical methods. Published work on this includes
areas such as RNN assisted solution upscaling for multigrid schemes [45],
learning based preconditioning for domain decomposition methods [46] and
use of neural networks for obtaining closure terms in turbulence modeling
[47].

The second contains methods that seek to approximate the PDE solution
directly using the parametrized function space given by the neural network,
as already proposed by Lagaris et al. in 1997 [42]. In other words, the ANN
itself serves as the discretization, in the sense of reducing the original problem
to finite dimensionality. Perhaps the purest implementation of this approach
are the physics-informed neural networks (PINNs) as introduced by Raissi
et al [43, 44]. In this framework, the solution u(x) is directly approximated
by the neural network N (z;w).

The method presented here belongs to a third group of using neural net-
works as reduced order surrogate models. Instead of training a network to
solve a specific problem as in the previous group, here we train a network in
order to obtain a model which can then be applied to solve a whole range of
problems (e.g. with different geometries etc.). These neural network models
operate on existing discretizations. They are typically trained to map from
a raster image of the domain, together with information about boundary /
initial conditions and possibly other parameters, onto one or multiple images
showing the predicted solution fields. Due to the regular grid-like structure
of inputs and outputs, these methods typically rely on a convolutional ar-
chitecture. Examples include using neural networks to build reduced models
for steady state flow [48, 49].

As is always the case with reduced order models, we want to sacrifice
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some generality of our model for easier evaluation. The motivation for using
ANNSs in constructing the surrogate model is to be able to infer the essen-
tial relations in the examined problem range directly from data. To draw
an analogy, the learning process could be akin to how humans can build
up a physical intuition without ever studying physics. It could also reduce
the need for hand-crafted domain specific reduced order models built using
assumptions based on expert knowledge, which are commonplace in some
domains.

Increased computational efficiency is always desirable, but for many ap-
plications it is crucial. For instance it can help with design space exploration,
where it can enable scanning a large number of configurations for optimality,
or even providing design feedback to an engineer in close to real-time.

4.2 Use of GANs in Physical Modeling

Since the GAN framework was first proposed in 2014 [23], numerous studies
have looked at applying it to modeling problems. Most of these fall into the
third group as described above, i.e. they are surrogate models operating on
existing discretizations.

One of the earliest attempts was by Farimani et al. in 2017 [50]. The
authors trained GANs to solve 2D boundary value problems, specifically
Laplace’s equation and the incompressible steady-state Navier-Stokes equa-
tions, see eq. (2.8). The generator was tasked with mapping from an image
encoding the domain and boundary conditions, which is supplied as condi-
tional input, to an output image showing the respective solution field. The
generator loss function was a combination of the discriminator loss and an
L1 loss with respect to the ground truth. For the case of Navier-Stokes, there
are three output channels, one for each of the variables (velocity components
u,v and pressure p). The discriminator operates not on the whole image,
but on smaller patches (patchGAN, see section 5.2). The authors were able
to obtain high accuracy on a test set with a relative mean absolute error
(MAE) of less than 1%, and showed that the neural network model outper-
forms state-of-the-art finite difference solvers in terms of prediction speed
by an order of magnitude. The authors did not investigate how much the
adversarial part of the loss function actually improved results compared to a
direct L1 ground-truth based training.

A number of studies have since applied GAN models to solve fluid prob-
lems in particular. In a 2020 paper, the authors used a GAN for predicting
time series of convective flow with energy transport in a 2D square domain
from initial and boundary conditions [51]. The method was found to provide
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fast and accurate solutions for the analyzed test cases. In another recent
publication from 2021, the authors applied a GAN setup to model stationary
flow through a more complex 3D domain of dispersed spherical obstacles,
a relevant setting for modeling certain multiphase flow [52]. The authors
found the GAN based result to outperform an older reduced order model
that was developed specifically for this application, but did not comment on
the relative computational effort.

Others have implemented GAN models for predicting stress in solids on
a 2D domain with complex geometry [53]. In their 2021 publication, the au-
thors supply separate images showing domain geometry, loads and boundary
conditions as input and extract a single output image of the domain showing
von Mises stress. The generator uses a regular bottleneck architecture. The
authors found the GAN to consistently outperform a previous purpose built
model using a regular CNN architecture.

While all the work mentioned so far relies on purely data-driven ap-
proaches, other authors have investigated the effects of incorporating physics
constraints into the training process. In one 2019 publication, a GAN was
trained to predict how a given flow field around a cylinder would have evolved
after a certain time step into the future [54]. The authors compared four vari-
ants: GANs as well as regular CNNs, one of each trained with and without
a physics based loss contribution (conservation of mass and momentum).
While all versions offered some success for prediction in unseen flow regimes,
the GAN trained without physical loss was found most successful at predict-
ing recursively multiple time steps into the future.

There have already been more application-related studies published using
GANSs for fluid modeling as well. An architecture firm used a GAN imple-
mentation (pix2pix, see Section 5.2) to predict wind speeds in urban settings
based on a building height map, as published in a conference paper in 2020
[55]. Again they trained the generator both on the discriminator and on the
ground truth loss. Generalization performance was mixed, but the authors
did not benchmark it against a comparable reduced order model.
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Chapter 5

Methodology

As laid out in the introduction, the goal of this project is to investigate
the potential for training GANs as reduced order models for predicting fluid
flow. The networks are trained to map from an image of geometry (and
perhaps boundary conditions etc.) to a flow field image. The training data
is generated using numerical simulations. In this chapter, we will briefly
describe the methodology for generating the training data, as well give an
introduction to the neural network architecture used as a starting point for
the project. It should be noted that the methodology will likely be subject
to change as the research progresses.

5.1 Flowfield Generation

To solve the Navier-Stokes equations presented in Chapter 2, we will use the
popular free open source toolbox OpenFOAM [56]. It includes a vast range
of tools and solvers for continuum mechanics problems, with a clear focus on
CFD. Most solvers, implement the so-called finite volume method (FVM) of
discretizing PDEs. This method is often favored for the solution of PDEs
with underlying conservation laws, as it is inherently conservative (i.e. the
PDEs conservation properties are upheld by the numerical scheme).

5.1.1 Finite Volume Method

At its core, FVM is a relatively straightforward solution framework. The
domain is discretized into small, typically polyhedral, cells or control volumes
(ergo the name), over which the PDE is integrated. The quantities to solve
for are the averages of the field quantities in each cell. Divergence terms in
the volume integral are transformed to flux terms integrated across the cell
boundaries using Gauss’s theorem. These fluxes are central to the method,
and they are evaluated in a zero-sum way, i.e. the same flux leaving one cell
through its boundary is the same as the one entering its neighbor. This is
the reason for the conservative property.

The challenge that remains is to formulate an expression describing the
fluxes through the boundary between two neighboring cells as a function of
the average field quantities inside those cells. One way to do this is to treat it
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similar to a finite difference problem with the average values taken as defined
at the centers of each cell, but other approaches have also been developed,
such as Godunov’s scheme [57]. For a more detailed treatise of the finite
volume method, see [58].

5.1.2 Computational Grids

Besides the conservation property, another major reason for the popularity of
FVM for practical use is the ease with which it can incorporate almost arbi-
trary discretization meshes. For the initial testing, we used the OpenFOAM
utility blockMesh [59] to generate a suitable computational mesh. The tool
can create parametric meshes including grading and curved edges.

After a solution has been obtained on the computational mesh, it is in-
terpolated to an image, i.e. a regular grid. For that purpose, the sampling
utility of OpenFOAM is used [60], specifically, we choose the ”cellPoint”
sampling method. Here, each cell is decomposed into tetrahedrons, whose
vertices coincide with the cell center as well as three cell vertices. Then, each
vertex is assigned a value, where that of the center vertex is given by the cell’s
value, and the others are calculated from the neighboring cell values. Now
the value at any point in the volume can be calculated by linear interpolation
on the respective tetrahedron.

5.1.3 Solver

The solver used for generating the training data is called simpleFOAM [61].
As per its name, it implements a fractional step method known as “Semi-
Implicit Method for Pressure-Linked Equations” (SIMPLE), first proposed
in [62]. It is an iterative algorithm for solving the incompressible steady
state Navier-Stokes equations. Fractional step refers to the fact that the
two field quantities u and p are solved for in alternation. We are using the
RANS-equations with the k- closure model, as discussed in Section 2.3.
Although from an analytical perspective, the steady state problem is quite
different from the transient one, the numerical treatment is often not too
dissimilar. The iterative solving bears many similarities to time-stepping in
a transient problem. For steady-state solving, implicit update methods are
typically used, as they allow for larger step sizes without loosing stability.
In every iteration of the SIMPLE algorithm, first the momentum equation is
solved using the pressure field from the previous iteration, in order to obtain
an intermediate velocity field. Subsequently, correction steps are applied to
both pressure and velocity, in order to make the velocity field conform to the
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continuity equation. For more details, refer to [9, section 7.2] or the source
code [61].

5.2 ML Implementation

The artificial neural network models will be implemented using the free open
source machine learning library TensorFlow [63] in version 2.8. It offers
efficient low level tensor computation, differentiable computing and paral-
lelization capabilities.

As template and starting point for building a reduce order fluid GAN
model, we will use the image-to-image translation framework pix2pix first
presented in [26]. This GAN model was developed as a general purpose tool,
and has been successfully applied across a large number of tasks. These
include semantic segmentation, image inpainting, conversion of sketches or
schematics to photos, greyscale to color images, aerial photographs to street
maps, and day to night scenes, among many others. The code was made
freely available online, and has since enjoyed great popularity in the ML
community. The following will give an overview of the most important ar-
chitectural features and characteristics.

An noteworthy property of pix2pix is that the model is not a “pure”
GAN. This is because the generator is trained the discriminator feedback as
well as the ground truth image. Thus the total objective function is

V(G, D) = Eypxe) | log D(x, ) +log (1 = D (G(c)) + A|Gle) = xI|s |, (5.1)

where c is the input image, and A € R, is a hyperparameter weighing the L1-
distance to ground truth x. The motivation given by the authors for including
the ground loss term is that it has been shown previously that training based
on ground loss alone can already sufficiently capture the deterministic, large-
scale features of many image translation tasks. The adversarial training on
the other hand can help the generator fill in high-fidelity detail and produce
realistic results.

Another important characteristics of pix2pix is that the authors com-
pletely omitted a latent space input, as it did not show any effects in their
initial testing. Some stochasticity is introduced through a method known as
dropout!, which they apply not just during training but also during testing,
however as the authors point out, the effect is small. The generator uses a
U-Net architecture, with strided convolutions, batch norm and ReLU units

'With dropout, a certain random percentage of neuron are removed from the network
at each evaluation, see [12, section 7.12] for more details.
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(leaky ReLU in the decoder), following some of the recommendations from
earlier papers discussed in Section 3.3.4.

Moreover, the authors used a specific type of discriminator architecture
which they term PatchGAN. Instead of discriminating an image as a whole, it
essentially classifies individual patches of the image on the real-fake spectrum.
The patches are overlapping, and their size can be adjusted by modifying the
architecture. As the authors note, “such a discriminator effectively models
the image as a Markov random field, assuming independence between pixels
separated by more than a patch diameter”. The operation performed is the
exact same for all patches, and so the PatchGAN can be understood as a
type of texture or style loss.
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Chapter 6

Initial Experiments

6.1 Training Data

As our initial toy problem we use a 2D channel flow through a sudden ex-
pansion. A sketch of the domain is shown in 6.1. Within a range of Reynolds
numbers, it gives rise to a bifurcation. This behavior was documented ex-
perimentally in [64], and it is reproduced in the simulation as shown below.
Specifically, as the incoming flow leaves the small inlet channel, it will attach
to the upper or lower wall of the large channel. Doing that, it will choose
the wall that is closer to the inlet. If the inlet is at the center of the main
channel, the outcome is essentially random.
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Figure 6.1: Ilustration of the domain showing all relevant geometrical pa-
rameters. The different boundary types are color coded as inlet (blue), outlet
(red) and wall (black).

The reason for choosing this particular configuration is that it exhibits
interesting behavior while being very simple geometrically. In particular, the
bifurcation might be instructive for understanding the behavior of the GAN
model and could help illuminate the differences between generators trained
on discriminative vs. L1 losses. Particularly interesting in this regard is the
situation where the inlet flow is very close to the center of the large channel.
By examining how the generator deals with the bifurcation, we might be able
to infer something about how the reduced order model handles uncertainty
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Figure 6.2: Full computational mesh for the case of rp = 0.2, rg = 0.6.

more generally. An early hypothesis, for instance, was that a generator
trained on an L1 loss might produce something like a superposition of states
if the outcome is uncertain, whereas a GAN trained generator would perhaps
be more decisive and choose a particular state. We will revisit this hypothesis
at the end of the chapter.

The domain is parametrized by just two ratios, the ratio between small
and large channel width as well as the ratio between the lower and upper
shoulder lengths of the inlet:

d Sy

- = = 6.1
D Da s 52 ( )

Together with the fixed parameters D = 1m, L = 3m, [ = 0.5m, these
fully constrain the geometry. For the velocity we impose Dirichlet boundary
conditions at the inlet (u = Ue,) and walls (u = 0), as well as a homogeneous
Neumann condition at the outlet (0,u = 0). As inlet velocity we choose
U = 10 ms~!. The kinematic viscosity is ¥ = 107° m?s~!. If take U as the
characteristic velocity and D as the characteristic length, then the Reynolds
number evaluates to Re = 10°.

Regardless of parameter choice, the domain is discretized into a compu-
tational mesh consisting of 19200 rectangles. The grading functionality of
blockMesh was used to refine the mesh near the channel walls, since that is
where the largest gradients are generally expected. Moreover, it was ensured
that changes in cell geometry are gradual, which almost fully constrains the
rest of the mesh construction. An example of a full mesh shown in Figure
6.2.

The training data were created in two parameter sweeps. The first in-
cludes all combinations of

rp € {0.1,0.2,0.3} with s € {0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1}
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Figure 6.3: Random selection of flow fields showing absolute value of velocity.
Regions outside the domain are shown as zero.

as well as the inverse of the latter, for a total of 51 combinations. The
second, a more narrow sweep around the center position, consists of all 60
combinations of

rp € {0.12,0.14,0.16,0.18}  with
rs € {0.7,0.75,0.8,0.84,0.88,0.92,0.96, 1, 1.04, 1.08,1.12,1.16, 1.2, 1.25, 1.3}.

In total thus there are 111 configurations in the initial training set. Each
one was solved to convergence using the methods described in Section 5.1.
Subsequently, the three resulting fields u,, u, and p were interpolated to a
regular 256 by 83 grid as described in the previous chapter (Section 5.1.2), to
be used as input for a CNN. For points outside of the domain, all values were
set to zero. The geometry was encoded similarly in binary, with each point
being assigned a one if it lays inside the domain, and zero otherwise. To give
an impression, Figure 6.3 shows a random selection of flow images showing
the magnitude of the velocity. In order to remove potential bias originating
in the numerical algorithm, we additionally add a mirrored version (along
the x-axis) of each data sample to the training set.

6.2 Training Procedure

As laid out in Section 5.2, we are using the pix2pix architecture as a starting
point for building the reduced order fluid model. This network is designed
for image-to-image translation, and therefore uses three input and output
channels (rgb). Our input data is only a single channel image for the binary
geometry encoding. The output uses three channels (u,,u,,p), however while
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the rgb data is from the bounded interval [0, 1], this is not the case for our
data. Therefore, we had to change the activation function of the output
layer from sigmoid to linear. The boundary conditions are kept fixed for
these initial experiments, so we do provide any additional information on
that to the generator. As mentioned previously, the generator uses a U-
Net architecture, while the discriminator is of the PatchGAN type. Both
are convolutional architectures, which use a 4 x 4 kernel. The total number
of trainable parameters is 48 million for the generator, and 2.8 million for
the discriminator. See appendix Figure A.1 for a detailed visualization of
the architectures. Here the output of PatchGAN is size 14 x 30, each pixel
having a receptive field of 70 x 70 (see [65] for calculation). We also did some
initial testing using a global discriminator, but did not find it to improve
results.

In a preprocessing step, we pad the input arrays with zeros such that both
dimensions are powers of two, giving final dimensions of 256 x 128. This is
necessary for the 1:1 layer correspondence required for the skip connections
in the U-Net architecture. In order to increase the size of the training set
and impart some certain level of invariance onto the GAN w.r.t. to the
location of the data in the image, we added every image twice to the dataset,
once padding at the top and once at the bottom. A more optimal method
of data augmentation by randomly shifting data during training is yet to be
explored. The dataset then consists of a total of 444 samples, each containing
four 256 x 128 images. It was split up into training and test set according to
the typical 80% — 20% ratio.

All weights are initialized on a normal distribution with zero mean. The
standard distribution for the generator’s weights was 0.1, while for the dis-
criminator it was 0.02. Training is done one a single sample basis (SGD)
using the gradient based Adam optimizer [66]. The learning parameters are
the same for both generator and discriminator. We tested different combina-
tions of cost functions for the generator (adversarial, L1 and others), but all
results presented here were obtained using only the adversarial loss. At each
step, a random sample is chosen and its geometry is fed as input into the
generator. The generator output is then multiplied by the geometry array,
i.e. anything outside the domain is not penalized. Subsequently, the dis-
criminator is called twice, once on the real and once on the generated data.
The geometry is provided as conditional both times. Then, both generator
and discriminator can be updated based on the cost function described in
Section 3.3.3. The cross entropy of the patchGAN output is taken w.r.t. an
array of ones or zeros for the real and generated data respectively.

Training took approx. 45 seconds per 1000 steps on a NVIDIA Tesla
P100 GPU. It was done using the cloud computing service Google Colab.
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Figure 6.4: Sample output of trained generator. Shown are the velocity
(magnitude) and pressure field, as well as their ground truth for comparison.

6.3 Initial Results

In this presentation of the initial results, we will focus on qualitative assess-
ment. A more complete analysis including quantitative measures will part of
the final thesis.

After training for around 20000 steps, the generator was usually able
to produce realistic looking flow fields on many of the unseen inputs from
the test set. Appendix B includes a figure visualizing training progression
by showing the output after various numbers of steps. Figure 6.3 shows
a randomly selected sample generated by the fully trained generator, and
the simulation result for comparison. More randomly selected examples are
shown in Appendix C.

At various points during the experiments, we saw the discriminator “win-
ning out”, i.e. reliably distinguishing generated from real samples with high
accuracy (cf. Appendix B). If this state is sustained, it means that that the
theoretical optimum state is not reached (cf. Section 3.3.3). An overpow-
ering discriminator also leads to vanishing gradients on the generator which
makes further training progress difficult (cf. [37]).

Our hypothesis that a generator trained purely on L1 loss would generate
superpositions or averages of equally likely results (i.e. when the inflow
channel is centered) were not confirmed by initial testing. Still, we expect
differences in how adversarial generators handle uncertainty compared to
those trained exclusively on L1 loss. This requires further investigation, as
discussed in the last chapter.

The generator often successfully predicts the large scale structure of low
fields on the training set. When it comes to fine-grain results however, tiling
artifacts are clearly visible in the generated images even after training for
tens of thousands of steps. These were also observed in the original pix2pix
publication [26], however for a different PatchGAN architecture.

Beyond that, we can identify a few large scale failure modes in the data
that are worth discussing. The first revolves around the bifurcation. For
rs ~ 1, the side at which the flow attaches is essentially random (ensured
also by the fact that the dataset includes mirrored versions of all simulated

35



real speed generated speed deviation

real speed generated speed deviation

“:Iﬁ_

6 8 10 -10 -5 0 5 10

Figure 6.5: Examples representative of common failure modes. Shown are
ground truth and generated magnitude velocity field on samples from the test
set, as well as the difference between both. Top image shows two forms of
mode collapse, failure to correctly take into account the large inflow diameter
as well as its position. Lower image shows a generated discontinuity.

samples). Therefore, obviously the generator is expected to make the wrong
choice about half of the time, which does not constitute a flaw in the model.
However, we have often observed a form of mode collapse, where the genera-
tor develops a strong bias towards one of the sides, and incorrectly attaches
the flow to that side even when it should be clearly the opposite based on
the training. This behavior warrants further study.

Another form of mode collapse that was identified appears for large inflow
widths rp. The generator appears to have difficulties correctly predicting
these geometries, and will often simply treat them as if the inflow was thinner.
Initial attempts at correcting this by artificially increasing the proportion of
samples with large inlet diameters in the training set were not successful.
Further investigation is necessary. An example from the test set showing
both forms of mode collapse discussed so far is given in Figure 6.3. Perhaps
the most extreme failure mode observed is also shown in the figure, where
the network generator predicts a discontinuous flow.

As stated at the beginning of the chapter, in all training samples the do-
main sits either at the top or at the bottom of the images used for training.
In order to test the generalization power of the trained generator, we apply
it to conditionals showing a domain that is shifted towards the center of the
image. Translational invariance is a core principle of physics, and is also
reflected in the equations underlying the simulation (given that no inhomo-
geneous volumetric force term is present). Therefore this is a good litmus
test to probe how close to representations learned by the generator are to the
underlying physical laws. Figure 6.3 shows two representative examples of a
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Figure 6.6: Two representative examples of generator failing to generalize to
a vertically shifted domain. Shown are geometry inputs (top) and magnitude
velocity fields generated (bottom). Results are intended to be qualitative and
thus a color scale is omitted.

shifted domain and the resulting generated velocity field. As is clearly visible,
the generator fails to generalize to this setting. Further work is required to
remedy this and bring the generator closer to physical representations that
generalize well.
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Chapter 7

Project Outlook & Scope

This final chapter will lay out the most important research questions for the
remainder of the project, insofar as they are already evident, and describe a
strategy for how to approach them. In this regard, the focus and scope of the
work will also be discussed. As shown in the previous Chapter, the initial
experiments showed a proof of concept, but they also left many important
questions.

The main goal of the project is to investigate the use of GANs as re-
duced order fluid models. While the methods will be mostly empirical, the
clear intention is to focus on understanding the strengths and weaknesses of
the GAN approach for this purpose, assessing potential and limitations, as
well as highlighting pathways and methods for further improvement. In this
sense, optimizing the methodology to obtain better results is not an end, but
a means to further understanding. Part of this analysis will be comparing
the GAN methods to other techniques for reduced order modeling. In par-
ticular, we want to compare adversarially trained generators to those trained
inclusively or exclusively on ground-truth loss (L1 or others). We will at-
tempt to use the bifurcation setting to probe how these generators deal with
uncertainty.

A few obvious shortcomings of the initial methodology were already iden-
tified in the previous chapter. In order to impart translational invariance and
improve generalization, we will augment the training dataset by randomly
shifting the domain vertically inside the image. We will also investigate the
causes of tiling artifacts and possible remedies. Moreover, we will search for
modifications to allow for arbitrary domain sizes and aspect ratios (currently
limited to powers of two due to the U-Net architecture).

One interesting and important research objective is probing to what de-
gree we can discern “physical knownledge” in the generator, e.g. whether we
are able to recover properties of the underlying equations. A related topic of
study is to investigate the effects of adding physics-based cost functions on
training and results.

An important step towards realistic application will be the incorporation
of boundary conditions into the conditional input. This will potentially allow
the generator to learn representations that capture more meaningful aspects
of the underlying laws. For training such a generator we will be able to
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make use of more general data augmentation such as rotation and mirroring.
Moreover, we can also vary boundary conditions or other parameters in the
simulation to produce more varied datasets. However, we expect training on
such a much more general dataset to be very challenging and the outcome is
unclear.

In order to potentially improve convergence and reduce modal collapse,
we will further study recent publications on GANs addressing these, some of
which were discussed in Section 3.3.4 (e.g. Wasserstein GAN). If we can iden-
tify potential improvements to the pix2pix architecture and training process,
we will implement and test them.

After establishing a methodology that produces satisfactory results on
the initial toy problem, we will further test it by applying it to more complex
geometry, e.g. with an obstacle inside the channel similar to [49].

In the original GAN framework, a latent space input is used to produce
variability in the model that can captures the full range of the probability
density. In the pix2pix model this is no longer present, with the authors not-
ing the network simply learned to ignore it. We will investigate whether and
how it can make sense to include variability into the network (latent space,
dropout etc.) and whether it could be used for the purpose of uncertainty
qualification.

Lastly, as we are concerned with reduced order models, computational
efficiency is always a major factor. In this regard, we are interested in com-
paring the computational cost of our GAN models to that of the numerical
simulation and other reduced order models. We may also test how much
the size of generator and discriminator can be reduced to still produce useful
results.
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Appendix A

Model Achitecture

Generator

geometry Pty s

“w

) & & ) S8 SN S
Zchannols Hchannels < Hchannels & Hchannels & Hchannels <& Hchannels <& #channels &
leaky ReLU  batch normalization dropout batch normalization linear batch normalization with bias
leaky ReLU batch normalization ReLU leaky ReLU logistic activation
ReLU
Discriminator

output

patches

.
input
geometry, p. iy, u,

discriminated

Figure A.1: Architecture of pix2pix GAN used for initial experiments. Boxes
indicate layers of the generator and discriminator networks, and arrows sym-

bolize connections between them.
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Appendix B

Training Progression
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Figure B.1: Training progression visualized by showing output on a test set
sample after various numbers of training steps. Column one, two and three
show the simulated and generated horizontal velocity component as well as
their difference, respectively. The last two columns show the PatchGAN
output on the ground truth and generated samples.
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Appendix C

Test Set Samples
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Figure C.1: Representative sample results on the test set after 25000 training
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fields (by magnitude) respectively. Columns three and four do the same for
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