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Abstract

Counterparty Credit Risk (CCR) refers to the risk that a counterparty involved in a financial contract
will default before the final settlement of the contract, resulting in unrealized financial gains. One
risk measure for managing counterparty credit risk is the Potential Future Exposure (PFE). The PFE
is defined as the 97.5%-quantile of the exposure distribution. The traditional numerical method for
computing the PFE is the Monte Carlo simulation method.

[1] introduced a semi-analytical method based on Fourier-cosine series expansion, shown to produce PFE
estimates with at least five times the accuracy of the Monte Carlo simulation in one-tenth of the CPU time,
when the trades in the portfolio are driven by 3 risk factors. It was an extention of the COS method [4]
initially developed for option pricing. In this thesis, we refer to the method in [1] as the COS-PFE method.

This thesis focuses on utilizing the COS-PFE method to reduce the variance of the Monte Carlo
simulation. More specifically, our contribution to the existing literature has three folds:

• We included security financed trades (SFTs), which are trades collateralized by bonds usually, in
the COS-PFE framework.

• We developed a new Control Variate method that uses the COS-PFE result as the control variate in
the Monte Carlo simulation.

• We developed two new Importance Sampling methods, of which the auxiliary density function
for importance sampling is found based on the COS-PFE result.

The control variate method uses the COS method to retrieve the CDF of the portfolio’s exposure from
which an auxiliary variable, used as the control variate in the Monte Carlo simulation, are sampled
using inverse sampling. The first adaptive importance sampling method we developed shifts the joint
probability distribution of the driving risk factors, such that more samples around our target quantile
are generated. The second adaptive importance sampling algorithm uses the cross-entropy method. To
find the probability distribution that minimizes the Kullbeck-Leibler divergence between itself and the
zero-variance estimator. The initial guess of the PFE value needed in this procedure is generated by
the COS-PFE method. Furthermore, we further improve the latter method by a dimension-reduction
approximation in the exact COS-PFE method and by splitting the portfolio into sub-portfolios, each
involving fewer risk factors.

These methods are applied to portfolios containing IR and FX derivatives, both with and with-
out collateral in the form of Security Financed Trades. The portfolio’s value depends on the domestic
short rate, foreign short rate and the exchange rate of the currency pair. The short rates are modelled
under the one-factor Hull-White model, the exchange rate follows the geometric Brownian Motion
model. The collateral value depends on the domestic short rate and the Z-spread, the latter modelled
using geometric Brownian Motion.

The portfolios on which these methods are tested contain 100, 1000 and 10000 derivatives. The
control variate method was tested on the test portfolio with 100 derivatives without collateral. The
tests concluded that the variance of the PFE values obtained from the control variate method was
approximately the same as the variance found using Monte Carlo. For the expected exposure, the
control variate method demonstrated the ability to produce a variance reduction given a high enough
correlation between the Mark-to-Market value of the portfolio and the control variate.

The adaptive importance sampling method that finds an optimal shift in the driving risk factors’
joint distribution successfully reduced the variance of the PFE estimates. Testing on the portfolio with
100 derivatives and collateral found that the variance of the PFE estimates produced by this algorithm
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was, on average, 3.5 times lower than the variance found using the straight forward Monte Carlo
simulation. However, the algorithm required between 96 and 1773 seconds to produce a PFE estimate.

The adaptive importance sampling method using the cross-entropy approach was tested on all three
testing portfolios, both with and without collateral. For portfolios containing 100, 1000 and 10000
derivatives without collateral, the variance of the PFE estimates were on average 35.4, 38.6 and 37.2
times smaller compared to straight forward Monte Carlo simulation, respectively. For the cases with
collaterals, the cross-entropy method produced PFE estimates with a variance, on average, 36.3 times
lower than the straight forward Monte Carlo simulation. When we switched on the dimension-reduction
approximation in the COS-PFE calculations, the impressive performance remains: the variance reduction
ratios is about 32.9. Then we further split the portfolio into sub-portfolios, to mimic the real-world
situation whereby the exact COS-PFE calculation is suitable for sub-portfolios involving a low number
of risk factors. Tests on all three testing portfolios with collateral showed that the variances were on
average 31.1, 32.4 and 26.6 times smaller than straight forward Monte Carlo simulation, which is still
significant, while the CPU time is greatly reduced. Worth noting that, the variance reduction ratios from
the numerical tests match very well our theoretical results on the variance reduction ratio. Translating
the significantly reduced variance into accuracy and CPU time. The cross-entropy adaptive importance
sampling method combined with COS-PFE produced PFE estimates with much higher accuracy than
straight forward Monte Carlo simulation in equal time. We conclude that this method produces more
accurate PFE estimations with a significant lower variance than straight forward Monte Carlo simulation
within the same CPU time.
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1
Introduction

Counterparty Credit Risk (CCR) refers to the risk that a counterparty involved in a financial contract
will default before the final settlement of the contract, resulting in unrealized financial gains. A prime
example of poorly managed CCR is the global financial crisis of 2008. During this crisis, the opacity of
the over-the-counter (OTC) derivative market, combined with inadequate regulation, led to significant
risk mismanagement. The collapse of major institutions like Lehman Brothers and AIG, which were
deeply interconnected with other financial entities through their role in the OTC derivative market,
triggered widespread counterparty defaults and overall panic in the financial system. This global crisis
spurred significant regulatory developments, such as the Dodd-Frank Wall Street Reform and Consumer
Protection Act, and Basel III.

One risk measure for managing counterparty credit risk is the Potential Future Exposure (PFE).
The PFE is defined as the 97.5%-quantile of the exposure distribution. Currently, the PFE is evaluated
using Monte Carlo simulation of the portfolio’s underlying risk factors. The Mark-to-Market values
driven by different simulated scenarios of the risk factors are calculated. These Mark-to-Market values
are then used to calculate exposures, from which the exposure distribution is constructed, allowing for
the approximation of the PFE. An illustration of this is given in 1.1.

Figure 1.1: An example of the approximation of the PFE [2].

With the continuous growth of the total OTC market, effective regulation and risk management are
crucial. Interest rate and foreign exchange derivatives constitute the majority of the OTC market. To
illustrate, in the first half of 2023, the total notional amounts of interest rate and foreign exchange
derivatives reached $694 trillion, where the total OTC market reached $ 715 trillion [3]. Recent research
demonstrates that Fourier expansions can be employed to quickly and precisely calculate the PFE of an
uncollateralized portfolio comprising interest rate and FX derivatives [1].

3



4

In this thesis, the method found in [1] is combined with the Monte Carlo simulation to reduce
the variance of the PFE estimation. The portfolios that will be used for testing contain 100, 1000 and
10000 derivatives. Specifically, these portfolios consist of Forward Rate Agreements, Interest Rate Swaps,
FX Forward Contracts and Cross-Currency Swaps. The portfolios are evaluated both with and without
collateral. Note, in this thesis the we will focus on non-CSA trades. By "collateralized portfolio" we refer
to Security Financed Trades. CSA trades will addressed in subsequent research. a



2
Preliminaries

Major events in the financial sector, such as the global financial crisis, have significantly increased
the importance of CCR management. This section provides a literature review, beginning with the
importance of CCR management for interest rate derivatives and foreign exchange derivatives, followed
by new research in the field of CCR management. This is followed by a review of the variance reduction
techniques discussed in this thesis, specifically the control variate method, importance sampling and
adaptive importance sampling. The review is concluded with an examination of the applications of
importance sampling in finance.

Currently, the Potential Future Exposure is calculated using Monte Carlo simulations of the port-
folio’s underlying risk factors. From these simulations, an exposure distribution can be formulated
from which the Potential Future Exposure can be deduced. Recent research by Fang, Shen and Mast [1]
demonstrated the application of the COS method [4] to portfolios containing interest rate derivatives and
foreign exchange derivatives with varying amounts of derivatives, as well as general linear derivatives,
to efficiently calculate the PFE of the portfolio. The applicability of this method to portfolios containing
these type of derivatives is highly useful, as interest rate and foreign exchange derivatives constitute
the vast majority of derivatives traded globally. To illustrate, in the last quarter of 2022, the European
OTC derivative market’s total notional amount was composed of 78% interest rate derivatives and 14%
foreign exchange derivatives [5]. The remaining portion consisted of commodities, equity and credit
derivatives. The composition of OTC derivatives in the global market can be seen in Figure 2.1.

Figure 2.1: Outstanding notional (in US$ trillions) of various OTC derivatives in the global market [6].
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Thus, as the vast majority of portfolios consist of interest rate derivatives and foreign exchange deriva-
tives, the method described in [1] can be utilized to rapidly calculate the PFE of most portfolios in
practice. The goal of this thesis is to build on this work and integrate it into the original Monte Carlo
simulations as tool to reduce it’s variance in PFE approximations, as currently no literature can be found
on this topic. First, the control variate method will be investigated as a variance reduction technique.
Afterwards, the importance sampling method, specifically adaptive importance sampling (AIS), will be
discussed.

There is vast literature to be found regarding the control variate method. While the greater part
of the literature focuses on the calculation of the expectation, for example [7], a handful focus on quantile
estimation. In particular [8], [9] provide an in-depth tutorial on the application of quantile estimation. In
literature the control variate has not been found to be applied to Potential Future Exposure calculations.
However, in [10] and [11] the control variate method is applied to a Value-at-Risk calculation using a
delta-gamma approximation of the portfolio’s loss. In the latter, the variance reductions of the control
variate method were compared with those of importance sampling and importance sampling using
stratification. It was concluded that, although the control variate method reduces the variance compared
to the original Monte Carlo, importance sampling and importance sampling with stratification perform
better.

The subject of importance sampling was first introduced in [12] where it was used to estimate the
probability of nuclear particles penetrating shields. For quantile estimations, importance sampling can
be a highly effective technique for reducing variance. In [9] and [7] a detailed description is provided how
this is done. Furthermore, [13] and [14] delve deeper into the topic of importance sampling, exploring its
variance reduction potential and the adaptive importance sampling method. This method is recursive,
utilizing an algorithm to find the most optimal sampler. An early form of adaptive importance sampling
is found in [15] where multiple importance sampling (MIS) is introduced. This method combines
samples from different distributions to reduce variance. This work highlighted the benefits of optimizing
sampling strategies and thus laid the groundwork for adaptive approaches.

Adaptive importance sampling methods can be subdivided in three classes: resampling methods,
moment matching methods, and methods that use an independent adaptive process [16]. Firstly, resam-
pling methods eliminate samples with insufficient weight, thereby removing samples that will lead to
weight degeneracy [17]. An example of an adaptive importance sampling scheme using resampling is
the deterministic mixture population Monte Carlo [18]. Secondly, moment matching methods iteratively
fit the moments of a proposed auxiliary density to estimate the moments of the target density. An
example of this is given in [19]. The third type of adaptive importance sampling methods are those
which make use of independent adaptive processes. These processes vary from method to method.
Examples of such methods are found in [20] and [21], where a gradient descent method is applied on
the random samples to find the optimal set of parameters for the auxiliary density.

The Cross-Entropy (CE) method, introduced in [22], is another example of the third type of adaptive
importance sampling methods. The method is based on minimizing the Kullback-Leibler divergence
between the auxiliary density and the zero-variance optimizer. One significant advantage of the CE
method is that for some families of distributions the optimizer can be found using an analytical solution.
This eliminates the need for an optimization scheme like a gradient descent. Moreover, for distribution
families where no analytical solution exists a gradient descent can be used to find the optimizer, as
the Kullback-Leibler minimization problem is generally concave [23]. Besides having a wide range of
applications, such as combinatorial optimization [24], continuous optimization [25], optimal policy
search [26], and multidimensional independent component analysis [27], the method is also applicable
to rare-event estimation problems.

The Cross-Entropy method’s convergence depends on samples being generated beyond a rare event.
Therefore, if insufficient samples are generated beyond this level, the algorithm suffers from a lack of
convergence [24]. If this is the case a multi-level Cross-Entropy method is used. Unfortunately, the
multi-level CE method fails in specific high-dimensional settings, as the auxiliary density found by the
method is not optimal [28]. To counter this problem several algorithms have been proposed. Examples
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include the bottleneck screening algorithm [29] and the CE-𝑚★ and iCE-𝑚★ algorithms found in [23].
The bottleneck screening algorithm only considers the parameters of importance in the optimization,
which decreases the dimensionality. The CE-𝑚★ and iCE-𝑚★ methods optimize the covariance matrix in
only one direction, which significantly decreases the number of parameters to be optimized, thereby
solving the problem. Furthermore, [28] proposes a remedy for this problem by changing the sampling
density to be independent of the parameters found using the multi-level Cross Entropy method. In
this way finding a non-optimal parameter due to weight degeneracy will not influence the subsequent
parameters found. Note that our CE method, when applied to the calculation of the Potential Future
Exposure of the testing portfolios, converges in one step given a sufficient number of paths. As a result,
the multi-level procedure is not needed. Consequently, the Cross-Entropy method gives an accurate
estimator even in high dimensions [28].

In both [30] and [28], the CE method is compared to different adaptive importance sampling methods.
The authors conclude that their examples suggest that the importance sampling densities obtained by
both methods are at least asymptotically similar. However, because the CE estimators are generally
easier to obtain, it is concluded that the CE method is more optimal.

In finance, importance sampling has been extensively researched for applications such as the pricing of
options [31] and securities [32], where expected payoffs need to be calculated. Adaptive importance
sampling has also been applied to the calculation of the Value-at-Risk and expected shortfall. Examples
of this are [11], [33], and [34]. In [11], importance sampling is applied to the delta-gamma approximations
of a portfolio’s fluctuations in value to reduce the variance of the Value-at-Risk approximation. In [33], a
new importance sampling method was applied to a copula-based credit-loss model. Finally, in [34],
the authors use an adaptive importance sampling method to forecast the Value-at-Risk and expected
shortfall in a Bayesian framework.
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2.1. Fundamental definition of stochastic calculus
The following definitions and theorems are used in stochastic calculus and are applied throughout this
thesis.
Definition 2.1.1 (Filtration). A filtration on (Ω,ℱ , P) is a collation (ℱ𝑡)0≤𝑡≤∞ indexed by [0,∞] of sub-𝜎-fields
of ℱ , such that ℱ𝑠 ⊂ ℱ𝑡 for every 𝑠 ≤ 𝑡 ≤ ∞.
Definition 2.1.2 (Brownian motion). A real-valued process {𝑊(𝑡) : 𝑡 ≥ 0} is called a Brownian motion if:

1. Starting at 0: 𝑊(0) = 0.

2. Normality of increments: ∀𝑠, 𝑡 such that 0 ≤ 𝑠 ≤ 𝑡,𝑊(𝑡) −𝑊(𝑠) ∼ 𝒩(0, 𝑡 − 𝑠).
3. Independent increments: For 0 ≤ 𝑡0 < · · · < 𝑡𝑛 , the random variables 𝑌𝑖 =𝑊(𝑡𝑖) −𝑊(𝑡𝑖−1), 𝑖 = 1, . . . , 𝑛

are independent.

4. Continuous trajectories: The map 𝑡 →𝑊(𝑡) is continuous,
where the usual filtration is ℱ𝑡 = 𝜎 (𝑊𝑠 , 0 ≤ 𝑠 ≤ 𝑡).
Definition 2.1.3 (Martingale). The process {𝑀𝑡 : 𝑡 ≥ 0} is a (ℱ𝑡)𝑡≥0 if

1. Adapted: 𝑀𝑡 is ℱ𝑡 measurable for all 𝑡 ≥ 0.

2. Integrable: 𝑀𝑡 is integrable for all 𝑡 ≥ 0.

3. Martingale property: ∀𝑠, 𝑡 such that 0 ≤ 𝑠 ≤ 𝑡
E [𝑀𝑡 |ℱ𝑠] = 𝑀𝑠 . (2.1)

Before defining a semimartingale, two preliminary definitions must be stated.
Definition 2.1.4 (Local martingale). A process 𝑀 is a local martingale if there exists an increasing sequence of
stopping times (𝜏𝑛)∞𝑛 , where 𝜏𝑛 →∞ almost surely, such that the stopped process (𝑀min(𝜏𝑛 ,𝑡))𝑡≥0 is a martingale.
Definition 2.1.5 (Finite variation). A process 𝐴 has finite variation if for every 𝜔 ∈ Ω, the path 𝐴𝑡(𝜔) has
finite variation for each finite [0, 𝑡]. Or,

𝑉𝐴𝑡 (𝜔)[0, 𝑡] = sup

{
𝜏∑
𝑖=1

��𝐴𝑡𝑘 (𝜔) − 𝐴𝑡𝑘−1(𝜔)
�� : 0 ≤ 𝑡0 < · · · < 𝑡𝜏 ≤ 𝑡

}
< ∞. (2.2)

Definition 2.1.6 (Semimartingale). A semimartingale 𝑆 = ()𝑆𝑡)𝑡≥0 is a càdlàg, adapted process of the form

𝑆𝑡 = 𝑆0 +𝑀𝑡 + 𝐴𝑡 (2.3)

where 𝑡 ≥ 0. Here 𝑆0 is finite and ℱ0 measurable, (𝑀𝑡)𝑡≥0 is a local martingale with 𝑀0 = 0 and (𝐴𝑡)𝑇 𝑡 ≥ 0 is a
with 𝐴0 = 0 and has finite variation.
Definition 2.1.7 (Itô integral). For any square-integrable adapted process 𝑓 (𝑡) with continuous sample paths,
we can define the stochastic integral, also known as the Itô integral, by

𝐼(𝑇) =
∫ 𝑇

0
𝑓 (𝑠)𝑑𝑊(𝑠) = lim

𝑛→∞
𝐼𝑛(𝑇) (2.4)

in 𝐿2. Where 𝐼𝑚(𝑇) =
∫ 𝑇

0 𝑓𝑚(𝑠)𝑑𝑊(𝑠) for some elementary process 𝑓 (𝑡) = ∑𝑛−1
𝑗=0 𝜂 𝑗

(
𝑊(𝑡 𝑗+1) −𝑊(𝑡 𝑗)

)
satisfying

lim
𝑛→∞

E
[∫ 𝑇

0
( 𝑓𝑚(𝑠) − 𝑓 (𝑠))2𝑑𝑠

]
= 0. (2.5)

Here 𝜂 𝑗 is ℱ𝑡 𝑗 measurable for all 𝑗 = 0, . . . , 𝑛 − 1 and square integrable.

Definition 2.1.8 (Itô’s formula). Let 𝑓 ∈ 𝐶2(R) and consider a continuous semimartingale 𝑆 = 𝑀 + 𝐴 where
𝑀 is a local martingale and 𝐴 is a process of finite variation. Then ( 𝑓 (𝑆𝑡))𝑡≥0 is also a semimartingale, and

𝑓 (𝑆𝑡) = 𝑓 (𝑆0) +
∫ 𝑡

0

𝜕 𝑓

𝜕𝑠
(𝑆𝑢)𝑑𝑆𝑢 +

1
2

∫ 𝑡

0

𝜕2 𝑓

𝜕𝑠2 (𝑆𝑢)𝑑[𝑆]𝑢 . (2.6)

Here the first and second partial derivatives are with respect to the considered semimartingale, [𝑆] is the quadratic
variation of the stochastic process (𝑆𝑡)𝑡≥0.
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2.2. Liquid derivatives and their pricing formulas
As previously stated, the test portfolios contain interest rate derivatives and foreign exchange derivatives.
This section introduces the four types of derivative products considered and explains how they are
priced. The section begins with basic definitions and derivations used in valuation. Following this, the
interest rate derivatives, specifically the Forward Rate Agreement and Interest Rate Swap, are discussed.
The section will conclude with a discussion on foreign exchange derivatives, specifically the FX Forward
Agreement and the Cross-Currency Swap.

2.2.1. Basic definitions
Before discussing the valuation of derivatives, it is necessary to define some concepts. We will start
with the definition of the money-market account, or bank account, which is a risk-free investment that
grows continuously at a risk-free rate.

Definition 2.2.1 (Money-market account). Define 𝐵(𝑡) as the value of the money-market account at time 𝑡 ≥ 0.
Assume that 𝐵(0) = 1 and that the account evolves according to

𝑑𝐵(𝑡) = 𝑟𝑡𝐵(𝑡)𝑑𝑡, 𝐵(0) = 1, (2.7)

where 𝑟𝑡 is a positive function of time. From this equation, we find that

𝐵(𝑡) = 𝑒
∫ 𝑡

0 𝑟𝑠𝑑𝑠 . (2.8)

Where 𝑟𝑡 is the instantaneous rate, or short rate, with which the bank account grows.

In the definition above, the term ’instantaneous rate’ arises from the fact that the bank account grows
over the time interval [𝑡 , 𝑡 + Δ𝑡) by 𝑟𝑡Δ𝑡, as shown in the equation 2.9.

𝐵(𝑡 + Δ𝑡) − 𝐵(𝑡)
𝐵(𝑡) = 𝑟𝑡Δ𝑡. (2.9)

The zero-coupon bond (ZCB) is a tool used in the valuation of derivatives. A ZCB with maturity 𝑇 is a
contract that represents the present value of one unit of currency to be paid at the bond’s maturity.

Definition 2.2.2 (Zero-coupon bond). A T-maturity zero-coupon bond is a contract that guarantees its holder
the payment of one unit of currency at time T, or 𝑃(𝑇, 𝑇) = 1. The contract is characterized by having no
intermediate payments. The contract value at time 𝑡 < 𝑇 is denoted by 𝑃(𝑡 , 𝑇).

Next is the simply compounded spot interest rate. An example of this rate is the LIBOR (London
Interbank Offered Rate). This rate is an interbank rate that facilitates the exchange of deposits and swap
transactions among banks.

Definition 2.2.3 (Simply-compounded spot interest rate). This rate 𝐿(𝑡 , 𝑇) at time 𝑡 for the maturity 𝑇,
is the constant rate at which an investment 𝑃(𝑡 , 𝑇) must grow to produce one unit of currency at maturity 𝑇.
𝐿(𝑡 , 𝑇) is calculated using the following expression

𝐿(𝑡 , 𝑇) = 1 − 𝑃(𝑡 , 𝑇)
𝜏(𝑡 , 𝑇)𝑃(𝑡 , 𝑇) , (2.10)

where 𝜏(𝑡 , 𝑇) is the time difference 𝑇 − 𝑡.

2.2.2. Interest rate derivatives
First, we will discuss the interest rate derivatives contained in the test portfolios. Interest rate derivatives
are financial contracts whose value is derived from interest rates. The MtM value of these contracts can
be calculated by discounting the future cash flows using the money-market account.

The first interest rate derivative to be discussed is the Forward Rate Agreement (FRA). The FRA
is a contract that provides its holder with an interest rate payment for the period from 𝑇 to 𝑆. Here, 𝑇 is
the expiry, the time point a floating rate 𝐿(𝑇, 𝑆) is agreed upon, and 𝑆 is the maturity of the contract,
where 𝑇 < 𝑆. At maturity, a fixed payment based on a fixed rate 𝐾 will be exchanged against a floating
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payment based on the spot rate 𝐿(𝑇, 𝑆).

From [35] we find that the value of such a contract at time 𝑡 is

𝑉𝐹𝑅𝐴(𝑡 , 𝑇, 𝑆, 𝜏(𝑇, 𝑆), 𝑁 , 𝐾) = 𝑁 [𝑃(𝑡 , 𝑆)𝜏(𝑇, 𝑆)𝐾 − 𝑃(𝑡 , 𝑇) + 𝑃(𝑡 , 𝑆)] . (2.11)

To make the Forward Rate Agreement a fair contract at time 𝑡 it must be true that𝑉𝐹𝑅𝐴(𝑡 , 𝑇, 𝑆, 𝜏(𝑇, 𝑆), 𝑁 , 𝐾) =
0. From this, the following definition can be formulated.

Definition 2.2.4 (Simply-compounded forward interest rate). The simply-compounded forward interest rate
at time 𝑡 for expiry 𝑇 and maturity 𝑆 is

𝐹(𝑡;𝑇, 𝑆) = 1
𝜏(𝑇, 𝑆)

[
𝑃(𝑡 , 𝑇)
𝑃(𝑡 , 𝑆) − 1

]
. (2.12)

The value of 𝐹(𝑡;𝑇, 𝑆) is the value that, when substituted for 𝐾, makes the FRA contract a fair contract.
This follows from

𝑉𝐹𝑅𝐴(𝑡 , 𝑇, 𝑆, 𝜏(𝑇, 𝑆), 𝑁 , 𝐾) = 𝑁 [𝑃(𝑡 , 𝑆)𝜏(𝑇, 𝑆)𝐾 − 𝑃(𝑡 , 𝑇) + 𝑃(𝑡 , 𝑆)] = 0,

𝜏(𝑇, 𝑆)𝐾 =
𝑃(𝑡 , 𝑇) − 𝑃(𝑡 , 𝑆)

𝑃(𝑡 , 𝑆) ,

𝐾 =
1

𝜏(𝑇, 𝑆)

[
𝑃(𝑡 , 𝑇)
𝑃(𝑡 , 𝑆) − 1

]
.

In the case where the maturity 𝑆 approaches the expiry 𝑇 the instantaneous forward rate is found.

Definition 2.2.5 (Instantaneous forward interest rate). The instantaneous forward interest rate at time 𝑡 for
maturity 𝑇 is found by

𝑓 (𝑡 , 𝑇) = lim
𝑆→𝑇+

𝐹(𝑡;𝑇, 𝑆),

= − lim
𝑆→𝑇+

1
𝑃(𝑡 , 𝑆)

𝑃(𝑡 , 𝑆) − 𝑃(𝑡 , 𝑇)
𝑆 − 𝑇 ,

= − 1
𝑃(𝑡 , 𝑇)

𝜕𝑃(𝑡 , 𝑇)
𝜕𝑇

,

= −𝜕 ln(𝑃(𝑡 , 𝑇))
𝜕𝑇

. (2.13)

Then we also get that
𝑃(𝑡 , 𝑇) = 𝑒−

∫ 𝑇

𝑡
𝑓 (𝑡 ,𝑢)𝑑𝑢 . (2.14)

The second interest rate derivative to be discussed is the Interest Rate Swap (IRS). An IRS is a con-
tract in which counterparties exchange fixed-rate payments and floating-rate payments on a set of
prespecified dates. At each date in the set {𝑇𝛼+1 , . . . , 𝑇𝛽}, a fixed leg 𝑁𝜏(𝑇𝑖−1 , 𝑇𝑖)𝐾 and a floating leg
𝑁𝜏(𝑇𝑖−1 , 𝑇𝑖)𝐿(𝑇𝑖−1 , 𝑇𝑖) are exchanged, where the floating rate resets at 𝑇𝑖−1 for each payment at 𝑇𝑖 .

Using what is known about the FRA, it can be seen that the IRS can be seen as a portfolio of for-
ward rate agreements with expiry dates 𝑇𝑖−1 and maturity 𝑇𝑖 for 𝑖 = 𝛼+1, . . . , 𝛽. Using this the following
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expression for 𝑉𝐼𝑅𝑆 can be derived

𝑉𝐼𝑅𝑆(𝑡 , 𝒯 , 𝜏, 𝑁 , 𝐾) =
𝛽∑

𝑖=𝛼+1
𝑉𝐹𝑅𝐴(𝑡 , 𝑇𝑖−1 , 𝑇𝑖 , 𝜏(𝑇𝑖−1 , 𝑇𝑖), 𝑁 , 𝐾),

=𝑁

𝛽∑
𝑖=𝛼+1

𝜏(𝑇𝑖−1 , 𝑇𝑖)𝑃(𝑡 , 𝑇𝑖) [𝐾 − 𝐹(𝑡;𝑇𝑖−1 , 𝑇𝑖)] ,

=𝑁

𝛽∑
𝑖=𝛼+1

𝜏(𝑇𝑖−1 , 𝑇𝑖)𝐾𝑃(𝑡 , 𝑇𝑖),

− 𝑃(𝑡 , 𝑇𝑖)𝜏(𝑇𝑖−1 , 𝑇𝑖)
[

1
𝜏(𝑇𝑖−1 , 𝑇𝑖)

(
𝑃(𝑡 , 𝑇𝑖−1)
𝑃(𝑡 , 𝑇𝑖)

− 1
)]
,

=𝑁

𝛽∑
𝑖=𝛼+1

𝜏(𝑇𝑖−1 , 𝑇𝑖)𝐾𝑃(𝑡 , 𝑇𝑖) − 𝑃(𝑡 , 𝑇𝑖−1) + 𝑃(𝑡 , 𝑇𝑖),

=𝑁

[
𝑃(𝑡 , 𝑇𝛽) − 𝑃(𝑡 , 𝑇𝛼) +

𝛽∑
𝑖=𝛼+1

𝜏(𝑇𝑖−1 , 𝑇𝑖)𝐾𝑃(𝑡 , 𝑇𝑖)
]
. (2.15)

2.2.3. Foreign exchange derivatives
A foreign exchange (FX) derivative is a financial contract whose value is derived from the exchange rate
between two currencies. The exchange rate between two currencies at time 𝑡 as 𝑋(𝑡). In this thesis, 𝑋(𝑡)
can be viewed as the amount of domestic currency received for one unit of foreign currency. In the
test portfolios the chosen currencies were USD and JPY. Similarly to the interest rate derivatives, the
Mark-to-Market value of FX derivatives is calculated by discounting cash flows. This can be done in two
ways: First, discount the foreign currency cash flows using the foreign money-market account, then
convert to domestic currency using the exchange rate. Alternatively, convert the foreign currency cash
flows to domestic currency first, then discount them using the domestic money-market account. Due to
the absence of arbitrage, either approach can be used.

The first FX derivative discussed is the FX forward contract. This contract is similar to an FRA,
but instead of exchanging a fixed interest rate for a floating one, a specified amount of domestic currency
is exchanged for a specified amount of foreign currency at an agreed-upon exchange rate. Its value is
calculated using,

𝑉𝐹𝑋(𝑡 , 𝑇, 𝑁 𝑓 , 𝑁𝑑) = 𝑁 𝑓 𝑃 𝑓 (𝑡 , 𝑇)𝑋(𝑡) − 𝑁𝑑𝑃𝑑(𝑡 , 𝑇). (2.16)

Here 𝑡 ≤ 𝑇, 𝑁 𝑓 and 𝑁𝑑 are the amount of foreign and domestic currency exchanged at 𝑇, 𝑋(𝑡) is the
exchange spot rate at time 𝑡, and 𝑃 𝑓 (𝑡 , 𝑇) and 𝑃𝑑(𝑡 , 𝑇) are the values of the foreign and domestic ZCB at
time 𝑡 with maturity 𝑇.

Similar to the simply-compounded forward interest rate of the FRA defined in Definition 2.2.4, it
is also possible to determine an FX forward rate that makes the FX forward contract fair.

Definition 2.2.6 (FX forward rate). The FX forward rate 𝑋𝐹(𝑡 , 𝑇) is the exchange rate that makes the FX
forward rate contract fair. It can be calculated using

𝑋𝐹(𝑡 , 𝑇) = 𝑋(𝑡)𝑃
𝑑(𝑡 , 𝑇)

𝑃 𝑓 (𝑡 , 𝑇)
. (2.17)

The expression for the FX forward rate is obtained by setting 𝑉𝐹𝑋(𝑡 , 𝑇) = 0. Then, by using the FX rate
to rewrite 𝑁𝑑 = 𝑁 𝑓𝑋(𝑡) it can be derived that from

𝑁 𝑓 𝑃 𝑓 (𝑡 , 𝑇)𝑋𝐹(𝑡 , 𝑇) − 𝑁𝑑𝑃𝑑(𝑡 , 𝑇) = 0,
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it follows that

𝑋𝐹(𝑡 , 𝑇) =
𝑁𝑑𝑃𝑑(𝑡 , 𝑇)
𝑁 𝑓 𝑃 𝑓 (𝑡 , 𝑇)

,

𝑋𝐹(𝑡 , 𝑇) =
𝑁 𝑓𝑋(𝑡)𝑃𝑑(𝑡 , 𝑇)
𝑁 𝑓 𝑃 𝑓 (𝑡 , 𝑇)

,

𝑋𝐹(𝑡 , 𝑇) = 𝑋(𝑡)𝑃
𝑑(𝑡 , 𝑇)

𝑃 𝑓 (𝑡 , 𝑇)
.

The second type of foreign exchange derivative to be discussed is the Cross-Currency Swap (XCS). In this
contract, the counterparties exchange an amount of foreign currency for an amount of domestic currency,
with the exchanged amounts based on either a fixed or floating rate. When a fixed rate is exchanged for
a floating rate, the XCS can be viewed as an IRS. However, the FX rate introduces an additional risk
factor. The value of an XCS, where an amount of foreign currency with a fixed rate is swapped for an
amount of domestic currency with a floating rate over a set of payment dates {𝑇𝛼+1 , . . . , 𝑇𝛽} is

𝑉𝑋𝐶𝑆(𝑡 , 𝒯 , 𝑁 𝑓 , 𝑁𝑑 , 𝐾) =
𝛽∑

𝑖=𝛼+1
𝑁 𝑓𝑋(𝑡)𝐾𝜏(𝑇𝑖−1 , 𝑇𝑖)𝑃 𝑓 (𝑡 , 𝑇𝑖),

− 𝑁𝑑𝐿𝑑(𝑡;𝑇𝑖−1 , 𝑇𝑖)𝜏(𝑇𝑖−1 , 𝑇𝑖)𝑃𝑑(𝑡 , 𝑇𝑖),

=𝑁𝑑

[
𝑃𝑑(𝑡 , 𝑇𝛽) − 𝑃𝑑(𝑡 , 𝑇𝛼),

+ 𝑋(0)
𝛽∑

𝑖=𝛼+1
𝑋(𝑡)𝐾𝜏(𝑇𝑖−1 , 𝑇𝑖)𝑃 𝑓 (𝑡 , 𝑇𝑖)

]
. (2.18)

Here, 𝑁 𝑓 and 𝑁𝑑 represent the notional amounts in foreign and domestic currency, 𝑋(𝑡) is the FX rate
at time 𝑡, 𝐾 is the fixed rate, 𝜏 is the year fraction, and 𝑃 𝑓 and 𝑃𝑑 are the foreign and domestic ZCBs.
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2.3. Models for IR and FX risk factors
The test portfolios depend on three risk factors: the domestic short rate, the foreign short rate, and
the exchange rate. This section discusses the models used to simulate these risk factors. Firstly, the
Gaussian one-factor model used to generate the short rates is discussed. The model’s solution will be
given as well as an equation for valuing the zero-coupon bond. Next, the Geometric Brownian Motion
model used to simulate the exchange rate is discussed. Additionally, its solution will be provided.

2.3.1. The IR Model
The Gaussian one-factor model (G1++) model used to model the short rate 𝑟(𝑡) using the following
expression,

𝑟(𝑡) = 𝑥(𝑡) + 𝛽(𝑡). (2.19)
Here, 𝛽(𝑡) is a deterministic function that is used to calibrate the model to the market and 𝑥(𝑡) is the
shifted short rate which follows the stochastic differential equation (SDE),

𝑑𝑥(𝑡) = −𝑎𝑥(𝑡)𝑑𝑡 + 𝜎𝑑𝑊(𝑡), (2.20)
𝑥(0) = 0.

Here, 𝑎 is the constant mean reversion coefficient, 𝜎 is the volatility, and 𝑑𝑊(𝑡) is the incremental Wiener
process.

Proposition 1. In the G1++ model, it is derived that when 𝛽(𝑡) is calibrated to the market it follows that,

𝛽(𝑡) = 𝑓 𝑀(0, 𝑡) + 𝜎2

2𝑎2
(
1 − 𝑒−𝑎𝑡

)2
. (2.21)

The proof of Proposition 1 can be found in Proof A.1 in the Appendix.

Taking the integral of both sides of Equation 2.20 yields the solution

𝑥(𝑡) = 𝑒−𝑎(𝑡−𝑠)𝑥(𝑠) + 𝜎

∫ 𝑡

𝑠

𝑒−𝑎(𝑡−𝑢)𝑑𝑊(𝑢). (2.22)

From this, we easily find the solution to Equation 2.19, namely,

𝑟(𝑡) = 𝑒−𝑎(𝑡−𝑠)𝑥(𝑠) + 𝜎

∫ 𝑡

𝑠

𝑒−𝑎(𝑡−𝑠)𝑑𝑊(𝑢) + 𝛽(𝑡). (2.23)

Then, for the domestic and foreign short rates, the solution 2.22 yields

𝑥𝑑(𝑡) = 𝑒−𝑎𝑑 𝑡𝑥𝑑(0) + 𝜎𝑑

∫ 𝑡

0
𝑒−𝑎𝑑(𝑡−𝑠)𝑑𝑊𝑑(𝑠), (2.24)

𝑥 𝑓 (𝑡) = 𝑒−𝑎 𝑓 𝑡𝑥 𝑓 (0) + 𝜎 𝑓

∫ 𝑡

0
𝑒−𝑎 𝑓 (𝑡−𝑠)𝑑𝑊𝑓 (𝑠). (2.25)

2.3.2. The affine term structure
The shifted short rate in Equation 2.20 is an affine function because we can write the SDE as

𝑑𝑥(𝑡) = 𝜇(𝑥(𝑡))𝑑𝑡 + Σ(𝑥(𝑡))𝑑𝑊(𝑡),

where

𝜇(𝑥(𝑡)) = −𝑎𝑥(𝑡),
Σ(𝑥(𝑡)) = 𝜎.

From [36], it is known that due to this affine term structure, we can write

𝑃(𝑡 , 𝑇) = 𝐴(𝑡 , 𝑇)𝑒−𝐵(𝑡 ,𝑇)𝑥(𝑡). (2.26)

This brings us to Proposition 2, which is proven in the Appendix under Proof A.2.
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Proposition 2. In the G1++ model, the ZCB price is formulated by the following equation

𝑃(𝑡 , 𝑇) = 𝐴(𝑡 , 𝑇)𝑒−𝐵(𝑡 ,𝑇)𝑥(𝑡) , (2.27)

where

𝐴(𝑡 , 𝑇) = 𝑃𝑀(0, 𝑇)
𝑃𝑀(0, 𝑡) 𝑒

1
2 (𝑉(𝑡 ,𝑇)−𝑉(0,𝑇)+𝑉(0,𝑡)) , (2.28)

𝐵(𝑡 , 𝑇) = 1 − 𝑒−𝑎(𝑇−𝑡)
𝑎

. (2.29)

Where
𝑉(𝑡 , 𝑇) = 𝜎2

𝑎2

(
𝑇 − 𝑡 − 21 − 𝑒−𝑎(𝑇−𝑡)

𝑎
+ 1 − 𝑒−2𝑎(𝑇−𝑡)

2𝑎

)
. (2.30)

2.3.3. The FX Model
The FX rate, 𝑋(𝑡), is modelled using the Geometric Brownian Motion (GBM) model. The model is
characterized by the following stochastic differential equation

𝑑𝑋(𝑡) = 𝜇𝑋𝑋(𝑡)𝑑𝑡 + 𝜎𝑋𝑋(𝑡)𝑑𝑊(𝑡). (2.31)

Here, 𝜇𝑋 and 𝜎𝑋 are the drift and volatility of the exchange rate. From applying Itô’s Lemma on
𝑔(𝑋(𝑡)) = log(𝑋(𝑡)) it can be seen that

𝑑𝑔(𝑋(𝑡)) =𝜕𝑔(𝑋(𝑡))
𝜕𝑡

𝑑𝑡 + 𝜕𝑔(𝑋(𝑡))
𝜕𝑋(𝑡) 𝑑𝑋(𝑡) + 1

2
𝜕2𝑔(𝑋(𝑡))
𝜕𝑋(𝑡)2 𝑑𝑋(𝑡)𝑑𝑋(𝑡),

=
1

𝑋(𝑡)
(
𝜇𝑋𝑋(𝑡)𝑑𝑡 + 𝜎𝑋𝑋(𝑡)𝑑𝑊P

𝑡

)
− 1

2
1

𝑋(𝑡)2
(
𝜎2
𝑋𝑋(𝑡)2𝑑𝑡

)
,

=

(
𝜇𝑋 −

1
2𝜎

2
𝑋

)
𝑑𝑡 + 𝜎𝑋𝑑𝑊(𝑡).

Then taking the integral on both sides yields the solution of Equation 2.31,

log(𝑋(𝑡)) = log(𝑋(0)) +
(
𝜇𝑋 −

1
2𝜎

2
𝑋

)
𝑡 + 𝜎𝑋𝑊(𝑡). (2.32)
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2.4. Entropy and information theory
Information theory is a field focused on the quantification, accumulation, and exchange of information.
Information theory was first introduced by Claude Shannon in his 1948 paper [37], where he defined
information as a measurable quantity, which meets several axioms.

1. An event that occurs with probability 1 is perfectly unsurprising and yields no information.

2. The lower the probability of an event, the more surprising it is and the more information it yields.

3. For two independent events the total amount of information is the sum of the self-informations of
the individual events.

Self-information is defined as the measure that quantifies the amount of information a variable holds.
The self-information, or suprisal, is formally defined as,

Definition 2.4.1 (Self-information). Let 𝑋 be a continuous random variable that takes values in the set 𝒳 and
is distributed according to 𝑓 : 𝒳 → R with probability density function 𝑓 (𝑥) = P(𝑋 = 𝑥). The self-information
of an event with probability 𝑓 (𝑥) is

𝐼𝑋(𝑥) = log𝑏

(
1
𝑓 (𝑥)

)
. (2.33)

The base 𝑏 corresponds to different units of information. For example, if 𝑏 = 2 the unit is the shannon, or bit.
When 𝑏 = 𝑒, the unit is the natural unit of information 𝑛𝑎𝑡.

From the definition of self-information, it is evident that the information a random variable possesses is
based on its probability. As the probability of an outcome decreases, the value 1/ 𝑓 (𝑥) increases, and so
does the self-information. Conversely, as the probability of an outcome increases, the value of 1/ 𝑓 (𝑥)
and the self-information decrease. Thus, the less probable an outcome, the more information it contains.
In practice, a more interesting value is the entropy of a random variable [38]. For a discrete random
variable the entropy is defined as follows.

Definition 2.4.2 (Entropy). Let 𝑋 be a discrete random variable taking values in the set 𝒳 with probability mass
function 𝑓 (𝑥). The entropy 𝐻(𝑋) is

𝐻(𝑋) = E 𝑓 [𝐼𝑋] = −
∑
𝑥∈𝒳

𝑓 (𝑥) log𝑏( 𝑓 (𝑥)). (2.34)

Entropy, as defined in equation 2.34, measures the expected amount of information provided by the
random variable to the observer. It can thus be seen as the average Shannon information weighted by
the probability of all possible realizations of the random variable [39].

For a continuous random variable the entropy is defined as the differential entropy.

Definition 2.4.3 (Differential entropy). Let 𝑋 be a continuous random variable taking values in 𝒳 with
probability density function 𝑓 : 𝒳 → R. The entropy ℎ(𝑋) is

ℎ(𝑋) = E 𝑓 [𝐼𝑋] = −
∫
𝒳
𝑓 (𝑥) log𝑏( 𝑓 (𝑥))𝑑𝑥. (2.35)

The concept of cross-entropy finds it’s roots in the Kraft-McMillan theorem originally stated in [40].

Theorem 2.4.1 (Kraft-McMillan Theorem). Let 𝑙1 , . . . , 𝑙𝑛 be lengths of codewords in a code with 𝑛 codewords
using an alphabet of size 𝐷. Then a prefix-free code with these codeword lengths exists if and only if

𝑛∑
𝑖=1

𝐷−𝑙𝑖 ≤ 1. (2.36)

A prefix-free code is a code in which no codeword is a prefix of any other codeword. For example,
encoding ‘A’ as 1 and ‘B’ as 11 is not a prefix-free code because receiving 111 can be decoded into various
sequences containing ‘A’s and ‘B’s. The theorem implies that if 𝒳 is the set of all possible messages that
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can be encoded, an implicit probability density 𝑔 : 𝒳 → R can be constructed. The density 𝑔 is defined
as,

𝑔(𝑥𝑖) = 𝐷−𝑙𝑖 . (2.37)

Here, 𝑥𝑖 ∈ 𝒳 is a value that can be encoded with a codeword of length 𝑙𝑖 using an alphabet containing
𝐷 symbols. The length of a codeword corresponds with the frequency of the message. As the more
frequent a message occurs, the shorter its codeword length, and thus the higher the probability. For
example, using binary digits to encode the messages gives us 𝐷 = 2, as we have either a 0 or 1. If a
codeword has a length of 1, the probability of this codeword occurring is 2−1 = 0.5. Note that this
probability distribution is implicit as it only reflects the relative frequency of each codeword.

From equation 2.37 it is found that 𝑙𝑖 = log𝐷(𝑔(𝑥𝑖)). From this last expression, the concept of
cross-entropy follows. It is the expected value of the lengths of the codewords used to encode messages
from distribution 𝑓 using an approximating distribution 𝑔.

E 𝑓 [𝑙] = −E 𝑓 [log𝐷(𝑔(𝑥))] = −
∑
𝒳
𝑓 (𝑥) log𝐷(𝑔(𝑥)) = 𝐻( 𝑓 , 𝑔).

Formally, cross-entropy is defined in the following way.

Definition 2.4.4 (Cross-entropy). The cross-entropy of a discrete distribution 𝑔 relative to the discrete
distribution 𝑓 over the set of events 𝒳 which follows the distribution 𝑔 is

𝐻( 𝑓 , 𝑔) = −
∑
𝑥∈𝒳

𝑓 (𝑥) log𝑏(𝑔(𝑥)). (2.38)

Similarly, in the case that 𝑔 and 𝑓 are continuous probability distributions the cross-entropy is calculated by

𝐻( 𝑓 , 𝑔) = −
∫
𝒳
𝑓 (𝑥) log𝑏(𝑔(𝑥)). (2.39)

In terms of codeword length, cross-entropy can be viewed as the expected extra number of bits needed
to encode the events using distribution 𝑔 instead of the optimal distribution 𝑓 . It reflects how well the
distribution 𝑔 models the true distribution 𝑓 . If 𝑔 approximates 𝑓 well, the cross-entropy will be close
to the entropy of 𝑓 .

The concept of cross-entropy is directly used in the Kullback-Leibler divergence. The Kullback-
Leibler divergence measures the amount of information lost when using probability density 𝑔 to
approximate 𝑓 . It was first established in [41]. This divergence is closely related to cross-entropy and
differential entropy, as it represents the difference of the two.

Definition 2.4.5 (Kullbeck-Leibler divergence). Let 𝑋 be a continuous random variable with probability
density function 𝑓 : 𝒳 → R. Then for probability density function 𝑔(𝑥) the Kullbeck-Leibler divergence is defined
by,

𝐷( 𝑓 , 𝑔) = 𝐻( 𝑓 , 𝑔) − 𝐻(𝑋) = E 𝑓

[
log𝑏

(
𝑓 (𝑋)
𝑔(𝑋)

)]
=

∫
𝑓 (𝑥) log𝑏

(
𝑓 (𝑥)
𝑔(𝑥)

)
𝑑𝑥. (2.40)

Then from equation 2.40 it can be seen that 𝐷( 𝑓 , 𝑔) ≥ 0, and 𝐷( 𝑓 , 𝑔) = 0 if and only if 𝑓 = 𝑔 almost
everywhere. The base used in the logarithm of the Kullbeck-Leibler divergence can vary. For calculations
in statistical interference and information theory the base 𝑒 is mostly used. This is because it simplifies
many calculations, particularly when dealing with distributions like those of the exponential family.
Therefore, in this thesis the base 𝑒 will also be used.

The convergence of 𝑔 to 𝑓 as the Kullbeck-Leibler divergence goes to zero can be proven using
the following theorem.

Theorem 2.4.2 (Pinsker’s inequality). If 𝑓 and 𝑔 are two probability distributions on 𝒳 , then

 𝑓 − 𝑔


𝑇𝑉
≤

√
1
2𝐷( 𝑓 , 𝑔), (2.41)
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where


 𝑓 − 𝑔



𝑇𝑉
is the total variation distance which is defined as

 𝑓 − 𝑔



𝑇𝑉
=

1
2


 𝑓 − 𝑔

1 . (2.42)

Thus, if 𝐷( 𝑓 , 𝑔) goes to 0 then the total variation distance


 𝑓 − 𝑔



𝑇𝑉
also goes to 0, this implies

convergence in probability.



3
Counterparty credit risk and its

quantification

This section will cover the fundamental definitions involved in quantifying counterparty credit risk
and Potential Future Exposure. A more thorough insight into these definitions can be found in [2].
Counterparty credit risk is quantified using the Mark-to-Market value (MtM) and exposure of a portfolio.
The Mark-to-Market value is defined in the following way.

Definition 3.0.1 (Mark-to-Market). The Mark-to-Market indicates the potential loss or gain that could occur
today in relation to a counterparty. At the portfolio level, the MtM value is calculated by summing the present
values of all payments to be received from the counterparty and subtracting the sum of the present values of all
payments to be made to the counterparty. Therefore, the MtM can be either a positive or negative number.

The MtM value of a portfolio can be either positive or negative. In the case of a negative MtM value,
the counterparty is still owed money. In the case of a positive MtM value, the counterparty still owes
money. Thus, only when the MtM value of a portfolio is positive is the institution is subjected to CCR,
as in the case of a counterparty default the cash flow is not received. The MtM of the unrealized cash
flow is formally defined as the exposure of a portfolio.

Definition 3.0.2 (Exposure). The exposure of a contract can be defined as

𝐸(𝑡) = max (𝑉(𝑋(𝑡)), 0) (3.1)

where 𝑉(𝑋(𝑡)) is the MtM value of the contract under the risk factors at time 𝑡 denoted by 𝑋(𝑡).
The CCR of a portfolio can be reduced in multiple ways. Two of these methods are posting collateral
and using netting. Firstly, when using collateral, the institution can retain the collateral in the event of a
default. The use of collateral will be discussed later in this thesis. Secondly, the exposure of a portfolio
can be reduced by using netting. This method allows the counterparty to offset the MtM value of one
trade with that of another. For example, in the case of two trades, A and B, with corresponding MtM
values 10 and -5, the exposure of the trades without netting would be the sum of the exposure values of
the trades, which is 10. With netting, the exposure value of trades A and B is the exposure value of the
sum of the MtM values, or 10 − 5 = 5. The exposure value using netting is defined as follows.

Definition 3.0.3 (Netting). Netting is the act of offsetting the MtM values of the contracts with a particular
counterparty. The exposure using netting 𝑛 different contracts then becomes

𝐸netted(𝑡) = max

(
𝑛∑
𝑖=1

𝑉𝑖(𝑋(𝑡)), 0
)
. (3.2)

Here 𝑉𝑖(𝑋(𝑡)) is the MtM value of contract 𝑖, where 𝑖 = 1, . . . , 𝑛, under the risk factors at time 𝑡 denoted by 𝑋(𝑡).
To manage the CCR of a portfolio, institutions are interested in metrics involving future exposure. One
such metric is the expected exposure (EE).
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Definition 3.0.4 (Expected exposure). The expected exposure depending on risk factor 𝑋(𝑡) under risk measure
at time 𝑡 is defined as

𝐸𝐸(𝑡) = E [𝐸(𝑡)] . (3.3)

A commonly used metric is the Potential Future Exposure.

Definition 3.0.5 (Potential Future Exposure). The Potential Future Exposure at time 𝑡 is defined as the
worst-case gain for a certain level 𝛼, and is calculated using the following expression

PFE𝛼(𝑡) = inf{𝑥 ∈ R : P(𝐸(𝑡) > 𝑥) ≤ 1 − 𝛼}. (3.4)

Here 𝛼 ∈ (0, 1) is the confidence level, and 𝐸(𝑡) is the exposure at time 𝑡. In other words, the PFE𝛼(𝑡) is the
smallest number 𝑥 such that the probability of the exposure at time 𝑡 being bigger than 𝑥 is less than 1 − 𝛼.

In this thesis, the PFE is defined as the 97.5%-quantile of the exposure distribution.
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3.1. Monte Carlo
Monte Carlo methods are computational techniques used to estimate the value of a function or model
through random sampling. It was first introduced by physicist Stanislaw Ulam in March 1947. While
considering the win rate of a game of Solitaire, and attempting to solve the problem using combinatorial
calculations, he thought of playing games and recording the win frequency [42]. Together with John
von Neumann, Robert Richtmyer and Nick Metropolis the method was developed further [43]. The
method’s foundation lies in the law of large numbers which states that the average result of a number
of i.i.d. random variables converges to the true expectation as the number of independent samples
increases. The Monte Carlo method is applied countless times across a wide variety of fields. An
example of an application in finance is calculating the expected payoff of an option. Using a model
the dynamics of the underlying asset is modelled and its value is simulated over a given period. After
this, the payoff of the option is calculated for each simulated value of the underlying asset. From these
payoffs the average payoff can be calculated.

The Monte Carlo method for calculating the expected value of a random variable 𝑋 is

𝑋̂𝑛 =
1
𝑛

𝑛∑
𝑖=1

𝑋𝑖 .

Here 𝑋̂𝑛 is the unbiased Monte Carlo estimator for E [𝑋], where 𝑛 is the number of simulations or paths,
and 𝑋𝑖 is the i.i.d. result of the random simulation of 𝑋 at simulation 𝑖. This estimator is an unbiased
estimator since

E
[
𝑋̂𝑛

]
= E

[
1
𝑛

𝑛∑
𝑖=1

𝑋𝑖

]
=

1
𝑛

𝑛∑
𝑖=1

E [𝑋𝑖] =
1
𝑛

𝑛∑
𝑖=1

E [𝑋] = E [𝑋] .

As stated, the Monte Carlo method is rooted in the law of large numbers that is formally formulated in
the following way.

Theorem 3.1.1 (Weak law of large numbers). Let 𝑋1 , 𝑋2 , . . . , 𝑋𝑛 be i.i.d. random variables with E[𝑋] = 𝜇 <
∞. Then for any 𝜖 > 0,

lim
𝑛→∞

P
[��𝑋̂𝑛 − 𝜇�� ≥ 𝜖

]
= 0.

From this theorem it can indeed be concluded that as the number of samples increases the approximation
𝑋̂𝑛 of E[𝑋] becomes more accurate.

A second theorem that it very useful for evaluating the accuracy of the Monte Carlo method is
the central limit theorem.

Theorem 3.1.2 (Central limit theorem). Let 𝑋1 , 𝑋2 , . . . , 𝑋𝑛 be i.i.d. random variables with E[𝑋𝑖] = 𝜇 < ∞
and variance 0 < var[𝑋𝑖] = 𝜎2

𝑋
< ∞. Then,

𝑋̂𝑛 − 𝜇
𝜎𝑋√
𝑛

→𝑑 𝒩(0, 1),

where→𝑑 implies convergence in distribution.

Using the central limit theorem it can be seen that the error of the sample mean 𝑋̂𝑛 and the true mean
E [𝑋] is distributed as

𝑋̂𝑛 − E [𝑋] →𝑑 𝒩
(
0,

𝜎2
𝑋

𝑛

)
. (3.5)

From this distribution it can be seen that the error of the Monte Carlo estimator scales with a factor
1√
𝑛
. This means that to achieve an error that is ten times smaller the amount of simulations 𝑛 must be

increased by a factor 100.
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Approximating the PFE using the Monte Carlo method begins by simulating the portfolio’s un-
derlying risk factors. Using these risk factors, the MtM value and exposure of the portfolio can be
calculated. Repeating this process 𝑛 times results in a range of exposure values for different risk factor
values. Using this range the exposure distribution, or cumulative distribution function (CDF) of the
exposure, of the portfolio can be constructed from which the PFE can be calculated. The PFE is the
97.5%-quantile of the exposure distribution. Thus the Monte Carlo method will be used to estimate the
theoretical exposure distribution 𝐹(𝑥) from which the 97.5%-quantile can be approximated.

The general Monte Carlo cumulative distribution estimator is defined as

𝐹̂𝑛(𝑦) =
1
𝑛

𝑛∑
𝑖=1

1{𝑋𝑖 ≤ 𝑦}, (3.6)

where 1{𝑋𝑖 ≤ 𝑦} is the indicator function. Similarly to the estimator 𝑋̂𝑛 seen prior, the estimator 𝐹̂𝑛(𝑥)
is also an unbiased estimator of 𝐹(𝑥) since

E
[
𝐹̂𝑛(𝑦)

]
=

1
𝑛

𝑛∑
𝑖=1

E
[
1{𝑋𝑖 ≤ 𝑦}

]
=

1
𝑛

𝑛∑
𝑖=1

E
[
1{𝑋 ≤ 𝑦}

]
= P

(
𝑋 ≤ 𝑦

)
= 𝐹(𝑦).

The CDF estimator used for the calculation of the PFE is defined as

𝐹̂𝑛(𝑦) =
1
𝑛

𝑛∑
𝑖=1

1
{
max

(
𝑉

(
X̂(𝑖)(𝑡)

)
, 0

)
≤ 𝑦

}
.

Here, X̂(𝑖) denotes the 𝑖-th simulated sample of a vector of risk factors in a Monte Carlo simulation. An
estimator for the PFE is obtained using the inverse of the Monte Carlo CDF estimator. The quantile
estimation 𝑞̂𝛼 is then defined as

𝑞̂𝛼 = inf{𝑥 : 𝐹̂𝑛(𝑦) > 𝛼}. (3.7)

Similarly to the Monte Carlo estimator 𝑋̂𝑛 the convergence of 𝐹̂𝑛(𝑥) goes at a rate of 1√
𝑛

.

The Monte Carlo method is easily implemented and very intuitive. Unfortunately, the convergence rate
of the error is very slow. Consequently, significant effort has been invested in researching variance
reduction techniques. These methods aim at reducing the variance of an estimator without requiring
additional simulations. Some examples of variance reduction techniques are antithetic variates, the
control variate method, and importance sampling. The latter two will be discussed in more detail in
future sections.

In this thesis the paths of the risk factors are generated using direct sampling. From Equations
3.21 up to and including 3.23 and 4.4 it can be seen that the risk factors are distributed in the following
way,

𝑥𝑑(𝑡) ∼ 𝒩
(
𝑥𝑑(0)𝑒−𝑎𝑑 𝑡 ,

(
𝜎𝑑𝜎𝑍𝑑

)2
)
,

𝑥 𝑓 (𝑡) ∼ 𝒩
(
𝑥 𝑓 (0)𝑒−𝑎 𝑓 𝑡 ,

(
𝜎 𝑓 𝜎𝑍 𝑓

)2
)
,

log(𝑋(𝑡)) ∼ 𝒩
(
log(𝑋(0)) +

(
𝜇𝑋 −

1
2𝜎

2
𝑋

)
𝑡 ,

(
𝜎𝑋𝜎𝑍𝑋

)2
)
,

log(𝑧(𝑡)) ∼ 𝒩
(
log(𝑧(0)) − 1

2𝜎
2
𝑧 𝑡 , (𝜎𝑧𝜎𝑍𝑧 )2

)
.

Using their individual distributions and correlation matrix, a mean vector and covariance matrix can be
constructed to generate the risk factors using a multivariate normal distribution.
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For the uncollateralized portfolio the multivariate normal distribution 𝒩(𝜇(𝑡),Σ(𝑡)) used for sam-
pling the risk factors has parameters,

𝜇(𝑡) =


𝑥𝑑(0)𝑒−𝑎𝑑 𝑡
𝑥 𝑓 (0)𝑒−𝑎 𝑓 𝑡

log(𝑋(0)) + (𝜇𝑋 − 1
2𝜎

2
𝑋
)𝑡


Σ(𝑡) = 𝑉 ·𝑉⊤ ⊙


1 Corr(𝑍̂𝑥𝑑 , 𝑍̂𝑥 𝑓 ) Corr(𝑍̂𝑥𝑑 , 𝑍̂𝑋)

Corr(𝑍̂𝑥 𝑓 , 𝑍̂𝑥𝑑 ) 1 Corr(𝑍̂𝑥 𝑓 , 𝑍̂𝑋)
Corr(𝑍̂𝑋 , 𝑍̂𝑥𝑑 ) Corr(𝑍̂𝑋 , 𝑍̂𝑥 𝑓 ) 1

 (𝑡),
where ⊙ signifies element-wise multiplication, and

𝑉 =


𝜎𝑑𝜎𝑍𝑑
𝜎 𝑓 𝜎𝑍 𝑓

𝜎𝑋𝜎𝑍𝑋

 .
For the Security Financed Trades the risk factors are generated using a multivariate normal distribution
𝒩

(
𝜇(𝑡),Σ(𝑡)

)
where

𝜇(𝑡) =


𝑥𝑑(0)𝑒−𝑎𝑑 𝑡
𝑥 𝑓 (0)𝑒−𝑎 𝑓 𝑡

log(𝑋(0)) + (𝜇𝑋 − 1
2𝜎

2
𝑋
)𝑡

log(𝑧(0)) − 1
2𝜎

2
𝑧 𝑡


Σ(𝑡) = 𝑉 ·𝑉⊤ ⊙


1 Corr(𝑍̂𝑥𝑑 , 𝑍̂𝑥 𝑓 ) Corr(𝑍̂𝑥𝑑 , 𝑍̂𝑋) Corr(𝑍̂𝑥𝑑 , 𝑍̂𝑧)

Corr(𝑍̂𝑥 𝑓 , 𝑍̂𝑥𝑑 ) 1 Corr(𝑍̂𝑥 𝑓 , 𝑍̂𝑋) Corr(𝑍̂𝑥 𝑓 , 𝑍̂𝑧)
Corr(𝑍̂𝑋 , 𝑍̂𝑥𝑑 ) Corr(𝑍̂𝑋 , 𝑍̂𝑥 𝑓 ) 1 Corr(𝑍̂𝑋 , 𝑍̂𝑧)
Corr(𝑍̂𝑧 , 𝑍̂𝑥𝑑 ) Corr(𝑍̂𝑧 , 𝑍̂𝑥 𝑓 ) Corr(𝑍̂𝑧 , 𝑍̂𝑋) 1

 (𝑡),
where ⊙ signifies element-wise multiplication, and

𝑉 =


𝜎𝑑𝜎𝑍𝑑
𝜎 𝑓 𝜎𝑍 𝑓

𝜎𝑋𝜎𝑍𝑋
𝜎𝑧𝜎𝑍𝑧

 .
Thus, at time 𝑡 a sample

[
𝑥𝑑(𝑡) 𝑥 𝑓 (𝑡) log(𝑋(𝑡))

]
or

[
𝑥𝑑(𝑡) 𝑥 𝑓 (𝑡) log(𝑋(𝑡)) log(𝑧(𝑡))

]
is generated

using 𝒩(𝜇(𝑡),Σ(𝑡)) and their respective parameters.
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3.2. COS method
The COS method [4] finds its foundation in the Fourier pair

𝜑(𝜔) =
∫
R
𝑒 𝑖𝜔𝑥 𝑓 (𝑥)𝑑𝑥, (3.8)

𝑓 (𝑥) = 1
2𝜋

∫
R
𝑒−𝑖𝜔𝑥𝜑(𝜔)𝑑𝜔. (3.9)

Where Equation 3.9 can be solved using its Fourier-cosine expansion. For a function supported on
[𝑎, 𝑏] ∈ R this cosine expansion is given by

𝑓 (𝑥) =
∞∑
𝑘=0

′𝐴𝑘 cos
(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)
, (3.10)

where

𝐴𝑘 =
2

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑓 (𝑥) cos
(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑥. (3.11)

The accent on the sum in Equation 3.10 indicates that the first term is halved.

As can be seen by comparing Equations 3.9 and 3.11 the integration range has been truncated from
[−∞,∞] to [𝑎, 𝑏]. Performing this truncation introduces a truncation error. One of the characteristics of
the Fourier transform integrands, found in Equation 3.9, is that it decays to zero at −∞ and∞. Due to
this, we are given the room to choose an integration range [𝑎, 𝑏] such that truncating the bounds does
not result in a reduction of accuracy. Choosing such an integration range yields

𝜑1(𝜔) =
∫ 𝑏

𝑎

𝑒 𝑖𝜔𝑥 𝑓 (𝑥)𝑑𝑥 ≈
∫
R
𝑒 𝑖𝜔𝑥 𝑓 (𝑥)𝑑𝑥 = 𝜑(𝜔). (3.12)

In [1] the truncation range [𝑎, 𝑏] is given by

[𝑎, 𝑏] =
[
𝜇𝐸 − 𝐿𝜎𝐸 , 𝜇𝐸 + 𝐿𝜎𝐸

]
with 𝐿 = 8, (3.13)

where, for the PFE calculation, 𝜇𝐸 is the first moment of the exposure, and 𝜎𝐸 is the exposure’s standard
deviation.

By combining Equation 3.12 and the fact that 𝑒 𝑖𝑥 = cos(𝑥) + 𝑖 sin(𝑥), it can be found that

𝐴𝑘 ≈ 𝐹𝑘 =
2

𝑏 − 𝑎Re
{
𝜑

(
𝑘𝜋
𝑏 − 𝑎

)
· exp

(
−𝑖 𝑘𝑎𝜋
𝑏 − 𝑎

)}
. (3.14)

Then, by filling in 𝐹𝑘 and truncating the infinite sum in equation 3.10 to the first 𝑁 − 1 terms, it can be
seen that

𝑓 (𝑥) =
𝑁−1∑
𝑘=0

′𝐹𝑘 cos
(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)
. (3.15)

Using the characteristic function 𝜑𝑋(𝜔) of a random variable 𝑋, the COS method allows for the recovery
of its probability density function 𝑓𝑋(𝑥). Consequently, the cumulative density function 𝐹𝑋(𝑥) can be
obtained by integration,

𝐹𝑋(𝑥) =
∫ 𝑥

−∞
𝑓𝑋(𝑢)𝑑𝑢

≈
∫ 𝑥

𝑎

𝑁−1∑
𝑘=0

′𝐹𝑘 cos
(
𝑘𝜋
𝑢 − 𝑎
𝑏 − 𝑎

)
𝑑𝑢

=

𝑁−1∑
𝑘=0

′𝐹𝑘

∫ 𝑥

𝑎

cos
(
𝑘𝜋
𝑢 − 𝑎
𝑏 − 𝑎

)
𝑑𝑢

=
1
2 (𝑥 − 𝑎)𝐹0 +

∞∑
𝑘=1

𝐹𝑘
𝑏 − 𝑎
𝑘𝜋

sin
(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)
. (3.16)
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3.2.1. Numerical Integration
To find the COS coefficients 𝐹𝑘 in Equation 3.15, it is required to find the characteristic function, which
requires to perform an integration. For this integration the Clenshaw-Curtis quadrature will be used.
This quadrature makes use of a change of variables 𝑥 = cos𝜃. For a function 𝑓 (𝑥) this results in∫ 1

−1
𝑓 (𝑥)𝑑𝑥 =

∫ 𝜋

0
𝑓 (cos(𝜃)) sin(𝜃)𝑑𝜃. (3.17)

Using the cosine expansion of 𝑓 (cos𝜃), the integral can be rewritten in the following way,∫ 𝜋

0
𝑓 (cos(𝜃)) sin(𝜃)𝑑𝜃 = 𝑎0 +

∞∑
𝑖=1

2𝑎2𝑘
1 − (2𝑘)2 =

∞∑
𝑖=0

𝑎2𝑘𝑤2𝑘 . (3.18)

In the last equation of Equation 3.18, 𝑤2𝑘 = 1 for 𝑘 = 0 and 𝑤2𝑘 =
2

1−(2𝑘)2 for 𝑘 > 0. Furthermore, 𝑎2𝑘 can
be calculated using the type I discrete cosine transform

𝑎𝑘 ≈
2
𝑁

[
𝑓 (1)
2 + 𝑓 (−1)

2 (−1)𝑘 +
𝑁−1∑
𝑛=1

𝑓
(
cos

(
𝑛𝜋
𝑁

))
cos

(
𝑛𝑘𝜋
𝑁

)]
, (3.19)

where 𝑁 is the number of quadrature points used.

It can be seen that by using the change of variables 𝑥 = cos(𝜃), the characteristic function used
in the COS method in Equation 3.12 can be rewritten as

𝜑

(
𝑘𝜋
𝑏 − 𝑎

)
=

∫ 𝑢

𝑙

exp
(
𝑖
𝑘𝜋
𝑏 − 𝑎 𝑥

)
𝑓 (𝑥)𝑑𝑥

=
𝑢 − 𝑙

2

∫ 𝜋

0
𝑔(cos(𝜃)) sin(𝜃)𝑑𝜃

where
𝑔(cos(𝜃)) = exp

(
𝑖
𝑘𝜋
𝑏 − 𝑎

(
𝑙 + 𝑢 − 𝑙2 (cos(𝜃) + 1)

))
𝑓

(
𝑙 + 𝑢 − 𝑙2 (cos(𝜃) + 1)

)
. (3.20)

Sequentially, this characteristic function is used in the COS method to retrieve the cumulative density
function.

3.2.2. COS method for PFE calculations
This section provides a brief summary of how the COS method described above can be applied to the
calculation of the Potential Future Exposure. The full description of this method can be found in [1].

The COS method was applied to calculate the PFE of a portfolio containing interest rate deriva-
tives and foreign exchange derivatives. The value of these derivatives depend on the domestic short
rate, foreign short rate, and the exchange rate between the domestic and foreign currencies. Equations
2.24, 2.25, and 2.32 show the solutions of the dynamics of these risk factors to be

𝑥𝑑(𝑡) = 𝑥𝑑(0)𝑒−𝑎𝑑 𝑡 + 𝜎𝑑

∫ 𝑡

0
𝑒−𝑎𝑑(𝑡−𝑠)𝑑𝑊𝑑(𝑠),

𝑥 𝑓 (𝑡) = 𝑥 𝑓 (0)𝑒−𝑎 𝑓 𝑡 + 𝜎 𝑓

∫ 𝑡

0
𝑒−𝑎 𝑓 (𝑡−𝑠)𝑑𝑊𝑓 (𝑠),

log(𝑋(𝑡)) = log(𝑋(0)) +
(
𝜇 − 1

2𝜎
2
𝑋

)
𝑡 + 𝜎𝑋𝑊𝑋(𝑡).

Here𝑊𝑑,𝑊𝑓 , and𝑊𝑋 are standard Brownian motions as the modelling is done under the real world
measure.
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By using ∫ 𝑡

0
𝑒−𝑎𝑑(𝑡−𝑠)𝑑𝑊𝑑(𝑠) = 𝜎𝑍𝑑 𝑍̂𝑑 ,∫ 𝑡

0
𝑒−𝑎 𝑓 (𝑡−𝑠)𝑑𝑊𝑓 (𝑠) = 𝜎𝑍 𝑓

𝑍̂ 𝑓 ,

𝑊𝑋(𝑡) = 𝜎𝑍𝑋 𝑍̂𝑋(𝑡),

where 𝑍̂· ∼ 𝒩(0, 1) the solutions can be rewritten as,

𝑥𝑑(𝑡) = 𝑥𝑑(0)𝑒−𝑎𝑑 𝑡 + 𝜎𝑑𝜎𝑍𝑑 𝑍̂𝑑(𝑡), (3.21)
𝑥 𝑓 (𝑡) = 𝑥 𝑓 (0)𝑒−𝑎 𝑓 𝑡 + 𝜎 𝑓 𝜎𝑍 𝑓

𝑍̂ 𝑓 (𝑡), (3.22)

log(𝑋(𝑡)) = log(𝑋(0)) +
(
𝜇𝑋 −

1
2𝜎

2
𝑋

)
𝑡 + 𝜎𝑋𝜎𝑍𝑋 𝑍̂𝑋(𝑡). (3.23)

Where, due to ∫ 𝑡

0
𝑒−𝑎(𝑡−𝑠)𝑑𝑊(𝑠) ∼ 𝒩

(
0, 1 − 𝑒−2𝑎𝑡

2𝑎

)
,

and𝑊𝑋(𝑡) ∼ 𝒩(0, 𝑡) it can be seen that

𝜎𝑍𝑑 =

√
1 − 𝑒−2𝑎𝑑 𝑡

2𝑎𝑑
,

𝜎𝑍 𝑓
=

√
1 − 𝑒−2𝑎 𝑓 𝑡

2𝑎 𝑓
,

𝜎𝑍𝑋 =
√
𝑡.

The correlation matrix Σ(𝑡) at time 𝑡 is,

Σ(𝑡) =


1 Corr(𝑍̂𝑑 , 𝑍̂ 𝑓 ) Corr(𝑍̂𝑑 , 𝑍̂𝑋)
Corr(𝑍̂ 𝑓 , 𝑍̂𝑑) 1 Corr(𝑍̂ 𝑓 , 𝑍̂𝑋)
Corr(𝑍̂𝑋 , 𝑍̂𝑑) Corr(𝑍̂𝑋 , 𝑍̂ 𝑓 ) 1

 (𝑡), (3.24)

As a correlation matrix is SPD by definition, a Cholesky decomposition 𝐿(𝑡) at time 𝑡 can be con-
structed. Using 𝐿(𝑡), the risk factors 𝑍̂𝑑, 𝑍̂ 𝑓 , and 𝑍̂𝑋 are modeled by computing

[
𝑍̂𝑑 𝑍̂ 𝑓 𝑍̂𝑋

]
=

𝐿(𝑡) ·
[
𝑍̃𝑑 𝑍̃ 𝑓 𝑍̃𝑋

]⊤ where 𝑍̃𝑑, 𝑍̃ 𝑓 , and 𝑍̃𝑋 are independent standard normal random variables.

Using these risk factors, the portfolio can be priced and its exposure 𝐸𝑡(X) can be calculated. Se-
quentially, the characteristic function of the exposure can be calculated via

𝜑(𝜔) =
∭

R3
𝑒 𝑖𝜔𝐸𝑡 (𝑧̃𝑑 ,𝑧̃ 𝑓 ,𝑧̃𝑋 ) 𝑓 (𝑧̃𝑑) 𝑓 (𝑧̃ 𝑓 ) 𝑓 (𝑧̃𝑋)𝑑𝑧̃𝑑𝑑𝑧̃ 𝑓 𝑑𝑧̃𝑋 . (3.25)

Using the Clenshaw-Curtis quadrature described above, Equation 3.25 can be evaluated. Then, using
the characteristic function, the COS method can be applied to retrieve the CDF of the exposure from
which the PFE of the portfolio can be calculated.



4
Our contribution 1: Adding collaterals

to the COS-PFE framework

In this chapter, we add collaterals to the earlier work in [1] to the COS-PFE framework. As stated in
Section 3, requiring collateral is a very effective means to reduce the CCR of a netting set. Such an
agreement requires that the party for which a netting set has a negative MtM to provide a collateral (with
good liquidity and credit rating) with a higher or equal MtM value to the other party to mitigate the CCR
faced by the other party. In this way, the party holding the collateral can retain it if the counterparty fails
to meet payment obligations. Collateral arrangements can be bilateral, requiring both parties to provide
collateral in response to a negative MtM value. Additionally, it can also be one-sided where only one party
has a collateral obligation, which typically happens when the other party is of a much higher credit rating.

In a fully collateralized position, the exposure 𝐸 driven by X at time 𝑡 follows,

𝐸(𝑡) = max (𝑉(X(𝑡)) − 𝐶𝑡 , 0) = 0. (4.1)

Here, 𝑉(X(𝑡)) is the MtM value of the position driven by risk factor values X at time 𝑡, and 𝐶𝑡 is the
value of the collateral at time 𝑡.

Unfortunately, the exposure cannot always be fully collateralized. Generally, there are three main
sources of partial-collateralization: threshold amount (under which collateral transfer is not required),
minimum transfer amount (the minimal amount of collateral transfer), and margin period of risk (the
time period from the last reception of collateral from a defaulting counterparty until all trades with
this counterparty are closed out and the resulting market risk is re-hedged). In this work, we do not
consider the impact of the threshold amount and minimal transfer amount for simplicity. The methods
developed in this thesis are still applicable in the presence of margin call threshold and the minimum
transfer amount. The margin period of risk is also out of the scope, as it is associated to margined trades
under CSA, which we briefly discuss below and is out of scope of this thesis.

Collaterals can be posted in two ways in practice: direct via the Credit Support Annex (CSA) agreement
and indirectly via the Security Financed Trades (SFT).

Firstly, in a bilateral CSA agreement both parties are required to post collateral to each other whenever
the MtM value of the netting set portfolio, from the perspective of the party, exceeds a certain threshold.
These thresholds can vary for each party depending on the counterparty’s creditworthiness, and the
party’s risk appetite. For example, if the counterparty is rated from BBB- to AAA according to the S&P,
the threshold is $1,000,000. If the rating is BB+ or below, the threshold can drop to zero [2]. If the party
is in the money and the MtM or the relevant netting set seen from the perspetive of the party is beyond
the threshold, the party will send a margin call to the counterparty. The collateral value called by this
party equals the MtM price of the netting set observed on the date of the margin call. That is,

𝐶𝑡 = 𝑉(𝑋(𝜏))

26
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and thus
𝐸(𝑡) = max (𝑉(𝑋(𝑡)) −𝑉(𝑋(𝜏))) ,

where 𝜏 = 𝑡 − 𝐼 with 𝐼 being the number of days between two margin calls. The same applies in reverse.
The CSA trades are not covered.

In the case of SFTs, the counterparty posts a security or collection of securities with a value that
falls within a range around the MtM value of the trade at initialization. Examples of such securities
include equities, cash, bonds or ETFs. The value of the collateral depends on its liquidity, risk and
credit quality. A haircut for non-cash collaterals is usually applied. This haircut adjusts the value of the
collateral to account for the uncertainty in the collateral value by the time of liquidation, due to market
movement and/or volatility in FX rate. In this way, posting riskier securities as collaterals may result
in more collateral being needed relative to the MtM value of the derivative trades. In this thesis, we
assume the security that is posted is a single bond and it is posted at the initialization of the portfolio.
The extension of our methods to using more products as collaterals is straight forward. Additionally,
we assume no haircut is applied to the value of the bond. Note that it is trivial to extend our methods to
including haircuts.

4.1. Adding the Z-spread
As stated, it is assumed that the counterparty posts a bond that fully collateralizes the portfolio’s MtM
value at the initialization, 𝑡 = 0, of the portfolio. The bond is posted in the domestic currency and is
valued using the so-called Z-spread model

Definition 4.1.1 (Z-spread). A bond’s Z-spread measures the spread along the entire risk-free yield curve. With
this, it is a measure of the extra compensation, on top of the risk-free rate, that is rewarded for taking the risk of
holding the bond.

The Z-spread of a bond can be calculated by finding the value 𝑧 such that the discounted cashflows
from this bond equalizes its market price, i.e.

𝑉bond(𝑡) =
𝑛∑
𝑖=1

𝑐𝑡𝑖𝑃(𝑟𝑡𝑖 + 𝑧, 𝑡𝑖 , 𝑇), (4.2)

where 𝑐𝑡𝑖 is the expected cashflow at time 𝑡𝑖 , and 𝑃 is the discount function under 𝑟𝑡𝑖 which is the
risk-free rate at 𝑡𝑖 . Here, 𝑖 = 1, . . . , 𝑛 such that 𝑡 < 𝑡𝑖 ≤ 𝑡𝑛 = 𝑇 where 𝑇 is the maturity of the bond.

The Z-spread is incorporated into the COS method as a new risk factor. Its dynamic is modelled by a
driftless Geometric Brownian Motion which has the following solution,

log(𝑧(𝑡)) = log(𝑧(0)) − 1
2𝜎

2
𝑧 𝑡 + 𝜎𝑧𝑊𝑧(𝑡). (4.3)

Similarly as done for the original dynamics in Equations 3.21, the above expression can be rewritten as

log(𝑧(𝑡)) = log(𝑧(0)) − 1
2𝜎

2
𝑧 𝑡 + 𝜎𝑧

√
𝑡𝑍̂𝑧(𝑡), (4.4)

following𝑊𝑧(𝑡) ∼ 𝒩(0, 𝑡). Using Equation 4.4 the correlation matrix can be expanded to include the
Z-spread. The correlation matrix now reads

𝜌(𝑡) =


1 Corr(𝑍̂𝑥𝑑 , 𝑍̂𝑥 𝑓 ) Corr(𝑍̂𝑥𝑑 , 𝑍̂𝑋) Corr(𝑍̂𝑥𝑑 , 𝑍̂𝑧)

Corr(𝑍̂𝑥 𝑓 , 𝑍̂𝑥𝑑 ) 1 Corr(𝑍̂𝑥 𝑓 , 𝑍̂𝑋) Corr(𝑍̂𝑥 𝑓 , 𝑍̂𝑧)
Corr(𝑍̂𝑋 , 𝑍̂𝑥𝑑 ) Corr(𝑍̂𝑋 , 𝑍̂𝑥 𝑓 ) 1 Corr(𝑍̂𝑋 , 𝑍̂𝑧)
Corr(𝑍̂𝑧 , 𝑍̂𝑥𝑑 ) Corr(𝑍̂𝑧 , 𝑍̂𝑥 𝑓 ) Corr(𝑍̂𝑧 , 𝑍̂𝑋) 1

 (𝑡). (4.5)
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Here, it was found that

Corr(𝑍̂𝑧 , 𝑍̂𝑥𝑑 )(𝑡) = Corr(𝑍̂𝑥𝑑 , 𝑍̂𝑧)(𝑡) =
𝜌𝑧𝑑
𝑎𝑑

(
1 − 𝑒−𝑎𝑑 𝑡

)√
1

2𝑎𝑑 (1 − 𝑒
−2𝑎𝑑 𝑡)

√
𝑡

,

Corr(𝑍̂𝑧 , 𝑍̂𝑥 𝑓 )(𝑡) = Corr(𝑍̂𝑥 𝑓 , 𝑍̂𝑧)(𝑡) =
𝜌𝑧 𝑓
𝑎 𝑓

(
1 − 𝑒−𝑎 𝑓 𝑡

)√
1

2𝑎 𝑓

(
1 − 𝑒−2𝑎 𝑓 𝑡

)√
𝑡
,

Corr(𝑍̂𝑧 , 𝑍̂𝑋)(𝑡) = Corr(𝑍̂𝑋 , 𝑍̂𝑧)(𝑡) =
𝜌𝑧𝑋
𝑡
.

As 𝜌(𝑡) is a positive semi-definite matrix a Cholesky decomposition can be applied resulting in

𝐿(𝑡) =

𝐿1,1 0 0 0
𝐿2,1 𝐿2,2 0 0
𝐿3,1 𝐿3,2 𝐿3,3 0
𝐿4,1 𝐿4,2 𝐿4,3 𝐿4,4

 (𝑡), (4.6)

where

𝐿 𝑗 , 𝑗(𝑡) =

√√√
𝜌(𝑡)𝑗 , 𝑗 −

𝑗−1∑
𝑘=1

𝐿 𝑗 ,𝑘(𝑡)2 ,

𝐿𝑖 , 𝑗(𝑡) =

(
𝜌(𝑡)𝑖 , 𝑗 −

∑𝑗−1
𝑘=1 𝐿𝑖 ,𝑘(𝑡)𝐿 𝑗 ,𝑘(𝑡)

)
𝐿 𝑗 , 𝑗(𝑡)

.

Then 𝜌(𝑡) = 𝐿⊤(𝑡)𝐿(𝑡). Using Z = 𝐿 ·Z, similarly done as in Section 3.2.2, but now including the standard
normal random variable 𝑍̃𝑧 , it follows that

𝑧(𝑡) = 𝑧(0)𝑒−
1
2 𝜎

2
𝑧 𝑡+𝜎𝑧𝜎𝑍̂𝑧

(
𝐿4,1(𝑡)𝑧̃𝑥𝑑 (𝑡)+𝐿4,2(𝑡)𝑧̃𝑥 𝑓 (𝑡)+𝐿4,3(𝑡)𝑧̃𝑋 (𝑡)+𝐿4,4 𝑧̃𝑧 (𝑡)

)
. (4.7)

After this, the characteristic function of the collateralized exposure can be calculated using

𝜑(𝜔) =
⨌

R4

(
𝑒
𝑖𝜔·max(𝑉portfolio−𝑉bond ,0)(𝑧̃𝑥𝑑 ,𝑧̃𝑥 𝑓 ,𝑧̃𝑋 ,𝑧̃𝑧 )

𝑓𝑍̃𝑥𝑑 ,𝑍̃𝑥 𝑓 ,𝑍̃𝑋 ,𝑍̃𝑧
(𝑧̃𝑥𝑑 , 𝑧̃𝑥 𝑓 , 𝑧̃𝑋 , 𝑧̃𝑧)

)
𝑑𝑧̃𝑥𝑑𝑑𝑧̃𝑥 𝑓 𝑑𝑧̃𝑋𝑑𝑧̃𝑧 , (4.8)

=

⨌
R4

(
𝑒
𝑖𝜔·max(𝑉portfolio−𝑉bond ,0)(𝑧̃𝑥𝑑 ,𝑧̃𝑥 𝑓 ,𝑧̃𝑋 ,𝑧̃𝑧 )

𝑓𝑍̃𝑥𝑑
(𝑧̃𝑥𝑑 ) 𝑓𝑍̃𝑥 𝑓 (𝑧̃𝑥 𝑓 ) 𝑓𝑍̃𝑋 (𝑧̃𝑋) 𝑓𝑍̃𝑧 (𝑧̃𝑧)

)
𝑑𝑧̃𝑥𝑑𝑑𝑧̃𝑥 𝑓 𝑑𝑧̃𝑋𝑑𝑧̃𝑧 . (4.9)

This characteristic function can be used to recover the CDF of the collateralized exposure of the portfolio,
from which the PFE can be calculated.

In this thesis, the Z-spread is independent of the processes of 𝑥𝑑, 𝑥 𝑓 and 𝑋. From this, it follows that
𝜌𝑧𝑑 = 𝜌𝑧 𝑓 = 𝜌𝑧𝑋 = 0.

4.2. Bond pricing via moment matching
By adding the Z-spread in Equation 4.2, a new expression for 𝑃(𝑡 , 𝑇) can be found by calculating

𝑃(𝑡 , 𝑇) = EQ
[
𝑒−

∫ 𝑇

𝑡
(𝑟(𝑠)+𝑧(𝑠))𝑑𝑠

���ℱ𝑡 ] . (4.10)

By filling in
𝑟(𝑡) = 𝑥(𝑡) + 𝛽(𝑡), (4.11)
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into Equation 4.10 yields

𝑃(𝑡 , 𝑇) = 𝑒−
∫ 𝑇

𝑡
𝛽(𝑠)𝑑𝑠EQ

[
𝑒
−
(∫ 𝑇

𝑡
𝑥(𝑠)𝑑𝑠+

∫ 𝑇

𝑡
𝑧(𝑠)𝑑𝑠

) ����ℱ𝑡 ] . (4.12)

As previously seen, ∫ 𝑇

𝑡

𝑥(𝑠)𝑑𝑠 = 𝑥(𝑡)1 − 𝑒
−𝑎(𝑇−𝑡)

𝑎
+ 𝜎𝑥
𝑎

∫ 𝑇

𝑡

(1 − 𝑒−𝑎(𝑇−𝑢))𝑑𝑊(𝑢). (4.13)

From this, it was seen that ∫ 𝑇

𝑡

𝑥(𝑠)𝑑𝑠 ∼ 𝒩
(
𝑥(𝑡)1 − 𝑒

−𝑎(𝑇−𝑡)

𝑎
, 𝑉(𝑡 , 𝑇)

)
,

where

𝑉(𝑡 , 𝑇) = 𝜎2
𝑥

𝑎2

(
𝑇 − 𝑡 −

2
(
1 − 𝑒−𝑎(𝑇−𝑡)

)
𝑎

+ 1 − 𝑒−2𝑎(𝑇−𝑡)

2𝑎

)
.

From Equation 4.3 it follows that,

𝑧(𝑡) = 𝑧(𝑠)𝑒− 1
2 𝜎

2
𝑧 (𝑡−𝑠)+𝜎𝑧 (𝑊(𝑡)−𝑊(𝑠)). (4.14)

Taking the integral of both sides yields∫ 𝑇

𝑡

𝑧(𝑠)𝑑𝑠 =
∫ 𝑇

𝑡

𝑧(𝑡)𝑒− 1
2 𝜎

2
𝑧 (𝑠−𝑡)+𝜎𝑧 (𝑊(𝑠)−𝑊(𝑡))𝑑𝑠. (4.15)

While it is known that 𝑧(𝑡) follows the log-normal distribution, the distribution of
∫ 𝑇

𝑡
𝑧(𝑠)𝑑𝑠 is not known

analytically. Because of this it is not possible to use the moment generating function to evaluate the bond
pricing formula in Equation 4.12. To solve this problem moment-matching will be used. This method
approximates the unknown distribution by matching its sample moments to those of a parametric proba-
bility distribution via tuning the parameters. Fortunately, the paper [44] provides a recursive equation for
the analytical solution for the moments of the time average of a Geometric Brownian Motion. In this way,
instead of the sample moments, these analytical solutions can be used to find the moments. Subsequently,
the time-averaged Geometric Brownian Motion can be used for approximating the moments of

∫ 𝑇

𝑡
𝑧(𝑠)𝑑𝑠.

In the paper the authors define the time average 𝐴(𝑇) as

𝐴(𝑇) = 1
𝑇

∫ 𝑇

0
𝑆(𝑡)𝑑𝑡, (4.16)

where 𝑆(𝑡) is the Geometric Brownian Motion

𝑆(𝑡) = 𝑒

(
𝑟− 𝜎2

2

)
𝑡+𝜎𝐵(𝑡)

. (4.17)

Here, 𝐵(𝑡) is a Brownian motion. It can be easily seen that if 𝑟 = 0, then∫ 𝑇

0
𝑧(𝑠)𝑑𝑠 =

∫ 𝑇

0
𝑧(0)𝑒−

𝜎2
𝑧
2 𝑠+𝜎𝑧𝑊(𝑠)𝑑𝑠,

= 𝑧(0)𝑇 · 1
𝑇

∫ 𝑇

0
𝑒−

𝜎2
𝑧
2 𝑠+𝜎𝑧𝑊(𝑠)𝑑𝑠,

= 𝑧(0)𝑇 · 𝐴(𝑇).
Similarly, it can be seen that∫ 𝑇

𝑡

𝑧(𝑠)𝑑𝑠 = 𝑧(𝑡)(𝑇 − 𝑡) · 1
𝑇 − 𝑡

∫ 𝑇

𝑡

𝑒−
𝜎2
𝑧
2 𝑠+𝜎𝑧𝑊(𝑠)𝑑𝑠,

= 𝑧(𝑡)(𝑇 − 𝑡) · 𝐴(𝑇 − 𝑡).
Theorem 4.2.1 stated below, initially provided in [44], is used to calculate the moments of 𝐴(𝑇).
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Theorem 4.2.1. Let
𝑏𝑘 = 𝑘𝑟 + 𝜎2

2 · 𝑘(𝑘 − 1), 𝑘 = 0, 1, . . . (4.18)

then
E [𝐴(𝑇)𝑚] = 𝑚! exp [𝑏0𝑇, 𝑏1𝑇, . . . , 𝑏𝑚𝑇] , 𝑚 ≥ 0. (4.19)

Furthermore, the convention 𝑓 [𝑎0 , . . . , 𝑎𝑛] is defined in [44] as

Theorem 4.2.2.
𝑓 [𝑎0 , . . . , 𝑎𝑛] =

𝑓 [𝑎1 , . . . , 𝑎𝑛] − 𝑓 [𝑎0 , . . . , 𝑎𝑛−1]
𝑎𝑛 − 𝑎0

, (4.20)

for any distinct complex numbers 𝑎0 , . . . , 𝑎𝑛 , which follows from the relation

𝑓 [𝑎0 , 𝑎1] =
𝑓 (𝑎1) − 𝑓 (𝑎0)
𝑎1 − 𝑎0

=

∫ 1

0
𝑓 ′((1 − 𝑡)𝑎0 + 𝑡𝑎1)𝑑𝑡. (4.21)

Using this theorem, the first three moments can be derived, as shown below, and are then used for
moment matching.

For the first moment

E
[∫ 𝑇

𝑡

𝑧(𝑠)𝑑𝑠
]
= 𝑧(𝑡)(𝑇 − 𝑡)E[𝐴(𝑇 − 𝑡)]. (4.22)

From Theorem 4.2.1 it follows that 𝑏0 = 0 and 𝑏1 = 0. Additionally, if 𝑓 (𝑥) = 𝑒𝑥 then 𝑓 ′(𝑥) = 𝑒𝑥 . From
this it can be seen that

E[𝐴(𝑇 − 𝑡)] = 1! exp[𝑏0(𝑇 − 𝑡), 𝑏1(𝑇 − 𝑡)],
= exp[0, 0],

=

∫ 1

0
𝑒(1−𝑡)·0+𝑡·0𝑑𝑡 = 1.

Filling this into Equation 4.22 it follows that

E
[∫ 𝑇

𝑡

𝑧(𝑠)𝑑𝑠
]
= 𝑧(𝑡)(𝑇 − 𝑡).

Similarly, calculating the second moment shows that

E

[(∫ 𝑇

𝑡

𝑧(𝑠)𝑑𝑠
)2]

= 𝑧(𝑡)2(𝑇 − 𝑡)2E[(𝐴(𝑇 − 𝑡))2]. (4.23)

Then as 𝑏2 = 2 · 0 + 𝜎2
𝑧

2 · 2 · (2 − 1) = 𝜎2
𝑧 it can be seen that

E
[
(𝐴(𝑇 − 𝑡))2

]
= 2! exp[0, 0, 𝜎2

𝑧(𝑇 − 𝑡)]

where

exp[0, 0, 𝜎2
𝑧(𝑇 − 𝑡)] =

exp[0, 𝜎2
𝑧(𝑇 − 𝑡)] − exp[0, 0]
𝜎2
𝑧(𝑇 − 𝑡)

.

Then as

exp[0, 𝜎2
𝑧(𝑇 − 𝑡)] =

𝑒𝜎
2
𝑧 (𝑇−𝑡) − 1

𝜎2
𝑧(𝑇 − 𝑡)

and exp[0, 0] is known it is found that

exp[0, 0, 𝜎2
𝑧(𝑇 − 𝑡)] =

𝑒𝜎
2
𝑧 (𝑇−𝑡)−1
𝜎2
𝑧 (𝑇−𝑡)

− 1

𝜎2
𝑧(𝑇 − 𝑡)

=
𝑒𝜎

2
𝑧 (𝑇−𝑡) − 1

𝜎4
𝑧(𝑇 − 𝑡)2

− 1
𝜎2
𝑧(𝑇 − 𝑡)

.
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It follows from Equation 4.23 that

E

[(∫ 𝑇

𝑡

𝑧(𝑠)𝑑𝑠
)2]

= 𝑧(𝑡)2(𝑇 − 𝑡)2E
[
(𝐴(𝑇 − 𝑡))2

]
,

= 2𝑧(𝑡)2(𝑇 − 𝑡)2
(
𝑒𝜎

2
𝑧 (𝑇−𝑡) − 1

𝜎4
𝑧(𝑇 − 𝑡)2

− 1
𝜎2
𝑧(𝑇 − 𝑡)

)
,

= 2𝑧(𝑡)2
(
𝑒𝜎

2
𝑧 (𝑇−𝑡) − 1
𝜎4
𝑧

− 𝑇 − 𝑡
𝜎2
𝑧

)
(4.24)

Finally, the third moment shows that

E

[(∫ 𝑇

𝑡

𝑧(𝑠)𝑑𝑠
)3]

= 𝑧(𝑡)3(𝑇 − 𝑡)3E
[
𝐴(𝑇 − 𝑡)3

]
,

where, using 𝑏3 = 𝜎2

2 · 3 · (3 − 1) = 3𝜎2
𝑧 , it follows that

E
[
𝐴(𝑇 − 𝑡)3

]
= 3! exp

[
0, 0, 𝜎2

𝑧(𝑇 − 𝑡), 𝑏3(𝑇 − 𝑡)
]
.

From

exp
[
0, 0, 𝜎2(𝑇 − 𝑡), 3𝜎3(𝑇 − 𝑡)

]
=

exp
[
0, 𝜎2(𝑇 − 𝑡), 3𝜎3(𝑇 − 𝑡)

]
− exp

[
0, 0, 𝜎2(𝑇 − 𝑡)

]
3𝜎2(𝑇 − 𝑡) ,

and working out that

exp
[
0, 𝜎2(𝑇 − 𝑡), 3𝜎3(𝑇 − 𝑡)

]
=

exp
[
𝜎2(𝑇 − 𝑡), 3𝜎3(𝑇 − 𝑡)

]
− exp

[
0, 𝜎2(𝑇 − 𝑡)

]
3𝜎2(𝑇 − 𝑡) ,

=
𝑒3𝜎2(𝑇−𝑡) − 3𝑒𝜎2(𝑇−𝑡) + 2

6𝜎4(𝑇 − 𝑡)2 ,

exp
[
0, 0, 𝜎2(𝑇 − 𝑡)

]
=

exp
[
0, 𝜎2(𝑇 − 𝑡)

]
− exp [0, 0]

𝜎2(𝑇 − 𝑡) ,

=
𝑒𝜎

2(𝑇−𝑡) − 1 − 𝜎2(𝑇 − 𝑡)
𝜎4(𝑇 − 𝑡)2 ,

it is found that

exp
[
0, 0, 𝜎2(𝑇 − 𝑡), 3𝜎3(𝑇 − 𝑡)

]
=

6𝜎2(𝑇 − 𝑡) + 𝑒3𝜎2(𝑇−𝑡) − 9𝑒𝜎2(𝑡−𝑡) + 8
18𝜎6(𝑇 − 𝑡)3 .

It then follows that

E

[(∫ 𝑇

𝑡

𝑧(𝑠)𝑑𝑠
)3]

= 6𝑧(𝑡)3(𝑇 − 𝑡)3E
[
𝐴(𝑇 − 𝑡)3

]
= 6𝑧(𝑡)3(𝑇 − 𝑡)3

(
6𝜎2(𝑇 − 𝑡) + 𝑒3𝜎2(𝑇−𝑡) − 9𝑒𝜎2(𝑡−𝑡) + 8

18𝜎6(𝑇 − 𝑡)3

)
,

= 𝑧(𝑡)3
(
6𝜎2(𝑇 − 𝑡) + 𝑒3𝜎2(𝑇−𝑡) − 9𝑒𝜎2(𝑡−𝑡) + 8

3𝜎6

)
. (4.25)

As Monte Carlo simulations of the integral show skewness in the resulting distribution density, the
skew-normal, Beta, and Gamma distributions are selected as candidates and are tested in the approach.
The Monte Carlo simulations showed a skewness greater than 1. While the skewness parameter of the
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skew-normal distribution has a theoretical maximum of 1, the skewness parameters of the Beta and
Gamma distributions can accommodate skewness in excess of 1. For these distributions, the analytical
solutions for the moments which we derived earlier, i.e. the moments of the time-integration of the
Brownian Motion, are used to back-out the parameters of these three parametric distributions. Recall
that the first moments are defined as follows,

𝜇 = E
[∫ 𝑇

0
𝑧(𝑠)𝑑𝑠

]
,

𝜎 =

√√√
E

[(∫ 𝑇

0
𝑧(𝑠)𝑑𝑠

)2]
− 𝜇2 ,

𝛾 = E

©­«
∫ 𝑇

0 𝑧(𝑠)𝑑𝑠 − 𝜇
𝜎

ª®¬
3 =

E
[(∫ 𝑇

0 𝑧(𝑠)𝑑𝑠
)3

]
− 3𝜇𝜎2 − 𝜇3

𝜎3 .

Fortunately, the moments of the skew-normal distribution 𝒮𝒩(𝜉, 𝜔, 𝛼) have closed-form expressions
using the moments, i.e.

|𝛿| =
√√√ 𝜋|𝛾1|2/3

2
(
|𝛾1|2/3 +

( 4−𝜋
2

)2/3) , (4.26)

𝛼 =
𝛿√

1 − 𝛿2
, (4.27)

𝜔 =
𝜎√

1 − 2𝛿2

𝜋

, (4.28)

𝜉 = 𝜇 − 𝜔𝛿

√
2
𝜋
. (4.29)

In Equation 4.26 the sign of 𝛿 is put equal to the sign of 𝛾1, where

𝛾1 = min (0.99, 𝛾) .

In the last equation, 𝛾1 is bounded above by the maximal theoretical skewness which is accepted by the
skew-normal distribution.

To match the moments of the Beta distribution the values of 𝛼 and 𝛽 need to be found such that

𝜇 =
𝛼

𝛼 + 𝛽
,

𝜎2 =
𝛼𝛽(

𝛼 + 𝛽
)2 (

𝛼 + 𝛽 + 1
) ,

𝛾 =
2
(
𝛽 − 𝛼

) √
𝛼 + 𝛽 + 1(

𝛼 + 𝛽 + 2
) √

𝛼𝛽
.

In the last equation, 𝛾 is not bounded from above as the Beta distribution allows for larger values of 𝛾.
The values of 𝛼 and 𝛽 were found using a root finding algorithm.

For the Gamma distribution the values of 𝑘 and 𝜃 need to be matched such that

𝜇 = 𝑘𝜃,

𝜎2 = 𝑘𝜃2 ,

𝛾 =
2√
𝑘
.
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Here, 𝛾 is again unbounded for the same reason as for the Beta distribution.

To assess the accuracy in matching the moments, the theoretical CDFs of the three parametric distribu-
tions are compared with the empirical CDF of the time-integration of Brownian Motion. This empirical
CDF was generated using 500000 path using Monte Carlo. The comparison can be found in Figure 4.1.

Figure 4.1: The CDFs of the three parametric distributions compared to the empirical CDF of the target distribution, after
matching the first three moments.

Figure 4.1 demonstrates that the skew-normal distribution gives the best fit for approximating the
probability distribution of

∫ 𝑇

𝑡
𝑧(𝑠)𝑑𝑠. The moment generating function of the skew-normal distribution

is therefore utilized in calculating the value of the bond. That is, the moment generating function of∫ 𝑇

𝑡
𝑧(𝑠)𝑑𝑠 is approximated by

𝑀∫ 𝑇

𝑡
𝑧(𝑠)𝑑𝑠(𝑡) ≈ 2Φ(𝜔𝛿𝑡)𝑒𝜉𝑡+ 𝜔2 𝑡2

2 ,

where Φ(·) is the standard normal CDF. It then follows that

EQ
[
𝑒−

∫ 𝑇

𝑡
𝑧(𝑠)𝑑𝑠

]
= 2Φ(𝜔𝛿 · (−1))𝑒𝜉·(−1)+ 𝜔2 ·(−1)2

2 = 2Φ(−𝜔𝛿)𝑒−𝜉+ 𝜔2
2

By the independence of the processes 𝑥(𝑡) and 𝑧(𝑡), the bond price becomes

𝑃(𝑡 , 𝑇) = 𝑒−
∫ 𝑇

𝑡
𝛽(𝑠)𝑑𝑠EQ

[
𝑒
−
(∫ 𝑇

𝑡
𝑥(𝑠)𝑑𝑠+

∫ 𝑇

𝑡
𝑧(𝑠)𝑑𝑠

) ����ℱ𝑡 ]
=𝑒−

∫ 𝑇

𝑡
𝛽(𝑠)𝑑𝑠EQ

[
𝑒−

∫ 𝑇

𝑡
𝑥(𝑠)𝑑𝑠

���ℱ𝑡 ] EQ
[
𝑒−

∫ 𝑇

𝑡
𝑧(𝑠)𝑑𝑠

���ℱ𝑡 ] ,
=𝑒−

∫ 𝑇

𝑡
𝛽(𝑠)𝑑𝑠EQ

[
𝑒−

∫ 𝑇

𝑡
𝑥(𝑠)𝑑𝑠

]
EQ

[
𝑒−

∫ 𝑇

𝑡
𝑧(𝑠)𝑑𝑠

]
By recognizing the expression of the zero-coupon bond it can be written that

𝑃(𝑡 , 𝑇) =𝑒−
∫ 𝑇

𝑡
𝛽(𝑠)𝑑𝑠 · 𝑒

− 𝑥(𝑡)𝑎 (1−𝑒−𝑎(𝑇−𝑡))+ 𝜎2
𝑥

2𝑎2

(
𝑇−𝑡−

2(1−𝑒−𝑎(𝑇−𝑡))
𝑎 + 1−𝑒−𝑎(𝑇−𝑡)

2𝑎

)

· 2Φ(−𝜔𝛿)𝑒−𝜉+ 𝜔2
2 ,

=2Φ(−𝜔𝛿)𝑃
𝑀(0, 𝑇)
𝑃𝑀(0, 𝑡) 𝑒

−𝑥(𝑡) 1−𝑒−𝑎(𝑇−𝑡)𝑎 + 1
2 (𝑉(𝑡 ,𝑇)−𝑉(0,𝑇)+𝑉(0,𝑡))−𝜉+ 𝜔2

2 .
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4.3. The COS method including collateral
To demonstrate the effectiveness of the COS method for a portfolio with collateral, the method was
applied to the two testing portfolios containing 100 and 1000 derivatives, respectively. In these tests, the
bonds used as the collateral were chosen to have a notional of $15000 and a coupon rate of 4%, with the
maturities coinciding with the longest maturity found in the corresponding portfolios. The payment
dates of these bonds coincide with the time points at which the PFE of the portfolios is calculated.
Furthermore, as stated before, the bonds are assumed to fully collateralize the portfolios at 𝑡 = 0.
Therefore, the initial Z-spread, 𝑧(0), is calibrated, via a root finding algorithm, to equalize the bonds’
prices to the initial values of the corresponding portfolios, i.e.

max
(
𝑉portfolio(𝑥𝑑(0), 𝑥 𝑓 (0), 𝑋(0), 𝑧(0)), 0

)
= 𝑉bond(𝑥𝑑(0), 𝑧(0)). (4.30)

4.3.1. Results from the exact COS-PFE method
Using 64 expansion terms for the COS method and 40 quadrature points, the PFE at each time point
was calculated and compared with the Monte Carlo method using 5000000 paths. The comparison
is given below in Figure 4.2. A good match is observed for both testing cases. Note that we refer to
the straight forward extend of the original COS-PFE method to including the bond collateral as the
"COS-PFE-exact" method, as no further approximation is added to the original COS-PFE method.

Figure 4.2: Comparison of the PFE estimated using straight forward Monte Carlo simulation with 5000000 paths and the
COS-PFE-exact for a test portfolios containing 100 (left) and 1000 derivatives (right).

4.3.2. Dimension reduction via splitting the portfolio
As seen in Equation 4.9, applying the COS-PFE method to four risk factors requires four-dimensional
integration. To calculate this integral with reasonable accuracy, a sufficient number of quadrature points
must be used. Unfortunately, this requirement increases CPU time.

Our idea to speed up this process is to reduce the dimensionality by seperating the collateral from the
rest of the portfolio. We then approximate the Ch.f. of the total portfolio by combining the standalone
Ch.f. of the collateral bonds alone and the standalone Ch.f. of the rest of the portfolio. In this way, the
four-dimensional integral is broken down in a three-dimensional and a two-dimensional problem as
follows

𝜑portfolio(𝜔) =
∭

R3
𝑒
𝑖𝜔𝑉portfolio(𝑧̃𝑥𝑑 ,𝑧̃𝑥 𝑓 ,𝑧̃𝑋 ) 𝑓𝑍̃𝑥𝑑

𝑓𝑍̃ 𝑓
𝑓𝑍̃𝑋 (𝑧̃𝑥𝑑 , 𝑧̃𝑥 𝑓 , 𝑧̃𝑋)𝑑𝑧̃𝑥𝑑𝑑𝑧̃𝑥 𝑓 𝑑𝑧̃𝑋 , (4.31)

𝜑bond(𝜔) =
∬

R2
𝑒 𝑖𝜔𝑉portfolio(𝑧̃𝑥𝑑 ,𝑧̃𝑧 ) 𝑓𝑍̃𝑥𝑑

𝑓𝑍̃𝑧 (𝑧̃𝑥𝑑 , 𝑧̃𝑧 , )𝑑𝑧̃𝑥𝑑𝑑𝑧̃𝑧 . (4.32)

From these separate characteristic functions, the parameters of their distribution can be calculated
and combined to find the exposure distribution as follows. Using the Clenshaw-Curtis quadrature we
calculate E

[
𝑉𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜(𝑡)

]
, E [𝑉𝑏𝑜𝑛𝑑(𝑡)], var

[
𝑉𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜(𝑡)

]
, var [𝑉𝑏𝑜𝑛𝑑(𝑡)], and cov

[
𝑉𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜(𝑡), 𝑉𝑏𝑜𝑛𝑑(𝑡)

]
.

With these parameters, the parameters of the exposure distribution can be found by the following
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relations:

E [𝑉(𝑡)] = E
[
𝑉𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜(𝑡)

]
− E [𝑉𝑏𝑜𝑛𝑑(𝑡)] ,

var [𝑉(𝑡)] = var
[
𝑉𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜(𝑡)

]
+ var [𝑉𝑏𝑜𝑛𝑑(𝑡)] − 2cov

[
𝑉𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜(𝑡), 𝑉𝑏𝑜𝑛𝑑(𝑡)

]
.

Here, 𝑉(𝑡) is the value of the collateralized portfolio. This method we refer to as the COS-PFE-split
method.

Figure 4.3 presents the comparison of the PFE approximations using this split approximation, as-
suming the exposure is normally distributed, and without the split approximation, which we refer to as
the COS-PFE-exact method.

Figure 4.3: Comparison of the PFE among Monte Carlo with 5000000 paths, COS-PFE-exact method and the COS-PFE-split
method for a test portfolios containing 100 (left) and 1000 derivatives (right).

In Figure 4.3 it can be seen that by splitting up the four-dimensional integration some accuracy is
lost. However, it significantly decreases the CPU time. To demonstrate this, the CPU times using the
COS-PFE-exact and -split method were tested five times for each PFE calculation and averaged. These
averaged CPU times can be seen in Figure 4.4. Averaged out over all time points, the COS-PFE-exact
method took 4.77 and 4.72 seconds for the two portfolios, respectively, while the COS-PFE-split method
took only 0.07 and 0.14 seconds. This performance improvement is significant.

Figure 4.4: Comparison of the CPU time used for computing the PFE between the COS-PFE-exact method and the COS-PFE-split
method, for a test portfolios containing 100 (left) and 1000 derivatives (right).

This method will be referred to as the "COS-PFE-split" method.

4.3.3. Splitting the portfolio further for real-world situation
The COS-PFE-exact method suffers from the curse of dimensionality, as it involves multi-dimensional
numerical integration. We have demonstrated in the previous subsection that the dimensionality can
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be reduced via dividing the portfolio into sub-portfolios. Here in this subsection, we apply this idea
further, to mimic the real-world situation that a portfolio can involve up to 100 risk factors, which is not
feasible for COS-PFE-exact method without splitting it into sub-portfolios.

This split is based on derivative types. In this subsection the portfolios are split up in two sub-
portfolios based on the derivative type. One sub-portfolio contains all interest rate derivatives, while
the second contains all foreign exchange derivatives. The idea behind this split is to mimic the different
trading desks and their corresponding derivatives on a trading floor. Each desk can apply the COS
method to their part of the portfolio to find the PFE of the sub-portfolio. From these approximations,
the probability density of the whole portfolio can be estimated, allowing for an approximation of the
PFE of the entire portfolio.

For a combination of portfolios, [45] suggests that the Value-at-Risk of the whole portfolio can
be calculated using

𝑉𝑎𝑅𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜(𝑡) =
√
𝑉𝑎𝑅2

𝐼𝑅
(𝑡) +𝑉𝑎𝑅2

𝐹𝑋
(𝑡) + 2 · 𝜌𝐼𝑅,𝐹𝑋 ·𝑉𝑎𝑅𝐼𝑅(𝑡) ·𝑉𝑎𝑅𝐹𝑋(𝑡).

Here, 𝜌𝐼𝑅,𝐹𝑋 is the correlation between the portfolio containing all interest rate derivatives and the
portfolio containing all foreign exchange derivatives. In the case of the PFE calculation, the 𝑉𝑎𝑅·(𝑡) is
substituted by the 𝑃𝐹𝐸·(𝑡) for the portfolios in the following way

𝑃𝐹𝐸𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜(𝑡) =
√
𝑃𝐹𝐸2

𝐼𝑅
(𝑡) + 𝑃𝐹𝐸2

𝐹𝑋
(𝑡) + 2 · 𝜌𝐼𝑅,𝐹𝑋 · 𝑃𝐹𝐸𝐼𝑅(𝑡) · 𝑃𝐹𝐸𝐹𝑋(𝑡). (4.33)

The correlation between the two can be quickly calculated using the Clenshaw-Curtis quadrature. By
using cov [𝑉𝐼𝑅(𝑡), 𝑉𝐹𝑋(𝑡)] = E [(𝑉𝐼𝑅(𝑡) − E [𝑉𝐼𝑅(𝑡)]) (𝑉𝐹𝑋(𝑡) − E [𝑉𝐹𝑋(𝑡)])], where the first moments can
be calculated using the Clenshaw-Curtis quadrature.

Unfortunately, as seen in Figure 4.5, this decomposition is not effective for getting a good approximation
of the PFE.

Figure 4.5: The PFE approximations of the Monte Carlo method compared with the PFE found using the PFE decomposition for
the portfolio containing 100 derivatives without collateral.

As shown in the last figure, the PFE of the entire portfolio using the decomposition is estimated to
be significantly larger than that of approximated using the Monte Carlo method. This is because
the decomposition cannot fully capture the influence of the negative PFE. As an example, if the
0.975-quantiles of the MtM values 𝑉𝐼𝑅 and 𝑉𝐹𝑋 is 100 and -100, then the PFE of both parts are 100 and
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0. The decomposition PFE then becomes
√
(100)2 + (0)2 + 2 · 𝜌𝐼𝑅,𝐹𝑋 · (100) · (0) = 100, in this case the

negative MtM values of 𝑉𝐹𝑋 are not taken into account, thus resulting in a much higher PFE using the
decomposition compared to the real portfolio.

The method used for splitting up the portfolio relies on the Clenshaw-Curtis quadrature to cal-
culate the distribution parameters of each part, and is essentially the same as the COS-PFE-split method.
These parameters are then used to construct a CDF from which the PFE can be found.

For the portfolio without collateral,

E
[
𝑉𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜(𝑡)

]
= E [𝑉𝐹𝑋(𝑡)] + E [𝑉𝐹𝑋(𝑡)] ,

var
[
𝑉𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜(𝑡)

]
= var [𝑉𝐼𝑅(𝑡)] + var [𝑉𝐹𝑋(𝑡)] + 2cov [𝑉𝐼𝑅(𝑡), 𝑉𝐹𝑋(𝑡)] .

For the portfolio with collateral,

E
[
𝑉𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜(𝑡)

]
=E [𝑉𝐹𝑋(𝑡)] + E [𝑉𝐹𝑋(𝑡)] − E [𝑉𝑏𝑜𝑛𝑑(𝑡)] ,

var
[
𝑉𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜(𝑡)

]
=var [𝑉𝐼𝑅(𝑡)] + var [𝑉𝐹𝑋(𝑡)] + var [𝑉𝑏𝑜𝑛𝑑(𝑡)]
+ 2cov [𝑉𝐼𝑅(𝑡), 𝑉𝐹𝑋(𝑡)] − 2cov [𝑉𝑏𝑜𝑛𝑑(𝑡), 𝑉𝐼𝑅(𝑡)] − 2cov [𝑉𝑏𝑜𝑛𝑑(𝑡), 𝑉𝐹𝑋(𝑡)] .

From Figure 4.6 it can be seen that this method is far more effective compared to the PFE decomposition
in Equation 4.33. The following figures were made making with the assumption that the CDF made
using the parameters above follows a normal distribution.

Figure 4.6: The PFE approximations using the split portfolio compared to the benchmark for the portfolio containing 100
derivatives without collateral (left) and the portfolio containing 1000 derivatives with collateral (right).

Unfortunately, the PFE approximations using the sub-portfolios are less accurate than those of the
COS-PFE-exact method. However, as will be shown in the results section, the accuracy of the PFE
approximation is still sufficient to yield a significant variance reduction in importance sampling.



5
Our contribution 2: Using COS as the

control variate for Monte Carlo
simulation

The Control Variate method is a variance reduction technique that makes use of the high correlation
value between an auxiliary random variable with known properties (such as the mean value) and the
variable of interest. This auxiliary random variable is referred to as the control variate.

Define 𝑋 as the random variable for which the expected value needs to be approximated. If 𝑍
is used as the control variate, a new random variable 𝑋̃ can defined as

𝑋̃ = 𝑋 + 𝑐 · (𝑍 − E[𝑍]). (5.1)

𝑋̃ is unbiased as

E[𝑋̃] = E [𝑋 + 𝑐 · (𝑍 − E[𝑍])],
= E[𝑋] + 𝑐 · (E[𝑍] − E [E[𝑍]]),
= E[𝑋].

The variance of this new random variable is

var[𝑋̃] = var[𝑋] + 𝑐2 · var[𝑍] + 2𝑐 · cov [𝑋, 𝑍] = var[𝑋] + 𝑐 · cov [𝑋, 𝑍] . (5.2)

One can see that the variance of 𝑋̃ can be made smaller than that of 𝑋 by tuning the value of 𝑐.
Differentiating Equation 5.2 with respect to 𝑐 and solving it results in Equation 5.3 which minimizes the
variance of 𝑋̃.

𝑐 = −cov[𝑋, 𝑍]
var[𝑍] . (5.3)

From this equation it can be seen that the higher the correlation between 𝑋 and 𝑍, the lower the variance
of 𝑋̃.

5.1. Definitions
Recall that the PFE, is defined as the 97.5% quantile of the exposure distribution. This requires one to first
obtain the exposure distribution 𝐹(𝑦). Also recall that the exposure is defined as 𝑌(X) = max(𝑉(X), 0),
where𝑉(X) is the MtM-value of the portfolio driven by the risk factors X. Then we have the corresponding
Monte Carlo CDF estimator

𝐹̂𝑛(𝑦) =
1
𝑛

𝑛∑
𝑖=1

1
{
𝑌

(
X̂(𝑖)

)
≤ 𝑦

}
. (5.4)

38
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The Control Variate CDF estimator reads:

𝐹̂𝑛,𝐶𝑉 (𝑦) := 𝐹̂𝑛(𝑦) + 𝑐𝑥 · (𝑔̂𝑛 − E[𝑔(𝑍)]), (5.5)

=
1
𝑛

𝑛∑
𝑖=1

1
{
𝑌

(
X̂(𝑖)

)
≤ 𝑦

}
+ 𝑐𝑥 ·

(
𝑔(𝑍̂𝑖) − E

[
𝑔(𝑍)

] )
. (5.6)

In the above equation 𝑍̂𝑖 are the samples of the control variate, 𝑔 : R→ R, 𝑔̂𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝑔(𝑍̂𝑖), and 𝐹̂𝑛(𝑦)

is as in Equation 3.6. Again, X̂(𝑖) denotes the 𝑖-th simulated sample of a vector of risk factors in a Monte
Carlo simulation.

Similarly to how 𝑐 was found in Equation 5.3 it can be found that

𝑐𝑥 = −
cov

[
1{𝑌(X) ≤ 𝑦}, 𝑔(𝑍)

]
var[𝑔(𝑍)] ,

= −
1
𝑛

∑𝑛
𝑖=1 1

{
𝑌

(
X̂(𝑖)

)
≤ 𝑦

}
𝑔(𝑍̂𝑖) − 𝐹̂𝑛(𝑦)𝑔̂𝑛

1
𝑛

∑𝑛
𝑖=1(𝑔(𝑍̂𝑖) − 𝑔̂𝑛)2

. (5.7)

In [9] it was shown that, by combining Equations 5.6 and 5.7, the control variate estimator 𝐹̂𝑛,𝐶𝑉 (𝑦) can
be rewritten as

𝐹̂𝑛,𝐶𝑉 (𝑦) =
𝑛∑
𝑖=1

𝑊𝑖 · 1
{
𝑌

(
X̂(𝑖)

)
≤ 𝑦

}
, (5.8)

where, it can be shown that by defining the function 𝑔 as 𝑔(𝑥) = 1{𝑥 ≤ 𝑞′𝛼}, where 𝑞′𝛼 is the 𝛼-quantile
of the known distribution of the control variate 𝑍. It follows that E[𝑔(𝑍)] = 𝛼, and 𝑔𝑛 =

𝑁0
𝑛 , where

𝑁0 =
∑𝑛
𝑖=1 1{𝑍̂𝑖 ≤ 𝑞′𝛼}. Sequentially, it follows that

𝑊𝑖 = 1{𝑍̂𝑖 ≤ 𝑞′𝛼} ·
𝛼
𝑁0
+ 1{𝑍̂𝑖 > 𝑞′𝛼} ·

1 − 𝛼
𝑛 − 𝑁0

. (5.9)

5.2. A control variate using the COS-PFE method
The control variate needs to be highly correlated with the exposure value and needs to have known
statistical properties, if not the distribution.

The key insight we have here is that the exposure distribution obtained by the COS-PFE method
can be used to construct an effective control variate. More specifically, the control variate has a marginal
distribution obtained by the COS-PFE method. A high correlation between this control variate and the
exposure in the Monte Carlo simulation is ensured via an intermediate variable, which we assume to
follow a drift-less GBM for simplicity.

This intermediate variable we denote as 𝐶(𝑡) and following our assumption we have

𝑑𝐶(𝑡) = 𝐶(𝑡)𝑑𝑊(𝑡). (5.10)

Applying Itô’s lemma to the SDE yield the solution,

log(𝐶(𝑡)) = log(𝐶(0)) − 1
2𝑑𝑡 + 𝑑𝑊(𝑡), (5.11)

= log(𝐶(0)) − 1
2𝑑𝑡 +

√
𝑡𝑍̂𝐶(𝑡). (5.12)

To make sure the control variate is highly correlated with the portfolio exposure, we force it to be
highly correlated with the risk factors. The extended correlation matrix of all risk factors including the
Gaussian variable from the control variate looks as follows:

Σ =


1 Cor(𝑍̂𝑑 , 𝑍̂ 𝑓 ) Cor(𝑍̂𝑑 , 𝑍̂𝑋) Cor(𝑍̂𝑑 , 𝑍̂𝐶)

Cor(𝑍̂ 𝑓 , 𝑍̂𝑑) 1 Cor(𝑍̂ 𝑓 , 𝑍̂𝑋) Cor(𝑍̂ 𝑓 , 𝑍̂𝐶)
Cor(𝑍̂𝑋 , 𝑍̂𝑑) Cor(𝑍̂𝑋 , 𝑍̂ 𝑓 ) 1 Cor(𝑍̂𝑋 , 𝑍̂𝐶)
Cor(𝑍̂𝐶 , 𝑍̂𝑑) Cor(𝑍̂𝐶 , 𝑍̂ 𝑓 ) Cor(𝑍̂𝐶 , 𝑍̂𝑋) 1

 , (5.13)
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where

Cor(𝑍̂𝑑 , 𝑍̂𝐶) = Cor(𝑍̂𝐶 , 𝑍̂𝑑) =
𝜌𝑑𝐶
𝑎𝑑
(1 − 𝑒−𝑎𝑑 𝑡)√

1
2𝑎𝑑 (1 − 𝑒

−2𝑎𝑑 𝑡)
√
𝑡

, (5.14)

Cor(𝑍̂ 𝑓 , 𝑍̂𝐶) = Cor(𝑍̂𝐶 , 𝑍̂ 𝑓 ) =
𝜌 𝑓 𝐶
𝑎 𝑓
(1 − 𝑒−𝑎 𝑓 𝑡)√

1
2𝑎 𝑓 (1 − 𝑒

−2𝑎 𝑓 𝑡)
√
𝑡
, (5.15)

Cor(𝑍̂𝑋 , 𝑍̂𝐶) = Cor(𝑍̂𝐶 , 𝑍̂𝑋) =
𝜌𝑋𝐶√
𝑡
√
𝑡
=

𝜌𝑋𝐶
𝑡
. (5.16)

To have a positive correlation between 𝑌(X) and 𝑍 it must be true that the correlations between 𝑌(X)
and the risk factors are comparable to the correlations between 𝑍 and the risk factors. For example, if a
decrease in a risk factor causes a decrease in 𝑌(X), then for 𝑌(X) and 𝑍 to have positive correlation it
must also be true that 𝑍 decreases in proportion to 𝑌(X).

Each time the risk factors are generated and then the exposure values are calculated. From these values,
the correlation values between each risk factor and the exposure value are calculated and set as 𝜌𝑑𝐶 ,
𝜌 𝑓 𝐶 and 𝜌𝑋𝐶 . Using these correlation coefficients the paths of 𝐶(𝑡) can be generated.

Inverse sampling is then applied to translate the values generated by 𝐶(𝑡) to samples of control
variable. As the distribution of 𝐶(𝑡) is known, its CDF, 𝐹𝐶(𝑥), can be used to find the probabilities of the
values of 𝐶̂1(𝑡), . . . , 𝐶̂𝑛(𝑡). Next, the COS method can be used to retrieve the CDF of the exposure of the
portfolio, 𝐹𝐶𝑂𝑆(𝑥). Using 𝐹𝐶𝑂𝑆(𝑥) the probabilities found by 𝐹𝐶(𝑥) can be translated into the auxiliary
random variable 𝑍 by

𝑍̂𝑖(𝑡) = 𝐹−1
𝐶𝑂𝑆(𝑝) where 𝑝 = 𝐹𝐶(𝐶̂𝑖(𝑡)). (5.17)

Doing this for 𝑛 simulations, 𝐶̂1(𝑡), . . . , 𝐶̂𝑛(𝑡) are translated into the samples of the control variate,
𝑍̂1(𝑡), . . . , 𝑍̂𝑛(𝑡). Additionally, the COS method is used to estimate the PFE of the portfolio which is
used as the 𝑞′0.975-quantile in Equation 5.9. Finally, by using the variables 𝑍̂1(𝑡), . . . , 𝑍̂𝑛(𝑡), the quantile
𝑞′0.975, and 𝑔(𝑥) = 1{𝑥 ≤ 𝑞′0.975} the estimator 𝐹̂𝑛,𝐶𝑉 , of Equation 5.8, can be constructed and applied on
the PFE calculation.

5.3. Theoretical variance reduction
The CDF estimators 𝐹̂𝑛(𝑦) and 𝐹̂𝑛,𝐶𝑉 (𝑦) obey the central limit theorem. For the estimator 𝐹̂𝑛(𝑦) it is seen
that for the theoretical CDF 𝐹(𝑦𝑥),

√
𝑛

(
𝐹̂𝑛(𝑦) − 𝐹(𝑦)

)
→𝒩(0, 𝜎2), (5.18)

as 𝑛 →∞, where 𝜎2 = 𝐹(𝑦)(1 − 𝐹(𝑦)).

Doing the same for 𝐹̂𝑛,𝐶𝑉 (𝑦) results in
√
𝑛

(
𝐹̂𝑛,𝐶𝑉 (𝑦) − 𝐹(𝑦)

)
→𝒩(0, 𝜎2

𝐶𝑉 ), (5.19)

as 𝑛 →∞. Here, the variance 𝜎2
𝐶𝑉

is defined as

𝜎2
𝐶𝑉 = 𝐹(𝑦)(1 − 𝐹(𝑦)) −

cov[1
{
𝑌 (X) ≤ 𝑦

}
, 1{𝑍 ≤ 𝑞′𝛼}]2

var[1{𝑍 ≤ 𝑞′𝛼}]
,

= 𝐹(𝑦)(1 − 𝐹(𝑦))(1 − 𝜌2).
From this last equation it can be seen that the theoretical variance reduction is fully dependent on 𝜌, or
the correlation between 1{max (𝑉(X(𝑡)), 0) ≤ 𝑞𝛼} and 1{𝑍 ≤ 𝑞′𝛼}. From this it can be derived that the
theoretical variance reduction is

𝜎2

𝜎2
𝐶𝑉

=
𝐹(𝑦)(1 − 𝐹(𝑦))

𝐹(𝑦)(1 − 𝐹(𝑦))(1 − 𝜌2) = (1 − 𝜌2)−1. (5.20)



6
Our contribution 3: Using COS for

importance sampling in Monte Carlo
simulation

Importance sampling (IS) is a variance reduction technique that relies on a change in the underlying
probability distribution that is driving a stochastic process. IS allows for more samples to be generated in
and around the area of interest. For this reason, it can be very effective for estimating extreme quantiles [9].

Let us assume that we have a function 𝑌 : R𝑚 → R, a random vector X ∈ R𝑚 and a set of pa-
rameters 𝜃0 with joint probability density function 𝑝𝜃0(x) and joint CDF 𝑃𝜃0(x). Then if 𝑝𝜃(x) is another
joint probability density function with joint CDF 𝑃𝜃(x) such that 𝑃𝜃0 is absolutely continuous with
respect to 𝑃𝜃. Where absolutely continuous is defined as follows.

Definition 6.0.1 (Absolutely continuous). If 𝜇 and 𝜓 are two measures on a 𝜎-algebra ℬ of subsets of 𝑋, then
𝜓 is absolutely continuous with respect to 𝜇 if 𝜓(𝐴) = 0 for any 𝐴 ∈ ℬ such that 𝜇(𝐴) = 0.

Here, the absolute continuity of the probability measure is required for there to exist a Radon-Nikodym
derivative that can be used to generate samples from a more favorable probability distribution. Then, a
change of measure can be applied in the following way,

E𝜃0 [𝑌(X)] =
∫
R𝑚
𝑌(x)𝑝𝜃0(x)𝑑x,

=

∫
R𝑚
𝑌(x)𝑝𝜃(x)

𝑝𝜃0(x)
𝑝𝜃(x)

𝑑x,

= E𝜃

[
𝑌(X) 𝑝𝜃0(X)

𝑝𝜃(X)

]
, (6.1)

where E𝜃0 and E𝜃 are the expectations under 𝑃𝜃0 and 𝑃𝜃. For notational purposes, define

𝑤X(𝜃) =
𝑝𝜃0(X)
𝑝𝜃(X)

. (6.2)

The variance of 𝑌(X)𝑤X(𝜃) under the new probability density 𝑃𝜃 then is

var𝜃 [𝑌(X)𝑤X(𝜃)] = E𝜃

[
(𝑌(X)𝑤X(𝜃))2

]
− (E𝜃 [𝑌(X)𝑤X(𝜃)])2 . (6.3)

Equation 6.1 shows that as E𝜃 [𝑌(X)𝑤X(𝜃)] = E𝜃0 [𝑌(X)] a variance reduction is achieved when

E𝜃

[
(𝑌(X)𝑤X(𝜃))2

]
< E𝜃0

[
𝑌(X)2

]
. (6.4)
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In the case of the PFE estimation, a right quantile estimation is done. To achieve this, IS will be used to
construct an estimator of the exposure distribution of the portfolio at time 𝑡. To demonstrate how the
same change of measure as in Equation 6.1 can be applied to the right tail distribution we define our
random variable as 𝑌(X) = max(𝑉(X), 0). Here, 𝑉(X) is the MtM-value of the portfolio at time 𝑡 driven
by risk factors X ∈ R𝑚 . This yields,

1 − 𝐹(𝑦) = 𝑃𝜃0

[
𝑌(X) > 𝑦

]
,

= E𝜃0

[
1{𝑌(X) > 𝑦}

]
,

=

∫
R𝑚

1{𝑌(x) > 𝑦}𝑝𝜃0(x)𝑑x,

=

∫
R𝑚

1{𝑌(x) > 𝑦}𝑝𝜃(x)𝑤x(𝜃)𝑑x,

= E𝜃

[
1{𝑌(X) > 𝑦}𝑤X(𝜃)

]
. (6.5)

Using this transformation the IS estimator of 𝐹(𝑦) becomes

𝐹̂𝑛,IS(𝑦) = 1 − 1
𝑛

𝑛∑
𝑖=1

1
{
𝑌

(
X̂(𝑖)

)
> 𝑦

}
𝑤X̂(𝑖)(𝜃), (6.6)

with corresponding 𝛼-quantile estimator 𝑞̂𝛼 = 𝐹̂−1
𝑛,IS(𝛼). Similarly as before, X̂(𝑖) denotes the 𝑖-th simu-

lated sample of a vector of risk factors in a Monte Carlo simulation.

The goal of IS is to reduce the variance of the estimator of 𝑞̂𝛼, by reducing the variance of 𝐹̂𝑛,𝐼𝑆(𝑞𝛼). The
variance of the IS estimator at a level 𝑦 is

var𝜃
[
𝐹̂𝑛,𝐼𝑆(𝑦)

]
=

E𝜃

[
1{𝑌(X) > 𝑦}𝑤2

X(𝜃)
]
− 𝐹(𝑦)2

𝑛
. (6.7)

Here, the last expression is found by seeing that

E𝜃

[
𝐹̂𝑛,𝐼𝑆(𝑦)

]
= 1 − 1

𝑛

𝑛∑
𝑖=1

E𝜃

[
1
{
𝑌

(
X̂(𝑖)

)
> 𝑦

}
𝑤X̂(𝑖)(𝜃)

]
,

= 1 − 1
𝑛

𝑛∑
𝑖=1

E𝜃0

[
1
{
𝑌

(
X̂(𝑖)

)
> 𝑦

}]
,

= 1 − 1
𝑛

𝑛∑
𝑖=1

E𝜃0

[
1{𝑌(X) > 𝑦}

]
,

= 𝐹(𝑦).

Equation 6.7 indicates that the variance can be reduced vai a carefully chosen the auxiliary density
𝑝𝜃(x). On the one hand, a well-chosen auxiliary density can greatly reduce the variance of the estimator.
On the other hand, choosing a poor auxiliary density can result in only a very few useful samples
being generated. For the samples that are not useful their value 𝑤X(𝜃) is usually very small. From
this it can be seen that by choosing an auxiliary density that produces a small amount of useful
samples a lot of samples are not evaluated in the final estimator as 𝑤X(𝜃) ≈ 0. This results in a final es-
timator which has a higher variance and a possible bias. This concept is known as weight degeneracy [14].

In theory, there exists an optimal auxiliary density that eliminates the variance. From Equation
6.7 it can be seen that this is the case when the auxiliary density solves

E𝜃opt

[
1{𝑌(X) > 𝑦}𝑤2

X(𝜃opt)
]
= 𝐹2(𝑦). (6.8)
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The probability density 𝑝𝜃opt that solves the equation above can be expressed as

1{𝑌(X) > 𝑦}
(
𝑝𝜃0 (X)
𝑝𝜃opt (X)

)2

= 𝐹2(𝑦),

𝑝𝜃opt (X) =
1{𝑌(X > 𝑦} · 𝑝𝜃0(X)

𝐹(𝑦) ,

and is referred to as the zero-variance estimator.

Unfortunately, this density is just a theoretical one, as for quantile estimation 𝑦 = 𝑞𝛼 the quan-
tile 𝑞𝛼 is an unknown value.

It is very hard to find a suitable density before using Importance Sampling in the Monte Carlo
simulations. To counter this problem adaptive importance sampling (AIS) was introduced in [15]. AIS
constructs the auxiliary density using an algorithm to find an approximation of the optimal density.
In the rest of this section two algorithms will be introduced. The first algorithm is the shift-AIS-COS
algorithm, which finds a shift that shifts the joint distribution of the risk factors towards the target
quantile. In this way the risk factors are sampled much more often (than in the straight forward Monte
Carlo simulation) in our area of interest. The second algorithm is the CE-AIS-COS method which aims
to achieve the same goal but finds the best "manipulation" to the original density function using the
Cross-Entropy (CE) method.

6.1. Adaptive Importance Sampling using the optimal shift
Our aim of applying IS is to generate risk factor scenarios that exhibit a smaller variance of the PFE
calculation. As stated in [22], to reduce the variance, the likelihood ratio must be small on the set
{max(𝑉(X), 0) > PFE}. To achieve this the IS density must be chosen such that 𝑝𝜃(x) is large on this
set. The risk factors are generated by taking random samples of a multivariate normal distribution
𝒩(𝝁,Σ). The aim of the algorithm introduced in this section is to find a shift 𝛿 such that the risk fac-
tors generated by𝒩(𝝁+𝜹,Σ) result in a larger amount of exposure values being generated around the PFE.

In [20], the authors introduce a new quantile estimator with the use of adaptive importance sam-
pling. This estimator approximates the non-unique quantiles for a general distribution using an iterative
algorithm. In the article, the authors introduce Lemma 6.1.1 where 𝑝𝜃(𝑥) is defined on a measurable
space (𝒳 ,ℱ ), with some reference measure 𝜆, and a countably generated 𝜎-field ℱ .

Lemma 6.1.1. Let (𝜃𝑛)𝑛≥0 be a sequence of parameters and𝑋𝑛 ∼ 𝑝𝜃𝑛−1𝑑𝜆. Defineℱ𝑛 = 𝜎(𝜃0 , . . . , 𝜃𝑛 , 𝑋1 , . . . , 𝑋𝑛).
Then for 𝑓 ∈ ℒ1(𝜃0),

𝑀𝑛 =

𝑛∑
𝑖=1
(𝑤𝑋𝑖 (𝜃𝑖−1) 𝑓 (𝑋𝑖) − E𝜃0[ 𝑓 (𝑋)]) (6.9)

is a martingale with respect to the filtration F = (ℱ𝑛)𝑛≥0.

Here,
ℒ1(𝜃) = { 𝑓 : 𝒳 → R : 𝑓 is ℱ -measurable, || 𝑓 ||1𝜃,1 = E𝜃

[
| 𝑓 (𝑋)|

]
< ∞}, (6.10)

and the sequence (𝜃𝑛)𝑛≥0 estimates the optimal solution 𝜃∗.

In the case of the PFE calculation 𝑓
(
X̂(𝑖)

)
= 1

{
max

(
𝑉

(
X̂(𝑖)

)
, 0

)
> 𝑃𝐹𝐸

}
from which it is clear to

see that 𝑓 ∈ ℒ1(𝜃0), where 𝜃0 = 𝝁. From this Lemma 6.1.1 follows.

With Lemmma 6.1.1 in mind a reference to [46] can be made. In this article, Arouna combines
the strong law of large numbers and the central limit theorem with classical martingale convergence
to construct Theorem 6.1.1. Let Θ be the parameter space {𝑝𝜃(x) | 𝜃 ∈ Θ} is the set of all possible
distributions. Because X̂(𝑖) ∼ 𝑁(𝝁,Σ) it follows that the parameter space is defined as Θ = {𝜃 ∈ R𝑚}
where 𝑚 is the number of risk factors.
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Theorem 6.1.1. Let 𝜃𝑛 , 𝑋𝑛 , and F = (ℱ𝑛)𝑛≥0 be as in Lemma 6.1.1. Assume that 𝜃𝑛 → 𝜃∗ ∈ Θ converges
almost surely and that there exists 𝑎 > 1 such that for all 𝜃 ∈ Θ

E𝜃

[
|𝑤𝑋(𝜃) 𝑓 (𝑋)|2𝑎

]
< ∞, (6.11)

the function 𝑔 : 𝜃→ E𝜃

[
|𝑤𝑋(𝜃) 𝑓 (𝑋)|2𝑎

]
is continuous in 𝜃∗, and

E
[
𝑔(𝜃𝑛)

]
< ∞ ∀𝑛 ≥ 0. (6.12)

Then

lim
𝑛→∞

1
𝑛

𝑛∑
𝑖=1

𝑤𝑋𝑖 (𝜃𝑖−1) 𝑓 (𝑋𝑖) = E𝜃0[ 𝑓 (𝑋)] a.s. (6.13)

and
√
𝑛

(
1
𝑛

𝑛∑
𝑖=1

𝑤𝑋𝑖 (𝜃𝑖−1) 𝑓 (𝑋𝑖) − E𝜃0[ 𝑓 (𝑋)]
)
→𝑑 𝑁

(
0, 𝜎2

𝑓
(𝜃∗)

)
, (6.14)

where→𝑑 denotes convergence in distribution.

In [20] Theorem 6.1.1 was used to conclude that 1
𝑛

∑𝑛
𝑖=1 𝑤𝑖 → 1 almost surely, where 𝑤𝑖 = 𝑤𝑋𝑖 (𝜃𝑖−1).

As the PFE is a right quantile by definition, the empirical CDF can be defined in a way that em-
phasizes the right tail of the distribution,

𝐹𝑟𝑛,𝑤,𝑣(𝑦) = 1 − 1
𝑣(𝑛)

𝑛∑
𝑖=1

𝑤𝑖1{𝑌𝑖 > 𝑦}. (6.15)

Here 𝑣 : N→ R+ is a normalization function.

To prove the convergence, Egloff and Leippold first made an assumption.

Assumption 1. (𝒦𝑗)𝑗∈N is a compact exhaustion of the parameter space Θ. The sequence (𝜃𝑛)𝑛≥0 satisfies

𝜃𝑛 → 𝜃∗ ∈ Θ 𝑎.𝑠. (6.16)

For any 𝜌 ∈ (0, 1), there exists a constant 𝐶(𝜌) such that

P
(
sup
𝑛≥1

𝜅𝑛 ≥ 𝑗
)
≤ 𝐶(𝜌)𝜌 𝑗 , (6.17)

where 𝜅𝑛 is the counter of the active truncation set of (𝜃𝑛)𝑛≥0 such that 𝜃𝑗 ∈ 𝒦𝜅𝑛 for all 𝑗 ≤ 𝑛. For some 𝑝∗ > 1,
there exists𝑊 ∈ ℒ𝑝∗(𝜃0) such that for any compact set 𝒦 ⊂ Θ,

1{𝜃 ∈ 𝒦}𝑤𝑥(𝜃) ≤ 𝐶𝑝∗(diam(𝒦 ))𝑊(𝑥), (6.18)

where𝐶𝑝∗(diam(𝒦 )) is a constant only depending on 𝑝∗ and the diameter of𝒦 . The compact coveringΘ =
⋃∞
𝑗=1𝒦𝑗

where 𝒦𝑗 ⊂ int(𝒦𝑗+1) is selected such that

𝐶𝑝∗(diam(𝒦𝑗)) ≤ 𝑒 𝑘𝑝∗+𝑗𝑚𝑝∗ (6.19)

for some positive constants 𝑘𝑝∗ , 𝑚𝑝∗ .

These assumptions imply that firstly, every 𝜃𝑛 remains in Θ. Secondly, the continuity of moments as a
function of 𝜃. Thirdly, there is an upper bound to the growth of the set𝒦𝑗 . Using these assumptions the
Egloff and Leippold formulated the following theorem.

Theorem 6.1.2. Assume that the distribution function 𝐹(𝑦) = P(𝑌 ≤ 𝑦) is strictly increasing at 𝑞𝛼. Under
Assumption 1,

𝑞𝑟𝑛,𝑤,𝑣(𝛼) → 𝑞𝛼 𝑎.𝑠. as 𝑛 →∞ (6.20)

for 𝑣(𝑛) = 𝑛.
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Sketch of the proof. To prove the claim the authors proved that

P(𝑞𝑛,𝑤,𝑣(𝛼) ≤ 𝑞𝛼 − 𝛿 𝑖.𝑜.) = P(𝑞𝑛,𝑤,𝑣(𝛼) > 𝑞𝛼 + 𝛿 𝑖.𝑜.) = 0. (6.21)

The authors show that the sets

𝐴𝑟𝑛(𝛿) =
{∑

𝑖

(𝑤𝑖1{𝑌𝑖 ≤ 𝑞𝛼 − 𝛿} − 𝐹(𝑞𝛼 − 𝛿)) (6.22)

≥ 𝑣(𝑛)𝛼
∑
𝑖

𝑤𝑖 − 𝑛𝐹(𝑞𝛼 − 𝛿)
}
, (6.23)

and

𝐵𝑟𝑛(𝛿) = {𝑞𝑟𝑛,𝑤,𝑣(𝛼) > 𝑞𝛼 + 𝛿}, (6.24)

=

{∑
𝑖

(𝑤𝑖1{𝑌𝑖 > 𝑞𝛼 + 𝛿} − 𝐹(𝑞𝛼 + 𝛿))

< 𝛼
∑
𝑖

𝑤𝑖 − 𝑛𝐹(𝑞𝛼 + 𝛿)
}

(6.25)

satisfy 𝐴𝑟𝑛 ∩𝑊𝑛(𝜂) ⊂ 𝐴𝑟,𝐿𝐼𝐿𝑛 (𝛿, 𝜂) and 𝐵𝑟𝑛 ∩𝑊𝑛(𝜂) ⊂ 𝐵𝑟,𝐿𝐼𝐿𝑛 (𝛿, 𝜂)where

𝑊𝑛(𝜂) =
{���∑

𝑖

(𝑤𝑖 − 1)
��� ≤ (1 + 𝜂)𝜙(𝑛𝑣𝛼)} , (6.26)

𝐴𝑟,𝐿𝐼𝐿𝑛 (𝛿, 𝜂) =
{∑

𝑖

(𝑤𝑖1{𝑌𝑖 > 𝑞𝛼 − 𝛿} − (1 − 𝐹(𝑞𝛼 − 𝛿)))

≤ −(1 + 𝜂)𝜙(𝑛𝑣𝑞𝛼−𝛿)
}
, (6.27)

𝐵𝑟,𝐿𝐼𝐿𝑛 (𝛿, 𝜂) =
{∑

𝑖

(𝑤𝑖1{𝑌𝑖 > 𝑞𝛼 + 𝛿} − (1 − 𝐹(𝑞𝛼 + 𝛿))) (6.28)

≥ (1 + 𝜂)𝜙(𝑛𝑣𝑞𝛼+𝛿)
}

(6.29)

Where 𝜙(𝑡) =
√

2𝑡 log
(
log(𝑡)

)
. From there the authors show that

P(𝐴𝑟,𝐿𝐼𝐿𝑛 (𝛿, 𝜂) 𝑖.𝑜.) = P(𝐵𝑟,𝐿𝐼𝐿𝑛 (𝛿, 𝜂) 𝑖.𝑜.) = 0 (6.30)

from which the claim follows. The complete proof is provided in [20].

Furthermore, the authors proved Theorem 6.1.3.

Theorem 6.1.3. Suppose the conditions in Assumption 1 hold. If there exists 𝜂 > 0, 𝑘 > 0, and 0 < 𝛾 < 1
2 such

that
𝑛 + 1 + 𝜂

1 − 𝛼

√
2𝑛𝑣𝛼 log𝑒

(
log𝑒(𝑛𝑣𝛼)

)
≤ 𝑣(𝑛) ≤ 𝑛 + 𝑘𝑛 1

2+𝛾 , (6.31)

then
𝑞𝑟𝑛,𝑤,𝑣(𝛼) → 𝑞𝛼 𝑎.𝑠. as 𝑛 →∞. (6.32)

Here 𝑣𝛼 = 𝜎2
1{(𝑞𝛼 ,∞)}◦𝐸𝑡 (𝜃

∗)

Sketch of the proof. The proof of this theorem is along the lines of the proof of Theorem 6.1.2. By using
Equation 6.15 and the fact that if 𝐹 is a right continuous increasing function we have that 𝐹(𝑥) ≥ 𝛼 if
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and only if 𝐹←(𝛼) ≤ 𝑥 it can be seen that

𝐴𝑟𝑛(𝛿) =
{∑

𝑖

(𝑤𝑖1{𝑌𝑖 > 𝑞𝛼 − 𝛿} − (1 − 𝐹(𝑞𝛼 − 𝛿)))

≤ 𝑣(𝑛)(1 − 𝛼) − 𝑛(1 − 𝐹(𝑞𝛼 − 𝛿))
}
, (6.33)

𝐵𝑟𝑛 =

{∑
𝑖

(𝑤𝑖1{𝑌𝑖 > 𝑞𝛼} − (1 − 𝐹(𝑞𝛼)))

> 𝑣(𝑛)(1 − 𝛼) − 𝑛(1 − 𝐹(𝑞𝛼))
}
. (6.34)

Then again two sets 𝐴𝑟,𝐿𝐼𝐿𝑛 (𝛿, 𝜂) and 𝐵𝑟,𝐿𝐼𝐿𝑛 (𝜂) are constructed that contain 𝐴𝑟𝑛(𝛿) and 𝐵𝑟𝑛 . Then in a
similar fashion to the previous sketch of proof, it is shown that

P(𝐴𝑟,𝐿𝐼𝐿𝑛 (𝛿, 𝜂) 𝑖.𝑜.) = P(𝐵𝑟,𝐿𝐼𝐿𝑛 (𝜂) 𝑖.𝑜.) = 0 (6.35)

from which the statement of the theorem follows. Again, the full proof can be found in [20].

From Theorem 6.1.2 it is known that for 𝑞𝑟𝑛,𝑤,𝑣(𝛼) to converge to 𝑞𝛼 it must hold that 𝑣(𝑛) = 𝑛. Addition-

ally, the bounds in Equation 6.31 of Theorem 6.1.3 imply that 𝑣(𝑛) is closest to 𝑛 if
√

2𝑛𝑣𝛼 log𝑒
(
log𝑒(𝑛𝑣𝛼)

)
is minimized, which is the case if 𝑣𝛼 is minimized. From this, we have

𝜃∗ = arg min
𝜃

var
[
1{max(𝑉(X), 0) > 𝑞𝛼}𝑤X(𝜃)

]
. (6.36)

This is equivalent to finding the 𝜃 that minimizes the second moment

𝜃∗ = arg min
𝜃

E𝜃

[
|1{max(𝑉(X), 0) > 𝑞𝛼}𝑤X(𝜃)|2

]
(6.37)

which is the minimization suggested in [47].

In [48], Glasserman et al. evaluated an algorithm for estimating the Value-at-Risk for credit port-
folios. In the paper, the authors use a delta-gamma approximation to approximate the portfolio’s loss.
From this approximation, an upper bound for the second moment is derived. This upper bound is then
minimized by varying 𝜃 such that the first moment of the auxiliary distribution is equal to the quantile
that needs to be estimated.

Combining the results from these two papers, a minimization problem can be defined in our case, which
examines all combinations of shifts and finds the one using which the mean of the shifted exposure
distribution is equal to the PFE and which simultaneously minimizes the second moment of the shifted
exposure distribution. Stated as an optimization problem it reads

min
𝜃

var
[
1{max(𝑉(X(𝑡)), 0) > 𝑞𝛼}𝑤X(𝜃)

]
(6.38)

subjected to |E𝜃 [𝐸(X(𝑡))] − 𝑃𝐹𝐸| ≤ 𝛽.

An optimizer is used which minimizes the loss function var
[
1{max(𝑉(X(𝑡)), 0) > 𝑞𝛼}𝑤X(𝜃)

]
under the

constraint |E𝜃 [𝐸(X(𝑡))] − 𝑃𝐹𝐸| ≤ 𝛽. Here, 𝛽 ∈ R+ defines an area around the PFE in which an optimal 𝜃
can be sought for.

Note that the PFE in 6.38 is the quick estimation from the COS-PFE method.

To summerize, this minimization problem is solved in several steps.

First, generate a low number of paths of risk factors and calculate the corresponding MtM val-
ues of the portfolio. From these MtM values the correlation between the MtM values and each of the
risk factors can be calculated. This quick estimation on the correlation values suggests shifting which
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risk factor would result in the most efficient push to portfolios exposures. This step is very necessary as,
randomly pushing a risk factor that is negatively correlated with the MtM value of the portfolio would
only result in generating MtM values further away from it’s PFE.

Secondly, the COS method is used to calculate a "good enough" approximation of the PFE and
the EE of the portfolio.

Finally, for the risk factor that has the highest correlation with the MtM values of the portfolio,
the Bisection method is used to find the shift value that makes the expected exposure of the portfolio,
under the new probability distribution, coincide with the PFE. In this way a new distribution of the
risk factors is found which causes the new exposure distribution to have the original PFE as the new
expected value. This shift is then used as the initial value in the minimization problem.

The complete algorithm can be summarized as follows.

Algorithm 1 The shift-AIS-COS algorithm.

Initialize:
Generate the paths of 𝑥𝑑, 𝑥 𝑓 , 𝑋 and 𝑧.

1. Calculate the MtM values for each of the paths.
2. Find the correlation between the MtM valeus and the risk factors from a quick MC simulation using a
low number of paths.
3. Use the COS method to find a quick estimation of the expected exposure and PFE of the portfolio,
from which a relatively big error can be tolerated.
4. Use the Bisection method on the risk factor having the highest correlation with the portfolio exposure
found in step 2, to find the first initial guess of the shift value for 6.38.
5. Solve the minimization problem in 6.38.

6. Use the new probability distribution to sample X̂1 , . . . , X̂𝑛 .

7. Calculate 𝐹̂𝑛,𝐼𝑆(𝑦) = 1 − 1
𝑛

∑𝑛
𝑖=1 1

{
𝑌

(
X̂(𝑖)

)
> 𝑦

}
𝑤X̂(𝑖)(𝜃).

8. Find the PFE estimate by computing 𝐹̂−1
𝑛,𝐼𝑆
(𝛼).

6.2. Adaptive Importance Sampling using the Cross-Entropy method
The Cross-Entropy method is an adaptive importance sampling method which is highly efficient as for
multivariate-normal distributions, which our auxiliary density is assumed to be, the optimal distribution
has analytical solutions for the parameters. This makes gradient descent methods obsolete. In this
section the adaptive importance sampling method using the Cross-Entropy algorithm (CE-AIS) will be
discussed. First, the general multi-level CE algorithm will be analyzed. It is followed by the CE-AIS-COS
method that will be used for the PFE approximation. After this, the consistency of the parameters and
convergence of the algorithm will be discussed. The section is concluded by investigating the theoretical
variance reduction of the method we propose here.

6.2.1. The algorithm
The CE-AIS method is based on the minimization of the Kullback-Leibler divergence [23][49]. The goal
of the algorithm is to find an auxiliary sampling density 𝑔𝝁,Σ that minimizes this divergence between
itself and the zero-variance density 𝑔★. Define 𝜃0 = (𝝁0 ,Σ0) as the set of parameters used in the original
probability density and 𝜃 = (𝝁,Σ) = {(𝝁,Σ) : 𝝁 ∈ R𝑚 ,Σ ∈ ℳ+𝑚×𝑚} as the set of possible parameters for
the auxiliary density. Furthermore, define the optimal parameters as

𝜃★ =
(
𝝁★,Σ★) = arg min

𝝁∈R𝑚 ,Σ∈ℳ+𝑚×𝑚
𝐷

(
𝑔𝝁,Σ , 𝑔

★) .
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Where 𝑚 is the number of the risk factors, andℳ+𝑚×𝑚 is the set of all symmetric, positive-definite
matrices in R𝑚×𝑚 . From the definition of the Kullback-Leibler divergence it can be seen that

𝐷(𝑔★, 𝑔𝝁,Σ) = E𝑔★
[
log

(
𝑔★(X)
𝑔𝝁,Σ(X)

)]
= E𝑔★

[
log(𝑔★(X)

]
− E𝑔★

[
log(𝑔𝝁,Σ(X)

]
, (6.39)

where, in our testing framework, X = [𝑥𝑑 , 𝑥 𝑓 , log (𝑋) , log (𝑧)]. Recall, that the logarithms found in this
section have base 𝑒. To find an auxiliary sampling density 𝑔𝝁,Σ that minimizes the information lost
when approximating the optimal auxiliary sampling distribution 𝑔★, the Kullback-Leibler divergence
𝐷(𝑔★, 𝑔𝝁,Σ) needs to be minimized. From Equation 6.39 it can be seen that as E𝑔★

[
log(𝑔★(X))

]
is a

constant, 𝐷(𝑔★, 𝑔𝝁,Σ) is minimized by maximizing E𝑔★
[
log(𝑔𝝁,Σ(X)

]
.

As already known, the optimal density, or zero-variance estimator, defined for the quantile 𝑞𝛼 is

𝑔★(X) = 1{max (𝑉(X), 0) > 𝑞𝛼} · 𝑝𝜃0(X)
1 − 𝛼

.

Here, 𝑝𝜃0 is the original probability density. It then follows that

(𝝁★,Σ★) = arg max
𝝁∈R𝑚 ,Σ∈ℳ+𝑚×𝑚

E𝑔★
[
log(𝑔𝝁,Σ(X))

]
,

= arg max
𝝁∈R𝑚 ,Σ∈ℳ+𝑚×𝑚

∫
R𝑚

log
(
𝑔𝝁,Σ(x)

)
𝑔★(x)𝑑x,

= arg max
𝝁∈R𝑚 ,Σ∈ℳ+𝑚×𝑚

∫
R𝑚

log
(
𝑔𝝁,Σ(x)

)
· 1{max (𝑉(x), 0) > 𝑞𝛼} · 𝑝𝜃0(x)

1 − 𝛼
𝑑x,

= arg max
𝝁∈R𝑚 ,Σ∈ℳ+𝑚×𝑚

E𝑝𝜃0

[
log(𝑔𝝁,Σ(X)) · 1

{
max (𝑉(X), 0) > 𝑞𝛼

}]
. (6.40)

Equation 6.40 is known as the cross-entropy problem. For the exponential family, of which the
multivariate normal distribution is part, analytical solutions exists. For other families of probability
densities, a gradient method can be used to find the optimal parameter, since the problem is generally
concave and differentiable [50][51]. In the case of the multivariate normal distribution the analytical
solutions exist:

𝝁★ = E𝑝𝜃0

[
X|max(𝑉(X), 0) > 𝑞𝛼

]
, (6.41)

Σ★ = E𝑝𝜃0

[
(X − 𝝁★)(X − 𝝁★)⊤|max(𝑉(X), 0) > 𝑞𝛼

]
. (6.42)

The full derivations of Equations 6.41 and 6.42 can be found in the Appendix. Additionally, in Appendix
A.3 it is shown that 𝝁★ and Σ★ give the global maximum of Equation 6.40. Using the Monte Carlo
method, these parameters can be approximated by

𝝁̂ =

𝑛∑
𝑖=1

𝑤𝑖X̂(𝑖) ,

Σ̂ =

𝑛∑
𝑖=1

𝑤𝑖(X̂(𝑖) − 𝝁̂)(X̂(𝑖) − 𝝁̂)⊤ ,

where

𝑤𝑖 =
𝑤′
𝑖∑𝑛

𝑖=1 𝑤
′
𝑖

,

𝑤′𝑖 = 1
{
max

(
𝑉(X̂(𝑖)), 0

)
> 𝑞𝛼

} 𝑝𝜃0(X̂(𝑖))
𝑔𝝁,Σ(X̂(𝑖))

.

The general multi-level cross-entropy method for finding the optimal importance sampling density to
approximate the 𝛼-quantile of the exposure distribution is summarized in the following algorithm.
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Algorithm 2 The multi-layer CE-AIS algorithm applied to PFE estimations

Initialize:
Set the iteration 𝑘 = 0, 𝑔𝝁0 ,Σ0 = 𝑝𝜃0 where 𝑔𝝁𝑘 ,Σ𝑘 is the auxiliary density used in
iteration 𝑘. Furthermore, set the number of paths 𝑛 and the maximum number of
iterations 𝑘𝑚𝑎𝑥 . Lastly, set a low quantile 𝜌.

1. Draw a samples of X̂(𝑘)1 , . . . , X̂(𝑘)𝑛 from 𝑔𝝁̂𝑘 ,Σ̂𝑘 where

if collateral is used then

X̂(𝑘)(𝑖) =
[
𝑥̂
(𝑘)
𝑑,𝑖

𝑥̂
(𝑘)
𝑓 ,𝑖

log
(
𝑋̂
(𝑘)
𝑖

)
log

(
𝑧̂
(𝑘)
𝑖

)]
.

else

X̂(𝑘)(𝑖) =
[
𝑥̂
(𝑘)
𝑑,𝑖

𝑥̂
(𝑘)
𝑓 ,𝑖

log
(
𝑋̂
(𝑘)
𝑖

)]
.

2. Apply the domain transformation
if collateral is used then

Ŷ(𝑘)(𝑖) = ℎ
(
X̂(𝑘)(𝑖)

)
=

[
𝑥̂
(𝑘)
𝑑,𝑖

𝑥̂
(𝑘)
𝑓 ,𝑖

𝑒
log

(
𝑋̂
(𝑘)
𝑖

)
𝑒

log
(
𝑧̂
(𝑘)
𝑖

) ]
,

else

Ŷ(𝑘)(𝑖) = ℎ
(
X̂(𝑘)(𝑖)

)
=

[
𝑥̂
(𝑘)
𝑑,𝑖

𝑥̂
(𝑘)
𝑓 ,𝑖

𝑒
log

(
𝑋̂
(𝑘)
𝑖

) ]
.

3. Find the 𝑞̂𝛼 quantile estimate of the weighted samples

max
(
𝑉

(
Ŷ(𝑘)(1)

)
, 0

)
, . . . ,max

(
𝑉

(
Ŷ(𝑘)(𝑛)

)
, 0

)
.

4. Compute the 𝜌-quantile 𝛾𝑘𝑡 of the samples

max
(
𝑉

(
Ŷ(𝑘)(1)

)
, 0

)
, . . . ,max

(
𝑉

(
Ŷ(𝑘)(𝑛)

)
, 0

)
and set 𝛾 = min

(
𝛾𝑘𝑡 , 𝑞̂𝛼

)
.

5. Calculate

𝑤𝑖 =
𝑤′
𝑖∑𝑛

𝑖=1 𝑤
′
𝑖

,

𝑤′𝑖 = 1
{
max

(
𝑉

(
Ŷ(𝑘)(𝑖)

)
, 0

)
> 𝛾

} 𝑝𝜃0

(
X̂(𝑘)(𝑖)

)
𝑔𝝁̂𝑘 ,Σ̂𝑘

(
X̂(𝑘)(𝑖)

) .
6. Calculate

𝝁̂𝑘+1 =

𝑛∑
𝑖=1

𝑤𝑖X̂(𝑘)(𝑖) ,

Σ̂𝑘+1 =

𝑛∑
𝑖=1

𝑤𝑖

(
X̂(𝑘)(𝑖) − 𝝁̂𝑘+1

) (
X̂(𝑘)(𝑖) − 𝝁̂𝑘+1

)⊤
.

if 𝑘 = 𝑘𝑚𝑎𝑥 then
calculate the final PFE estimate using 𝑔𝝁̂𝑘𝑚𝑎𝑥 ,Σ̂𝑘𝑚 𝑎𝑥 ,

else
return to step 1 with 𝑘 = 𝑘 + 1.
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The algorithm that is used for the PFE calculation has two major advantages to the original multi-level
CE method.

Firstly, the original multi-level CE algorithm is based on the assumption that the rare event 𝑞𝛼
has a probability 10−5 or lower of being exceeded [49]. As the probability of generating samples
above 𝑞𝛼, using 𝑝𝜃0 , is very small the algorithm has a very small probability of converging. To aid the
convergence, the multi-level procedure in step 3 is introduced. In this step, a low quantile 𝛾𝑘𝑡 of the
unweighted samples is computed. Using 𝛾𝑘𝑡 the value of 𝛾 can be found by taking the minimum of
the low quantile 𝛾𝑘𝑡 and the empirical quantile 𝑞̂𝛼. In this way, at each step the parameters 𝝁̂𝑘+1 and
Σ̂𝑘+1 are calculated using the expectation conditional on max(𝑉(X), 0) > 𝛾. As 𝛾𝑘𝑡 is increasing in each
iteration the parameters 𝝁̂𝑘+1 and Σ̂𝑘+1 also change accordingly, this causes 𝛾𝑘𝑡 to increase. This process
is repeated until 𝛾𝑘𝑡 overtakes 𝑞̂𝛼. After this happens 𝛾 = 𝑞̂𝛼 and the final parameters are calculated.

To illustrate the shift of these distributions an example of the multi-level CE algorithm is given
in Figure 6.1. In this figure the optimal sampling distribution for a high quantile of the standard normal
distribution was found. Fortunately, since the PFE is the 0.975-quantile a sufficient number of paths will
generate exposure values above the PFE level. Therefore, finding the quantile 𝛾𝑘𝑡 of the unweighted
samples is not necessary and the multi-level step can be skipped.

Figure 6.1: An example of the intermediate results from multi-level CE algorithm, which finds the auxiliary distribution for
importance sampling to capture a rare event of the standard normal distribution.

Secondly, the biggest advantage is that the COS method can be used to very quickly estimate the PFE of
the portfolio. Due to this it is not needed to calculate the empirical quantile of the weighted samples as
is done in step 1 of the multi-level CE algorithm.

In the original paper the authors give the option to use smoothing when calculating the new pa-
rameters. In this way, an 𝛼 ∈ [0, 1] can be chosen such that

𝝁̂𝑘+1 = 𝛼 ·
𝑛∑
𝑖=1

𝑤𝑖X̂(𝑘)(𝑖) + (1 − 𝛼) · 𝝁̂𝑘 ,

Σ̂𝑘+1 = 𝛼 ·
𝑛∑
𝑖=1

𝑤𝑖

(
X̂(𝑘)(𝑖) − 𝝁̂𝑘+1

) (
X̂(𝑘)(𝑖) − 𝝁̂𝑘+1

)⊤
+ (1 − 𝛼) · Σ̂𝑘 .
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These expressions for 𝝁̂𝑘+1 and Σ̂𝑘+1 can replace those in step 6 of Algorithm 2. Adding this smoothing
parameter 𝛼 can prevent the convergence to wrong solutions as the parameters 𝝁̂𝑘+1 and Σ̂𝑘+1 are less
influenced by potential outliers. The original paper does not use this smoothing as it did not improve
the results. Both dynamic smoothing, where the smoothing parameter changes at each iteration, or
static smoothing, using a constant value for 𝛼, can be used.

Our CE algorithm for PFE calculations does not use smoothing, as it does not improve the results.
However, an extra step is added at the end of the original CE algorithm. This extra step involves
averaging the means and covariance matrices found throughout the iterations of the algorithm, instead
of only using the mean and covariance matrix found in the last iteration, as is done in the original
CE algorithm. The reason for this is that, with a sufficient number of paths, the algorithm converges
in one step because the PFE is the 97.5%-quantile, which is not very extreme. In the tests, using
the mean instead of the parameters from the last iteration not only improved the accuracy of the
results but also allowed the algorithm to achieve this with significantly fewer paths. This is due to
the fact that averaging makes the algorithm less vulnerable for outliers being simulated. Addition-
ally, the need for fewer paths sped up the calculation of the new mean and covariance matrix considerably.

The complete algorithm is as follows:
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Algorithm 3 The CE-AIS-COS algorithm for PFE estimation.

Initialize:
Set 𝑃𝐹𝐸 as the PFE value found by the COS method. Set 𝑘 = 0 and 𝑔𝝁̂0 ,Σ̂0

= 𝑝𝜃0

where 𝑔𝝁̂𝑘 ,Σ̂𝑘 is the auxiliary density at iteration 𝑘. Then, set the number of paths 𝑛
and maximum number of iterations 𝑘𝑚𝑎𝑥 .

1. Draw a sample of X̂(𝑘)(1) , . . . , X̂
(𝑘)
(𝑛) from 𝑔𝝁̂𝑘 ,Σ̂𝑘

if collateral is used then
X̂(𝑘)(𝑖) =

[
𝑥̂
(𝑘)
𝑑,𝑖

𝑥̂
(𝑘)
𝑓 ,𝑖

log
(
𝑋̂
(𝑘)
𝑖

)
log

(
𝑧̂
(𝑘)
𝑖

)]
,

else
X̂(𝑘)(𝑖) =

[
𝑥̂
(𝑘)
𝑑,𝑖

𝑥̂
(𝑘)
𝑓 ,𝑖

log
(
𝑋̂
(𝑘)
𝑖

)]
.

2. Apply the domain transformation
if collateral is used then

Ŷ(𝑘)(𝑖) = ℎ
(
X̂(𝑘)(𝑖)

)
=

[
𝑥̂
(𝑘)
𝑑,𝑖

𝑥̂
(𝑘)
𝑓 ,𝑖

𝑒
log

(
𝑋̂
(𝑘)
𝑖

)
𝑒

log
(
𝑧̂
(𝑘)
𝑖

) ]
,

else
Ŷ(𝑘)(𝑖) = ℎ

(
X̂(𝑘)(𝑖)

)
=

[
𝑥̂
(𝑘)
𝑑,𝑖

𝑥̂
(𝑘)
𝑓 ,𝑖

𝑒
log

(
𝑋̂
(𝑘)
𝑖

) ]
.

3. Calculate

𝑤𝑖 =
𝑤′
𝑖∑𝑛

𝑖=1 𝑤
′
𝑖

,

𝑤′𝑖 = 1
{
max

(
𝑉

(
Ŷ(𝑘)(𝑖)

)
, 0

)
> PFE

} 𝑝𝜃0

(
X̂(𝑘)(𝑖)

)
𝑔𝝁̂𝑘 ,Σ̂𝑘

(
X̂(𝑘)(𝑖)

) .
4. Calculate

𝝁̂𝑘+1 =

𝑛∑
𝑖=1

𝑤𝑖X̂(𝑘)(𝑖) ,

Σ̂𝑘+1 =

𝑛∑
𝑖=1

𝑤𝑖

(
X̂(𝑘)(𝑖) − 𝝁̂𝑘+1

) (
X̂(𝑘)(𝑖) − 𝝁̂𝑘+1

)⊤
.

if 𝑘 = 𝑘𝑚𝑎𝑥 then calculate the final PFE estimate using 𝑔𝝁̂𝑘𝑚𝑎𝑥 ,Σ̂𝑘𝑚𝑎𝑥 , where

𝝁̂★ =
1

𝑘𝑚𝑎𝑥

𝑘𝑚𝑎𝑥∑
𝑖=1

𝝁̂𝑖 ,

Σ̂★ =
1

𝑘𝑚𝑎𝑥

𝑘𝑚𝑎𝑥∑
𝑖=1

Σ̂𝑖 .

else
return to step 1 with 𝑘 = 𝑘 + 1.
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6.2.2. Consistency and convergence
It is highly desirable for the parameters found by the CE-AIS-COS method to converge to the optimal
parameters, which are equal to Equations 6.41 and 6.42. If that is the case, it can be said that the sequence
of estimators is asymptotically consistent. In this section we will demonstrate that the estimators
produced by the CE-AIS-COS algorithm are indeed asymptotically consistent. First, an introduction to
M-estimators and consistency will be provided. Following this, a theorem proving the consistency of
the parameters will be presented.

In [47] the M-estimator is defined in the following way.

Definition 6.2.1 (M-estimator). Let 𝑚𝜃 : 𝒳 → R be a known function, and let

𝜃 ↦→ 𝑀𝑛(𝜃) =
1
𝑛

𝑛∑
𝑖=1

𝑚𝜃

(
X̂(𝑖)

)
. (6.43)

An estimator maximizing 𝑀𝑛(𝜃) over a set Θ is called an M-estimator.

The CE-AIS-COS algorithm tries to find 𝝁★ and Σ★ such that,

𝜃★ = (𝝁★,Σ★) = arg max
𝝁∈R𝑚 ,Σ∈ℳ+𝑚×𝑚

E𝑝𝜃0

[
log(𝑔𝝁,Σ(X)) · 1{max(𝑉(X), 0) > 𝑞𝛼}

]
, (6.44)

from where it was found that the analytical solutions for 𝝁★ and Σ★ are

𝝁★ = E𝑝𝜃0

[
X|max(𝑉(X), 0) > 𝑞𝛼

]
, (6.45)

Σ★ = E𝑝𝜃0

[ (
X − 𝝁★) (

X − 𝝁★)⊤ |max(𝑉(X), 0) > 𝑞𝛼

]
. (6.46)

For a certain random sample of X with size 𝑛, Equation 6.44 is approximated by

𝑀𝑛(𝝁,Σ) =
1
𝑛

𝑛∑
𝑖=1

log(𝑔𝝁,Σ(X̂(𝑖))) · 1{max(𝑉(X̂(𝑖)), 0) > 𝑞𝛼}.

By defining

(𝝁̂𝑛 , Σ̂𝑛) = arg max
𝝁∈R𝑚 ,Σ∈ℳ+𝑚×𝑚

1
𝑛

𝑛∑
𝑖=1

log(𝑔𝝁,Σ(X̂(𝑖))) · 1{max(𝑉(X̂(𝑖)), 0) > 𝑞𝛼},

it can be concluded that the estimators (𝝁★,Σ★) are asymptotically consistent if the estimators (𝝁̂𝑛 , Σ̂𝑛)
converge in probability to (𝝁★,Σ★). Theorem 6.2.1, found in [47], will be used to prove the consistency
of the parameters produced by the CE-AIS-COS algorithm.

Theorem 6.2.1. Let 𝑀𝑛 be random functions and let 𝑀 be a fixed function of 𝜃 such that for every 𝜖 > 0 it
satisfies

1. sup𝜃∈Θ |𝑀𝑛(𝜃) −𝑀(𝜃)| →P 0,

2. sup𝜃:𝑑(𝜃,𝜃★)≥𝜖 𝑀(𝜃) < 𝑀(𝜃★),

3. 𝑀𝑛(𝜃̂𝑛) ≥ 𝑀𝑛(𝜃★) − 𝑜P(1).
Then any sequence of estimators 𝜃̂𝑛 converges in probability to 𝜃★.

In the previous theorem 𝑜P(1) is a sequence that converges to zero in probability as 𝑛 goes to ∞. To
prove the asymptotical consistency of the CE-AIS-COS estimators Lemma 6.2.1, found in [52], is used.

Lemma 6.2.1. If the data are i.i.d., Θ is compact, 𝑓 (X, 𝜃) is continuous at each 𝜃 ∈ Θ with probability one, and
there is 𝑑(X) with



 𝑓 (X, 𝜃)

2 ≤ 𝑑(X) for all 𝜃 ∈ Θ and E𝑝𝜃0
[𝑑(X)] < ∞, then E𝑝𝜃0

[ 𝑓 (X, 𝜃)] is continuous and

sup
𝜃∈Θ






 1
𝑛

𝑛∑
𝑖=1

𝑓 (X̂(𝑖) , 𝜃) − E𝑝𝜃0
[ 𝑓 (X, 𝜃)]







2

→P 0.
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Proof. First, define
𝑓 (X, 𝝁,Σ) = 1{max(𝑉(X), 0) > 𝑞𝛼} · log(𝑔𝝁,Σ(X)).

First, we will show that 𝑓 (X, 𝝁,Σ) is a continuous function for every (𝝁,Σ) ∈ Θ. In the case that
max(𝑉(X), 0) > 𝑞𝛼 we get that 𝑓 (X, 𝝁,Σ) = log(𝑔𝝁,Σ(X)). Since the probability density function is non-
zero for each (𝝁,Σ) ∈ Θ, where Θ = {(𝝁,Σ) : 𝝁 ∈ R𝑚 ,Σ ∈ ℳ+𝑚×𝑚}, the logarithm of 𝑔𝝁,Σ(X) is continuous.

Secondly, in the case that max(𝑉(X), 0) ≤ 𝑞𝛼 we get that 𝑓 (X, 𝝁,Σ) = 0. And thus, again, 𝑓 (X, 𝝁,Σ) is
continuous for all (𝝁,Σ) ∈ Θ.

Next it is shown that

 𝑓 (X, 𝝁,Σ)

2 ≤


log(𝑔𝝁,Σ(X))




2 ≤



log(𝑔𝝁,Σ(X))




1 = | log(𝑔𝝁,Σ(X))| = 𝑑(X),

for all (𝝁,Σ) ∈ Θ. Then it follows, assuming 𝑔 is normally distributed, that:

E𝑝𝜃0

[��log(𝑔𝝁,Σ(X))
��] = ∫

R𝑚
| log(𝑔𝝁,Σ(x))| · 𝑝𝜃0(x)𝑑x,

=

∫
R𝑚

����− 𝑘2 log(2𝜋) − 1
2 log(|Σ|) − 1

2 (x − 𝝁)
⊤Σ−1(x − 𝝁)

���� · 𝑝𝜃0(x)𝑑x,

≤
∫
R𝑚

����− 𝑘2 log(2𝜋) − 1
2 log(|Σ|)

���� + ����12 (x − 𝝁)⊤Σ−1(x − 𝝁)
���� · 𝑝𝜃0(x)𝑑x,

=

∫
R𝑚
|𝐶| +

����12 (x − 𝝁)⊤Σ−1(x − 𝝁)
���� · 𝑝𝜃0(x)𝑑x.

Let 𝐾 ≥ |𝐶|. Then it is found that

E𝑝𝜃0

[��log(𝑔𝝁,Σ(x))
��] = ∫

R𝑚
|𝐶| +

����12 (x − 𝝁)⊤Σ−1(x − 𝝁)
���� · 𝑝𝜃0(x)𝑑x,

≤
∫
R𝑚

(
𝐾 + 1

2 (x − 𝝁)
⊤Σ−1(x − 𝝁)

)
· 𝑝𝜃0(x)𝑑x,

= 𝐾

∫
R𝑚
𝑝𝜃0(x)𝑑x + 1

2

∫
R𝑚
(x − 𝝁)⊤Σ−1(x − 𝝁) · 𝑝𝜃0(x)𝑑x.

Whenever 𝑔 is normally distributed, as is the case in our application, the squared Mahalabonis distance
defined by (X − 𝝁)⊤Σ−1(X − 𝝁) is non-negative and has a chi-squared distribution with 𝑚 degrees of
freedom. Thus as (X − 𝝁)⊤Σ−1(X − 𝝁) ∼ 𝜒2

𝑚 , then∫
R𝑚
(x − 𝝁)⊤Σ−1(x − 𝝁) · 𝑝𝜃0(x)𝑑x = E𝑝𝜃0

[(X − 𝝁)⊤Σ−1(X − 𝝁)] = 𝑚.

Secondly, as
∫
R𝑚 𝑝𝜃0(x)𝑑x = 1 it is given that

E𝑝𝜃0

[��log(𝑔𝝁,Σ(X))
��] = 𝐾 + 𝑚2 < ∞.

Using Theorem 6.2.1 and Lemma 6.2.1 the following Lemma 6.2.2 can be formulated and proven.

Lemma 6.2.2. The estimators obtained by the CE-AIS-COS algorithm are asymptotically consistent.
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Proof. Define

𝑀𝑛(𝝁,Σ) =
1
𝑛

𝑛∑
𝑖=1

log(𝑔𝝁,Σ(X̂(𝑖))) · 1{max(𝑉(X̂(𝑖)), 0) > 𝑞𝛼},

𝑀(𝝁,Σ) = E𝑝𝜃0

[
log(𝑔𝝁,Σ(X)) · 1{max(𝑉(X), 0) > 𝑞𝛼}

]
,

(𝝁̂𝑛 , Σ̂𝑛) = arg max
𝝁∈R𝑚 ,Σ∈ℳ+𝑚×𝑚

𝑀𝑛(𝝁,Σ),

(𝝁★,Σ★) = arg max
𝝁∈R𝑚 ,Σ∈ℳ+𝑚×𝑚

𝑀(𝝁,Σ),

Θ = {(𝝁,Σ) : 𝝁 ∈ R𝑚 ,Σ ∈ ℳ+𝑚×𝑚}

Now, it is proven that the requirements of Theorem 6.2.1 are met.

1. First it needs to be shown that

sup
(𝝁,Σ)∈Θ

|𝑀𝑛(𝝁,Σ) −𝑀(𝝁,Σ)| →P 0.

For this, the Uniform Law of Large Numbers of Lemma 6.2.1 will be used, which we copy below:

sup
𝜃∈Θ






 1
𝑛

𝑛∑
𝑖=1

𝑓 (X̂(𝑖) , 𝜃) − E𝑝𝜃0
[ 𝑓 (X, 𝜃)]







2

→P 0.

where
𝑓 (X̂(𝑖) , 𝝁,Σ) = 1{max(𝑉(X̂(𝑖)), 0) > 𝑞𝛼} · log(𝑔𝝁,Σ(X̂(𝑖))).

Then, from the proof of the lemma, the statement follows.

2. Next, it needs to be shown that

sup
(𝝁,Σ):𝑑((𝝁,Σ),(𝝁★,Σ★))≥𝜖

𝑀(𝝁,Σ) < 𝑀(𝝁★,Σ★).

As shown, 𝑀(𝝁,Σ) is maximized by 6.45 and 6.46. Then for all (𝝁,Σ) ≠ (𝝁★,Σ★), 𝑀(𝝁★,Σ★) −
𝑀(𝝁,Σ) > 0. Thus, if 𝜖 > 0, then for all (𝝁,Σ) such that 𝑑((𝝁,Σ), (𝝁★,Σ★)) ≥ 𝜖 it is true that
(𝝁,Σ) ≠ (𝝁★,Σ★), and thus

sup
(𝝁,Σ):𝑑((𝝁,Σ),(𝝁★,Σ★))≥𝜖

𝑀(𝝁★,Σ★) −𝑀(𝝁,Σ) > 0. (6.47)

3. Lastly, we need to show that

𝑀𝑛(𝝁̂𝑛 , Σ̂𝑛) ≥ 𝑀𝑛(𝝁★,Σ★) − 𝑜P(1).

If (𝝁̂𝑛 , Σ̂𝑛)maximizes 𝑀𝑛(𝝁,Σ) then it can be seen that as

𝑀𝑛(𝝁̂𝑛 , Σ̂𝑛) ≥ sup
(𝝁,Σ)∈Θ

𝑀𝑛(𝝁,Σ) − 𝑜P(1),

it can be concluded that
𝑀𝑛(𝝁̂𝑛 , Σ̂𝑛) ≥ 𝑀𝑛(𝝁★,Σ★) − 𝑜P(1).

Then by combining 𝑀𝑛(𝝁★,Σ★) →P 𝑀(𝝁★,Σ★)with the third condition, it can be seen that

𝑀𝑛(𝝁̂𝑛 , Σ̂𝑛) ≥ 𝑀(𝝁★,Σ★) − 𝑜P(1).

It then follows that

𝑀𝑛(𝝁̂𝑛 , Σ̂𝑛) ≥ 𝑀(𝝁★,Σ★) − 𝑜P(1),
𝑀𝑛(𝝁̂𝑛 , Σ̂𝑛) −𝑀(𝝁̂𝑛 , Σ̂𝑛) + 𝑜P(1) ≥ 𝑀(𝝁★,Σ★) −𝑀(𝝁̂𝑛 , Σ̂𝑛),

sup
𝝁,Σ

��𝑀𝑛(𝝁,Σ) −𝑀(𝝁,Σ)
�� + 𝑜P(1) ≥ 𝑀(𝝁★,Σ★) −𝑀(𝝁̂𝑛 , Σ̂𝑛).
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As the first condition shows that sup𝝁,Σ

��𝑀𝑛(𝝁,Σ) −𝑀(𝝁,Σ)
�� → 0, and as 𝑜P → 0 it follows that

sup𝝁,Σ

��𝑀𝑛(𝝁,Σ) −𝑀(𝝁,Σ)
�� + 𝑜P → 0.

From the second condition of the proof it follows that that for every 𝜖 > 0 there exists a number
𝜁 > 0 such that for every (𝝁,Σ)where 𝑑((𝝁,Σ), (𝝁★,Σ★)) ≥ 𝜖 it can be seen that 𝑀(𝝁,Σ) < 𝑀(𝝁★,Σ★) − 𝜁.
Thus, the event {𝑀(𝝁̂, Σ̂) < 𝑀(𝝁★,Σ★) − 𝜁} contains {𝑑((𝝁,Σ), (𝝁★,Σ★)) ≥ 𝜖}. Therefore, by having
shown that

𝑀(𝝁★,Σ★) −𝑀(𝝁̂, Σ̂) → 0,

it follows that the probability of {𝑀(𝝁̂, Σ̂) < 𝑀(𝝁★,Σ★) − 𝜁} goes to zero which implies that the
probability of {𝑑((𝝁,Σ), (𝝁★,Σ★)) ≥ 𝜖} goes to zero. Thus as P

(
{𝑑((𝝁,Σ), (𝝁★,Σ★)) ≥ 𝜖}

)
→ 0 it can be

concluded that (𝝁,Σ) → (𝝁★,Σ★) in probability.

From Lemma 6.2.2 it can be seen that the algorithm produces consistent estimators 𝝁̂𝑛 and Σ̂𝑛 . The final
estimators 𝝁★ and Σ★ are then computed by taking the average of the estimators found at each iteration
of the algorithm. This step is justified by the Law of Large Numbers which states that the sample mean
of independent identically distributed values, which in this case are the estimators 𝝁̂1 , . . . , 𝝁̂𝑘𝑚𝑎𝑥 and
Σ̂1 , . . . , Σ̂𝑘𝑚𝑎𝑥 , converges to the true mean which is their analytical solution.

In [53] and [54] the convergence of the CE algorithm is proven. In the papers Proposition 3 is
formulated which provides the condition needed for the CE algorithm to converge in a finite number
of iterations. For the proof of Proposition 3 the authors in [54] introduce a modified multi-layer CE
algorithm where the low quantile 𝜌𝑡 , where 𝑡 is the iteration, is adaptive, as choosing an acceptable
𝜌 a prior can be difficult. Notice, that by choosing 𝜌𝑡 = 𝜌 the algorithm is equivalent to the original
multi-layer CE algorithm. This multi-layer CE algorithm is summarized below:

Algorithm 4 The multi-layer CE algorithm with adaptive low quantile 𝜌𝑡 used to prove convergence,
provided in [54].

Initialize:
Set 𝑡 = 1, 𝜌0 = 𝜌, v0 = u.

1. Compute

𝑄(v, v𝑡−1 , 𝜌𝑡−1) = Ev𝑡−1

[
1
{
M(Z) ≥ min

(
𝑥, 𝛾(v𝑡−1 , 𝜌𝑡−1)

)}
·W · log( 𝑓 (Z, v))

]
.

Here, W is the likelihood ratio of u and v𝑡−1.
2. Compute

v𝑡 ∈ arg max
v∈𝑉

𝑄(v, v𝑡−1 , 𝜌𝑡−1).

if 𝛾(v𝑡−1 , 𝜌𝑡−1) ≥ 𝑥 then stop.
else

Move to the next step.

3. Let 𝜌𝑡 be such that 𝛾(v𝑡 , 𝜌𝑡) ≥ min
(
𝑥, 𝛾(v𝑡−1 , 𝜌𝑡−1) + 𝛿

)
, where 𝛿 is a positive constant.

Let 𝑡 = 𝑡 + 1 and go to step 1.

In this algorithm v𝑡 is the auxiliary sampling density found in iteration 𝑡, 𝑢 is the original sampling
density, M is the sample performance under the random vector Z, and 𝛾(v𝑡 , 𝜌𝑡) is the (1 − 𝜌𝑡)-quantile
of M(Z) under the probability density v𝑡 .

Proposition 3. Let 𝑆★ be the set containing the v’s that maximize Equation 6.40, then if there exists a set 𝑉
such that 𝑉 ∩ 𝑆★ ≠ ∅ and Pv(M(Z) ≥ 𝑥) > 0 for all v ∈ 𝑉 , then the multi-level CE algorithm converges with
probability 1 to a solution of 6.40 after a finite number of iterations.

Proof. Let 𝑡 be an iteration of the algorithm. Define 𝛾(v𝑡 , 𝜌) as an arbitrary (1 − 𝜌)-quantile of M(Z)
under the probability density v𝑡 .
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Define 𝜌★𝑥 = Pv𝑡 (M(Z) ≥ 𝑥). Then, from the condition of the proposition it holds that, as Pv𝑡 (M(Z) ≥ 𝑥) >
0 since v𝑡 ∈ 𝑉 it must be true that 𝜌★𝑥 > 0. Then, define an arbitrary 𝜌★ ∈

(
0, 𝜌★𝑥

)
. It follows that,

Pv𝑡
(
M(Z) ≥ 𝛾(v𝑡 , 𝜌★)

)
= 𝜌★,

Pv𝑡
(
M(Z) ≤ 𝛾(v𝑡 , 𝜌★)

)
= 1 − 𝜌★ > 1 − 𝜌★𝑥 . (6.48)

In the last equation we used the fact that 𝜌★ ∈
(
0, 𝜌★𝑥

)
implies that 𝜌★ < 𝜌★𝑥 .

Now, suppose that 𝛾(v𝑡 , 𝜌★) < 𝑥, then

Pv𝑡
(
M(Z) ≤ 𝛾(v𝑡 , 𝜌★)

)
≤ Pv𝑡 (M(Z) < 𝑥) = 1 − 𝜌★𝑥 .

This last statement contradicts Equation 6.48. From this it follows that 𝛾(v𝑡 , 𝜌★) ≥ 𝑥. This causes
the algorithm to reach step 4 and stop. If this happens at 𝑡 = 𝑇 it follows that 𝛾

(
v𝑇−1 , 𝜌𝑇−1

)
≥ 𝑥.

Consequently, in step 2 of the algorithm we find,

v𝑇 ∈ arg max
v∈𝑉

Ev
[
1 {M(Z) ≥ 𝑥} ·W · log( 𝑓 (Z, v))

]
.

Here, v𝑇 is the CE-optimal solution which proves Proposition 3.

In practice the expectation and quantile of the last algorithm are approximated using the sample mean
and the sample quantile. This transforms the calculation in step 3 of the algorithm into

v𝑡 ∈ arg max
v∈𝑉

1
𝑁

𝑁∑
𝑖=1

[
1
{
M(Ẑ(𝑖)) ≥ min

(
𝑥, 𝛾̂(v𝑡 , 𝜌𝑡−1)

)}
·W · log

(
𝑓 (Ẑ(𝑖) , v)

)]
, (6.49)

where 𝛾̂𝑛(v𝑡 , 𝜌𝑡) is the sample quantile of M(Z). In Proposition 4, found in [54], it is shown that the
conditions needed for convergence, as shown in Proposition 3, are equal to those using the sample mean
and sample quantile.

Proposition 4. Suppose that Pv (M(Z) ≥ 𝑥) > 0 for all v ∈ 𝑉 . Let Ẑ(1) , Ẑ(2) , . . . be i.i.d. with common density
𝑓 (Z, v). Then, there exists 𝜌𝑥 > 0 and a random 𝑁𝑥 > 0 such that, with probability one, 𝛾̂𝑁 (Z, 𝜌) ≥ 𝑥 for all
𝜌 ∈ (0, 𝜌𝑥) and all 𝑁 ≥ 𝑁𝑥 . Moreover, the probability that 𝛾̂𝑁 (Z, 𝜌) ≥ 𝑥 for a given 𝑁 goes to one exponentially
fast with 𝑁 .

Proof. In the proof found in [54] the proof is split up for distributions where Pv (M(Z) > 𝑥) > 0 and
Pv (M(Z) = 𝑥) > 0. As the auxiliary density used in the CE-AIS-COS algorithm for PFE calculations is
assumed to be normally distributed, this proof is restricted to the case where Pv (M(Z) > 𝑥) > 0. For
auxiliary densities following finitely supported probability distributions the full proof can be found in
[54].

First it will be proven that the sample quantile 𝛾̂ goes to the theoretical quantile 𝛾 as 𝑛 goes to
∞. After this it is proven that 𝛾̂𝑁 (Z, 𝜌) ≥ 𝑥 for all 𝜌 ∈ (0, 𝜌𝑥) and 𝑁 ≥ 𝑁𝑥 .

A (1 − 𝜌)-quantile of a random variable 𝑌 can be expressed as the optimal solution of the minimization
problem

min
𝜃

Eℎ(𝑌, 𝜃),

where
ℎ(𝑌, 𝜃) = (1 − 𝜌)(𝑌 − 𝜃) · 1 {𝜃 ≤ 𝑌} + 𝜌(𝑌 − 𝜃) · 1 {𝜃 ≥ 𝑌} .

Using the subdifferential of Eℎ(𝑌, 𝜃), which is defined as the set of subderivatives, with respect to 𝜃 it
can be seen that

𝜕𝜃Eℎ(𝑌, 𝜃) =
[
𝜌 − P (𝑌 ≥ 𝜃) ,−(1 − 𝜌) + P (𝑌 ≤ 𝜃)

]
.

To minimize Eℎ(𝑌, 𝜃) a 𝜃 must be found such that

𝜌 − P (𝑌 ≥ 𝜃) = 0,
−(1 − 𝜌) + P (𝑌 ≤ 𝜃) = 0.
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From this it follows that P (𝑌 ≥ 𝜃) = 𝜌 and P (𝑌 ≤ 𝜃) = 1 − 𝜌.

Similarly, it can be shown that 𝜃̂ is the sample quantile of 𝑌 as it can be shown to be the solution to,

min
𝜃

1
𝑁

𝑁∑
𝑖=1

ℎ(𝑌𝑖 , 𝜃).

Then, the second order subdifferential yields

𝜕2
𝜃Eℎ(𝑌, 𝜃) =

[
𝜕𝜃

(
𝜌 − P(𝑌 ≥ 𝜃)

)
, 𝜕𝜃

(
−(1 − 𝜌) + P(𝑌 ≤ 𝜃)

) ]
.

where

𝜕𝜃
(
𝜌 − P(𝑌 ≥ 𝜃)

)
= 𝜕𝜃

(
𝜌 − (1 − P (𝑌 < 𝜃))

)
,

= 𝜕𝜃𝜌 − 𝜕𝜃 (1 − P(𝑌 < 𝜃)) ,
= 𝑓𝑌(𝜃) > 0,

and

𝜕𝜃
(
−(1 − 𝜌) + P(𝑌 ≤ 𝜃)

)
= 𝜕𝜃

(
−(1 − 𝜌) + P (𝑌 ≤ 𝜃)

)
,

= 𝜕𝜃(−(1 − 𝜌)) + 𝜕𝜃P(𝑌 ≤ 𝜃),
= 𝑓𝑌(𝜃) > 0.

Due to this, it can be concluded that Eℎ(𝑌, 𝜃) is convex in 𝜃. From this it follows that the sample quantile
𝜃̂ goes to 𝜃 with probability 1 as 𝑛 goes to∞.

Next, it will be proven that 𝛾̂𝑁 (Z, 𝜌) > 𝑥 for all 𝜌 ∈ (0, 𝜌𝑥) and 𝑁 ≥ 𝑁𝑥 .

Let Ẑ(1) , . . . , Ẑ(𝑁) be i.i.d. samples, and Pv (M(Z) > 𝑥) > 0 for all v ∈ 𝑉 . Then using the same arguments
as in the proof of Proposition 3, it can be argued that for any 𝜌 ∈ (0, 𝜌𝑥), where 𝜌𝑥 = Pv (M(Z) > 𝑥), we
have that 𝛾(v, 𝜌) ≥ 𝑥. Then by using the argument proven earlier it can be stated that as 𝛾̂ goes to 𝛾
with probability 1, for 𝑁 large enough, that 𝛾̂(v, 𝜌★) > 𝑥. Besides this the probability of 𝛾̂(v, 𝜌★) > 𝑥 for
a given 𝑁 goes to one exponentially fast [55].

The CE-AIS-COS algorithm used in this thesis is not multi-layered. However, the prior proposition
can still be used to prove the convergence of our algorithm. The reason for this is that our algorithm
is equivalent to a multi-layer CE algorithm in which 𝛾 = min

(
𝑞0.975 , 𝛾̂

)
where 𝛾̂ is the sample 0.975-

quantile. Since the original probability density is used in the first iteration, provided that our PFE
approximation 𝑞0.975 calculated using the COS method is accurate enough, we have that 𝑞0.975 ≈ 𝛾̂. In
this way, in the first iteration, 𝛾 = 𝑞0.975 = 𝛾̂. From the second iteration onward 𝛾 = 𝑞0.975 ≤ 𝛾̂. Then, as
the CE-AIS-COS method developed in this section can be seen as a multi-layer CE algorithm Lemma 5
can be proven.

Proposition 5. The CE-AIS-COS algorithm converges with probability 1 to the solution of 6.40 after a finite
number of iterations.

Proof. To prove this lemma it must be shown that Pv(M(Z) ≥ 𝑥) > 0 for all v ∈ 𝑉 , where in our case
v is 𝑔𝝁,Σ, 𝑉 is {(𝝁,Σ) : 𝝁 ∈ R𝑚 ,Σ ∈ ℳ+𝑚×𝑚}, M(Z) is max(𝑉(X), 0), and 𝑥 is 𝑞𝛼. Thus, to prove is that
for all (𝝁,Σ) ∈ {(𝝁,Σ) : 𝝁 ∈ R𝑚 ,Σ ∈ ℳ+𝑚×𝑚} it must be true that P𝑔𝝁,Σ(max(𝑉(X), 0) ≥ 𝑞𝛼) > 0. As 𝑔𝝁,Σ
follows the normal distribution, which has infinite tails for all values of 𝝁 ∈ R𝑚 and Σ ∈ ℳ+𝑚×𝑚 , is can be
concluded that for all values of 𝑞𝛼 it is true that P𝑔𝝁,Σ(max(𝑉(X), 0) ≥ 𝑞𝛼) > 0. Thus, using proposition 3
the lemma has been proven.
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6.3. Theoretical variance reduction
In this section the theoretical variance reduction will be discussed. The CDF estimator using the Monte
Carlo method and the importance sampling are

𝐹̂𝑛(𝑦) = 1 − 1
𝑛

𝑛∑
𝑖=1

1{max(𝑉(X̂(𝑖)), 0) > 𝑦},

𝐹̂𝑛,𝐼𝑆(𝑦) = 1 − 1
𝑛

𝑛∑
𝑖=1

1{max(𝑉(X̂(𝑖)), 0) > 𝑦} ·
𝑝𝜃0(X̂(𝑖))
𝑝𝜃(X̂(𝑖))

.

As shown, the variances of these estimators are

var𝑝𝜃0

[
𝐹̂𝑛(𝑦)

]
=

1
𝑛

(
E𝑝𝜃0

[
1{max(𝑉(X), 0) > 𝑦}

]
− E𝑝𝜃0

[
1{max(𝑉(X), 0) > 𝑦}

]2
)
,

var𝑝𝜃
[
𝐹̂𝑛,𝐼𝑆(𝑦)

]
=

1
𝑛

(
E𝑝𝜃

[
1{max(𝑉(X), 0) > 𝑦}

(
𝑝𝜃0(X)
𝑝𝜃(X)

)2
]

− E𝑝𝜃
[
1{max(𝑉(X), 0) > 𝑦} 𝑝𝜃0(X)

𝑝𝜃(X)

]2
)
,

=
1
𝑛

(
E𝑝𝜃

[
1{max(𝑉(X), 0) > 𝑦}

(
𝑝𝜃0(X)
𝑝𝜃(X)

)2
]

− E𝑝𝜃0

[
1{max(𝑉(X), 0) > 𝑦}

]2
)
.

From this it can be seen that the variance reduction is dependent on the second moments. To be more
precise, it can be shown that the variance reduction is dependent on the ratio 𝑝𝜃0 (X)

𝑝𝜃(X) since,

E𝑝𝜃

[
1{max(𝑉(X), 0) > 𝑦}

(
𝑝𝜃0(X)
𝑝𝜃(X)

)2
]
=

∫
R𝑚

1{max(𝑉(x, 0)) > 𝑦} ·
(
𝑝𝜃0(x)
𝑝𝜃(x)

)2

· 𝑝𝜃(x)𝑑x,

=

∫
R𝑚

1{max(𝑉(x, 0)) > 𝑦} · 𝑝𝜃0(x)
𝑝𝜃(x)

· 𝑝𝜃0(x)𝑑x,

= E𝑝𝜃0

[
1{max(𝑉(X), 0) > 𝑦} 𝑝𝜃0(X)

𝑝𝜃(X)

]
.

As a next step, we use the central limit theorem to derive the influence of the likelihood ratio on the
theoretical variance reduction.

The quantile estimate 𝑞̂𝛼 obeys the central limit theorem [9]. Suppose 𝑦 is the quantile that solves 𝐹(𝑦) = 𝑝.
Define the indicator functions 1{𝑌(X) ≤ 𝑦} as a new random variable with E𝑝𝜃0

[
1{𝑌(X) ≤ 𝑦}

]
= 𝑝,

where 𝑝 = P
[
𝑌(X) ≤ 𝑦

]
. From this construction, we have that var𝑝𝜃0

[
1{𝑌(X) ≤ 𝑦}

]
= 𝑝(1 − 𝑝). Based

on the central limit theorem it holds that
√
𝑛

(
𝐹̂𝑛(𝑦) − 𝑝

)
→𝑑 𝒩

(
0, 𝑝(1 − 𝑝)

)
(6.50)

as 𝑛 goes to∞.

Similarly as done for 𝐹̂𝑛 above, it follows from the central limit theorem that the estimator 𝐹̂𝑛,𝐼𝑆
also converges in distribution to a normal distribution. By seeing that E𝑝𝜃

[
1{𝑌(X) ≤ 𝑦}𝑤X(𝜃)

]
=

E𝑝𝜃0

[
1{𝑌(X) ≤ 𝑦}

]
= 𝑝, it follows that

√
𝑛

(
𝐹̂𝑛,𝐼𝑆(𝑦) − 𝑝

)
→𝒩

(
0, var𝑝𝜃

[
1{𝑌(X) ≤ 𝑦}𝑤X(𝜃)

] )
.
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In [56], it is found that the estimator of the sample quantile 𝑞̂𝛼 = 𝐹̂−1
IS (𝑝) also converges in distribution

following a central limit theorem √
𝑛

(
𝑞̂𝛼 − 𝑞𝛼

)
→𝒩

(
0, 𝜏2) (6.51)

as 𝑛 goes to ∞. Here, 𝑞𝛼 is the true 𝛼−quantile, and 𝜏2 is the asymptotic variances of the estimator,
defined by

𝜏2 =
𝑝(1 − 𝑝)
𝑓 2(𝑞𝛼)

, (6.52)

where 𝑓 (𝑞𝛼) is the derivative of the CDF 𝐹 at the 𝛼-quantile 𝑞𝛼, and is assumed to satisfy 𝑓 (𝑞𝛼) > 0.

The proof of the central limit theorem for the quantile estimator can be found in [56] and starts
by defining the Berry-Esséen theorem, which we reformulate below as Theorem 6.3.1 retrieved from
[57]. In this theorem 𝐹 denotes the CDF which possesses left- or right-hand derivatives at 𝑞𝛼, denoted
by 𝐹′(𝑞𝛼−) or 𝐹′(𝑞𝛼+), and Φ is the CDF of the standard normal distribution function.

Theorem 6.3.1 (Berry-Esséen). Let (𝑋𝑗)𝑗≥1 be independent identically distributed. Suppose that E
[
|𝑋𝑗|3

]
< ∞.

Let 𝐺𝑛(𝑥) = P
(
𝑆𝑛−𝑛𝜇
𝜎
√
𝑛
≤ 𝑥

)
where 𝜇 = E[𝑋𝑗] and 𝜎2 = 𝜎2

𝑋𝑗
< ∞. Let Φ(𝑥) = P(𝑌 ≤ 𝑥), then

sup
𝑥

|𝐺𝑛(𝑥) −Φ(𝑥)| ≤ 𝐶 ·
E

[
|𝑋1|3

]
𝜎3√𝑛

, (6.53)

where 𝑆𝑛 =
∑𝑛
𝑗=1 𝑋𝑗 and 𝐶 is a constant.

The central limit theorem for the quantile estimate 𝑞̂𝛼 is stated in Theorem 6.3.2.

Theorem 6.3.2. Let 0 < 𝑝 < 1. Suppose that 𝐹 is continuous at 𝑞𝑝 .

1. If there exists 𝐹′(𝑞𝑝−) > 0, then for 𝑡 < 0,

lim
𝑛→∞

P

[ √
𝑛(𝑞̂𝑝 − 𝑞𝑝)√

𝑝(1 − 𝑝)/𝐹′(𝑞𝑝−)
≤ 𝑡

]
= Φ(𝑡).

2. If there exists 𝐹′(𝑞𝑝+) > 0, then for 𝑡 > 0,

lim
𝑛→∞

P

[ √
𝑛(𝑞̂𝑝 − 𝑞𝑝)√

𝑝(1 − 𝑝)/𝐹′(𝑞𝑝+)
≤ 𝑡

]
= Φ(𝑡).

3. In any case,

lim
𝑛→∞

P
[√
𝑛(𝑞̂𝑝 − 𝑞𝑝 ≤ 0)

]
= Φ(0) = 1

2 .

Proof. Fix 𝑡, and let 𝐴 > 0 be a normalizing constant. Then define

𝐺𝑛(𝑡) = P

[√
𝑛(𝑞̂𝑝 − 𝑞𝑝)

𝐴
≤ 𝑡

]
.

Using the fact that 𝐹(𝑥) ≥ 𝑡 if and only if 𝑥 ≥ 𝐹−1(𝑡), it can be seen that

𝐺𝑛(𝑡) = P
[
𝑞̂𝑝 ≤ 𝑞𝑝 +

𝑡𝐴√
𝑛

]
,

= P
[
𝐹𝑛(𝑞̂𝑝) ≤ 𝐹𝑛

(
𝑞𝑝 +

𝑡𝐴√
𝑛

)]
,

= P
[
𝑝 ≤ 𝐹𝑛

(
𝑞𝑝 +

𝑡𝐴√
𝑛

)]
,

= P
[
𝑛𝑝 ≤ 𝑍(𝑛, 𝐹

(
𝑞𝑝 +

𝑡𝐴√
𝑛

))]
.
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Here, 𝑍(𝑛, 𝛽) ∼ Binom(𝑛, 𝛽) with 𝛽 = 𝐹
(
𝑞𝑝 + 𝑡𝐴√

𝑛

)
. Then we define the standardized binomial distribu-

tion as:
𝑍★(𝑛, 𝛽) = 𝑍(𝑛, 𝛽) − 𝑛𝛽√

𝑛𝛽(1 − 𝛽)
. (6.54)

Using the previous equations we yield that

𝐺𝑛(𝑡) = P
[
𝑛𝑝 ≤ 𝑍(𝑛, 𝛽)

]
,

= P

[
𝑛𝑝 − 𝑛𝛽√
𝑛𝛽(1 − 𝛽)

≤ 𝑍(𝑛, 𝛽) − 𝑛𝛽√
𝑛𝛽(1 − 𝛽)

]
,

= P
[
𝑍★(𝑛, 𝛽) ≥ −𝑎(𝑛, 𝑡)

]
.

The Berry-Esséen Theorem is applied to yield that

sup
−∞≤𝑥≤∞

|P
[
𝑍★(𝑛, 𝛽) < 𝑥

]
−Φ(𝑥)| ≤ 𝐶 · E|𝑍(1, 𝛽) − 𝛽|3

var[𝑍(1, 𝛽)] 3
2
√
𝑛
.

Then we fill in var[𝑍(1, 𝛽)] = 𝛽(1 − 𝛽), and E|𝑍(1, 𝛽) − 𝛽|3 = 𝛽(1 − 𝛽)((1 − 𝛽)2 − 𝛽2), to simplify the
expression to:

sup
−∞≤𝑥≤∞

|P
[
𝑍★(𝑛, 𝛽) < 𝑥

]
−Φ(𝑥)| ≤ 𝐶 · (1 − 𝛽)2 − 𝛽2√

𝑛𝛽(1 − 𝛽)
.

Next, it can be written that

Φ(𝑡) − 𝐺𝑛(𝑡) = Φ(𝑡) − P
[
𝑍★(𝑛, 𝛽) ≥ −𝑎(𝑛, 𝑡)

]
,

= Φ(𝑡) − (1 − P
[
𝑍★(𝑛, 𝛽) < −𝑎(𝑛, 𝑡)

]
),

= P
[
𝑍★(𝑛, 𝛽) < −𝑎(𝑛, 𝑡)

]
− (1 −Φ(𝑡)),

= P
[
𝑍★(𝑛, 𝛽) < −𝑎(𝑛, 𝑡)

]
− (Φ(−𝑎(𝑛, 𝑡)) +Φ(𝑎(𝑛, 𝑡)) −Φ(𝑡)),

where the last equation follows from:

Φ(𝑎(𝑛, 𝑡)) =
∫ 𝑎(𝑛,𝑡)

−∞
𝜙(𝑥)𝑑𝑥 =

∫ ∞

−∞
𝜙(𝑥)𝑑𝑥 −

∫ ∞

𝑎(𝑛,𝑡)
𝜙(𝑥)𝑑𝑥

= 1 −
∫ ∞

𝑎(𝑛,𝑡)
𝜙(𝑥)𝑑𝑥 = 1 −

∫ −𝑎(𝑛,𝑡)

−∞
𝜙(𝑥)𝑑𝑥 = 1 −Φ(−𝑎(𝑛, 𝑡)).

We then again apply the Berry-Esséen Theorem to have

|𝐺𝑛(𝑡) −Φ(𝑡)| = |P
[
𝑍★(𝑛, 𝛽) < −𝑎(𝑛, 𝑡)

]
− (Φ(−𝑎(𝑛, 𝑡)) +Φ(𝑎(𝑛, 𝑡)) −Φ(𝑡))|,

≤ |P
[
𝑍★(𝑛, 𝛽) < −𝑎(𝑛, 𝑡)

]
−Φ(−𝑎(𝑛, 𝑡))| + |Φ(𝑡) −Φ(𝑎(𝑛, 𝑡))|,

≤ 𝐶 · (1 − 𝛽)2 − 𝛽2√
𝑛𝛽(1 − 𝛽)

+ |Φ(𝑡) −Φ(𝑎(𝑛, 𝑡))|. (6.55)

As 𝑛 → ∞ it is found that 𝑞𝑝 + 𝑡𝐴√
𝑛

goes to 𝑞𝑝 , from which it follows that 𝛽 = 𝐹
(
𝑞𝑝 + 𝑡𝐴√

𝑛

)
goes to

𝐹(𝑞𝑝) = 𝑝. Consequently, it can be concluded that (1−𝛽)
2−𝛽2

√
𝑛𝛽(1−𝛽)

→ 0, as 𝑛 →∞.

Then to show that 𝐺𝑛(𝑡) → Φ(𝑡), it must be shown that 𝑎(𝑛, 𝑡) → 𝑡 as seen from Equation 6.55.
As 𝑎(𝑛, 𝑡) is defined as,

𝑎(𝑛, 𝑡) =
√
𝑛(𝛽 − 𝑝)√
𝛽(1 − 𝛽)

,
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it follows that,

√
𝑛(𝛽 − 𝑝)√
𝛽(1 − 𝛽)

=

√
𝑛

(
𝐹

(
𝑞𝑝 + 𝑡𝐴√

𝑛

)
− 𝑝

)
√
𝛽(1 − 𝛽)

,

=
𝑡𝐴√

𝛽(1 − 𝛽)
·
𝐹

(
𝑞𝑝 + 𝑡𝐴√

𝑛

)
− 𝐹(𝑞𝑝)

𝑡𝐴√
𝑛

.

Here, in the last term of the above equation, the expression for the derivative can be recognized. That is,
as 𝑛 →∞, if 𝑡 > 0

𝑎(𝑛, 𝑡) → 𝑡𝐴√
𝑝(1 − 𝑝)

· 𝐹′(𝑞𝑝+).

And if 𝑡 < 0
𝑎(𝑛, 𝑡) → 𝑡𝐴√

𝑝(1 − 𝑝)
· 𝐹′(𝑞𝑝−).

Thus to get 𝑎(𝑛, 𝑡) → 𝑡 it must hold that, if 𝑡 > 0

𝐴 =

√
𝑝(1 − 𝑝)
𝐹′(𝑞𝑝+)

.

Similarly, if 𝑡 < 0

𝐴 =

√
𝑝(1 − 𝑝)
𝐹′(𝑞𝑝−)

.

This proves the theorem.

If 𝐹 is differentiable at 𝑞𝑝 , then 𝐹′(𝑞𝑝+) = 𝐹′(𝑞𝑝−) = 𝐹′(𝑞𝑝). In this case, as demonstrated in [56],
Theorem 6.3.2 leads to Corrolary 6.3.2.1.

Corollary 6.3.2.1. Let 0 < 𝑝 < 1. If 𝐹 is differentiable at 𝑞𝑝 and 𝐹′(𝑞𝑝) > 0, then

√
𝑛(𝑞̂𝑝 − 𝑞𝑝) ∼ 𝒩

(
0,
𝑝(1 − 𝑝)
𝐹′(𝑞𝑝)2

)
(6.56)

From Corollary 6.3.2.1 it can be seen that theoretically the quantile estimate found using 𝐹̂𝑛 is normally
distributed, i.e.

𝑞̂𝑝 ∼ 𝒩
(
𝑞𝑝 ,

𝑝(1 − 𝑝)
𝑛 · 𝐹′(𝑞𝑝)2

)
. (6.57)

However, for the quantile estimate produced using the importance sampling estimator 𝐹̂𝑛,𝐼𝑆, this variance
changes. Using the same steps as in the proof of Theorem 6.3.2 it can be seen that, by standardizing
𝑍(𝑛, 𝛽), as done in Equation 6.54, the expression 𝑍★(𝑛, 𝛽) becomes

𝑍★(𝑛, 𝛽) = 𝑍(𝑛, 𝛽) − 𝑛𝛽√
𝑛 · var𝜃

[
1{𝑌(X) ≤ 𝑦}𝑤X(𝜃)

] .
Similar to Equation 6.55, it can be shown that 𝐺𝑛(𝑡) → Φ(𝑡). Finally, by repeating the last step for 𝑎(𝑛, 𝑡)
we have that for 𝑡 > 0 and 𝑡 < 0

𝐴 =

√
𝑛 · var𝜃

[
1{𝑌(X) ≤ 𝑦}𝑤X(𝜃)

]
𝐹′(𝑞𝑝+)

or

𝐴 =

√
𝑛 · var𝜃

[
1{𝑌(X) ≤ 𝑦}𝑤X(𝜃)

]
𝐹′(𝑞𝑝−)
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respectively. As 𝐹 is differentiable at 𝑞𝑝 and 𝐹′(𝑞𝑝) > 0, it is found that the importance sampling quantile
estimate also follows a normal distribution,

𝑞̂𝑝,𝐼𝑆 ∼ 𝒩
(
𝑞𝑝 ,

var𝜃
[
1{𝑌(X) ≤ 𝑞𝑝}𝑤X(𝜃)

]
𝑛 · 𝐹′(𝑞𝑝)2

)
. (6.58)

Now the asymptotical variance reduction can be found by calculating:

var[𝑞̂𝑝,𝑀𝐶]
var[𝑞̂𝑝,𝐼𝑆]

=

𝑝(1−𝑝)
𝑛·𝐹′(𝑞𝑝 )2

var𝜃[1{𝑌(X)≤𝑞𝑝}𝑤X(𝜃)]
𝑛·𝐹′(𝑞𝑝 )2

,

=
𝑝(1 − 𝑝)

var𝜃
[
1{𝑌(X) ≤ 𝑞𝑝}𝑤X(𝜃)

] .
To get an idea of how much variance reduction can be achieved according to the above theoreti-
cal analysis, we compute the theoretical variance reduction ratio for a hypothetical portfolio containing
100 derivatives using Monte Carlo simulation. First it was estimated for a portfolio without collateral
and then with collateral. For both cases, the theoretical variance reduction was given for the time points
at which the straight forward MC variance is non-zero. For these portfolios the PFE was estimated for
20 equidistant time points starting at the initialization of the portfolio and ending at the maturity of the
portfolio. In Tables 6.1 and 6.2 the 𝑡 refers to these time points.

For the uncollateralized portfolio, the theoretical variance reductions are

t 5 6 7 9 10 11 12
𝜎2
𝑃𝐹𝐸,𝑀𝐶

/𝜎2
𝑃𝐹𝐸,𝐶𝐸−𝐴𝐼𝑆 41.14 40.89 40.77 42.50 41.86 40.63 39.76

t 13 14 15 16 17 18 19
𝜎2
𝑃𝐹𝐸,𝑀𝐶

/𝜎2
𝑃𝐹𝐸,𝐶𝐸−𝐴𝐼𝑆 40.57 40.27 39.46 40.03 45.17 43.04 43.64

Table 6.1: The theoretical asymptotic variance reductions for a uncollateralized portfolio containing 100 derivatives.

This table indicates that the variance reduction of our CE-AIS method is significant. The same is
observed for the collateralized portfolio:

t 5 6 7 9 10 11 12
𝜎2
𝑃𝐹𝐸,𝑀𝐶

/𝜎2
𝑃𝐹𝐸,𝐶𝐸−𝐴𝐼𝑆 41.66 41.52 41.99 41.31 41.42 41.88 42.03

t 13 14 15 16 17 18 19
𝜎2
𝑃𝐹𝐸,𝑀𝐶

/𝜎2
𝑃𝐹𝐸,𝐶𝐸−𝐴𝐼𝑆 42.24 41.59 42.10 41.14 42.21 42.25 41.71

Table 6.2: The theoretical asymptotic variance reductions for a collateralized portfolio containing 100 derivatives.
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Results

In this section, the results of the control variate method, adaptive importance sampling using the optimal
shift say shift-AIS-COS, and the CE-AIS-COS method will be discussed.

The sample values of the domestic and foreign short rate 𝑥𝑑, 𝑥 𝑓 , exchange rate 𝑋, and for the
collateralized portfolio, Z-spread 𝑧 were directly drawn from their dynamics,

𝑥𝑑(𝑡) = 𝑥𝑑(0)𝑒−𝑎𝑑 𝑡 + 𝜎𝑑

∫ 𝑡

0
𝑒−𝑎𝑑(𝑡−𝑠)𝑑𝑊𝑑(𝑠, ) (7.1)

𝑥 𝑓 (𝑡) = 𝑥 𝑓 (0)𝑒−𝑎 𝑓 𝑡 + 𝜎 𝑓

∫ 𝑡

0
𝑒−𝑎 𝑓 (𝑡−𝑠)𝑑𝑊𝑓 (𝑠), (7.2)

log(𝑋(𝑡)) = log(𝑋(0)) +
(
𝜇𝑋 −

𝜎2
𝑋

2

)
𝑡 + 𝜎𝑋𝑊𝑋(𝑡), (7.3)

log(𝑧(𝑡)) = log(𝑧(0)) − 𝜎2
𝑧

2 𝑡 + 𝜎𝑧𝑊𝑧(𝑡). (7.4)

Here, 𝑎𝑑 = 0.01, 𝜎𝑑 = 0.007, 𝑎 𝑓 = 0.05, 𝜎 𝑓 = 0.012, 𝜇𝑋 = 0.008, 𝜎𝑋 = 0.02, 𝑋(0) = 1
105 , 𝜎𝑧 = 0.010359 of

which the latter was obtained from data found online. The value of 𝑧(0) is obtained by equalizing the
bond’s model price to the MtM value of the portfolio at 𝑡 = 0. The correlations between the risk factors
were set as 𝜌𝑑𝑓 = 0.25, 𝜌𝑑𝑋 = 𝜌 𝑓 𝑋 = −0.15, 𝜌𝑑𝑧 = 𝜌 𝑓 𝑧 = 𝜌𝑋𝑧 = 0.

The number of paths tested were 100, 250, 500, 2500, 7500, and 25000. In the CE-AIS-COS algo-
rithm 2500 paths were used with 𝑘𝑚𝑎𝑥 = 5.

For the uncollateralized portfolios, the benchmark PFE was calculated using the COS method with 150
expansion terms and 130 quadrature points, similar as in the original paper [1]. For the collateralized
portfolio, the benchmark was calculated using the Monte Carlo method with 5000000 paths.

In each of the methods the PFE of the test portfolios without collateral are calculated using 64
expansion terms for the COS method and 40 quadrature points for the Clenshaw-Curtis quadrature. The
PFE of the test portfolios with collateral are calculated using 32 expansion terms for the COS method
and 30 quadrature points for the Clenshaw-Curtis quadrature. Additionally, all CPU times measured
are the total time of the PFE calculation.

7.1. Results of using COS as the control variate
The method of using COS as the control variate was tested using a hypothetical portfolio containing 100
derivatives without collateral. Table 7.1 shows the variance reductions averaged out over all non-zero
variances at all time points per number of paths.

64
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Number of paths 100 250 500 2500 7500 25000
𝜎2

PFE,MC
𝜎2

PFE,CV
≈ 0.91 0.95 0.97 1.2 1.2 1.2

Table 7.1: The average variance reduction using COS as the control variate.

On average, using the COS as control variate approximately reduced the PFE estimator’s variance by
1.09 times, compared to straight forward Monte Carlo simulation.

For the expected exposure the variance reduction was much more effective for some time points
as can be seen from Figure 7.1. Table 7.2 shows the variance reduction for each time point using 25000
paths.

Time points 1 2 3 4 5 6 7 8 9 10
𝜎2

MC
𝜎2

CV
≈ 1.00 5.80 3.21 1.68 1.34 1.17 1.15 1.02 1.00 1.09

Time points 11 12 13 14 15 16 17 18 19
𝜎2

MC
𝜎2

CV
≈ 1.17 1.25 1.09 1.02 1.90 2.41 2.32 1.93 1.93

Table 7.2: The average variance reduction using COS as the control variate on the calculation of the expected exposure for a
portfolio with 100 derivatives without collateral.

Figure 7.1: The comparison of the exposures for time points 𝑡 = 2, 3 and 16 generated using COS as control variate and straight
forward MC simulation.

The correlation values over time between the auxiliary variable and the MtM value of the portfolio
are plotted in Figure 7.2, and those between the indicators 1{max(𝐸𝑡(X), 0) > 𝑞0.975} and 1{𝑍 > 𝑞′0.975}
can be found in Figure 7.3. These correlation values show that, as expected, as the correlation values
between the control variate and the MtM value of the portfolio are higher than those between the
indicators, using COS can help to reduce the variance for EE estimations yields.
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Figure 7.2: The correlation values between the auxiliary
variable and the MtM value of a portfolio containing 100

derivatives without collateral.
Figure 7.3: The correlation values between the indicators

1{max(𝐸𝑡 (X), 0) > 𝑞0.975} and 1{𝑍 > 𝑞′0.975}.

7.2. Results of Adaptive Importance Sampling using the optimal
shift

In this section the variance reduction is tested for the collateralized portfolio containing 100 derivatives
using the adaptive importance sampling method we developed. It uses the COS-PFE result to find the
optimal shift to be applied to the original joint density function of the risk factors.

The algorithm was ran 100 times from which the variance of the PFE estimations was measured
and compared to that from the straight forward Monte Carlo simulation. The reduction in variance, for
an increasing number of paths, are presented in Table 7.3.

Number of paths 100 250 500 2500 7500 25000
𝜎2

PFE, MC
𝜎2

PFE, SHIFT
≈ 2.7 3.0 2.6 2.0 3.2 3.1

Table 7.3: The variance ratio between a straight forward MC simulation (numerator) and the shift-AIS-COS method
(denominator), in the calculation of the PFE of a collateralized portfolio containing 100 derivatives.

Averaged out over all paths and all non-zero variances, the variance of the shift-AIS-COS method is
approximately less than one-third of that of the straight forward Monte Carlo simulation.

For time points 2, 4, and 8, the convergence of the PFE estimations, as well as the associated 95%
confidence interval, is shown in Figure 7.4



7.3. Results of the Cross-Entrophy Adaptive Importance Sampling 67

Figure 7.4: The convergence of the PFE of a collateralized portfolio with 100 derivatives at time points 𝑡 = 2, 4 and 8 using the
shift-AIS-COS method developed in Section 6.1 with the initial guess of the PFE from the split COS-PFE method.

In these plots the black line represents the benchmark PFE value, the solid blue line and solid orange
line represents the PFE estimate averaged over the 100 PFE estimations, the blue and orange shaded
areas depict the 95% confidence interval.

Although the variance reduction is effective, the optimal shift algorithm can take a very long time to
compute the auxiliary density. For example, using 25000 paths the CPU time for all PFE estimations
were between 96 and 1773 seconds.

7.3. Results of the Cross-Entrophy Adaptive Importance Sampling
In this section the results of the CE-AIS-COS method developed in Section 6.2 are presented and
discussed. First, the results for the test portfolios without collateral are presented. Next, we compare
the results of two variants of the CE-AIS-COS method for a test portfolio containing 100 derivatives with
collateral: one using the exact COS-PFE method to provide the initial guess of the PFE value, which we
refer to as the "CE-AIS-COS-exact" method; and the other that splits the collateral from the rest of the
portfolio to approximate the initial guess of the PFE value, which we refer to as the "CE-AIS-COS-split"
method. Note that CE-AIS-COS-split variant van be very useful in practise due to the fast calculation
speed. Finally, to demonstrate this, we present the results of the CE-AIS-COS-split method applied to
all test portfolios, whereby the portfolio splitting method is applied further, to illustrate the real-world
application of this method. The results are based on 250 repeating runs of the PFE calculation.

7.3.1. Without collateral: results from the CE-AIS-exact method
The portfolio containing 100 derivatives
Table 7.4 presents In this table the averaged ratio between the variance of the straight forward Monte
Carlo method (the numerator) and the CE-AIS-COS-exact simulation (the denominator) for different
number of simulation paths. These variances are averaged over all non-zero variances.
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Number of paths 100 250 500 2500 7500 25000
𝜎2

PFE, MC
𝜎2

PFE, CE-AIS
≈ 23.0 31.8 35.6 40.8 41.6 42.5

Table 7.4: The variance reductions of the CE-AIS-COS-exact method in PFE calculations for a uncollateralized portfolio
containing 100 derivatives.

Averaged over all number of paths and all non-zero variances, the variance of the CE-AIS-COS-exact
method is approximately 35.4 times lower than that of the straight forward Monte Carlo simulation.

Worth noting that these variance-reduction ratios match the theoretical reduction rations that we
calculated in Table 6.1.

This significant variance reduction can also be seen in Figure 7.5, where the convergence to the
benchmark PFE for the time steps 𝑡 = 5, 10 and 15 are plotted.

Figure 7.5: The convergence of the PFE, using straight forward Monte Carlo method and the CE-AIS-COS-exact method, at time
points 𝑡 = 5, 10 and 15 for a portfolio containing 100 derivatives without collateral.

For the same time points, Figure 7.6 shows the comparison between the averaged absolute error and the
CPU time for the CE-AIS-COS-exact algorithm and the straight forward Monte Carlo simulation.
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Figure 7.6: The averaged absolute error and CPU time, using straight forward Monte Carlo simulation and the CE-AIS-COS-exact
method, at time points 𝑡 = 5, 10 and 15 for a portfolio containing 100 derivatives without collateral.

The portfolio containing 1000 derivatives
To test the applicability of the method to real-world portfolios, we increased the number of derivatives
to 1000 and repeated the same tests. Table 7.5 again shows the significant variance reduction.

Number of paths 100 250 500 2500 7500 25000
𝜎2

PFE, MC
𝜎2

PFE, CE-AIS
≈ 30.6 36.2 38.7 41.6 42.1 42.5

Table 7.5: The variance reductions of the CE-AIS-COS-exact method in PFE calculations for a uncollateralized portfolio
containing 1000 derivatives.

Averaged out over all paths and all non-zero variances, the variance of the CE-AIS-COS-exact algorithm
is approximately 38.6 times lower compared to the straight forward Monte Carlo simulation.

The impressive increase in performance using the CE-AIS-COS-exact method is again demonstrated in
Figure 7.7.
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Figure 7.7: The convergence of the PFE, using the straight forward Monte Carlo simulation and the CE-AIS-COS-exact method, at
time points 𝑡 = 5, 10 and 15 for a portfolio containing 1000 derivatives without collateral.

The average absolute errors and total CPU times of the two methods are compared. This comparison,
for time points 𝑡 = 5, 10 and 15, the comparison can be found in Figure 7.8.

Figure 7.8: The averaged absolute error and CPU time, using straight forward Monte Carlo simulation and the CE-AIS-COS-exact
method, at time points 𝑡 = 5, 10 and 15 for a portfolio containing 1000 derivatives without collateral.
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The portfolio containing 10000 derivatives
To further test the applicability and performance of our methods, we repeated the same tests on a really
large portfolio containing 10000 derivatives without collateral. Table 7.6 evidences the same, significant
variance reduction as for smaller portfolios.

Number of paths 100 250 500 2500 7500 25000
𝜎2

PFE, MC
𝜎2

PFE, CE-AIS
≈ 28.8 35.5 37.8 43.4 40.7 36.9

Table 7.6: The variance reductions of the uncollateralized portfolio containing 10000 derivatives.

Averaged over all number of paths, and all non-zero the variance of the CE-AIS-COS-exact method is
approximately 37.2 times lower than that of the straight forward Monte Carlo simulation.

As before, Figure 7.9 was made to showcase the convergence to the benchmark PFE using both
methods.

Figure 7.9: The convergence of the PFE, using straight forward Monte Carlo simulation and the CE-AIS-COS-exact method, at
time points 𝑡 = 5, 10 and 15 for a portfolio containing 10000 derivatives without collateral.

The averaged absolute error and CPU time needed to obtain the approximations for the two methods
can be seen in Figure 7.10.
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Figure 7.10: The averaged absolute error and CPU time, using straight forward Monte Carlo simulation and the
CE-AIS-COS-exact method, at time points 𝑡 = 5, 10 and 15 for a portfolio containing 10000 derivatives without collateral.

An illustration of the CE-AIS-COS applied to the PFE calculation
To check how the CE-AIS-COS method alters the original distribution of the underlying risk factors,
Figures 7.11 and 7.12 were generated. Figure 7.11 shows how the CE-AIS-COS method changes the
short rates samples after each iteration. The resulting shift in the exposure distribution can be seen in
Figure 7.12.

Figure 7.11: Random samples of the domestic and foreign
short rate.

Figure 7.12: The shift in the exposure distribution.

7.3.2. With collateral: results from the CE-AIS-exact method
In this section the variance reduction and convergence of the CE-AIS-COS-exact method are tested on a
collateralized portfolio. Table 7.7 summarizes the variance reduction compared to the straight forward
Monte Carlo method for a test portfolio containing 100 derivatives.
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Number of paths 100 250 500 2500 7500 25000
𝜎2

PFE, MC
𝜎2

PFE, CE-AIS
≈ 26.2 33.1 37.4 39.9 41.5 39.9

Table 7.7: The variance reduction for a collateralized portfolio containing 100 derivatives using the CE-AIS-COS-exact method.

The same, significant reduction in variance is observed as in the case without collateral.

Similar to the case without collateral, these variance-reduction ratios match the theoretical reduc-
tion rations that we calculated in Table 6.2.

Figure 7.13: The convergence of the PFE, using straight forward Monte Carlo simulation and the CE-AIS-COS-exact method, at
time points 𝑡 = 5, 10, 15 for a portfolio containing 100 derivatives with collateral.

For the same time points the average absolute error and CPU times are compared between the two
methods. These can be seen in Figure 7.14.
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Figure 7.14: The averaged absolute error and CPU time, using straight forward Monte Carlo simulation and the
CE-AIS-COS-split, at time points 𝑡 = 5, 10 and 15 for a portfolio containing 100 derivatives with collateral.

7.3.3. With collateral: results from the CE-AIS-COS-split method
After running the simulations Table 7.8 was constructed showing the variance reductions.

Number of paths 100 250 500 2500 7500 25000
𝜎2

PFE, MC
𝜎2

PFE, CE-AIS
20.1 25.8 31.5 34.1 38.4 35.1

Table 7.8: The average variance reduction of a collateralized portfolio containing 100 derivatives with collateral using the
CE-AIS-COS-split method.

The variance averaged over all non-zero variances and all number of paths 32.9 times lower compared
to using the straight forward Monte Carlo simulation.

For time points 𝑡 = 5, 10 and 15 the convergence of the PFE values and the confidence interval
can be seen in Figure 7.15.
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Figure 7.15: The convergence of the PFE, using straight forward Monte Carlo simulation and the CE-AIS-COS-split method, at
time points 𝑡 = 5, 10, 15 for a portfolio containing 100 derivatives with collateral.

For the same time points the average absolute error and CPU times are compared between the two
methods. These can be seen in Figure 7.16.

Figure 7.16: The averaged absolute error and CPU time, using straight forward Monte Carlo simulation and the
CE-AIS-COS-split, at time points 𝑡 = 5, 10 and 15 for a portfolio containing 100 derivatives with collateral.
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7.3.4. With collateral: results from the CE-AIS-COS-split using more sub-portfolios
In this section, the variance reduction for collateralized portfolios containing 100, 1000 and 10000
derivatives is show. Now, the PFE approximation is made using the COS-PFE-split method and applied
on a further division of the portfolio.

The portfolio containing 100 derivatives
After running the simulations Table 7.9 could be constructed showing the variance reductions.

Number of paths 100 250 500 2500 7500 25000
𝜎2

PFE, MC
𝜎2

PFE, CE-AIS
20.3 26.0 31.6 36.4 39.3 36.2

Table 7.9: The averaged variance reduction of a collateralized portfolio containing 100 derivatives with collateral using the
CE-AIS-COS-split method applied on the sub-portfolios.

The variance averaged over all non-zero variances and all number of paths is 31.1 times lower compared
to using the straight forward Monte Carlo simulation.

For three time points the convergence of the average PFE values and the confidence interval can
be seen in Figure 7.17.

Figure 7.17: The convergence of the PFE, using straight forward Monte Carlo simulation and the CE-AIS-COS-split method
applied on the sub-portfolios, at time points 𝑡 = 5, 10, 15 for a portfolio containing 100 derivatives with collateral.

The comparison of the average absolute error and CPU time for three time points are showcased in
Figure 7.18.
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Figure 7.18: The averaged absolute error and CPU time, using straight forward Monte Carlo simulation and the CE-AIS-COS-split
method applied on the sub-portfolios, at time points 𝑡 = 5, 10 and 15 for a portfolio containing 100 derivatives with collateral.

The portfolio containing 1000 derivatives
For the test portfolio containing 1000 derivatives the variance reduction and averaged variances can be
found in Table 7.10.

Number of paths 100 250 500 2500 7500 25000
𝜎2

PFE, MC
𝜎2

PFE, CE-AIS
17.9 31.4 30.7 34.6 37.7 35.5

Table 7.10: The averaged variance reduction of a collateralized portfolio containing 1000 derivatives with collateral using the
CE-AIS-COS-split method applied on the sub-portfolios.

Averaging out the variance reduction over all number of paths and all non-zero variances the CE-AIS
method has a variance 32.4 times lower than that of the straight forward Monte Carlo simulation.

To illustrate the increase in performance using the CE-AIS method the convergence and confidence
interval of the PFE can be seen in Figure 7.19.



7.3. Results of the Cross-Entrophy Adaptive Importance Sampling 78

Figure 7.19: The convergence of the PFE, using straight forward Monte Carlo simulation and the CE-AIS-COS-split method
applied on the sub-portfolios, at time points 𝑡 = 1, 2, 3 for a portfolio containing 1000 derivatives with collateral.

The comparison of the average absolute error and CPU time for the three time points are shown in
Figure 7.20.

Figure 7.20: The averaged absolute error and CPU time, using straight forward Monte Carlo simulation and the CE-AIS-COS-split
method applied on the sub-portfolios, at time points 𝑡 = 1, 2 and 3 for a portfolio containing 1000 derivatives with collateral.
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The portfolio containing 10000 derivatives
For the test portfolio containing 10000 derivatives the variance reduction and averaged variances can be
found in Table 7.11.

Number of paths 100 250 500 2500 7500 25000
𝜎2

PFE, MC
𝜎2

PFE, CE-AIS
20.5 23.4 27.3 29.4 26.8 32.1

Table 7.11: The averaged variance reduction of a collateralized portfolio containing 10000 derivatives with collateral using the
CE-AIS-COS-split method applied on the sub-portfolios.

Averaging out the variance reduction over all number of paths, and all non-zero variances the CE-AIS
method has a variance 26.6 times lower than that of the straight forward Monte Carlo simulation.

To illustrate the increase in performance using the CE-AIS method the convergence and confidence
interval of the PFE can be seen in Figure 7.21.

Figure 7.21: The convergence of the PFE, using straight forward Monte Carlo simulation and the CE-AIS-COS-split method
applied on the sub-portfolios, at time points 𝑡 = 1, 2, 3 for a portfolio containing 10000 derivatives with collateral.

For three time points the comparison of the average absolute error and CPU time can be seen in Figure
7.22.
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Figure 7.22: The averaged absolute error and CPU time, using straight forward Monte Carlo simulation and the CE-AIS-COS-split
method applied on the sub-portfolios, at time points 𝑡 = 1, 2 and 3 for a portfolio containing 10000 derivatives with collateral.

7.3.5. Impact of the accuracy in COS step on the variance reduction of CE-AIS-
COS method

To understand how the CE-AIS-COS algorithm’s performance depends on the accuracy of initial guess
of the PFE value using the COS-PFE method, the variance reduction for different levels of accuracy
is investigated, ranging from 0% to 120% of the real PFE. For example, the 0% means that the PFE
approximation is 0 for each time point, and the 80% means that the PFE approximation from COS is
80% of the reference PFE at that time step. The algorithm was run 100 times for 1000000 paths at each
time step. For a portfolio containing 100 derivatives with and without collateral, the variance reduction
ratio and the accuracy in the COS step are plotted in Figure 7.23.
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Figure 7.23: The variance reduction of the uncollateralized and collateralized portfolio containing 100 derivatives with varying
accuracies of PFE approximations.

Not surprising, it can be seen that the variance reduction seems to increase exponentially from both
sides of 100% accuracy of the COS-estimated PFE. This strongly suggests the great applicability of the
COS method, in practice: a very fast calculation using the COS-PFE method with a "good enough"
accuracy would already yield 20 times up to 40 times reduction in the variance of the Monte Carlo
simulation.
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Conclusions and discussions

In this thesis we combined the COS-PFE method, the extended COS method presented in [1], and the
Monte Carlo simulation to reduce the variance of the PFE calculation of a portfolio. We researched on
Control Variate method and Importance Sampling method, both being well studied variance reduction
techniques in literature.

The first method that we developed was a Control Variate method with the control variate being
yielded from the COS-PFE method. This method, however, was tested to be not effecitive in reducing the
variance of the PFE. One potential reason could be that the correlation between the indicator function
used in the Monte Carlo CDF estimator and the control variate is not high enough. Testing results of
a portfolio containing 100 derivatives without collateral suggests that, the variance using the control
variate method is approximately the same as that of straight forward Monte Carlo simulation. Averaged
over all non-zero variances the variance reduction was approximately 1.09. Further testing showed,
however, it is very successful in reducing the variance of the expected exposures.

Secondly, adaptive importance sampling was combined with the COS-PFE method as such: via
an iterative procedure, a shift is searched for the risk factor with the highest correlation to the MtM value
of the portfolio, such that the resulting expected exposure based on the shifted distribution coincides
with the PFE obtained from the COS-PFE method, while the variance is minimized. Extensive testing
results indicate that the variance of the PFEs from this method were less than one third of that from
the straight forward Monte Carlo simulation. While being successful in reducing the variances, the
computation time of this method is not superior. The total CPU time of the algorithm, using 25000
paths, was between 96 and 1773 seconds.

Then the majority research time of this thesis was spent on the development of an adaptive im-
portance sampling method based on cross-entropy. This method finds a probability distribution that
minimized the Kullbeck-Leibler divergence between itself and the theoretical zero-variance probability
density. The COS-PFE method is used to provide the initial guess of the PFE value. Therefore, we
name it the CE-AIS-COS method. The CE-AIS-COS method was tested for three portfolios both with
and without collateral. For the uncollateralized portfolios containing 100, 1000 and 10000 derivatives
the variance of the PFE using the CE-AIS-COS method was approximately 35.4, 38.6 and 37.2 times
lower than that of the straight forward Monte Carlo simulation, which is significant and perfectly
align with our theoretical results of the variance reduction. The same impressive performance was
observed for portfolios with collateral. To reduce the CPU time, we applied a dimension-reduction
approximation in the original COS-PFE method. This variant we call CE-AIS-COS-split method. Using
the same test portfolio with collaterals, the CE-AIS-COS-split method produced PFE estimates with
an average variance 32.9 times lower than the straight forward Monte Carlo simulation, while the
CPU time is much lower, too. When we further split the portfolio into sub-portfolios, to mimic the
real-world situation that the COS-PFE is only suitable for portfolios involving a few risk factors. That
is, we use stand-alone COS-PFE estimates to approximate the portfolio level PFE, which is fed to
the adaptive importance sampling method as the initial guess. Results demonstrated the variance

82



83

reduction ratios are slightly less than before but are still significant: on average 31.1, 32.4 and 26.6 for
portfolios having 100, 1000 and 10000 derivatives, respectively.It can be concluded that the CE-AIS-COS
method has the potential to be applied on real-world portfolios, to produce PFE estimations with
a lower average absolute error than the straight forward Monte Carlo simulation using the same CPU time.

While this study have has provided an intuitive and easy to implement method for reducing the
variance of PFE calculations some limitations may suggest avenues for future research. First is that
the Z-spread dynamic is assumed to be independent of the processes of the other risk factors, which
simplifies the bond pricing formula. Future research could implement a correlation between the
Z-spread and the other processes. Additionally, this work only concerns SFTs. Future work could be
done to extend the method to CSA agreements.
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A
Appendix

A.1. Proof of Proposition 1
Proof. From the G1++ model we have

𝑟(𝑡) = 𝑥(𝑡) + 𝛽(𝑡)
With

𝑑𝑥(𝑡) = −𝑎𝑥(𝑡)𝑑𝑡 + 𝜎𝑑𝑊(𝑡)
𝑥(0) = 0

We get that

𝑑(𝑒 𝑎𝑡𝑥(𝑡)) = 𝑎𝑒 𝑎𝑡𝑥(𝑡)𝑑𝑡 + 𝑒 𝑎𝑡𝑑𝑥(𝑡)
= 𝑎𝑒 𝑎𝑡𝑥(𝑡)𝑑𝑡 + 𝑒 𝑎𝑡[−𝑎𝑥(𝑡)𝑑𝑡 + 𝜎𝑑𝑊(𝑡)]
= 𝑒 𝑎𝑡𝜎𝑑𝑊(𝑡)

Then we find that for 𝑡 ≥ 𝑠 ∫ 𝑡

𝑠

𝑑(𝑒 𝑎𝑢𝑥(𝑢)) =
∫ 𝑡

𝑠

𝑒 𝑎𝑢𝜎𝑑𝑊(𝑢)

𝑒 𝑎𝑡𝑥(𝑡) − 𝑒 𝑎𝑠𝑥(𝑠) = 𝜎

∫ 𝑡

𝑠

𝑒 𝑎𝑢𝑑𝑊(𝑢)

Then we find that 𝑥(𝑡) = 𝑒−𝑎(𝑡−𝑠)𝑥(𝑠) + 𝜎
∫ 𝑡

𝑠
𝑒−𝑎(𝑡−𝑢)𝑑𝑊(𝑢), and filling into 𝑟(𝑡)we get that

𝑟(𝑡) = 𝑒−𝑎(𝑡−𝑠)𝑥(𝑠) + 𝜎

∫ 𝑡

𝑠

𝑒−𝑎(𝑡−𝑠)𝑑𝑊(𝑢) + 𝛽(𝑡)
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We find that

EQ[ 𝑟(𝑡)| ℱ𝑠] = EQ
[
𝑒−𝑎(𝑡−𝑠)𝑥(𝑠) + 𝜎

∫ 𝑡

𝑠

𝑒−𝑎(𝑡−𝑠)𝑑𝑊(𝑢) + 𝛽(𝑡)
����ℱ𝑠 ]

= 𝑒−𝑎(𝑡−𝑠)𝑥(𝑠) + 𝛽(𝑡)EQ
[
𝜎

∫ 𝑡

𝑠

𝑒−𝑎(𝑡−𝑢)𝑑𝑊(𝑢)
����ℱ𝑠 ]

= 𝑒−𝑎(𝑡−𝑠)𝑥(𝑠) + 𝛽(𝑡)

varQ[ 𝑟(𝑡)| ℱ𝑠] = varQ
[
𝑒−𝑎(𝑡−𝑠)𝑥(𝑠) + 𝜎

∫ 𝑡

𝑠

𝑒−𝑎(𝑡−𝑢)𝑑𝑊(𝑢) + 𝛽(𝑡)
����ℱ𝑠 ]

= varQ
[
𝜎

∫ 𝑡

𝑠

𝑒−𝑎(𝑡−𝑢)𝑑𝑊(𝑢)
����ℱ𝑠 ]

= EQ

[ (
𝜎

∫ 𝑡

𝑠

𝑒−𝑎(𝑡−𝑢)𝑑𝑊(𝑢)
)2

�����ℱ𝑠
]

=★ EQ
[
𝜎2

∫ 𝑡

𝑠

𝑒−2𝑎(𝑡−𝑢)𝑑𝑢

����ℱ𝑠 ]
=

𝜎2

2𝑎
[
1 − 𝑒−2𝑎(𝑡−𝑠)]

★ By Itô’s isometry.

We know that

𝑃(0, 𝑇) = EQ
[
𝑒−

∫ 𝑇

0 𝑟(𝑠)𝑑𝑠
���ℱ𝑠 ] = EQ

[
𝑒−

∫ 𝑇

0 𝑥(𝑠)𝑑𝑠−
∫ 𝑇

0 𝛽(𝑠)𝑑𝑠
���ℱ𝑠 ]

= 𝑒−
∫ 𝑇

0 𝛽(𝑠)𝑑𝑠EQ
[
𝑒−

∫ 𝑇

0 𝑥(𝑠)𝑑𝑠
���ℱ𝑠 ]

We know that since 𝑥(𝑡) is normally distributed
∫
𝑥(𝑡)𝑑𝑡 is normally distributed. We find that

𝑥(𝑡) = 𝑒−𝑎(𝑡−0)𝑥(0) +
∫ 𝑡

0
𝑒−𝑎(𝑡−𝑢)𝑑𝑊(𝑢)

=

∫ 𝑡

0
𝑒−𝑎(𝑡−𝑢)𝑑𝑊(𝑢)

Using Fubini’s Theorem for stochastic integrals and substitution we find that∫ 𝑇

0
𝑥(𝑡)𝑑𝑡 =

∫ 𝑇

0

∫ 𝑡

0
𝜎𝑒−𝑎(𝑡−𝑢)𝑑𝑊(𝑢)𝑑𝑡

=
𝜎
𝑎

∫ 𝑡

0

(
1 − 𝑒−𝑎(𝑇−𝑢)

)
𝑑𝑊(𝑢)

We see that 𝑑𝑊(𝑢) is normally distributed with mean zero. The variance is given by

𝑉(0, 𝑇) = varQ
[∫ 𝑇

0
𝑥(𝑡)𝑑𝑡

����ℱ0

]
= EQ

[ (
𝜎
𝑎

∫ 𝑇

0

(
1 − 𝑒−𝑎(𝑇−𝑢)

)
𝑑𝑊(𝑢)

)2�����ℱ0

]
=★ EQ

[
𝜎2

𝑎2

∫ 𝑇

0

(
1 − 𝑒−𝑎(𝑇−𝑢)

)2
𝑑𝑢

����ℱ0

]
=

𝜎2

𝑎2

∫ 𝑇

0

(
1 − 𝑒−𝑎(𝑇−𝑢)

)2
𝑑𝑢

=
𝜎2

𝑎2

(
𝑇 − 21 − 𝑒−𝑎𝑇

𝑎
+ 1 − 𝑒−𝑎𝑇

2𝑎

)
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★ By Itô’s isometry.

Now filling in what we know yields

𝑃(0, 𝑇) = EQ
[
𝑒−

∫ 𝑇

0 𝑥(𝑡)𝑑𝑡−
∫ 𝑇

0 𝛽(𝑡)𝑑𝑡
���ℱ0

]
= 𝑒−

∫ 𝑇

0 𝛽(𝑡)𝑑𝑡EQ
[
𝑒−

∫ 𝑇

0 𝑥(𝑡)𝑑𝑡
���ℱ0

]
=★ 𝑒−

∫ 𝑇

0 𝛽(𝑡)𝑑𝑡 𝑒
1
2𝑉(0,𝑇)

★ By the moment generating function of the normal distribution EQ
[
𝑒 𝑡𝑋

]
= 𝑒𝜇𝑡+

1
2 𝜎

2𝑡2 where 𝑋 is
normally distributed with mean 𝜇 and variance 𝜎2.

We know that if the model is calibrated to the market 𝑃(0, 𝑇) = 𝑃𝑀(0, 𝑇) = 𝑒−
∫ 𝑇

0 𝑓𝑀 (0,𝑠)𝑑𝑠 . From
this we find that

𝑒−
∫ 𝑇

0 𝑓 𝑀 (0,𝑠)𝑑𝑠
= 𝑒−

∫ 𝑇

0 𝛽(𝑠)𝑑𝑠+ 1
2𝑉(0,𝑇)∫ 𝑇

0
𝛽(𝑠)𝑑𝑠 =

∫ 𝑇

0
𝑓 𝑀(0, 𝑠)𝑑𝑠 + 1

2𝑉(0, 𝑇)

After differentiation, we get that

𝛽(𝑡) = 𝑓 𝑀(0, 𝑡) + 𝜎2

2𝑎2 (1 − 𝑒
−𝑎𝑡)2

A.2. Proof of Proposition 2
Proof. In Proof A.1 we found that

𝑥(𝑡) = 𝑥(𝑠)𝑒−𝑎(𝑡−𝑠) + 𝜎

∫ 𝑡

𝑠

𝑒−𝑎(𝑡−𝑢)𝑑𝑊(𝑢)

We also have that

𝑃(𝑡 , 𝑇) = EQ
[
𝑒−

∫ 𝑇

𝑡
𝑟(𝑠)𝑑𝑠

���ℱ𝑡 ] = 𝑒−
∫ 𝑇

𝑡
𝛽(𝑠)𝑑𝑠EQ

[
𝑒−

∫ 𝑇

𝑡
𝑥(𝑠)𝑑𝑠

���ℱ𝑡 ]
Again, since we know that 𝑥(𝑡) is normally distributed, we know that

∫ 𝑇

𝑡
𝑥(𝑠)𝑑𝑠 is also normally

distributed. After finding the mean and variance of
∫ 𝑇

𝑡
𝑥(𝑠)𝑑𝑠 we can use the moment generating

function to compute the last expectation.∫ 𝑇

𝑡

𝑥(𝑠)𝑑𝑠 =
∫ 𝑇

𝑡

𝑒−𝑎(𝑠−𝑡)𝑥(𝑡)𝑑𝑠 + 𝜎

∫ 𝑇

𝑡

∫ 𝑠

𝑡

𝑒−𝑎(𝑠−𝑢)𝑑𝑊(𝑢)𝑑𝑠

= 𝑥(𝑡)1 − 𝑒
−𝑎(𝑇−𝑡)

𝑎
+ 𝜎

∫ 𝑇

𝑡

∫ 𝑠

𝑡

𝑒−𝑎(𝑠−𝑢)𝑑𝑊(𝑢)𝑑𝑠

= 𝑥(𝑡)1 − 𝑒
−𝑎(𝑇−𝑡)

𝑎
+ 𝜎
𝑎

∫ 𝑇

𝑡

(
1 − 𝑒−𝑎(𝑇−𝑢)

)
𝑑𝑊(𝑢)
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From this we find that

EQ
[∫ 𝑇

𝑡

𝑥(𝑠)𝑑𝑠
����ℱ𝑠 ] = 𝑥(𝑡)1 − 𝑒

−𝑎(𝑇−𝑡)

𝑎

varQ
[∫ 𝑇

𝑡

𝑥(𝑠)𝑑𝑠
����ℱ𝑠 ] = varQ

[
𝑥(𝑡)1 − 𝑒

−𝑎(𝑇−𝑡)

𝑎
+ 𝜎
𝑎

∫ 𝑇

𝑡

(
1 − 𝑒−𝑎(𝑇−𝑢)

)
𝑑𝑊(𝑢)

����ℱ𝑠 ]
= varQ

[
𝜎
𝑎

∫ 𝑇

𝑡

(
1 − 𝑒−𝑎(𝑇−𝑢)

)
𝑑𝑊(𝑢)

����ℱ𝑠 ]
=★ 𝜎2

𝑎2 E
Q

[(∫ 𝑇

𝑡

(
1 − 𝑒−𝑎(𝑇−𝑢)

)
𝑑𝑊(𝑢)

)2]
=★★ 𝜎2

𝑎2 E
Q

[∫ 𝑇

𝑡

(
1 − 𝑒−𝑎(𝑇−𝑢)

)2
𝑑𝑢

]
=

𝜎2

𝑎2

(
𝑇 − 𝑡 − 21 − 𝑒−𝑎(𝑇−𝑡)

𝑎
+ 1 − 𝑒−2𝑎(𝑇−𝑡)

2𝑎

)
= 𝑉(𝑡 , 𝑇)

★ by using that EQ
[∫ 𝑇

𝑡

(
1 − 𝑒−𝑎(𝑇−𝑢)

)
𝑑𝑊(𝑢)

]
= 0.

★★ by Itô’s isometry.

When we fill in what we know we find

𝑃(𝑡 , 𝑇) = exp
{
−

∫ 𝑇

𝑡

𝛽(𝑠)𝑑𝑠
}
EQ

[
𝑒−

∫ 𝑇

𝑡
𝑥(𝑠)𝑑𝑠

���ℱ𝑡 ]
=★ exp

{
−

∫ 𝑇

𝑡

𝛽(𝑠)𝑑𝑠 − 𝑥(𝑡)1 − 𝑒
−𝑎(𝑇−𝑡)

𝑎
+ 1

2𝑉(𝑡 , 𝑇)
}

= exp
{
−

∫ 𝑇

0
𝛽(𝑠)𝑑𝑠 +

∫ 𝑡

0
𝛽(𝑠)𝑑𝑠 − 𝑥(𝑡)1 − 𝑒

−𝑎(𝑇−𝑡)

𝑎
+ 1

2𝑉(𝑡 , 𝑇)
}

= exp
{
−

∫ 𝑇

0
𝑓 𝑀(0, 𝑠)𝑑𝑠 − 1

2𝑉(0, 𝑇) +
∫ 𝑡

0
𝑓 𝑀(0, 𝑠)𝑑𝑠 + 1

2𝑉(0, 𝑡)
}

exp
{
−𝑥(𝑡)1 − 𝑒

−𝑎(𝑇−𝑡)

𝑎
+ 1

2𝑉(𝑡 , 𝑇)
}

=

exp
{∫ 𝑡

0 𝑓 𝑀(0, 𝑠)𝑑𝑠
}

exp
{∫ 𝑇

0 𝑓 𝑀(0, 𝑠)𝑑𝑠
} exp

{
−𝑥(𝑡)1 − 𝑒

−𝑎(𝑇−𝑡)

𝑎
+ 1

2 (𝑉(0, 𝑡) +𝑉(𝑡 , 𝑇) −𝑉(0, 𝑇))
}

=
𝑃𝑀(0, 𝑡)
𝑃𝑀(0, 𝑇) exp

{
−𝑥(𝑡)1 − 𝑒

−𝑎(𝑇−𝑡)

𝑎
+ 1

2 (𝑉(0, 𝑡) +𝑉(𝑡 , 𝑇) −𝑉(0, 𝑇))
}

= 𝐴(𝑡 , 𝑇)𝑒−𝐵(𝑡 ,𝑇)𝑥(𝑡)

★by using the moment generating function of the normal distribution since we know that
∫ 𝑇

𝑡
𝑥(𝑠)𝑑𝑠

���ℱ𝑡 ∼
𝒩

(
𝑥(𝑡) 1−𝑒−𝑎(𝑇−𝑡)𝑎 , 𝑉(𝑡 , 𝑇)

)
.

A.2.1. The pricing functions
When looking at the valuation of the MtM of a XCS it can be seen that the value involves the foreign and
domestic ZCB. The values of these ZCBs are calculated using the foreign and domestic short rate. In
order to be able to combine these short rates a change of measure must be performed, this gives rise to
the following proposition.
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Proposition 6. The foreign short-rate process 𝑥 𝑓 (𝑡) under the domestic risk-neutral measure Q𝑑 follows the
stochastic differential equation,

𝑑𝑥 𝑓 (𝑡) = [−𝑎 𝑓 𝑥 𝑓 (𝑡) + 𝜎 𝑓 𝜎𝑋𝜌 𝑓 𝑋]𝑑𝑡 + 𝜎 𝑓 𝑑𝑊
Q𝑑

𝑓
. (A.1)

Proof. This proof starts by finding a change of measure that makes it possible to move from the foreign
risk-neutral measure to the domestic risk-neutral measure. After we have found such a change of
measure it becomes possible to use the Brownian motion defined on the foreign risk-neutral measure,
combined with Girsanov’s theorem, to find an expression in terms of a Brownian motion defined on the
domestic risk-neutral measure.

We have that
𝑑𝑥 𝑓 (𝑡) = −𝑎 𝑓 𝑥 𝑓 (𝑡)𝑑𝑡 + 𝜎 𝑓 𝑑𝑊

Q 𝑓

𝑓

We know that we can use the foreign and domestic money market accounts, 𝐵 𝑓 (𝑡) and 𝐵𝑑(𝑡), as a
numeraire. Under these numeraires, we know that the payoff of any traded asset 𝑉 𝑓 (𝑡) in the foreign
market and𝑉𝑑(𝑡) in the domestic market relative to their corresponding numeraire is a martingale. That
is,

𝑉 𝑓 (𝑡)
𝐵 𝑓 (𝑡)

= EQ 𝑓

[
𝑉 𝑓 (𝑇)
𝐵 𝑓 (𝑇)

����ℱ𝑡 ]
𝑉𝑑(𝑡)
𝐵 𝑓 (𝑡)

= EQ𝑑

[
𝑉𝑑(𝑇)
𝐵𝑑(𝑇)

����ℱ𝑡 ]
𝑋(𝑡) is defined as the exchange rate. It indicates the amount of domestic currency is received per unit of
foreign currency. From this, we can write that

𝑉𝑑(𝑡) = 𝑋(𝑡)𝑉 𝑓 (𝑡)

= 𝑋(𝑡)𝐵 𝑓 (𝑡)EQ 𝑓

[
𝑉 𝑓 (𝑇)
𝐵 𝑓 (𝑇)

����ℱ𝑡 ]
= 𝑋(𝑡)𝐵 𝑓 (𝑡)EQ 𝑓

[
𝑉 𝑓 (𝑇)
𝐵 𝑓 (𝑇)

𝑋(𝑇)
𝑋(𝑇)

����ℱ𝑡 ]
= 𝐵𝑑(𝑡)EQ𝑑

[
𝑋(𝑇)𝑉 𝑓 (𝑇)
𝐵𝑑(𝑇)

����ℱ𝑡 ]
By using this and putting 𝑡 = 0 we can see that

𝑋(0)𝑉 𝑓 (0) = 𝐵𝑑(0)EQ𝑑

[
𝑋(𝑇)𝑉 𝑓 (𝑇)
𝐵𝑑(𝑇)

����ℱ0

]
𝑋(0)𝐵 𝑓 (0)EQ 𝑓

[
𝑉 𝑓 (𝑇)
𝐵 𝑓 (𝑇)

����ℱ0

]
= 𝐵𝑑(0)EQ𝑑

[
𝑋(𝑇)𝑉 𝑓 (𝑇)
𝐵𝑑(𝑇)

����ℱ0

]
EQ 𝑓

[
𝑋(0)𝑉 𝑓 (𝑇)
𝐵 𝑓 (𝑇)

]
= EQ𝑑

[
𝑋(𝑇)𝑉 𝑓 (𝑇)
𝐵𝑑(𝑇)

]
Where in the last step we used that 𝐵 𝑓 (0) = 𝐵𝑑(0) = 1, and the expecation is independent of ℱ0.

To be able to move from the expectation with measure Q 𝑓 to the expectation with measure Q𝑑
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we need a change of measure. From the equality above we can write that

EQ 𝑓

[
𝑋(0)𝑉 𝑓 (𝑇)
𝐵 𝑓 (𝑇)

]
=

∫
𝑋(0)𝑉 𝑓 (𝑇)
𝐵 𝑓 (𝑇)

𝑑Q 𝑓

=

∫
𝑋(0)𝑉 𝑓 (𝑇)
𝐵 𝑓 (𝑇)

𝑑Q 𝑓

𝑑Q𝑑
𝑑Q𝑑

= EQ𝑑

[
𝑑Q 𝑓

𝑑Q𝑑

𝑋(0)𝑉 𝑓 (𝑇)
𝐵 𝑓 (𝑇)

]
= EQ𝑑

[
𝑋(𝑇)𝑉 𝑓 (𝑇)
𝐵𝑑(𝑇)

]
From this we see that the change of measure must have the form

𝑑Q 𝑓

𝑑Q𝑑
=
𝐵 𝑓 (𝑇)𝑋(𝑇)
𝑋(0)𝐵𝑑(𝑇)

To be able to find the expression of the Brownian motion under the domestic risk-neutral measure we
must find the expression of the stochastic exponential. This expression is equal to the expression of the
change of measure. To find this expression we must fill in the equations for 𝐵 𝑓 (𝑇), 𝐵𝑑(𝑇), 𝑋(𝑇), and
𝑋(0) above.

We know that

𝐵 𝑓 (𝑡) = 𝑒
∫ 𝑡

0 𝑟 𝑓 (𝑠)𝑑𝑠

𝐵𝑑(𝑡) = 𝑒
∫ 𝑡

0 𝑟𝑑(𝑠)𝑑𝑠

Now we only need to find the expression for𝑋(𝑡) to be able to find the expression of the change of measure.

We know that the 𝑋(𝑡) follows the following dynamic

𝑑𝑋(𝑡) =
(
𝑟𝑑(𝑡) − 𝑟 𝑓 (𝑡)

)
𝑋(𝑡)𝑑𝑡 + 𝜎𝑋𝑋(𝑡)𝑑𝑊Q𝑑

𝑋

Taking 𝑔(𝑋(𝑡)) = ln(𝑋(𝑡)) and using Itô’s Lemma we get that

𝜕 ln(𝑋(𝑡)) = 𝜕𝑔

𝜕𝑡
𝑑𝑡 + 𝜕𝑔

𝜕𝑋(𝑡) 𝑑𝑋(𝑡) +
1
2

𝜕2𝑔

𝜕𝑋(𝑡)2 𝑑𝑋(𝑡)𝑑𝑋(𝑡)

=
1

𝑋(𝑡)𝑑𝑋(𝑡) −
1
2

1
𝑋(𝑡)2 𝑑𝑋(𝑡)𝑑𝑋(𝑡)

=
1

𝑋(𝑡)
( (
𝑟𝑑(𝑡) − 𝑟 𝑓 (𝑡)

)
𝑋(𝑡)𝑑𝑡 + 𝜎𝑋𝑋(𝑡)𝑑𝑊Q𝑑

𝑋

)
− 1

2
1

𝑋(𝑡)2
( (
𝑟𝑑(𝑡) − 𝑟 𝑓 (𝑡)

)
𝑋(𝑡)𝑑𝑡 + 𝜎𝑋𝑋(𝑡)𝑑𝑊Q𝑑

𝑋

)2

= (𝑟𝑑(𝑡) − 𝑟 𝑓 (𝑡) −
1
2𝜎

2
𝑋)𝑑𝑡 + 𝜎𝑋𝑑𝑊

Q𝑑

𝑋

Taking the integral on both sides results in

ln(𝑋(𝑡)) = ln(𝑋0) +
∫ 𝑡

0

(
𝑟𝑑(𝑠) − 𝑟 𝑓 (𝑠) −

1
2𝜎

2
𝑋

)
𝑑𝑠 +

∫ 𝑡

0
𝜎𝑋𝑑𝑊

Q𝑑

𝑋

𝑋(𝑡) = 𝑋(0) exp
{∫ 𝑡

0

(
𝑟𝑑(𝑠) − 𝑟 𝑓 (𝑠) −

1
2𝜎

2
𝑋

)
𝑑𝑠 +

∫ 𝑡

0
𝜎𝑋𝑑𝑊

Q𝑑

𝑋

}
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Filling this into the change of measure results in the expression for the stochastic exponential ℰ(𝐿)𝑡

𝑍𝑡 =
𝑑Q 𝑓

𝑑Q𝑑
=
𝐵 𝑓 (𝑇)𝑋(𝑇)
𝑋(0)𝐵𝑑(𝑇)

= exp
{∫ 𝑇

0
𝜎𝑋𝑑𝑊

Q𝑑

𝑋
− 1

2

∫ 𝑇

0
𝜎2
𝑋𝑑𝑡

}
= exp

{
𝐿𝑡 −

1
2⟨𝐿⟩𝑡

}
= ℰ(𝐿)𝑡

From these last expressions, we find that 𝐿𝑡 =
∫ 𝑇

0 𝜎𝑋𝑑𝑊
Q𝑑

𝑋
.

Then by Girsanov’s theorem for Brownian motion, we find that since𝑊Q𝑑

𝑓
is a Brownian motion under

Q𝑑, then𝑊Q 𝑓

𝑓
is a Brownian motion in Q 𝑓

𝑊
Q 𝑓

𝑓
=𝑊

Q𝑑

𝑓
+ ⟨𝑊Q𝑑

𝑓
,

∫ 𝑇

0
𝜎𝑋𝑑𝑊

Q𝑑

𝑋
⟩

=𝑊
Q𝑑

𝑓
+

∫ 𝑇

0
𝜎𝑋𝑑⟨𝑊Q𝑑

𝑓
,𝑊

Q𝑑

𝑋
⟩

=𝑊
Q𝑑

𝑓
+

∫ 𝑇

0
𝜎𝑋𝜌 𝑓 𝑋𝑑𝑡

From this we find that
𝑑𝑊

Q 𝑓

𝑓
= 𝑑𝑊

Q𝑑

𝑓
+ 𝜎𝑋𝜌 𝑓 𝑋𝑑𝑡

Then filling in the expression for 𝑑𝑊Q 𝑓

𝑓
in the dynamics of 𝑥 𝑓 (𝑡) yields

𝑑𝑥 𝑓 (𝑡) = (−𝑎 𝑓 𝑥 𝑓 (𝑡) + 𝜎 𝑓 𝜎𝑋𝜌 𝑓 𝑋)𝑑𝑡 + 𝜎 𝑓 𝑑𝑊
Q𝑑

𝑓

Using Itô’s Lemma on equation A.1 and taking the integral on both sides yields the solution

𝑥 𝑓 (𝑡) = 𝑥 𝑓 (0)𝑒−𝑎 𝑓 𝑡 +
𝜎 𝑓 𝜎𝑋𝜌 𝑓 𝑋

𝑎 𝑓
(1 − 𝑒−𝑎 𝑓 𝑡) + 𝜎 𝑓

∫ 𝑡

0
𝑒−𝑎 𝑓 (𝑡−𝑠)𝑑𝑊𝑓 (𝑠). (A.2)

As can be seen in equation 2.31, the dynamics of the FX rate is modelled using the real world measure
P. To be able to combine them with the shifted short rates that is modelled under the risk-neutral
measure of the domestic market Q𝑑 we need to change the measure of the FX rate by performing a
change of measure. This gives room to the following proposition.

Proposition 7. Under the risk-neutral measure of the domestic measure Q𝑑 we have that

𝑑𝑋(𝑡) = (𝑟𝑑(𝑡) − 𝑟 𝑓 (𝑡))𝑑𝑡 + 𝜎𝑋𝑑𝑊
Q(𝑡) (A.3)

Where 𝑟𝑑(𝑡) and 𝑟 𝑓 (𝑡) are the domestic and foreign short rates at time 𝑡, and 𝜎𝑋 is the volatility of the FX rate.

Proof. We have that by choosing the numeraire to be the domestic money-market account 𝑋(𝑡) 𝐵
𝑓 (𝑡)

𝐵𝑑(𝑡) must

be a martingale under the domestic risk-neutral measure. Since we have that 𝐵 𝑓 (𝑡) = exp
{
−

∫ 𝑡

0 𝑟 𝑓 (𝑠)𝑑𝑠
}

and 𝐵𝑑(𝑡) = exp
{
−

∫ 𝑡

0 𝑟𝑑(𝑠)𝑑𝑠
}

we know that we can write 𝐵 𝑓 (𝑡)/𝐵𝑑(𝑡) = exp
{∫ 𝑡

0 (𝑟𝑑 − 𝑟 𝑓 )(𝑠)𝑑𝑠
}
.
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Using this we find that

𝑑

(
𝑋(𝑡)𝐵

𝑓 (𝑡)
𝐵𝑑(𝑡)

)
= 𝑑(𝑋(𝑡))𝐵

𝑓 (𝑡)
𝐵𝑑(𝑡) + 𝑋(𝑡)𝑑

(
𝐵 𝑓 (𝑡)
𝐵𝑑(𝑡)

)
,

=
(
𝜇𝑋(𝑡)𝑑𝑡 + 𝜎𝑋𝑋(𝑡)𝑑𝑊P) 𝐵 𝑓 (𝑡)

𝐵𝑑(𝑡) − (𝑟𝑑(𝑡) − 𝑟 𝑓 (𝑡))𝑋(𝑡)
𝐵 𝑓 (𝑡)
𝐵𝑑(𝑡) 𝑑𝑡,

=
(
(𝜇 − (𝑟𝑑(𝑡) − 𝑟 𝑓 (𝑡))𝑑𝑡 + 𝜎𝑋𝑑𝑊

P) 𝑋(𝑡)𝐵 𝑓 (𝑡)
𝐵𝑑(𝑡) .

In order to be a martingale there mustn’t be drift. This is only the case if 𝜇 = 𝑟𝑑(𝑡) − 𝑟 𝑓 (𝑡). Thus, we find
that under the risk-neutral domestic measure Q𝑑,

𝑑𝑋(𝑡) = (𝑟𝑑(𝑡) − 𝑟 𝑓 (𝑡))𝑋(𝑡)𝑑𝑡 + 𝜎𝑋𝑑𝑊
Q𝑑 (𝑡).

A.3. Proof of parameters of CE-AIS being global maximizers

arg max
𝜇∈R𝑚 ,Σ∈ℳ+𝑚×𝑚

E𝑝𝜃0

[
log(𝑔𝜇,Σ(X)) · 1{max(𝐸𝑡(X), 0) > 𝑞𝛼}

]
,

= arg max
𝜇∈R𝑚 ,Σ∈ℳ+𝑚×𝑚

∫ ∞

−∞
log(𝑔𝜇,Σ(X)) · 1{max(𝐸𝑡(X), 0) > 𝑞𝛼}𝑝𝜃0(X)𝑑X,

= arg max
𝜇∈R𝑚 ,Σ∈ℳ+𝑚×𝑚

E𝑝𝜃0

[
log

(
exp{− 1

2 (X−𝜇)⊤Σ−1(X−𝜇)}√
(2𝜋)𝑚det(Σ)

)���� 1{max(𝐸𝑡(X), 0) > 𝑞𝛼}
]

P𝑝𝜃0

[
max(𝐸𝑡(X), 0) > 𝑞𝛼

] ,

= arg max
𝜇∈R𝑚 ,Σ∈ℳ+𝑚×𝑚

E𝑝𝜃0

[
log

(
exp{− 1

2 (X − 𝜇)⊤Σ−1(X − 𝜇)}√
(2𝜋)𝑚det(Σ)

)����� 1{max(𝐸𝑡(X), 0) > 𝑞𝛼}
]
. (A.4)

From the latter expression it can be seen that the following expression must be maximized,

E𝑝𝜃0

[
−1

2 (X − 𝜇)
⊤Σ−1(X − 𝜇) − log

(√
(2𝜋)𝑘det(Σ)

)���� 1{max(𝐸𝑡(X), 0) > 𝑞𝛼}
]
.

The derivatives of this expression can be taken with respect to 𝜇 and Σ to find the values that maximizes
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A.4. Using Ω = {max(𝐸𝑡(X), 0) > 𝑞𝛼}, it can be seen that

𝜕

𝜕𝜇
E𝑝𝜃0

[
−1

2 (X − 𝜇)
⊤Σ−1(X − 𝜇) − log

(√
(2𝜋)𝑚det(Σ)

)���� 1{max(𝐸𝑡(X), 0) > 𝑞𝛼}
]
,

=
𝜕

𝜕𝜇

(∫
Ω

(
−1

2 (X − 𝜇)
⊤Σ−1(X − 𝜇)

)
𝑝𝜃0(X)𝑑X −

∫
Ω

(
− log

(√
(2𝜋)𝑚det(Σ)

)
𝑝𝜃0(X)𝑑X

))
,

=

∫
Ω

𝜕

𝜕𝜇

(
−1

2 (X − 𝜇)
⊤Σ−1(X − 𝜇)

)
𝑝𝜃0(X)𝑑X −

∫
Ω

𝜕

𝜕𝜇

(
− log

(√
(2𝜋)𝑚det(Σ)

)
𝑝𝜃0(X)𝑑X

)
,

=

∫
Ω

𝜕

𝜕𝜇

(
−1

2 (X − 𝜇)
⊤Σ−1(X − 𝜇)

)
𝑝𝜃0(X)𝑑X,

= − 1
2

∫
Ω

𝜕

𝜕𝜇

(
X⊤Σ−1X − X⊤Σ−1𝜇 − 𝜇⊤Σ−1X + 𝜇⊤Σ−1𝜇

)
𝑝𝜃0(X)𝑑X,

= − 1
2

∫
Ω

(
𝜕

𝜕𝜇

(
X⊤Σ−1X

)
− 𝜕

𝜕𝜇

(
X⊤Σ−1𝜇

)
− 𝜕

𝜕𝜇

(
𝜇⊤Σ−1X

)
+ 𝜕

𝜕𝜇

(
𝜇⊤Σ−1𝜇

) )
𝑝𝜃0(X)𝑑X,

=

∫
Ω

(
1
2Σ
−1X + 1

2XΣ−1 − Σ−1𝜇

)
𝑝𝜃0(X)𝑑X,

=
1
2Σ
−1

∫
Ω

X𝑝𝜃0(X)𝑑X + 1
2

∫
Ω

X𝑝𝜃0(X)𝑑XΣ−1 − Σ−1
∫
Ω

𝜇𝑝𝜃0(X)𝑑X,

=
1
2Σ
−1E𝑝𝜃0

[
X|max(𝐸𝑡(X), 0) > 𝑞𝛼

]
+ 1

2E𝑝𝜃0

[
X|max(𝐸𝑡(X), 0) > 𝑞𝛼

]
Σ−1

− Σ−1E𝑝𝜃0

[
𝜇
��max(𝐸𝑡(X), 0) > 𝑞𝛼

]
,

=Σ−1E𝑝𝜃0

[
X|max(𝐸𝑡(X), 0) > 𝑞𝛼

]
− Σ−1E𝑝𝜃0

[
𝜇
��max(𝐸𝑡(X), 0) > 𝑞𝛼

]
Solving the last expression it follows that

Σ−1E𝑝𝜃0

[
X|max(𝐸𝑡(X), 0) > 𝑞𝛼

]
− Σ−1E𝑝𝜃0

[
𝜇
��max(𝐸𝑡(X), 0) > 𝑞𝛼

]
= 0,

Σ−1E𝑝𝜃0

[
X|max(𝐸𝑡(X), 0) > 𝑞𝛼

]
− Σ−1𝜇 = 0

From which it follows that
𝜇 = E𝑝𝜃0

[
X|max(𝐸𝑡(X), 0) > 𝑞𝛼

]
. (A.5)

To verify that this 𝜇 will indeed result in finding the maximum of the equation A.4 the second order
derivative will be computed.

𝜕2

𝜕𝜇2E𝑝𝜃0

[
−1

2 (X − 𝜇)
⊤Σ−1(X − 𝜇) − log

(√
(2𝜋)𝑚det(Σ)

)���� 1{max(𝐸𝑡(X), 0) > 𝑞𝛼}
]
,

=
𝜕

𝜕𝜇

(∫
Ω

(
−1

2Σ
−1X − 1

2XΣ−1 − Σ−1𝜇

)
𝑝𝜃0(X)𝑑X

)
,

=

∫
Ω

𝜕

𝜕𝜇

(
−1

2Σ
−1X − 1

2XΣ−1 − Σ−1𝜇

)
𝑝𝜃0(X)𝑑X,

=

∫
Ω

−Σ−1𝑝𝜃0(X)𝑑X,

= −Σ−1
∫
Ω

𝑝𝜃0(X)𝑑X.

Because
∫
Ω
𝑝𝜃0(X)𝑑X is a positive constant Σ−1 is still an SPD matrix as the covariance matrix Σ is SPD

by definition. From this it follows that −Σ−1
∫
Ω
𝑝𝜃0(X)𝑑X is negative definite. Now it can be concluded

that since the Hessian matrix, or second derivative, is negative definite for every 𝜇 the expectation is
concave, therefore the solution found gives the global maximum. Thus, the value of 𝜇 in A.5 indeed
maximizes equation A.4.
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Next, the same will be done for Σ.

𝜕

𝜕Σ
E𝑝𝜃0

[
−1

2 (X − 𝜇)
⊤Σ−1(X − 𝜇) − log

(√
(2𝜋)𝑘det(Σ)

)���� 1{max(𝐸𝑡(X), 0) > 𝑞𝛼}
]
,

=
𝜕

𝜕Σ

(∫
Ω

(
−1

2 (X − 𝜇)
⊤Σ−1(X − 𝜇)

)
𝑑X −

∫
Ω

(
log

(√
(2𝜋)𝑘det(Σ)

)
𝑝𝜃0(X)𝑑X

))
,

=

∫
Ω

𝜕

𝜕Σ

(
−1

2 (X − 𝜇)
⊤Σ−1(X − 𝜇)

)
𝑑X −

∫
Ω

𝜕

𝜕Σ

(
log

(√
(2𝜋)𝑘det(Σ)

)
𝑝𝜃0(X)𝑑X

)
,

=

∫
Ω

(
−1

2
(
−Σ−⊤X⊤XΣ−⊤ + Σ−⊤X⊤𝜇Σ−⊤ + Σ−⊤𝜇⊤XΣ−⊤ − Σ−⊤𝜇⊤𝜇Σ−⊤

)
𝑝𝜃0(X𝑑X)

)
−

∫
Ω

𝜕

𝜕Σ
log

(√
(2𝜋)𝑘det(Σ)

)
𝑝𝜃0(X)𝑑X,

=
1
2Σ
−⊤E𝑝𝜃0

[
(X − 𝜇)⊤(X − 𝜇)

��max(𝐸𝑡(X), 0) > 𝑞𝛼
]
Σ−⊤

− E𝑝𝜃0

[ √
(2𝜋)𝑘det(Σ) 𝜕

𝜕Σdet(Σ)
2
√
(2𝜋)𝑘det(Σ)

�����max(𝐸𝑡(X), 0) > 𝑞𝛼

]
,

=
1
2Σ
−⊤E𝑝𝜃0

[
(X − 𝜇)⊤(X − 𝜇)

��max(𝐸𝑡(X), 0) > 𝑞𝛼
]
Σ−⊤ − E𝑝𝜃0

[
1
2Σ
−1

����max(𝐸𝑡(X), 0) > 𝑞𝛼

]
.

Solving the last expression shows,

1
2Σ
−⊤E𝑝𝜃0

[
(X − 𝜇)⊤(X − 𝜇)

��max(𝐸𝑡(X), 0) > 𝑞𝛼
]
Σ−⊤ − 1

2Σ
−1 = 0,

Σ−1 = Σ−⊤E𝑝𝜃0

[
(X − 𝜇)⊤(X − 𝜇)

��max(𝐸𝑡(X), 0) > 𝑞𝛼
]
Σ−⊤

From which, by using the fact that Σ−⊤ = Σ−1, it follows that

ΣΣ−1Σ = ΣΣ−1E𝑝𝜃0

[
(X − 𝜇)⊤(X − 𝜇)

��max(𝐸𝑡(X), 0) > 𝑞𝛼
]
Σ−1Σ,

Σ = E𝑝𝜃0

[
(X − 𝜇)⊤(X − 𝜇)

��max(𝐸𝑡(X), 0) > 𝑞𝛼
]
. (A.6)

Again, it is verified that this value gives the maximum by looking at the second order derivative.

𝜕2

𝜕Σ2E𝑝𝜃0

[
−1

2 (X − 𝜇)
⊤Σ−1(X − 𝜇) − log

(√
(2𝜋)𝑘det(Σ)

)���� 1{max(𝐸𝑡(X), 0) > 𝑞𝛼}
]
,

=
𝜕2

𝜕Σ2

(∫
Ω

(
−1

2 (X − 𝜇)
⊤Σ−1(X − 𝜇)

)
𝑑X −

∫
Ω

(
log

(√
(2𝜋)𝑘det(Σ)

)
𝑝𝜃0(X)𝑑X

))
,

=

∫
Ω

𝜕2

𝜕Σ2

(
−1

2 (X − 𝜇)
⊤Σ−1(X − 𝜇)

)
𝑑X −

∫
Ω

𝜕2

𝜕Σ2

(
log

(√
(2𝜋)𝑘det(Σ)

)
𝑝𝜃0(X)𝑑X

)
,

=
1
2

𝜕

𝜕Σ

(
Σ−1) E𝑝𝜃0

[
(X − 𝜇)⊤(X − 𝜇)

��max(𝐸𝑡(X), 0) > 𝑞𝛼
]
Σ−1

+ 1
2Σ
−1E𝑝𝜃0

[
(X − 𝜇)⊤(X − 𝜇)

��max(𝐸𝑡(X), 0) > 𝑞𝛼
] 𝜕

𝜕Σ

(
Σ−1) − 1

2
𝜕

𝜕Σ
Σ−1 ,

= − 1
2Σ
−2E𝑝𝜃0

[
(X − 𝜇)⊤(X − 𝜇)

��max(𝐸𝑡(X), 0) > 𝑞𝛼
]
Σ−1

− 1
2Σ
−1E𝑝𝜃0

[
(X − 𝜇)⊤(X − 𝜇)

��max(𝐸𝑡(X), 0) > 𝑞𝛼
]
Σ−2 + 1

2Σ
−2.

To find the expression for 𝜕
𝜕ΣΣ

−1 it was used that, 𝜕𝐼 = 𝜕(ΣΣ−1) = 𝜕ΣΣ−1 + Σ𝜕Σ−1 from this it can be
seen that as 𝜕𝐼 = 0 it follows that 𝜕Σ−1/𝜕Σ = −Σ−1Σ−1 = −Σ−2.
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Then by using that Σ = E𝑝𝜃0

[
(X − 𝜇)⊤(X − 𝜇)

��max(𝐸𝑡(X), 0) > 𝑞𝛼
]

it can be seen that

− 1
2Σ
−2E𝑝𝜃0

[
(X − 𝜇)⊤(X − 𝜇)

��max(𝐸𝑡(X), 0) > 𝑞𝛼
]
Σ−1

− 1
2Σ
−1E𝑝𝜃0

[
(X − 𝜇)⊤(X − 𝜇)

��max(𝐸𝑡(X), 0) > 𝑞𝛼
]
Σ−2 + 1

2Σ
−2 ,

= − 1
2Σ
−2ΣΣ−1

− 1
2Σ
−1ΣΣ−2 + 1

2Σ
−2 ,

= − Σ−2 + 1
2Σ
−2 ,

= − 1
2Σ
−2.

Then as the square of the inverse of an SPD matrix is again SPD it can be concluded that − 1
2Σ
−2 is

negative definite. Thus, as the Hessian is negative definite for all Σ it follows that the expectation is
concave for Σ. From this it follows that the value of Σ in A.6 is the global maximizer of the problem.
Thus the parameters that globally maximize A.4 are

𝜇★ = E𝑝𝜃0

[
X|max(𝐸𝑡(X), 0) > 𝑞𝛼

]
,

Σ★ = E𝑝𝜃0

[
(X − 𝜇)⊤(X − 𝜇)

��max(𝐸𝑡(X), 0) > 𝑞𝛼
]
.

A.4. Using the analytical solution to find the CE-AIS-COS parame-
ters

The results presented in the previous sections were from the CE-AIS-COS variants, where the parameters
𝝁★ and Σ★ are approximated using Monte Carlo. Instead of using Monte Carlo, the Clenshaw-Curtis
quadrature can be used to find the values of 𝝁★ and Σ★. Doing this could make the iterative loop inside
the CE-AIS-COS method obsolete. Below we describe how to apply the Clenshaw-Curtis quadrature in
finding those parameters.

We start from the definitions of those parameters to estimate:

𝜇★ = E𝑝𝜃0

[
X|max(𝑉(X), 0) > 𝑞𝛼

]
,

=
E𝑝𝜃0

[
X ∩ {max(𝑉(X), 0) > 𝑞𝛼}

]
P𝑝𝜃0

[
max(𝑉(X), 0) > 𝑞𝛼}

] ,

=

∫
R𝑚 x · 1{max(𝑉(x), 0) > 𝑞𝛼} · 𝑝𝜃0(x)𝑑x∫

R𝑚 1{max(𝑉(x), 0) > 𝑞𝛼}𝑝𝜃0(x)𝑑x
,

and

Σ★ =
E𝑝𝜃0

[
(X − 𝝁★)(X − 𝝁★) ∩ {max(𝑉(X), 0) > 𝑞𝛼}

]
P𝑝𝜃0

[
max(𝑉(X), 0) > 𝑞𝛼}

] ,

=

∫
R𝑚 (x − 𝝁

★)(x − 𝝁★) · 1{max(𝑉(x), 0) > 𝑞𝛼} · 𝑝𝜃0(x)𝑑x∫
R𝑚 1{max(𝑉(x), 0) > 𝑞𝛼}𝑝𝜃0(x)𝑑x

,

Then the integrals
∫
R𝑚 (x − 𝝁★)(x − 𝝁★) · 1{max(𝑉(x), 0) > 𝑞𝛼} · 𝑝𝜃0(x)𝑑x and

∫
R𝑚 (x − 𝝁★)(x − 𝝁★) ·

1{max(𝑉(x), 0) > 𝑞𝛼} · 𝑝𝜃0(x)𝑑x are calculated using the Clenshaw-Curtis quadrature. In the above
fractions we define

𝑝 = P𝑝𝜃0

[
1{max(𝑉(X), 0) > 𝑞𝛼}

]
=

∫
R𝑚

1{max(𝑉(x), 0) > 𝑞𝛼}𝑝𝜃0(x)𝑑x.

As 𝑞𝛼 is the 0.975-quantile it is already known that 𝑝 = 0.025. In this way, if the quadrature’s accuracy is
sufficient the values 𝝁★ and Σ★ can be calculated and used in the CE-AIS-COS-exact. Table A.1 shows the



A.4. Using the analytical solution to find the CE-AIS-COS parameters 98

values 𝑝 calculated using the Clenshaw-Curtis quadrature with 64 expansion terms and 30 quadrature
points. These values were calculated using a test portfolio containing 100 derivatives without collateral
on even time points.

t 2 4 6 8 10 12 14 16 18
𝑝 0.02494 0.02602 0.02466 0.02567 0.02415 0.02353 0.03821 0.03829 0.03825

Table A.1: The values of 𝑝̂ on even time points for a uncollateralized portfolio containing 100 derivatives.

As can be seen in the table, the analytical solutions 𝑝 are very close to the actual 0.025. Sequentially, by
using these values as an indication of the accuracy, it was found that using the analytical solution for
the values 𝝁★ and Σ★ in the CE-AIS-COS method gave good results for the PFE approximations.

For each of the time points in Table A.1 the PFE was calculated 100 times using 25000 paths. The
variance of these PFE values, calculated using the analytical solutions, were compared to the variances
of the PFE approximations using the CE-AIS-COS method. From this comparison it was found that
for approximately half of the time points the variances of the PFE calculated this approach were
approximately the same as the CE-AIS-COS method we developed in Section 6.2. For other time points
the variances of the CE-AIS method using the Monte Carlo approach were two to six times lower than
those found using the analytical solution.

Next, the same check was done for a collateralized portfolio. Table A.2 shows the values of 𝑝
calculated using 32 expansion terms and 30 quadrature points for the Clenshaw-Curtis quadrature.

t 2 4 6 8 10 12 14 16 18
𝑝 0.0 0.01742 0.01708 0.01147 0.02114 0.01404 0.03819 0.03789 0.01426

Table A.2: The values of 𝑝 on even time points for a collateralized portfolio using 100 derivatives.

It can be seen that the values of 𝑝 for the collateralized portfolio are much further away from the
real value of 𝑝, compared to the uncollateralized case. These values indicate that the errors from the
integrals in the numerators of Equation ?? and ?? become dominating. This was verified by comparing
the variance of 100 PFE calculations using the analytical solution to that using the CE-AIS-COS method
as described in Section 6.2.

These results suggest that using the parameters found by the analytical solution gave a much higher
variance than that of the CE-AIS-COS method from Section 6.2. In some cases the variance was more
than 200 times higher. To find a better approximation of the solutions of 𝝁★ and Σ★ more expansion
terms and quadrature points have to be used. It would result in a higher CPU time, thus not efficient.
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