
Reduc&on	 of	 compu&ng	 &me	 for	 seismic	
applica&ons	 based	 on	 the	 Helmholtz	 equa&on	 by	

Graphics	 Processing	 Units	

Hans	 Peter	 Knibbe	

R
eduction of com

puting tim
e for seism

ic applications based on the H
elm

holtz equation by G
raphics Processing U

nits

REDUCTION OF COMPUTING TIME FOR SEISMIC
APPLICATIONS BASED ON THE HELMHOLTZ

EQUATION BY GRAPHICS PROCESSING UNITS

REDUCTION OF COMPUTING TIME FOR SEISMIC
APPLICATIONS BASED ON THE HELMHOLTZ

EQUATION BY GRAPHICS PROCESSING UNITS

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. ir. K. C. A. M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 3 maart 2015 om 10:00 uur

door

Hans Peter KNIBBE

MSc Computer Science, Technische Universiteit Delft
geboren te Reims, Frankrijk.

Dit proefschrift is goedgekeurd door de promotors:

Prof. dr. ir. Cornelis W. Oosterlee en Prof. dr. ir. Kees Vuik

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. ir. Cornelis W. Oosterlee Technische Universiteit Delft, promotor
Prof. dr. ir. Kees Vuik Technische Universiteit Delft, promotor
Prof. dr. S. F. Portegies Zwart Universiteit Leiden
Prof. dr. K. J. Batenburg Universiteit Leiden
Prof. dr. W. A. Mulder Technische Universiteit Delft
Prof. dr. ir. H. J. Sips Technische Universiteit Delft
Prof. dr. ir. H. X. Lin Technische Universiteit Delft

Keywords: Helmholtz, Shifted Laplace Preconditioner, Multigrid, GPU, CUDA,
Seismic Migration, Acceleration, Least-Squares Migration, VCRS.

Copyright © 2015 by H. Knibbe

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and retrieval system, without
written permission of the author.

ISBN 978-94-6186-427-7

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

CONTENTS

1 Introduction 1
1.1 Scope and outline of the thesis . 2
1.2 Helmholtz equation. 4

1.2.1 Matrix storage formats . 6
1.3 Acceleration with GPUs . 6

1.3.1 History of GPU development. 7
1.3.2 CUDA . 9
1.3.3 Accelerator or replacement? . 11

1.4 Migration in time and frequency domain 11
1.5 Least-squares migration . 13

2 GPU Implementation of a Preconditioned Helmholtz Solver 15
2.1 Introduction . 15
2.2 Problem Description . 17

2.2.1 Discretization . 17
2.2.2 Krylov Subspace Methods . 17
2.2.3 Shifted Laplace Multigrid Preconditioner 20

2.3 Implementation on GPU . 20
2.3.1 CUDA . 20
2.3.2 Vector and Matrix Operations on GPU 21
2.3.3 Multigrid Method on GPU . 23
2.3.4 Iterative Refinement . 24
2.3.5 GPU optimizations. 24

2.4 Numerical Experiments . 26
2.4.1 Hardware and Software Specifications 26
2.4.2 Bi-CGSTAB and IDR(s) . 27
2.4.3 Preconditioned Krylov Subspace Methods 28

2.5 Conclusions. 31

3 3D Preconditioned Helmholtz Solver on Multi-GPUs 33
3.1 Introduction . 33
3.2 Helmholtz Equation and Solver . 34
3.3 Multi-GPU Implementation. 35

3.3.1 Split of the Algorithm . 36
3.3.2 Issues . 36

3.4 Numerical Results on Multi-GPU . 37
3.4.1 Vector- and Sparse Matrix-Vector operations 37
3.4.2 Bi-CGSTAB and Gauss-Seidel on Multi-GPU 37

v

vi CONTENTS

3.5 Numerical Experiments for the Wedge Problem. 39

3.6 Conclusions. 39

4 Frequency domain migration on multi-CPU 41
4.1 Choice of Method . 44

4.2 Modeling . 45

4.2.1 Modeling in the time domain . 45

4.2.2 Modeling in the frequency domain 46

4.3 Migration . 48

4.3.1 Born approximation . 48

4.3.2 Migration in the time domain . 49

4.3.3 Migration in the frequency domain 52

4.4 Implementation details . 53

4.4.1 Domain decomposition approach 55

4.4.2 Implicit load balancing . 56

4.5 Results . 59

4.5.1 Wedge . 59

4.5.2 Overthrust EAGE/SEG Model . 61

4.6 Discussion . 62

4.7 Conclusions. 64

5 Accelerating LSM 67
5.1 Introduction . 68

5.2 Least-Squares Migration . 69

5.2.1 Description . 69

5.2.2 CG and Frequency Decimation 71

5.2.3 Helmholtz solver . 72

5.3 Model Problems. 72

5.4 Very Compressed Row Storage (VCRS) Format 73

5.4.1 VCRS Description . 73

5.4.2 Matrix-Vector Multiplication. 77

5.4.3 Multigrid Method Preconditioner 80

5.4.4 Preconditioned Bi-CGSTAB . 82

5.5 Implementation Details. 85

5.5.1 GPU . 85

5.5.2 Common Code. 87

5.5.3 Task System . 88

5.6 Results . 90

5.7 Conclusions. 91

6 Conclusions 93
6.1 Overview . 93

6.2 Outlook . 95

CONTENTS vii

7 Acknowledgments 97

A Little Green Machine 99

B Common code 101
B.1 Abstraction macros for the common code CPU/GPU 101
B.2 Common code CPU/GPU example . 102

C Multigrid coefficients 105
C.1 Multigrid . 105

Summary 109

Samenvatting 113

Curriculum Vitæ 117

List of publications 118

References 121

1
INTRODUCTION

The oil and gas industry makes use of computational intensive algorithms such as reverse-
time migration and full waveform inversion to provide an image of the subsurface. The
image is obtained by sending wave energy into the subsurface and recording the sig-
nal required for a seismic wave to reflect back to the surface from the interfaces with
different physical properties. A seismic wave is usually generated by shots at known fre-
quencies, placed close to the surface on land or to the water surface in the sea. Return-
ing waves are usually recorded in time by hydrophones in the marine environment or
by geophones during land acquisition. The goal of seismic imaging is to transform the
seismograms to a spatial image of the subsurface.

Seismic imaging algorithms include Kirchoff migration, reverse time migration (RTM),
least-squares migration (LSM) and full waveform inversion (FWI). Migration methods
assume that the velocity model is given, whereas FWI updates the initial velocity model
to match the recorded signal. In this work, we only focus on migration, however, some
findings can also be applied to FWI.

Migration algorithms produce an image of the subsurface given seismic data mea-
sured at the surface. In particular, pre-stack depth migration produces the depth loca-
tions of reflectors by mapping seismic data from the time domain to the depth domain,
assuming that a sufficiently accurate velocity model is available. The classic imaging
principle [1, 2] is based on the correlation of the forward propagated wavefield from a
source and a backward propagated wavefield from the receivers. To get an approxima-
tion of the reflector amplitudes, the correlation is divided by the square of the forward
wavefield [3, 4]. For true-amplitude or amplitude-preserving migration, there are a num-
ber of publications based on the formulation of migration as an inverse problem in the
least-squares sense [5–9].

The two main approaches for seismic imaging include the ray-based and wave-equation-
based approaches. The first approach is based on a high-frequency approximation or
one-way propagation approximation, for instance, Kirchhoff integral method, see e.g.
[10], [11], [12], [13], [14]. This approach is efficient, however it fails in complex geolog-
ical settings. The wave-equation-based approach consists of differential, extrapolation

1

1

2 1. INTRODUCTION

or continuation methods. The most well known method is the wavefield continuation
method with finite-difference discretization. It images all arrivals and the whole subsur-
face. Because of the last, this set of methods is computationally costly. For an overview
see e.g, [15]. In this thesis we consider the wave-equation-based approach.

Modeling is a major component of migration and inversion algorithms. Traditionally,
seismic data is modeled in the time domain because of the implementation simplicity as
well as the memory demands. However, modeling in the frequency domain offers such
advantages as parallelization over frequencies or reuse of earlier results if an iterative
solver is employed for computing the wavefields, for example, during LSM or FWI.

Algorithms for seismic imaging can be divided into two main groups: those formu-
lated in the time domain and those that perform in the frequency domain. Combina-
tions and transitions from one group to another are also possible by using the Fourier
transformation. An overview of numerical methods for both cases is given in [16]. Dis-
cretization with finite differences of the time-domain formulation leads to an explicit
time-marching scheme, where the numerical solution is updated every time step. The
discretization of the frequency-domain formulation gives a linear system of equations
that needs to be solved for each frequency. The wave equation in the frequency-domain,
or Helmholtz equation, is difficult to solve because the resulting discretized system is
indefinite.

The demand for better resolution of the subsurface image increases the bandwidth of
the seismic data and leads to larger computational problems. Therefore, considering an
efficient implementation on parallel architectures is of major importance. Currently, the
many-core computers are dominant for large-scale intensive computations. The gen-
eral purpose graphics cards (GPUs), field-programmable gate arrays (FPGAs) are mainly
used as accelerators to speedup the computations. Both hardware configurations have
been shown to accelerate certain problems. GPUs are used more widely because of open
source compilers and shorter development time. Recently, Intel released the Intel Many
Integrated Core Architecture (MIC), which is a coprocessor compute architecture based
on the Xeon Phi processors. The MIC with 61 cores and 8 GB of memory is positioned
between a many-core CPU and a GPU. The main advantage of MIC is that an existing
code can be easily run without completely rewriting it. However, to achieve optimal
performance for parallel computations on a MIC, one also needs to adjust the code. Un-
fortunately, there is no optimal "fit for all purposes" hardware solution. Therefore, each
problem needs to be considered separately.

1.1. SCOPE AND OUTLINE OF THE THESIS

In this thesis we combine research from three different areas: (1) numerical analysis,
(2) computational science and (3) geophysics. By using an enhanced Helmholtz solver
accelerated on GPUs we focus on an efficient implementation of migration in the fre-
quency domain and least-squares migration.

The numerical core of the thesis is a Helmholtz solver in three dimensions precon-
ditioned by a shifted Laplace multigrid method. We focus on developing an efficient
solver using three different strategies. Firstly, the preconditioner is enhanced by us-
ing the matrix-dependent prolongation and multi-colored Gauss-Seidel smoother. Sec-

1.1. SCOPE AND OUTLINE OF THE THESIS

1

3

ondly, we introduce a new sparse matrix storage format that not only reduces the mem-
ory usage but also speeds up the matrix-vector computations. Thirdly, the Helmholtz
solver is accelerated by using GPUs.

The idea of using GPUs is to search for the most efficient way of speeding up our
computations. Therefore, we consider two approaches of using GPUs: as a replacement
and as an accelerator. The main difference between these approaches is where the ma-
trix is stored: in the GPU or CPU memory. The implementation is challenging, since the
CPU and GPU have different properties, therefore, we develop a common code concept
and a task system to target an efficient parallel implementation.

Here, we focus on geophysical applications such as migration. The depth migra-
tion in the frequency domain uses an enhanced and accelerated Helmholtz solver and is
compared to the reverse time migration in the time domain. For an efficient implemen-
tation of the least-squares migration we introduce a frequency decimation method.

The outline of the thesis is as follows.

In Chapter 2, a Helmholtz equation in two dimensions discretized by a second-order
finite difference scheme is considered. Krylov subspace methods such as Bi-CGSTAB
and IDR(s) have been chosen as solvers. Since the convergence of the Krylov subspace
solvers deteriorates with increasing wave number, a shifted Laplacian multigrid precon-
ditioner is used to improve the convergence. The implementation of the preconditioned
solver on a CPU (Central Processing Unit) is compared to an implementation on a GPU
(Graphics Processing Units or graphics card) using CUDA (Compute Unified Device Ar-
chitecture).

Chapter 3 is focusing on an iterative solver for the three-dimensional Helmholtz equa-
tion on multi-GPU using CUDA. The Helmholtz equation discretized by a second-order
finite difference scheme is solved with Bi-CGSTAB preconditioned by a shifted Laplace
multigrid method with matrix-dependent prolongation. Two multi-GPU approaches are
considered: data parallelism and split of the algorithm. Their implementations on multi-
GPU architecture are compared to a multi-threaded CPU and single GPU implementa-
tion.

In Chapter 4 we investigate whether migration in the frequency domain can com-
pete with a time-domain implementation when both are performed on a parallel archi-
tecture. In the time domain we consider 3-D reverse time migration with the constant-
density acoustic wave equation. For the frequency domain, we use an iterative Helm-
holtz Krylov subspace solver based on a shifted Laplace multigrid preconditioner with
matrix-dependent prolongation. As a parallel architecture, we consider a commodity
hardware cluster that consists of multi-core CPUs, each of them connected to two GPUs.
Here, GPUs are used as accelerators and not as an independent compute node. The par-
allel implementation over shots and frequencies of the 3-D migration in the frequency
domain is compared to a time-domain implementation. We optimized the throughput
of the latter with dynamic load balancing, asynchronous I/O and compression of snap-
shots.

In Chapter 5 an efficient least-squares migration (LSM) algorithm is presented us-
ing several enhancements. Firstly, a frequency decimation approach is introduced that
makes use of redundant information present in the data. Secondly, a new matrix stor-
age format VCRS (Very Compressed Row Storage) is presented. It does not only reduce

1

4 1. INTRODUCTION

the size of the stored matrix by a certain factor but also increases the efficiency of the
matrix-vector computations. The effect of lossless and lossy compression is investigated.
Thirdly, we accelerate the LSM computational engine by graphics cards (GPUs). The
GPU is used as an accelerator, where the data is partially transferred to a GPU to execute
a set of operations, or as a replacement, where the complete data is stored in the GPU
memory. We demonstrate that using GPU as a replacement leads to higher speedups
and allows us to solve larger problem sizes. In Chapter 6 we draw conclusions and give
some remarks and suggestions for future work.

In Appendix A, specifications of the Little Green Machine (LGM) are given, which has
been used for the most computations and performance comparisons.

In Appendix B we show an example of the common code on CPU and GPU.

Appendix C presents coefficients for the matrix-dependent prolongation matrix in
three-dimensions used in multigrid.

1.2. HELMHOLTZ EQUATION

The wave propagation in an acoustic medium can be described in time domain or in
frequency domain. We start with the description in frequency domain, because this is
the main focus of the thesis.

The Helmholtz equation meaning the wave equation in the frequency domain reads

−∆φ− (1− iα)k2φ= g , (1.1)

where φ = φ(x, y, z,ω) is the wave pressure field as a function of a spatially-dependent
frequency, k = k(x, y, z,ω) is the wavenumber and g = g (x, y, z,ω) is the source term.
The coefficient 0 ≤ α ¿ 1 represents a damping parameter that indicates the fraction
of damping in the medium. The corresponding differential operator has the following
form:

A =−∆− (1−αi)k2, (1.2)

where ∆ denotes the Laplace operator. In our work we consider a rectangular domain
Ω= [0, X]× [0,Y]× [0, Z].

In many real world applications the physical domain is unbounded, and artificial
reflections should be avoided. In the frequency domain, non-reflecting boundary con-
ditions can be used:

• First order radiation boundary condition (described in e.g. Clayton et al. [17], En-
gquist et al. [18]) (

− ∂

∂η
− ik

)
φ= 0, (1.3)

where η is the outward unit normal component to the boundary. The disadvantage
of this boundary condition is that it is not accurate for inclined outgoing waves.

1.2. HELMHOLTZ EQUATION

1

5

• Second order radiation boundary condition (described in Engquist et al. [18])

Bφ|ed g e := −3

2
k2φ− ik

2∑
j=1, j 6=i

(
± ∂φ

∂x j

)
− 1

2

∂2φ

∂xi
= 0, (1.4)

Bφ|cor ner := −2ikφ+
2∑

i=1

(
± ∂φ

∂xi

)
= 0, (1.5)

where xi is a coordinate parallel to the edge for Bφ|ed g e . The ± sign is determined
such that for outgoing waves the non-reflecting conditions are satisfied.

We consider here the first order radiation boundary condition 1.3.
The wave equation in time domain reads

1

c2

∂2u

∂t 2 −∆u = f , (1.6)

where u(x, y, z, t) denotes the pressure wavefield as a function of time, c(x, y, z) is the
velocity in the subsurface and f (x, y, z, t) describes the source. The Laplace operator
is denoted by ∆. Position (x, y, z) belongs to a computational domain Ω. Dirichlet or
Neumann boundary conditions can be used at reflecting boundaries. If reflections from
the boundaries should be suppressed, then layers of absorbing boundary conditions can
be used, see e.g. [19].

If the wavelet or signature of the source term g is given in the time domain, its fre-
quency spectrum is obtained by a Fast Fourier Transform (FFT). Given the seismic data,
the Nyquist theorem dictates the frequency sampling and the maximum frequency. In
practice, the maximum frequency in the data is lower than the Nyquist maximum fre-
quency and is defined by the wavelet. Given the range of frequencies defined by Nyquist’s
theorem and the data, the Helmholtz equation is solved for each frequency and the
wavefield is sampled at the receiver positions, producing a seismogram in the frequency
domain. The wavelet and an inverse FFT are applied to obtain the synthetic seismogram
in the time domain.

The discretization of the Helmholtz equation in space depends on the number of
points per wavelength. The general rule of thumb is to discretize with at least 10 points
per wavelength [20]. In that case, the error behaves as (kh)2, which is inversely propor-
tional to the square of the number of points per wavelength. For high wave numbers
the discretization results in a very large sparse system of linear equations which can not
be solved by direct methods on current computers within reasonable time. To avoid the
pollution effect, kh = 0.625 has been chosen constant, as described by [21].

The resulting discretized linear system is symmetric but indefinite, non-Hermitian
and ill-conditioned which brings difficulties when solving with basic iterative methods.
The convergence of the Krylov subspace methods deteriorates with higher wave num-
bers, so the need for preconditioning becomes obvious. In this thesis we consider Bi-
CGSTAB (see Van der Vorst [22]) and IDR(s) (see Sonneveld, van Gijzen [23]) as Krylov
solvers.

There have been many attempts to find a suitable preconditioner for the Helmholtz
equation, see, for example, Gozani et al. [24], Kerchroud et al. [25]. Recently the class of

1

6 1. INTRODUCTION

shifted Laplacian preconditioners evolved, see Laird and Giles [26], Turkel [27], Erlangga
et al. [28], Erlangga [21]. The authors in [29] showed that the number of iterations of
the Helmholtz solver does not depend on the problem size for a given frequency, but the
number of iterations increases with frequency. The authors in [30] and [31] presented
an improved version that requires fewer iterations but still requires more iterations at
higher frequencies.

1.2.1. MATRIX STORAGE FORMATS

As already known, an iterative solver for the wave equation in the frequency domain re-
quires more memory than an explicit solver in the time domain, especially, for a shifted
Laplace multigrid preconditioner based on matrix-dependent prolongation. Then, the
prolongation and coarse grid-correction matrices need to be stored in memory. Due to
the discretization with finite differences, the three-dimensional Helmholtz equation on
the finest multigrid level has a structured symmetric matrix with non-zero elements on
7 diagonals. However, on the coarser levels due to the Galerkin coarse-grid approach,
the coarse-grid correction matrix has non-zero elements on 27 diagonals. The prolonga-
tion matrix is rectangular and has in general 27 non-zero matrix entries in each column.
Therefore, the matrix storage format for our purposes needs to reduce memory usage
and speed up the matrix-vector operations. Also, it should be suitable to do the calcula-
tions on GPUs.

There are a number of common storage formats used for sparse matrices, see e.g.
[32], [33] for an overview. Most of them employ the same basic technique: store all non-
zero elements of the matrix into a linear array and provide auxiliary arrays to describe
the locations of the non-zero elements in the original matrix. For instance, one of the
most popular formats is the CSR (Compressed Sparse Row) format for storage of sparse
matrices, e. g. [34], [33]. Each of the matrix storage formats have their advantages and
disadvantages considering a specific problem. However, all of them are too general to be
efficient for the Helmholtz solver, especially when using GPUs. In Chapter 5 we propose
a new matrix format suited for our purpose.

1.3. ACCELERATION WITH GPUS

High-performance computer architectures are developing quickly by having more and
faster cores in the CPUs (Central Processing Units) or GPUs (Graphics Processing Units).
Recently, a new generation of GPUs appeared, offering tera-FLOPs performance on a
single card.

The GPU was originally designed to accelerate the manipulation of images in a frame
buffer that was mapped to an output display. GPUs were used as a part of a so-called
graphics pipeline, meaning that the graphics data was sent through a sequence of stages
that were implemented as a combination of CPU software and GPU hardware. A very
important step for the GPU evolution was made by IBM with the release of the so-called
Professional Graphics Controller (PGA). They used a separate on-board processor for
graphics computations. On the software side, OpenGL (Open Graphics Library) intro-

1.3. ACCELERATION WITH GPUS

1

7

duced by Silicon Graphics Inc. played a major role in the GPU development. It was the
most widely used, platform independent, cross-language application programming in-
terface for the rendering of 2D and 3D graphics.

1.3.1. HISTORY OF GPU DEVELOPMENT

The evolution of modern graphics processors begins by the mid 1990’s with the introduc-
tion of the first GPU supporting 3D graphics in a PC. Thanks to the accessibility of the
hardware to the consumer markets and the development of the game industry, graph-
ics cards began to be widely used. Actually, the term GPU was first introduced as part
of Nvidia’s marketing for the GeForce 256 in 1999. The company defined it as "a single-
chip processor with integrated transform, lighting, triangle setup/clipping, and render-
ing engines that is capable of processing a minimum of 10 million polygons per second."
At that time, the design of a graphics card began to move from a pipeline to data paral-
lelism by adding more parallel pipelines and eventually more cores to the GPU.

The next step in the evolution of GPU hardware was the introduction of the pro-
grammable pipeline on the GPU. In 2001, Nvidia released the GeForce 3 which gave
programmers the ability to program parts of the pipeline with so-called shaders. These
shader programs were small kernels, written in assembly-like shader languages. It opened
up a way towards fully programmable graphics cards, also for non graphics purposes.
Next, high level GPU programming languages such as Brook and Sh were being intro-
duced, which formed a trend towards GPU programmability. On the hardware side,
higher precision, multiple rendering buffers, increased GPU memory and texture ac-
cesses were being introduced.

The release of the GeForce 8 series or Tesla micro-architecture based GPUs by Nvidia
in 2006 marked the next step in the GPU evolution: exposing the GPU as massively par-
allel processors. Moreover, this architecture was the first to have a fully programmable
unified processor that handled all the graphics computations. To address these general
purpose features from the software side, Nvidia introduced a new programming lan-
guage called CUDA (Compute Unified Device Architecture) for Nvidia’s GPUs, that gave
rise to a more generalized computing device so-called GPGPU: general purpose GPU.
Also ATI and Microsoft released similar languages for their own graphics cards.

The trend towards more general, programmable GPU cores continues with the in-
troduction of the Fermi architecture by Nvidia in 2010. The Fermi GPU was the first
GPU designed for GPGPU computing, bringing features such as true HW cache hierar-
chy, ECC (Error-correcting code), unified memory address space, concurrent kernel exe-
cution, increased double precision performance. GPGPUs began to compete with CPUs
in terms of computational efficiency, however, in other aspects such as power consump-
tion, GPUs were lacking behind. Nvidia started to tackle the power problem by introduc-
ing the Kepler architecture in 2012 which focused on power efficiency. It was followed by
the Maxwell microarchitecture which was released in 2014 with completely redesigned
processors targeted to reduce the power consumption.

The general specifications and features of a Nvidia graphics card are given by the
compute capability. The compute capability version consists of a major and a minor
version number. Devices with the same major revision number are of the same core

1

8 1. INTRODUCTION

Figure 1.1: Comparison of processing elements or cores for high-end hardware using single precision arith-
metics.

architecture. The major revision number is 5 for devices based on the Maxwell architec-
ture, 3 for devices based on the Kepler architecture, 2 for devices based on the Fermi ar-
chitecture, and 1 for devices based on the Tesla architecture. The minor revision number
corresponds to an incremental improvement to the core architecture, possibly including
new features. For example, the native double-precision floating-point support appears
in devices of compute capability 2.x and higher.

Apart from Nvidia, another big player on the GPU market is AMD that acquired ATI in
2006. Their strategy is the development of processors that integrate general processing
abilities with graphics processing functions within a single chip. The state-of-art archi-
tecture of AMD is Kaveri.

Currently, Nvidia and AMD have a similar gaming market share for GPUs (see [35]),
however Nvidia is leading in high performance computing (HPC) accelerators.

Recently, Intel tries to compete for an HPC accelerator market share with its copro-
cessors based on the MIC (Many Integrated Cores) architecture. It combines many Intel
CPU processors on a single chip. Xeon Phi coprocessors based on MIC architecture pro-
vide up to 61 cores, 244 threads, and 1.2 teraFLOPS of performance, and they come in
a variety of configurations to address diverse hardware configurations, software, work-
load, performance, and efficiency requirements (www.intel.com). The biggest selling
point is the code portability: one can simply recompile and run the already parallelized
code on Xeon Phi. There is a debate on which is better from a performance point of view:
a GPU or a Xeon Phi. This is a difficult question to answer, since not only computation
performance needs to be considered, but also time/cost required to port existing appli-
cations to the platform, training programmers in order to get the maximum out of the
new systems, cooling costs, floor space, etc.

Figure 1.1 shows the development of GPUs and CPUs over the years, see [36]. Three
largest players in the HPC area are presented: Intel (blue and black curve), AMD (red

1.3. ACCELERATION WITH GPUS

1

9

curve) and Nvidia (green curve). The comparison considers high-end hardware available
by the end of the respective calendar year. Here, only CPUs for dual socket machines
are considered to compare against the Intel MIC platform (Xeon Phi). At the beginning,
AMD graphics cards had more cores than GPUs from Nvidia, however, with introduction
of the Kepler microarchitecture, the number of cores became similar for both. Obviously,
there is a gap between GPUs and CPUs that has grown to 2 orders of magnitude over time.
The Xeon Phi can be considered as an attempt to close this gap.

The increase in the number of cores requires the development of scalable numerical
algorithms. These methods have shown their applicability on traditional hardware such
as multi-core CPUs, see e.g. [37]. However, the most common type of cluster hardware
consists of a multi-core CPU connected to one or more GPUs. In general, a GPU has a
relatively small memory compared to the CPU. Heterogeneous computational resources
bring additional programming challenges, since several programming interfaces need to
be used to accelerate numerical algorithms.

The GPU and CPU architectures have their own advantages and disadvantages. CPUs
are optimized for sequential performance and good at instruction level parallelism, pipelin-
ing, etc. With a powerful hierarchical cache, and scheduling mechanism, the sequential
performance is very good. In contrast, GPUs are designed for high instruction through-
put with a much weaker cache or scheduling ability. In GPU programming, users have to
spend more time to ensure good scheduling, load balancing and memory access, which
can be done automatically on a CPU. As a result, GPU kernels are always simple and
computationally intensive. The performance comparison of a CPU versus GPU is shown
in Figure 1.2 (see [36]). One can clearly see a five- to fifteen-fold margin when comparing
high-end CPUs with high-end GPUs. The introduction of Xeon CPUs based on the Sandy
Bridge architecture in 2009 slightly reduced the gap, yet there is still a factor of five when
comparing a single GPU with a dual-socket system. Note that the fact that the theoret-
ical peak is harder to reach on the GPU than on the CPU is not reflected in this graph.
However, even when taking this into account the GPU is still significantly faster than a
CPU. The Xeon Phi falls behind in terms of single precision arithmetics, yet this is not
a major concern as the architecture aims at providing high performance using double
precision arithmetics.

1.3.2. CUDA

The CUDA platform was the earliest widely adopted programming model for GPU com-
puting. CUDA is the hardware and software architecture that enables NVIDIA GPUs to
execute programs written with C, C++, Fortran, OpenCL, DirectCompute, and other lan-
guages. A recent Apple initiative within the Khronos Group is called OpenCL (Open
Computing Language) which is an open standard and can be used to program CPUs,
GPUs and other devices from different vendors (see [38]). It has been shown that con-
verting a CUDA program to an OpenCL program involves minimal modifications, see
Karimi et al. [39]. According to Du, Luszczek and Dongarra [40], at the beginning of this
work CUDA was more efficient on the GPU than OpenCL. OpenCL solutions are sup-
ported by Intel, AMD, Nvidia, and ARM.

A CUDA program calls parallel kernels. A kernel executes in parallel across a set of

1

10 1. INTRODUCTION

Figure 1.2: Comparison of theoretical peak GFLOP/sec in single precision. Higher is better.

parallel threads. The programmer or compiler organizes these threads in thread blocks
and grids of thread blocks. The GPU instantiates a kernel program on a grid of parallel
thread blocks. Each thread within a thread block executes an instance of the kernel, and
has a thread ID within its thread block, program counter, registers, per-thread private
memory, inputs, and output results.

According to [41], a thread block is a set of concurrently executing threads that can
cooperate among themselves through barrier synchronization and shared memory. A
thread block has a block ID within its grid. A grid is an array of thread blocks that exe-
cute the same kernel, read inputs from global memory, write results to global memory,
and synchronize between dependent kernel calls. In the CUDA parallel programming
model, each thread has a per-thread private memory space used for register spills, func-
tion calls, and C automatic array variables. Each thread block has a per-block shared
memory space used for inter-thread communication, data sharing, and result sharing in
parallel algorithms. Grids of thread blocks share results in Global Memory space after
kernel-wide global synchronization.

The hierarchy of threads in CUDA maps to a hierarchy of processors on the GPU; a
GPU executes one or more kernel grids; a streaming multiprocessor (SM) executes one
or more thread blocks; and CUDA cores and other execution units in the SM execute
threads. The SM executes threads in groups of 32 called a warp. While programmers can
generally ignore warp execution for functional correctness and think of programming
one thread, they can greatly improve performance by having threads in a warp execute
the same code path and access memory in nearby addresses.

1.4. MIGRATION IN TIME AND FREQUENCY DOMAIN

1

11

1.3.3. ACCELERATOR OR REPLACEMENT?

A GPU can be used as replacement for the CPU, or as an accelerator. In the first case, the
data lives in GPU memory to avoid memory transfers between CPU and GPU memory.
The advantage of the seismic migration algorithm with frequency domain solver is that
it does not require large amounts of disk space to store the snapshots. However, a disad-
vantage is the memory usage of the solver. As GPUs have generally much less memory
available than CPUs, this impacts the size of the problem significantly.

In the second case, the GPU is considered as an accelerator, which means that the
problem is solved on the CPU while off-loading some computational intensive parts of
the algorithm to the GPU. Here, the data is transferred to and from the GPU for each
new task. While the simplicity of the time domain algorithm makes it easy to use GPUs
of modest size to accelerate the computations, it is not trivial to use GPUs as accelerators
for the Helmholtz solver. By using the GPU as an accelerator, the Helmholtz matrices are
distributed across two GPUs. The vectors would "live" on the CPU and are transferred
when needed to the relevant GPU to execute matrix-vector multiplications.

Ideally, GPUs would be used as a replacement but the limited memory makes this
difficult for large numerical problems. There seem to be a trend where CPUs and GPUs
are merging so that the same memory can be accessed equally fast from the GPU or the
CPU. In that case the question "accelerator or replacement?" would become irrelevant as
one can alternate between both hardware without taking into account the data location.

NVIDIA recently announced that Tesla is now compatible with ARM-based chips, the
kind of low-powered processors that run smartphones and tablets, which are increas-
ingly taking business away from Intel’s x86 architecture. When combining ARM with
GPU, this HPC solution provides power efficiency, system configurability, and a large,
open ecosystem. CUDA 6.5 takes the next step, enabling CUDA on 64-bit ARM plat-
forms. The heritage of ARM64 is in low-power, scale-out data centers and microservers,
while GPUs are built for ultra-fast compute performance. GPUs bring to the table high-
throughput, power-efficient compute performance, a large HPC ecosystem, and hun-
dreds of CUDA-accelerated applications. For HPC applications, ARM64 CPUs can of-
fload the heavy computational tasks to GPUs. CUDA and GPUs make ARM64 competi-
tive in HPC from the start.

1.4. MIGRATION IN TIME AND FREQUENCY DOMAIN

For our purpose of comparing migration in the time and frequency domain in this thesis,
we focus on the classical imaging condition [13]

I (x) = ∑
shot s

∑
t

Ws (x, t)Wr (x, t), (1.7)

in time domain or
I (x) = ∑

shot s

∑
k

W ∗
s (x,k)Wr (x,k), (1.8)

in the frequency domain. Here, I denotes the image, Ws is the wavefield propagated
from the source and Wr from the receivers, respectively; t denotes time and k denotes

1

12 1. INTRODUCTION

the frequency. The star indicates the complex conjugate. Basically, the idea of migration
in time domain is to calculate first of all the forward wavefield by injecting the source
wavelet. Secondly, compute the wavefield backward in time by injecting the recorded
signal at the receiver locations. And finally, cross-correlate the forward and backward
wavefields at given timesteps. Note, that in the frequency domain the cross-correlation
becomes a simple multiplication of the forward and backward wavefields.

Migration of seismic data in 2D is commonly carried out in the frequency domain by
using a direct solver. The LU -decomposition of the matrix arising from the discretiza-
tion of the wave equation is computed once with a direct method for each frequency
and stored in memory. The result can be used to compute all wavefields for all shots
and also for back-propagated receiver wavefields, which correspond to the reverse-time
wavefields in the time domain ([42], [43]). This method is an order of magnitude faster
than the time-domain implementation when many shots must be processed. In three
dimensions, however, the storage requirement for the direct solver exceeds the capac-
ity of the available disk space. Therefore, migration of seismic data in 3D is commonly
carried out in the time domain.

The classic reverse-time migration algorithms in the time domain are known to be
computationally and I/O intensive [44, 45] because the forward and time-reversed wave-
fields have to be computed and stored. If the correlation between these fields is carried
out during the time-reversed computation of the receiver data, only snapshots of the
forward wavefield have to be stored.

There are two main strategies to reduce the overhead of storing snapshots. Recon-
struction of the forward wavefield by marching backward in time using the last two
wavefields is difficult, if not impossible, in the presence of absorbing boundary condi-
tions. The author in [46] proposed to circumvent this problem by only storing boundary
values of the snapshots or by using random instead of absorbing boundaries. For the
latter, the energy of the wavefield entering the boundary is scattered and does not stack
during the imaging condition. With checkpointing [47, 48], the forward wavefield is only
stored intermittently at pairs of subsequent time steps. During the reverse-time compu-
tations and correlation, the missing time steps are recomputed by forward time stepping
from stored snapshots over a relatively short time interval. These methods represent a
trade-off between storage and computational time.

A second strategy is based on reducing the time needed to write the snapshots to
disk, for instance, by asynchronous I/O [49] and wavefield compression. For the last,
standard libraries with Fourier transformation or wavelet compression can be used [45].

Migration in the frequency domain is historically less mature because of the neces-
sity to solve a sparse indefinite linear system of equations for each frequency, which
arises from the discretization of the Helmholtz equation, whereas in the time domain,
the discretization of the wave equation in space and time leads to an explicit time march-
ing scheme. An important advantage of migration in the frequency domain is that the
cross-correlation needed for the imaging condition becomes a simple multiplication.
As a result, wavefields do not have to be stored. Parallelization over frequencies is nat-
ural. If a direct solver is used to compute the solution of the sparse matrix, typically
a nested-dissection LU -decomposition is applied [50]. When many shots need to be
treated, the frequency-domain solver in two dimensions can be more efficient than a

1.5. LEAST-SQUARES MIGRATION

1

13

time-domain time-stepping methods [51, 52], because the LU -decomposition can be
reused for each shot as well as for each ‘reverse-time’ computation. Also, lower frequen-
cies can be treated on coarser meshes.

In three dimensions, however, frequency-domain migration is considered to be less
efficient than its time-domain counterpart. One of the reasons is the inability to con-
struct an efficient direct solver for problems of several millions of unknowns [53]. The
authors of [54, 55] proposed a direct solver based on nested-dissection that compresses
intermediate dense submatrices by hierarchical matrices.

An iterative solver is an obvious alternative, for instance, the one with a precondi-
tioner that uses a multigrid method to solve the same wave equation but with very strong
damping, see e.g. [21, 56, 57], also described in Chapter 2. This method, however, needs
a number of iterations that increases with frequency, causing the approach to be less ef-
ficient than a time-domain method on CPUs. Note that the iterative method requires a
call to the solver for each shot and each ‘reverse-time’ computation, so the advantage of
reusing a LU -decomposition is lost. This approach was parallelized by [37]. In Chapter 3
we use GPUs to speed up the computations.

1.5. LEAST-SQUARES MIGRATION

An alternative to the depth migration is least-squares migration (LSM). LSM was intro-
duced as a bridge between full-wave form inversion and migration. Like migration, LSM
does not attempt to retrieve the background velocity model, however, like full waveform
inversion the modeled data are fit to the observations. Least-squares migration [58] has
been shown to have the following advantages: (1) it can reduce migration artifacts from
a limited recording aperture and/or coarse source and receiver sampling; (2) it can bal-
ance the amplitudes of the reflectors; and (3) it can improve the resolution of the migra-
tion images. However, least-squares migration is usually considered expensive.

Significant work has been done in the field of least-squares migration. The authors in
[58] use a Kirchhoff operator to perform least-squares migration of incomplete surface
seismic and Vertical Seismic Profile (VSP) data. They find that the migration results are
more focused and suffer less from the so-called acquisition footprint compared with the
standard migration. The authors in [59] use least-squares migration for further Ampli-
tude Versus reflection Angle (AVA) inversion. To attenuate artifacts, the authors in [60]
use a Kirchhoff time migration operator with dip-oriented filtering. While in [61] least
squares migration is used to attenuate low frequency reverse time migration artifacts.
The authors in [62] and [63] show that it improves images of reservoirs located under
complex overburden and that the imaging by least-squares inversion provides more re-
liable results than conventional imaging by migration.

Originally, Kirchhoff operators have been proposed for the modeling and migration
in LSM (see e.g. [64], [58]). Recently, in the least-squares migration algorithm, wave-
equation based operators were used in the time domain (see e.g. [65], [66]) and in the
frequency domain (see e.g. [9], [67], [68]). The major advantage of a frequency domain
computational engine is that each frequency can be treated independently in parallel.

The LSM method is posed as a linear inverse problem of finding the reflectivity r that
minimizes the difference between the recorded data d and the modeled wavefield A r in

1

14 1. INTRODUCTION

a least-squares sense

J = 1

2
‖A r −d‖2 + 1

2
λR(m). (1.9)

Here, A denotes so-called the de-migration operator, that contains modeling at source
locations and migration. This operator can represent a Kirchhoff operator or a wave-
equation based operator. In addition, R is a regularization term with damping λ needed
to stabilize the solution. The objective function J is minimized using the method of con-
jugate gradients. For the damping term λ= 0, one can show that the solution converges
to the minimum norm solution.

The LSM method is costly because for each source and receiver, we need to compute
the modeling and migration stage of the data. In the time domain, it is the reverse time
migration method and in the frequency domain, it is multiplication of the source and
receiver modeled wavefields for each frequency.

2
GPU IMPLEMENTATION OF A

HELMHOLTZ KRYLOV SOLVER

PRECONDITIONED BY A SHIFTED

LAPLACE MULTIGRID METHOD

Abstract

A Helmholtz equation in two dimensions discretized by a second-order finite differ-

ence scheme is considered. Krylov subspace methods such as Bi-CGSTAB and IDR(s)

have been chosen as solvers. Since the convergence of the Krylov solvers deterio-

rates with increasing wave number, a shifted Laplacian multigrid preconditioner is

used to improve the convergence. The implementation of the preconditioned solver

on a CPU (Central Processing Unit) is compared to an implementation on a GPU

(Graphics Processing Units or graphics card) using CUDA (Compute Unified Device

Architecture). The results show that preconditioned Bi-CGSTAB on the GPU as well

as preconditioned IDR(s) on the GPU are about 30 times faster than on the CPU for

the same stopping criterion.

2.1. INTRODUCTION

In this chapter we focus on iterative solvers for the Helmholtz equation in two dimen-
sions on the GPU using CUDA. The Helmholtz equation represents the time-harmonic
wave propagation in the frequency domain and has applications in many fields of sci-
ence and technology, e.g. in aeronautics, marine technology, geophysics, and optical

Parts of this chapter have been published in H. Knibbe, C. W. Oosterlee, and C. Vuik. Journal of Computational
and Applied Mathematics, 236:281– 293, 2011, [69].

15

2

16 2. GPU IMPLEMENTATION OF A PRECONDITIONED HELMHOLTZ SOLVER

problems. In particular we consider the Helmholtz equation discretized by a second-
order finite difference scheme. The size of the discretization grid depends on the wave
number, which means, the higher the wave number the more grid points are required.
For instance to get accurate results with a 7-point discretization scheme in three dimen-
sions, at least 10 grid points per wave length have to be used, see Erlangga [29]. For
high wave numbers the discretization results in a very large sparse system of linear equa-
tions which can not be solved by direct methods on current computers within reasonable
time. The linear system is symmetric but indefinite, non-Hermitian and ill-conditioned
which brings difficulties when solving with basic iterative methods. The convergence of
the Krylov subspace methods deteriorates with increasing wave number, so the need for
preconditioning becomes obvious. In this chapter we consider Bi-CGSTAB (see Van der
Vorst [22]) and IDR(s) (see Sonneveld, van Gijzen [23]) as the Krylov subspace solvers.

There have been many attempts to find a suitable preconditioner for the Helmholtz
equation, see, for example, Gozani et al. [24], Kerchroud et al. [25]. Recently the class of
shifted Laplacian preconditioners evolved, see Laird and Giles [26], Turkel [27], Erlangga
et al. [28], Erlangga [21]. In this work, we focus on a shifted Laplace multigrid precon-
ditioner introduced in Erlangga, Vuik and Oosterlee [28], Erlangga [70], to improve the
convergence of the Krylov subspace methods.

The purpose of this work is to compare the implementations of the Krylov subspace
solver preconditioned by the shifted Laplace multigrid method in two dimensions on a
CPU and a GPU. The interest is triggered by the fact that some applications on GPUs are
50-200 times faster compared with a CPU implementation (see e.g. Lee at al [71], Nvidia
[41]). However there are no recordings of a Helmholtz solver on a GPU which we present
in this chapter. There are two main issues: the first one is the efficient implementation
of the solver on the GPU and the second one is the behavior of the numerical methods in
single precision1. Nevertheless, even on a modern graphics card with double precision
units (for example, Tesla 20 series or Fermi), single precision calculations are still at least
two times faster. The first issue can be resolved by knowing the further details of a GPU
and CUDA. The second issue can be addressed by using mixed precision algorithms, see
e.g. Baboulin et al. [72].

The chapter is organized as follows. In Section 2 we describe the Helmholtz equa-
tion and its discretization. Also the components of the solver are described, including
Krylov subspace methods such as Bi-CGSTAB and IDR(s) and the shifted Laplace multi-
grid method. The specific aspects of the GPU implementation for each method are con-
sidered in detail in Section 3 and optimizations for the GPU are suggested. In Section 4
two model problems are defined: with constant and variable wave numbers. We solve
those problems with Krylov subspace methods preconditioned by the shifted Laplacian
on a single CPU and a single GPU and compare the performance. Finally Section 5 con-
tains conclusions and an outlook of this chapter.

1Note that in 2010 the single precision was state-of-the-art.

2.2. PROBLEM DESCRIPTION

2

17

2.2. PROBLEM DESCRIPTION

The two-dimensional Helmholtz equation 1.1 for a wave problem in a heterogeneous
medium is considered.

2.2.1. DISCRETIZATION

The domainΩ is discretized by an equidistant gridΩh with the grid size h

Ωh := {(i h, j h) | i , j = 1, . . . , N }.

For simplicity we set the same grid sizes in x− and y−directions. After discretization of
equation 1.1 on Ωh using central finite differences we get the following linear system of
equations:

Aφ= g , A ∈CN×N , φ, g ∈CN . (2.1)

The matrix A is based on the following stencil for inner points x ∈Ωh/∂Ωh :

Ah = 1

h2

 −1
−1 4− (kh)2(1−αi) −1

−1

 . (2.2)

The Dirichlet boundary conditions do not change the matrix elements at boundaries
and the matrix will be structured and sparse.

The first-order radiation boundary condition 1.3 is discretized using a one-sided
scheme, for example on the right boundary at xN+1 the solution can be expressed as

φN+1, j =
φN , j

1+ i khx
.

The matrix stencils at the boundaries change accordingly.

2.2.2. KRYLOV SUBSPACE METHODS

The discretized matrix A in 2.1 is complex-valued, symmetric, non-Hermitian, i.e. A∗ 6=
A. Moreover, for sufficiently large wave numbers k, the matrix A is indefinite, that means
there are eigenvalues of A with a positive real part and eigenvalues with a negative real
part. Furthermore, the matrix A is ill-conditioned. The mentioned properties of the
matrix are the reason that the classical iterative methods (such as Jacobi, Gauss-Seidel,
etc...) simply diverge. However, we may still be able to use them e.g. as smoothers for a
multigrid method.

BI-CGSTAB

One of the candidates to solve the discretized Helmholtz equation 2.1 is the Bi-CGSTAB
method (see Van der Vorst [22], Saad [33]). The advantage of this method is that it is
easily parallelizable. However, even if the Bi-CGSTAB method converges for small wave

2

18 2. GPU IMPLEMENTATION OF A PRECONDITIONED HELMHOLTZ SOLVER

numbers k, the convergence is too slow and it strongly depends on the grid size, see Er-
langga [29]. The original system of linear equations 2.1 can be replaced by an equivalent
preconditioned system:

AM−1u = g , M−1u =φ, (2.3)

where the inverse systems of the form Mφ = u are easy to solve. The matrix AM−1 is
well-conditioned, so that the convergence of Bi-CGSTAB (and any other Krylov subspace
methods) is improved.

As the preconditioner for Bi-CGSTAB we consider the shifted Laplace preconditioner
introduced by Erlangga, Vuik and Oosterlee, see [28], [70], [21], which is based on the
following operator:

M(β1,β2) =−∆− (β1 − iβ2)k2, β1,β2 ∈R, (2.4)

with the same boundary conditions as A in 1.2. The system 2.1 is then preconditioned
by

M(β1,β2) =−∆h − (β1 − iβ2)k2I , β1,β2 ∈R, (2.5)

where ∆h is the discretized Laplace operator, I is the identity matrix and β1,β2 can be
chosen optimally. Depending on β1 and β2, the spectral properties of the matrix AM−1

change. In Erlangga, Oosterlee, Vuik [21] Fourier analysis shows that M(β1,β2) as given in
2.5 with β1 = 1 and 0.4 ≤ β2 ≤ 1 gives rise to favorable properties that leads to consider-
ably improved convergence of Krylov subspace methods (e.g. Bi-CGSTAB), see also van
Gijzen, Erlangga, Vuik [73].

IDR(s)

An alternative to Bi-CGSTAB to solve large non-symmetric linear systems of equations
2.1 is the IDR(s) method, which was proposed by Sonneveld, van Gijzen [23]. IDR(s)
belongs to the family of Krylov subspace methods and it is based on the Induced Di-
mension Reduction (IDR) method introduced by Sonneveld, see e.g. Wesseling and Son-
neveld [74]. IDR(s) is a memory-efficient method to solve large non-symmetric systems
of linear equations.

We are currently using the IDR(s) variant described in van Gijzen and Sonneveld [73].
This method imposes a bi-orthogonalization condition on the iteration vectors, which
results in a method with fewer vector operations than the original IDR(s) algorithm. It
has been shown in van Gijzen and Sonneveld [73] that this IDR(s) and the original IDR(s)
yield the same residual in exact arithmetics. However the intermediate results and nu-
merical properties are different. The IDR(s) with bi-orthogonalization converges slightly
faster than the original IDR(s).

Another advantage of the IDR(s) algorithm with bi-orthogonalization is that it is more
accurate than the original IDR(s) for large values of s. For s = 1 the IDR(1) will be equiv-
alent to Bi-CGSTAB. Usually s is chosen smaller than 10. In our experiments we set s = 4,
since this choice is a good compromise between storage and performance, see Umetani,
MacLachlan, Oosterlee [75].

The preconditioned IDR(s) method can be found in van Gijzen and Sonneveld [73]
and is given in Algorithm 1.

2.2. PROBLEM DESCRIPTION

2

19

Require: A ∈CN×N ; x,b ∈CN ; Q ∈CN×s ; ε ∈ (0,1);
Ensure : xn such that ‖b− Axn‖ ≤ ε
Calculate r = b− Ax ;
gi = ui = 0, i = 1, . . . , s; M̄ = I ; ω= 1 ;
while ‖r‖ > ε do

f =Q H r, f = (φ1, . . . ,φs) ;
for k=1:s do

Solve c from M̄c = f,c = (γ1, . . . ,γs)T ;
v = r−∑s

i=k γi gi ;
v = M−1v ;
uk =ωv+∑s

i=k γi ui ;
gk = Auk ;
for i=1:k-1 do

α= qH
i gk

µi ,i
;

gk = gk −αgi ;
uk = uk −αui ;

end
µi ,k = qH

i gk , i = k, . . . , s, M̄i ,k =µi ,k ;

β= φk
µk,k

;

r = r−βgk ;
x = x+βuk ;
if k +1 ≤ s then

φi = 0, i = 1, . . . ,k ;
φi =φi −βµi ,k , i = k +1, . . . , s ;

f = (φ1, . . . ,φs)T ;
end

end
v = M−1r ;
t = Av ;

ω= (tH r)/(tH t) ;
r = r−ωt ;
x = x+ωv ;

end

Algorithm 1: Preconditioned IDR(s)

2

20 2. GPU IMPLEMENTATION OF A PRECONDITIONED HELMHOLTZ SOLVER

2.2.3. SHIFTED LAPLACE MULTIGRID PRECONDITIONER

When Aφ = g in 2.1 is solved using the standard multigrid method, then severe condi-
tions on the smoother and the coarse grid correction must be met. For the smoother the
conditions are:

• k2 must be smaller than the smallest eigenvalue of the Laplacian;

• The coarsest level must be fine enough to keep the representation of the smooth
vectors.

Furthermore, the standard multigrid method may not converge in case k2 is close to an
eigenvalue of M . This issue can be resolved by using subspace correction techniques
within multigrid (see Elman et al. [76]).

Because of the above reasons, we do not use multigrid as a solver. Instead, we choose
a complex-valued generalization of the matrix-dependent multigrid method by de Zeeuw
[77] as a preconditioner, as shown in 2.3. It provides an h-independent convergence fac-
tor in the preconditioner, as shown in Erlangga, Oosterlee, Vuik [21].

In the coarse grid correction phase, the Galerkin method is used in order to get coarse
grid matrices:

MH = RMhP, (2.6)

where MH and Mh are matrices on the coarse and fine grids, respectively, P is prolon-
gation and R is restriction. The prolongation P is based on the matrix-dependent pro-
longation, described in de Zeeuw [77] for real-valued matrices. Since the matrix Mh is a
complex symmetric matrix, the prolongation is adapted for this case, see Erlangga [29].
This prolongation is also valid at the boundaries.

The restriction R is chosen as full weighting restriction and not as adjoint of the pro-
longation. This choice of the transfer operators and Galerkin coarse grid discretization
brings a robust convergence for several complex-valued Helmholtz problems, see Er-
langga, Oosterlee, Vuik [21].

Classical iterative methods in general do not converge for the Helmholtz equation,
but we can apply them as smoothers for the multigrid method. We consider a parallel
version of the Gauss-Seidel method as the smoother, the so-called multi-colored Gauss-
Seidel smoother. In the 2D case we use 4 colors, where the neighbors of a grid point do
not have the same color.

2.3. IMPLEMENTATION ON GPU

2.3.1. CUDA

As described in the previous section, we solve the discretized Helmholtz equation 2.1
with Bi-CGSTAB and IDR(s) preconditioned by the shifted Laplace multigrid method,
where the multi-color Gauss-Seidel method is used as a smoother. Those algorithms are
parallelizable and therefore can be implemented on the GPU architecture.

For our GPU computations we use the CUDA library (version 3.1) developed by NVIDIA.
CUDA supports C++, Java and Fortran languages with some extensions. In this work we

2.3. IMPLEMENTATION ON GPU

2

21

use C++. CUDA offers various libraries out of the box such as CUFFT for Fast Fourier
Transforms and CUBLAS for Basic Linear Algebra Subprograms.

2.3.2. VECTOR AND MATRIX OPERATIONS ON GPU

The preconditioned Bi-CGSTAB and IDR(s) algorithms consist of 4 components: the
preconditioner and 3 operations on complex numbers: dot (or inner) product, matrix-
vector multiplication and vector addition. In this section we compare those operations
on the GPU with a CPU version. The preconditioner is considered in Section 2.3.3.

Let us first consider the dot product. On the GPU we are using the dot product from
CUBLAS library, that follows the IEEE 757 standard. The dot product on the CPU needs
more investigation, since there is no correct open source version of the dot product BLAS
subroutine, to the author’s knowledge. The simplest algorithm, given by

(u, v) =
N∑

i=1
ūi vi , (2.7)

is not accurate for large N . The loss of accuracy becomes visible especially in single
precision if we add a very small number to a very large one.

Figure 2.1: Original recursive dot product algorithm.
Figure 2.2: Modified recursive dot product algorithm,
where n = 1000.

To increase the precision we developed a recursive algorithm as shown in Figure 2.1.
The main idea is to add numbers that have approximately the same order of magnitude.
If we assume that two consecutive numbers have indeed the same order of magnitude,
then summing them will be done with optimal accuracy. Recursively, two sums should
also have the same magnitude and the steps can be applied again. However this oper-
ation has a significant impact on the performance as it does not take advantage of the
CPU cache. To solve this problem, the recursive algorithm is not applied to the finest
level, instead we add 1000 floating point numbers according to 2.7, see Figure 2.2. Our
experiments show that adding batches of 1000 single precision floating numbers is fast
and accurate. Our test machine has 512 Kb of CPU memory cache, but we do not see
any performance improvement beyond 1000 numbers, so in our case this number is a
good compromise between speed and accuracy. The computational time of this version

2

22 2. GPU IMPLEMENTATION OF A PRECONDITIONED HELMHOLTZ SOLVER

of the dot product is almost the same as of the inaccurate initial algorithm. The results
are presented in Table 2.1. Note that memory transfers CPU-GPU are not included in
these timings.

n CPU Time (ms) GPU Time (ms) Time CPU/time GPU
1,000 0.04 0.04 1.3

10,000 0.23 0.03 6
100,000 2.35 0.06 59

1,000,000 23.92 0.32 75
10,000,000 231.48 2.9 80

Table 2.1: Single precision dot product for different sizes on CPU and GPU, data transfers are excluded (status
2010).

For the vector addition we use a CUBLAS function for complex vectors, that follows
the IEEE 757 standard. The comparisons between CPU and GPU performance are given
in Table 2.2. Note that on the CPU a vector addition is about 4 times faster than the
dot product operation. The dot product requires 3 times more floating point operations
(flops) than addition:

(a+ i b)+ (c+ i d) = a+c+ i (b+d),

(a+ i b) · (c+ i d) = a ·c−b ·d+ i (b ·c+a ·d)

Moreover the recursive algorithm for the dot product has a non-linear memory ac-
cess pattern, which can result in cache misses and impacts performance. Having batches
of 1000 consecutive numbers, as described above, minimizes the non-linearity so that
memory cache misses are kept to a minimum.

On our processor (see the detailed description in Section 2.4.1) the assembly instruc-
tions for addition and multiplication (fmull and fadd) have the same timings, see [78].

n CPU Time (ms) GPU Time (ms) Time CPU/time GPU
1,000 0.01 0.03 1

3
10,000 0.08 0.01 8

100,000 0.58 0.09 6
1,000,000 6.18 0.42 12

10,000,000 58.06 4.41 13

Table 2.2: Single precision vector additions for different sizes on CPU and GPU, data transfers are excluded
(status 2010).

CUBLAS provides a full matrix-vector multiplication which in our case is not useful
since our matrices are very large and sparse. For this reason we opted for a compressed
row storage (CRS) scheme in this chapter and implemented the complex sparse matrix-
vector multiplication on the GPU. The comparisons for matrix-vector multiplication on
a single CPU and a GPU are given in Table 2.3.

2.3. IMPLEMENTATION ON GPU

2

23

n CPU Time (ms) GPU Time (ms) Time CPU/time GPU
1,000 0.38 0.13 3

10,000 3.82 0.28 14
100,000 38.95 1.91 20

1,000,000 390.07 18.27 21

Table 2.3: Single precision matrix vector multiplication for different sizes on CPU and GPU, data transfers are
excluded

In Tables 2.1, 2.2 and 2.3, it can be clearly seen that the speedup increases with grow-
ing size. If the size of the problem is small, the so-called overhead time (allocations, data
transfer, etc) becomes significant compared to the computational time. The best perfor-
mance on the GPU is achieved by full occupancy of the processors, see Nvidia [79].

2.3.3. MULTIGRID METHOD ON GPU

The algorithm for the multigrid preconditioner is split into two phases: generation of
transfer operators and coarse-grid matrices (setup phase) and the actual multigrid solver.

The transfer operators will remain unchanged during the program execution and the
speed of the setup phase is not crucial. Operations like sparse matrix multiplications are
performed in that phase. The setup phase is done on the CPU, taking advantage of the
double precision.

The setup phase is executed only once at the beginning. Furthermore, it has some
sequential elements, for example a coarse grid matrix can be constructed only knowing
the matrix and transfer operators on the finer level. The first phase is implemented in
double precision on the CPU and is later converted to single precision and the matrices
are transferred to the GPU. The second phase consists mainly of the same three oper-
ations as in the Bi-CGSTAB algorithm: dot product, vector addition and matrix-vector
multiplication, including a smoother: damped Jacobi, multi-colored Gauss-Seidel (4 col-
ors), damped multi-colored Gauss-Seidel iteration (4 colors, parallel version of SOR, see
Golub and Van Loan [80]). Note that we chose a parallelizable smoother which can be
implemented on the GPU. The second phase is implemented on the GPU.

As a solver on the coarsest grid we have chosen to perform a couple of smoothing
iterations instead of an exact solver. That allows us to keep the computations even on
the coarsest level on the GPU and save time for transferring data between GPU and CPU.

The timings for the multigrid method on a CPU and GPU without CPU-GPU data
transfers are presented in the Table 2.4. It is easy to see that the speedup again increases
with increasing problem size. The reason for this is that for problems with smaller size
the so-called overhead part (e.g. array allocation) is significant compared to the actual
computations (execution of arithmetic operations). Again, a GPU gives better perfor-
mance in case of full occupancy of the processors (see Nvidia [79]).

2

24 2. GPU IMPLEMENTATION OF A PRECONDITIONED HELMHOLTZ SOLVER

N k Time CPU (s) Time GPU (s) Time CPU/time GPU
64 40 0.008 0.0074 1.15

128 80 0.033 0.009 3.48
512 320 0.53 0.03 17.56

1024 640 2.13 0.08 26.48

Table 2.4: One F-cycle of the multigrid method on CPU and GPU for a 2D Helmholtz problem with various k,
kh = 0.625.

2.3.4. ITERATIVE REFINEMENT

In 2010, double precision arithmetic units was not mainstream for GPGPU hardware.
To improve the precision, the Iterative Refinement algorithm (IR or Mixed Precision It-
erative Improvement as referred by Golub, Van Loan [80]) can be used where double
precision arithmetic is executed on the CPU, and single precision on the GPU, see Algo-
rithm 2. This technique has been already applied to GMRES methods and direct solvers
(see Baboulin et al. [72]) and to Karzcmarz’s and other iterative methods (see Elble et al.
[81]).

Double Precision: b, x,r,ε
Single Precision : Â, r̂ , ê

while ‖r‖ > ε do
r = b − Ax ;
Convert r in double precision to r̂ in single precision ;

Convert A in double precision to Â in single precision ;

Solve Âê = r̂ on GPU ;
x = x + ê

end

Algorithm 2: Iterative refinement

The measured time and number of iterations on a single GPU and single CPU are
given in Table 2.5. The stopping criterion ε for the outer loop is set to 10−6. In this exper-
iment, the tolerance of the inner solver (Bi-CGSTAB) is set to 10−3. The results show that
IR requires approximately 2 times more iterations in total, however as Bi-CGSTAB on the
GPU is much faster than on the CPU, the overall performance of IR is better. This ex-
periment proves that a GPU can successfully be used as an accelerator even with single
precision.

2.3.5. GPU OPTIMIZATIONS

A GPU contains many cores, thus even without optimization it is easy to obtain rela-
tively good performance compared to a CPU. Nvidia’s programming guide [79] helps to
achieve optimal performance when a number of optimizations are employed, that are

2.3. IMPLEMENTATION ON GPU

2

25

Method Total #iter Total time (s) Accuracy
Bi-CGSTAB (1 CPU) 6047 370.6 9.7e-7

IR with Bi-CGSTAB (GPU) 11000 27.1 9.6e-7

Table 2.5: Convergence of iterative refinement with Bi-CGSTAB (double precision) for k = 40, (256×256), kh <
0.625. The stopping criterion for the preconditioner on CPU is ‖r‖/‖r0‖ < 10−6 and on GPU is ‖r‖/‖r0‖ < 10−3.

listed below:

• Memory transfer
Our implementation minimizes memory transfers between CPU and GPU. Once
a vector has been copied to the GPU, it remains in the GPU memory during the
solver life time.

• Memory coalescing
Accessing the memory in a coalesced way means that consecutive threads access
consecutive memory addresses. This access pattern is not trivial to implement.
Maximum memory access performance is achieved when threads within a warp
access the same memory block for our hardware with compute capability 1.12.
By the construction of the algorithms on a GPU, especially for the sparse matrix-
vector multiplication, this has been taken into account.

• Texture memory
Texture memory optimization is an easy way to improve performance significantly,
because the texture memory is cached. Read-only memory can be bound to a
texture. In our case the matrix A does not change during iterative solution and
therefore can be put into the texture memory.

• Constant memory
Constant memory is as fast as shared memory but is read-only during kernel exe-
cution. In our case constant memory is used to store small amounts of data that
will be read many times, but do not require to be stored in registers (such as array
lengths, matrix dimensions, etc.).

• Registers
Registers are the fastest memory on a GPU but their amount is very limited. For
example, in our graphics card (NVIDIA GeForce 9800 GTX/9800 GTX+) the number
of registers used in a block can not exceed 8192, otherwise the global memory will
be used to offload registers, which results in performance degradation. The CUDA
compiler has an option to display the number of registers used during execution.
To maximize occupancy the maximum number of registers is set at 16. The CUDA
occupancy calculator is a useful tool to compute the number of registers. During
compilation, the CUDA compiler displays the number of registers used per kernel
so it can be checked that this number is indeed not higher than 16.

2The compute capability indicates certain features and specifications for a given GPU. The higher the number,
the more features are available by using the GPU.

2

26 2. GPU IMPLEMENTATION OF A PRECONDITIONED HELMHOLTZ SOLVER

2.4. NUMERICAL EXPERIMENTS

For the experiments the following 2D model problems have been selected.
MP1 : Constant wave number
For 0 <α<< 1 and k = const, find φ ∈CN×N

−∆φ(x, y)− (1−αi)k2φ(x, y) = δ
(

x − 1

2

)(
y − 1

2

)
, (2.8)

(x, y) ∈Ω= [0,1]×[0,1], with the first-order boundary conditions 1.3. In our experiments
in this section we assume that α = 0 which is the most difficult case. The grid sizes for
different k satisfy the condition kh = 0.625, where h = 1

N−1 .

Figure 2.3: The solution of the model problem MP1 2.8 for k = 40.

MP2 : Wedge problem
This model problem represents a layered heterogeneous problem taken from Plessix and
Mulder [82]. For α ∈R find φ ∈CN×N

−∆φ(x, y)− (1−αi)k(x, y)2φ(x, y) = δ (x −500)
(
y
)

, (2.9)

(x, y) ∈ Ω = [0,1000]× [0,1000], with the first order boundary conditions 1.3. The coef-
ficient k(x, y) is given by k(x, y) = 2π f l/c(x, y) where c(x, y) is presented in Figure 2.4.
The grid size satisfies the condition maxx (k(x))h = 0.625, where h = 1

N−1 . The solution
for the model problem 2.9 for f = 30 Hz is given in Figure 2.5.

2.4.1. HARDWARE AND SOFTWARE SPECIFICATIONS

Before we start to describe the convergence and timing results, it is necessary to detail
the hardware specifications. The experiments have been run on an AMD Phenom(tm)

9850 Quad-Core Processor, 2.5 GHz with 8 GB memory. Further we refer either to a single
CPU or to a Quad-Core (4 CPUs). The compiler on the CPU is gcc 4.3.3. The graphics
card is an NVIDIA GeForce 9800 GTX/9800 GTX+, compute capability 1.1, 128 cores, 512
MB global memory, clock rate 1.67 GHz. The code on the GPU has been compiled with
NVIDIA CUDA 3.11.
1On different hardware we observed no significant differences in execution times between CUDA 3.1 and

CUDA 3.2 for our software.

2.4. NUMERICAL EXPERIMENTS

2

27

Figure 2.4: The velocity profile of the wedge problem
MP2.

Figure 2.5: Real part of solution of the wedge problem
MP2, f = 30 Hz.

2.4.2. BI-CGSTAB AND IDR(s)

We first consider the timings characteristics of the Bi-CGSTAB and IDR(s) methods de-
scribed in Section 2.2.2 and compare their performance on a single-threaded CPU against
a GPU implementation. In both cases single precision has been used, see Table 2.6. We
have chosen the number of iterations equal to 100, because even for relatively small wave
numbers like k = 40 Bi-CGSTAB and IDR(s) do not converge. To achieve convergence a
preconditioner should be used, see Section 2.4.3. For IDR(s) we use s = 4 normally dis-
tributed random vectors, that are orthogonalized by the Gram-Schmidt orthogonaliza-
tion technique.

N
Bi-CGSTAB IDR(s)

tCPU(s) tGPU(s) Speedup tCPU(s) tGPU(s) Speedup
64 0.5 0.07 7.8 1.3 0.36 3.7

128 2.3 0.1 21.1 5.3 0.47 11.3
256 8.9 0.2 35.8 23.4 0.89 26.1
512 33.0 0.9 35.3 124.5 2.6 47.8

1024 130.4 3.2 40.6 363.2 9.5 38.3

Table 2.6: Timing for 100 iterations of Bi-CGSTAB and IDR(s), s = 4, for k = 40 and different grid sizes.

As it is shown in Table 2.6, the speedups for Bi-CGSTAB and IDR(s) on GPU are com-
parable. It means that IDR(s) is parallelizable and suitable for the GPU in a similar way
as Bi-CGSTAB is. Note that the timings for IDR(s) on the CPU (s = 4) are approximately
three times slower than the timings for Bi-CGSTAB on the CPU. The reason for this is that
the IDR(4) algorithm has 5 SpMVs (Sparse Matrix-Vector-Products) and dot-products per
iteration and Bi-CGSTAB has only 2 of them per iteration, which gives a factor 2.5. More-

2

28 2. GPU IMPLEMENTATION OF A PRECONDITIONED HELMHOLTZ SOLVER

over, in the current implementation the preconditioned IDR(s) algorithm is applied (see
Algorithm 1 or Sonneveld, van Gijzen [23]), where as the “preconditioner“ the identity
matrix is used. With additional optimizations of the current implementation, the factor
2.5 between Bi-CGSTAB and IDR(s) (s = 4) on the CPU can be achieved.

2.4.3. PRECONDITIONED KRYLOV SUBSPACE METHODS

BI-CGSTAB PRECONDITIONED BY SHIFTED LAPLACE MULTIGRID

Since neither Bi-CGSTAB nor IDR(s) converges as a stand-alone solver not even for low
wave numbers, a preconditioner is required to improve the convergence properties. As
the preconditioner we apply the shifted Laplace multigrid method described in Sec-
tion 2.4.3. Parameter β1 is set to 1. The idea is to choose a combination of the parameter
β2 and the relaxation parameter ω for the multigrid smoother that the number of iter-
ations of the Krylov subspace methods will be reduced. Several smoothers are consid-
ered: damped Jacobi (ω-Jacobi), multi-colored Gauss-Seidel and damped multi-colored
Gauss-Seidel (ω-Gauss-Seidel). Two-dimensional convergence results, in dependence
of parameter β2, for problem size N = 1024 are given in Figure 2.6. The results have
been computed using Bi-CGSTAB in double precision on CPU with the preconditioner
on a GPU. It can be clearly seen that using the damped multi-colored Gauss-Seidel itera-
tion (ω= 0.9) as a smoother and β2 = 0.6 in the shifted Laplace multigrid preconditioner
gives the minimum number of iterations of Bi-CGSTAB. In our further experiments those
parameters are applied.

0.4 0.5 0.6 0.7 0.8 0.9 1
300

350

400

450

500

550

600

650

700

750

800

beta2

#
it
e
ra

ti
o
n
s

0.4−Jacobi

GS

0.5−GS

0.6−GS

0.7−GS

0.8−GS

0.9−GS

Figure 2.6: Comparison of number of iterations of Bi-CGSTAB preconditioned by shifted Laplace multigrid
preconditioner with various β2 and different smoothers: damped Jacobi (ω = 0.4), Gauss-Seidel and damped
Gauss-Seidel iteration (ω= 0.5,0.6,0.7,0.8,0.9).

By solving the MP1 2.8 with Bi-CGSTAB preconditioned by one F-cycle of the shifted
Laplace multigrid method, the following results have been achieved, see Table 2.7. The
parameters are β1 = 1, β2 = 0.6. As a smoother the damped multi-colored Gauss-Seidel

2.4. NUMERICAL EXPERIMENTS

2

29

iteration withω= 0.9 has been applied (4 colors). The grid sizes for different k satisfy the
condition kh = 0.625. The implementation on the CPU is in double precision whereas on
the GPU it is in single precision. Note that the number of iterations on the CPU and GPU
is comparable. A stopping criterion of ‖r‖/‖r0‖ = 10−3 allows Bi-CGSTAB to converge on
CPU and GPU so that performance comparisons can be made.

N k
Bi-CGSTAB(CPU) Bi-CGSTAB(CPU) Bi-CGSTAB(GPU)

+MG(CPU) +MG(GPU) +MG(GPU)
#iter time(s) #iter time(s) Speedup #iter time(s) Speedup

64 40 12 0.3 12 0.2 1.5 12 0.2 1.3
128 80 21 1.9 21 0.9 2.1 21 0.5 3.8
256 160 40 15.1 40 4.4 3.4 40 1.5 10.03
512 320 77 115.1 78 28.6 4.0 72 5.3 21.7

1024 640 151 895.1 160 218.8 4.1 157 31.1 28.8

Table 2.7: Timing comparisons of Bi-CGSTAB preconditioned by one F-cycle of the shifted Laplace multigrid
method on a single CPU and a single GPU for MP1 2.8, kh = 0.625. The combination of methods on a single
CPU (double precision) and a single GPU (single precision) is also presented.

In Table 2.7 we compare the preconditioned solver on a CPU and a GPU as well as the
solver on the CPU preconditioned by the multigrid method implemented on the GPU.
The idea behind this last implementation is to use the GPU as an accelerator for the
preconditioner while we can maintain accuracy by the double precision solver on the
CPU. However in this case the data transfer (residual and solution) between CPU and
GPU reduces the benefits of the GPU implementation. If all data stays on the GPU as for
Bi-CGSTAB preconditioned by multigrid on GPU, we find a much better speedup.

We also solved the wedge problem MP2 2.9 with Bi-CGSTAB on the CPU precon-
ditioned by the shifted Laplace multigrid method on the GPU. The parameters in the
preconditioner are β1 = 1 and β2 = 0.6. The relaxation parameter for the multicolored
Gauss-Seidel iteration isω= 0.9. The results are shown in Table 2.8. As stopping criterion
‖r‖/‖r0‖ = 10−3 is used.

N
Bi-CGSTAB(CPU) Bi-CGSTAB(CPU) Bi-CGSTAB(GPU)

+MG(CPU) +MG(GPU) +MG(GPU)
#iter time (s) #iter time (s) Speedup #iter time (s) Speedup

1024 27 155 38 57 2.7 26 5.6 27.7

Table 2.8: Convergence of Bi-CGSTAB preconditioned by one F-cycle of the shifted Laplace multigrid method
on a single CPU and a single GPU for MP2 2.9, max(k)h = 0.625. Note that here Bi-CGSTAB on the CPU is in
double precision.

IDR(s) PRECONDITIONED BY SHIFTED LAPLACE MULTIGRID

By solving MP1 2.8 with IDR(s) preconditioned by one F-cycle of the shifted Laplace
multigrid method, the following results have been achieved, see Table 2.9. We use s = 4

2

30 2. GPU IMPLEMENTATION OF A PRECONDITIONED HELMHOLTZ SOLVER

normally distributed random vectors, which are orthogonalized by the Gram-Schmidt
orthogonalization technique. As the smoother a multi-colored Gauss-Seidel iteration
has been applied. In order to obtain an optimal number of iterations for IDR(s), we
have used the same procedure to find optimal β2 = 0.65 and ω = 0.9, as described in
Section 2.4.3. The grid sizes for different k satisfy the condition kh = 0.625. The imple-
mentation on the CPU is in double precision and on the GPU it is in single precision. As
stopping criterion again ‖r‖/‖r0‖ = 10−3 is used.

N k
IDR(s)(CPU) IDR(s)(CPU) IDR(s)(GPU)
+MG(CPU) +MG(GPU) +MG(GPU)

#iter time (s) #iter time (s) Speedup #iter time (s) Speedup
64 40 6 0.36 6 0.32 1.1 6 0.27 1.3

128 80 10 2.3 10 1.04 2.2 10 0.7 3.7
256 160 17 15.8 17 4.65 3.3 18 1.7 9.1
512 320 33 126.7 34 33.1 3.8 33 6.1 20.6

1024 640 69 1061.8 68 252.2 4.2 73 37.3 28.5

Table 2.9: Timing comparisons of IDR(s) preconditioned by one F-cycle of the shifted Laplace multigrid
method on a single CPU and a single GPU for MP1 2.8, kh = 0.625. The combination of methods on a sin-
gle CPU (double precision) and a single GPU (single precision) is also presented.

The convergence curves of IDR(s) compared with Bi-CGSTAB are shown in Figure 2.7,
where the horizontal axis represents the number of iterations. In this case we use Krylov
subspace methods in double precision on a CPU with the preconditioner on a GPU. One
iteration of Bi-CGSTAB contains 2 SpMVs (short for Sparse Matrix-Vector-Multiplication),
whereas one iteration of IDR(4) contains 5 SpMVs. From Figure 2.7 it is easy to see that
the total number of SpMVs for Bi-CGSTAB and IDR(4) is the same. The fact that the
IDR(s) method converges in fewer iterations, but has more SpMVs, implies that the total
performance of IDR(4) and Bi-CGSTAB is approximately the same.

We solve the wedge problem MP2 2.9 with the IDR(s) on the CPU preconditioned by
the shifted Laplace multigrid method on the GPU. The parameters in the preconditioner
are β1 = 1 and β2 = 0.65. The relaxation parameter for the multicolored Gauss-Seidel
iteration is ω= 0.9. The same stopping criterion ‖r‖/‖r0‖ = 10−3 is used. The results are
shown in Table 2.10.

N
IDR(s)(CPU) IDR(s)(CPU) IDR(s)(GPU)
+MG(CPU) +MG(GPU) +MG(GPU)

#iter time (s) #iter time (s) Speedup #iter time (s) Speedup
1024 11 162.9 12 43.9 3.7 12 6.3 25.7

Table 2.10: Convergence of IDR(s) preconditioned by one F-cycle of the shifted Laplace multigrid method on
a single CPU and a single GPU for MP2 2.9, max(k)h = 0.625. Note that here the IDR on the CPU is in double
precision.

2.5. CONCLUSIONS

2

31

0 50 100 150 200 250
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

#iterations

L
2
−

n
o
rm

 r
e
s
id

u
a
l

Bi−CGSTAB CPU prec CPU

Bi−CGSTAB CPU prec GPU

Bi−CGSTAB GPU prec GPU

IDR(4) CPU prec CPU

IDR(4) CPU prec GPU

IDR(4) GPU prec GPU

Figure 2.7: Convergence curves of IDR(4) and Bi-CGSTAB for the model problem MP1 2.8 for k = 320.

2.5. CONCLUSIONS

In this chapter we have presented a GPU implementation of Krylov subspace solvers
preconditioned by a shifted Laplace multigrid preconditioner for the two-dimensional
Helmholtz equation. On the CPU, double precision was used whereas on the GPU com-
putations were in single precision. We have seen that Bi-CGSTAB and IDR(s) are paral-
lelizable on a GPU and have similar speedups of about 40 compared to a single-threaded
CPU implementation.

It has been shown that a matrix-dependent multigrid can be implemented efficiently
on a GPU where a speedup of 20 can be achieved for large problems. As the smoother
we have considered parallelizable methods such as weighted Jacobi (ω-Jacobi), multi-
colored Gauss-Seidel and damped multi-colored Gauss-Seidel iteration (ω-GS). Param-
eter β2 = 0.6 in the preconditioner is optimal for damped multi-colored Gauss-Seidel
smoother with ω = 0.9. With those parameters, the number of iterations is optimal for
Bi-CGSTAB.

For IDR(s) the optimal parameters were β2 = 0.65 and ω= 0.9. One iteration of pre-
conditioned IDR(s) is more intensive than one iteration of preconditioned Bi-CGSTAB,
however IDR(s) needs fewer iterations so it does not affect the total computation time.

To increase the precision of a solver, iterative refinement has been considered. We
have shown that iterative refinement with Bi-CGSTAB on a GPU is about 4 times faster
than Bi-CGSTAB on a CPU for the same stopping criterion. The same result has been
achieved for IDR(s). Moreover, combinations of Krylov subspace solvers on the CPU and
GPU and the shifted Laplace multigrid preconditioner on the CPU and GPU are consid-
ered. A GPU Krylov subspace solver with a GPU preconditioner give the best speedup.
For example for the problem size n = 1024×1024 Bi-CGSTAB on the GPU with the GPU

2

32 2. GPU IMPLEMENTATION OF A PRECONDITIONED HELMHOLTZ SOLVER

preconditioner as well as IDR(s) on the GPU with the GPU preconditioner are about 30
times faster than the analogous solvers on the CPU.

3
3D HELMHOLTZ KRYLOV SOLVER

PRECONDITIONED BY A SHIFTED

LAPLACE MULTIGRID METHOD ON

MULTI-GPUS

Abstract

We focus on an iterative solver for the three-dimensional Helmholtz equation on a

multi-GPU architecture using CUDA (Compute Unified Device Architecture). The

Helmholtz equation discretized by a second-order finite difference scheme is solved

with Bi-CGSTAB preconditioned by a shifted Laplace multigrid method. Two multi-

GPU approaches are considered: data parallelism and split of the algorithm. Their

implementations on the multi-GPU architecture are compared to a multi-threaded

CPU and single GPU implementation. The results show that the data parallel imple-

mentation is suffering from communication between GPUs and CPU, but is still a

number of times faster compared to many-cores. The split of the algorithm across

GPUs requires less communication and delivers speedups comparable to a single

GPU implementation.

3.1. INTRODUCTION

As it has been shown in the previous chapter the implementation of numerical solvers
for 2-D indefinite Helmholtz problems with spatially dependent wavenumbers, such as

Parts of this chapter have been published in H. Knibbe, C. Vuik, and C. W. Oosterlee. In A. Cangiani, R. L. David-
chack, E. Georgoulis, A. N. Gorban, J. Levesley, and M. V. Tretyakov, editors, in Proceedings of ENUMATH 2011,
the 9th European Conference on Numerical Mathematics and Advanced Applications, Leicester, September
2011, pages 653–661. Springer-Verlag Berlin Heidelberg, 2013, [83].

33

3

34 3. 3D PRECONDITIONED HELMHOLTZ SOLVER ON MULTI-GPUS

Bi-CGSTAB and IDR(s) preconditioned by a shifted Laplace multigrid method on a GPU
is more than 25 times faster than on a single CPU. Comparison of a single GPU to a single
CPU is important but it is not representative for problems of realistic size. By realistic
problem sizes we mean three-dimensional problems which lead after discretization to
linear systems of equations with more than one million unknowns. Such problems arise
when modeling a wavefield in geophysics.

Problems of realistic size are too large to fit in the memory of one GPU, even with
the latest NVIDIA Fermi graphics card (see [41]) in 2012. One solution is to use multiple
GPUs. A widely used architecture in 2012 consists of a multi-core machine connected to
one or at most two GPUs. Moreover, in most of the cases those GPUs have different char-
acteristics and memory size. A setup with four or more identical GPUs is rather uncom-
mon, but it would be ideal from a memory point of view. It implies that the maximum
memory would be four times or more compared to a single GPU. However GPUs are con-
nected to a PCI bus and in some cases two GPUs share the same PCI bus, which creates
data transfer limitation. To summarize, using multi-GPUs increases the total memory
size but data transfer problems appear.

The aim of this chapter is to consider different multi-GPU approaches and under-
stand how data transfer affects the performance of a Krylov subspace solver with the
shifted Laplace multigrid preconditioner for the three-dimensional Helmholtz equation.

3.2. HELMHOLTZ EQUATION AND SOLVER

The Helmholtz equation in three dimensions 1.1 in a heterogeneous medium is con-
sidered. Discretizing equation 1.1 using the 7-point central finite difference scheme
gives the following linear system of equations: Aφ= g , A ∈ CN×N , φ, g ∈ CN , where N =
nx ny nz is a product of the number of discretization points in the x−, y− and z−directions.
Note that the closer the damping parameterα is set to zero, the more difficult it is to solve
the Helmholtz equation. We focus on the original Helmholtz equation with α= 0 here.

As the solver for the discretized Helmholtz equation we have chosen the Bi-CGSTAB
method preconditioned by the shifted Laplace multigrid method with matrix-dependent
transfer operations and a Gauss-Seidel smoother, (see [21]). It has been shown in the
previous chapter that this solver is parallelizable on CPUs as well as on a single GPU
and provides good speed-up on parallel architectures. The prolongation in this work is
based on the three dimensional matrix-dependent prolongation for real-valued matrices
described in [84]. This prolongation is also valid at the boundaries. The restriction is
chosen as full weighting restriction. As the smoother the multi-colored Gauss-Seidel
method has been used. In particular, for 3D problems the smoother uses 8 colors, so
that the color of a given point will be different from its neighbours.

Since our goal is to speed up the Helmholtz solver with the help of GPUs, we still
would like to keep the double precision convergence rate of the Krylov subspace method.
Therefore Bi-CGSTAB is implemented in double precision. For the preconditioner, single
precision is sufficient for the CPU as well as the GPU.

3.3. MULTI-GPU IMPLEMENTATION

3

35

Figure 3.1: NVIDIA machine with 12 Westmere CPUs and 8 Fermi GPUs, where two GPUs share a PCI bus
connected to a socket.

3.3. MULTI-GPU IMPLEMENTATION

For our numerical experiments in 2012 NVIDIA [41] provided a Westmere based 12-cores
machine connected to 8 GPUs Tesla 2050 as shown on Figure 3.1. The 12-core machine
has 48 GB of RAM. Each socket has 6 CPU cores Intel(R) Xeon(R) CPU X5670 @ 2.93GHz
and is connected through 2 PCI-buses to 4 graphics cards. Note that two GPUs are shar-
ing one PCI-bus connected to a socket. Each GPU consist of 448 cores with clock rate 1.5
GHz and has 3 GB of memory.

In the experiments CUDA version 3.21 is used. All experiments on the CPU are done
using a multi-threaded CPU implementation (pthreads [85]).

In general, GPU memory is much more limited than CPU memory so we chose a
multi-GPU approach to be able to solve larger problems. The implementation on a sin-
gle GPU of major components of the solver such as vector operations, matrix-vector-
multiplication or the smoother has been described in Chapter 2. In this section we focus
on the multi-GPU implementation.

There are two ways to perform computations on a multi-GPU machine: push differ-
ent CUDA contexts to different GPUs (see [41]) or create multiple threads on the CPU,
where each thread communicates with one GPU. For our purposes we have chosen the
second option, since it is easier to understand and implement.

Multiple open source libraries for multi-threading have been considered and tested.
For our implementation of numerical methods on a GPU the main requirement for multi-
threading was that a created thread stays alive to do further processing. It is crucial for
performance that a thread remains alive as a GPU context is attached to it. Pthreads has
been chosen as we have total control of the threads during the program execution.

There are several approaches to deal with multi-GPU hardware:

1. Domain-Decomposition approach, where the original continuous or discrete prob-
lem is decomposed into parts which are executed on different GPUs and the over-
lapping information (halos) is exchanged by data transfer. This approach can how-
ever have difficulties with convergence for higher frequencies (see [86]).

1During the work on this paper, the newer version of CUDA 4.0 has been released. It was not possible to have
the newer version installed on all systems for our experiments. That is why for consistency and comparability
of experiments, we use the previous version.

3

36 3. 3D PRECONDITIONED HELMHOLTZ SOLVER ON MULTI-GPUS

2. Data-parallel approach, where all matrix-vector and vector-vector operations are
split between multiple GPUs. The advantage of this approach is that it is relatively
easy to implement. However, matrix-vector multiplication requires exchange of
the data between different GPUs, that can lead to significant data transfer times if
the computational part is small. The convergence of the solver is not affected.

3. Split of the algorithm, where different parts of the algorithm are executed on dif-
ferent devices. For instance, the solver is executed on one GPU and the precon-
ditioner on another one. In this way the communication between GPUs will be
minimized. However this approach is specific to each algorithm.

Note that the data-parallel approach can be seen as a method splitting the data across
multi-GPUs, whereas the split of the algorithm can be seen as a method splitting the
tasks across multiple devices. In this chapter we investigate the data-parallel approach
and the split of the algorithms and make a comparison between multi-core and multi-
GPUs. We leave out the domain decomposition approach because the convergence of
the Helmholtz solver is not guaranteed. The data parallel approach is more intuitive and
is described in detail in Section 3.4.

3.3.1. SPLIT OF THE ALGORITHM

The split can be unique for every algorithm. The main idea of this approach is to limit
communication between GPUs but still be able to compute large problems.

One way to apply this approach to Bi-CGSTAB preconditioned by shifted Laplace
multigrid method is to execute Bi-CGSTAB on one GPU and the multigrid precondi-
tioner on another one. In this case the communication only between the Krylov sub-
space solver and preconditioner is required but not for intermediate results.

The second way to apply a split of the algorithm to our solver is to execute the Bi-
CGSTAB and the finest level of the shifted Laplace multigrid preconditioner across all
available GPUs using the data parallel approach. The coarser levels of multigrid method
are executed on only one GPU due to small memory requirements. Since the LU-decomposition
is used to compute an exact solution on the coarsest level, we use the CPU for that.

3.3.2. ISSUES

Implementation on multi-GPUs requires careful consideration of possibilities and opti-
mization options. The issues we encountered during our work are listed below:

• Multi-threading implementation, where the life of a thread should be as long as
the application. This is crucial for the multi-threading way of implementation on
a multi-GPU architecture. Note that in case of pushing contexts this is not an issue.

• Because of limited GPU memory size, large problems need multiple GPUs.

• Efficient memory reusage to avoid allocation/deallocation. Due to memory limi-
tations the memory should be reused as much as possible, especially in the multi-
grid method. In our work we create a pool of vectors on the GPU and reuse them
during the whole solution time.

3.4. NUMERICAL RESULTS ON MULTI-GPU

3

37

• Limit communications CPU→GPU and GPU→CPU.

• The use of texture memory on multi-GPU architectures is complicated as each
GPU needs its own texture reference.

• Coalescing is difficult since each matrix row has a different number of elements.

3.4. NUMERICAL RESULTS ON MULTI-GPU

3.4.1. VECTOR- AND SPARSE MATRIX-VECTOR OPERATIONS

Vector operations such as addition, dot product are trivial to implement on multi-GPU
machines. Vectors are split across multiple GPUs, so that each GPU gets a part of the
vector. In case of vector addition, the parts of a vector remain on the GPU or can be send
to a CPU and be assembled in a result vector of original size. The speedup for vector
addition on 8-GPUs compared to a multi-threaded implementation (12 CPUs) is about
40 times for single and double precision arithmetic. For the dot product, each GPU sends
its own sub-dot product to a CPU, where they will be summed into the final result. The
speedup for the dot product is about 8 for single precision and 5 for double precision
arithmetic. The speedups for vector addition and dot product on multi-GPU machines
are smaller compared to the single GPU because of the communication between the
CPU and multiple GPUs.

The matrix here is stored in a CRS matrix format (Compressed Row Storage, see e.g.
[87]) and is split in a row-wise fashion. In this case a part of the matrix rows is transferred
to each GPU as well as the whole vector. After matrix-vector multiplication parts of the
result are transferred to the CPU where they are assembled into the final resulting vector.
The timings for the matrix-vector multiplication are given in Table 3.1.

Table 3.1: Matrix-vector-multiplication in single (SP) and double (DP) precision.

Size Speedup (SP) Speedup (SP) Speedup (DP) Speedup (DP)
1 GPU against
12-cores

8 GPU against
12-cores

1 GPU against
12-cores

8 GPUs against
12-cores

100,000 54.5 6.81 30.75 5.15
1 Mln 88.5 12.95 30.94 5.97
20 Mln 78.87 12.13 32.63 6.47

3.4.2. BI-CGSTAB AND GAUSS-SEIDEL ON MULTI-GPU

Since the Bi-CGSTAB algorithm is a collection of vector additions, dot products and
matrix-vector multiplications described in the previous section, the multi-GPU version
of the Bi-CGSTAB is straight forward. In Table 3.2 the timings of Bi-CGSTAB on a many-
core CPU, single GPU and multi-GPU are presented. The stopping criterion is 10−5. It is

3

38 3. 3D PRECONDITIONED HELMHOLTZ SOLVER ON MULTI-GPUS

easy to see that the speedup on multi-GPUs is smaller than on a single GPU due to the
data transfer between CPU and GPU. Note that for the largest problem in Table 3.2 it is
not possible to compute on a single GPU because there is not enough memory available.
However it is possible to compute this problem on multi-GPUs and the computation on
the multi-GPU machine is still many times faster than on a 12-core Westmere CPU.

Table 3.2: Speedups for Bi-CGSTAB in single (SP) and double (DP) precision.

Size Speedup (SP) Speedup (SP) Speedup (DP) Speedup (DP)
1 GPU against
12-cores

8 GPUs against
12-cores

1 GPU against
12-cores

8 GPUs against
12-cores

100,000 12.72 1.27 9.59 1.43
1 Mln 32.67 7.58 15.84 5.11
15 Mln 45.37 15.23 19.71 8.48

As mentioned above, the shifted Laplace multigrid preconditioner consists of a coarse
grid correction based on the Galerkin method with matrix-dependent prolongation and
of a multi-color Gauss-Seidel smoother. The implementation of the coarse grid correc-
tion on multi-GPU architectures is straight forward, since the main ingredient of the
coarse grid correction is the matrix-vector multiplication. The coarse grid matrices are
constructed on a CPU and then transferred to the GPUs. The matrix-vector multiplica-
tion on the multi-GPU is described in Section 3.4.1.

The multi-color Gauss-Seidel smoother on the multi-GPU requires adaptation of the
algorithm. We use the 8-colored Gauss-Seidel iteration, since problem 1.1 is given in
three dimensions and computations at each discretization point should be done inde-
pendently of the neighbours to allow parallelism. For the multi-GPU implementation
the rows of the matrix for one color will be split between multi-GPUs. Basically, the col-
ors are computed sequentially, but within a color the data parallelism is applied across
the multi-GPUs. The timing comparisons for the 8-colored Gauss-Seidel implementa-
tion on different architectures are given in Table 3.3.

Table 3.3: Speedups for colored Gauss-Seidel method on different architectures in single precision.

Size Speedup (SP) Speedup (SP)
1 GPU against 12-cores 8 GPUs against 12-cores

5 Mln 16.5 5.2
30 Mln 89.1 6.1

3.5. NUMERICAL EXPERIMENTS FOR THE WEDGE PROBLEM

3

39

Table 3.4: Timings for Bi-CGSTAB preconditioned by the shifted Laplace multigrid.

Bi-CGSTAB (DP) Preconditioner (SP) Total Speedup
12-cores 94 s 690 s 784 s 1
1 GPU 13 s 47 s 60 s 13.1
8 GPUs 83 s 86 s 169 s 4.6
2 GPUs+split 12 s 38 s 50 s 15.5

3.5. NUMERICAL EXPERIMENTS FOR THE WEDGE PROBLEM

This model problem represents a layered heterogeneous problem taken from [21]. Find
φ ∈Cn×n×n

−∆φ(x, y, z)−k(x, y, z)2φ(x, y, z) = δ(
(x −500)(y −500)z

)
, (3.1)

(x, y, z) ∈Ω = [0,0,0]× [1000,1000,1000], with the first-order boundary conditions. The
coefficient k(x, y, z) is given by k(x, y, z) = 2π f l/c(x, y, z) where c(x, y, z) is presented in
Figure 3.2. The grid size satisfies the condition maxx (k(x, y, z))h = 0.625, where h = 1

n−1 .
Table 3.4 shows timings for Bi-CGSTAB preconditioned by the shifted Laplace multigrid
method on problem 3.1 with 43 millions unknowns. The single GPU implementation
is about 13 times faster than a multi-threaded CPU implementation. The data-parallel
approach shows that on multi-GPUs the communication between GPUs and CPUs takes
a significant amount of the computational time, leading to smaller speedup than on a
single GPU. However, using the split of the algorithm, where Bi-CGSTAB is computed on
one GPU and the preconditioner on the other one, increases the speedup to 15.5 times.
Figure 3.3. shows the real part of the solution for 30 Hz.

3.6. CONCLUSIONS

In this chapter we presented a multi-GPU implementation of the Bi-CGSTAB solver pre-
conditioned by a shifted Laplace multigrid method for a three-dimentional Helmholtz
equation. To keep the double precision convergence the Bi-CGSTAB method is imple-
mented on the GPU in double precision and the preconditioner in single precision. We
have compared the multi-GPU implementation to a single-GPU and a multi-threaded
CPU implementation on a realistic problem size. Two multi-GPU approaches have been
considered: a data parallel approach and a split of the algorithm. For the data parallel
approach, we were able to solve larger problems than on one GPU and got a better per-
formance than by the multi-threaded CPU implementation. However due to the com-
munication between GPUs and the CPU the resulting speedups have been considerably
smaller compared to the single-GPU implementation. To minimize the communication
but still be able to solve large problems we have introduced the split of the algorithm
technique. In this case the speedup on multi-GPUs is similar to the single GPU com-
pared to the multi-core implementation.

3

40 3. 3D PRECONDITIONED HELMHOLTZ SOLVER ON MULTI-GPUS

Figure 3.2: The velocity profile of the wedge problem.

Figure 3.3: Real part of the solution, f = 30 Hz.

4
CLOSING THE PERFORMANCE GAP

BETWEEN AN ITERATIVE

FREQUENCY-DOMAIN SOLVER AND

AN EXPLICIT TIME-DOMAIN

SCHEME FOR 3-D MIGRATION ON

PARALLEL ARCHITECTURES

Abstract

3-D reverse time migration with the constant-density acoustic wave equation re-

quires an efficient numerical scheme for the computation of wavefields. An explicit

finite-difference scheme in the time domain is the common choice. However, it re-

quires a significant amount of disk space for the imaging condition. The frequency-

domain approach simplifies the correlation of the source and receiver wavefields,

but requires the solution of a large sparse linear system of equations. For the lat-

ter, we use an iterative Helmholtz Krylov subspace solver based on a shifted Laplace

multigrid preconditioner with matrix-dependent prolongation. The question is whether

migration in the frequency domain can compete with a time-domain implementa-

tion when both are performed on a parallel architecture. Both methods are naturally

parallel over shots, but the frequency-domain method is also parallel over frequen-

cies. If we have a sufficiently large number of compute nodes, we can compute the

result for each frequency in parallel and the required time is dominated by the num-

ber of iterations for the highest frequency. As a parallel architecture, we consider

Parts of this chapter have been published in H. Knibbe, W. A. Mulder, C. W. Oosterlee, and C. Vuik. GEO-
PHYSICS, 79(2), pp S47–S61, 2014, doi: 10.1190/geo2013-0214.1, [88]

41

4

42 4. FREQUENCY DOMAIN MIGRATION ON MULTI-CPU

a commodity hardware cluster that consists of multi-core CPUs, each of them con-

nected to two GPUs. Here, GPUs are used as accelerators and not as independent

compute nodes. The parallel implementation of the 3-D migration in the frequency

domain is compared to a time-domain implementation. We optimized the through-

put of the latter with dynamic load balancing, asynchronous I/O and compression of

snapshots. Since the frequency-domain solver uses matrix-dependent prolongation,

the coarse grid operators requires more storage than available on GPUs for problems

of realistic size. Due to data transfer, there is no significant speedup using GPU-

accelerators. Therefore, we consider an implementation on CPUs only. Nevertheless,

with the parallelization over shots and frequencies, this approach can compete with

the time-domain implementation on multiple GPUs.

INTRODUCTION

The oil and gas industry makes use of computational intensive algorithms such as reverse-
time migration and full waveform inversion to provide an image of the subsurface. The
demand for better resolution increases the bandwidth of the seismic data and leads to
larger computational problems. At the same time, high-performance computer archi-
tectures are developing quickly by having more and faster cores in the CPUs (Central
Processing Units) or GPUs (Graphics Processing Units). The increase in the number of
cores requires the development of scalable algorithms.

The finite-difference solution of the constant-density acoustic wave equation has be-
come the common tool for reverse-time migration, usually discretized by high-order fi-
nite differences in space and second-order differencing in time. The discretization leads
to a fully explicit method. Higher-order finite differences reduce problem size compared
to low-order finite differences because they require fewer grid points per wavelength
[89] if the underlying model is sufficiently smooth, which is usually the case in reverse-
time migration. Explicit methods based on finite-differences exhibit natural parallelism
since the computation of one point in space for a given time step is independent of its
neighboring points. They can be easily parallelized with OpenMP on shared-memory
architectures and on GPUs [90]. We refer to the paper by [91] for an overview.

Migration of seismic data is commonly carried out in the time domain. The classic
reverse-time migration algorithms in the time domain are known to be computationally
and I/O intensive [44, 45] because the forward and time-reversed wavefields have to be
computed and stored. If the correlation between these fields is carried out during the
time-reversed computation of the receiver data, only snapshots of the forward wavefield
have to be stored.

It is possible to reduce the time needed to write the snapshots to disk, for example by
using asynchronous I/O [49] and wavefield compression. Standard libraries for Fourier
transformation or wavelet compression can be used [45]. However, this approach may
have difficulties to preserve the frequency content of the image and may introduce com-
pression artifacts.

Migration in the frequency domain is historically less mature because of the neces-
sity to solve a sparse indefinite linear system of equations for each frequency, which
arises from the discretization of the Helmholtz equation, whereas in the time domain

4

43

the discretization of the wave equation in space and time leads to an explicit time march-
ing scheme. An important advantage of migration in the frequency domain however is
that the cross-correlation needed for the imaging condition becomes a simple multipli-
cation. As a result, no wavefields have to be stored. Parallelization over frequencies is
natural. When a direct solver is used to compute the solution of the sparse matrix, typ-
ically a nested-dissection LU -decomposition is applied [50]. When many shots need to
be treated, the frequency-domain solver in two dimensions can be more efficient than
a time-domain time-stepping method [51, 52], because the LU -decomposition can be
reused for each shot as well as for each ‘reverse-time’ computation. Also, lower frequen-
cies can be treated on coarser meshes.

In three dimensions, however, frequency-domain migration is considered to be less
efficient than its time-domain counterpart. One of the reasons is the inability to con-
struct an efficient direct solver for problems of several millions of unknowns [53]. The
authors in [54, 55] proposed a direct solver based on nested-dissection that compresses
intermediate dense submatrices by hierarchical matrices.

An iterative solver is an obvious alternative, for instance, the one with a precondi-
tioner that uses a multigrid method to solve the same Helmholtz equation but with very
strong damping [21, 56, 57, 69]. This method, however, needs a number of iterations that
increases with frequency, causing the approach to be less efficient than a time-domain
method. Note that the iterative method requires a call to the solver for each shot and
each ‘reverse-time’ computation, so the advantage of reusing an LU -decomposition is
lost. This approach was parallelized by [37]. In Chapter 3 we have used GPUs to speed
up the computations.

However, with the development of iterative methods on the one hand and hardware
accelerators on the other hand, we have to reconsider the performance of migration in
the frequency domain. As a parallel architecture we consider a commodity hardware
cluster that consists of multi-core CPUs, each of them connected to two GPUs. In gen-
eral, a GPU has a relatively small amount of memory compared to the CPU.

A GPU can be used in two different ways: as an independent compute node replac-
ing the CPU or as an accelerator. In the first case, the algorithm is split to solve a number
of independent sub-problems that are then transferred to the GPU and computed sepa-
rately. To achieve the best performance, the data is kept on the GPU when possible. We
have exploited this way of using a GPU for the Helmholtz equation earlier in Chapters 2
and 3.

In the second case, the GPU is considered as an accelerator, which means that the
problem is solved on the CPU while off-loading the computational intensive parts of the
algorithm to the GPU. Here, the data is transferred to and from the GPU for each new
task. In this chapter we focus on the second approach.

The aim of this chapter is to demonstrate that migration in the frequency domain,
based on a Krylov subspace solver preconditioned by a shifted-Laplace multigrid pre-
conditioner on CPUs, can compete with reverse-time migration in the time domain on
commodity parallel hardware, a multi-core CPU connected to two GPUs.

We will make a comparison in terms of computational time, parallelization and scal-
ability aspects. We use a finite-difference discretization of the constant-density acous-
tic wave equation for computing the wavefields. Here, we solve the 3-D wave equation

4

44 4. FREQUENCY DOMAIN MIGRATION ON MULTI-CPU

in the frequency domain with the iterative Helmholtz solver described in Chapter 3.
This solver reduces the number of iterations by a complex-valued generalization of the
matrix-dependent multigrid method. The price paid for improved convergence is that
the implementation is no longer matrix-free. The matrix-dependent prolongation re-
quires the storage of the coarse-grid operators. As a result, the use of a GPU as an in-
dependent compute node becomes less attractive for realistic problem sizes. Applying
GPUs as accelerators involves substantial data transfer, requiring a significant amount of
time and reducing the speedup as compared to parallel computations on CPUs. For that
reason, we will here only consider a CPU implementation for the Helmholtz equation.
For the migration in the time domain, this problem disappears because of the explicit
time stepping and we can exploit GPUs as accelerators. Complexity estimates show that
both approaches scale in the same way with grid size but that does not give an indication
of the actual performance on a problem of realistic size. We therefore made a compari-
son of our actual implementations for the frequency and time domain.

We will describe seismic modeling and migration in the time and in the frequency
domain. The advantages of the frequency-domain solver are explained and demon-
strated. We review the parallel strategies for both time and frequency domain and de-
scribe implementation details on multi-cores and on GPUs. Finally we compare the par-
allel performance on two 3-D examples.

4.1. CHOICE OF METHOD

The choice of the numerical scheme is motivated by complexity analysis. Consider a 3-D
problem of size N = n3, with ns shots, nt time steps, nf frequencies, nit iterations. The
number of shots is usually ns ≈ n2, the number of time steps nt ≈ n (see equation 4.5),
the number of frequencies is nf ≈ n at most, and the number of iterations for the iterative
frequency-domain method is nit ≈ nf (see equation 4.8).

The complexity of time-domain modeling is nsnt O(n3) [43, 92]. The direct solver
in the frequency domain has a complexity of O(n7 +ns n3) for a single frequency when
using a standard LU -decomposition. This can be reduced to O(n6 +ns n3) with nested
dissection [50]. The authors in [54, 55] suggested to use a low-rank approximation of
the dense matrices arising from the nested dissection. In that case, the complexity of
the method lies between O(n3(logn +ns)) and O((n4 +ns n3) logn), depending on the
problem. The authors in [37, 56] considered the complexity of the shifted Laplace solver
preconditioned by a multigrid method and obtained O(nsnfnitn3) for nf frequencies.

Considering the parallel aspects over shots and frequencies, Table 4.1 captures the
complexity of the algorithms mentioned above. Factors of O(logn) have been ignored.
It is readily seen that the time domain is the most efficient method in the sequential
case. However, if the implementation is parallel over shots and frequencies, the time-
domain and iterative frequency-domain methods appear to be the most attractive meth-
ods in terms of turn-around time, assuming sufficient resources for parallel computing
are available and their cost is not included. This leaves questions about actual perfor-
mance unanswered, since the constants in the complexity estimates are absent. To get
an indication of the actual performance of the two algorithms, both were implemented
and tested on a problem of realistic size.

4.2. MODELING

4

45

Table 4.1: Complexity of various methods, split between setup and application cost. The required amount of
storage is given in column 4. Next, a factor that can be dealt with by trivial parallelization is listed. The last
column shows the scaling of compute time when the trivial parallelization is applied, assuming n3 grid points,
ns ≈ n2 shots, nt ≈ n time steps, nf ≈ n frequencies and nit ≈ n iterations.

Method Setup Apply Storage Parallel Overall

time domain – nsntn3 nsn3 ns (0+n6)/n2 ≈ n4

LU, nested dissection nfn6 nsnfn4 nfn4 nf (n7 +n7)/n ≈ n6

LU, low rank nfn4 nsnfn3 nfn3 nf (n5 +n6)/n ≈ n5

iterative nfnsn3 nsnfnitn3 nsnfn3 nsnf (n6 +n7)/n3 ≈ n4

4.2. MODELING

Modeling is a major component of migration and inversion algorithms. Traditionally,
seismic data are modeled in the time domain because of the simplicity of implementa-
tion as well as the memory demands. However, modeling in the frequency domain offers
such advantages as parallelization over frequencies and reuse of earlier results if an iter-
ative solver is employed for computing the wavefields, for example, during least squares
migration or full waveform inversion. We will compare modeling in the time domain to
that in the frequency domain.

4.2.1. MODELING IN THE TIME DOMAIN

Modeling in the time domain requires the solution of the wave equation 1.6. Discretiza-
tion of the three-dimensional wave equation with second-order finite differences in space
and time leads to an explicit time marching scheme of the form

un+1
i , j ,k = 2un

i , j ,k −un−1
i , j ,k +∆t 2c2

i , j ,k(
un

i−1, j ,k −2un
i , j ,k +un

i+1, j ,k

h2
x

+
un

i , j−1,k −2un
i , j ,k +un

i , j+1,k

h2
y

+
un

i , j ,k−1 −2un
i , j ,k +un

i , j ,k+1

h2
z

+ sn
i , j ,k

)
, (4.1)

where the superscript n+1 denotes a new time level that is computed using the solutions
at the two previous time steps, n and n −1. A higher-order discretization of the second
derivative in space in one direction is obtained by

∂(2)u

∂x(2)

∣∣∣∣
i
'− 1

h2
x

(
bM

0 ui +
M∑

k=1
bM

k (ui−k +ui+k)

)
, (4.2)

4

46 4. FREQUENCY DOMAIN MIGRATION ON MULTI-CPU

where 2M denotes the order of the spatial discretization and the coefficients are

bM
0 =

M∑
m=1

2

m2 , (4.3)

bM
k = (−1)k

M∑
m=k

2

m2

(m!)2

(m +k)!(m −k)!
, k = 1, . . . , M . (4.4)

The authors in [93] describe a higher-order discretization of the second derivative in
time.

To ensure stability of the time marching scheme above, the time step has to satisfy
the stability constraint

∆t ≤ CFL
d

cmax
, (4.5)

with the maximum velocity cmax, the diameter

d = 1√
1/h2

x +1/h2
y +1/h2

z

(4.6)

and the constant CFL = 2/
p

a, with

a =
M/2∑
k=1

4k
/(

k2
(

2k −1
k −1

))
. (4.7)

For details see [94].
In order to simulate an infinite domain and avoid reflections from the boundaries,

sponge absorbing boundary conditions have been implemented [19].

4.2.2. MODELING IN THE FREQUENCY DOMAIN

For wave propagation in the frequency domain, we consider the Helmholtz equation
1.1 in a 3-D heterogeneous medium. Equation 1.1 was solved with a Krylov subspace
method preconditioned by a shifted-Laplace preconditioner [21, 69, 83]. We have de-
scribed the method in great detail in Chapter 2.

If the wavelet or signature of the source term g is given in the time domain, its fre-
quency dependence is readily obtained by a Fast Fourier Transform (FFT). Given the
seismic data, the Nyquist theorem dictates the frequency sampling and the maximum
frequency. In practice, however, the maximum frequency in the data is lower and is de-
fined by the wavelet. Given the range of frequencies defined by Nyquist’s theorem and
the data, the Helmholtz equation 1.1 is solved for each frequency and the wavefield is
sampled at the receiver positions, producing a seismogram in the frequency domain. Fi-
nally, the wavelet and an inverse FFT are applied to obtain the synthetic seismogram in
the time domain.

The discretization of equation 1.1 in space depends on the number of points per
wavelength. The general rule of thumb is to discretize with at least 10 points per wave-
length [20]. In that case, the error behaves as (kh)2, which is inversely proportional to the

4.2. MODELING

4

47

square of the number of points per wavelength. To avoid the pollution effect, kh = 0.625
has been chosen constant, as described by [21]. The authors in [29] showed that the
number of iterations of the Helmholtz solver does not depend on the problem size for
a given frequency, but the number of iterations increases with frequency. The authors
in [30] and [31] presented an improved version that requires fewer iterations but still
requires more iterations at higher frequencies. Therefore, the computational time for
modeling in the frequency domain mainly depends on the highest frequency used and
on the total number of frequencies. To reduce computational time, the computations
for each frequency can be parallelized over several compute nodes. Then, the question
arises: how many compute nodes do we need to minimize the computational time?

It is obvious that for a parallel implementation over an unlimited number of com-
pute resources, the computational time is at least equal to the time needed to solve the
Helmholtz equation 1.1 for the highest frequency.

Since the problem size is the same for each frequency and the iterative method has
a fixed number of matrix-vector and vector-vector operations, it is easy to see that the
time per iteration is the same for each frequency. In principle, the lower frequencies can
be calculated on coarser meshes [92]. However, using a Krylov subspace solver precon-
ditioned with a shifted-Laplace multigrid method, the number of iterations is already
quite low. Therefore, the additional complexity due to interpolation between different
grid sizes does not pay off. The number of iterations per frequency fi , i ∈ N, can be
expressed as

ni ≈ γ fi , (4.8)

where γ= nN / fN , fN denotes the maximum frequency and nN the number of iterations
for fN . The frequencies are given by fi = i∆ f where ∆ f is the frequency sampling inter-
val. The total number of iterations for computing all frequencies is given by

N∑
i=1

ni ≈ γ
N∑

i=1
i∆ f = γ∆ f

N (N +1)

2
= nN

N +1

2
. (4.9)

In other words, the least computational time can be achieved by using a number of com-
pute nodes equal to half the number of frequencies. As an example, let us consider a
problem with maximum frequency fmax ' 30Hz and∆ f ' 1/6Hz. Then, 180 frequencies
need to be computed, which would require 90 compute nodes. Here, we assume that the
problem size corresponding to the maximum frequency fits into the memory of a single
compute node.

We can adopt a different point of view by fixing the number of compute nodes and
then determining the minimum workload of each node in terms of the number of itera-
tions. Let us denote by M the number of available compute nodes. Then, using equation
4.9, the minimum time per node is equal to

Tmin = tN (N +1)

2M
, (4.10)

where tN is the compute time needed for the highest frequency.

4

48 4. FREQUENCY DOMAIN MIGRATION ON MULTI-CPU

4.3. MIGRATION

Migration algorithms produce an image of the subsurface given seismic data measured
at the surface. In particular, pre-stack depth migration produces the depth locations
of reflectors by mapping seismic data from the time domain to the depth domain, as-
suming a sufficiently accurate velocity model is available. The classic imaging principle
[1, 2] is based on the correlation of the forward propagated wavefield from a source and
a backward propagated wavefield from the receivers. To get an approximation of the re-
flector amplitudes, the correlation is divided by the square of the forward wavefield [3, 4].
For true-amplitude or amplitude-preserving migration, there are a number of publica-
tions based on the formulation of migration as an inverse problem in the least-squares
sense [5–9]. For our purpose of comparing migration in the time and frequency domain,
we focus on the classical imaging condition [13]

I (x) = ∑
shot s

∑
t

Ws (x, t)Wr (x, t), (4.11)

in time domain, or

I (x) = ∑
shot s

∑
ω

W ∗
s (x,ω)Wr (x,ω), (4.12)

in the frequency domain. Here, I denotes the image, Ws is the wavefield propagated
from the source and Wr from the receivers, respectively; t denotes time and ω denotes
the frequency. The star indicates the complex conjugate.

4.3.1. BORN APPROXIMATION

The seismic data that needs to be migrated should not contain multiple reflections from
the interfaces if imaging artifacts are to be avoided. Often, the Born approximation is
used for modeling without multiples. Migration can be viewed as one step of an iterative
procedure that attempts to minimize the difference between observed and modeled data
subject to the Born approximation of the constant-density acoustic wave equation [5, 6,
8, 43].

The wave equation 1.6 in matrix form is given by

Au = f , (4.13)

with wave operator A = m∂t t ,h −∆h and model parameter m = 1/c2. The last can be split
into m = m0 +m1, where m0 ideally does not produce reflections in the bandwidth of
the seismic data. The wavefield can be split accordingly into u = u0 +u1 into a refer-
ence and a scattering wavefield, respectively. The reference wavefield u0 describes the
propagation of a wave in a smooth medium without any hard interfaces. The scatter-
ing wavefield u1 represents a wavefield in a medium which is the difference between
the actual and reference medium. Wave propagation in the reference medium is then
described by A0u0 = f with A0 = m0∂t t ,h −∆h in the time domain. What remains is
A0u0+ A1u0+ A1u1 = 0 with A1 = A− A0 = m1∂t t ,h . In the Born approximation, the term

4.3. MIGRATION

4

49

A1u1 is removed, leading to the system of equations

A0u0 = f , (4.14)

A0u1 = −A1u0. (4.15)

Its counterpart in frequency domain is given by

A =−k2 −∆h ,

A0 =−k2
0 −∆h ,

A1 = A− A0 =−k2
1 ,

(4.16)

where k0 is the wave number in the reference and k1 in the scattered medium, respec-
tively.

With this, migration becomes a linear inverse problem of finding a scattering model
m1(x, y, z) that minimizes the difference between the recorded and modeled wavefields
u1 in a least-squares sense. This assumes that the recorded data were processed in such
a way that only primary reflections were preserved, since wavefield u1 will not contain
the direct wave and multiple reflections. A few iterations with a preconditioned Krylov
subspace method will suffice to solve the linearized inverse problem and, moreover, just
one iteration may already produce a useful result [9, 43].

To illustrate the difference between modeling with the wave equation and its Born
approximation, we consider the simple velocity model shown in Figure 4.1. The back-
ground velocity (white) is 1500 m/s and the horizontal layer shown with grey color has a
velocity of 2500 m/s.

We model the seismogram using modeling in the time domain, see Figure 4.2 (left).
The seismogram obtained using the Born approximation is presented in Figure 4.2 (right).
Time-weighting was applied to boost the amplitude of the reflections, meaning that the
amplitudes were scaled with the square of time. The first event in both figures represents
the reflection from the shallow interface and the second from the deeper interface. The
third event in Figure 4.2 (left) is the interbed multiple that does not appear with the Born
approximation.

4.3.2. MIGRATION IN THE TIME DOMAIN

We briefly summarize the algorithm for reverse-time migration (RTM) in the time do-
main. The method consists of three major parts: forward propagation of the wavefield
from a source, backward propagation from the receivers while injecting the observed
seismic data and the imaging condition.

During forward propagation in time, the snapshots of the wavefield are stored at ev-
ery imaging time step, so that they can be reused later for imaging, as sketched in Fig-
ure 4.3. After that, the wavefield is propagated backwards in time using the seismic data
as sources at the receiver locations. The image is built by correlation, taking the product
of the forward and backward wavefields stored at the same imaging time step and sum-
ming the result over time. The imaging time step is usually the same as the sampling
interval of the seismic data, which is usually larger than the time step used for modeling.

4

50 4. FREQUENCY DOMAIN MIGRATION ON MULTI-CPU

0 1000 X (m)
0

1000

Y (m)

0

1000

Z (m)

Figure 4.1: Model with a single high-velocity layer of 2500 m/s (grey) in a homogeneous background of 1500
m/s (white). The star represents the source and the triangles the receivers.

To save time and storage space, the imaging condition can be incorporated in the
backward propagation. During the forward wave propagation, the wavefields are writ-
ten to disk, because for problems of realistic size, random-access memory is usually too
small. While backward propagating every imaging time step, the forward wavefields are
read from disk and correlated with the computed backward wavefield. Even if this re-
duces the amount of I/O, disk access can take a significant amount of time compared to
the computations.

The author in [48] used an optimized check-pointing method that only saves the
wavefields at predefined checkpoints in time and recomputes the wavefields at other
instances from these checkpoints. The amount of recomputation is reduced by choos-
ing optimal checkpoints. However, the recomputation ratio may be very high when the
number of checkpoints is not large enough. If the number of checkpoints is too large,
the disk space demand and I/O will be high.

With the use of absorbing boundary conditions to simulate infinite domains, the re-
computation of the forward wavefield may require some special techniques. One possi-
bility is to store only the boundary values of the wavefield. However, in three dimensions
the boundaries can have a substantial width and this may not be efficient. Another pos-
sibility is to use the random boundary technique [46, 95], which leads to random scat-
tering of the wavefield at the boundary. The idea is that the forward and backward wave-
fields are based on different sets of random numbers and the artifacts due to scattering
do not stack in the final image. In this case, the propagation effort is doubled, because
first the forward wavefield is computed after which the backward propagation and the
time-reversed forward wavefield are calculated simultaneously. This method has been
implemented on a GPU by [44].

If the noise due to random scatterers is to be avoided, alternative techniques to re-

4.3. MIGRATION

4

51

Figure 4.2: (left) Synthetic seismic data produced with regular modeling in the time domain. The direct ar-
rival has been removed. (right) With the Born approximation in the time domain, showing that the interbed
multiple around 1.2 s has disappeared.

duce the effect of I/O for the RTM algorithm can be applied. One of them is to hide the
writing and reading times of the snapshots by using asynchronous I/O. However, this is
only effective when the reading of the wavefields from disk is faster than the computa-
tions needed for one imaging time step. One way to achieve this is by compressing the
wavefield before storing it to disk on a GPU or on a CPU, see e.g. [49].

The Fourier transform technique can offer compression. The periodicity of trigono-
metric functions requires special care at the boundaries. An alternative is to use func-
tions that are compact in space and time, such as wavelets. The wavelet transform has
been extensively documented, see e.g. [96, 97]. The authors in [45] use wavelets for com-
pression of the wavefields. In that way, disk I/O is reduced and the GPU, CPU and disk
I/O are balanced well. The idea is to decompose the snapshot by means of the wavelet
transform into an ‘average’ and a ‘detailed’ part. The average part contains the dominant
features of the data and the detailed part contains small-scale features. We are interested
in keeping the average part as is and focus on the details. Before compressing the snap-
shots, we can choose the amount of detail we would like to keep. For the detailed part,
the mean and deviation are calculated. We introduce a parameter λ̂ that is multiplied by
the deviation. This product defines the threshold for compression. Table 4.2 describes
the effect of values of λ̂ on the compression ratio, which is defined as the size of the orig-

4

52 4. FREQUENCY DOMAIN MIGRATION ON MULTI-CPU

Figure 4.3: Migration in the time domain. The forward propagated wavefield from the source is stored at each
imaging time step (light grey cubes). Then, the wavefield is propagated backwards in time while injecting
seismic data at the receiver locations and the snapshots are stored (dark grey cubes). The imaging condition
involves the summation of the product of the forward and backward wavefields.

inal data divided by the size of the compressed data, as well as the compression time. It
is clear that the compression ratio depends on the parameter λ̂, which means that the
more data we remove, the better the compression. The second column in the table shows
the L1-norm of the absolute differences between the original and the compressed wave-
fields. The third column represents the relative L2-norm, which is the usual L2-norm of
the difference scaled by the L2-norm of the original wavefield. We observe that the more
the wavefields are compressed, the more the L1- and L2-norms increase monotonically,
due to the loss of information during compression.

Which is the optimal compression parameter? There is a trade-off between small L1-
and L2-errors and a large compression ratio. The table shows that the required compres-
sion time hardly changes with various choices of λ̂. Figure 4.4 depicts the compression
ratio as a function of parameter λ̂. It starts of with an exponential increase and becomes
linear for λ̂ > 1. Therefore, we have selected λ̂ = 1 as our compression parameter, as it
provides an acceptable balance between compression errors and required compression
time.

4.3.3. MIGRATION IN THE FREQUENCY DOMAIN

Migration in the frequency domain requires the selection of a set of frequencies that
avoids spatial aliasing [92]. The seismic data and the source signature are transformed

4.4. IMPLEMENTATION DETAILS

4

53

Table 4.2: Compression for wavefield snapshots for a problem of size 5123 and about 100 MB of storage. The
L1-norm measures the difference between the original and compressed wavefield. The relative L2-norm is the
usual L2-norm of the differences, scaled by the L2-norm of the original snapshot. The compression ratio is
defined as the size of the original data divided by the size of the compressed data.

λ̂ L1-norm Relative Compr. Compr.
L2-norm ratio time (s)

0.1 1.08e-1 1.98e-3 3.88 16.16
0.5 1.14e-1 2.11e-3 4.16 15.46
1 1.52e-1 2.87e-3 4.32 15.27
1.5 2.21e-1 4.27e-3 4.42 15.07
2 3.07e-1 5.95e-3 4.51 14.92
2.5 4.06e-1 7.86e-3 4.59 14.77
3 5.22e-1 1.01e-2 4.67 14.58
3.5 6.47e-1 1.25e-2 4.75 14.53
4 7.96e-1 1.53e-2 4.83 14.37
4.5 9.44e-1 1.82e-2 4.91 14.27
5 1.09e-0 2.09e-2 4.99 14.28

to the frequency domain by an FFT. For each frequency, the Helmholtz equation is solved
iteratively. The imaging condition in the frequency domain consists of a simple multi-
plication of the wavefields at each frequency, followed by a summation over the selected
frequencies. Figure 4.5 illustrates the procedure. The forward and backward propaga-
tion are computed in parallel and there is no need to store the wavefields on disk. Ba-
sically, for each frequency the forward and backward fields are computed one after the
other and are then multiplied with each other. Only two wavefields are kept in mem-
ory, whereas in time domain, all the consecutive wavefields for the forward propagation
need to be stored.

4.4. IMPLEMENTATION DETAILS

As mentioned before, we consider the GPU as an accelerator in our implementation
strategy and we will use the terms ‘CPU’ and ‘compute node’ when referring to a multi-
core CPU machine.

Presently, a common hardware configuration is a CPU connected to two GPUs that
contain less memory than the CPU. We identified the parts of the algorithms that can
be accelerated on a GPU and implemented them in CUDA 5.0. As already explained,
the parallelization process for migration in the time domain is different from that for the
frequency domain, because explicit time stepping is used in the time domain whereas
the frequency domain requires solving a linear system of equations. We summarize the
levels of parallelism in Table 4.3.

The highest level of parallelization for time-domain migration is over the shots. Each
shot is treated independently. We assume that the migration volume for one shot is com-

4

54 4. FREQUENCY DOMAIN MIGRATION ON MULTI-CPU

Figure 4.4: Compression ratio as a function of the parameter λ̂.

Time Domain Frequency Domain
Level 1 Parallelization over shots Parallelization over shots
Level 2 Domain decomposition Parallelization over frequencies
Level 3 Overlap for computations with

memory transfer, load balancing
Matrix decomposition

Level 4 Data parallelism (grid points) Linear algebra parallelization
(MVM, vector operations)

Table 4.3: Levels of parallelism for migration in time and frequency domain.

puted on one compute node connected to one or more GPUs.

The next step is to split the problem into subdomains that will fit on a GPU. We use a
domain decomposition approach or grid partitioning. The idea is that at each time step,
the subdomains are treated independently of each other. Once the computation is com-
pleted, the subdomains are copied back to the CPU, after which the next time step can
be started. The third level of parallelization is to perform computations and data trans-
fer simultaneously, to save time and achieve optimal load balancing. The compression
algorithms and simultaneous computations of the forward and backward propagations
are also part of the third level. The fourth level of parallelism for time-domain computa-
tions is data parallelism, see e.g. [90].

For migration in the frequency domain as well as in the time domain, the high-
est level of parallelization is over the shots. The next level of parallelism involves the
frequencies. For each frequency, a linear system of equations needs to be solved. As
mentioned before, the matrix size and memory requirements are the same for each fre-
quency, but the lower frequencies require less compute time than the higher ones [21].

4.4. IMPLEMENTATION DETAILS

4

55

Frequency 1 *

Frequency 2 *

Forward Backward

Frequency 3 *

Frequency n *

 ...

+

Figure 4.5: Migration in the frequency domain requires multiplication of forward and backward wavefields,
followed by summation.

Here, we assume that one shot in the time domain and one shot for one frequency in
the frequency domain fit in one compute node connected to one or more GPUs, respec-
tively. The third level of parallelism includes matrix decomposition, where the matrix
for the linear system of equations is decomposed into subsets of rows that fit on a sin-
gle GPU, see Chapter 3. With this approach, we can deal with problems that are larger
than can be handled by a single GPU. So far, the simultaneous use of 2 GPUs to accel-
erate off-loaded matrix-vector multiplications of a large sparse-matrix did not produce
any performance improvements compared to a many-core CPU due to the data trans-
fer. Therefore, we use only CPUs for the frequency-domain approach. Note that with
an increasing number of GPUs connected to the same CPU, faster PCI buses, etc., this
situation may change. The last level of parallelism for migration in frequency domain is
parallelization of matrix-vector multiplications (MVMs) and vector-vector operations.

4.4.1. DOMAIN DECOMPOSITION APPROACH

The time-domain implementation on multi-GPUs is done by domain decomposition.
The problem is divided into sub-domains that fit in the limited memory of a GPU. This
approach can also be applied if a large problem needs to be computed on a single GPU.

For simplicity of implementation and communication between GPUs, the domain
is split only in the z-direction, as Figure 4.6 shows. The overlapping areas are attached
to both sub-domains. The size of a sub-domain is determined by the available memory
divided by the number of discretization points in the x-and y-directions, multiplied by
the byte-size of a floating-point number. Each sub-domain should fit entirely in GPU
memory.

After partitioning the problem, tasks are set up, where each task represents a sub-
domain. These tasks are added to a queue and handled by pthreads [85] that are dis-

4

56 4. FREQUENCY DOMAIN MIGRATION ON MULTI-CPU

z
y

x

GPU 1

GPU 2

Figure 4.6: An example of domain de-
composition into two sub-domains in
the z-direction. The overlapping area
has half the size of the discretization
stencil.

Task 1

Task 2

Task 3

Figure 4.7: An example of task distribution into three tasks.
Note that the overlapping areas have to be assigned to all
neighbors.

tributed among the GPUs.
Once a sub-domain has been processed, the interior domain, i.e., the domain with-

out the overlapping parts, is copied back to the CPU. Then, the next time step can be
performed.

4.4.2. IMPLICIT LOAD BALANCING

The common approach for parallelization across multiple CPU nodes in the cluster is
the so-called server-to-client approach [98]. The server is aware of the number of nodes
and the amount of work involved. It equally distributes the work-load among the nodes.
This approach is efficient on clusters with homogeneous nodes as all CPU nodes have
the same characteristics.

In this chapter, we propose a client-to-server approach where clients request tasks
to the server. GPU clusters are either heterogeneous or they have to be shared simul-
taneously amongst the users. For example, the cluster at our disposition, Little Green
Machine, see Appendix A, has the same hardware (with the exception of one node). Sim-
ilarly within one compute node, the GPUs have the same specifications, but one GPU
can already be used by a user while the other one remains available. To address the issue
of load balancing, we created a task system. When doing migration in time domain, an
‘MPI-task’ defines the work to be done for one shot. For each time step during forward
modeling, one ‘GPU-task’ is created for each sub-domain of the domain decomposi-
tion algorithm. The philosophy behind a task system is the same over multiple compute
nodes as well as over multiple GPUs within one node: process all the tasks as fast as
possible until they are all processed. In this approach, the work is spread dynamically
according to the speed of the computing nodes and GPUs. Depending on the level of

4.4. IMPLEMENTATION DETAILS

4

57

parallelism, the implementation of the tasks systems differs.

MPI-TASKS

The server or ‘master node’ creates one task per shot. Each task is added to a queue.
When a client requests a task, a given task is moved from the queue to the active list. It
can happen that a node will crash due to a hardware failure. In that case, the task will
remain on the active list until all the other tasks have finished. Once that happens, any
unfinished task will be moved back to the queue, so that another compute node can take
over the uncompleted work.

Towards the end of the migration, the queue is empty while the list of active tasks
is not. As there is no way of telling whether a task has crashes or just takes long time,
the former is assumed. The task that is being processed for the longest period of time
is submitted again but to a different node. At this point, this particular task may end
up being processed by 2 nodes. As soon as the server receives the result of one of these
tasks, the other task is killed. When all tasks have been processed, the master node saves
the migration image to disk and stops.

Figure 4.8: Profiling for seismic modeling in the time domain using a 16-th order discretization on 2 GPUs. The
column on the left shows the tasks per GPU, such as data transfer from host to device MemCpy(HtoD), from
device to host MemCpy(DtoH) and wave propagation Compute. The length of a bar on the left represents the
duration of a task. Dashed bars show the data transfer and dark grey bars represent the computational kernel.
The dark grey bars are only overlapping in time with the dashed bars, illustrating that both GPUs are operating
asynchronously.

GPU-TASKS

GPU hardware failures are less frequent than the compute node ones, therefore, there is
no need to have 2 different queues for GPU-tasks. As an example, let us consider time
domain modeling on a CPU node with two GPUs. A GPU-task defines a sub-domain
and consists of the following workflow: transfer the sub-domain data from CPU to GPU,
propagate the wavefield and, finally, copy the data back to CPU.

4

58 4. FREQUENCY DOMAIN MIGRATION ON MULTI-CPU

When the program starts, first the data have to be transferred to both GPUs. We expect
that the two GPUs start transferring data and then will compete for the PCI-bus. Eventu-
ally, one GPU will be slightly faster with either the computations or with the data transfer.
Then, the two GPUs will work asynchronously, meaning that while one GPU is comput-
ing, the other is transferring data. This leads to dynamic load balancing, self-regulated
by the system.

We performed profiling with the CUDA profiler, as illustrated in Figure 4.8. Inter-
estingly enough, the two GPUs are acting asynchronously almost from the start of the
program execution. The column on the left in Figure 4.8 shows that we have used two
GPUs GeForce GTX 460, each of which has to perform a memory copy from host to de-
vice (MemCpy(HtoD)), a memory copy from device to host (MemCpy(DtoH)) and com-
putations of the wave propagation kernel (Compute). On the right side of the figure, the
horizontal axis denotes time, bars represent different tasks and the length of a bar shows
the duration of a task. It is easy to see that at the beginning, both GPUs simultaneously
start to transfer data from the host, as the dashed bars are on top of each other. Then,
GPU[1] starts computing (dark grey bar) and GPU[0] is idle. Afterwards, GPU[1] transfers
the results to the CPU, and GPU[0] is computing at the same time. We have performed
several profiling tests and every time we obtained the same outcome, with the GPUs
running in asynchronous mode already from the start. This provides an optimal load
balancing.

Order n CPU 1 GPU Speedup 2 GPUs Speedup sub-volume size

4th

200 6 3 1.93 3 1.95 1565
400 49 25 1.94 24 2.02 391
800 398 202 1.97 137 2.9 97

1200 1342 673 1.99 442 3.03 43

6th

200 8 3 2.33 3 2.32 1565
400 61 26 2.34 25 2.48 391
800 489 207 2.36 138 3.56 97

1200 1709 684 2.50 468 3.65 43

8th

200 9 3 2.74 3 2.77 1565
400 73 26 2.75 26 2.83 391
800 591 209 2.82 137 4.31 97

1200 2002 685 2.92 473 4.23 43

16th

200 15 3 4.34 3 4.36 1565
400 125 29 4.30 27 4.58 391
800 1008 221 4.55 142 7.09 97

1200 3475 671 5.18 433 8.02 41

Table 4.4: Elapsed time comparisons (in s) for 4th-, 6th-, 8th- and 16th-order discretizations for a 3-D problem
of size n3. The speedup is computed as the ratio of CPU time to GPU time. The last column denotes the
number of grid points in the z-direction of one (x, y)-slice that will fit in the memory of one GPU (1 GB).

Table 4.4 presents elapsed times (in s) for the modeling in time domain for a finite
difference discretization with several discretization orders. For problems of larger size,
domain decomposition is applied and the task system with load balancing is used. The

4.5. RESULTS

4

59

column ‘sub-volume size’ denotes the number of grid points in the z-direction of one
(x, y)-slice that will fit in the memory of one GPU (1 GB). If the total number of grid points
is higher than the sub-volume size, then domain decomposition has to be applied, since
the problem will not fit in GPU memory otherwise. It is clearly seen that a problem of
size 2003 is sufficiently small to fit into 1 GByte of memory, but larger problems have to
be split. Also, the last column shows that the sub-volume size does not give rise to signif-
icant changes in CPU time when the discretization order increases. A higher discretiza-
tion order requires more floating point operations per discretization point and causes
an increase in the compute time on the CPU. However, the GPU time hardly changes
with increasing order. The reason for this behavior is the load balancing strategy. As the
profiling suggests, the transfer and computational time overlap in time asynchronously.
On the one hand, the wave propagation kernel takes less time than the data transfer.
On the other hand, the transfer time does not change significantly for higher-order dis-
cretizations. Therefore, the increase of computational and transfer time for higher-order
discretizations is hidden and the overall GPU-time stays the same.

We propose the following workflow for migration in time domain, combining the
techniques mentioned above. For forward propagation, first, a main thread is created on
a CPU. Its role is to launch other threads, create tasks and be responsible for the GPU-
CPU and CPU-GPU transfer. Two child threads are created, one for each GPU, that per-
form the actual time-stepping computations on the GPUs. When one imaging time step
is finished, the wavefield is copied from the GPU to the CPU. The main thread launches
several child threads to keep each CPU-core busy. The role of those processes is to com-
press the wavefield on the fly, using the wavelet transform described above, and write
the results to disk. For the backward propagation, the workflow is similar, except that
the wavefields are read from memory and decompressed on the fly. Moreover, during
the backward propagation the imaging condition is applied. Computations on the GPUs
as well as the compression and disk I/O are all done in parallel. For the proposed work-
flow, I/O (including compression and decompression) in the time domain takes about 5
% of the overall computational time.

4.5. RESULTS

In this section we present some results for migration in the time and frequency domains
and make comparisons in terms of performance.

4.5.1. WEDGE

The first example is a wedge model that consists of two dipping layers, depicted in Fig-
ure 4.9. The main purpose is to validate the migration results in time and frequency
domains. The problem is defined on a cube of size [0,1000]3 m3. For our experiments,
we consider a series of uniform grids with increasing size n3. The grid size satisfies the
condition h maxx,y,z k(x, y, z) = 0.625, where the grid spacing is h = 1000

n−1 and the wave
number k(x, y, z) is given by k(x, y, z) = 2π f /c(x, y, z) with velocity c(x, y, z). The prob-
lem is discretized with 4th-order finite differences in space and 2nd-order in time for

4

60 4. FREQUENCY DOMAIN MIGRATION ON MULTI-CPU

Figure 4.9: Velocity profile for the wedge model.

Table 4.5: Performance of the migration for one source in the time domain in the wedge problem. The problem
size is n3, not counting the extra points at each absorbing boundary.

n3 Timings forward (s) Timings backward (s) Migration time (s)
201 837 846 1683
251 1653 1663 3317
301 2998 2990 5988
901 6649 7015 13666

migration in time domain and 2nd-order finite differences in space for migration in fre-
quency domain. The source is a Ricker wavelet with a peak frequency of 15 Hz located
at (500,500,10). The receivers are placed at a horizontal plane on a regular grid of 50×50
m2 at a depth of 20 m. The sampling interval for the seismic data is 4 ms and the maxi-
mum simulation time is 2 s. The imaging time step is 4 ms. The experiment was carried
out on the Little Green Machine, see Appendix A.

Table 4.5 lists the timings for migration in the time domain and Table 4.6 for the
frequency domain. The first column contains the size of the problem, excluding an ad-
ditional 40 points at each absorbing boundary. The second and third columns show the
elapsed time for the forward and backward propagation, respectively. For the experi-
ment in the frequency domain, the timings are given for the highest frequency of 30 Hz,
since the preconditioned Helmholtz solver requires the longest computational time at
this frequency. From Tables 4.5 and 4.6, it is clear that migration in the frequency domain
is more than 2 times faster than the migration in the time domain. Here, we assume that
we have enough compute nodes for the calculation of all frequencies in parallel.

4.5. RESULTS

4

61

Table 4.6: Performance of migration for one source in the frequency domain for the wedge problem at highest
frequency 30 Hz.

n3 Timings forward (s) Timings backward (s) Migration time (s)
201 375 365 740
251 732 718 1450
301 1119 1145 2264

Figure 4.10: Overthrust velocity model.

4.5.2. OVERTHRUST EAGE/SEG MODEL

The SEG/EAGE Overthrust model has been introduced in [99]. It represents an acous-
tic constant-density medium with complex, layered structures and faults. We chose a
subset of the large initial model, containing the fault features shown in Figure 4.10, and
rescaled it to fit on a single compute node. The volume has a size of 1000×1000×620 m3.
The problem is discretized on a grid with 301×301×187 points and a spacing of 3.33 m in
each coordinate direction. As described earlier, one criterion for choosing the grid spac-
ing is the number of points per wavelength needed to accurately model the maximum
frequency. Another criterion is the available memory size of the computational node. In
addition, we add 40 points for each absorbing boundary in the time-domain scheme to
avoid boundary reflections. The discretization for migration in time domain is 4th-order
in space and 2nd-order in time and for migration in frequency domain is 2nd-order in
space. A Ricker wavelet with a peak frequency of 15 Hz is chosen for the source and the
maximum frequency in this experiment is 30 Hz. Note that by reducing the maximum
frequency, we can increase the grid spacing. For instance, by choosing a maximum fre-
quency of 8 Hz, the grid spacing can be chosen as 25 m in each direction. The line of

4

62 4. FREQUENCY DOMAIN MIGRATION ON MULTI-CPU

Table 4.7: Performance of migration of one source in the time domain for the Overthrust problem.

Timings forward (s) Timings backward (s) Migration time (s)
1156 1168 2324

Table 4.8: Performance of migration of one source in the frequency domain for the Overthrust problem at the
highest frequency of 30 Hz.

Timings forward (s) Timings backward (s) Migration time (s)
276 294 570

sources is located at a depth of 10 m and is equally spaced with an interval of 18.367 m
in the x-direction. The receivers are equally distributed in the two horizontal directions
with the same spacing as the sources, at the depth of 20 m. The sampling interval for the
modelled seismic data is 4 ms. The maximum simulation time is 0.5 s. For migration in
the time domain, an imaging time-step of 0.0005 s was chosen, while in the frequency
domain we chose a frequency interval of 2 Hz.

Images produced by reverse-time migration in the time domain and in the frequency
domain are shown in Figures 4.11 and 4.12, respectively.

The timings for migration in the time domain are given in Table 4.7 and for migration
in the frequency domain in Table 4.8, respectively. The first and second columns show
the elapsed time for the forward and backward propagation, correspondingly. For the
experiment in the frequency domain, the timings are given for a highest frequency of
30 Hz, since the preconditioned Helmholtz solver requires the longest computational
time for this frequency. The timings show that migration in the frequency domain is
about 4 times faster than in time domain. Here, we again assume that we have enough
computational nodes for the calculation of all frequencies in parallel.

4.6. DISCUSSION

For a single source, migration in the frequency domain would be more time consuming
on one computational node as all the frequencies are computed sequentially. However,
if enough computational nodes are available, then migration in the frequency domain
can compete with migration in the time domain as shown in Table 4.1. Our experiments
in the previous section confirm that.

One might wonder what the actual timings would be in the time and in the frequency
domain for a given number of computational nodes for a given problem. The wall-clock
time for the time domain can be estimated as a function of ns sources on nc computa-
tional nodes:

t td = T td
max max

(
1,

ns

nc

)
, (4.17)

where T td
max is the computational time for one source on one computational node. For

4.6. DISCUSSION

4

63

Figure 4.11: Migration in the time domain for a subset of the SEG/EAGE Over-
thrust problem.

Figure 4.12: Migration in the frequency domain for the Overthrust problem.

the frequency domain it also depends on n f frequencies:

t f d = T f d
max max

(
1,

ns n f

2nc

)
, (4.18)

where T f d
max is the computational time needed for the maximum frequency on one com-

putational node. Combining the number of sources and computational nodes in a new
variable nc /ns , the time functions for the time and frequency domain are shown in Fig-
ure 4.13, given the experimental results from the Overthrust model. If the number of
sources is smaller than the twice the number of compute nodes, then the time domain
is faster on our hardware. Otherwise, the frequency-domain approach outperforms the
time-domain method.

Moreover, from the experiments described in the previous sections, one can obtain

4

64 4. FREQUENCY DOMAIN MIGRATION ON MULTI-CPU

Figure 4.13: Performance of the time-domain scheme (dashed line) and the frequency-domain solver (solid
line) as a function of the number of compute nodes divided by the number of sources.

the relation between memory usage and problem size. For the frequency domain, we
find

Memory(GB) = 2 ·10−7 ·N , (4.19)

where N is the total number of grid points including absorbing boundary conditions.
For the time domain, we obtain

Memory(GB) = 5.5 ·10−8 ·N . (4.20)

On the one hand, the frequency-domain method uses more than twice the memory com-
pared to the time-domain scheme. On the other hand, the migration in the frequency
domain does not make use of disk for storing snapshots.

Obviously, there is a trade off between the computational time, the amount of mem-
ory and disk usage when considering performance for migration in the time and fre-
quency domain. At this point, the memory needed for the solver is the main bottleneck
for solving larger problems.

4.7. CONCLUSIONS

We have considered migration in the frequency domain based on a Krylov subspace
solver preconditioned by a shifted-Laplace multigrid method. Its implementation has
been compared to the implementation of the reverse-time migration in the time domain
in terms of performance and parallelization. The hardware configuration is a many-core
CPU connected to two GPUs that contain less memory than the CPU. The implementa-
tion in the frequency domain is done by using parallel techniques on a many-core CPU

4.7. CONCLUSIONS

4

65

system and the implementation in the time domain is accelerated using GPUs. The par-
allelization strategy uses domain decomposition and dynamic load balancing.

The experiments show that migration in the frequency domain on a multi-core CPU
is faster than reverse-time migration in the time domain accelerated by GPUs, given
enough compute nodes to calculate all frequencies in parallel. This observation is based
on our own implementation of both approaches, optimization details and the hardware
we had access to. Despite such uncertainties, the methods can obviously compete. We
expect to have similar results on different hardware since the GPU-CPU performance
ratio is not changing dramatically.

5
ACCELERATING LEAST-SQUARES

MIGRATION WITH DECIMATION,
GPU AND NEW MATRIX FORMAT

Abstract

In geophysical applications, the interest in least-squares migration (LSM) as an imag-

ing algorithm is increasing due to the demand for more accurate solutions and the

development of high-performance computing. The computational engine of LSM

is the numerical solution of the 3D Helmholtz equation in the frequency domain.

The Helmholtz solver is Bi-CGSTAB preconditioned with the shifted Laplace matrix-

dependent multigrid method. In this chapter an efficient LSM algorithm is presented

using several enhancements. First of all, a frequency decimation approach is intro-

duced that makes use of redundant information present in the data. It leads to a

speedup of LSM, whereas the impact on accuracy is kept minimal. Secondly, a new

matrix storage format VCRS (Very Compressed Row Storage) is presented. It not only

reduces the size of the stored matrix by a certain factor but also increases the effi-

ciency of the matrix-vector computations. The effects of lossless and lossy compres-

sion with a proper choice of the compression parameters are positive. Thirdly, we

accelerate the LSM engine by graphics cards (GPUs). A GPU is used as an accelera-

tor, where the data is partially transferred to a GPU to execute a set of operations, or

as a replacement, where the complete data is stored in the GPU memory. We demon-

strate that using the GPU as a replacement leads to higher speedups and allows us

to solve larger problem sizes. Summarizing the effects of each improvement, the re-

sulting speedup can be at least an order of magnitude compared to the original LSM

method.

Parts of this chapter have been submitted for publication.

67

5

68 5. ACCELERATING LSM

5.1. INTRODUCTION

In the oil and gas industry, one of the challenges is to obtain an accurate image of the
subsurface to find hydrocarbons. A source, for instance an explosion, sends acoustic
or elastic waves into the ground. Part of the waves is transmitted through the subsur-
face, another part of the waves is reflected at the interfaces between layers with different
properties. Then the wave amplitude is recorded at the receiver locations, for example
by geophones. The recorded signal in time forms a seismogram. The data in frequency
domain can be easily obtained by the Fourier transform of the signal in time. Using
the recorded data, there are several techniques, called depth migration, to map it to the
depth domain, given a sufficiently accurate velocity model. The result is a reflectivity
image of the subsurface. The techniques include ray based and wave equation based
algorithms and can be formulated in time or in frequency domain.

An alternative to the depth migration is least-squares migration (LSM). Least-squares
migration [58] has been shown to have the following advantages: (1) it can reduce mi-
gration artifacts from a limited recording aperture and/or coarse source and receiver
sampling; (2) it can balance the amplitudes of the reflectors; and (3) it can improve the
resolution of the migration images. However, least-squares migration is usually consid-
ered expensive, because it contains many modeling and migration steps.

Originally, ray-based Kirchhoff operators have been proposed for the modeling and
migration in LSM (see e.g. [64], [58]). Recently, in least-squares migration algorithms,
wave-equation based operators were used in the time domain (see e.g. [65], [66]) and
in the frequency domain (see e.g. [9], [67], [68]). The major advantage of a frequency
domain engine is that each frequency can be processed independently in parallel.

With the recent developments in high-performance computing, such as increased
memory and processor power of CPUs (Central Processing Units) and the introduction
of GPGPUs (General Purpose Graphic Processing Units), it is possible to compute larger
and more complex problems and use more sophisticated numerical techniques. For ex-
ample, the wave equation has been traditionally solved by an explicit time discretization
scheme in the time domain requiring large amounts of disk space. In Chapter 4, we
have shown that solving the wave equation in the frequency domain, i.e. the Helmholtz
equation, can compete with a time domain solver given a sufficient number of paral-
lel computational nodes with a limited usage of disk space. The Helmholtz equation is
solved using iterative methods. Many authors showed the suitability of preconditioned
Krylov subspace methods to solve the Helmholtz equation, see, for example, [24], [25].
Especially, the shifted Laplace preconditioners improve the convergence of the Krylov
subspace methods, see [26], [27], [28], [21].

These methods have shown their applicability on traditional hardware such as a multi-
core CPUs, see e.g. [37]. However, the most common type of cluster hardware consists
nowadays of a multi-core CPU connected to one or two GPUs. In general, a GPU has a
relatively small memory compared to the CPU.

A GPU can be used as a replacement for the CPU, or as an accelerator. In the first
case, the data lives in GPU memory to avoid memory transfers between CPU and GPU
memory. We have already investigated this approach for the Helmholtz equation in the
frequency domain in Chapter 2 and Chapter 3. The advantage of the migration with a

5.2. LEAST-SQUARES MIGRATION

5

69

frequency domain solver is that it does not require large amounts of disk space to store
the snapshots. However, a disadvantage is the memory usage of the solver. As GPUs have
generally much less memory available than CPUs, this impacts the size of the problem
significantly.

In the second case, the GPU is considered as an accelerator, which means that the
problem is solved on the CPU while off-loading some computational intensive parts of
the algorithm to the GPU. Here, the data is transferred to and from the GPU for each
new task. This approach has been investigated for the wave equation in the time do-
main in Chapter 4. While the simplicity of the time domain algorithm makes it easy to
use GPUs of modest size to accelerate the computations, it is not trivial to use GPUs as
accelerators for the Helmholtz solver. By using the GPU as an accelerator, the Helmholtz
matrices are distributed across two GPUs. The vectors would "live" on the CPU and are
transferred when needed to the relevant GPU to execute matrix-vector multiplication or
Gauss-Seidel iterations. As a parallel Gauss-Seidel iteration is generally more expensive
than a matrix-vector multiplication, it would still pay off to transfer the memory content
back-and-forth between GPU and CPU. For a frequency domain solver, the off-loaded
matrix-vector multiplication in the well-known CSR (Compressed Sparse Row) format
does not result in any significant improvements compared to a many-core CPU due to
the data transfer.

The goal of this chapter is to accelerate the least-squares migration algorithm in fre-
quency domain using three different techniques. Firstly, a decimation algorithm is intro-
duced using the redundancy of the data for different frequencies. Secondly, we introduce
a Very Compressed Row Storage (VCRS) format and consider its effect on the accuracy and
performance of the Helmholtz solver, which is our numerical engine for each source and
frequency of the LSM algorithm. The third goal is to achieve an improved performance
of LSM by using GPUs either as accelerators or as replacements for CPUs.

5.2. LEAST-SQUARES MIGRATION

5.2.1. DESCRIPTION

The solution for a wave problem in a heterogeneous medium is given by the Helmholtz
wave equation in three dimensions 1.1, equivalent to

Aφ= g , A =−k2σ2 −∆h (5.1)

where σ = 1/c2 is the slowness which is the inverse of the square velocity c = c(x, y, z).
Here, ∆h denotes the discrete spatial Laplace operator. A first-order radiation bound-

ary condition is applied
(
− ∂
∂η − ik

)
φ = 0, where η is the outward normal vector to the

boundary (see [18]).
The slowness σ can be split into σ= σ0 + rσ0, where the perturbation of slowness r

denotes reflectivity and σ0 ideally does not produce reflections in the bandwidth of the
seismic data. Then, the Helmholtz operator in 5.1 can be written as

A =−k2σ2
0 −2k2rσ2

0 −k2r 2σ2
0 −∆h . (5.2)

5

70 5. ACCELERATING LSM

Assuming reflectivity being very small r << 1, gives

A =−k2σ2
0 −2k2rσ2

0 −∆h . (5.3)

The wavefield φ = φ0 +φ1 can be split accordingly into a reference and a scattering
wavefield, respectively. The reference wavefield φ0 describes the propagation of a wave
in a smooth medium without any hard interfaces. The scattering wavefieldφ1 represents
a wavefield in a medium which is the difference between the actual and the reference
medium. Substituting the split to 5.1, gives(−k2σ2

0 −2k2rσ2
0 −∆h

)
(φ0 +φ1) = f . (5.4)

Wave propagation in the reference medium is described by A0φ0 = g with A0 =−k2σ2
0 −

∆h . Then, the Helmholtz equation can be written as

A0φ0 −2k2rσ2
0φ0 + A0φ1 −2k2rσ2

0φ1 = g . (5.5)

In the Born approximation the term 2k2rσ2
0φ1 is assumed to be negligible, leading to the

system of equations {
A0φ0 = g ,

A0φ1 = 2ω2rσ2
0φ0,

(5.6)

which represents the forward modeling. Let us denote φ̂(xs , xr) the solution of the wave
equation 5.6 from the source g at the position xs and recorded at the receiver positions
xr

φ̂(xs , xr) = R(xr)(φ0(ω, xs)+φ1(ω, xs)). (5.7)

Here, R can be seen as a projection operator to the receiver positions. Then, migration
becomes the linear inverse problem of finding the reflectivity r that minimizes the dif-
ference between the recorded data d(ω, xs , xr) and the modeled wavefield φ̂(ω, xs , xr)
dependent on the reflectivity r , in a least-squares sense

J (r) = 1

2

∑
ω

∑
xs ,xr

‖d(ω, xs , xr)− φ̂(ω, xs , xr)(r)‖2. (5.8)

Removing the first arrival from the recorded data and denoting it by d1, the previous
equation is equivalent to

J (r) = 1

2

∑
ω

∑
xs ,xr

‖d1(ω, xs , xr)−R(xr)u1(ω, xs ,r)‖2. (5.9)

Equation 5.9 can be also written in a matrix form, as

J (r) = 1

2
(d−RFr)H (d−RFr) , (5.10)

where d contains the recorded data without first arrival for each source and receiver pair,
R denotes the projection matrix, F is the modeling operator from 5.6 and r contains re-
flectivity. By setting the gradient of the Jacobian in 5.10 to zero, we obtain the solution to
the least-squares problem in a matrix form,

FH RH RFr = FH RH d. (5.11)

5.2. LEAST-SQUARES MIGRATION

5

71

Here, the operator RH denotes the adjoint of the projection operator R and is defined
as "extending the data d given at the receiver positions to the whole computational do-
main". The right-hand side is the sum over each source of its subsurface image, that is
obtained by migration FH of the data at the receiver position corresponding to the given
source. Note that migration in the frequency domain is described in detail in Chapter 4.
The left-hand side consists of a sum over the forward modeling 5.6 for a given set of
reflectivity coefficients for each source, consecutively followed by the migration.

5.2.2. CG AND FREQUENCY DECIMATION

Equation 5.11 represents the normal equation that can be solved iteratively, for exam-
ple, with a conjugate gradient method (CGNR, see e.g. [33]), which belongs to the fam-
ily of Krylov subspace methods. For each iteration of the CGNR method a number of
matrix-vector multiplications and vector operations are performed. Usually, the itera-
tion matrix is constructed once before the start of the iteration. However, to construct
the matrix in 5.11 is very costly, since it requires the number of sources times the number
of frequencies of matrix-matrix multiplications. Therefore, we only compute the vector
by matrix-vector operations, where the used parts of the matrix are constructed on the
fly. Since we consider the problem in the frequency domain, the iteration matrix consists
of Helmholtz matrices for each source and a corresponding set of frequencies:

FH RH RFr =:
∑

s

∑
ω

(F H
s,ωR H

s,ωRs,ωFs,ωr). (5.12)

Next, we assume that there is a redundancy in the seismic data (both modeled and ob-
served) with respect to the frequencies. This assumption has been suggested for migra-
tion in frequency domain in [92].

The idea is to reduce the number of frequencies in such a way that for each source
several frequencies are discarded. Therefore, we benefit from the redundancy of seismic
data, so that the total amount of computations is reduced. We introduce decimation over
the frequencies and the sources by choosing subsetsω′ and s′, respectively, and decima-
tion parameter δ. The decimation parameter is defined as a factor by which the original
set of frequencies and sources is reduced. Note, that the decimation factor also indicates
a reduction of the computational effort. The subset of frequencies and sources, which
has size of ω′ times s′, is constructed by applying a mask consisting of zeros and ones
to the original set of size ωs. The number of ones is δ times smaller than the total size
of the original subset. The positions of the ones are randomly generated with a normal
distribution. A similar technique has been used for random shot decimation for the full-
waveform inversion in the time domain in two dimensions (see [100]). The subset of
sizeω′s′ is changing for each iteration of the CGNR method. This way, the decimation of
frequencies and sources is compensated for by the redundancy of the data.

The frequency decimation is only applied to the left-hand side of 5.11, the right-hand
side that represents input data is not decimated. Therefore, the iteration matrix with the
frequency decimation is given by

FH RH RFr =: δ
∑
ω′×s′

(F H
s′,ω′R

H
s′,ω′Rs′,ω′Fs′,ω′r). (5.13)

5

72 5. ACCELERATING LSM

Here, the decimation parameter is used to compensate for the energy of the sum in case
of reduction over frequencies and sources. Let us explain it for a simple example with
decimation factor δ= 2. In this case, there are two subsets of equal size: one with deci-
mated sources and frequencies,Ωdecimated =ω′× s′, and a second one with the removed
sources and frequencies,Ωremoved =ω× s −ω′× s′. The iteration matrix can then be pre-
sented as a sum of the two matrices

FH RH RFr = Adecimated + Aremoved := ∑
i∈Ωdecimated

(F H
i R H

i Ri Fi)+ ∑
i∈Ωremoved

(F H
i R H

i Ri Fi).

(5.14)
Here, the randomness of the decimated subset is important because for a given source
the randomly selected frequencies are assumed to represent the spectrum of the source.
Randomly selected sources are collected without affecting the total signal energy. We
can assume that

Adecimated ≈ Aremoved, (5.15)

which leads to
FH RH RFr = 2Adecimated. (5.16)

Note that the matrices do not have to be assembled. In our matrix notation, each matrix
is implemented as an operator.

5.2.3. HELMHOLTZ SOLVER

The computational engine of the least-squares migration is the damped Helmholtz equa-
tion in three dimensions 1.1. The closer the damping parameterα is set to zero, the more
difficult it is to solve the Helmholtz equation, as shown in [21]. In this case, we choose
α = 0.05. From our experiments we have observed that this choice of α does not affect
the quality of the image significantly within the LSM framework, however, it leads to
faster computational times of the Helmholtz solver, see Chapter 2.

It has been shown in Chapter 2 that the preconditioned Helmholtz solver is paral-
lelizable on CPUs as well as on a single GPU and provides an interesting speedup on
parallel architectures.

5.3. MODEL PROBLEMS

Before we dive into the acceleration techniques, let us consider three model problems:
one with a “close to constant” velocity field, a second one with significant velocity vari-
ation and a realistic third velocity field. These model problems will be used further for
illustration and comparison purposes.

The first model problem MP1 represents a wedge that consists of two dipping in-
terfaces separating in the medium different constant velocities. Figure 5.1 (left) shows
the velocities in MP1. This model problem represents a very smooth medium with two
contrast interfaces. Since the velocities in both parts of the model are constant, the co-
efficients in the discretization and the prolongation matrices are mainly constant too.

The second model MP2 is based on the previous model with additional smooth sinu-
soidal velocity oscillations in each direction, shown in Figure 5.1 (center). The velocity

5.4. VERY COMPRESSED ROW STORAGE (VCRS) FORMAT

5

73

Figure 5.1: Velocity functions for the wedge model problem MP1 (left), for the modified wedge problem MP2
(center) and for the modified Overthrust model problem MP3 (right).

model is heterogeneous, thus the coefficients of the discretization and prolongation ma-
trices are not constant anymore. Since we can vary easily the problem size, this model
problem is used to study the effects of compression on the convergence of the precon-
ditioned Bi-CGSTAB method. For our experiments we use this problem in three- as well
as in two-dimensions MP23d and MP22d, respectively.

As the background velocity for the third model problem MP3, the SEG/EAGE Over-
thrust velocity model has been chosen, described in [99]. On top of it, additional smooth
sinus oscillations are added in each direction. This model problem is close to a realistic
problem. The velocity model is heterogeneous as shown on Figure 5.1 (right), so that
matrix entries of the discretization and prolongation matrices exhibit many variations
and are far from constant. A reason for choosing additional smooth oscillations is to
simulate a smooth update in the case of the full waveform inversion algorithm. This way
the robustness of the proposed scheme can be validated for this application area.

5.4. VERY COMPRESSED ROW STORAGE (VCRS) FORMAT

As already known, an iterative solver for the wave equation in frequency domain requires
more memory than an explicit solver in time domain, especially for a shifted Laplace
multigrid preconditioner based on matrix-dependent prolongation. Then, the prolon-
gation and coarse grid-correction matrices need to be stored in memory. Since we are
focusing on sparse matrices, in this section we suggest a new format to store the sparse
matrices that reduces memory and speeds up the matrix-vector operations.

5.4.1. VCRS DESCRIPTION

First of all, let us briefly describe the well-known CSR (Compressed Sparse Row) format
for storage of sparse matrices, e. g. [34], [33]. It consists of two integers and one floating
point array. The non-zero elements ai , j of a matrix A are consecutively, row by row,
stored in the floating point array data. The column index j of each element is stored
in an integer array cidx. The second integer array first contains the location of the
beginning of each row. To illustrate this storage format, let us consider a small matrix

5

74 5. ACCELERATING LSM

from a one-dimensional Poisson equation, with Dirichlet boundary conditions,

A =

2 −1
−1 2 −1

−1 2 −1
−1 2

 .

The CSR format of this matrix is given by

first = {0 2 5 8 10},

cidx = {0 1 | 0 1 2 | 1 2 3 | 2 3},

data = {2 −1 | −1 2 −1 | −1 2 −1 | −1 2}.

Note that the count starts at zero, which can however be easily adjusted to a starting
index equal to 1.

To take advantage of the redundancy in the column indices of a matrix constructed
by a discretization with finite differences or finite elements on structured meshes, we in-
troduce a new sparse storage format inspired by the CSR format. The first array contains
the column indices of the first non-zero elements of each row

col_offset= {0 0 1 2}.

The second array consists of the number of non-zero elements per row

num_row= {2 3 3 2}.

From an implementation point of view, if it is known that a row does not have more
than 255 non-zero elements, then 8 bits integers can be used to reduce the storage of
num_row. The third array is col_data which represents a unique set of indices per
row, calculated as the column indices of the non-zero elements in the row cidx minus
col_offset

col_data= {0 1 | 0 1 2}.

Here, the row numbers 0 and 4 have the same set of indices, col_data = {0 1}, and the
row numbers 1 and 2 have the same set of indices as well, col_data = {1 2 1}. To re-
duce redundancy in this array, we introduce a fourth array col_pointer that contains
an index per row, pointing at the starting positions in the col_data, i.e.,

col_pointer= {0 2 2 0}.

This approach is also applied to the array containing values of the non-zero elements
per row, i. e., the set of values is listed uniquely,

data= {2 −1 | −1 2 −1 | −1 2}.

Therefore, also here we need an additional array of pointers per row pointing at the po-
sitions of the first non-zero value in a row in data, i.e.,

data_pointer= {0 2 2 5}.

5.4. VERY COMPRESSED ROW STORAGE (VCRS) FORMAT

5

75

Figure 5.2: Quantization of a matrix with normal distribution of entries in the interval [0,1]. The number of
bins is equal to 5.

For ease of notation, let us call the new format VCRS (Very Compressed Row Storage).
At a first glance, it seems that the VCRS format is based on more arrays than the CSR
format, six versus three, respectively. However, the large arrays in the CSR format are
cidx and data, and they contain redundant information of repeated indices and values
of the matrix. For small matrices, the overhead can be significant, however, for large
matrices it can be beneficial to use the VCRS, especially on GPU hardware with limited
memory.

Summarizing, the following factors contribute to the usage of the VCRS format:

1. The CSR format of a large matrix contains a large amount of redundancy, espe-
cially if the matrix arises from a finite-difference discretization;

2. The amount of redundancy of a matrix can vary depending on the accuracy and
storage requirements, giving the opportunity to use a lossy compression;

3. The exact representation of matrices is not required for the preconditioner, an ap-
proximation might be sufficient for the convergence of the solver.

The lossy compression of preconditioners can be very beneficial for a GPU-implementation,
as it allows to store the data on hardware with a limited amount of memory, but at the
same time takes advantage of its speed compared to CPU hardware.

In this paper, we use two mechanisms to adjust the data redundancy: quantization
and row classification. Note that these mechanisms can be used separately or in combi-
nation.

Quantization is a lossy compression technique that compresses a range of values to
a single value, see e.g. [101]. It has well-known applications in image processing and dig-
ital signal processing. By lossy compression, as opposed to lossless compression, some
information will be lost. However, we need to make sure that the effect of the data loss
in lossy compression does not affect the accuracy of the solution. The simplest example
of quantization is rounding a real number to the nearest integer value. A similar idea
applied to the lossless compression of the column indices was described in [102]. The

5

76 5. ACCELERATING LSM

quantization technique can be used to make the matrix elements in different rows sim-
ilar to each other for better compression. The quantization mechanism is based on the
maximum and minimum values of a matrix and on a number of so-called bins, or sam-
ple intervals. Figure 5.2 illustrates the quantization process of a matrix with values on the
interval [0,1]. In this example the number of bins is set to 5, meaning there are 5 intervals
[0.2(i −1), 0.2i), i = 1, . . . ,5. The matrix entries are normally distributed between 0 and
1, as shown by the black dots connected with the solid line. By applying quantization,
the matrix values that fall in a bin, are assigned to be a new value equal to the bin center.
Therefore, instead of the whole range of matrix entries, we only get 5 values. Obviously,
the larger number of bins, the more accurate is the representation of matrix entries.

Next, we introduce row classification as a mechanism to define similarity of two dif-
ferent matrix rows. Given a sorted array of rows and a tolerance, we can easily search
for two rows that are similar within a certain tolerance. The main assumption for row
comparison is that the rows have the same number of non-zero elements. Let Ri =
{ai 1 ai 2 . . . ai n} be the i -th row of matrix A of length n and R j = {a j 1 a j 2 . . . a j n} be
the j -th row of A.

Procedure: IsRowSmaller(Ri ,R j ,λ)

for each integer k = 1, . . . ,n do
if IsComplexValueSmaller(ai k ,a j k ,λ) then

return true ;
end
if IsComplexValueSmaller(a j k ,ai k ,λ) then

return false ;
end
a j k ,ai k are equal, continue ;

end
rows Ri ,R j are equal ;

return falses ;

Algorithm 3: Comparison of two matrix rows

Procedure: IsComplexValueSmaller(x,y ,λ)
if IsValueSmaller(Re(x),Re(y),λ) then

return true ;
end
if IsValueSmaller(Re(y),Re(x),λ) then

return false ;
end
return IsValueSmaller(Im(x),Im(y),λ);

Algorithm 4: Comparison of two complex numbers

Procedure: IsValueSmaller(x,y ,λ)
return x +λmax(|x|, |y |) < y ;

Algorithm 5: Comparison of two floating-point numbers

The comparison of two rows is summarized in Algorithm 3. If Ri is not smaller than

5.4. VERY COMPRESSED ROW STORAGE (VCRS) FORMAT

5

77

 a
i j

< <

<

<

>

>

> >>

2λ

Im

Re

Figure 5.3: Classification of a complex number ai j . The numbers falling in the white square around ai j are
assumed to be equal to ai j . Then, ai j is smaller than the numbers in the dark gray area and larger than the
numbers in light gray area.

R j and R j is not smaller than Ri , then the rows Ri and R j are "equal within the given
tolerance λ". Algorithm 4 then describes the comparison of two complex values and Al-
gorithm 5 compares two floating-point numbers. Figure 5.3 illustrates the classification
of a complex number ai j . Within a distance λ the numbers are assumed to be equal to
ai j . Then, ai j is smaller than the numbers in the dark gray area in Figure 5.3, and larger
than the numbers in the light gray area.

The number of bins and tolerance have influence on

1. the compression factor c = m/mc , which is ratio between the memory usage of the
original matrix m and the memory usage of the compressed matrix mc ;

2. the maximum norm of the compression error ‖e‖∞ = maxi , j (|ai j | − |āi j |), where
ai j are the original matrix entries and āi j are entries of the compressed matrix;

3. the computational time;
4. the memory usage;
5. the speedup on modern hardware which is calculated as a ratio of the computa-

tional time of the algorithm using the original matrix and of the computational
time using the compressed matrix.

Next, we consider the effect of the VCRS format for matrix-vector multiplication, on the
multigrid preconditioner, and the preconditioned Bi-CGSTAB method.

5.4.2. MATRIX-VECTOR MULTIPLICATION

Two parameters, the number of bins from quantization and the tolerance λ from row
classification, have an impact on the accuracy, performance and memory usage. To il-
lustrate the effect, let us first consider model problem MP1. We compare the matrix-
vector multiplication in VCRS format with that in the standard CSR format on a CPU.
As we have mentioned, matrix-vector multiplication for the discretization matrix on the
finest level is performed in a matrix-free way. Therefore, the prolongation matrix on the
finest level has been chosen as the test example, since it is the largest matrix that needs
to be kept in memory.

5

78 5. ACCELERATING LSM

Figure 5.4: Value distribution of the prolongation matrix on the finest level for the model problem MP3.

The results are shown in Figure 5.5(left), where the maximum error is given in subfig-
ure (a), the computational time in seconds in subfigure (b), the memory in GB in subfig-
ure (c), the speedup in subfigure (d) and the compression factor in subfigure (e), respec-
tively. As expected, the smaller the toleranceλ used, the more accurate is the representa-
tion of the compressed matrix, and the maximum error is reduced. It is also clear that the
number of bins does not affect the maximum error for λ smaller than 10−5. Since model
problem MP1 has two large areas with constant velocity, the entries of the prolongation
matrix are mostly constant. Even if the entries are not represented accurately because of
the larger tolerance or the smaller number of bins, the number of non-zero elements
does not change significantly. Therefore, the computational time and thus speedup,
memory usage and compression factor are very similar for all combinations of λ and
number of bins.

Model problem MP3 has significant velocity variation, so that the prolongation ma-
trix has different coefficients in each row, as shown in Figure 5.4. Note that the quanti-
zation has been done on the real and imaginary parts separately. Obviously, for the real
part, the quantization will have a smaller effect than for the imaginary part, since the real
values are clustered whereas the imaginary values are distributed over a larger interval.

Figure 5.5(right) shows the accuracy (a), the computational time in seconds (b), the
memory in GB (c), the speedup (d) and the compression factor (e). It can be seen in Fig-
ure 5.5(a) that by increasing the number of bins, the accuracy of the matrix-vector mul-
tiplication is also increasing, since two rows will less likely be similar. Reduced tolerance
λ also contributes to the decrease of the maximum error, because the values of entries
in rows are becoming closer to each other. With an increasing number of bins and a
decreasing tolerance, the compression factor (Figure 5.5(e)) and speedup (Figure 5.5(d))
decrease and, therefore, the computational time increases (Figure 5.5(b)). The compres-
sion factor is decreasing, because the more bins are used, the closer the matrix resembles
its uncompressed form. Therefore, the memory usage increases (see Figure 5.5(c)). With
larger compression factor, the matrix has a smaller size in the memory, so that the cache
effect contributes to the performance increase.

Obviously, there is a trade-off between performance and accuracy. The more accu-
rate the compressed matrix, the slower the matrix-vector multiplication. Based on our
experiments above, the most reasonable parameter choice would be a tolerance λ= 0.1

5.4. VERY COMPRESSED ROW STORAGE (VCRS) FORMAT

5

79

Figure 5.5: Effect of the VCRS format for the matrix-vector multiplication of MP1 (left) and of MP3 (right) on
the maximum error (a), computational time (b), memory (c), speedup (d), compression factor (e).

5

80 5. ACCELERATING LSM

Figure 5.6: The original matrix from pressure solver (left) and its value distribution (right).

and number of bin equals to 105. We will investigate the effect of this parameter choice
on the multigrid preconditioner and the complete Helmholtz solver.

DIFFERENT APPLICATION, RESERVOIR SIMULATION

The VCRS compression can also be used in other applications where the solvers are
based on a preconditioned system of linear equations. For example, an iterative solver
for linear equations is also an important part of a reservoir simulator, see e.g. [103]. It
appears within a Newton step to solve discretized non-linear partial differential equa-
tions describing the fluid flow in porous media. The basic partial differential equations
include a mass-conservation equation, Darcy’s law, and an equation of state relating the
fluid pressure to its density. In its original form the values of the matrix are scattered,
see Figure 5.6(left). Although the matrix looks full due to the scattered entries, the most
common number of non-zero elements per row is equal to 7, however the maximum
number of elements per row is 210. The distribution of the matrix values is shown in
Figure 5.6 (right). Note, that the matrix has real-valued entries only. It can be seen that
there is a large variety of matrix values, that makes the quantization and row classifica-
tion effective. Using the VCRS format to store this matrix results in two to three times
smaller memory requirements and two to three times faster matrix-vector multiplica-
tion, depending on the compression parameters. Of course, the effect of the compres-
sion parameters on the solver still needs to be investigated.

5.4.3. MULTIGRID METHOD PRECONDITIONER

Since matrix A is implemented in stencil version, it does not require any additional stor-
age. However, the lossy VCRS format may be very useful for the preconditioner, as, be-
cause of the matrix-dependent preconditioner, the prolongation and coarse grid matri-
ces have to be stored at each level in the multigrid preconditioner. Note that recomput-
ing those matrices on the fly will result in doubling or even tripling the total computa-
tional time.

The multigrid method consists of a setup phase and a run phase. In the setup phase,

5.4. VERY COMPRESSED ROW STORAGE (VCRS) FORMAT

5

81

Level Setup (exact)
Run

Matrix-free Compressed
0 M0, P0, R0 M0, R0 P0
1 M1, P1, R1 R1 M1,P1
· · · · · · · · · · · ·
l Ml , Pl , Rl Rl Ml ,Pl
· · · · · · · · · · · ·

m −1 Mm−1,Pm−1,Rm−1 Rm−1 Mm−1,Pm−1
m Mm

Table 5.1: Summary of the exact and compressed matrices used in the matrix-dependent multigrid precondi-
tioner.

the prolongation, restriction and coarse grid correction matrices are constructed, and
the matrices are compressed. In the run phase, the multigrid algorithm is actually ap-
plied. We assume that the multigrid method is acting on grids at levels l , l = 0, . . . ,m,
the finest grid being l = 0 and the coarsest grid being l = m. On each level, except for
l = m, the matrix-dependent prolongation matrix has to be constructed. The restriction
in our implementation is the standard restriction and can be easily used in a matrix-free
fashion. At each level, except for l = 0, the coarse grid matrix has to be constructed using
the Galerkin method 2.6.

We suggest to construct all the coarse-grid matrices exactly in the setup phase and
use compression afterwards. This way, errors due to lossy compression will not prop-
agate to the coarse-grid representation of the preconditioned matrix. The algorithm is
summarized in Table 5.1. Matrix Mm , on the coarsest level m, is not compressed, since
the size of Mm is already small.

To illustrate the compression factor at each level for the matrices Ml and Pl , l =
1, . . . ,m, for different values of the row classification parameter λ, let us fix the quantiza-
tion parameter, i.e. the number of bins is set to 103. From Figure 5.5, this choice of bins
seems to be reasonable. Table 5.2 shows the compression factors for M and P on each
multigrid level. The first column lists the values of the tolerance λ. The multigrid levels
are shown in the second column. The third multi-column presents the compression fac-
tor, i.e., the percentage of total memory usage of the preconditioner after compression
and the maximum error in the matrix elements of the compressed matrix P compared
to its exact representation at each multigrid level. The fourth multi-column represents
the compression factor, the percentage of the preconditioner memory usage after com-
pression and the maximum error in the matrix elements of the compressed matrix M
compared to its exact representation at each multigrid level. The last column shows the
total memory usage of the preconditioner for the given tolerance λ. Note, that the total
memory usage for the uncompressed matrix is 810 MB.

The compression factor for the prolongation matrix almost does not change on the
finest level for different tolerance parameters, since the prolongation coefficients are
constructed from the discretization matrix based on the 7-point discretization scheme.
On the coarsest level, the stencil becomes a full 27-point stencil and the effect of the
compression is more pronounced for smaller tolerance parameter λ. Clearly, the most
memory consuming part is the prolongation matrix P0 on the finest level. However, with

5

82 5. ACCELERATING LSM

λ Level
P M

Memory
Factor Memory Error Factor Memory Error

0.2 0 3.4 76% 2.7e-2 276 MB
1 3.2 10% 5.1e-2 24.1 10 % 3.5e-3
2 2.9 1 % 1.0e-1 19.3 1.5 % 1.6e-3
3 2.3 < 1% 1.6e-1 5.3 < 1% 7.3e-4
4 1.9 < 1% 2.4e-4

0.1 0 3.4 71% 2.3e-2 293 MB
1 3.3 10% 5.1e-2 20.1 11 % 3.1e-3
2 3.1 1.4 % 5.1e-2 6.8 3.4 % 1.5e-3
3 2.2 < 1% 6.8e-2 2.4 < 1% 1.0e-3
4 1.5 < 1% 2.6e-4

0.01 0 3.4 57% 4.8e-3 367 MB
1 2.7 9% 4.8e-3 9.3 19 % 1.8e-4
2 2.1 1.4 % 5.1e-3 2.1 10 % 4.7e-5
3 1.7 < 1% 4.8e-3 1.6 2 % 1.5e-5
4 1.4 < 1% 1.4 < 1% 3.7e-6

0.001 0 3.4 54% 4.4e-4 382 MB
1 2.4 9% 4.4e-4 8.4 21 % 4.2e-5
2 2.1 1.4 % 5.0e-4 2.1 11 % 1.0e-5
3 1.8 < 1% 1.1e-3 1.5 2 % 5.1e-6
4 1.4 < 1% 9.2e-4 1.4 < 1% 3.6e-6

Table 5.2: Model problem MP3 (3D Overthrust), nbins = 103

decreased tolerance λ, the coarse-grid correction matrices need more memory due to
larger variety of the matrix entries. As expected, the maximum error is reduced when
the tolerance is decreasing in both cases for P and M , respectively. Due to the 27-point
stencil on the coarser grids, the coarse-grid correction matrix has a wider spread of the
matrix values, which affects the compression factor with respect to the tolerance param-
eter. The more accurate compression is required, the more memory is needed to store
coarse-grid correction matrices. Therefore, to compromise between the accuracy and
the memory usage for the multigrid preconditioner, the tolerance λ is chosen equal to
0.1.

A prolongation matrix stored in the VCRS format uses less memory than the original
matrix, which can be seen as an approximation. However, the matrix-dependent char-
acteristics of the original prolongation must be preserved for satisfactory convergence
of the Helmholtz solver, otherwise it would be easier to just use a standard prolongation
matrix. A standard prolongation matrix can be implemented in a matrix-free manner.

5.4.4. PRECONDITIONED BI-CGSTAB

Let us consider the convergence of the preconditioned system,

AM−1v = f , u = M v,

starting with an exact preconditioner and followed by the preconditioner with lossy VCRS
compression. From the previous sections, it is clear that standard analysis on a simple
homogeneous problem is not sufficient, because here the tolerance and the number of

5.4. VERY COMPRESSED ROW STORAGE (VCRS) FORMAT

5

83

bins will have a minimum effect on the lossy compression.

TWO-DIMENSIONAL PROBLEM

Let us first consider a two-dimensional variant of the heterogeneous model problem
MP22d. In this case, we can vary the tolerance and the number of bins and observe the
effect on the convergence properties of the preconditioned system. Also, an analytic
derivation of the spectral radius of the multigrid iteration matrix is not possible, and
therefore, we will use numerical computations to determine it.

In our work we focus on quantitative estimates of the convergence of the multigrid
preconditioner, see e.g. [104]. To do this, we construct and analyze the shifted Laplace
multigrid operator M−1 from equation 2.5 with β1 = 1 and β2 = 0.8. Two-grid analysis
has been widely described in the literature, see [105], [106], [104]. Three-grid analysis
has been done in [107]. To see the effect of the lossy VCRS compression, a true multigrid
matrix needs to be constructed. The four-grid operator with only pre-smoothing for the
F-cycle is given by

M−1 := T4 = S0 (I0 −P0F1V1R0M0)S0, with

V1 = S1(I1 −P1V2R1M1)S1

F1 = S1(I1 −P1F2V2R1M1)S1

V2 = S2(I2 −P2M−1
3 R2M2)S2

F2 = S2(I2 −P2M−1
3 M−1

3 R2M2)S2,

where S0, S1, S2 are smoothers on the finest, first and second grid, P0, P1, P2 and R0,
R1, R2 are prolongation and restriction matrices, respectively. M0 is the discretization
matrix on the finest grid and M1, M2, M3 are respective coarse-grid correction matrices.

Next we compute the spectral radius ρ of AM−1, which is the maximum of the ab-
solute eigenvalues, using the four-grid operator as the preconditioner. The results are
summarized in Table 5.3 for different values of λ and different numbers of bins, that are
given in the first and second rows. The third row presents the number of iterations of
Bi-CGSTAB applied to the preconditioned system, the stopping criterion is 10−7 for the
relative residual. The fourth row shows the spectral radius of the compressed matrices
with VCRS preconditioner. The second column with λ = 0.0 and #bins= 0.0 represents
results for the exact preconditioner. Note that the spectral radius is larger than 1 which
means that the multigrid does not converge without the Krylov subspace method for
model problem MP22d. However, for illustration purposes of the compression it is inter-
esting to consider the spectral radius too. For large tolerance λ= 1.0 the spectral radius
is far from the exact one, meaning that the compressed preconditioned system does not
resemble the original preconditioned system and the number of iterations may rapidly
increase. For smaller tolerance, the spectral radius of the compressed preconditioned
system is very similar to the exact spectral radius and the iteration numbers are almost
the same. Note that the number of bins does not have a significant influence on the
number of iterations of the Helmholtz solver in this case.

Figure 5.7 illustrates the two extreme cases for MP22d, where the number of iterations
is most and least affected by the compression. The eigenvalues of the exact operator are

5

84 5. ACCELERATING LSM

λ 0.0 1.0 0.2 0.2 0.1 0.1 0.01 0.01

bins 0.0 102 102 106 102 106 102 106

iter 24 124 24 24 24 24 23 24

ρ 1.149 1.966 1.158 1.151 1.155 1.150 1.158 1.150

Table 5.3: Spectral radius ρ for preconditioned system AM−1 for four-grids using VCRS format for several λ
and number of bins for model problem MP22d, ω= 10 Hz. The second column shows the results for the exact
preconditioner.

Figure 5.7: Comparison of exact eigenvalues (red crosses) for the preconditioned system AM−1 by a four-grid
method with approximate eigenvalues (blue circles) using the VCRS format for λ = 1.0, bins=102 (left) and
λ= 0.01, bin=106 (right), model problem MP22d, ω= 10 Hz.

shown by blue crosses and of the compressed operator by red circles. On the left, the
compression parameters are λ = 1.0, #bins= 102, and on the right, λ = 0.01, #bins=106,
respectively. Clearly, the more accurate compression (shown on the right) gives a better
approximation of the eigenvalues of the exact operator, therefore, the convergence is
only slightly affected by the compression. The least accurate compression (shown on
the left) affects the eigenvalues of the preconditioned system and therefore, Bi-CGSTAB
needs many more iterations.

THREE-DIMENSIONAL PROBLEM

The number of iterations for the more realistic example MP3 are given in Table 5.4. The
results are presented for different values of λ and numbers of bins, that are given in the
first and second row. The third row shows the number of iterations of Bi-CGSTAB applied
to the preconditioned system, the stopping criterion is 10−7 for the relative residual. The
second column with λ = 0.0 and #bins= 0.0 represents results for the exact precondi-
tioner. For tolerance λ = 1.0 the preconditioned Bi-CGSTAB method does not converge
anymore. Therefore, it is advised to use the tolerance smaller than 1.0. In case of MP3 the
number of bins influences the iterations number of the preconditioned Bi-CGSTAB. This
happens because the spreading of the matrix entries for the realistic three-dimensional
problem is large, therefore the quantization affects many matrix entries significantly. For

5.5. IMPLEMENTATION DETAILS

5

85

λ 0.0 1.0 1.0 0.2 0.2 0.1 0.1 0.01 0.01

bins 0.0 102 106 102 106 102 106 102 106

iter 18 > 400 > 400 60 20 59 20 58 19

Table 5.4: Number of iterations for preconditioned system AM−1 using VCRS format for several λ and number
of bins for model problem MP3, ω= 20 Hz. The second column shows the results for the exact preconditioner.

a relatively small number of bins, the number of iterations is close to the uncompressed
case.

5.5. IMPLEMENTATION DETAILS

Presently, a common hardware configuration is a CPU connected to two GPUs that con-
tain less memory than the CPU. By a ’CPU’ we refer here to a multi-core CPU and by a
’GPU’ to an NVidia general purpose graphics card. We identified the parts of the algo-
rithms that can be accelerated on a GPU and implemented them in CUDA 5.0.

5.5.1. GPU

We consider the GPU as a replacement for the CPU and as an accelerator. In both cases
the Bi-CGSTAB algorithm is executed on the CPU, since the storage of temporary vectors
takes the most of the memory space. Executing the Bi-CGSTAB method on a GPU would
significantly limit the problem size. Therefore, we split the algorithm, where the Krylov
solver runs on a CPU and the preconditioner runs on one or more GPUs. We exploited
this technique in Chapter 3 and concluded that it reduces the communication between
different devices.

When the GPU is used as a replacement, the hardware setup consists of one multi-
core CPU connected to one GPU. Then the data for the preconditioner, i. e. prolongation
and coarse-grid correction matrices, lives in GPU memory to avoid memory transfers
between CPU and GPU memory. The process is illustrated in Figure 5.8. A Bi-CGSTAB
vector is transferred from the CPU to the GPU, then the multigrid preconditioner is ap-
plied. The prolongation and coarse-grid correction matrices are already located in the
GPU memory, since they have been transferred in the setup phase. After the precondi-
tioner is applied, the resulting vector is copied back to the CPU memory and the itera-
tions of Bi-CGSTAB continue. As GPUs have generally much less memory available than
CPUs, this impacts the size of the problem under consideration. The VCRS format can
be used to increase the size of the problem that would fit into GPU memory, moreover,
it also leads to increased performance.

When the GPU is used as an accelerator, then a multi-core CPU is connected to one or
more GPUs, see Figure 5.8. This means that part of the data for the preconditioner lives
in the CPU memory, and it is copied to the GPU only for the duration of the relevant
computational intensive operation, for example, a multi-colored Gauss-Seidel iteration
or matrix-vector multiplication. The data is copied back to the CPU memory once the
operation is finished. Note that only the vectors are transferred back-and-forth between

5

86 5. ACCELERATING LSM

CPU GPU 2GPU 1

M
0
, M

1
, ... P

0
, P

1
, ...

Input
vector

Output
vector

Input
vector

Output
vector

copy

copy

copy

copy

Calculate Calculate

Multigrid
Precondi-

tioner

Bi-CGSTAB
 vectors CPU GPU 1

Bi-CGSTAB
 vectors

Precondi-
tioner

copy

copy

(a) (b)

Figure 5.8: GPU as a replacement (a) and as an accelerator (b).

the CPU and GPU memories, the matrices stay in the GPU memory. Also on each GPU,
memory for an input and an output vector on the finest grid needs to be allocated to
receive vectors from the CPU. Then all the vectors from the preconditioner will fit into
this allocated memory. This approach takes advantage of the memory available across
GPUs. Using the VCRS format, the matrices become small enough so that they can be
evenly distributed across two GPUs. For example, in case of two GPUs connected to
one CPU, we suggest to store the prolongation matrices on one GPU and the coarse-grid
correction matrices on the other GPU.

Table 5.5 shows the performance of the preconditioned Bi-CGSTAB method for MP23d

on CPU, GPU as an accelerator and GPU as a replacement. The first column shows the
chosen matrix storage format. The second column lists the used hardware. The com-
pression parameters are given in the third and fourth columns. If no compression pa-
rameters are given, then lossless compression is applied, where no information is lost
due to the matrix compression and the matrix entries are unchanged. Otherwise, the
compression parameters belong to lossy compression, where some loss of information
is unavoidable. The setup phase, number of iterations and time per iteration are shown
in the last three columns of the table. The setup phase for the VCRS format takes longer
than the setup phase for the standard CRS because of the construction of additional ar-
rays. The number of iterations does not change significantly for different formats, how-
ever it increases slightly in the case of lossy compression. The VCRS format with lossy
compression gives the best performance time per iteration without affecting the itera-
tion numbers significantly.

The maximum number of unknowns for the CRS and VCRS formats with lossless and
lossy compression are shown for MP23d in Table 5.6. The CPU, the GPU as an acceler-
ator and the GPU as a replacement are considered. The first column shows the chosen
matrix storage format. The second column lists the used hardware. The compression

5.5. IMPLEMENTATION DETAILS

5

87

Format Hardware # bins λ Setup (s) # iter Time per iter (s)
CRS CPU – – 88 73 5.8

VCRS CPU – – 175 73 4.9
VCRS CPU 103 0.1 150 80 4.6
VCRS GPU accel – – 180 73 3.4
VCRS GPU accel 103 0.1 149 78 3.1
VCRS GPU repl – – 148 73 2.8
VCRS GPU repl 103 0.1 149 76 2.4

Table 5.5: Performance of preconditioned Bi-CGSTAB on CPU, GPU as accelerator and GPU as a replacement
for MP23d of size 2503. If no compression parameters are given, then lossless compression is applied.

Format Hardware Compression Maximum
parameters size

CRS CPU – 74,088,000
VCRS CPU λ= 0.1, # bins=103 94,196,375
VCRS GPU accel – 19,683,000
VCRS GPU accel λ= 0.1, # bins=103 27,000,000
VCRS GPU repl – 23,149,125
VCRS GPU repl λ= 0.1, # bins=103 32,768,000

Table 5.6: Maximum number of unknowns for MP23d for given storage format on different hardware. If no
compression parameters are given, then lossless compression is applied.

parameters are given in the third column. If no compression parameters are given, then
lossless compression is applied. Across the different hardware platforms, the VCRS for-
mat increases the maximum size of the problem compared to the CRS matrix storage.
Using GPU as a replacement leads to solving larger problem sizes than using GPU as an
accelerator, because the memory needed to store preconditioner matrices is distributed
across the GPUs.

Summarizing we can conclude that the VCRS format can be used to reduce the mem-
ory for the preconditioner as well as to increase the performance of the preconditioned
Bi-CGSTAB on different hardware platforms.

5.5.2. COMMON CODE

The idea of one common hardware code on CPU and GPU has a number of benefits. Just
to name few of them, code duplication is kept to a minimum, reducing the possibility
to make mistakes, easier maintainability and extensibility. There have been attempts
to create a common high-level language for hybrid architectures, for example OpenCL
that has been introduced by the Khronos group [38]. For our research the idea of a com-
mon code has always been attractive, but its development really started when NVIDIA
stopped to support the CUDA-emulator on CPU hardware. By the time our research had
started, OpenCL was not commonly available. Therefore, we used our own approach for
a common code on CPU and GPU. We assume the code on the CPU is using C++ and the
code on the GPU is using CUDA, respectively.

Our implementation is based on the fact that CPUs and GPUs have multiple threads.

5

88 5. ACCELERATING LSM

Therefore, the multi-threading mechanism can be made abstract on the highest level of
the program that describes the numerical algorithms. Code to setup the information
about threads is abstracted in macros. On the device level, OpenMP is used for paral-
lel computations on a CPU and CUDA is used on a GPU, respectively. Depending on
the device where the part of the program is executed, the high-level functions call sub-
functions specific for the device. For example, the synchronization of the threads after
computations uses the so-called omp_barrier() function for a CPU and cudaThreadsSynchronize()
for a GPU.

Another abstraction technique we use is to simplify argument handling. It uses one
structure that contains all arguments of a function. This allows to copy all arguments
with one command to a GPU. Examples of a macro and a common code for a simple
vector operation are given in Appendices B.1 and B.2. Memory transfers to the right
hardware remain the responsibility of the developer.

At the end, there is one code that describes a numerical algorithm, for example the
multigrid preconditioner, that compiles for two different architectures, CPU and GPU.
Firstly, the developments are done on a CPU in debug mode, where multi-threading is
switched off and only one thread is used. This allows to develop on less powerful hard-
ware or when CUDA is not available. The code can be easily expanded to other architec-
tures as long as a subset of all the programming languages is used, in our case meaning
the intersection of CUDA, C++, etc. Currently, CUDA is a limiting factor for a program in
how many C++ language specific features it can have. As soon as CUDA releases a version
that supports more C++ features, it can be immediately used in the common code.

5.5.3. TASK SYSTEM

To run the least-squares migration in parallel we have developed a task system that allows
to split the work amongst compute nodes and monitor the execution. By a compute node
we assume a multi-core CPU connected to one or more GPUs, where GPUs can be used
as a replacement or as an accelerator.

As we have seen in equation 5.11, the least-squares migration algorithm consists of
forward modeling and migrations in frequency domain for each source. Therefore, the
highest level of parallelism for LSM consists of parallelization over all sources and fre-
quencies. That means one task consists of computations of one frequencyωsi for a given
source si from the set of size ω times s, si ∈ s on one compute node, ωsi ∈ω, i = 1, . . . , Ns

with the number of sources Ns . In total, we have NωNs tasks, where Nω is number of
frequencies.

For each frequency, a linear system of equations needs to be solved. We have shown
in Chapter 4 that the matrix size and memory requirements are the same for each fre-
quency, but the lower frequencies require less compute time than the higher ones [21].
Here, we assume that one shot for one frequency in the frequency domain fits in one
compute node.

For the LSM task system we adapt a client-to-server approach, described in Chap-
ter 4, where clients request tasks to the server. GPU clusters are either heterogeneous
or they have to be shared simultaneously amongst the users. For example, the cluster at
our disposition, Little Green Machine [108], has the same hardware (with the exception

5.5. IMPLEMENTATION DETAILS

5

89

Figure 5.9: Example of a task system monitoring during the LSM execution. The active list contains tasks in
table "Jobs being processed". The queue is given in the table "Remaining jobs".

of one node), see Appendix A. Similarly, the GPUs have the same specifications, but one
GPU can already be used by a user while the other one remains available. The task sys-
tem addresses the issue of load balancing. This is also handy when compute nodes are
shared between users.

For each CGNR iteration, the server or master node creates one task per shot per fre-
quency. Each task is added to a queue. When a client requests a task, a given task is
moved from the queue to the active list as illustrated in Figure 5.9. This example shows
computation of the right-hand side in 5.11. The active list contains tasks in the table
"Jobs being processed". The queue is given in the table "Remaining jobs". The column
"Description" shows the task for a given frequency and corresponding source with re-
lated receivers called "panel". It can happen that a node will crash due to a hardware
failure. In that case, the task will remain on the active list until all the other tasks have

5

90 5. ACCELERATING LSM

finished. Once that happens, any unfinished task will be moved back to the queue, so
that another compute node can take over the uncompleted work. When all tasks have
been processed, the master node proceeds to the next CGNR iteration or stops if conver-
gence is achieved.

Using the task system, the frequency decimation in 5.13 can be easily applied, since
only the content of the queue will change, the implementation will stay the same. Our
implementation has only a single point of failure: the master process. Furthermore, it
is possible to adjust parameters on the fly by connecting into the master program us-
ing Telnet without having to restart the master program. The Telnet session allows the
master program to process commands as well (load/save of restart points, save interme-
diate results, display statistics, etc.). It is also possible to manipulate the queues with an
Internet browser.

5.6. RESULTS

Combining the techniques described above, let us compare the results of the least-squares
migration method with and without decimation for the original Overthrust velocity model
problem [99]. Both implementations ran on the Little Green Machine [108]. Due to lim-
ited resources because of sharing with other students, we take a two-dimensional verti-
cal slice of the Overthrust velocity model for our LSM experiments to make sure it will fit
in the available memory. The domain size of the test problem is [0, 20000]× [0, 4650],
that is discretized on a regular orthogonal grid with 4000 points in x-direction and 930
points in depth.

Both implementations use the VCRS format with the tolerance λ= 0.1 and the num-
ber of bins of 107. The decimation is applied with the decimation parameter δ = 10,
meaning that the least-squares migration matrix is computed using 10 times less infor-
mation, and therefore, 10 times faster than without decimation. The stopping criterion
for the Helmholtz solver is 10−5. The results for LSM are presented in Figure 5.10, where
the implementation without decimation is shown at the top, the implementation with
decimation at the center and difference between those two at the bottom, respectively.
The results represent the reflectivity of the Overthrust velocity model. The color scale is
the same for the three pictures. The results for both methods are very similar, even with
the large decimation factor chosen.

The speedup of the LSM with decimation algorithm compared to the original LSM
can be calculated theoretically. Assuming the computational time of the right-hand side
operator FHRHd from equation 5.12 is equal to t , then the computational time to cal-
culate the least-squares matrix equals 2t per iteration of the CG method. In total, the
computational time of the original LSM is given by

Tor i g i nal = t (2ni ter +1), (5.17)

where the ni ter denotes the total number of CGNR iterations. There is a possibility to
decrease the total time of the LSM. This can be achieved by saving the smooth solution
u0 in 5.6 for each source and frequency to disk while computing the right-hand side and
reusing it instead of recomputing for the construction of the LSM matrix. Assuming the

5.7. CONCLUSIONS

5

91

time to read the solution u0 from the disk negligible, the total time of the LSM reads

T̂or i g i nal = t (ni ter +1). (5.18)

Of course, in this case the compression of the solution on the disk becomes important,
since the disk space is also usually limited. We recommend to use lossless compression
of u0, to avoid any effects of the lossy compression. This could be investigated in the
future.

In case of the LSM with decimation, the time to compute the right-hand side is the
same as for the original LSM. However, the computational time of the matrix on the left-
hand side of the equation 5.13 is equal to t/δ, where δ is the decimation parameter. Then
the total computational time of the LSM with decimation is given by

Tdeci mati on = t (
ni ter

δ
+1). (5.19)

The speedup can be defined as the computational time of the original LSM algorithm
divided by the the computational time of the LSM with decimation:

Speedup = Tor i g i nal

Tdeci mati on
= 2ni ter +1

ni ter
δ +1

(5.20)

For a large number of CGNR iterations, the speedup is approaching the decimation fac-
tor 2δ.

Using the VCRS format for the Helmholtz solver gives additional speedup of 4 com-
pared to the standard CSR matrix format. If a GPU is used to improve the performance of
the preconditioned Helmholtz solver, then the total speedup can be increased approxi-
mately by another factor 3. This brings the total speedup of the decimated LSM to the
value of 24δ. In the case δ= 10 the LSM with the above improvements is about 240 times
faster than the original algorithm.

5.7. CONCLUSIONS

In this chapter we presented an efficient least-squares migration algorithm using several
improvements.

Firstly, a decimation wass done over sources and frequencies to take advantage of the
redundant information present in the data during the CGNR iterations, which is used to
solve the optimization problem within the LSM framework. This leads to a speedup of
the LSM algorithm by the decimation parameter, whereas the impact is kept minimal.

Secondly, we introduced a VCRS (Very Compressed Row Storage) format. The VCRS
format not only reduces the size of the stored matrix by a certain factor but also increases
the efficiency of the matrix-vector computations. We have investigated the lossless and
lossy compression and shown that with the proper choice of the compression parame-
ters the effect of the lossy compression is minimal on the Helmholtz solver which is the
Bi-CGSTAB method preconditioned with the shifted Laplace matrix-dependent multi-
grid method. Also, we also applied the VCRS format to a problem arising from a different
application area and showed that the compression may be useful in this case as well.

5

92 5. ACCELERATING LSM

Figure 5.10: The second iteration of LSM for the original Overthrust velocity model without decimation (top),
with decimation δ= 10 (center) and the difference between them (bottom).

Moreover, using VCRS allows to accelerate the least-squares migration engine by
GPUs. A GPU can be used as an accelerator, in which case the data is partially trans-
ferred to a GPU to execute a set of operations, or as a replacement, in which case the
complete data is stored in the GPU memory. We have demonstrated that using GPU as a
replacement leads to higher speedups and allows to use larger problem sizes than when
used as an accelerator. In both cases, the speedup is higher than for the standard CSR
matrix format.

Summarizing the effects of each used improvement, it has been shown that the re-
sulting speedup can be at least an order of magnitude compared to the original LSM
method, depending on the decimation parameter.

6
CONCLUSIONS

6.1. OVERVIEW

The aim of this thesis is to develop an efficient implementation of the migration algo-
rithm in the frequency domain and the least-squares migration method by using an en-
hanced Helmholtz solver accelerated on GPUs. This research is a combination of three
disciplines: numerical analysis, computational science and geophysics.

First of all, we have considered a two-dimensional Helmholtz equation, for which
a GPU implementation of Krylov subspace solvers preconditioned by a shifted Laplace
multigrid preconditioner is presented. On CPU, double precision accuracy was used
whereas on a GPU computations were in single precision. As Krylov subspace solvers
Bi-CGSTAB and IDR(s) have been used. We have seen that both methods are paralleliz-
able on the GPU and have similar speedup of about 40 compared to a single-threaded
CPU implementation. It has been shown that a matrix-dependent multigrid precondi-
tioner can be implemented efficiently on the GPU where a speedup of 20 can be achieved
for large problems. For the smoothers we have considered parallelizable methods such
as weighted Jacobi (ω-Jacobi), multi-colored Gauss-Seidel and damped multi-colored
Gauss-Seidel (ω-GS). One iteration of preconditioned IDR(s) is more intensive than one
iteration of preconditioned Bi-CGSTAB, however IDR(s) needs fewer iterations so it does
not affect the total computation time. To increase the precision of a solver, iterative re-
finement has been considered. We have shown that iterative refinement with Bi-CGSTAB
on the GPU is about 4 times faster than Bi-CGSTAB on the CPU for the same stopping cri-
terion. The same result has been achieved for IDR(s). Moreover, combinations of Krylov
subspace solvers on the CPU and GPU and the shifted Laplace multigrid preconditioner
on the CPU and GPU have been considered. A GPU Krylov subspace solver with a GPU
preconditioner gave the best speedup. For example for the problem size n = 1024×1024
Bi-CGSTAB on the GPU with the GPU preconditioner as well as IDR(s) on the GPU with
the GPU preconditioner were about 30 times faster than the analogous solvers on the
CPU.

93

6

94 6. CONCLUSIONS

Secondly, we have considered a three-dimensional Helmholtz equation, where we
presented a multi-GPU implementation of the Bi-CGSTAB solver preconditioned by a
shifted Laplace multigrid method. To keep the double precision convergence the Bi-
CGSTAB method was implemented on the GPU in double precision and the precondi-
tioner in single precision. We have compared the multi-GPU implementation to a single-
GPU and a multi-threaded CPU implementation on a realistic problem size. Two multi-
GPU approaches have been considered: a data parallel approach and a split of the algo-
rithm. For the data parallel approach, we were able to solve larger problems than on one
GPU and got a better performance than by the multi-threaded CPU implementation.
However due to the communication between GPUs and a CPU the resulting speedups
have been considerably smaller compared to the single-GPU implementation. To mini-
mize the communication but still be able to solve large problems we have introduced a
split of the algorithm. In this case the speedup on the multi-GPUs is similar to the single
GPU compared to the multi-core implementation.

As a first geophysical application we have considered migration in the frequency do-
main based on the enhanced and accelerated Helmholtz solver. Its implementation has
been compared to the implementation of the reverse-time migration in the time do-
main in terms of performance and parallelization. The hardware configuration was a
many-core CPU connected to two GPUs that contained less memory than the CPU. The
implementation in the frequency domain was using parallel techniques on a many-core
CPU and the implementation in the time domain was accelerated using GPUs. The par-
allelization strategy was based on domain decomposition and dynamic load balancing.

The experiments showed that migration in the frequency domain on a multi-core
CPU is faster than reverse-time migration in the time domain accelerated by GPUs, given
enough compute nodes to calculate all frequencies in parallel. This observation was
based on our own implementation of both approaches, optimization details and the
hardware we had access to. Despite such uncertainties, the methods can obviously com-
pete. We expect to have similar results on different hardware since the GPU-CPU perfor-
mance ratio is not changing dramatically.

As a second geophysical application we have presented an efficient least-squares
migration algorithm using several improvements. Firstly, a decimation was done over
sources and frequencies to take advantage of redundant information present in the data
during the CGNR iterations, which was used to solve the optimization problem within
the LSM framework. This led to a speedup of the LSM algorithm by the decimation pa-
rameter, whereas the impact was kept minimal. Secondly, we introduced a VCRS (Very
Compressed Row Storage) format. The VCRS format not only reduced the size of the
stored matrices by a certain factor but also increased the efficiency of the matrix-vector
computations. We have investigated the lossless and lossy compression and shown that
with the proper choice of the compression parameters the effect of the lossy compres-
sion was minimal on the Helmholtz solver, the Bi-CGSTAB method preconditioned with
the shifted Laplace matrix-dependent multigrid method. Also, we applied the VCRS for-
mat to a problem arising from a different application area and showed that the com-
pression can be useful in this case as well. Thirdly, using VCRS allowed us to accelerate
the least-squares migration engine by GPUs. A GPU can be used as an accelerator, in
which case the data is partially transferred to a GPU to execute a set of operations, or as

6.2. OUTLOOK

6

95

a replacement, in which case the complete data is stored in the GPU memory. We have
demonstrated that using the GPU as a replacement led to higher speedups and allowed
us to deal with larger problem sizes than when using the GPUs as an accelerator. In both
cases, the speedup was higher than for the standard CSR matrix format. Summarizing
the effects of each used improvement, it has been shown that the resulting speedup can
be at least an order of magnitude compared to the original LSM method, depending on
the decimation parameter.

6.2. OUTLOOK

In this work we focused on the Helmholtz equation with constant density, meaning mod-
elling of different rocks using only velocity contrasts. Sometimes in real problems with
topography, the air is modelled as a density contrast instead of velocity contrast. In this
way, the problem size is reduced since the discretization size depends on minimum ve-
locity. Therefore, as a further development we suggest to include the variable density in
the Helmholtz equation. The enhanced shifted Laplace multigrid preconditioner with
matrix-dependent prolongation remains unchanged in this case.

To reduce the problem size, one might also use a higher-order discretization of the
Helmholtz equation including boundary conditions. It has been shown that these dis-
cretizations require overall fewer grid points per wavelength [89] when the underlying
velocity model is sufficiently smooth. For this case, we still suggest to use the proposed
preconditioner discretized with second-order finite differences as it represents an ap-
proximation to the higher-order discretized matrix on the finest level. However, the
higher-order discretization will negatively affect the implementation on a GPU since the
discretized matrix on the finest grid will need more memory.

Problems with complex geometries sometimes require discretization with finite el-
ements that can lead to an unstructured matrix. In this case, instead of the matrix-
dependent prolongation, an algebraic multigrid method within the shifted Laplace pre-
conditioner will be more suitable choice.

During the work on this thesis, GPUs have gradually evolved. The trend is to place
more powerful cores on the chip, increase memory size and data transfer bandwidth.
However, this progress is rather evolutionary as opposed to revolutionary and more or
less predictable. Graphics cards are becoming mainstream for efficient computations at
universities. More and more scientists are doing research with computations on GPUs.
Some research areas, for instance finance, are better of using GPUs than geophysics,
because of the highly computationally intensive (but with low memory requirements)
problems occurring. For geophysical applications, the memory size stays one of the
biggest challenges for acceleration by means of GPU computations, since it requires ad-
justing existing algorithms for parallel computations. Many researchers are trying to ac-
celerate the geophysical problems on GPUs, and soon it will also become more popular
in the industry.

We anticipate that data transfer will occur much faster in the future. Either by by-
passing the PCI-express bus, or by integrating the GPU and the CPU. As far as we know,
NVidia does not have a license to produce x86 compatible chips, which means that
NVidia must use a different architecture such as ARM (see [109]) in order to integrate

6

96 6. CONCLUSIONS

GPUs into a CPU. The high number of GPU cores make fast GPU memory a necessity,
and, as a consequence, GPU memory will remain expensive and relatively small com-
pared to the CPU memory. In order to solve large problems by iterative methods on
GPUs, we think that the following factors should be present:

• Direct communication between GPUs;

• Highly compressed matrices;

• The compression method used should not impact the performance.

Regarding the implementation of iterative solvers in geophysics, we have the following
observations. As compression can not always be lossy, it would make sense to use GPUs
for the preconditioner, and let the relatively slow CPU solve the system of equations in a
more accurate way. With all the above factors present, solving the elastic wave equation
on GPU in the frequency domain becomes feasible in the near future.

7
ACKNOWLEDGMENTS

I would like to thank my advisors Kees Oosterlee and Kees Vuik for giving me the op-
portunity to do my PhD and for their guidance. We met about 5 years ago at an HPC
conference when the subject came up of whether I had a PhD. My advisors understood
that it was crucial for me to have a topic that is relevant to my job. This helped me to stay
motivated during all this time.

I would also like to thank Wim Mulder for his help especially on the subject of seismic
migrations where he took the time to answer my questions.

I would like to thank NVIDIA Corporation, in particular Francois Courteille for giving
me access to the latest many-core-multi-GPU architecture where I could test my multi-
GPU algorithms on a computer with 8 GPUs.

I would like to thank the Delft University of Technology for granting access to the
Little Green Machine, partly funded by the ‘Nederlandse Organisatie voor Wetenschap-
pelijk Onderzoek’ (NWO, the Netherlands Organisation for Scientific Research) under
project number 612.071.305.

Last but not least, thanks to Elena Zhebel for her support, I never thought that having
a multigrid specialist at home would be so handy.

97

A
LITTLE GREEN MACHINE

The Little Green Machine configuration consists of the following nodes interconnected
by 40 Gbps Infiniband:

• 1 head node

– 2 Intel hexacore X5650

– 24 GB memory

– 24 TB disk (RAID)

• 1 large RAM node

– 2 Intel quadcore E5620

– 96 GB memory

– 8 TB disk

– 2 NVIDIA C2070

• 1 secondary Tesla node

– 2 Intel quadcore E5620

– 24 GB memory

– 8 TB disk

– 2 NVIDIA GTX480

• 1 test node

– 2 Intel quadcore E5620

– 24 GB memory

– 2 TB disk

99

A

100 A. LITTLE GREEN MACHINE

– 1 NVIDIA C2050

– 1 NVIDIA GTX480

• 20 LGM general computing nodes

– 2 Intel quadcore E5620

– 24 GB memory

– 2 TB disk

– 2 NVIDIA GTX480

B
COMMON CODE

B.1. ABSTRACTION MACROS FOR THE COMMON CODE CPU/GPU

In this appendix we will present an example of abstraction macros for the common code
on the CPU and the GPU.

#define DECLARE_KERNEL(a , type) \
extern "C" void a##_CPU(type& args) ; \
extern "C" void a##_CUDA(type& args) ;

/ /
/ / Macros f o r C++
/ /

i f d e f COMPILE_FOR_CPP

#include <iostream >
#include <omp. h>

i f d e f _WINDOWS
#define HKPRAGMA(s) __pragma (s)
else
#define HKPRAGMA(s) _Pragma (s)
#endif

#define KERNEL_SHARED_MEMORY / / empty because on CPU i t i s a regular memory
#define THREAD_INDEX_INSIDE_BLOCK threadIndex
#define BLOCKIDX_X 0

#ifndef WITH_DEBUG / / Release mode
#define KERNEL_THREAD_SYNCHRONIZE HK_OMP_BARRIER
#define BLOCKDIM_X nThreads
#define BEGIN_KERNEL(a , type) extern "C" void a##_CPU(type& args) \

{ \
HK_OMP_PARALLEL \
{ \

const int threadIndex=omp_get_thread_num () ; \

101

B

102 B. COMMON CODE

const int nThreads=omp_get_num_threads () ;
else / / WITH_DEBUG / / Debug mode
#define KERNEL_THREAD_SYNCHRONIZE
#define BLOCKDIM_X 1
#define BEGIN_KERNEL(a , type) extern "C" void a##_CPU(type& args) \

{ const int threadIndex =0 ,nThreads =1; {

#endif / / WITH_DEBUG

#define END_KERNEL(a , type) } } / / to c l o s e a l l brackets

#define KERNEL_SUBFUNCTION

#endif / / COMPILE_FOR_CPP

/ /
/ / Macros f o r Cuda
/ /

i f d e f COMPILE_FOR_CUDA

#define KERNEL_SHARED_MEMORY __shared__
#define THREAD_INDEX_INSIDE_BLOCK (threadIdx . x)
#define BLOCKDIM_X (blockDim . x)
#define BLOCKIDX_X (blockIdx . x)

#define BEGIN_KERNEL(a , type) \
s t a t i c __device__ __constant__ type a##_arguments ; \
__global__ void a##_CUDA_KERNEL() \
{ \

type& args=a##_arguments ; \
const int threadIndex = threadIdx . x+blockIdx . x *blockDim . x ; \
const int nThreads = blockDim . x *gridDim . x ;

#define END_KERNEL(a , type) } \
extern "C" void a##_CUDA(type& args) \
{ \

cudaMemcpyToSymbol(a##_arguments ,& args , s i z e o f (type)) ; \
. . .

/ / Call the kernel
a##_CUDA_KERNEL<<<>>>(); \
. . .

}

#define KERNEL_SUBFUNCTION __device__
#define KERNEL_THREAD_SYNCHRONIZE __syncthreads () ;

#endif / / COMPILE_FOR_CUDA

B.2. COMMON CODE CPU/GPU EXAMPLE

In this appendix we present an example of a common code on the CPU and the GPU,
that demonstrates the addition of a constant to a vector.

B.2. COMMON CODE CPU/GPU EXAMPLE

B

103

i f d e f COMPILE_FOR_CPP
#include <stdio . h>
#endif

struct myfunction_struct
{

int * _array1 ;
int * _array2 ;

} ;

KERNEL_SUBFUNCTION s t a t i c void TestFunction (int * x , int * y , int threadIndex , int nThreads)
{

* y= * x + 1 ;
}

BEGIN_KERNEL(MyFunction , myfunction_struct)
{

i f d e f COMPILE_FOR_CPP
p r i n t f (" threadIndex=%i \n" , threadIndex) ;

#endif
for (int i =threadIndex ; i <100; i +=nThreads)
{

TestFunction(& args . _array1 [i] ,& args . _array2 [i] , threadIndex , nThreads) ;
}

}
END_KERNEL(MyFunction , myfunction_struct)

C
MULTIGRID COEFFICIENTS

The prolongation weights within the multigrid preconditioner are defined as follows.

C.1. MULTIGRID

ForΩ100

ei , j ,k = cM00
i , j ,k ei−1, j ,k + cP00

i , j ,k ei+1, j ,k

cM00
i , j ,k =σ

d M00
i , j ,k

d M00
i , j ,k +d P00

i , j ,k

cP00
i , j ,k =σ

d P00
i , j ,k

d M00
i , j ,k +d P00

i , j ,k

σ= min

(
1,

∣∣∣∣∣1−
∑27

l=1 al

a14

∣∣∣∣∣
)

d M00
i , j ,k = max {|a1 +a4 +a7 +a10 +a13 +a16 +a19 +a22 +a25| ,

|a1 +a10 +a19| , |a7 +a16 +a25| , |a1 +a4 +a7| ,
|a19 +a22 +a25| , |a1| , |a19| , |a7| , |a25|}

d P00
i , j ,k = max {|a3 +a6 +a9 +a12 +a15 +a18 +a21 +a24 +a27| ,

|a3 +a12 +a21| , |a9 +a18 +a27| , |a3 +a6 +a9| ,
|a21 +a24 +a27| , |a3| , |a21| , |a9| , |a27|}

105

C

106 C. MULTIGRID COEFFICIENTS

ForΩ010

ei , j ,k = c0M0
i , j ,k ei , j−1,k + c0P0

i , j ,k ei , j+1,k

c0M0
i , j ,k =σ

d 0M0
i , j ,k

d 0M0
i , j ,k +d 0P0

i , j ,k

c0P0
i , j ,k =σ

d 0P0
i , j ,k

d 0M0
i , j ,k +d 0P0

i , j ,k

d 0M0
i , j ,k = max {|a1 +a2 +a3 +a10 +a11 +a12 +a19 +a20 +a21| ,

|a1 +a10 +a19| , |a3 +a12 +a21| , |a1 +a2 +a3| ,
|a19 +a20 +a21| , |a1| , |a3| , |a19| , |a21|}

d 0P0
i , j ,k = max {|a7 +a8 +a9 +a16 +a17 +a18 +a25 +a26 +a27| ,

|a7 +a16 +a25| , |a9 +a18 +a27| , |a7 +a8 +a9| ,
|a25 +a26 +a27| , |a7| , |a9| , |a25| , |a27|}

ForΩ001

ei , j ,k = c00M
i , j ,k ei , j ,k−1 + c00P

i , j ,k ei , j ,k+1

c00M
i , j ,k =σ

d 00M
i , j ,k

d 00M
i , j ,k +d 00P

i , j ,k

c00P
i , j ,k =σ

d 00P
i , j ,k

d 00M
i , j ,k +d 00P

i , j ,k

d 00M
i , j ,k = max {|a19 +a20 +a21 +a22 +a23 +a24 +a25 +a26 +a27| ,

|a19 +a22 +a25| , |a21 +a24 +a27| , |a19 +a20 +a21| ,
|a25 +a26 +a27| , |a19| , |a21| , |a25| , |a27|}

d 00P
i , j ,k = max {|a1 +a2 +a3 +a4 +a5 +a6 +a7 +a8 +a9| ,

|a1 +a4 +a7| , |a3 +a6 +a9| , |a1 +a2 +a3| ,
|a7 +a8 +a9| , |a1| , |a3| , |a7| , |a9|}

ForΩ110

ei , j ,k = cMM0
i , j ,k ei−1, j−1,k + cPM0

i , j ,k ei+1, j−1,k + cMP0
i , j ,k ei−1, j+1,k + cPP0

i , j ,k ei+1, j+1,k

cMM0
i , j ,k =

ai , j ,k
11 cM00

i , j−1,k +ai , j ,k
10 +ai , j ,k

13 c0M0
i−1, j ,k

ai , j ,k
13 +ai , j ,k

11 +ai , j ,k
10 +ai , j ,k

12 +ai , j ,k
15 +ai , j ,k

17 +ai , j ,k
18 +ai , j ,k

16

cPM0
i , j ,k =

ai , j ,k
11 cP00

i , j−1,k +ai , j ,k
12 +ai , j ,k

15 c0M0
i+1, j ,k

ai , j ,k
13 +ai , j ,k

11 +ai , j ,k
10 +ai , j ,k

12 +ai , j ,k
15 +ai , j ,k

17 +ai , j ,k
18 +ai , j ,k

16

C.1. MULTIGRID

C

107

cMP0
i , j ,k =

ai , j ,k
13 c0P0

i−1, j ,k +ai , j ,k
17 cM00

i , j+1,k +ai , j ,k
16

ai , j ,k
13 +ai , j ,k

11 +ai , j ,k
10 +ai , j ,k

12 +ai , j ,k
15 +ai , j ,k

17 +ai , j ,k
18 +ai , j ,k

16

cPP0
i , j ,k =

ai , j ,k
15 c0P0

i+1, j ,k +ai , j ,k
17 cP00

i , j+1,k +ai , j ,k
18

ai , j ,k
13 +ai , j ,k

11 +ai , j ,k
10 +ai , j ,k

12 +ai , j ,k
15 +ai , j ,k

17 +ai , j ,k
18 +ai , j ,k

16

ForΩ101

ei , j ,k = cP0M
i , j ,k ei+1, j ,k−1 + cP0P

i , j ,k ei+1, j ,k+1 + cM0P
i , j ,k ei−1, j ,k+1 + cM0M

i , j ,k ei−1, j ,k−1

cM0M
i , j ,k =

ai , j ,k
22 +ai , j ,k

23 cM00
i , j ,k−1 +ai , j ,k

13 c00M
i−1, j ,k

ai , j ,k
13 +ai , j ,k

23 +ai , j ,k
22 +ai , j ,k

24 +ai , j ,k
15 +ai , j ,k

5 +ai , j ,k
6 +ai , j ,k

4

cM0P
i , j ,k =

ai , j ,k
5 cM00

i , j ,k+1 +ai , j ,k
4 +ai , j ,k

13 c00P
i−1, j ,k

ai , j ,k
13 +ai , j ,k

23 +ai , j ,k
22 +ai , j ,k

24 +ai , j ,k
15 +ai , j ,k

5 +ai , j ,k
6 +ai , j ,k

4

cP0M
i , j ,k =

ai , j ,k
15 c00M

i+1, j ,k +ai , j ,k
24 +ai , j ,k

23 cP00
i , j ,k−1

ai , j ,k
13 +ai , j ,k

23 +ai , j ,k
22 +ai , j ,k

24 +ai , j ,k
15 +ai , j ,k

5 +ai , j ,k
6 +ai , j ,k

4

cP0P
i , j ,k =

ai , j ,k
15 c00P

i+1, j ,k +ai , j ,k
5 cP00

i , j ,k+1 +ai , j ,k
6

ai , j ,k
13 +ai , j ,k

23 +ai , j ,k
22 +ai , j ,k

24 +ai , j ,k
15 +ai , j ,k

5 +ai , j ,k
6 +ai , j ,k

4

ForΩ011

ei , j ,k = c0PP
i , j ,k ei , j+1,k+1 + c0MP

i , j ,k ei , j−1,k+1 + c0MM
i , j ,k ei , j−1,k−1 + c0PM

i , j ,k ei , j+1,k−1

c0MM
i , j ,k =

ai , j ,k
11 c00M

i , j−1,k +ai , j ,k
23 c0M0

i , j ,k−1 +ai , j ,k
20

ai , j ,k
11 +ai , j ,k

23 +ai , j ,k
20 +ai , j ,k

26 +ai , j ,k
17 +ai , j ,k

5 +ai , j ,k
8 +ai , j ,k

2

c0MP
i , j ,k =

ai , j ,k
5 c0M0

i , j ,k+1 +ai , j ,k
2 +ai , j ,k

11 c00P
i , j−1,k

ai , j ,k
11 +ai , j ,k

23 +ai , j ,k
20 +ai , j ,k

26 +ai , j ,k
17 +ai , j ,k

5 +ai , j ,k
8 +ai , j ,k

2

c0PM
i , j ,k =

ai , j ,k
17 c00M

i , j+1,k +ai , j ,k
23 c0P0

i , j ,k−1 +ai , j ,k
26

ai , j ,k
11 +ai , j ,k

23 +ai , j ,k
20 +ai , j ,k

26 +ai , j ,k
17 +ai , j ,k

5 +ai , j ,k
8 +ai , j ,k

2

c0PP
i , j ,k =

ai , j ,k
17 c00P

i , j+1,k +ai , j ,k
8 +ai , j ,k

5 c0P0
i , j ,k+1

ai , j ,k
11 +ai , j ,k

23 +ai , j ,k
20 +ai , j ,k

26 +ai , j ,k
17 +ai , j ,k

5 +ai , j ,k
8 +ai , j ,k

2

C

108 C. MULTIGRID COEFFICIENTS

ForΩ111

ei , j ,k =cMMP
i , j ,k ei−1, j−1,k+1 + cPMP

i , j ,k ei+1, j−1,k+1+
cMPP

i , j ,k ei−1, j+1,k+1 + cPPP
i , j ,k ei+1, j+1,k+1+

cMMM
i , j ,k ei−1, j−1,k−1 + cPMM

i , j ,k ei+1, j−1,k−1+
cMPM

i , j ,k ei−1, j+1,k−1 + cPPM
i , j ,k ei+1, j+1,k−1

cMMM
i , j ,k =−

[
ai , j ,k

19 +ai , j ,k
10 c00M

i−1, j−1,k +ai , j ,k
23 cMM0

i , j ,k−1 +ai , j ,k
22 c0M0

i−1, j ,k−1 +ai , j ,k
20 cM00

i , j−1,k−1

+ai , j ,k
11 cM0M

i , j−1,k +ai , j ,k
13 c0MM

i−1, j ,k

]
/ai , j ,k

14

cMMP
i , j ,k =−

[
ai , j ,k

1 +ai , j ,k
10 c00P

i−1, j−1,k +ai , j ,k
11 cM0P

i , j−1,k +ai , j ,k
2 cM00

i , j−1,k+1 +ai , j ,k
4 c0M0

i−1, j ,k+1

+ai , j ,k
5 cMM0

i , j ,k+1 +ai , j ,k
13 c0MP

i−1, j ,k

]
/ai , j ,k

14

cMPM
i , j ,k =−

[
ai , j ,k

25 +ai , j ,k
23 cMP0

i , j ,k−1 +ai , j ,k
26 cM00

i , j+1,k−1 +ai , j ,k
22 c0P0

i−1, j ,k−1 +ai , j ,k
17 cM0M

i , j+1,k

+ai , j ,k
16 c00M

i−1, j+1,k +ai , j ,k
13 c0PM

i−1, j ,k

]
/ai , j ,k

14

cMPP
i , j ,k =−

[
ai , j ,k

7 +ai , j ,k
17 cM0P

i , j+1,k +ai , j ,k
16 c00P

i−1, j+1,k +ai , j ,k
8 cM00

i , j+1,k+1 +ai , j ,k
4 c0P0

i−1, j ,k+1

+ai , j ,k
5 cMP0

i , j ,k+1 +ai , j ,k
13 c0PP

i−1, j ,k

]
/ai , j ,k

14

cPMM
i , j ,k =−

[
ai , j ,k

21 +ai , j ,k
23 cPM0

i , j ,k−1 +ai , j ,k
24 c0M0

i+1, j ,k−1 +ai , j ,k
20 cP00

i , j−1,k−1 +ai , j ,k
15 c0MM

i+1, j ,k

+ai , j ,k
11 cP0M

i , j−1,k +ai , j ,k
12 c00M

i+1, j−1,k

]
/ai , j ,k

14

cPMP
i , j ,k =−

[
ai , j ,k

3 +ai , j ,k
15 c0MP

i+1, j ,k +ai , j ,k
11 cP0P

i , j−1,k +ai , j ,k
6 c0M0

i+1, j ,k+1 +ai , j ,k
2 cP00

i , j−1,k+1

+ai , j ,k
5 cPM0

i , j ,k+1 +ai , j ,k
12 c00P

i+1, j−1,k

]
/ai , j ,k

14

cPPM
i , j ,k =−

[
ai , j ,k

27 +ai , j ,k
23 cPP0

i , j ,k−1 +ai , j ,k
26 cP00

i , j+1,k−1 +ai , j ,k
24 c0P0

i+1, j ,k−1 +ai , j ,k
18 c00M

i+1, j+1,k

+ai , j ,k
17 cP0M

i , j+1,k +ai , j ,k
15 c0PM

i+1, j ,k

]
/ai , j ,k

14

cPPP
i , j ,k =−

[
ai , j ,k

9 +ai , j ,k
18 c00P

i+1, j+1,k +ai , j ,k
17 cP0P

i , j+1,k +ai , j ,k
15 c0PP

i+1, j ,k +ai , j ,k
8 cP00

i , j+1,k+1

+ai , j ,k
6 c0P0

i+1, j ,k+1 +ai , j ,k
5 cPP0

i , j ,k+1

]
/ai , j ,k

14

SUMMARY

REDUCTION OF COMPUTING TIME FOR SEISMIC APPLICATIONS

BASED ON THE HELMHOLTZ EQUATION BY GRAPHICS PROCESS-
ING UNITS

HANS PETER KNIBBE

The oil and gas industry makes use of computational intensive algorithms to provide
an image of the subsurface. The image is obtained by sending wave energy into the
subsurface and recording the signal required for a seismic wave to reflect back to the
surface from the Earth interfaces that may have different physical properties. A seismic
wave is usually generated by shots of known frequencies, placed close to the surface
on land or close to the water surface in the sea. Returning waves are usually recorded in
time by hydrophones in a marine environment or by geophones during land acquisition.
The goal of seismic imaging is to transform the seismograms to a spatial image of the
subsurface. Migration algorithms produce an image of the subsurface given the seismic
data measured at the surface.

In this thesis we focus on solving the Helmholtz equation which represents the wave
propagation in the frequency domain. We can easily convert from the time domain to the
frequency domain and vice-versa using the Fourier transformation. A discretization with
second-order finite differences gives a sparse linear system of equations that needs to be
solved for each frequency. Two- as well as three-dimensional problems are considered.
Krylov subspace methods such as Bi-CGSTAB and IDR(s) have been chosen as solvers.
Since the convergence of the Krylov subspace solvers deteriorates with an increasing
wave number, a shifted Laplacian multigrid preconditioner is used to improve the con-
vergence. Here, we extend the matrix-dependent multigrid method to solve complex-
valued matrices in three dimensions. As the smoother, we have considered parallelizable
methods such as weighted Jacobi (ω-Jacobi), multi-colored Gauss-Seidel and damped
multi-colored Gauss-Seidel (ω-GS).

The implementation of the preconditioned solver on a CPU (Central Processing Unit)
is compared to an implementation on the GPU (Graphics Processing Units or graph-
ics card) using CUDA (Compute Unified Device Architecture). The results show that in
two dimensions the preconditioned Bi-CGSTAB method on the GPU as well as the pre-
conditioned IDR(s) method on a single GPU are about 30 times faster than on a single-
threaded CPU. To achieve double precision accuracy on the GPU we have used the iter-
ative refinement in Chapter 2.

However, problems of realistic size are too large to fit in the memory of one GPU. One
solution for this is to use multiple GPUs. A currently widely used architecture consists

109

110 SUMMARY

of a multi-core computer connected to one or at most two GPUs. Moreover, those GPUs
can have different characteristics and memory sizes. A setup with four or more identi-
cal GPUs is rather uncommon, but it would be ideal from a memory point of view. It
would imply that the maximum memory is four times more than on a single GPU. How-
ever GPUs are connected to a PCI bus and in some cases two GPUs share the same PCI
bus, which creates data transfer limitations. To summarize, using multi-GPUs increases
the total memory size but data transfer problems appear. Therefore, in Chapter 3 we
consider different multi-GPU approaches and understand how data transfer affects the
performance of a Krylov subspace solver with shifted Laplace multigrid preconditioner
for the three-dimensional Helmholtz equation using CUDA (Compute Unified Device
Architecture). Two multi-GPU approaches are considered: data parallelism and split of
the algorithm. Their implementations on a multi-GPU architecture are compared to a
multi-threaded CPU and single GPU implementation. The results show that the data
parallel implementation suffers from communication between GPUs and the CPU, but
is still a number of times faster compared to many-cores. The split of the algorithm
across GPUs limits communication and delivers speedups comparable to a single GPU
implementation.

As a geophysical application which requires an efficient numerical method we con-
sider 3-D reverse time migration with the constant-density acoustic wave equation in
Chapter 4. The idea of migration in the time domain is to calculate the forward wave-
field by injecting the source wavelet. Secondly, we compute the wavefield backward in
time by injecting the recorded signal at the receiver locations. Subsequently, we cross-
correlate the forward and backward wavefields at given timesteps. An explicit finite-
difference scheme in the time domain is a common choice. However, it requires a signif-
icant amount of disk space to store the forward wavefields. The advantage of migration
with a frequency domain solver is that it does not require large amounts of disk space
to store the snapshots. However, a disadvantage is the memory usage of the solver. As
GPUs have generally much less memory available than CPUs, this impacts the size of the
problem significantly.

The frequency-domain approach simplifies the correlation of the source and receiver
wavefields, but requires the solution of a large sparse linear system of equations. The
question is whether migration in the frequency domain can compete with a time-domain
implementation when both are performed on a parallel architecture. Both methods are
naturally parallel over shots, but the frequency-domain method is also parallel over fre-
quencies. If we have a sufficiently large number of compute nodes, we can compute the
result for each frequency in parallel and the required time is dominated by the number
of iterations for the highest frequency. Here, GPUs are used as accelerators and not as
independent compute nodes. We optimize the throughput of the latter with dynamic
load balancing, asynchronous I/O and compression of snapshots. Since the frequency-
domain solver employs a matrix-dependent prolongation, the coarse grid operators re-
quired more storage than available on GPUs for problems of realistic sizes.

An alternative to the depth migration is least-squares migration (LSM). LSM was in-
troduced as a bridge between full waveform inversion and migration. Like migration,
LSM does not attempt to retrieve the background velocity model, however, like full wave-
form inversion the modeled data should fit the observations.

SUMMARY 111

In Chapter 5 an efficient LSM algorithm is presented using several enhancements.
Firstly, a frequency decimation approach is introduced that makes use of the redundant
information present in the data. It leads to a speedup of LSM, whereas the impact on
accuracy is kept minimal.

Secondly, to store the sparse discretization and matrix-dependent prolongation ma-
trices efficiently, a new matrix storage format VCRS (Very Compressed Row Storage) is
presented. This format is capable of handling lossless compression. It does not only
reduce the size of the stored matrix by a certain factor but also increases the efficiency
of the matrix-vector computations. The study shows that the effect of lossless and lossy
compression with a proper choice of the compression parameters are positive.

Thirdly, we accelerate the LSM engine by GPUs. A GPU is used as an accelerator,
where the data is partially transferred to a GPU to execute a set of operations, or as a
replacement, where the complete data is stored in the GPU memory. We demonstrate
that using GPU as a replacement leads to higher speedups and allows us to solve larger
problem sizes. Summarizing the effects of each improvement, the resulting speedup can
be at least an order of magnitude compared to the original LSM method.

SAMENVATTING

VERMINDERING VAN REKENTIJD VOOR SEISMISCHE TOEPASSIN-
GEN GEBASEERD OP DE HELMHOLTZVERGELIJKING MET BEHULP

VAN GRAFISCHE KAARTEN

HANS PETER KNIBBE

De olie- en gasindustrie maakt gebruik van computerintensieve algoritmen om een beeld
van de ondergrond te leveren. Het beeld wordt verkregen door het sturen van golfener-
gie in de ondergrond en door het opnemen van het signaal van de seismische golf dat
terugkeert naar het oppervlak van de aarde. Een seismische golf wordt meestal gegene-
reerd door kleine explosies met bekende frequenties, geplaatst dicht bij de oppervlakte
op land of dicht bij het wateroppervlak in zee. Terugkerende golven worden meestal op-
genomen door hydrofoons in een maritieme omgeving of door geofoons bij acquisitie
op land. Bij seismische beeldvorming worden de seismogrammen getransformeerd tot
een ruimtelijk beeld van de ondergrond. Migratie-algoritmen produceren een beeld van
de ondergrond gebaseerd op de seismische gegevens gemeten aan het oppervlak.

In dit proefschrift richten we ons op het oplossen van de Helmholtzvergelijking die
de golfvoortplanting in het frequentiedomein representeert. We kunnen gemakkelijk
van het tijdsdomein naar het frequentiedomein en vice versa transformeren, met behulp
van de Fouriertransformatie. Een discretisatie met tweede-orde eindige differenties le-
vert een dunbezet lineair matrixsysteem dat moet worden opgelost voor iedere frequen-
tie. Zowel twee- als drie-dimensionale seismische problemen worden hier beschouwd
en opgelost. Krylov-deelruimte methoden zoals Bi-CGSTAB en IDR (s) zijn gekozen voor
deze taak. Aangezien de convergentie van de Krylov methoden met een toename van het
golfgetal verslechtert, wordt een verschoven Laplace multirooster-voorconditionering
gebruikt voor het verbeteren van de convergentie. Hier breiden we de matrix-afhankelijke
multiroostermethode uit om complexe matrices op te lossen in drie dimensies. Als multi-
rooster-smoother, hebben we paralleliseerbare methoden zoals de gedempte Jacobi (ω-
Jacobi), meerkleuren Gauss-Seidel en de gedempte meerkleuren Gauss-Seidel (ω-GS)
methode gekozen.

De rekentijd van de gepreconditioneerde oplosmethode op een CPU (Central Pro-
cessing Unit) wordt vergeleken met die op de GPU (Graphics Processing Units of grafi-
sche kaart) op basis van een implementatie onder het CUDA (Compute Unified Device
Architecture) systeem. De resultaten laten zien dat in twee dimensies de voorgeconditi-
oneerde Bi-CGSTAB methode evenals de voorgeconditioneerde IDR (s) methode op een
enkele GPU ongeveer 30 keer sneller is dan op een enkele CPU. Om hogere nauwkeu-
righeid op de GPU te bereiken hebben we de iteratieve verfijningstechniek gebruikt in

113

114 SAMENVATTING

Hoofdstuk 2.

Problemen van realistische omvang zijn te groot voor het geheugen van een GPU.
Een oplossing hiervoor is om meerdere GPU’s tegelijkertijd te gebruiken. Een op dit mo-
ment veel gebruikte rekenarchitectuur bestaat uit een computer met meerdere reken-
kernen, verbonden met één of twee GPU’s. Bovendien kunnen die GPU’s verschillende
kenmerken en geheugengrootte hebben. Een setup met vier of meer identieke GPU’s
is ongebruikelijk, maar het zou ideaal zijn vanuit het oogpunt van geheugencapaciteit.
Het zou impliceren dat de maximale hoeveelheid geheugen vier keer meer zou zijn dan
op een enkele GPU. Echter GPU’s zijn verbonden met een PCI bus en in sommige geval-
len delen twee GPU’s dezelfde PCI bus, waardoor een data-overdrachtslimiet gecreëerd
zou worden. Samenvattend verhoogt het gebruik van multi-GPU’s de totale grootte van
het geheugen maar veroorzaakt tevens data-overdrachtproblemen. Om deze redenen
beschouwen we in Hoofdstuk 3 verschillende multi-GPU benaderingen en onderzoeken
we hoe data-overdracht de rekentijd van een Krylov deelruimte-methode met verscho-
ven Laplace multirooster-voorconditionering beïnvloedt voor een drie-dimensionale Helm-
holtzvergelijking. Twee multi-GPU implementaties worden beschouwd: data parallel-
lisme en splitsing van het algoritme. De implementaties op een multi-GPU architectuur
worden vergeleken met een moderne CPU implementatie. Uit de resultaten blijkt dat
zogeheten ’data parallelle implementatie’ lijdt onder de communicatie tussen de GPU’s
en CPU, maar zij is nog een aantal malen sneller in vergelijking met de CPU implemen-
tatie. Het uitsplitsen van het rekenalgoritme over de GPU’s reduceert de communicatie
en levert rekentijdverbeteringen op die vergelijkbaar zijn met een implementatie op een
enkele GPU.

Als geofysische toepassing waarvoor we een efficiënte numerieke methode zoeken,
kiezen we 3-D inverse tijdsmigratie op basis van de golfvergelijking in Hoofdstuk 4. Het
idee achter de migratie in het tijdsdomein is het berekenen van een oplossing door zo-
wel voorwaarts als terugwaarts in de tijd te rekenen. Door middel van kruiscorrelaties
van de gevonden oplossingen na de voorwaartse en terugwaartse berekeningen wordt
de uiteindelijke oplossing bepaald. Rekenen in het tijdsdomein vereist een aanzienlijke
hoeveelheid geheugenruimte voor het opslaan van de voorwaartse oplossingen. Het
voordeel van migratie in het frequentiedomein is dat die grote hoeveelheden geheugen-
ruimte niet nodig zijn. Een nadeel is echter het geheugengebruik van de rekenmethode
voor de Helmholtzvergelijking. Aangezien GPU’s over het algemeen veel minder geheu-
gen beschikbaar hebben dan CPU’s, heeft dit aanzienlijke gevolgen voor de omvang van
het rekenprobleem in kwestie.

De frequentiedomein-benadering vereenvoudigt de correlatie van de oplossingen,
maar vereist de oplossing van een groot dunbezet lineair vergelijkingssysteem. De on-
derzoeksvraag was of migratie in het frequentiedomein kan concurreren met een imple-
mentatie in het tijdsdomein als beide worden uitgevoerd op een parallelle rekenarchitec-
tuur. Beide methoden zijn van nature parallel over de input, maar de frequentie-domein
methode is ook parallel over de door te rekenen frequenties. Als we een redelijk groot
aantal rekenprocessoren hebben, kunnen we oplossingen voor iedere frequentie paral-
lel berekenen en de vereiste rekentijd wordt gedomineerd door het aantal iteraties voor
de hoogste frequentie. GPU’s worden hier gebruikt als rekentaakversnellers. We optima-
liseren de doorvoer van de rekentaken met dynamische taakverdeling, asynchrone I/O

SAMENVATTING 115

en compressie van de opnamen.
Aangezien de multirooster gebaseerde oplosmethode in het frequentiedomein op

een matrix-afhankelijke prolongatie is gebaseerd, wordt voor problemen van realistische
grootte meer opslagruimte benodigd dan beschikbaar is op GPU’s. Een alternatief voor
algoritmen op basis van de inverse migratie is een kleinste-kwadraten migratiemethode
(LSM). LSM werd geïntroduceerd als een overgang tussen volledige golffront inversie en
migratie. In Hoofdstuk 5 word een efficiënt LSM-algoritme gepresenteerd op basis van
een aantal verbeteringen. In de eerste plaats is een benadering ingevoerd die gebruik
maakt van redundante informatie die aanwezig is in de seismische data. Het leidt tot
een versnelling van LSM, terwijl de impact op de nauwkeurigheid van de oplossing mi-
nimaal kan worden gehouden. Ten tweede, om de discretisatie en matrix-afhankelijke
prolongatiematrices efficiënt op te slaan, wordt een nieuw matrixformaat "VCRS"(Very
Compressed Row Storage) gepresenteerd. Dit formaat is geschikt voor compressie. Het
vermindert niet alleen de grootte van de opgeslagen matrix met een bepaalde factor,
maar het vergroot ook de efficiëntie van matrix-vector berekeningen. Ten derde ver-
snellen we de LSM rekentechnieken door gebruik te maken van GPU’s. De GPU wordt
gebruikt als een rekenversneller, waarbij data gedeeltelijk aan een GPU wordt overge-
dragen om een set van berekeningen uit te voeren, of als een zogenaamde vervanging,
waar alle data wordt opgeslagen in het geheugen van de GPU. We tonen aan dat, met
de verbeteringen van de rekentechnieken, het gebruik van GPU’s als vervanging leidt tot
hogere versnellingen en dat het grotere rekenproblemen laat oplossen. Met de boven-
genoemde verbeteringen kan de rekentijd tenminste een orde grootte verkleind worden
vergeleken met de oorspronkelijke LSM methode.

CURRICULUM VITÆ

Hans Peter KNIBBE

Born on 07.07.1972 in Reims, France

EDUCATION

2009 – present Delft University of Technology, The Netherlands, PhD student
in Scientific Computing/Applied Mathematics,
subject: Reduction of computing time for seismic applications
based on the Helmholtz equation by Graphics Processing Units,
advisors: Prof.dr.ir. C. Vuik and Prof.dr.ir. C. W. Oosterlee, De-
partment of Applied Mathematics, Faculty of Electrical Engi-
neering, Mathematics and Computer Science

1994 – 1999 Delft University of Technology, The Netherlands, Master of
Computer Science

1992 – 1994 IUT Orsay (University Paris XI), France, Degree in Physics
(Mesures Physiques, comparable to Bsc)

PROFESSIONAL EXPERIENCE

2013 – present Source Contracting, Geophysical Software Consultant
2009 – 2013 Headwave, Senior Algorithm Developer
2008 – 2009 PDS, Senior Software Engineer
2007 – 2008 Fugro-Jason Netherlands BV, Senior Computer Scientist R&D
2004 – 2007 Fugro-Jason Netherlands BV, Computer Scientist R&D
1999 – 2004 LogicaCMG Rotterdam, Computer Scientist
1996 – 1997 QQQ Delft, Programmer

117

LIST OF PUBLICATIONS

H. Knibbe, C. W. Oosterlee, and C. Vuik. GPU implementation of a Helmholtz Krylov
solver preconditioned by a shifted Laplace multigrid method. Journal of Computational
and Applied Mathematics, 236:281-293, 2011.

H. Knibbe, C. Vuik, and C. W. Oosterlee. 3D Helmholtz Krylov solver preconditioned by
a shifted Laplace multigrid method on multi-CPUs. In A. Cangiani, R. L. Davidchack,
E. Georgoulis, A. N. Gorban, J. Levesley, and M . V. Tretyakov, editors, in Proceedings of
ENUMATH 2011, the 9th European Conference on Numerical Mathematics and Advanced
Applications, Leicester, September 2011, pages 653-661. Springer-Verlag Berlin Heidel-
berg, 2013.

H. Knibbe, W. A. Mulder, C. W. Oosterlee, and C. Vuik. Closing the per- formance gap
between an iterative frequency-domain solver and an explicit time-domain scheme for
3-d migration on parallel architectures. Geophysics, 79:47-61, 2014.

H. Knibbe, C. Vuik, and C. W. Oosterlee. Accelerating Least-Squares Migration with Dec-
imation, GPU and New Matrix Format. Submitted for publication

119

REFERENCES

[1] J. G. Hagedoorn, A process of seismic reflection interpretation, Geophysical
Prospecting 2, 85 (1954).

[2] J. F. Claerbout, Towards a unified theory of reflector mapping, Geophysics 36, 467
(1971).

[3] D. E. Baysal, D. Kosloff, and J. W. C. Sherwood, Reverse time migration, Geophysics
48, 1514 (1983), http://library.seg.org/doi/pdf/10.1190/1.1441434 .

[4] N. D. Whitemore, Iterative depth imaging by backward time propagation, 53rd An-
nual International Meeting, SEG, Expanded Abstracts , 382 (1983).

[5] P. Lailly, The seismic inverse problem as a sequence of before stack migration, in
in Proc. Conf. on Inverse Scattering, Theory and Applications, SIAM (Philadelphia,
1983).

[6] A. Tarantola, Inversion of seismic reflection data in the acoustic approximation,
Geophysics 49, 1259 (1984).

[7] G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion
of a causal generalized Radon transform, Journal of Mathematical Physics 26, 99
(1985).

[8] G. Beylkin and R. Burridge, Linearized inverse scattering problems in acoustics and
elasticity, Wave Motion 12, 15 (1990).

[9] R. E. Plessix and W. A. Mulder, Frequency-domain finite-difference amplitude-
preserving migration, Geophysical Journal International 157, 975 (2004).

[10] V. Č ervený , Seismic Ray Theory (Cambridge University Press, Cambridge, 2001).

[11] K. Aki and P. G. Richards, Quantitative seismology, theory and methods, second edi-
tion (University Science Books, Sausalito, California, 2002).

[12] C. Chapman, Fundamentals of seismic wave propagation (Cambridge University
Press, Cambridge, 2004).

[13] J. F. Claerbout, Imaging the Earth’s Interior (Blackwell Scientific, 1985).

[14] J. Virieux and G. Lambare, Theory and observations - body waves: ray methods and
finite frequency effects, in Treatise of Geophysics, volume 1: Seismology and struc-
ture of the Earth, edited by B. Romanovitz and A. D. (eds) (Elsevier, 2007).

[15] J. Scales, Theory of Seismic Imaging (Samizdat Press, 1994).

121

http://dx.doi.org/ 10.1111/j.1365-2478.1954.tb01281.x
http://dx.doi.org/ 10.1111/j.1365-2478.1954.tb01281.x
http://dx.doi.org/0.1190/1.1440185
http://dx.doi.org/0.1190/1.1440185
http://dx.doi.org/10.1190/1.1441434
http://dx.doi.org/10.1190/1.1441434
http://arxiv.org/abs/http://library.seg.org/doi/pdf/10.1190/1.1441434

122 REFERENCES

[16] J. Virieux, H. Calandra, and R.-E. Plessix, A review of the spectral, pseudo-spectral,
finite-difference and finite-element modelling techniques for geophysical imaging,
Geophysical Prospecting 59, 794 (2011).

[17] R. Clayton and B. Engquist, Absorbing boundary conditions for acoustic and elastic
wave equations, Bull. Seis. Soc. America 67, 1529 (1977).

[18] B. Engquist and A. Majda, Absorbing boundary conditions for numerical simula-
tion of waves, Mathematics of Compututation 31, 629 (1977).

[19] C. Cerjan, D. Kosloff, R. Kosloff, and M. Reshef, A nonreflecting boundary condition
for discrete acoustic and elastic wave equations, Geophysics 50, 705 (1985).

[20] B. Saleh, Introduction to Subsurface Imaging (Cambridge University Press, 2011).

[21] Y. A. Erlangga, C. W. Oosterlee, and C. Vuik, A novel multigrid based preconditioner
for heterogeneous Helmholtz problems, SIAM Journal on Scientific Computing 27,
1471 (2006).

[22] H. A. V. der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems, SIAM Journal on Scientific and
Statistical Computing 13, 631 (1992).

[23] P. Sonneveld and M. van Gijzen, IDR(s): A family of simple and fast algorithms for
solving large nonsymmetric systems of linear equations, SIAM Journal on Scientific
Computing 31, 1035 (2008).

[24] J. Gozani, A. Nachshon, and E. Turkel, Conjugate gradient coupled with multi-
grid for an indefinite problem, in Advances in Computational Methods for PDEs V,
edited by R. Vichnevestsky and R. S. Tepelman (IMACS, New Brunswick, NJ, USA,
1984) pp. 425–427.

[25] R. Kechroud, A. Soulaimani, Y. Saad, and S. Gowda, Preconditioning techniques for
the solution of the Helmholtz equation by the finite element method, Mathematics
and Computers in Simulation 65, 303 (2004).

[26] A. L. Laird and M. B. Giles, Preconditioned Iterative Solution of the 2D Helmholtz
Equation, Tech. Rep. 02/12 (Oxford Computing Laboratory, Oxford, UK, 2002).

[27] E. Turkel, Numerical methods and nature, J. Sci. Comput. 28, 549 (2006).

[28] Y. A. Erlangga, C. Vuik, and C. W. Oosterlee, On a class of preconditioners for solv-
ing the discrete Helmholtz equation, in Mathematical and Numerical Aspects of
Wave Propagation, edited by G. Cohen, E. Heikkola, P. Joly, and P. Neittaanmakki
(Univ. Jyväskylä, Finnland, 2003) pp. 788–793.

[29] Y. A. Erlangga, A robust and efficient iterative method for the numerical solution of
the Helmholtz equation, Ph.D. thesis, Delft University of Technology, The Nether-
lands (2005).

http://dx.doi.org/ 10.1190/1.1441945
http://dx.doi.org/http://dx.doi.org/10.1016/j.matcom.2004.01.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.matcom.2004.01.004

REFERENCES 123

[30] Y. Erlangga and R. Nabben, Multilevel projection-based nested Krylov iteration for
boundary value problems, SIAM Journal on Scientific Computing 30, 1572 (2008),
http://epubs.siam.org/doi/pdf/10.1137/070684550 .

[31] Y. Erlangga and F. Herrmann, An iterative multilevel method for comput-
ing wavefields in frequency-domain seismic inversion, in 78th Annual Inter-
national Meeting, Vol. 37 (SEG, Expanded Abstracts, 2008) pp. 1957–1960,
http://library.seg.org/doi/pdf/10.1190/1.3059279 .

[32] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices (Uni-
versity Press, Oxford, 1986).

[33] Y. Saad, Iterative Methods for Sparse Linear Systems (SIAM, Philadelphia, 2003).

[34] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide (SIAM, Philadelphia,
2000).

[35] Peddy, Intel gains, nvidia flat, and amd loses graphics market share in q1,
http://jonpeddie.com/press-releases/details/intel-gains-nvidia-flat-and-amd-
loses-graphics-market-share-in-q1/ (2014).

[36] K. Rupp, CPU, GPU and MIC hardware characteristics over time,
http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-
over-time/ (2013).

[37] C. D. Riyanti, A. Kononov, Y. A. Erlangga, C. Vuik, C. W. Oosterlee, R.-E. Plessix,
and W. A. Mulder, A parallel multigrid-based preconditioner for the 3D heteroge-
neous high-frequency Helmholtz equation, Journal of Computational Physics 224,
431 (2007).

[38] Khronos Group, www.khronos.org (2014).

[39] K. Karimi, N. G. Dickson, and F. Hamze, A performance comparison of CUDA and
OpenCL, CoRR abs/1005.2581 (2010).

[40] P. Du, P. Luszczek, and J. Dongarra, OpenCL evaluation for numerical linear al-
gebra library development, in Symposium on Application Accelerators in High-
Performance Computing (SAAHPC, Knoxville, USA, 2010).

[41] NVIDIA, Nvidia, www.nvidia.com (2011).

[42] K. J. Marfurt, Accuracy of finite-difference and finite-element modeling of the scalar
and elastic wave equations, Geophysics 49, 533 (1984).

[43] W. A. Mulder and R.-É. Plessix, A comparison between one-way and two-way wave-
equation migration, Geophysics 69, 1491 (2004).

[44] H. Liu, B. Li, H. Liu, X. Tong, Q. Liu, X. Wang, and W. Liu, The issues of prestack re-
verse time migration and solutions with Graphic Processing Unit implementation,
Geophysical Prospecting 60, 906 (2012).

http://dx.doi.org/10.1137/070684550
http://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/070684550
http://dx.doi.org/10.1190/1.3059279
http://dx.doi.org/10.1190/1.3059279
http://arxiv.org/abs/http://library.seg.org/doi/pdf/10.1190/1.3059279
http://dx.doi.org/ 10.1016/j.jcp.2007.03.033
http://dx.doi.org/ 10.1016/j.jcp.2007.03.033
http://arxiv.org/abs/1005.2581
http://dx.doi.org/ 0.1190/1.1836822
http://dx.doi.org/10.1111/j.1365-2478.2011.01032.x

124 REFERENCES

[45] Q. Ji, S. Suh, and B. Wang, GPU based layer-stripping TTI RTM, in 82nd Annual
International Meeting, SEG, Expanded Abstracts, Vol. 31 (2012) pp. 1–5.

[46] R. G. Clapp, Reverse time migration with random boundaries, in 79th Annual In-
ternational Meeting, SEG, Expanded Abstracts, Vol. 28 (2009) pp. 2809–2813.

[47] A. Griewank and A. Walther, Algorithm 799: Revolve: an implementation of check-
pointing for the reverse or adjoint mode of computational differentiation, ACM
Transactions on Mathematical Software 26, 19 (2000).

[48] W. W. Symes, Reverse time migration with optimal checkpointing, Geophysics 72,
213 (2007).

[49] J. Cabezas, M. Araya-Polo, I. Gelado, N. Navarro, E. Morancho, and J. M. Cela,
High-performance reverse time migration on GPU, International Conference of the
Chilean Computer Science Society , 77 (2009), iEEE Computer Society.

[50] A. George and J. Liu, Computer Solution of Large Sparse Positive Definite Systems
(Prentice-Hall, Englewood Cliffs, N.J., 1981).

[51] K. J. Marfurt and C. S. Shin, The future of iterative modeling of geophysical explo-
ration, in Supercomputers in seismic exploration, edited by E. Eisner (Pergamon
Press, 1989) pp. 203–228.

[52] W. A. Mulder and R.-E. Plessix, Time- versus frequency-domain modelling of seismic
wave propagation, in Extended Abstract E015, 64th EAGE Conference & Exhibition,
27 - 30 May 2002, Florence, Italy (2002).

[53] S. Operto, J. Virieux, P. Amestoy, J.-Y. L’Excellent, L. Giraud, and H. B. H. Ali, 3D
finite-difference frequency-domain modeling of visco-acoustic wave propagation
using a massively parallel direct solver: A feasibility study, Geophysics 72, SM195
(2007).

[54] S. Wang, M. V. de Hoop, and J. Xia, On 3D modeling of seismic wave propagation via
a structured parallel multifrontal direct Helmholtz solver, Geophysical Prospecting
59, 857 (2011).

[55] S. Wang, M. de Hoop, and J. Xia, Acoustic inverse scattering via helmholtz oper-
ator factorization and optimization, Journal of Computational Physics 229, 8445
(2010).

[56] C. Riyanti, Y. Erlangga, R.-E. Plessix, W. Mulder, C. Vuik, and C. W. Oosterlee, A new
iterative solver for the time-harmonic wave equation, Geophysics 71, E57 (2006),
http://library.seg.org/doi/pdf/10.1190/1.2231109 .

[57] R.-E. Plessix, A Helmholtz iterative solver for 3D seismic-imaging problems, Geo-
physics 72, SM185 (2007), http://library.seg.org/doi/pdf/10.1190/1.2738849 .

[58] T. Nemeth, C. Wu, and G. T. Schuster, Least-squares migration of incomplete re-
flection data, Geophysics 64, 208 (1999).

http://dx.doi.org/doi: /10.1190/1.3255432
http://dx.doi.org/doi: /10.1190/1.3255432
http://doi.acm.org/10.1145/347837.347846
http://doi.acm.org/10.1145/347837.347846
http://dx.doi.org/10.1190/1.2742686
http://dx.doi.org/10.1190/1.2742686
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/SCCC.2009.19
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/SCCC.2009.19
http://dx.doi.org/10.1190/1.2759835
http://dx.doi.org/10.1190/1.2759835
http://dx.doi.org/10.1111/j.1365-2478.2011.00982.x
http://dx.doi.org/10.1111/j.1365-2478.2011.00982.x
http://dx.doi.org/ 10.1016/j.jcp.2010.07.027
http://dx.doi.org/ 10.1016/j.jcp.2010.07.027
http://dx.doi.org/10.1190/1.2231109
http://arxiv.org/abs/http://library.seg.org/doi/pdf/10.1190/1.2231109
http://dx.doi.org/ 10.1190/1.2738849
http://dx.doi.org/ 10.1190/1.2738849
http://arxiv.org/abs/http://library.seg.org/doi/pdf/10.1190/1.2738849

REFERENCES 125

[59] H. Kuehl and M. D. Sacchi, Least-squares wave-equation migration for avp/ava in-
version, Geophysics 68, 262 (2003).

[60] R. Rebollo and M. D. Sacchi, Time domain least-squares prestack migration, SEG
Technical Program Expanded Abstracts 29 (2010).

[61] A. Guitton, A. B. Kaelin, and B. Biondi, Least-squares attenuation of reverse-time-
migration artifacts, Geophysics 72, S19 (2007).

[62] M. L. Clapp, Imaging under salt: illumination compensation by regularized inver-
sion, Ph.D. thesis, Stanford University (2005), department of Geophysics.

[63] A. Valenciano, Imaging by Wave-equation Inversion, Ph.D. thesis, Stanford Univer-
sity, Department of Geophysics (2008).

[64] G. T. Schuster, Least-squares crosswell migration, in SEG Expanded Abstracts 12, 63
Annual International Meeting (1993) pp. 25–28.

[65] Y. Tang, Wave-equation Hessian by phase encoding, in 78 Annual International
Meeting, SEG, Expanded Abstracts, Vol. 27 (2008) pp. 2201–2205.

[66] D. Wei and G. T. Schuster, Least-squares migration of multisource data with a de-
blurring filter, Geophysics 76, R135 (2011).

[67] Y. Kim, D. J. Min, and C. Shin, Frequency-domain reverse-time migration with
source estimation, Geophysics 76, S41 (2011).

[68] H. Ren, H. Wang, and S. Chen, Least-squares reverse time migration in frequency
domain using the adjoint-state method, Journal of Geophysics and Engineering 10,
035002 (2013).

[69] H. Knibbe, C. W. Oosterlee, and C. Vuik, GPU implementation of a Helmholtz
Krylov solver preconditioned by a shifted Laplace multigrid method, Journal of
Computational and Applied Mathematics 236, 281 (2011).

[70] Y. A. Erlangga, C. Vuik, and C. W. Oosterlee, On a class of preconditioners for solving
the Helmholtz equation, Applied Numerical Mathematics 50, 409 (2004).

[71] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,
M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey, De-
bunking the 100x GPU vs. CPU myth: an evaluation of throughput computing on
CPU and GPU, SIGARCH Computer Architecture News 38, 451 (2010).

[72] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou,
P. Luszczek, and S. Tomov, Accelerating scientifing computations with mixed pre-
cision algorithms, http://dblp.uni-trier.de/db/journals/corr/corr0808.html, CoRR,
abs/0808.2794 (2008).

[73] M. van Gijzen and P. Sonnenveld, An elegant IDR(s) variant that efficiently ex-
ploits bi-orthogonality properties, ACM Transactions on Mathematical Software 38
(2011), 10.1145/2049662.2049667.

http://stacks.iop.org/1742-2140/10/i=3/a=035002
http://stacks.iop.org/1742-2140/10/i=3/a=035002
http://dx.doi.org/ http://dx.doi.org/10.1016/j.cam.2011.07.021
http://dx.doi.org/ http://dx.doi.org/10.1016/j.cam.2011.07.021
http://dx.doi.org/ http://doi.acm.org/10.1145/1816038.1816021
http://dx.doi.org/10.1145/2049662.2049667
http://dx.doi.org/10.1145/2049662.2049667

126 REFERENCES

[74] P. Wesseling and P. Sonneveld, Numerical experiments with a multi-grid and a pre-
conditioned Lanczos type method, Lecture Notes in Mathematics 771 , 543 (1980).

[75] N. Umetani, S. P. MacLachlan, and C. W. Oosterlee, A multigrid-based shifted
Laplacian preconditioner for a fourth-order Helmholtz discretization, Numerical
Linear Algebra with Applications 16, 603 (2009).

[76] H. R. Elman, O. G. Ernst, and D. P. O’Leary, A multigrid method enhanced by
Krylov subspace iteration for discrete Helmholtz equations, SIAM Journal on Sci-
entific Compututing 23, 1291 (2001).

[77] P. M. de Zeeuw, Matrix-dependent prolongations and restrictions in a blackbox
multigrid solver, Journal of Computational and Applied Mathematics 33, 1 (1990).

[78] A. Fog, Instruction tables: List if instruction latencies, through-
puts and micro-operation breakdowns for Intel, AMD and VIA CPUs,
http://www.agner.org/optimize/instruction_tables.pdf, Copenhagen University
College of Engineering, DTU DIPLOM, Center for Bachelor of Engineering (2010).

[79] NVIDIACUDA, Nvidia CUDAT M , programming guide, version 2.2.1,
http://developer.download.nvidia.com/compute/cuda/2_21/toolkit/docs/NVIDIA_
CUDA_Programming_Guide_2.2.1.pdf (2009).

[80] G. Golub and C. van Loan, Matrix computations, 3rd ed. (The Johns Hopkins Uni-
versity Press, Baltimore, 1996).

[81] J. M. Elble, N. V. Sahinidis, and P. Vouzis, GPU computing with Kaczmarz’s and
other iterative algorithms for linear systems, Parallel Computing 36, 215 (2010).

[82] R. E. Plessix and W. A. Mulder, Separation-of-variables as a preconditioner for an
iterative Helmholtz solver, Applied Numerical Mathematics 44, 385 (2003).

[83] H. Knibbe, C. Vuik, and C. W. Oosterlee, 3D Helmholtz Krylov solver precondi-
tioned by a shifted Laplace multigrid method on multi-GPUs, in in Proceedings of
ENUMATH 2011, the 9th European Conference on Numerical Mathematics and Ad-
vanced Applications, Leicester, September 2011, edited by A. Cangiani, R. L. David-
chack, E. Georgoulis, A. N. Gorban, J. Levesley, and M. V. Tretyakov (Springer-
Verlag Berlin Heidelberg, 2013) pp. 653–661.

[84] E. Zhebel, A Multigrid Method with Matrix-Dependent Transfer Operators for
3D Diffusion Problems with Jump Coefficients, Ph.D. thesis, Technical University
Bergakademie Freiberg, Germany (2006).

[85] B. Barney, POSIX threads programming, Lawrence Livermore National Laboratory,
online, available, https://computing.llnl.gov/tutorials/pthreads (2010).

[86] O. Ernst and M. Gander, Why it is difficult to solve Helmholtz problems with clas-
sical iterative methods, in Numerical Analysis of Multiscale Problems, edited by
I. Graham, T. Hou, O. Lakkis, and R. Scheichl (Springer Verlag, 2012) pp. 325–363.

REFERENCES 127

[87] J. Dongarra, I. Duff, D. Sorensen, and H. van der Vorst, Solving Linear Systems on
Vector and Shared Memory Computers (SIAM, Philadelphia, 1991).

[88] H. Knibbe, W. A. Mulder, C. W. Oosterlee, and C. Vuik, Closing the performance gap
between an iterative frequency-domain solver and an explicit time-domain scheme
for 3-d migration on parallel architectures, Geophysics 79, 47 (2014).

[89] R. Alford, K. Kelly, and B. Boore, Accuracy of finite-difference mod-
eling of the acoustic wave equation, Geophysics 39, 834 (1974),
http://library.seg.org/doi/pdf/10.1190/1.1440470 .

[90] P. Micikevicius, 3D finite difference computation on GPUs using CUDA, in GPGPU-
2: Proceedings of 2nd workshop on general purpose processing on graphics process-
ing units (2009) pp. 79–84.

[91] H. Fu, R. G. Clapp, O. Lindtjorn, T. Wei, and G. Yang, Revisiting finite differences
and spectral methods on diverse parallel architectures, Computers & Geosciences
43, 187 (2012).

[92] W. A. Mulder and R.-E. Plessix, How to choose a subset of frequencies in frequency-
domain finite-difference migration, Geophysical Journal International 158, 801
(2004).

[93] M. A. Dablain, The application of high-order differencing to the scalar wave equa-
tion, Geophysics 51, 54 (1986).

[94] B. Fornberg, Generation of finite difference formulas on arbitrarily spaced grids,
Mathematics of Computation 51, 699 (1988).

[95] X. Shen and R. G. Clapp, Random boundary condition for low-frequency wave
propagation, in SEG Expanded Abstracts 30, 2962 (2011).

[96] A. Louis, P. Maas, and A. Rieder, Wavelet: Theory and Applications (John Wiley and
Sons, London, 1997).

[97] S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way (Aca-
demic Press, Burlington, 2008).

[98] W. R. Stevens, UNIX Network Programming, Volume 1, Second Edition: Networking
APIs: Sockets and XTI (Prentice Hall, ISBN 0-13-490012-X, 1998).

[99] F. Aminzadeh, J. Brac, and T. Kunz, 3-D Salt and overthrust models (Society of
Exploration Geophysicists, Tulsa, Oklahoma, 1997).

[100] A. Guitton and E. Diaz, Attenuating crosstalk noise with simultaneous source full
waveform inversion, Geophysical Prospecting 60, 759 (2012).

[101] A. Gersho and R. M. Grey, Vector quantization and signal compression (Springer
Science+Business Media, New York, 1992).

http://dx.doi.org/10.1190/1.1440470
http://arxiv.org/abs/http://library.seg.org/doi/pdf/10.1190/1.1440470
http://dx.doi.org/10.1111/j.1365-246X.2004.02336.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02336.x
http://dx.doi.org/ http://dx.doi.org/10.1190/1.3627810
http://dx.doi.org/ 10.1111/j.1365-2478.2011.01023.x
http://dx.doi.org/10.1007/978-1-4615-3626-

128 REFERENCES

[102] K. Kourtis, G. Goumas, and N. Koziris, Optimizing sparse matrix-vector multipli-
cation using index and value compression, in Proceedings of the 5th Conference on
Computing Frontiers, CF ’08 (ACM, New York, NY, USA, 2008) pp. 87–96.

[103] Z. Chen, G. Huan, and Y. Ma, Computational methods for multiphase flows
in porous media (Society for Industrial and Applied Mathematics, Philadelphia,
2006).

[104] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid (Academic Press, New
York, 2001).

[105] K. Brackenridge, Multigrid and cyclic reduction applied to the Helmholtz equation,
in 6th Cooper Mountain Conf. on Multigrid Methods, edited by N. D. Melson, T. A.
Manteufel, and S. F. McCormick (1993) pp. 31–41.

[106] K. Stüben and U. Trottenberg, Multigrid methods: fundamental algorithms, model
problem analysis and applications, in Lecture Notes in Math. 960, edited by
W. Hackbush and U. Trottenberg (1982) pp. 1–176.

[107] R. Wienands and C. W. Oosterlee, On three-grid Fourier analysis of multigrid, SIAM
J. Sci. Comp. 23, 651 (2001).

[108] LGM, The Little Green Machine: Massive many-core supercomputer at low environ-
mental cost, http://www.littlegreenmachine.org (2012).

[109] Project denver, http://en.wikipedia.org/wiki/Project_Denver.

http://dx.doi.org/10.1145/1366230.1366244
http://dx.doi.org/10.1145/1366230.1366244
http://opac.inria.fr/record=b1120110
http://opac.inria.fr/record=b1120110
http://en.wikipedia.org/wiki/Project_Denver

	Introduction
	Scope and outline of the thesis
	Helmholtz equation
	Matrix storage formats

	Acceleration with GPUs
	History of GPU development
	CUDA
	Accelerator or replacement?

	Migration in time and frequency domain
	Least-squares migration

	GPU Implementation of a Preconditioned Helmholtz Solver
	Introduction
	Problem Description
	Discretization
	Krylov Subspace Methods
	Shifted Laplace Multigrid Preconditioner

	Implementation on GPU
	CUDA
	Vector and Matrix Operations on GPU
	Multigrid Method on GPU
	Iterative Refinement
	GPU optimizations

	Numerical Experiments
	Hardware and Software Specifications
	Bi-CGSTAB and IDR(s)
	Preconditioned Krylov Subspace Methods

	Conclusions

	3D Preconditioned Helmholtz Solver on Multi-GPUs
	Introduction
	Helmholtz Equation and Solver
	Multi-GPU Implementation
	Split of the Algorithm
	Issues

	Numerical Results on Multi-GPU
	Vector- and Sparse Matrix-Vector operations
	Bi-CGSTAB and Gauss-Seidel on Multi-GPU

	Numerical Experiments for the Wedge Problem
	Conclusions

	Frequency domain migration on multi-CPU
	Choice of Method
	Modeling
	Modeling in the time domain
	Modeling in the frequency domain

	Migration
	Born approximation
	Migration in the time domain
	Migration in the frequency domain

	Implementation details
	Domain decomposition approach
	Implicit load balancing

	Results
	Wedge
	Overthrust EAGE/SEG Model

	Discussion
	Conclusions

	Accelerating LSM
	Introduction
	Least-Squares Migration
	Description
	CG and Frequency Decimation
	Helmholtz solver

	Model Problems
	Very Compressed Row Storage (VCRS) Format
	VCRS Description
	Matrix-Vector Multiplication
	Multigrid Method Preconditioner
	Preconditioned Bi-CGSTAB

	Implementation Details
	GPU
	Common Code
	Task System

	Results
	Conclusions

	Conclusions
	Overview
	Outlook

	Acknowledgments
	Little Green Machine
	Common code
	Abstraction macros for the common code CPU/GPU
	Common code CPU/GPU example

	Multigrid coefficients
	Multigrid

	Summary
	Samenvatting
	Curriculum Vitæ
	List of publications
	titleReferences

