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ABSTRACT

The material point method (MPM) is a numerical method for simulating ground deformations, that combines
the benefits of a fixed grid with moving material points, which carry the history dependent information of the
continuum. During each time step, this information is projected to the grid, on which the equations of motion
are solved and a corresponding acceleration field is constructed. Then, the material points undergo motion
corresponding to the acceleration field and the particle properties are updated accordingly. MPM uses a fi-
nite element method to solve the equations of motion over a triangular grid, but in current versions, the basis
functions used are only piece-wise linear, which results in low-order spatial convergence for function recon-
struction. Furthermore, the piece-wise linear basis functions have discontinuous first derivatives, which cause
so called grid-crossing errors when a material point crosses between elements, where these discontinuities are
occur. To solve these problems for 2D MPM on a triangular grid, this study investigates the possibility to use
higher-order basis functions with the properties of C 1-continuity and non-negativity. B-spline basis functions
would be very suitable for this purpose and earlier studies for 1D have already shown the potential of B-spline
MPM. This thesis shows that it is also possible to use B-splines on a 2D triangular grid, which has led to the use
of quadratic Powell-Sabin (PS) spline basis functions, which are piece-wise quadratic, C 1-continuous, non-
negative basis functions on triangulations. In this thesis, we have implemented these basis functions in MPM
and investigated the performance of PS-spline MPM. Although Constructing and evaluating PS-splines has
proven more cumbersome than the piece-wise linear basis functions classically used in MPM, but PS-spline
MPM shows higher-order spatial convergence for function reconstruction and completely erases grid crossing
errors. For these reasons, PS-spline MPM would be very suitable for application in engineering in which large
numbers of basis functions are necessary: due to the higher-order spatial convergence of PS-spline MPM, the
number of required basis functions could be significantly reduced.

Before implementation in engineering application can take place, however, two issues still appear in PS-
spline MPM, which should be further researched. The first issue is that PS-spline MPM shows instabilities
when elements become nearly empty, as the mass matrix becomes ill-conditioned when this occurs. A way to
mitigate this problems is by lumping the mass matrix, however, this leads to the second issue. When the mass
matrix is lumped, the accuracy of the solution drops significantly, far more than when classical MPM with
piece-wise linear basis functions is lumped. If these issues are resolved in further research, PS-spline MPM
may prove very suitable for engineering applications.
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1
INTRODUCTION

In geomechanics, predicting the behaviour of large soil deformations can be very difficult because the result-
ing geometry of the solid can be drastically different from the original geometry. Typical examples include
landslides, tunnel collapses and pile driving [1].

In order to investigate these problems, it is possible to simulate such scenarios numerically. One of the
most common techniques for these simulations is the updated Lagrangian finite element method, which uses
basis functions over a grid to reconstruct the material properties over the domain of the continuum. However,
this technique has great difficulty dealing with large deformations. In this method, the grid moves along with
the material, which makes it easy to track its properties. However, large deformations will often lead to grid
distortion, resulting in large numerical errors or non-physical solutions. On the other hand, when using a
fixed grid and having the continuum flow through it, it becomes hard to track properties of the material due to
non-linear convective terms that come along with such a description [2].

In order to overcome these difficulties, the material point method (MPM) was invented by Sulsky et al.
around 1994 [3]. This method combines a discretisation of the continuum using material points with a fixed
background grid. Since a fixed grid is used, it will not get distorted, while material points move along with the
continuum and keep track of its properties. At each time step, the information of the material points is pro-
jected onto the grid, where the equations of motion are solved and the acceleration field is reconstructed over
the grid. Finally, the acceleration is projected back onto the material points, which undergo the corresponding
motion and the particle properties are updated accordingly. This way, the method combines the advantages
of having a fixed grid, but is still able to track the history dependent properties of the material. To project the
continuum properties from the particle points to the grid, the property distributions are reconstructed as a
linear combination of basis functions, which are defined in correspondence with the grid.

In order to find accurate solutions for two-dimensional problems with arbitrary geometries, it is desirable
to use a triangular grid. Such a grid can be easily refined at places of interest and can approximate any arbitrary
geometry. Therefore, this thesis will focus on MPM on a triangular grid. The typical choice for basis functions
over triangulations is the set of piece-wise linear Lagrangian basis functions. However, this basis is only second
order spatial convergent, which means that a fine grid is required to get a reliable solution. This again results
in long computation times. Since problems in MPM can have thousands up to millions of degrees of freedom,
computation time and accuracy become a serious problem.

Another drawback of the piece-wise linear Lagrangian basis functions is the occurrence of grid-crossing
errors. Grid crossing errors appear due to the discontinuity in the gradient of the Lagrangian basis functions
over the edges of the elements. In most versions of MPM, this error can be mitigated, for example as described
by Al-Kafaji [1], but to completely erase this error, C 1 continuous basis functions should be used.

In this thesis, we investigate if the use of higher-order B-spline functions on triangular grids in MPM can
mitigate these problems. In previous research, instead of higher-order B-splines, the use of higher-order La-
grangian basis functions in MPM has been researched, but this basis turns out to be unsuitable due to negativ-
ity of the basis functions. It is preferable to use non-negative basis functions within the material point method,
because else the mass matrix used for calculating the solution will have negative entries. In several cases, this
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may already lead to numerical instabilities and non-physical results [4], as negative entries represent a neg-
ative mass. Furthermore, negative entries prevent the mass matrix from being lumped, whereas lumping is
very important for quickly solving large systems of equations. Therefore, using non-negative basis functions
is of great importance. However, all higher-order Lagrangian basis function contain negative parts. Finally,
higher-order Lagrangian basis function also have discontinuous gradients, so grid crossing errors still pose a
problem. For these reasons, higher-order Lagrangian basis functions are not suitable for MPM.

As an alternative to a Lagrangian basis, this thesis studies the use of a basis of a Powell-Sabin (PS) splines,
which are C 1-continuous non-negative B-splines on arbitrary triangulations. Earlier studies on the use of a
B-spline basis for one-dimensional MPM showed great potential, see [5, 6]: higher-order spatial convergence
was achieved and grid crossing errors no longer occurred. PS-spline basis functions are also expected to have
the same benefits for two-dimensional MPM.

The goal of this thesis is to implement the Powell-Sabin spline basis functions into MPM, and investi-
gate if these basis function lead to the expected higher-order convergence and solve the grid crossing error.
This research is executed in cooperation with Deltares, a research institute that investigates geomechanical
problems with MPM. The main application of interest for Deltares is pile driving for off-shore platforms for
wind-turbines. The current MPM version of Deltares uses piece-wise linear Lagrangian basis functions on tri-
angular grids, in which a mitigation for grid-crossing errors is included. A B-spline based MPM could lead to a
more accurate and faster method and completely solve the problem of grid crossing as well. To research this,
Powell-Sabin spline MPM is validated by solving benchmarks problems, and comparing these to their analytic
solution. From these benchmarks, the convergence and stability of PS-spline MPM is studied.

The outline of this study is as follows. First the equations of motion are presented and the material point
method is introduced for solving these equations in Chapter 2. In Chapter 3, the weaknesses of Lagrange
basis functions are discussed and to replace these functions, higher-order Powell-Sabin spline basis function
are introduced and constructed. In Chapter 4 Lagrangian basis MPM and PS-spline MPM are compared in
terms of spatial convergence and general accuracy. Finally, in Chapter 5, the most pressing open issues of PS-
spline MPM is discussed: PS-spline MPM is prone to instabilities when handling near-empty elements. Some
mitigation techniques are proposed and investigated to improve stability of PS-spline MPM.
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2
MATERIAL POINT METHOD FOR SOIL

DEFORMATION PROBLEMS

In this chapter, the material point method is discussed in detail. There are several versions of MPM, but in this
thesis the formulation as originally described by Sulsky et al. [7] is used, although we follow the comprehensive
step-by-step implementation by Al-Kafaji [1]. This is also the method used by Tielen [5], on whose work this
thesis is building, and Deltares follows this procedure as well.

First the equations of motion for a continuum undergoing deformations are presented. Next, the basic
concept of MPM will be explained in Section 2.2. Then in Section 2.3 the spatial discretisation is discussed.
In Section 2.4, the full algorithm for a single time step in MPM is presented. Finally, we also discuss the grid
crossing error in Section 2.7, as this error is an important incentive to use spline basis functions in MPM.

For the reader who is already familiar with the material point method and the associated grid crossing
error, we recommend immediately moving on to Chapter 3, in which the construction of the higher-order,
C 1-continuous, Powell-Sabin spline basis functions is explained.

2.1. GOVERNING EQUATIONS
In this section, we will present the equations of motion that we will solve using the material point method. The
equations will not be derived in this thesis, but a full derivation can be found in [1].

2.1.1. LAGRANGIAN FRAME OF REFERENCE
In continuum mechanics, different frames of reference can be used to formulate the equations of motion. The
two most common ones are the Lagrangian and the Eulerian frame of reference. In both frames, a control vol-
ume is considered and within this control volume, equations can be derived for the velocity, density, internal
force and other properties. Within the Eulerian frame of reference, the control volume is kept stationary, and
thus the continuum moves into and out of the control volume. The mass contained within the control volume
can change over time. However, within the Lagrangian frame of reference, the control volume typically con-
tains the same part of the continuum all the time, and moves along with it. Therefore, its mass is constant over
time, but the control volume will change shape and its volume may change as well. An illustration of the Eu-
lerian and Lagrangian frames of reference can be found in Figure 2.1. In MPM, particles are used to represent
the continuum, and each particle contains the same piece of the continuum at all time steps and tracks the
properties of it over time. This corresponds with a Lagrangian frame of reference.

A large advantage of this frame of reference is that the equations of motion simplify much. In general, when
a quantity f is considered in the a control volume, its change over time is described by the material derivative:

d f (x , t )

dt
= ∂ f

∂t
+v ·∇ f , (2.1)

in which t denotes the time, x the position, v the velocity and ∇ f the gradient of f . The change in time
in the control volume is due to two parts: a partial derivative with respect to time, and an advection term.
For example, we may consider the temperature inside a control volume. The temperature can change due to
heating of the particles inside the volume. This corresponds to the partial derivative with respect to time in
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Equation 2.1. Furthermore, the temperature may also change because particles flow into the control volume
on one side and out on the opposite side. The material flowing in may have a different temperature than the
material flowing out. This change is equal to the flow speed multiplied with the gradient of the temperature in
the direction of the flow, v ·∇ f . This yields the advection term in Equation 2.1. Now, consider the fact that in
MPM the Lagrangian frame of reference is used. That is, the control volumes moves along with the material.
Therefore, these control volumes will contain the same material independent of time and no particles flow
into or out of the control volume. Therefore, the advective term can be dropped and the material derivative
reduces to the partial derivative for all purposes in MPM [8]:

d

dt
= ∂

∂t
. (2.2)

This greatly simplifies the equations of motion and is one of the main reasons to use MPM over other finite
element methods.

Figure 2.1: Illustration of the Lagrangian (upper, red) and Eulerian (lower, blue) frame of reference in 2D. The control volumes in the
Eulerian frame of reference are stationary and material can go in and out. The Lagrangian frame of reference always contains the same
material and moves along with it.

2.1.2. EQUATIONS OF MOTION
For describing the equations of motion of a continuum, it is common that both conservation of mass and
conservation of momentum are considered. However, conservation of mass is already guaranteed for MPM,
as particles are used that represent the grid. These particles contain the some part of the continuum at all
times, so the mass of each particle does not change and therefore conservation of mass is guaranteed. The
equations of motion for use in MPM will be based only on conservation of momentum:

ρ
∂v

∂t
=∇·σ+ρg . (2.3)

In this equation, v = ∂x
∂t denotes the velocity vector, ∇ ·σ the divergence of the stress tensor, ρ the density,

and g the acceleration vector, which is −9.81 in the y-direction for the 2D benchmarks in this thesis, unless
mentioned otherwise. Note the fact that in the above equation, only partial derivatives to the time are used; this
is due to the use of a Lagrangian frame of reference, reducing all the material derivatives to partial derivatives
as in Equation 2.2.

The stress tensor is a measure for the internal force in a material. A differential equation for the stress
tensor σ is given below, relating the stress tensor to the strain tensor ε through a constitutive relation [1, 9].
The strain is a measure for the deformation of the continuum, indicating compression, stretching and shear
deformation. More general information about the stress and strain tensors, and the corresponding motion can
be found in Appendix A.1. The Einstein summation convention is used for repeated indices:

∂σi j

∂t
= Di j kl

∂εkl

∂t
− ∂εkk

∂t
σi j +ωi kσk j −σi kωk j , (2.4)

The term Di j kl and the spin tensor ωi j need to be further defined. The spin tensor ωi j accounts for the rota-
tional acceleration of the continuum, and is given by

ωi j = 1

2

(
∂vi

∂x j
− ∂v j

∂xi

)
. (2.5)
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The term Di j kl gives a linearised relation between stress and strain in Equation 2.4, derived from Hooke’s law.
The term is given by

Di j kl =
(
K − 2

3
G

)
δi jδkl +G

(
δi kδ j l +δi lδ j k

)
. (2.6)

The δi j denotes the Kronecker delta, which is 1 if i = j and zero otherwise. K and G represent the bulk mod-
ulus and shear modulus respectively; the bulk modulus is the ratio between pressure and the corresponding
decrease of volume, and the shear modulus is the ratio between the shear strain and the resulting shear stress.
The bulk modulus and shear modulus are both determined by the Poisson ratio ν and the Young’s modulus E ,
which are material properties that are assumed to be known:

K = E

3(1−2ν)
and G = E

2(1+ν)
. (2.7)

The Poisson ratio ν describes the ratio between transversal expansion to axial compression. That is, when a
volume gets compressed in one direction, it will generally expand in directions orthogonal to the compression.
The rate at which this happens is the Poisson ratio. The Young’s modulus is the ratio between axial stress and
the corresponding axial strain.

Finally, a differential equation for the incremental strain is given by

∂εi j

∂t
= 1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)
. (2.8)

The differential equations for the velocity, stress and strain in Equations 2.3, 2.4-2.7 and 2.8 respectively to-
gether form a system of differential equations that describe the movement of a continuum. With initial and
boundary conditions, the problem will be fully described.

2.1.3. INITIAL AND BOUNDARY CONDITIONS
In order to fully define a problem, the initial and boundary conditions are required. Let the domain of interest
be Ω, and its boundary ∂Ω, see Figure 2.2. Depending on the problem of interest, it is well possible that the
geometry of the continuum changes. Therefore the boundary and the domain may also be dependent of time.
The boundary is split in two parts, ∂Ωu and ∂Ωτ. On ∂Ωu , the displacement is prescribed,

u(x , t ) =U (t ) on ∂Ωu(t ). (2.9)

This corresponds to a Dirichlet boundary condition. On ∂Ωτ the surface traction is prescribed,

σi j (x , t )n j = τi (t ) on ∂Ωτ(t ), (2.10)

where n j denotes the j th component of the unit vector, normal to the boundary pointing outwards. Prescribed
traction corresponds to a Neumann boundary condition, although in this thesis, only homogeneous traction
boundary condition are considered in the benchmarks. Together ∂Ωu and ∂Ωτ are assumed to make up the
entire boundary. These parts are not allowed to overlap, only one of the two boundary conditions can be active
at a time.

Initial conditions are required for each of the equations described in differential form. The displacement
and velocity require initial conditions, and we also require an initial condition for the stress, as the magnitude
of the stress is used in Equation 2.4. The strain is only required in differential from, and therefore, we do not
need an initial condition for this. The initial conditions are thus given by

u(x , t0) =U0(x), v (x , t0) =V0(x), and σi j (x , t0) =σ0
i j (x). (2.11)

2.1.4. WEAK FORM
For numerically solving the momentum conservation equation every discrete time step, MPM uses a finite ele-
ment approach, solving the momentum equation in its weak form. The weak form the momentum equation is
easiest evaluated component wise: first evaluate the acceleration in the x-direction, second in the y-direction.
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Ω

∂Ωu

∂Ωτ

n

Figure 2.2: A domain Ω with its boundary ∂Ω. The boundary is divided in two parts. On the dotted part ∂Ωu , the displacement is pre-
scribed, and on the solid part ∂Ωτ, the traction is prescribed. n marks an outwards pointing normal vector.

Let ak denote the acceleration in the xk direction. The momentum equation is multiplied by a test function φ
from a test spaceΦ, and then integrated over the domain.

ρa =∇·σ+ρg

⇒
∫
Ω
φρa dΩ=

∫
Ω
φ∇·σdΩ+

∫
Ω
φρg dΩ. (2.12)

Let Φ be the space of sufficiently smooth functions, which are zero on the boundary parts where essential
boundary conditions are imposed in the original equation. Then both the weak form and the original equation
will have the same solution [10]. In case that φ meets these conditions, then Equation 2.12 can be further
evaluated. First consider the stress term on the right hand side. Apply integration by parts and then the Gauss
integration theorem. Finally split the boundary integral into its Dirichlet and its Neumann part:

(Integration by parts)
∫
Ω
φ∇·σdΩ=

∫
Ω
∇· (φσ)

dΩ −
∫
Ω
∇φ ·σdΩ

(Gauss theorem) =
∫
∂Ω
φn ·σdΓ −

∫
Ω
∇φ ·σdΩ

(Split boundary) =
∫
∂Ωu

���
0

φ n ·σdΓ+
∫
∂Ωτ

φn ·σdΓ −
∫
Ω
∇φ ·σdΩ

⇒
∫
Ω
φ∇·σdΩ=

∫
∂Ωτ

φn ·σdΓ −
∫
Ω
∇φ ·σdΩ. (2.13)

When splitting the boundary integral into its part over the Dirichlet and over the Neumann boundary parts,
note that the test function is zero on the Dirichlet part. Therefore, this part can be crossed out and Equa-
tion 2.13 remains. Plug this back into the weak form in Equation 2.12 and this yields the final form of the weak
equation. The full problem formulation then becomes

Find a ∈A such that ∫
Ω
φρa dΩ=

∫
∂Ωτ

φn ·σdΓ−
∫
Ω
∇φ ·σdΩ+

∫
Ω
φρg dΩ (2.14)

for all φ ∈Φ.

The space A represents the space of sufficiently smooth functions for the acceleration that respect the
essential boundary conditions. This space will be specified for MPM later. In MPM, Equation 2.14 will be used
to solve the acceleration a at each time step.
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2.2. CONCEPT OF MPM: PARTICLE IN GRID METHOD
The material point method is a finite element method to solve the equations of motion for a deforming con-
tinuum. MPM can be considered as a particle in grid method: a stationary background grid is combined with
moving material points to discretise the continuum. The equations of motion, as previously described, are dis-
cretised over time and space and then solved. In order to keep track of the material data, MPM uses material
points, which are also referred to as particles. These store all the properties of the material such as stress, ve-
locity and density. These particles can move freely through the domain and always contain the same material.
Therefore, the mass of each material point does not change, but its position, volume and other properties can.
By doing so, it is easy to track the history of the material, which is necessary to solve the equations of motion.

The material points contain the information about the continuum, but in order to update these properties,
a stationary background grid is used. The properties at the material points are projected onto the background
grid, where the equations of motion are solved using a finite element approach. The finite element method
uses the weak form of the momentum equation (Equation 2.14) to calculate the acceleration on the grid level.
Then, the acceleration is projected back to the particles, where the velocities, positions and other properties
of the material points are updated. Figure 2.3 illustrates the concept of the particle in grid method of MPM.
Because the equations of motion use a Lagrangian frame of reference, no non-linear convective terms ap-
pear in the equations of motion, which would have appeared when the equations without the use of material
points. Combining material points with a stationary background grid gives the advantage that the non-linear
convective terms are avoided without the risk of grid distortion.

(1) (2) (3)

Figure 2.3: A part of a triangular MPM grid with particles inside. The concept of MPM is shown. (1): The particles properties are projected
onto the grid. (2): The equations of motion are solved on the grid level. (3): The particle properties are updated and the grid is reset.

2.3. SPACE DISCRETISATION
In order to solve the momentum equation, it must be discretised on the background grid. The grids considered
in this thesis are triangular. Triangular grids have several advantages over quadrilateral tensor grids. Triangular
grids can be constructed by a Delaunay triangulation from an arbitrary set of points, whereas tensor grids are
typically mapped from a unit square to the geometry. The tensor product grids have the advantage that the
basis functions over the grid can be tensor products of one-dimensional basis functions, and are therefore easy
to construct and evaluate. However, the mapping can give difficulties when trying to approximate complex
geometries. Furthermore, it may be quite difficult to locally refine the grid. These problems do not appear
when using a triangular grid. It is very easy to approximate an arbitrary geometry with triangles, also the
local refinement process can simply be done by adding additional vertices locally and running the Delaunay
triangulation process again. All together, a triangular grid is preferred for deformation problems with arbitrary
geometries and thus this thesis studies MPM specifically with a triangular background grid.

Over the triangular background grid, a set of nb f basis functions that span Φ is defined. For each of the
basis functions φi , the weak form for the momentum conservation equation of Equation 2.14 will be solved,
which is repeated here component-wise,∫

Ω
φρak dΩ=

∫
∂Ωτ

φσmk nm · dΓ−
∫
Ω

∂φ

∂xm
σmk dΩ+

∫
Ω
φρgk dΩ. (2.15)

Note the Einstein summation over repeated index m in the above notation. To solve the equation, the acceler-
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ation for each direction xk is approximated by a linear combination of basis functions inΦ,

ak (x) ≈ ak,h(x) =
nb f∑
j=1

âk, jφ j (x), (2.16)

in which ak,h denotes the approximation of the acceleration in the xk direction and âk, j the coefficients of its
corresponding basis function. For each direction, the acceleration has its own coefficients.

Substituting the approximation ak,h into the weak form of the momentum equation results in the following
equation for each of the basis functions φi ,∫

Ω
φiρ

nb f∑
j=1

âk, jφ j dΩ=
∫
∂Ωτ

φiσmk nm dΓ−
∫
Ω

∂φi

∂xm
σmk dΩ+

∫
Ω
φiρgk dΩ, for i = 1. . .nb f .

By exchanging summation and integration, this can be rewritten to
nb f∑
j=1

(∫
Ω
φiρφ j dΩ

)
âk, j =

∫
∂Ωτ

φiσmk nm dΓ−
∫
Ω

∂φi

∂xm
σmk dΩ+

∫
Ω
φiρgk dΩ, for i = 1. . .nb f . (2.17)

Now assume that an acceleration function in the xk -direction ak,h with coefficients âk, j is found, such that
Equations 2.17 hold for each of the basis functions φi . Then this acceleration function will also solve the
equation when φ is any linear combination of the basis functions. This is true because the equation is linear
in φi and therefore, ak,h will be a solution for any arbitrary function φ ∈Φ.

Next, note that Equations 2.17 are a linear system of equations, and can be rewritten in the form

M âk = F tr ac
k +F i nt

k +F g r av
k . (2.18)

In this equation, M denotes the mass matrix, and F tr ac
k , F i nt

k and Fk
g r av respectively denote the traction force,

the internal force and the gravitational force in the xk direction. The mass matrix is defined as a n by n matrix,
with n the number of basis functions. Its entries are defined as

M i j =
∫
Ω
φiρφ j dΩ. (2.19)

The entries i of the force vector are defined as

F tr ac
k,i =

∫
∂Ωτ

φiσmk nm dΓ, (2.20)

F i nt
k,i =

∫
Ω

∂φi

∂xm
σmk dΩ, (2.21)

F g r av
k,i =

∫
Ω
φiρgk dΩ. (2.22)

For evaluating these integrals, the values of σml and ρ are only known in the material points. Therefore, the
material points uses the integration points for quadrature integration, and thus the information of the particles
is mapped to the grid. The volumes Vp of the material points are used as integration weights, as this is the part
of the domain occupied by the particle. The quadrature integration rule then becomes∫

Ω
f (x)dΩ≈

np∑
p=1

Vp f (x p ), (2.23)

where f is an arbitrary function and np the number of particles. When using this quadrature rule, the mass
matrix and forces in Equation 2.18 are evaluated as

M i j =
np∑

p=1
Vpφi (x p )ρpφ j (x p ) =

np∑
p=1

mpφi (x p )φ j (x p ), (2.24)

F i nt
k,i =

np∑
p=1

Vp
∂φi

∂xm
(x p )σmk,p , (2.25)

F g r av
k,i =

np∑
p=1

Vpφi (x p )ρp gk =
np∑

p=1
mpφi (x p )gk . (2.26)

Here ρp , Vp and mp respectively denote the density, volume and mass in each material point.
This is the spatial discretisation that will be used to solve the momentum equation in each time step. In

the next section the time discretisation and the time stepping procedure will be explained in detail.
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2.4. SOLUTION PROCEDURE
In order to solve the equations of motion of a continuum over time, a time stepping procedure is required. The
time stepping procedure presented in this section was recovered from [7], and is used by Deltares [1] as well.
The basic principle of the method is to discretise the time and update all particle properties in each time step
using the momentum conservation equation.

For the time integration, first the material should be initialised on the domain of interestΩ0. The number
of material points np must be chosen and the grid should be defined. To get a more reliable quadrature inte-
gration more particles can be added per element. To reduce the global quadrature integration error as much
as possible for a fixed number of particles, we suggest distributing the particles evenly over all elements, such
that each element starts with the same number of material points. Depending on the situation, different ini-
tial particle distribution may prove to be better, however. For now, assume that the triangular grid is defined
and the material points are initially evenly distributed over the triangles. At time t = 0, each material point is
assigned its initial position x0

p , its displacement from its stationary position u0
p , velocity v 0

p , mass m0
p , volume

V 0
p , density ρ0

p and stress σ0
p , where p denotes the particle and the superscript 0 the time step. Figure 2.4 il-

lustrates two possible initialisations of the particles in the grid, a regular one and an irregular one. MPM can
work with either type, though in most cases, a structured grid is preferable.

(a) Regular (b) Irregular

Figure 2.4: A possible discretisation of a unity square domain. The domain is divided in triangular elements, with particles inside. On the
left a fully regular grid and particle distribution are shown. Both the grid and particles can also be generated in a more arbitrary way, as
shown on the right. Both examples have the same number of triangles and particles.

Having initialised the grid and the particles, the time stepping procedure can start, which passes the fol-
lowing phases during each time step.

1. Assemble the mass matrix and force vectors of Equation 2.18 on the background grid, using the particles
as integration points as shown in Equations 2.24-2.26.

2. Solve the coefficient vector âk from the system of Equations 2.18. From the coefficient vector, the global
acceleration field can be determined.

3. Using the acceleration over the grid, update the velocity and position in the particles. Then from the up-
dated positions, determine the new strain and stress in the particles using the stress and strain relations
shown in Section 2.1.

After phase 3, a new time step can be taken and the procedure starts at phase 1 again. In the next subsections,
each of these three phases will be elaborately described.

2.4.1. ASSEMBLING MOMENTUM CONSERVATION EQUATION
In the first phase, Equation 2.18 needs to be assembled. The mass matrix and the force vectors are assembled
using quadrature integration in the material points, as explained in Section 2.3. Only the assembly of the
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traction force has not been explained yet. The traction force is determined by integrating over the boundary
where a traction force is applied. This boundary is not prescribed and may move over time, so boundary
particles are assigned at the start of the simulation and these are assumed to be boundary particles for the rest
of the simulation. Each of the boundary particles will be assigned a part of the traction force corresponding
to its location and its initial boundary surface. Then, each of those boundary particles has a traction force
prescribed at each moment in time. The assumption made here is that the traction force originates from a
solid object pressing on the surface, for example a slab of concrete on top, compressing the continuum, and
that the resulting force vector on the material is fully known. The traction force in the xk -direction in each
of the boundary particles p is then prescribed as: Vp σmk,p nk,p = f tr ac

k,p . The traction force in the remaining

particles is equal to 0. The traction force vector F tr ac can then be assembled in a similar fashion as the other
force vectors. The full assembly at time t for the xk direction then becomes

M t
i j =

np∑
p=1

mpφi (x p )φ j (x p ), (2.27)

F tr ac,t
k,i =

np∑
p=1

φi (x p ) f tr ac
k,p , (2.28)

F i nt ,t
k,i =

np∑
p=1

Vp
∂φi

∂xm
(x p )σmk,p , (2.29)

F g r av,t
k,i =

np∑
p=1

mpφi (x p )gk . (2.30)

2.4.2. SOLVING THE MOMENTUM EQUATION
After assembling the momentum equation on the grid level, the system of equations should be solved for the
acceleration in each direction,

â t
k = (

M t )−1
F t

k , (2.31)

in which
(
M t

)−1 denotes the inverse of the mass matrix at time step t and F t
k denotes the force vector in xk -

direction at time step t ,

F t
k = F tr ac,t

k −F i nt ,t
k +F g r av,t

k . (2.32)

It is computationally very expensive to calculate an inverse, and most choices of basis functions yield a sparse
mass matrix M , so a numerical technique can be used to solve this system of equations instead. For example,
Richardson iteration can be used to solve the system. It is also common practice in MPM to solve this equation
by lumping the mass matrix, see Appendix A.2 for more details on lumping in MPM. However, in this thesis,
we will solve the consistent system of equations unless stated otherwise.

After solving the system of equations and determining the coefficients â t
k , recall that the full acceleration

field can be reconstructed from the basis functions as

at
k,h(x) =

nb f∑
i=1

ât
k,iφi (x), (2.33)

with nb f the number of basis functions φi . This is the solution for the acceleration field in any direction over
the full domain. Using this field, first the particle velocities can be updated, then the particle positions, and
finally the other properties as well.

2.4.3. UPDATING PARTICLE PROPERTIES
Various different methods within MPM exist for updating the particle properties. The method followed in this
thesis was proposed by Sulsky et al. [7], and will be referred to as the modified update algorithm in this thesis.
Instead of immediately updating the both the particle velocity and particle position from the acceleration field,
the modified algorithm first only updates the velocity in the particles, and then reconstructs the total velocity
field over the grid. After the projection of the velocity on the grid, the displacement in each particle is updated
by using this velocity field. Afterwards, the strain and stress are determined locally in the particles again.
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Given the acceleration coefficient vector â, the algorithm first updates the velocity in the particles. This
is done by first calculating the acceleration in each particle point using Equation 2.33. Then the velocity is
updated by adding the acceleration times the time step size to the old velocity:

v t+∆t
k,p = v t

k,p +∆t
nb f∑
i=1

ât
k,iφi (xp ). (2.34)

After determining the new velocity in each of the particles, the modified update algorithm projects the velocity
from the particles on to the grid. This is done by using a density weighted L2-projection onto the space Φ
spanned by the basis functions φi . For this, the projected velocity field in the xk direction v t

k,h is assumed to
be a linear combination of the basis functions φi ,

v t+∆t
k,h (x) =

nb f∑
j=1

v̂ t+∆t
k, j φ j (x), (2.35)

in which v̂ t+∆t
k, j denotes the velocity coefficients in the xk direction at time t +∆t . For the density weighted

L2-projection onΦ the following system of equation must hold,∫
Ωt
ρ(x)v t+∆t

k,h (x)φi dΩ=
∫
Ωt
ρ(x)v t+∆t

k (x)φi dΩ, for i = 1. . .nb f . (2.36)

Note the difference between the projected velocity vk,h on the left versus the velocity field vk on the right. The
velocity field vk is only known in the particles, and therefore, the integral on the right hand side will again be
approximated by using a quadrature rule. The velocity projection on the left hand side can be substituted with
Equation 2.35. The L2-projection is expanded next,∫

Ωt
ρ(x)v t+∆t

k,h (x)φi dΩ=
∫
Ωt
ρ(x)v t+∆t

k (x)φi dΩ,

⇒
∫
Ωt
ρ(x)

(nb f∑
j=1

v̂ t+∆t
k, j φ j (x)

)
φi (x)dΩ=

np∑
p=1

Vpρp v t+∆t
k,p φi (x p ),

⇒
nb f∑
j=1

(∫
Ωt
φi (x)ρ(x)φ j (x)dΩ

)
v̂ t+∆t

k, j =
np∑

p=1
mp v t+∆t

k,p φi (x p )

The last equation must hold for each of the basis functionsφi , i = 1. . .nb f . This results in a system of equations

for the coefficient vector v̂ t+∆t
k in which the mass matrix M from Equation 2.27 is used again. The system can

be written as

M v̂ t+∆t
k = P t+∆t

k . (2.37)

Here, P represents the right hand side of the equation, which is also the linear momentum of the system
integrated over φ, hence the symbol P ,

P t+∆t
k,i =

np∑
p=1

mp v t+∆t
k,p φi (x p ). (2.38)

Equation 2.37 can be solved in the same manner as the acceleration coefficient vector was solved in Equa-
tion 2.18. Again, it is possible to apply lumping, but in this thesis this will not be done unless stated explicitly.

Having determined the projection of the velocity field on the grid level, first displacement increment ∆uk

in the xk -direction of the particles is calculated

∆ut+∆t
k,p =∆t

nb f∑
i=1

v t+∆t
k,i φi (x p ). (2.39)

We do not update the particle position until the all other properties are updated though, and for determining
the value of φi (x p ) in the next equations, the old particle positions are still used.
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Next, the strain is updated using the incremental particle displacement using Equation 2.8; note that i and j
temporarily represent the xi - and x j -direction,

∂εt+∆t
i j ,p

∂t
=1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)

⇒∆εt+∆t
i j ,p =∆t

1

2

∂
(∑nb f

l=1 φl v̂ t+∆t
i ,l

)
∂x j

+
∂
(∑nb f

l=1 φl v̂ t+∆t
j ,l

)
∂xi


⇒∆εt+∆t

i j ,p =∆t
1

2

nb f∑
l=1

(
v̂ t+∆t

i ,l

∂φl

∂x j
(x p )+ v̂ t+∆t

j ,l

∂φl

∂xi
(x p )

)
(2.40)

Next, the strain increment in Equation 2.40 will be used to update the stress. The constitutive relation from
Equation 2.4 is discretised for this, note the summation of repeated indices k and l ,

∂σi j

∂t
=Di j kl

∂εkl

∂t
− ∂εkk

∂t
σi j +ωi kσk j −σi kωk j ,

⇒∆σt+∆t
i j ,p =Di j kl∆ε

t+∆t
kl ,p −∆εt+∆t

kk,p σ
t
i j ,p +∆ωt+∆t

i k,p σ
t
k j ,p −σt

i k,p∆ω
t+∆t
k j ,p , (2.41)

in which ωt
i j ,p is the discretised spin tensor in x p ,

ωi j =1

2

(
∂vi

∂x j
− ∂v j

∂xi

)
,

⇒∆ωt+∆t
i j ,p =1

2
∆t

∂
(∑nb f

l=1 v̂ t+∆t
i ,l φl (x p )

)
∂x j

−
∂
(∑nb f

l=1 v̂ t+∆t
j ,l φl (x p )

)
∂xi

 ,

⇒∆ωt+∆t
i j ,p =1

2
∆t

nb f∑
l=1

(
v̂ t+∆t

i ,l

∂φl

∂x j
(x p )− v̂ t+∆t

j ,l

∂φl

∂xi
(x p )

)
. (2.42)

Note that the basis functions are fully known, and therefore, the derivatives are also known. Therefore, the full
right hand sides in Equations 2.40 and 2.42 are known. After determining the strain increments and the spin
tensor, the stress increment can be calculated using Equation 2.41. Finally the total stress is updated as

σt+∆t
i j ,p =σt

i j ,p +∆σt+∆t
i j ,p . (2.43)

Next, the volume and density of each particle must also be updated. This happens based on the normal
strain increment, as this determines the stretching or compressing of the volume element. The factor by which
a volume shrinks or expands would then be∆εvol = (∆ε11+∆ε22) =∆εkk . The full volume update then becomes

V t+∆t
p =

(
1+∆εt+∆t

vol ,p

)
V t+∆t

p =
(
1+∆εt+∆t

kk,p

)
V t

p . (2.44)

The density update then follows directly from the volume update and the fact that the mass of each particle is
constant through time,

V t+∆t
p ρt+∆t

p = mp =Vpρ
t
p ,

⇒ ρt+∆t
p =

ρt
p(

1+∆εt+∆t
kk,p

) . (2.45)

Lastly, the total displacement and the particle positions are updated.

x t+∆t
k,p =x t

k,p +∆ut+∆t
k,p (2.46)

ut+∆t
k,p =ut

k,p +∆ut+∆t
k,p . (2.47)

As the particle position are updated last, all the function evaluations happened in the old particle positions.

This is the whole algorithm that happens each time step. Figure 2.5 shows an overview of all the steps that
are taken during each time step.
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1. Assemble the mass matrix M and the force vectors F tr ac , F i nt and F g r av from the particle data,
as shown in Equations 2.27-2.30.

2. Solve the acceleration coefficient vector âk from the system of equations M âk = F k (Equa-
tion 2.18) for each direction xk . This represents the acceleration field on the grid level.

3. Evaluate the acceleration field in the particles and update the particle velocity, as shown in Equa-
tion 2.34.

4. Reconstruct the new velocity field by projecting the particle data onto the grid. This is done using
an L2-projection onto the basis functions. Assemble Equation 2.35 and solve for the coefficient
vectors of the velocity on the grid level.

5. Using the velocity field on the grid level, find the displacement increment at each of the particles
using Equation 2.39.

6. Find the strain increment at each of the particles using the displacement increment at the parti-
cles as shown in Equation 2.42.

7. From the strain increment, the stress, volume and density can be updated using Equations 2.43,
2.44 and 2.45 respectively.

8. Finally, the total displacement and the positions of each of the particles are updated, as in Equa-
tions 2.46 and 2.47

Figure 2.5: The time stepping algorithm.

2.5. BOUNDARY CONDITIONS

In this section, the implementation of the boundary conditions is discussed. In Section 2.1.3, it was stated that
the boundary was divided into a part with prescribed displacement and a part with prescribed traction. First
the boundary with the prescribed traction is considered.

The boundary part ∂Ωτ on which the traction is described, is represented by a set of boundary particles.
Each boundary particle represents a part of the boundary, and is assigned a traction force in correspondence
with the boundary part it represents. The particle is considered a boundary particle throughout the simulation.
More advanced techniques can also be used to represent the boundary traction force, but for the benchmarks
considered in this thesis, this boundary condition is always homogeneous, so this is not necessary.

The boundary conditions on the displacement boundary ∂Ωu are implemented by imposing that the accel-
eration and velocity field at this boundary should be in accordance with the boundary condition. The particles
at the boundary do not have to exactly follow this condition, as they represent a piece of mass, of which the
centers lie just next to the physical boundary. The boundary conditions are imposed on the reconstructed
velocity and acceleration fields by setting the degrees of freedom at the boundary to the corresponding value
instead. This is done by changing a number of equations in the system of Equations 2.18. Consider an exam-
ple in which piece-wise linear basis functions are used. A basis function φi is 1 at the boundary, and on the
boundary, this basis function is the only one that contributes to the value of the reconstructed velocity on that
location. In case the boundary condition imposes that at this point, the x-velocity should be vx , then the co-
efficient v̂ x

i of this basis function should be immediately set to the value of vx . This can be done by replacing
the original equation for φi in Equations 2.18 by an equation setting its value to vx . In this thesis however,
the Dirichlet boundaries considered will be homogeneous. Therefore, the equations for these degrees of free-
dom at the boundary are replaced with equations setting the corresponding coefficients to zero for both the
acceleration and velocity field.
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2.6. CRITICAL TIME STEP
The time integration method used in the solution procedure is called the semi-implicit Euler-Cromer scheme
[11]. First, the acceleration is determined at time t , and this acceleration is used to explicitly update the velocity
at the next time step t +∆t . Then, this new velocity is used to update the position of each particle. Because the
particle position is updated with the velocity at time t +∆t , this update part is implicit.

If the time steps are taken too large for this method, the solution of the simulation becomes unstable and
diverges from the real solution. The critical time step at which this happens depends on the spatial discreti-
sation and the material. In general, a bound for the critical time step using this scheme is given by the CFL
condition (Courant, Friedrichs, Lewy) [1, 12]. The condition is given by

∆t ≤ h√
E/ρ

. (2.48)

Here, h stands for the typical length of the smallest element used in the grid, and
√

E/ρ is a measure for the
wave speed in the material. The condition imposes that a wave in the continuum should not travel more than
the typical length of an element during one time step. Throughout this thesis, the time step is always chosen
sufficiently small such that this condition is respected. In general, a time step size in the range∆t ≈ 10−3−10−4

is used, whereas hp
E/ρ

is never larger than 10−3, guaranteeing a stable time integration.

2.7. GRID CROSSING ERROR
One of the larger issues of MPM is the appearance of grid crossing errors. These errors occur when a particle
crosses over from one element to a neighbouring element and thus crosses the grid. If basis functions are used
with a discontinuous derivative over element interfaces, the derivative of the basis function in the particle will
make a jump when crossing this interface. The internal force in the MPM procedure is evaluated by integrating
the velocity field multiplied with the gradient of the basis functions. The integral is then approximated by using
a quadrature rule, summing over the values in the material points. Recall Equation 2.29,

F i nt ,t
k,i =

np∑
p=1

Vp
∂φi

∂x j
(x p )σ j k,p .

Next consider a 1D example with a piece-wise linear basis function and particles as shown in Figure 2.6. There
are 4 particles, two in the left element and two in the right. Next time step, the blue particle just left of x2

crosses over to the right element. The internal force before and after the grid crossing are compared. From the

illustration, it can be seen that ∂φ
∂x is positive constant left of x2 and negative constant right of x2. Assume that

∂φ
∂x is 1 on the left element and −1 over the right element. Also assume that stress is a constant scalarσ over the
entire domain and that the volume of each particle is constant V . Then before the crossing, the total internal
force is

F i nt ,t
1,i =

np∑
p=1

Vp
∂φi

∂x
(x p )σ= 2Vσ−2Vσ= 0,

whereas after the crossing, the internal force is

F i nt ,t
1,i =

np∑
p=1

Vp
∂φi

∂x
(x p )σ=Vσ−3Vσ=−2Vσ.

A sudden jump in the internal force is the result of the discontinuity in the basis function.
This problem can be mitigated in several ways, for example by first reconstructing a global stress function

and then using quadrature integration in fixed Gauss points. As the used Gauss points are fixed, grid crossing
errors do not occur anymore. A more structural solution is to use basis function with C 1-continuity over ele-
ment interfaces. This is the reason to investigate C 1-continuous basis functions in this thesis, such that grid
crossing errors are will not occur. In the next chapter, a higher-order C 1-continuous basis is researched, which
leads to Powell-Sabin spline basis functions.
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x1 x2 x3

φ(x)

Figure 2.6: Illustration of grid crossing on a 1D grid, the green particle just left of x2 moves to the position of the blue particle just right of
x2 during one time step. The red particles do not move.
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3
POWELL-SABIN SPLINE BASIS FUNCTIONS

In the last chapter, the numerical algorithm has been described for solving a continuum deformation problem
with MPM. In this chapter, will discuss a higher-order basis for implementation in MPM, which will finally
lead us to adopt Powell-Sabin splines, which are non-negative, C 1-continuous splines on triangulations. This
chapter structurally explain the choice for the Powell-Sabin basis functions, by first investigating the logical
alternatives and marking their weaknesses. To do so, we first provide a short introduction into the construction
of the grid and barycentric coordinates. Then the choice of basis function over the grid is considered. The basis
function used in classical MPM are the piece-wise linear Lagrangian basis functions, which are discussed in
Section 3.3, and we explain the shortcomings of higher-order Lagrangian basis functions. The goal of this
thesis is to replace the Lagrangian basis by one that has continuous derivatives over the full domain and has the
property of non-negativity. As a Lagrangian basis will not possess these properties, this leads us to investigating
spline basis functions instead. First spline basis functions are introduced for 1D in Section 3.4, which will
prove to have suitable properties. It is also shown that a tensor product of spline basis function is not possible
for triangulations. Finally a 2D basis of Powell-Sabin (PS) spline functions for triangulation is considered in
Section 3.5, which are also implemented in MPM in this thesis. This section is the most important part of
this chapter, and we suggest skipping Sections 3.3 and 3.4 in case the reader is already familiar with Lagrange
basis functions and splines and is mainly interested in the construction of the final Powell-Sabin spline basis
functions. Finally, in Section 3.6, the higher-order spatial convergence for L2-projections is proved for PS-
splines. In Chapter 4, the resulting PS-spline MPM will be compared to classical Lagrange MPM.

3.1. TRIANGULAR GRID
In the version of MPM considered in this thesis, a triangular grid with material points inside is used to describe
a continuum. The grid and the material points are initialised before the simulation. When the simulation
starts, the material points move, but the grid is stationary. The grid must be made large enough such that the
particles will never leave the grid, otherwise the method cannot be applied. It may very well be possible that
the particles leave the element they started in and therefore may also leave the grid entirely. Therefore, the
grid should be initialised large enough to include the largest possible deformation. This may lead to empty
elements, i.e. triangles without any particles inside, but this is allowed in MPM. The grid must be large enough
such that the particles never leave the grid, but preferably not any larger, as more elements imply more re-
quired memory and extra computation time.

First, we consider the construction of the grid. Triangular grids are easy to construct and refine. The trian-
gular grid construction method we use is the Delaunay triangulation procedure [13]. For this procedure, first a
set of vertices is defined. Then, these vertices are connected such that the domain is divided into triangles and
the circumcircle of each triangle contains only its own vertices. A 2D example of a Delaunay triangulation is
shown in Figure 3.1. The procedure avoids as much as possible sliver triangles, which are very long stretched
triangles with small angles. Sliver triangles can cause instabilities and should therefore be avoided [14]. As
sliver triangles are avoided as best as possible in the Delaunay triangulation procedure, this is is very suitable
method for creating a grid. Furthermore, it is very easy to locally refine a grid with this procedure. If a certain
part of the domain is of interest, then the grid can be refined there by adding more vertices at that part ini-
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tially and the Delaunay triangulation procedure produces smaller triangles at that area. Finally, this procedure
works for any set of initial vertices, and can therefore easily generate unstructured grids and approximate ar-
bitrary shapes.

(a) A Delaunay triangulation (b) Not a Delaunay triangulation

Figure 3.1: The condition for a Delaunay triangulation of a set of vertices. The circumcircle of every triangle must contain no other vertices
than its own. On the left, the Delaunay triangulation for a set of points is shown. On the right, a possible other triangulation is shown,
which is not Delaunay, as the circumcircles of the lower two triangles contain other points.

When initialising the grid, the particles are also initialised in MPM. After defining the triangulation, it is
advised to initialise each triangle that lies within the initial domain with a comparable number of particles.
This is because the error in the quadrature rule for the mass matrix and force vectors in Equations 2.27-2.30
depend on the number of integration points. When dividing the particles evenly over the elements, the total
integration error is mitigated well.

Once the particles have been distributed over the domain, each should be assigned an initial volume. In
this thesis, the volume of each material point is determined from a Voronoi diagram. This diagram divides the
domain into volumes around the particles, such that every position in volume Vp is closer to particle p than to
any other particle. An example of the division of a 2D rectangular domain using a Voronoi diagram is shown in
Figure 3.2.

3.2. BARYCENTRIC COORDINATES
Before defining the basis functions over the triangulation, we require a barycentric coordinate system. Barycen-
tric coordinates are commonly used when describing functions over triangles. The barycentric coordinates of
a point in a triangle describe the position of the point with respect to the triangle. The barycentric coordinates
are defined as follows: given a triangle in 2D with vertices (x1, y1), (x2, y2) and (x3, y3) in Cartesian coordinates,
the Cartesian coordinates of a point (x, y) can be converted to barycentric coordinates with respect to this
triangle by solving x1 x2 x3

y1 y2 y3

1 1 1

ζ1

ζ2

ζ3

=
x

y
1

 . (3.1)

Here, (ζ1,ζ2,ζ3) are the barycentric coordinates of the point with respect to the triangle. Note that there are
three coordinates, whereas the physical space is only R2. This is because the sum of the barycentric coordi-
nates is defined to be ζ1 + ζ2 + ζ3 = 1. This is also visible in the lower row of Equation 3.1. The barycentric
coordinates of a point denote its location as a linear combination of the three vertices. Therefore, the barycen-
tric coordinates (1,0,0) denote the location of vertex 1, (1/2,1/2,0) is the point in the middle between vertex
1 and 2, and (1/3,1/3,1/3) is the center of mass of the triangle. Figure 3.3 shows an example of a triangle and
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Figure 3.2: A Voronoi diagram of randomly distributed particles, marked as circles. Not to be confused with the background grid, which
has nothing to do with it. The Voronoi diagram is used to initialise the volume of each particle.

its barycentric coordinates. In the next sections, the barycentric coordinates will be used to define the basis
functions over triangulations.

V1

V2

V3

(1,0,0)

(0,1,0)

(0,0,1)

(0,1/2,1/2)

(1/2,1/2,0)

(1/2,0,1/2)

(1/3,1/3,1/3)

Figure 3.3: A number of barycentric coordinates of an arbitrary triangle with respect to its vertices V1,V2,V3.

3.3. LAGRANGIAN BASIS FUNCTIONS AND THEIR SHORTCOMINGS
In this section, the Lagrangian basis functions over a triangulation are discussed. The basis functions will
be expressed in barycentric coordinates. First however, the one-dimensional Lagrangian basis functions are
considered. For the one-dimensional basis functions, the grid is defined by a set of nodes on a line. The
elements in this grid are the spaces between two neighbouring nodes. Figure 3.4 illustrates a possible division
of a grid into nodes and elements. The 1D Lagrangian basis functions are defined locally over each element.
Basis function i is associated with node i , and takes the value 1 at xi , and 0 at every other node. This is the
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interpolatory property of the Lagrangian basis functions,

φi (x j ) = δi j =
{

1 if i = j ,

0 if i 6= j .
, (3.2)

In this equation, δi j is the Kronecker delta function, x j the location of node j and φi is the i th basis function.
Furthermore, the Lagrangian basis functions also posses the property of locality. Each basis function is only
nonzero on at most two elements. On all the other elements, the function is equal to zero. Finally, the func-
tions are piece-wise polynomials. Over each element, the basis functions are smooth polynomials, and over
function interfaces, the piece-wise polynomials are continuously connected. The derivatives however, are not.

x1 x2 x3 x4 x5

t1 t2 t3 t4

φ1
φ2 φ4 φ5φ31

Figure 3.4: A 1D equidistant grid with 5 vertices V and 4 elements t . The piece-wise linear Lagrangian basis functions are shown over this
grid.

First consider the piece-wise linear Lagrangian basis functions. Over the element left and right of xi , the
basis function is piece-wise linear, and over all the other elements the basis function is 0. φi is defined as

φi (x) =


x−xi−1
xi−xi−1

if xi−1 ≤ x < xi
x−xi+1
xi−xi+1

if xi ≤ x ≤ xi+1

0 else.

(3.3)

These basis functions are illustrated in Figure 3.4.
Next, consider the piece-wise quadratic Lagrangian basis function. For this choise of basis functions, the

grid has to be refined. In the middle of each element, an additional node is added, as shown in Figure 3.5. The
elements are the same as in the unrefined grid; however, each element has two points at its borders and an
additional one in the middle. Consider element i , over this element, three basis functions are non-zero, these
are given by

φi = (x −xi+1/2)(x −xi+1)

(xi −xi+1/2)(xi −xi+1)
, (3.4)

φi+1/2 = (x −xi )(x −xi+1)

(xi+1/2 −xi )(xi+1/2 −xi+1)
, (3.5)

φi+1 = (x −xi )(x −xi+1/2)

(xi+1 −xi )(xi+1 −xi+1/2)
. (3.6)

Note that this formulation ensures that each of these three basis functions defines a parabola that is 1 in exactly
one of the points xi , xi+1/2 or xi+1, and zero in the other two. The basis functions are depicted in Figure 3.6.
The mid point basis functions φi+1/2 are zero outside element i , and are therefore continuous. The mid point
basis functions are only nonzero on a single element. The vertex basis functions however are nonzero over the
two elements around its corresponding vertex.
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x1 x2 x3 x4 x5x1.5 x2.5 x3.5 x4.5

t1 t2 t3 t4

Figure 3.5: A 1D equidistant grid with 5 vertices V and 4 elements t . The grid has been refined with one extra vertex in each element t .

Figure 3.6: The quadratic Lagrangian basis functions corresponding to a reference element [0,1].

For a higher-order Lagrangian basis, the basis functions are defined in a similar fashion. For basis functions
of order p, first refine each element with p −1 equidistant nodes. Then the basis functions over this element
are defined as p th-order polynomials that are 1 in exactly one of the points, and 0 in all the other points. The
general way of constructing such a polynomial is given by

φi+k/(p−1) =
p∏

j=0, j 6=k

x −xi+ j /(p−1)

xi+k/(p−1) −xi+ j /(p−1)
. (3.7)

When x is equal to one of the other nodes xi+ j /(p−1), then the basis function is clearly zero, and when xi+k/(p−1)

is filled in for x, then numerator and denominator are always the same, so then the function will be 1. Basis
functions for several polynomial degrees are depicted in Figure 3.7. Note that all the higher-order basis func-
tions contain negative parts, which makes lumping impossible for use in MPM. Furthermore, the functions are
only C 0-continuous over the edges, which causes grid-crossing problem in MPM as well. Next the Lagrangian
basis functions will be considered in 2D, which are constructed similarly, but also have the same drawbacks as
the 1D basis functions.

3.3.1. 2D LAGRANGIAN BASIS FUNCTIONS
For two-dimensional MPM, a triangular is used. On this grid, the Lagrangian basis functions are still piece-wise
polynomials. In each element, nodes are inserted for higher-order basis functions similar to the 1D functions.
Again the basis functions are defined to be smooth polynomials that are 1 in one of the nodes and 0 in all the
other nodes in the element. First, consider the piece-wise linear case. The elements do not have to be refined
for this. Each 2D triangular element has three nodes, which are the corners of the triangle. Therefore, there
are three basis functions over each triangle. The basis functions are easiest described using the barycentric
coordinates with respect to the triangle. For a triangle, the basis functions over the element in barycentric
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Figure 3.7: The Lagrange basis functions over a single element for various polynomial orders p.

coordinates (ζ1,ζ2,ζ3) are

φ1(ζ) =ζ1, (3.8)

φ2(ζ) =ζ2, (3.9)

φ3(ζ) =ζ3. (3.10)

Recall that the barycentric coordinates (ζ1,ζ2,ζ3) of the vertices are (1,0,0), (0,1,0) and (0,0,1), so again for
each of the three basis functions the property δi j holds. Figure 3.8 shows one of these basis functions over a
single element.

In order to get higher-order basis functions over the triangulation, first the grid has to be refined. If a p th-
order basis function is required, then first each element is refined with p − 1 nodes along each edge and in
the domain in correspondence with the edges. The nodes corresponding with this refinement are defined as

by their barycentric coordinates
(

k
p , l

p , m
p

)
, in which k, l ,m ∈N are integers. Furthermore, the nodes must be

inside the triangle, so 0 ≤ k, l ,m ≤ p and k + l +m = p. Let nklm be the node with barycentric coordinates
1
p (k, l ,m). An example of this refinement is shown in Figure 3.9.

Next, the basis functions are defined over the refined grid. The basis functions are of order p, and should
be 1 in exactly one of the nodes in the grid and 0 everywhere else. Consider basis function φklm , which is 1 in
nklm and 0 in all the other nodes in the considered element. Then φklm is defined as

φklm =
(

k−1∏
q=0

ζ1 − q
p

k
p − q

p

)
·
(

l−1∏
r=0

ζ2 − r
p

k
p − r

p

)
·
(

m−1∏
s=0

ζ3 − s
p

k
p − s

p

)
. (3.11)

Though this equation may seem complicated, it is designed such that each term causes a whole row of nodes
to be zero. The term ζ1− q

p causes all nodes with ζ1 = q
p to be zero. In the end, only the node where (ζ1,ζ2,ζ3) =

1
p (k, l ,m) will not be zero. An example of this procedure is shown in Figure 3.10. In this example, the node with
coordinates (1/2,1/4,1/4) is considered, marked as the large dot. The function must be zero in all other nodes.
The required function corresponding to this grid is of order p = 4, so the basis function is a product of 4 linear
terms. First the term (η1) is added, such that the function is zero in all nodes with η1 = 0. This line is marked
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Figure 3.8: A linear basis function over a single triangular element.

(1,0,0)

(1,0,0)

(0,0,1)

(0,1/2,1/2)

(1/2,1/2,0)

(1/2,0,1/2)

p=2

(1,0,0)

(0,1,0)

(0,0,1)

(0,2/3,1/3)
(0,1/3,2/3)

p=3

(1,0,0)

(0,1,0)

(0,0,1)

(0,3/4,1/4)
(0,1/2,1/2)

(0,1/4,3/4)

p=4

Figure 3.9: Three refinements of an element for order p Lagrange basis functions. The barycentric coordinates are 1
p (k, l ,m), some of

which are shown in the figure.

as the η1 = 0 line. Likewise, this procedure continues with η1 = 1/4, η2 = 0 and η3 = 0. The only non-zero node
left is the marked one. The raw resulting formula is then φ211 = 1

c (η1 − 0)(η1 − 1/4)(η2 − 0)(η3 − 0), with c a
normalisation constant.

The normalisation constant is used to guarantee that φklm is equal to 1 in nklm . This is done by ensuring
that each term in Equation 3.11 is equal to 1 in this point. This is done by dividing the numerator of each

term with its value in nklm =
(

k
p , l

p , m
p

)
. The result of this procedure for quadratic basis functions is shown in

Figure 3.11. Note that each basis function that is not zero on all the edges should be mirrored over the edge on
which it is not zero towards a neighbouring element. If the basis function is nonzero in a node of the element,
then the full basis function should be extended over all the elements that include that node.

This concludes the definition of Lagrangian basis functions over triangular grids. Having defined and
shown the basis functions, two properties appear that are undesirable for implementation in MPM. First, sim-
ilar to 1D basis function, the 2D functions have discontinuous derivatives over triangle edges. The basis func-
tions do not smoothly transition to zero over element edges. Also when the basis functions are extended over
multiple elements by mirroring, a kink appears in the basis functions similar to Figure 3.6. These disconti-
nuities in the gradient cause grid crossing errors, as explained in Section 2.7. Second, all basis functions that
are piece-wise polynomials of second-order and higher contain negative parts, as can be seen from the figures
in this section. This causes large problems, such as loss of mass conservation and the impossibility to lump
the matrix, as mentioned before. For extending MPM with higher-order basis functions, the Lagrangian basis
functions are most unsuitable. This is the main incentive to investigate B-spline basis functions. These are
expected to overcome these drawbacks.
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η1 = 0

η1 = 1/4

η2 = 0

η3 = 0

V1

V2

V3

Figure 3.10: The procedure for finding a basis function that is zero in all nodes except for one.

(a) Vertex basis function (b) Edge middle basis function

Figure 3.11: The quadratic basis functions over a triangular element. A vertex basis function is shown on the left, and a edge middle basis
function is shown on the right.
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3.4. SPLINE BASIS FUNCTIONS IN 1D
In this section, a set of B-spline functions will be considered in 1D. Tielen et al. [5] used 1D B-spline basis
function, which were constructed with the Cox-De Boor recursion formula. The concept of these basis func-
tions is explained in this section and the properties of these B-spline basis functions are discussed. Although
these basis functions are not directly extendable to triangulations, the concept and properties may be used to
construct and understand a B-spline basis on triangulations in 2D.

The desired spline basis functions for MPM should satisfy a number of properties. First, the basis functions
should have a continuous gradient over the entire domain. This will prevent any grid crossing errors. Second,
the functions must be non-negative. This will ensure that the mass matrix used in MPM is positive and can be
lumped. Third, the basis should be a partition of unity; the basis functions should add up to 1 over the entire
domain. Together with the property of non-negativity, this ensures conservation of mass in the mass-matrix.

The functions used for MPM by Tielen et al. [5] possess all of the mentioned properties. For these basis
functions, first the domain should be divided in elements. As these basis functions are considered on 1D, the
domain is a line, and the elements are pieces of this line separated by nodes. Over this grid, the basis functions
will be defined. Next, the order p of the basis functions should be decided. The B-spline basis functions are
piece wise polynomials of order p, where the polynomials are defined over each element. Letφi ,p denote basis
function i of order p. The B-spline basis functions are then fully defined by their knot vector. A knot vector is
an ordered set of positions. These positions correspond with the positions of the nodes of the grid. The knot
vector contains all the positions of the grid, but some nodes can be repeated multiple times. In particular,
the first and last node of the domain are repeated p +1 times. Other nodes can be repeated as well, but first
consider a knot vector without repeated inner nodes. Let

Ξ= [
ξ1,ξ2, . . .ξn+p+1

]
(3.12)

be a knot vector, where n is the number of basis functions and p the order of the basis functions. For example,
consider a grid with 6 equidistant vertices at the positions x = 0,1,2,3,4,5, and p = 2, resulting in with piece-
wise parabolic basis functions, with C 1-continuity everywhere. Then the corresponding knot vector is Ξ =
[0,0,0,1,2,3,4,5,5,5].

Given a knot vector Ξ, the p th-order basis functions are defined recursively using the Cox-de Boor recur-
sion formula [15]. This recursion formula first defines piece-wise constant functions using the knot vector.
From the piece-wise constants, piece-wise linear B-splines φi ,0 are generated, and so on. In each layer, parti-
tion of unity is maintained. From B-splines of order d , φi ,d , order d +1 B-splines φi ,d+1 are generated, up to
the desired order p, φi ,p . First define piece-wise the constant functions as

φi ,0(ξ) =
{

1 for ξi ≤ ξ< ξi+1

0 else.
(3.13)

Note that it is possible that nodes in the knot vector are repeated, ξi = ξi+1, and therefore some basis functions
φi ,0 may be zero on the entire domain. This does not pose a problem in the process though.

Next, higher-order basis functions are constructed recursively from the basis functions of one order lower,

φi ,d (ξ) = ξ−ξi

ξi+d −ξi
φi ,d−1(ξ)+ ξi+d+1 −ξ

ξi+d+1 −ξi+1
φi+1,d−1(ξ). (3.14)

Each higher-order basis function is constructed from two lower-order basis functions. Note that for basis func-
tionφi ,d the basis functionφi+1,d−1 is required, so with each increase in order, there is one less basis functions
than the lower level. It was assumed that ξ has n +p +1 elements, so there are n +p basis functions of order
0, n + p − 1 or order 1 and so on. Finally, there are exactly n basis functions of order p. Consider again the
example knot vector Ξ = [0,0,0,1,2,3,4,5,5,5], its corresponding basis functions of order p = 2 are shown in
Figure 3.12 along with the lower order basis functions used to construct them. Note that the basis functions
are polynomials of order p over each element, and are connected over the nodes. In each of the nodes, the
p th-order basis has C p−1-continuity.

Now consider the effect of repeating inner nodes in the knot vector. For example, consider the knot vector
Ξ = [0,0,0,1,2,3,4,4,5,5,5]. The corresponding basis functions are shown in Figure 3.13. Repeating an inner
node lowers the continuity at that node of the basis function. The continuity at a node is equal to C p−r , where
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Linear B-splines basis functions. Quadratic B-spline basis functions.

The derivatives of the quadratic B-spline basis
functions.

Figure 3.12: The piece-wise linear and piece-wise quadratic basis functions, corresponding to the knot vector Ξ = [0,0,0,1,2,3,4,5,5,5].
The derivatives of the piece-wise quadratic basis functions are also shown, which illustrates the C 1-continuity of the order 2 basis func-
tions.

r denotes the number of times the node of interest appears in the knot vector. Lowering the continuity at a
point may be of interest when considering geometries with imposed discontinuities in derivatives or sudden
jumps.

All together, these B-splines are non-negative, can be constructed C 1-continuity and are partition of unity.
Therefore, these basis functions are very suitable for application in MPM. The basis functions are easy to con-
struct and very flexible. The knots in the knot vector can easily be spatially refined by adding more nodes
closer to each other at places of interest. High-order basis function can be generated easily as well. The basis
functions have high continuity over element edges, which can be lowered in accordance with the geometry.
Finally, the basis functions have the properties of locality, partition of unity and non-negativity. B-spline basis
functions possess very suitable properties for implementation in 1D MPM.

For 2D, it is possible to use a tensor product of 1D knot vectors:

φi j ,p (x, y, z) =φx
i ,p (x) ·φy

j ,p (y). (3.15)

The 2D basis function φi j ,p is a tensor product of two 1D basis functions, which are individually defined using
1D knot vectors and the Cox-de Boor algorithm. Therefore, this method has the same advantages as the 1D
basis functions. However, it is hard to approximate any arbitrary geometry using tensor products. The tensor
grid would have to be mapped curvilinearly to the real geometry. Consider the example mapping of a 2D grid
in Figure 3.14. The geometry in this example is hard to represent as a mapping Ψ from a square, parametric
domain to the physical domain; finding a good division and mapping of the domain may prove very hard.
Furthermore, it is hard to locally refine the grid. If the grid has to be refined in a certain part of the domain,
this is done by adding additional nodes on both the x and y positions of the parametric domain, but this causes
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Figure 3.13: The quadratic B-spline basis functions corresponding to the knot vector Ξ= [0,0,0,1,2,3,4,4,5,5,5]. Note the C 0 continuity
at 4.

unnecessary local refinement in other parts of the domain as well, as can also be seen in Figure 3.14. This costs
more computation time when solving the solution over the grid. For these reasons, a tensor product grid is
unsuitable for arbitrary geometries, whereas a triangular grid would be much more suitable for this.

Ψ

Figure 3.14: A possible mapping Ψ of a square, parametric domain to the physical domain. In the middle, the grid has been refined. The
quality of this mapping is unsure, also due to the fact that the square domain has discontinuities at the corners, whereas the physical
domain has a smooth boundary.

When using a triangular grid however, it is very hard to construct B-spline basis functions over arbitrary
triangulations. The Cox-de Boor algorithm does not have a known equivalent on triangulations, and therefore,
it is not possible yet to construct B-splines over triangles of any order with a straightforward algorithm. A ten-
sor product approach such as for the rectangular grid is not possible over an arbitrary triangulation, so the 1D
B-splines cannot be used in the current form. In the next section, it will be shown that despite these setbacks,
it is possible to construct B-splines basis functions over an arbitrary triangulation, but the process will have
to be derived separately for each order of basis functions. Once the basic functions have been constructed,
however, the basis functions will have similar properties to the 1D spline basis functions.
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3.5. POWELL-SABIN SPLINES: QUADRATIC B-SPLINES ON ARBITRARY TRIAN-
GULATIONS

For the construction of B-splines on arbitrary triangulations, there is not yet a general algorithm to generate
these for an arbitrary order p. Therefore, the focus of this section will be on the construction of quadratic
B-splines for a 2D triangulation. The construction of these B-splines are not unique; for a certain triangu-
lation there are different possibilities to generate B-splines over the grid. The B-splines are still required to
possess the properties of locality, non-negativity, partition of unity and be piece-wise polynomials over each
of the (sub-)elements, with C 1-continuity over the edges. A full research by Dierckx [16] was dedicated to
constructing and researching quadratic B-splines over a 2D quadratic grid, which resulted in so called nor-
malised Powell-Sabin B-splines. This thesis follows the approach by Dierckx for the construction of these
B-splines. These Powell-Sabin B-splines will be referred to as PS splines throughout this thesis. The poten-
tial of quadratic PS splines for function reconstruction has already been proved by Speleers et al. [14] for 2D
advection-diffusion-reaction problems, and therefore PS splines are expected to improve function reconstruc-
tion in MPM as well.

Before defining the PS splines, the purpose, properties and general construction process are first sum-
marised. The purpose of a basis of PS splines is to represent a function as a linear combination of PS spline
basis functions, which are defined on an arbitrary triangulation. For each vertex i in the triangulation, three
basis functionsφq

i , q ∈ {1,2,3} with local support will be defined associated to that vertex. The functions will be
nonzero on all triangular elements directly around this vertex, and zero on all other elements, in Figure 3.23, a
PS-spline basis function is shown. Any continuous function can be approximated by a linear combination of
these basis functions,

f (x, y) ≈ f̂ (x, y) =
nv∑

i=1

3∑
q=1

cq
i φ

q
i (x, y), (3.16)

in which f̂ is the approximation of f , nv is the total number of vertices in the grid and cq
i the coefficient

corresponding to the PS spline basis function φq
i . Note that there are 3nv basis functions over the grid in total.

The basis functions should be non-negative and partition of unity, which are formally defined as

φ
q
i (x, y) ≥ 0, for all (x, y) ∈Ω, (3.17)

nv∑
i=1

3∑
q=1

φ
q
i (x, y) = 1, for all (x, y) ∈Ω. (3.18)

Furthermore, the functions have to be piece-wise quadratic and C 1-continuous over (sub-)element edges, so
their gradient should be continuous.

In order to achieve this, first the triangular grid must be refined, where each triangular element is divided
into smaller sub-elements. After the refinement of the grid, three control points will be chosen for each vertex,
which form a so-called control triangle. The control triangle at each of the vertices will fully define the three
basis functions φ1

i ,φ2
i ,φ3

i at each vertex i , and therefore, the choice of the control triangles should guarantee
suitable basis functions. First, the refinement of the grid will be discussed, then the choice of the control
triangles, and finally the construction of the PS-spline basis functions from the control triangles.

3.5.1. GRID REFINEMENT
Given a domain Ω, let ∆ be a triangulation of Ω. In this section the refinement process of ∆ will be explained.
First we will discuss the need for a refinement. Consider a vertex i and one of its three basis functions φq

i . This
basis function should be locally defined on the triangles directly around node i , let this local domain be called
molecule Ωi . An example of Ωi is considered in Figure 3.15a. The basis function φ

q
i should be a piece-wise

parabola, in which over each element a parabola is defined with smooth transitions over the boundary of each
element. At the boundary of Ωi , the value of φq

i should be zero as well as its gradient, because the function
should connect smoothly to the 0-function outside the domainΩi . Next consider the piece-wise parabola over
the dotted line in Figure 3.15a. This line passed through two elements, and over this line, the basis function
should be a C 1-continuous 1D piece-wise parabola. The piece-wise parabola should smoothly connect to the
0-function at the boundaries of the domain Ωi . Figure 3.15b shows that it is not possible to construct such a
piece-wise parabola with just two elements other than the trivial solutionφq

i = 0. Either is has a discontinuous
derivative at the boundary of the domain or at the connection between the elements.
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Any straight line through node i passes only two elements, and therefore the basis function must be zero
over such lines. It is possible to draw such a line through any point in the domainΩi , and therefore, the basis
function must be zero everywhere in the domain. With the unrefined triangulation ∆, the only possible basis
function is the trivial function 0. This illustrates the need for a refinement of the triangulation ∆.

Vi

Ωi

(a) A Delaunay triangulation of a square domain Ω, vertex
Vi and its moleculeΩi are marked.

Vi

(b) piece-wise parabolas consisting of two parts.

Figure 3.15: A triangulation (a) of a square domain. A vertex Vi and its corresponding molecule Ωi are marked. Over this molecule, a 2D
piece-wise parabola has to be defined, which must be C 1-continuous and smoothly goes to zero at the boundary. Some possibilities for
the 2D piece-wise parabola are investigated over the dotted line in (a). The two elements the dotted line goes through in (a) are separated
by the vertical line in (b). Some possible piece-wise parabolas are shown.

The grid ∆will be refined with a so-called Powell-Sabin refinement, in which each triangle element will be
divided in six sub-triangles. Let ∆∗ be the Powell-Sabin refinement of the original triangulation ∆. A possible
refinement ∆∗ of ∆ is shown in Figure 3.16, which can be constructed in the following way:

1. Choose an interior point Z j in each triangle t j , such that if two triangles t j and tm have a common edge,
the line between Z j and Zm intersects the edge. The intersection point is called Z j m . A way to guarantee
the existence of the point Z j m is by choosing all Z j as the incenter of each triangle t j , the intersection
point of the angle bisectors. Different choices are also possible, but throughout this thesis, the incenters
are used as interior points.

2. Connect all Z j to the vertices of its triangle t j with straight lines.

3. Finally connect the Z j to all point Z j ,m on the edges of triangle t j with straight lines. In case t j is a
boundary element, t j will have at least one edge without a neighbouring element, and therefore no
point Z j ,m on this edge to connect Z j with. In that case, join Z j with an arbitrary point on that edge.
Throughout this thesis, Z j is connected to the middle of the edge.

3.5.2. CONTROL TRIANGLES
After refining the grid, the control triangles are created, from which finally the basis functions will be con-
structed. Consider the refined triangulation ∆∗. Define the Powell-Sabin (PS) points as the vertices Vi and the
midpoints of all edges in the PS refinement with Vi at one end, as shown in Figure 3.17. Let PSi be the set of PS
points associated with vertex i , then the control triangle of vertex Vi must contain all the PS points in PSi . If
the control triangle of vertex Vi contains all PS points of PSi , then non-negativity of the basis functions asso-
ciated the control triangle is assured. The control triangle is not uniquely defined, Figure 3.17 shows a number
of possible control triangles that all contain the PS points in PSi . A possible choice for the control triangle is
a triangle with minimal area containing PSi , as this produces PS-splines with good stability properties [14].
Finding an optimal PS-triangle with minimal area corresponds to solving a quadratic programming problem,
which can be computationally very expensive. Instead, a good PS-triangle could also be constructed using
a simple algorithm, which is also used throughout this thesis. Note that an optimal PS-triangle often shares
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Zm

Z j

Z j m

t j

tm

Figure 3.16: A PS refinement ∆∗ of the triangulation ∆ used earlier.

two or three edges with the convex hull of PSi . Therefore, it is also possible to consider all such triangles and
determine the one with the smallest area. In case of three common edges, the corresponding triangle is fully
defined. In case of two common edges, take the third edge orthogonal to the bisector of the lines through the
two common edges. Then let this third edge go through the PS-point such that all points in PSi are contained
in the resulting triangle.

Some technical details will be provided for implementing the algorithm for finding a near-optimal PS-
triangle. In case this is not of interest to the reader, we recommend moving on to the next subsection, which
explains how the PS-splines are constructed from the control triangles.

Given a set of PS points, the edges should be constructed, the intersection points between edges need to be
found and from the points of the triangle, the surface must be determined. From two neighbouring PS points
x = (xi , yi ), i = 1,2, the formula for an edge is determined in vector form as

e12(t ) = x1 + t v12 =
[

x1

y1

]
+ζ

[
x2 −x1

y2 − y1

]
. (3.19)

Then the intersection point of two edges e1 and e2 is determined by

e1(ζ1) =e2(ζ2) (3.20)

⇒ x1 +ζ1v1 =x2 +ζ2v2 (3.21)

⇒ ζ1v1 −ζ2v2 = (x2 −x1) (3.22)

[v 1v 2]

[
ζ1

ζ2

]
= (x2 −x1) (3.23)

Aζ= b. (3.24)

Solving this system of equations yields a value for ζ1 and ζ2. The intersection point q is then determined by
q = x1 +ζ1v1.
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Vi

(a) 2 common edges.

Vi

(b) 3 common edges.

Vi

(c) 3 common edges, but invalid.

Figure 3.17: The PS points and some possible PS-triangles of the marked molecule from the example triangulation of Figure 3.16. The
PS points and the PS-triangles are marked in red. The PS-triangle of the node Vi must contain the convex hull of the PS-points directly
around Vi . In (a), a PS-triangle is shown with two edges in common with the convex hull and in (b) a PS-triangle with three edges in
common with the convex hull. (c) shows a triangle which also has three edges in common with the convex hull, but this one does not
contain al PS point of vertex vi , so it is invalid.

Given a control triangle with vertices q i = (xi , yi ), i = 1,2,3, its surface S can be determined by

S(q 1, q 2, q 3) = 1

2

∣∣x1(y2 − y3)+x2(y3 − y1)+x3(y1 − y2)
∣∣ . (3.25)

Note that when considering a triangle with three edges of the convex hull, it may happen that the center
point is not contained, see Figure 3.17c. Special attention should be paid to ensure this case is excluded.

For the triangles with two edges in common with the hull, the bisector of two edges ei = xi + t vi , i = 1,2
should also be determined. The bisector b12 is given by

b12(ζ) = q 12 +ζv12 = q12 +ζ
(

v 1

|v 1|
+ v 2

|v 2|
)

, (3.26)

in which v i
|v i | is the normalised direction vector of ei , and q 12 is the intersection point of e1 and e2. Next

the orthogonal line to the bisector should be moved far enough away from q 12, such that all PS points are
contained in the corresponding triangle, see Figure 3.18. This corresponds to finding the PS point with the
greatest distance to point q12 in the semi-norm d(x , q 12) = |(x − q 12) · b̂12|. This semi-norm only takes into
account the distance from x to q 12 in the direction of the normalised bisector b̂12. When the PS point with
the greatest distance is found, a line orthogonal to b12 is constructed through this PS point and intersected
with the other two edges. The triangle with the smallest surface is stored and used for the PS triangle. This
concludes the construction details of the control triangle. In the next subsection, the construction of the basis
function from the control triangle is discussed.

e1

e2

e3

b12q 12

d(q 12, x)

Figure 3.18: Illustration for construction of the last edge for a PS triangle with two shared edges with the convex hull of PS points. The
last edge is a line orthogonal to the bisector b12 and goes through the PS-point with the greatest distance d(q12, x). This corresponds to
sliding the e3 to the left until it collides with a PS-point.
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3.5.3. PS SPLINE BASIS FUNCTION CONSTRUCTION
In this section, the construction of piece-wise quadratic basis function from the PS-triangles is explained. Dur-
ing this section, the choice for the control triangles will also become clear. For a full derivation, see the papers
of Dierckx [16, 17].

First, consider the construction of a parabola over a triangle. In Cartesian coordinates, this 2D parabola
can be expressed as

p(x, y) = c1 + c2x + c3 y + c4x2 + c5x y + c6 y2. (3.27)

Any parabola can be described using 6 degrees of freedom c1, . . . ,c6. Instead of Cartesian coordinates, the
parabola can also be described in barycentric coordinates, Equation 3.1. Using the barycentric coordinates ζ
of triangle t , it is possible to describe any parabola over a triangle using the so called Bernstein polynomials of
degree 2, B 2

i , j ,k , which also form a partition of unity. The Bernstein polynomials are defined as

Bi , j ,k (ζ) = 2!

i ! j !k !
ζi

1ζ
j
2ζ

k
3 , (3.28)

with the properties of non-negativity and partition of unity:

B 2
i , j ,k (ζ) ≥0 ∀(x, y) ∈ t , (3.29)∑

i+ j+k=2,
i , j ,k≥0

B 2
i , j ,k (ζ) =1 ∀(x, y) ∈ t . (3.30)

The Bernstein polynomials of degree 2 can be divided in two sets, the set with indices (2,0,0), (0,2,0), (0,0,2),
and the set with indices (1,1,0), (0,1,1), (1,0,1). The first set contains the parabolas that attain their maximum
in one corner and have both value and gradient 0 at the opposite edge in the triangle. The second group attain
their maximum halfway one of the edges and are zero in the other edges. Figure 3.19 shows the shape of these
types of functions.

(a) Corner parabola (b) Edge middle parabola

Figure 3.19: General shape of the quadratic Bernstein polynomials over a triangle (in Cartesian coordinates).

These six Bernstein polynomials are linearly independent quadratic polynomials, and as an arbitrary quadratic
polynomial has exactly 6 degrees of freedom as in Equation 3.27, the Bernstein polynomials form a basis for all
possible 2D quadratic polynomials. That is, it is possible to construct any required 2D parabola p as a linear
combination of the six Bernstein parabolas,

p(x, y) := b(ζ) = ∑
i+ j+k=2,

i , j ,k≥0

bi , j ,k B 2
i , j ,k (ζ). (3.31)

The coefficients bi , j ,k are called the Bézier ordinates of the polynomial b(ζ). This quadratic polynomial can
be schematically represented by filling in all its Bézier ordinates bi , j ,k at the coordinates (i /2, j /2,k/2) in tri-
angle t . These barycentric coordinates correspond with the three vertices of t and to the three midpoints of
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the edges, see Figure 3.20. Each of these positions (i /2, j /2,k/2) also represent the point in the triangle where
Bi , j ,k is maximal, compare Figure 3.19 with Figure 3.20.

V1

V2

V3

b2,0,0

b0,2,0

b0,0,2

b0,1,1

b1,1,0

b1,0,1

Figure 3.20: The Bézier ordinates of a parabola over a triangle. Each Bézier ordinate is positioned at the location where its corresponding
Bernstein polynomial has its maximum (see Figure 3.19).

Adopting the schematic notation using Bézier ordinates, it is very straightforward to define a parabola over
a triangle. This notation turns out to be very convenient for multiple reasons. From Equation 3.28 and cor-
responding Figure 3.19, it can be seen that only Bernstein polynomials with Bézier ordinates on edge e are
non-zero on this edge, and all other Bernstein polynomials are zero there. Therefore, the value at an edge e is
fully determined by the Bézier ordinates that are indicated on that edge. If two triangles are connected by an
edge e, and the parabolas over each of the elements are required to connect continuously, it is only required
that they have the same Bézier ordinates on that edge. In order to have a smooth gradient as well, an addi-
tional condition can be imposed on the Bézier ordinates one step away from that edge. This condition is more
complicated, and we refer to [16] for this. Finally, note from the corner parabola in Equation 3.19 that both
its values and gradients at its far edge are zero, so this value can be chosen freely without losing C 1-continuity
over the far edge. A full basis function over a triangular element can then be described by filling in the Bézier
ordinates on the corresponding points in its sub-triangles, as shown in Figure 3.21.

It was shown that an arbitrary piece-wise quadratic basis function φ
q
i , q = 1,2,3 can be fully expressed in

its Bézier ordinates over a triangular element. As the PS-triangle around vertex Vi should fully define the three
basis functions φq

i associated with vertex Vi , the Bézier ordinates must be derived from the PS-triangle. To do

so, first note that φq
i , q = 1,2,3 are only nonzero in the molecule Ωi , and zero on its boundary. This implies

that the values and gradients of the basis function φq
i are zero in all grid vertices V j , with j 6= i ,

φ
q
i (V j ) =0, if i 6= j , (3.32)

∇φq
i (V j ) =0, if i 6= j . (3.33)

This also implies that only the three basis function φq
i associated with this node Vi are nonzero at the position

of Vi . For each of the three basis function φq
i at Vi , define the triplet,

(
α

q
i ,βq

i ,γq
i

)= (
φ

q
i (Vi ),

∂φ
q
i

∂x
(Vi ),

∂φ
q
i

∂y
(Vi )

)
, (3.34)

with the basis function value, its partial derivative to x and its partial derivative to y at Vi . Note that this
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Vi

Q1

Q2

Q3

V1 = (α1,α2,α3)

V2

V3

R12 = (λ1,λ2,0)

R23 = (0,µ1,µ2)

R13 = (ν1,0,ν3)

Z = (a,b,c)

Figure 3.21: Considering a node Vi of the triangulation ∆, the moleculeΩi is shown on the left, along with a suitable PS-triangle, marked
red. Only the triangular element marked in grey and the PS-triangle on the right are considered here. The locations of the Bézier ordinates
are marked to construct basis function φ

q
i , corresponding to node Vi and PS-triangle vertex Qq . The location of V1 is given in barycentric

coordinates with respect to the PS-triangle. The locations of R12, R23, R13 and Z are given in barycentric coordinates with respect to the
triangular element V1, V2, V3. All other Bézier ordinate locations are on the edge middles of the mentioned vertices.

procedure takes place locally in each molecule Ωi , so the index i will be dropped whenever possible. The
triplet of the three basis functions are then (α1,β1,γ1), (α2,β2,γ2) and (α3,β3,γ3).

Next recall the partition of unity property in Equation 3.18. From this it follows thatφ1(V )+φ2(V )+φ3(V ) =
1, and ∇(φ1(V )+φ2(V )+φ3(V )) = 0 and therefore,

α1 +α2 +α3 = 1, (3.35)

β1 +β2 +β3 = 0, (3.36)

γ1 +γ2 +γ3 = 0. (3.37)

Next consider the reconstruction of a function at the center node V = (x, y), f̂ (V ) = c1φ
1(V ) + c2φ

2(V ) +
c3φ

3(V ), then the following system holds for the coefficients c:

c1α1 + c2α2 + c3α3 = f̂ (x, y), (3.38)

c1β1 + c2β2 + c3β3 = f̂x (x, y), (3.39)

c1γ1 + c2γ2 + c3γ3 = f̂y (x, y). (3.40)

Next, let the x-coordinates of the three vertices Qq = (X q ,Y q ), q = 1,2,3 of the PS triangle represent the coef-
ficients for the reconstruction of the function f̂ = x. Likewise, let the y-coordinates be the coefficients for the
reconstruction of the function f̂ = y . This results in the following systems of equations:

X 1α1 +X 2α2 +X 3α3 = x, (3.41)

X 1β1 +X 2β2 +X 3β3 = 1, (3.42)

X 1γ1 +X 2γ2 +X 3γ3 = 0, (3.43)

and

Y 1α1 +Y 2α2 +Y 3α3 = y, (3.44)

Y 1β1 +Y 2β2 +Y 3β3 = 0, (3.45)

Y 1γ1 +Y 2γ2 +Y 3γ3 = 1. (3.46)
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Vi

0

0

0

0

0

0

0

0

ν1L̃

0

ν1L′

L′

α

L

L̃

λ1L̃

0

λ1L

aL̃

Figure 3.22: The Bézier ordinates for basis function φ1
i , corresponding to the vertex Vi considered in Figure 3.21. There are three different

basis functions, note that for each of these basis functions, α, β and γ should correspond with the triplet (αq ,βq ,γq ) corresponding to
PS-triangle vertex Qq .

Clarifying the function of the PS-triangle, the location of its vertices represent the coefficients to reconstruct
the functions f̂ = x and f̂ = y . From these two function along with the function f̂ = 1, any triplet (α,β,γ) can
be constructed as a linear combination from these functions. The next thing to do is to determine the triplets
(αq ,βq ,γq ) of each of the basis functions φq , q = 1,2,3. The values of α can be determined by considering
Equations 3.35, 3.41 and 3.44. The values of β and γ can be determined likewise with Equations 3.36, 3.42 and
3.45 for β and with Equations 3.37, 3.43 and 3.46 for γ. This results in the following three systems of equations:X 1 X 2 X 3

Y 1 Y 2 Y 3

1 1 1

α1

α2

α3

=
x

y
1

 , (3.47)

X 1 X 2 X 3

Y 1 Y 2 Y 3

1 1 1

β1

β2

β3

=
1

0
0

 , (3.48)

X 1 X 2 X 3

Y 1 Y 2 Y 3

1 1 1

γ1

γ2

γ3

=
0

1
0

 . (3.49)

Note that the values for αq , (q = 1,2,3) correspond to the barycentric coordinates of V = (x, y) with respect to
the PS-triangle, see Equation 3.1. Furthermore, let A denote the matrix used in the systems of equations. Then
the values of βq and γq can be determined by considering the inverse of the matrix A. A co-factor expansion
approach can be used to find the inverse, which results in an explicit formula for β and γ,

A−1 =
X 1 X 2 X 3

Y 1 Y 2 Y 3

1 1 1

−1

=

X 2 −Y 3 X 2 −X 3 X 2Y 3 −X 3Y 2

Y 3 −Y 1 X 3 −X 1 X 3Y 1 −X 1Y 3

X 1 −Y 2 X 1 −X 2 X 1Y 2 −X 2Y 1


∣∣∣∣∣∣
X 1 X 2 X 3

Y 1 Y 2 Y 3

1 1 1

∣∣∣∣∣∣
. (3.50)

By Equations 3.48 and 3.49, the values of β are given by the first column of the inverse of A and γ by the second
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column of A: β1

β2

β3

=A−1

1
0
0

= 1

d

Y 2 −Y 3

Y 3 −Y 1

Y 1 −Y 3

 , (3.51)

γ1

γ2

γ3

=A−1

0
1
0

= 1

d

X 2 −X 3

X 3 −X 1

X 1 −X 3

 , (3.52)

in which d is the determinant of the matrix A

d =
∣∣∣∣∣∣
X 1 X 2 X 3

Y 1 Y 2 Y 3

1 1 1

∣∣∣∣∣∣ . (3.53)

From the PS-triangle, three triplets
(
φq (V ), ∂φ

q

∂x (V ), ∂φ
q

∂y (V )
)
= (αq ,βq ,γq ), q ∈ {1,2,3} have been determined.

Each triplet defines the value, and x- and y-derivative of its corresponding basis functions φq in the node V .
From these triplets, the full piece-wise quadratic basis functions are uniquely defined with the properties of
partition unity, non-negativity and C 1-continuity by an algorithm provided by earlier work of Dierckx [17].
The resulting basis functions take the prescribed values and derivatives of their triplets. The algorithm pro-
vides the Bézier ordinates over a full element (consisting of 6 sub-elements) depending on the corresponding
triplets. Consider an element t which has V = V1 = (x1, y2) as one of its vertices and let the other vertices
be V2 = (x2, y2) and V3 = (x3, y3). Let the center point of the refinement be Z , with barycentric coordinates
(a,b,c) with respect to the vertices V1,V2 and V3. Finally, let the refinement points on the edges have barycen-
tric coordinates R1,2 = (λ1,λ2,0), R2,3 = (0,µ2,µ3) and R1,3 = (ν1,0,ν3), as shown in Figure 3.21. Then the Bézier
ordinates of the corresponding basis functionφq

i are shown in Figure 3.22. This fully defines the basis function.

Figure 3.23: A C 1 continuous PS-spline basis function over a triangular grid.
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The coefficients in Figure 3.22 are then given in terms of the triplet (αq ,βq ,γq ) = (α,β,γ)

L =α+ 1−λ1

2
β, (3.54)

L′ =α+ 1−ν1

2
γ, (3.55)

L̃ =α+ b

2
β+ c

2
γ, (3.56)

with

β=β(x2 −x1)+γ(y2 − y1), (3.57)

γ=β(x3 −x1)+γ(y3 − y1). (3.58)

Figure 3.23 shows an example of a resulting piece-wise quadratic 2D basis function constructed from the Bézier
ordinates determined in this way.

3.5.4. IMPOSING BOUNDARY CONDITIONS WITH PS-SPLINES BASIS FUNCTIONS
In this section we will describe how boundary conditions can be imposed on a function field, that is recon-
structed with PS-splines. In MPM, we are mainly interested in homogeneous Dirichlet boundary conditions,
and therefore, this will be the focus of this section.

The PS-spline basis functions will be used to reconstruct a function field f in MPM as a linear combination
of PS-spline basis function φq

i ,

f (x) ≈ f̂ (x) =
nv∑

i=1

3∑
q=1

cq
i φ

q
i (x),

in which cq
i is the coefficient of basis function φq

i , and nv is the number of vertices Vi of the triangulation, and

for each triangulation vertex Vi , there are three associated PS-spline basis functions φq
i , q ∈ {1,2,3}. For im-

posing a Dirichlet boundary condition at Vi , recall that its three associated basis function φq
i are the only ones

that can be non-negative in Vi . Each basis function is constructed from a triplet (αq
i ,βq

i ,γq
i ), which denotes its

value and partial derivatives in its associated vertex Vi . We will focus again on vertex Vi and drop the index i
in the rest of the section. Equation 3.34 describes the triplet, and is repeated here for convenience:(

αq ,βq ,γq )= (
φq (V ),

∂φq

∂x
(V ),

∂φq

∂y
(V )

)
.

Only the three basis function φq , q ∈ {1,2,3} associated with V can be non-zero in V , which can be described
as follows:

f̂ (V ) = c1φ1(V )+ c2φ2(V )+ c3φ3(V ). (3.59)

Next, the information of the triplets can be substituted in the above equation for the function value and for
function the partial derivatives as well (see also Equations 3.38-3.40):

f̂ (V ) = c1α1 + c2α2 + c3α3, (3.60)

f̂x (V ) = c1β1 + c2β2 + c3β3, (3.61)

f̂y (V ) = c1γ1 + c2γ2 + c3γ3. (3.62)

Using this information, it is straightforward to impose a homogeneous Dirichlet boundary condition on the
boundary of the domain. First, identify the vertices V that are on the boundary. Second, impose an equation

f̂ (V ) = c1α1 + c2α2 + c3α3 = 0, (3.63)

to ensure that the value of the reconstructed field f̂ is equal to 0 in boundary vertex V . To ensure that the
boundary is also equal to 0 directly around V , it can also be imposed that the partial derivative along the
boundary is also equal to zero:

∇ f̂ (V ) ·n = 0,

⇒ (
c1β1 + c2β2 + c3β3)nx +

(
c1γ1 + c2γ2 + c3γ3)ny = 0,

⇒ c1 (
β1nx +γ1ny

)+ c2 (
β2nx +γ2ny

)+ c3 (
β3nx +γ3ny

)= 0. (3.64)
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In this equation, n is the unity direction vector tangent to the boundary in V . It may be possible that the
boundary is kinked in V , in which case this approach should be further developed. In this thesis, we only
investigate problems on rectangular domains, so this will not pose a problem in this thesis. By imposing Equa-
tions 3.63 and 3.64, it is guaranteed that the value of the reconstructed field is 0 in V and on the boundary near
V . When solving a system of equations for a projection, these two equations should replace two of the three
projection equations associated with the three basis functions of V .

If a non-homogeneous boundary condition is imposed, it is very likely that it can not be reconstructed
exactly by the PS-basis functions, as it is most likely not in the space Φ spanned by all φq

i . However, it can
be approximated quite well by imposing the boundary function values and derivatives in the vertices V at the
boundary. In this case, the boundary condition will be exact in all boundary vertices V and be approximate
around V . For doing so, Equations 3.63 and 3.64 should not be set equal to 0, but to the imposed correspond-
ing value and partial derivative.

(a) The control triangles of each triangulation vertex.
(b) The lower left control triangle is lifted at one of its control
triangle vertices. The value and gradient of this function in
triangulation vertex (0,0) is its triplet.

Figure 3.24: A triangulation consisting of 9 vertices and 8 triangles, the triangulation vertices are marked with black circles. The red control
triangles and control triangle vertices of each grid vertex are showns as well, the control triangle vertices are marked with differing colours.

Finally, we will show another way to impose a homogeneous Dirichlet boundary condition in case a struc-
tured rectangular grid is used. Consider Figure 3.24, for this domain, the control triangle vertices are structured
at the boundary. For a boundary vertex on a corner of the domain, there is one control triangle vertex right on
top of it, and two on the boundary around it, see for example the lower left control triangle. For non-corner
boundary vertices of the triangulation, two of their control triangle vertices are on the boundary, see for exam-
ple the middle left control triangle. Each control triangle vertices is associated with a basis function, and there-
fore is also associated with a triplet (αq ,βq ,γq ). In case the control triangles are structured in this way, it is very
straightforward to implement a homogeneous Dirichlet boundary condition. Suppose a homogeneous Dirich-
let boundary condition is imposed on the entire left boundary in Figure 3.24, at x = 0. In this discretisation
there are three triangulation vertices on that boundary marked with black circles, at (x, y) = (0,0); (0,0.5); (0,1).
Each of those three triangulation vertices has exactly two control triangle vertices on the left boundary, at x = 0:
two orange, two green and two blue. Setting the coefficient of the basis functions of exactly these control tri-
angle vertices guarantees a reconstruction that is exactly 0 on the left boundary.

In general, if there is a triangulation vertex with two of its control triangle vertices on the boundary, then
setting the basis functions of these two control vertices to zero guarantees that the value in V and the derivative
in the direction over that boundary in V is equal to 0. The third control triangle vertex, which is not on the
boundary, already has value 0 on that entire boundary, and therefore, its coefficient does not have to be set
to 0. These properties can be derived from the construction of the triplets from the locations of the control
triangles, as shown in Equations 3.47-3.49. In short, the triplet of a PS-basis function is generated by making a
function g by "lifting" the control triangle to 1 in the control triangle vertex of that PS-function and keeping it
zero in the other two. The triplet is then the value and gradient of this lifted triangle in vertex Vi . For example,
consider Figure 3.24, the lower left control triangle and the control triangle vertex at (x, y) ≈ (0.15,0). "Lift" this
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control triangle at that control vertex to a value of 1 (in the z-direction), but leaving it at zero in the other two
control triangle vertices, see Figure 3.24b. The result is a linear function g , that is 0 at the left boundary, and
1 in (x, y) ≈ (0.15,0). The value of this function in V = (0,0) is zero, and also g y (V ) = 0, and gx (V ) ≈ 1/0.15.
Therefore, its triplet becomes (0,0,1/0.15). More importantly, note that the function is entirely 0 over the left
boundary, and therefore, its associated function φ

q
i is also 0 in V and has y-derivative 0 in V . Therefore, this

function does not have to be set to zero to ensure a homogeneous Dirichlet boundary condition at the left
boundary.

3.6. VALIDATION OF L2-PROJECTION ON B-SPLINE BASIS.
In this section, we validate the projection of a function onto a basis of the quadratic B-spline basis functions. In
this validation, an arbitrary analytic function is projected onto a base of quadratic B-spline basis functions de-
fined over a triangular grid. Then the rate of convergence is measured by calculating the L2-error for different
refinements of the grid.

To investigate the rate of convergence of the L2-projection, the unit square Ω = [0,1]2 is considered. This
domain is discretised with n equidistant vertices both in the x-direction and in the y-direction. The spacing
h is therefore 1/(n − 1), which we define for this case as the typical element length. In total, the domain is
discretised using n2 vertices, ordered in equally large squares. From these vertices, a Delaunay triangulation
forms the triangular grid. A discretisation with 5 by 5 vertices is shown in Figure 3.25.

Figure 3.25: A discretisation of the unit square domain Ω, discretised using n = 5 vertices in each direction, which results in the shown
triangular discretisation ∆.

Over the domainΩ, an analytic function will be defined. In this case, the function

f (x, y) = sin(πx)sin(πy) (3.65)

will be projected onto the basis of B-splines. A different L2-projection was also used earlier in Equation 2.35.
For convenience, the process is repeated here without a weight-function. Let

f̂ (x, y) =
n2∑
j=1

3∑
r=1

cr
jφ

r
j (x, y) (3.66)

be the L2-projection of f (x, y) onto the basis of B-splines φq
i . As there are n2 vertices in the discretisation, and

3 basis functions per node, so 3n2 basis functions in total. For the L2-projection f̂ (x, y), the function f and its
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approximation f̂ must be equal in the weak form, giving a system of equations:∫
Ω

f̂ (x, y)φq
i Ω=

∫
Ω

f (x, y)φq
i dΩ, for i = 1, . . . ,n2, q = 1,2,3 (3.67)

(Substitute f̂ ) ⇒
∫
Ω

n∑
j=1

3∑
r=1

cr
jφ

r
jφ

q
i dΩ=

∫
Ω

f (x, y)φq
i dΩ, for i = 1, . . . ,n2, q = 1,2,3 (3.68)

⇒ cr
j

n∑
j=1

3∑
r=1

∫
Ω
φr

jφ
q
i dΩ=

∫
Ω

f (x, y)φq
i dΩ, for i = 1, . . . ,n2, q = 1,2,3 (3.69)

Mc = f , (3.70)

in which M i q, j r = ∫
Ωφ

r
jφ

q
i dΩ and f i q = ∫

Ω f (x, y)φq
i dΩ. Note that for entry Mi q, j r , it may be ambiguous

which column and row are meant. In this thesis, basis function φ
q
i is given global basis function number

3(i −1)+q , first counting over all basis function of one vertex Vi , and then over the vertices. It is then assigned
the corresponding row in the matrix.

Solving this system for c yields the coefficients for the projection f̂ (x, y). The integration of the integrals is
done with Gauss integration with 7 Gauss points per element, such that the quadrature error is insignificant.
The only error of interest in this test is the projection error, which will be measured in the L2-norm:

E(h) =
√∫

Ω

(
f̂ − f

)2
dΩ. (3.71)

Note that the error E(h) is only a function of the spacing h of the vertices, which also represents the typical
length of the triangles.

For various values of h, the projection error has been calculated. In Table 3.1, the results are presented.
The table shows a reduction in error of about a factor 8 ≈ 23 when the spacing h is halved. This implies that
E(h) =O (h3), so the B-spline basis shows third-order convergence as expected. The sin-function, its projection
and the error are also shown in Figure 3.26

Table 3.1: The L2-error for the projection of the function f (x, y) = sin(πx)sin(πy) on a basis of quadratic B-splines for different discretisa-
tions of the domain.

n n2 Degrees of freedom h E(h) 2 log(E(h)/E(2h))
3 9 27 1/2 1.18575e-02 -
5 25 75 1/4 1.14331e-03 3.37
9 81 243 1/8 1.31622e-04 3.12

17 289 867 1/16 1.61689e-05 3.03

For the sake of comparison, an L2-projection on a basis of piece-wise linear Lagrange basis functions has
also been validated, using the same structure of grid as in Figure 3.25. The error of the projection on this basis
is shown in Table 3.2. The table shows that the error is indeed of second-order with respect to the typical
element length, E(h) =O (h2).

Table 3.2: The L2-error for the projection of the function f (x, y) = sin(πx)sin(πy) on a basis of piece-wise linear basis functions for differ-
ent discretisations of the domain.

n n2 Degrees of freedom h E(h) 2 log(E(h)/E(2h))
5 25 25 1/4 1.71200e-03 -
9 81 81 1/8 4.13089e-04 2.05

17 289 289 1/16 1.02202e-04 2.02
33 1089 1089 1/32 2.54938e-05 2.00

3.7. CUBIC POWELL-SABIN SPLINES
In the last section, we have seen that a basis of quadratic Powell-Sabin splines leads to third-order spatial
convergence for function reconstruction. It is also possible to use cubic PS-spline instead, for even higher-
order spatial convergence. Grošelj and Speleers [18] have described a construction of these cubic Powell-Sabin
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(a) Function f (x, y) = sin(πx)sin(πy).
(b) Projection f̂ with n = 3, h = 1/2.

(c) Error E = f̂ − f with n = 3, h = 1/2. (d) Error E = f̂ − f with n = 17, h = 1/16.

Figure 3.26: The double sin function, and its reconstruction for n = 3 are shown in the upper two figures. For more precise reconstructions,
the difference is not visible from the functions. Instead the error f̂ − f is shown in the lower two figures for n = 3 and n = 17.

B-splines, which is shortly summarised in Appendix A.3. These basis functions are piece-wise third-order
polynomials, with the properties of non-negativity, locality, partition of unity and C 1-continuity. However,
the construction process and analysis is even more elaborate than for quadratic PS-splines, and therefore.
Furthermore, the result in the next chapter will show that spatial convergence will no longer be the limiting
factor for total error in MPM, and therefore, a cubic-spline basis is not expected to further reduce the error.
Therefore, in this thesis only quadratic PS-spline basis functions are considered.
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4
RESULTS

In this chapter, PS-spline MPM will be compared to standard Lagrange basis MPM on a triangular grid. We
expect that MPM with quadratic B-spline basis functions does not show any grid crossing errors. Also, the
quadratic PS-splines are expected to show third-order spatial convergence, whereas the piece-wise linear La-
grange basis functions should result in only second-order convergence. This difference in convergence should
occur in the projection of the material properties to the grid. In Section 3.6, it was shown that the PS-spline
basis functions indeed show third-order convergence for general function reconstruction. In this section, we
will investigate if this also holds when applied in MPM. In order to compare PS-spline MPM with standard
Lagrange MPM two benchmark problems are considered: a vibrating bar and a soil column under self weight.
Both benchmarks are considered for both small and large deformations.

4.1. BENCHMARK TESTING: VIBRATING BAR, SMALL DEFORMATIONS
In this section, a vibrating bar with both ends fixed is considered as benchmark to compare PS-spline MPM
with classical Lagrange MPM in terms of spatial convergence and general accuracy. The vibrating bar problem
can be described as a one-dimensional problem, in which the particles in the bar are only allowed to move
in the x-direction. The particles start with an initial x-velocity and as a result, the bar will be stretched and
compressed in the domain. Figure 4.1 shows a schematic illustration of the situation. Furthermore, the figure
shows a way to represent this one-dimensional benchmark as a two-dimensional problem. By adding a second
dimension, the problem may be solved with MPM with the quadratic 2D Powell-Sabin splines on a triangular
grid.

v0

0 L

(a) 1D

v0

0 L

H

0

x

y

(b) 2D

Figure 4.1: The benchmark problem of a vibrating bar, described as a one-dimensional problem on the left, and as a two-dimensional
problem on the right. On the left and right of the bars there are homogeneous Dirichlet conditions for both x- and y-displacement. The
top and bottom boundary conditions are homogeneous Dirichlet for only the y-displacement. An initial velocity field is imposed over the
bar with the maximum speed v0 in the middle.

The one-dimensional problem has homogeneous Dirichlet boundary conditions at x = 0 and at x = L.
For the two-dimensional problem, homogeneous Dirichlet boundary conditions for the x- and y-velocity are
also imposed at x = 0 and x = L. At the upper and lower edge, where y = 0 and y = H respectively, only
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a homogeneous Dirichlet boundary condition is imposed for the y-velocity. This is to prevent the bar from
deforming in the y-direction, which does not happen in the one-dimensional problem. For the x-velocity at
y = 0 and y = H , no conditions are imposed, as the bar must be free to move to the left and right within the
domain. With these conditions, it is expected that the two-dimensional solution will be only dependent on x,
and be stationary in the y-direction. The solution should be the same as for the one-dimensional problem.

This problem has also been described and researched extensively in 1D by Tielen [19]. The same parame-
ters will be used in this thesis, and the 2D solution will be compared to the 1D solution of Tielen. The specific
parameters used for the problems are shown in Table 4.1. The parameters are chosen such that the deforma-
tions in the bar will be small, i.e. the normal strain in the x-direction ε11 ≤ 1%. Deformations in the y-direction
do not occur in the analytical solution, as there will only be an initial velocity in the x-direction. Also, as the
Poisson ratio is zero, deformation in the x-direction should not lead to deformation in the y-direction. Finally,
the width of the bar is chosen sufficiently large such that the elements will have about the same size in both
dimensions, in order to prevent sliver elements.

Table 4.1: The parameters for a bar undergoing small deformation, modelled as a 2D object. When modelled as a 1D object, the width is
dropped. Retrieved from [19].

Quantity Symbol Value Unit
Density ρ 1

[
kg/m3

]
Young’s modulus E 100 [Pa]
Poisson Ratio ν 0 [−]
Length L 25 [m]
Width H 2 [m]
Velocity v0 0.1 [m/s]

For small deformations, the differential equation derived from the conservation of momentum can be re-
duced to the wave equation [20],

∂2ux

∂t 2 = E

ρ

∂2ux

∂x2 . (4.1)

The boundary conditions for the displacement u = (ux ,uy ) are described as

ux (0, y, t ) = 0, uy (0, y, t ) =0, (left end fixed),

ux (L, y, t ) = 0, uy (L, y, t ) =0, (right end fixed),

uy (x,0, t ) =0, (bottom fixed in y-direction, free in x-direction),

uy (x, H , t ) =0, (top fixed in y-direction, free in x-direction).

The initial conditions are given by

ux (x, y,0) =0,

uy (x, y,0) =0,

∂ux

∂t
(x, y,0) =v0 sin

(
π
L x

)
,

∂uy

∂t
(x, y,0) =0.

The solution for the vibrating bar problem under these conditions is given by

ux (x, y, t ) = v0

ω
sin(ωt )sin

(
π
L x

)
, (4.2)

with ω denoting the wave speed, defined as

ω=
π
√

E
ρ

L
. (4.3)

Having defined the problem and the analytic solution, the numerical solution using PS-spline MPM can be
compared to classical MPM solutions and to the analytic one. For PS-spline MPM, the domain is divided into
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rows and columns of rectangles or blocks, and each block is divided into four triangles. For the first simulation,
the grid is divided in 12× 1 blocks, see Figure 4.2, yielding 38 vertices. The particles are also initialised in a
rectangular fashion: 6 rows and 96 columns (8 columns per rectangle), see Figure 4.2 again for the distribution
of the particles in the grid. In general, the grid can be fully described by the number of rows and columns of
rectangles, and the number of rows and columns of particles in each rectangle.

Figure 4.2: The grid for classical Lagrange basis MPM modelling of a vibrating bar. The triangulation of the domain is shown above, four
elements in a rectangle are shown below, along with the initial particle positions, of which there are 12 in each element.

Using this grid, a solution can be determined using B-spline MPM and with classical Lagrange MPM. First,
consider classical Lagrange MPM. The numerical solution for the velocity of a particle in the middle of the bar
is shown in Figure 4.3. In the figures on the left, the results are shown for a the vibrating bar, with an initial
velocity of 0.1m/s in the center, whereas on the right, the initial velocity was only 0.025m/s. Although in the
displacement the difference is hardly visible, a difference in the velocity is clear: the case with the higher initial
velocity shows oscillations. The reason for this is the grid crossing error. In the upper left figure, the maximum
displacement of the considered particle is about 0.08m, which is enough for several particle to cross from one
element to a neighbouring one, as can be seen from Figure 4.2. Lowering the initial velocity also lowers the
maximum displacement, and for an initial velocity of 0.025m/s, grid crossing no longer happens. Despite the
fact that grid crossing errors appear in the case with v0 = 0.1m/s, the movement of the vibrating bar is captured
quite well, and the oscillations in the velocity are mitigated for the displacement through the integration over
time.

Next consider the same grid, but with PS-spline MPM. PS-spline MPM has three basis function per vertex,
whereas classical Lagrange MPM has only one basis function per vertex. Therefore, the same grid yields three
times as many basis functions with PS-splines compared to a Lagrange basis, and therefore these two cases
cannot be compared fairly on the same grid. For a better comparison, a coarser grid can be used for PS-spline
MPM to get a comparable amount of basis functions. The discretisation of Figure 4.2 has 38 vertices, which
corresponds to 38 piece-wise linear Lagrange basis functions. To get a comparable number of PS-spline basis
functions, a grid of 1×4 block could be constructed, as shown in Figure 4.4, resulting in 42 PS-basis functions
(14 vertices, 3 PS-basis function per vertex). Note that the elements for this configuration are more sliver like,
which may give problems if the y-velocity gets too big. For the vibrating bar, however, only a velocity in the
x-direction is expected, and the displacement in the y-direction should be insignificant due to the formulation
of the problem.
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Figure 4.3: The solution for the movement of a 25 m by 2 m vibrating bar with small deformations, using classical Lagrange MPM. 38 basis
functions were used, resulting in a typical element length of 2.1 m as shown in Figure 4.2. For the left case, the initial maximum velocity
was 0.1 m/s, which resulted in grid crossing. On the right, the initial maximum velocity was 0.025 m/s, for which grid crossing did not
occur.

Figure 4.4: The grid and initial particle positions for 2D PS-spline MPM modelling of a vibrating bar.

Using the grid of Figure 4.4, the solution for the displacement and the velocity over time are calculated
and shown in Figure 4.5. The figure shows that both the displacement and the velocity are reconstructed in
accordance with the analytical solution; the error is hardly visible. For this test case, grid crossing did occur,
but this does not seem to influence the solution at all, no oscillations occur in the velocity as in the bottom
right in Figure 4.3. This is in accordance with the theory on grid crossing in Section 2.7: the C 1-continuity of
the PS-basis functions eliminates the grid crossing error.

Next, we will investigate the spatial convergence for both classical Lagrange MPM and PS-spline MPM. For
this, the L2-error will be considered at time t = 0.02, and be investigated as a function of the typical element
length. The L2-error of the displacement Eu is calculated by comparing the exact and numerical solutions in
the particles, and applying quadrature based integration:

Eu =
√√√√ np∑

p=1
Vp · (ûp −u(x p ))2. (4.4)

Here, Vp is the volume of particle p, u(x p ) is the exact x-displacement of a particle with initial position x p

and ûp is the x-displacement in particle p determined in the simulation. Note that the error in the numerical
solution is caused by many factors, most importantly the time stepping error, the spatial reconstruction error,
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PS-spline MPM, with grid crossing

(a) x-displacement with PS-spline MPM. (b) x-velocity with PS-spline MPM.

Figure 4.5: The solution for the movement of a 25m by 2m vibrating bar with small deformations, using PS-spline MPM on the grid shown
in Figure 4.2; 42 basis functions were used.

the quadrature integration error and the grid crossing error. The time t = 0.02 is chosen very small, such that
no grid crossing happens before this time. By taking small time steps and many integration points, it can
also be ensured that the time integration error and quadrature error are small, and thus the error is mainly
dependent on the number of basis functions used for the spatial reconstruction. For these simulations, the
time step size will be chosen as ∆t = 10−5, the number of particles per element is set to 56 (16×14 respectively
in x- and y-direction per block). The discretisation of the grid is similar to Figure 4.2 and Figure 4.4: the grid
is divided into n × 1 blocks, with n the number of blocks in the x-direction. Then each rectangle is divided
into four triangles by adding a vertex in the middle to ensure a symmetric grid. The number of columns of
blocks in the x-direction is varied and changes the typical element length. The results for the L2-error using
Equation 4.4 are shown for Lagrange MPM in Table 4.2 and in Table 4.3 for PS-spline MPM respectively. Both
results are also plotted in Figure 4.6.

Table 4.2: The L2-error of a vibrating bar with small deformations at t = 0.02s with Lagrange MPM.

nx hx Eu(h) 2 log(Eu(h)/Eu(2h))
5 25 ·1/4 1.80956e-04 -
9 25 ·1/8 4.44076e-05 2.03

17 25 ·1/16 1.07531e-05 2.05
33 25 ·1/32 2.68352e-06 2.00

Table 4.3: The L2-error of a vibrating bar with small deformations at t = 0.02s with PS-spline MPM.

particles per element nx hx Eu(h) 2 log(Eu(h)/Eu(2h))
56 2 25 ·1/1 3.70985e-04 -
56 3 25 ·1/2 3.13639e-05 3.56
56 5 25 ·1/4 3.56528e-06 3.14
56 9 25 ·1/8 4.90397e-07 2.86
56 17 25 ·1/16 1.76596e-07 1.47
90 17 25 ·1/16 1.14682e-07 -

The results for the L2-error show that Lagrange MPM converges spatially with second order, as expected.
For PS-spline MPM, third-order convergence can be observed in part of the graph in Figure 4.6, but as the
error becomes smaller, finally the third-order convergence is lost. A possible explanation for this is that the
spatial reconstruction error is of the same magnitude as other errors, which will then also contribute to the
total L2-error. It is quite possible that despite the many integration points, the spatial reconstruction error is
so small that the quadrature integration error may be significant. To test this, two almost identical test cases
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Figure 4.6: The L2-error of the X -displacement in the vibrating bar with small deformations for simulations with Lagrange MPM and
PS-spline MPM.

have been run, which are depicted in the lower two rows of Table 4.3. In both cases, the typical element length
hx in x-direction is equal and very small. The same grid was used, only the number of particles per element
was increased in the second case. The error in the case with more particles is significantly lower than in the
first case, which shows that the integration error is of importance for this typical element length and the error
on display is no longer only dependent of the spatial reconstruction.

Another observation is that far less elements are required for a comparable L2-error. For the case with
typical element length h = 25/33 for Lagrange MPM, the error is of comparable magnitude as with h = 25/5
with Lagrange MPM. For these cases, the number of basis functions were 98 for Lagrange MPM, and 42 for PS-
spline MPM. Therefore, we can conclude that for a fixed spatial reconstruction accuracy, far less basis functions
are required using PS-spline MPM compared to Lagrange MPM.

4.1.1. VIBRATING BAR, SMALL DEFORMATIONS: SUMMARY
Summarising, for the test case of a vibrating bar with small deformations, Lagrange MPM shows grid crossing
errors, but still manages to capture the movement quite well. PS-spline MPM does not show the grid crossing
errors, and performs well even with very few elements. Lagrange MPM shows second-order spatial conver-
gence, whereas PS-spline MPM shows third-order convergence when few elements are used. For more refined
grids, the spatial convergence of PS-spline MPM is lost, as other errors become dominant, such as the quadra-
ture integration error.
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4.2. BENCHMARK TESTING: VIBRATING BAR, LARGE DEFORMATIONS
In this section, the vibrating bar of the last section is considered again, but this time the bar undergoes large
deformations. As MPM is a method to simulate large deformations, it is important to check the performance of
PS-spline MPM in such scenarios. When large deformations occur, the analytical solution in Equation 4.2 no
longer holds; instead, solutions of Lagrange and PS-spline MPM will be compared to the numerical solution
on a 1D simulation of the vibrating bar using the Updated Lagrangian Finite Element Method (ULFEM). This
method is not a material point method, but a standard finite element method in which the elements move
along with the material. In general, this method will not work for simulations in which grid distortion takes
place, but due to the fact that the vibrating bar is only compressed and stretched in the x-direction, grid distor-
tion will not happen and ULFEM will give reliable results. The reference solution for the vibrating bar will be
simulated using a 1D ULFEM simulation, with many elements and small time steps, to ensure a very accurate
solution. The ULFEM code was retrieved from Tielen [19].

For simulating a vibrating bar undergoing large deformations, we consider the same situation as in Fig-
ure 4.1, except that some quantities are different. In Table 4.4, the quantities for the vibrating bar with large
deformations are shown. For the chosen parameters, the maximum normal strain in the x-direction is about
ε11 ≈ 7%

Table 4.4: The parameters for a bar undergoing large deformation, modelled as a 2D object. When modelled as a 1D object, the width is
dropped. Retrieved from [19].

Quantity Symbol Value Unit
Density ρ 25

[
kg/m3

]
Young’s modulus E 50 [Pa]
Poisson ratio ν 0 [−]
Length L 25 [m]
Width H 2 [m]
Velocity v0 0.1 [m/s]

The vibrating bar undergoing large deformations has first been simulated using Lagrange MPM. Again,
the grid was discretised similar to Figure 4.2. More specifically, the grid was divided into 16 blocks in the x-
direction, and 1 in the y-direction, and each block was divided again in 4 triangles. The results are shown in
Figure 4.7. On the left, 6 particles per element were used. Although the displacement still captures the general
movement of the bar quite well, a slight error in the x-displacement is apparent. Especially in the velocity in
the bottom left of Figure 4.7 the error becomes well visible; the oscillations are due to grid crossing errors.

In order to mitigate this problem, we can run the same simulation again with more particles. The grid
crossing error causes trouble in the quadrature integration, as explained in Section 2.7, so adding more par-
ticles should mitigate this problem. If few particles are used, each particle contains a relatively large mo-
mentum. Therefore, when one particle crosses an element boundary, the element to which it went suddenly
contains a much larger total momentum. If more particles are used, each particle will contain a much smaller
portion of the total momentum, so the jump in total momentum in an element will become much smaller
and therefore the grid crossing error becomes smaller. This is also visible from plots on the right in Figure 4.7,
in which the same vibrating bar was simulated, but with 56 particles per element instead of 6. The error in
the displacement is much smaller and the oscillations in the velocity are much smaller as well. However, the
oscillations in the velocity are still significant; adding more particles does not solve the grid-crossing error, but
only reduces it. In theory, doubling the number of particles per cell halves the momentum per particle. As the
grid crossing error upon occurrence is proportional to the momentum of the particle crossing over, the grid
crossing error is inversely proportional to the number of particles per elements. Due to the fact that there is
only first-order convergence with respect to the particles per element, many particles must be used, which will
lead to slow computations.

Next, the vibrating bar undergoing large deformation is simulated using PS-spline MPM. The grid was
divided in 8 columns of blocks in x-direction and 1 row of blocks in the y-direction, and each block was divided
in 4 triangles. This led to a total of 26 vertices, so 26 ·3 = 78 basis functions. The typical element length in x-
direction was h = 0.125m. The results are shown in the left side of Figure 4.8. The solution using MPM is
compared to the ULFEM solution. For the displacement, there is hardly any visible difference. For the velocity

49



Lagrange MPM, 6 particles per element Lagrange MPM, 56 particles per element
D

is
p

la
ce

m
en

t
Ve

lo
ci

ty

Figure 4.7: The solution for the movement of a 25 m by 2 m vibrating bar undergoing large deformations, simulated using classical La-
grange MPM. 50 basis functions were used, the typical element length was 1/16 m. The results on the left were determined with 6 particles,
whereas on the right 56 particles were used.

however, a small oscillation can be seen, although its amplitude is very small. We investigate if refining the
grid and adding more particles yields a more accurate result for the velocity. The grid spacing is halved for
both the x- and y-direction, and the number of particles is raised from 20 to 90 particles per element. The
results are shown on the right in Figure 4.8. Again, the x-displacement is not distinguishable from the ULFEM
solution, but no significant improvement of the velocity error is visible. Upon inspection, the oscillations are
still present, although with a slightly lower amplitude than in the less refined case on the left. Furthermore, the
frequency of the oscillation has risen.

4.2.1. VIBRATING BAR, LARGE DEFORMATIONS: SUMMARY
Altogether, PS-spline MPM shows good result for simulating large deformations in a vibrating bar. Even when
few elements are used, the displacement is well reconstructed, leaving only small vibrations in the velocity.
Lagrange MPM suffers from grid crossing errors and is outperformed by PS-spline MPM. In case more particles
are used for Lagrange MPM, the effect of grid crossing is reduced, but the errors are remain visible.
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Figure 4.8: The solution for the movement of a 25m by 2m vibrating bar undergoing large deformations, simulated using PS-spline MPM.
For the left cases, 78 basis functions were used, the typical element length was 1/8m and 20 particles per element were used. The results
on the right were determined with 249 basis functions and 90 particles per element.
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4.3. SOIL COLUMN UNDER SELF-WEIGHT, SMALL DEFORMATIONS
In the previous sections, the benchmark of a vibrating bar was considered. For this benchmark, the particles
can undergo large deformation, but the geometry of the domain will not essentially change due to the Dirichlet
boundary conditions at the left and right ends of the bar. In this benchmark, we will consider a soil column un-
der self-weight, which is fixed at the bottom, but not at the top. Therefore, the soil column can be compressed,
and the geometry of the column changes over time. First, we will investigate a soil column undergoing small
deformation, in Section 4.4, the same benchmark is considered with large deformations. Figure 4.9a shows a
schematic representation of the soil column benchmark.

g

0 W

H

0

x

y

(a) Geometry of a soil column with
boundary conditions.

(b) 2D soil
column dis-
cretisation.

(c) Soil column discretisation, zoomed in at the top.

Figure 4.9: The model of a soil column and the grid used in MPM. On the left, the soil column is modelled as a 2D object in which the
boundary conditions are marked red and blue: at the bottom, x- and y-displacements are fixed, left and right only the x-displacement is
fixed. In the right two figures, the domain is divided into blocks, and each block is divided into four elements. In each block, particles are
distributed initially in rows and columns. On the right, the top of the column is depicted in more detail.

The soil column benchmark considered here undergoes deformation due to self-weight. The initial soil
column has uniform pressure and density throughout the domain. Due to gravity the column will be com-
pressed until the soil at the bottom is so dense that it is compressed no further and a shock wave will go from
the bottom to the top. Then the column will start expanding again top first, and the shock wave mentioned
before is reflected from the top. Note that the problem can also be described as a 1D problem in which the
displacement of the soil is only a function of the height; this benchmark has been researched extensively with
1D B-spline MPM by Tielen et al. [5, 19]. In order to investigate the 2D PS-spline MPM, the same benchmark
is considered, but with an extra dimension to be able to use Powell-Sabin splines on triangulations. For the 2D
case, the expected result is the same as for the 1D case, and for small deformation, the analytical solution can
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be derived from the 1D wave equation [20]:

∂2u

∂t 2 = E

ρ

∂u

∂y
− g , (4.5)

in which u is the y-displacement, t the time, E the Young’s modulus and g the gravitational acceleration. The
boundary conditions are described as

ux (x,0, t ) = 0, uy (0, y, t ) =0, (bottom fixed),

uy (0, y, t ) =0, (left side fixed in x-direction, free in y-direction),

uy (0,W, t ) =0, (right side fixed in x-direction, free in y-direction),

in which ux and uy are the displacement in the x- and y-direction respectively. For initial conditions, the
system is at rest with initial velocity and displacement:

ux (x, y,0) =0, uy (x, y,0)= 0,

∂ux

∂t
(x, y,0) =0,

∂uy

∂t
(x, y,0) = 0.

The analytical solution for this problem is given by

u(y, t ) = ρg y2

2E
+ ρg H y

E
+

∞∑
n=1

un cos


√

E
ρ (2n −1)πt

2H

sin

(
(2n −1)πy

2H

)
, (4.6)

with

un = 16ρg H 2

(4n2 −4n +1)(2n −1)π3E
.

For the simulation of a soil column with small deformations, the parameters in Table 4.5 were used. Adopt-
ing these parameters yields a maximum stress of about 1%.

Table 4.5: The parameters for a soil column under self-weight for small deformations. The column is modelled as a 2D object with a height
and width; when modelled as a 1D object, the width is dropped. Retrieved from [19].

Quantity Symbol Value Unit
Density ρ 1

[
kg/m3

]
Young’s modulus E 5 ·104 [Pa]
Poisson Ratio ν 0 [−]
Gravitational acceleration g −9.81

[
m/s2

]
Height H 25 [m]
Width W 2 [m]

The described soil column problem has been solved numerically with Lagrange MPM and with PS-spline
MPM. For Lagrange MPM, the grid was divided into 2×16 blocks, which resulted in 83 basis functions. For the
PS-spline MPM, the grid was divided into 1×8 blocks, which resulted in 78 basis functions. For both cases, 12
particles per element were used. The grid for the PS-spline MPM is shown in Figure 4.9. The grid for Lagrange
MPM had a similar structure, but the grid was divided in more elements to get approximately the same number
of basis functions. The grid was constructed to prevent sliver triangles as much as possible by taking the typical
element length in x- and y-directions of similar size. This was also the reason for the choice of the width of the
soil column.

The results for the Lagrange MPM and PS-spline MPM simulations are shown in Figure 4.10. On the left of
the figure, the results for Lagrange MPM are shown and on the right, the results of PS-spline MPM. Both meth-
ods seem to simulate the displacement very well. Both methods develop a very small phase difference from
the analytical solution over time, but this is due to the fact that the analytical solution is based on infinitesimal
deformations, which is not entirely the case, and is therefore not entirely accurate. Simulations have also been
run with extremely small deformation and in this case, the displacement is indistinguishable from the exact
solution for both cases.
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Furthermore, a large difference in the velocity results can be observed between Lagrange MPM and PS-
spline MPM. The velocity results of PS-spline MPM are hardly distinguishable from the exact solution, whereas
the results of Lagrange MPM oscillate very much. This result was also reported by Tielen [19] and is caused by
grid crossing. When the Lagrange MPM simulation is run again with a lower gravity for smaller displacements,
the oscillations disappear mostly. Again, PS-spline MPM does not have these problems at all.

Lagrange MPM PS-spline MPM
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Figure 4.10: MPM simulation of a soil column undergoing small deformation. The left case was simulated with classical Lagrange MPM;
the grid was divided into 2 columns and 16 rows of blocks, resulting in 83 basis functions. The right case was simulated with PS-spline
MPM, and divided into 1 column and 8 row of blocks, resulting in 78 basis functions. For both cases, 12 particles per element were used.

Upon further refinement of the grid, a new phenomenon appears in the results for both Lagrange MPM and
PS-spline MPM. When the grid for Lagrange MPM is refined from 2×16 blocks from the previous simulation to
2×24 blocks, the instabilities in the velocity becomes larger, as can be seen from Figure 4.11. This behaviour
is expected, as grid crossing will occur more often on a refined grid than on a coarse grid. The difference now
is that the instabilities are also visible in the displacement, in contrast to earlier results, the displacement is no
longer in correspondence with the analytical solution. Similar results have also been reported by Tielen et al.
for 1D, this is a large drawback of classical Lagrange MPM.

Although Lagrange MPM does poorly for a more refined grid, PS-spline MPM does a lot worse if no special
integration technique is used. The simulations using PS-spline MPM show large instabilities when the grid
is refined. A simulation with PS-spline MPM was run with a grid refined into 2×16 blocks, compared to the
1×8 blocks used in Figure 4.10. The result was that particles went out of bounds at the top side of the domain
shortly after the simulation was started, as can be seen in Figure 4.11c. Upon investigation in the code, it
turns out that problems occur in the assembly of the mass matrix when elements become partially empty.
This is currently one of the largest issues we are facing with our implementation of PS-spline MPM and several
methods to mitigate this problem are proposed in Chapter 5, such as matrix lumping, partial lumping, moving
grids and interpolation. For now, the conclusions on PS-spline MPM will be based on the results on coarse
grids, at shown in Figure 4.10.
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Lagrange MPM, Refined grid

(a) Displacement

(b) Velocity

PS-spline MPM, Refined grid

(c) Particle position with PS-spline MPM at
t=0.031.

Figure 4.11: Lagrange MPM simulation of a soil column undergoing small deformation. The grid was divided in 2 columns and 24 rows,
resulting in a typical element in x-direction of 0.96. For the right figure, PS-spline MPM was used with 2 columns and 16 rows. For both
cases, 12 particles per element were used.

4.3.1. SOIL COLUMN, SMALL DEFORMATIONS: SUMMARY
From the simulation of a soil column under self-weight undergoing small deformations, we have observed that
Lagrange MPM and PS-spline MPM both yield fine results when no grid-crossing occurs. When grid crossing
does occur on a small scale, Lagrange MPM can still produce good results for the displacement, as the oscilla-
tions in the velocity may be mitigated due to integration over time. When grid crossing occurs on a large scale,
the solution for the displacement can show entirely wrong results. PS-spline MPM does not face the problem
of grid crossing error, and shows very good results for both the displacement and the velocity on coarse grids.
However, when the grid is refined, PS-spline MPM faces new problems: the elements at the top of the grid
become partially empty, as the soil column is compressed, and this yield problems in the assembly of the mass
matrix, causing instabilities. This problem will be further addressed in Chapter 5.
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4.4. SOIL COLUMN UNDER SELF-WEIGHT, LARGE DEFORMATIONS
In this section, we study the soil column under self-weight again, but this time the parameters are chosen such
that large deformations occur. This problem is closest to applications in geomechanical engineering, in which
large soil deformations problems appear very often. The soil column will be compressed from the top, and its
height will be lowered, comparable to the soil column with small deformations. This time, however, the defor-
mation are significantly larger and at the largest deformation, about 10% of the original domain will be empty.
In the last section we have also observed that PS-spline MPM shows problems in case elements are partially
empty, and this problem will become only larger when large deformations appear. In order for PS-spline MPM
to work properly, the elements will be chosen very large, such that the empty fraction of the top most elements
will be smaller. More structural fixes are considered in Chapter 5, but in this section, PS-spline MPM is first
considered without any further adaptations.

For simulating the soil column with large deformation, the same setup was used as in the previous sec-
tion. Only the height, density and Young’s modulus were changed; the choices for the parameters are shown
in Table 4.6. Adopting these parameters leads to a maximum strain of 18%. As large deformations occur in
the benchmark, the analytical solution presented in the last section for a soil column will no longer hold. In-
stead, an ULFEM solution will be used as reference, as was also done in the case of a vibrating bar with large
deformations in Section 4.2.

Table 4.6: The parameters for a soil column under self-weight for large deformations. The column is modelled as a 2D object with a height
and width; when modelled as a 1D object, the width is dropped. Retrieved from [19].

Quantity Symbol Value Unit
Density ρ 1 ·103

[
kg/m3

]
Young’s modulus E 1 ·105 [Pa]
Poisson Ratio ν 0 [−]
Gravitational acceleration g −9.81

[
m/s2

]
Height H 1 [m]
Width W 0.1 [m]

For the simulations, a grid consisting of 1× 4 blocks was used, with 16× 18 particles in each block. This
results in a total of 14 Lagrange basis functions or 42 PS-spline basis functions, with 72 particles per element.
The grid is shown in Figure 4.12. It can be seen that refinement in more than 4 blocks would lead to an empty
element at the top of the grid. In these cases, both Lagrange MPM and PS-spline MPM no longer converge
to a solution. Also, if less particles are chosen with this specific grid, PS-spline MPM will also diverge, most
probably because the integration error in the top most particle becomes too large and causes instabilities as
well. All together, partially empty elements lead to stability problems for PS-spline MPM. Chapter 5 considers
possible ways of improving the stability and will look into partially empty elements more thoroughly.

First, we will consider the results of both Lagrange MPM and PS-spline MPM on this coarse grid. Figure 4.13
shows the results for Lagrange MPM on the left and PS-spline MPM on the right. Note that Lagrange MPM has
large instabilities in the velocity, but still captures the movement of the bar quite well. This is all due to the fact
that a great number of particles was used, mitigating the grid crossing error. When the number of particles
was halved, the errors would get significantly larger and the particle would not return to its initial position, but
deform permanently, as was also observed in Figure 4.11 of the last section. On the left side of Figure 4.13 the
results for PS-spline MPM are shown. For the shown grid, the computation was stable, as can be seen from
the results. The displacement is captured very well, there is no visible difference between the solutions of PS-
spline MPM and ULFEM. The PS-spline MPM solution for the velocity also follows the ULFEM solution quite
well, although some oscillations can be observed. Nonetheless, with only a limited number of basis functions,
the reconstructed solution is promising for a higher-order material point method.

4.4.1. SOIL COLUMN, LARGE DEFORMATIONS: SUMMARY
For large deformations, the PS-spline MPM will show instabilities when partially empty elements appear. How-
ever, when a coarse grid is chosen, such that all elements are occupied with enough elements at all times, the
results are very promising, even when few basis functions are used, and show better solutions than Lagrange
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(a) The grid with initial particle posi-
tions.

(b) The grid with particle positions at
largest deformation.

Figure 4.12: The grid used to simulate large deformations in a soil column under self-weight. There are initially 16×18 particles per block,
so 72 particles per elements initially.

MPM, which shows large oscillations in the velocity. The next step for PS-spline MPM is to improve the ro-
bustness of the scheme, in order to cope with partially empty elements. In the next chapter, this issue will be
addressed, although a full solution has not been found yet for the stability issues.
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Figure 4.13: MPM simulation of a soil column undergoing large deformation. The grid was divided in 1 columns and 4 rows of blocks, and
72 particles per element. The left case was simulated with classical Lagrange MPM and the right case with PS-spline MPM. As the same
grid was used for both Lagrange MPM and PS-spline MPM, the latter case had three times as many basis functions: 14 basis functions for
Lagrange MPM and 42 for PS-spline MPM.
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5
OPEN ISSUE: ALMOST EMPTY ELEMENTS

In the last chapter, we have seen that PS-spline MPM has shown accurate results and eliminates grid-crossing
errors, but also showed stability issues when elements become partially empty, which will happen frequently
in geomechanical problems usually solved with MPM. In this chapter, we will first explain why the instabilities
appear, and second, we have proposed and investigated several methods to fix this issue. The methods will
prove to yield better stability, although sometimes at the cost of the quality of the solution.

5.1. PROBLEM: INSTABILITIES
The stability problem in PS-spline MPM is caused by partially empty elements, which we have also seen in the
soil column problem and Figure 4.11c. Figure 5.1 illustrates the problem: a Powell-Sabin spline basis function
is depicted along with the molecule on which it is defined (the grey area). Recall that each PS-spline basis
function is associated with a vertex, and the basis function is locally defined on the elements directly around
that vertex. The area consisting of the elements directly around the vertex is called the molecule. In Figure 5.1b,
a contour plot is shown, and from this we can see that the basis function is defined on a molecule consisting of
three elements, but at the lower edges of these elements, it is very close to zero. Recall from the construction
of PS-splines with Bézier ordinates in Figure 3.22, that the value at the edge of a molecule is only determined
by the Bézier ordinate at the center point at the vertex. If this Bézier ordinate is either zero or very small, the
value at the edge of the domain will also be zero or very small. Also, at the boundary of the domain, the basis
function will go to zero quadratically, which also causes very small values at the molecule edges. A particle at
the boundary of the molecule is indicated with a red dot in the contour plot, and the value of the basis function
in this particle is indeed very small; its value is around 10−16, the same order as the machine precision.

Next consider the situation that the molecule of the shown basis function is almost empty, only a couple
of particles are at the lower edges of its molecule, with positions similar to the red dot. First of all, note that in
the MPM algorithms, the considered basis function is still considered active, as its molecule is not empty. For
the construction of the mass matrix M , recall that each element Mi j is calculated as in Equation 2.19, which is
repeated here:

Mi j =
∫
Ω
φiρφ j dΩ≈

np∑
p=1

V (x p )ρ(x p )φi (x p )φ j (x p ).

However, the value of the considered basis function φi is close to zero in all the material points xp . There-
fore, the mass matrix entries on row i are extremely small as well, in particular the diagonal element Mi i ,
as the small values φi (xp ) are squared here as well. These small entries Mi j cause the matrix to have a very
small condition number, typically smaller than 10−16, but also values of 10−200 have been observed just before
particles left the domain. The fact that the mass matrix is ill-conditioned can cause severe instabilities when
M a = F is solved consistently for the acceleration a. Also note from Figure 5.1 that as particles are moving out
of the element, at first this is not a problem, as the basis function still assumes sufficiently large values in the
particles that are still halfway the element. However, as particles move further to the edges, the mass matrix
entries will be smaller and smaller, up to the point that the matrix is very ill-conditioned.

The problem of small matrix elements and ill-conditioned matrices is much less of a problem for classical
Lagrange MPM, because piece-wise linear basis functions are used: due to the fact that the basis functions
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(a) A Powell-Sabin spline basis function.
(b) A contour plot of the PS-spline basis function and a par-
ticle (red) in the molecule of the basis functions at the edge
of the element.

Figure 5.1: A PS-spline basis function at the boundary of a square domain, and a contour plot of this basis function on the triangular grid it
was constructed on. The basis function belongs to the upper middle vertex and the corresponding molecule on which the basis function
is defined is marked grey. Finally, a particle at the lower boundary of the grey molecule is also indicated with a red dot.

are linear between the middle vertex in the molecule and the edges, the basis functions are nowhere 0 in the
molecule and even at the edges, the value is still significantly large. In comparison, in PS-spline MPM it can
occur that a basis function is exactly 0 near the edge of its molecule, and even if it is not exactly zero, it still
approaches zero quadratically instead of linearly near the molecule boundary and therefore, the values there
are much smaller compared to Lagrange basis functions.

Altogether, PS-spline basis functions face a problem which is hardly an issue in classical Lagrange MPM:
the PS-spline basis functions can be arbitrarily small or even zero near the edges of its molecule. When
there are particles situated only in these areas, tiny values will appear in the mass matrix, which will become
ill-posed, causing instabilities when solving for the acceleration M a = F and during the velocity projection
M v = P .

In the next sections, we will address this problem with a number of stability enhancing solutions, the most
important of which are deactivating basis function, lumping, and partial lumping. All of these solutions will
prove to be stability enhancing, but either not fully solve the problem, or influence the quality of the solution.
Guaranteeing full PS-spline stability without loss of accuracy for arbitrary refinements remains an open issue.

5.2. POSSIBLE SOLUTION: DEACTIVATING BASIS FUNCTIONS
In this section, we investigate the first possible method to solve the instabilities caused by partially empty
elements: deactivating the basis functions with insufficient support. The idea of this solution is very simple:
in case a basis function is considered active, as there are particles in its molecule, we first check if its entries
in the mass matrix are sufficiently large. In case the entries are not large enough, then the particles are all
near the edges of its molecule and are close to zero in the considered basis function. Therefore, the considered
basis function can be assumed to be inactive. Note that in PS-spline MPM, each vertex is associated with three
basis functions, which share the same molecule. However, the basis functions all assume their maximum in
different places of the molecule and can be very small or even zero in part of the molecule, see Figure 5.2. The
right contour plot in this figure shows that everywhere in the grey molecule the basis function is significantly
larger than zero, whereas the left function is insignificant near the bottom of the three elements of its molecule.
In case there are only particles at the bottom of the molecule, it can be argued that the left basis function should
be deactivated and set to zero before the system of equations is solved.

The proposed method is quite straightforward, but does contain a large issue: it is unclear how the bound
should be chosen for deactivating a basis function. In order to get a better insight in this, the soil column with
large deformation investigated in Section 4.4 is considered again. Recall that for a division of the grid into
1×4 blocks gave a stable computation, as for this case all elements contained sufficient particles to prevent
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(a) A basis function with very small values near the lower
boundary of its support.

(b) A basis function with significant values near the bound-
ary of its support.

Figure 5.2: Two basis function associated with the upper middle vertex, sharing the same molecule. The molecule on which the basis
function is defined is marked with grey. A material points is again marked with a red dot.

instabilities, see Figure 4.12. If we refine the grid to 1×8 blocks, the uppermost element will become empty,
so there will also be a phase in which it is almost empty. When using the unadapted PS-spline MPM on the
8×1 block grid, the computation becomes unstable at around t = 0.1 and shortly thereafter particles leave the
domain due to the instabilities. The situation at t = 0.1 is shown in Figure 5.3, we can observe that the topmost
element is almost empty at that time, which corresponds to earlier observations that instabilities are caused
by near-empty elements.

Figure 5.3: The particle positions at t = 0.1s in the soil column, simulated with unadapted PS-spline MPM. At this moment, instabilities
start to occur.

If we run the same simulation again with a 1×8 block grid, but deactivate the nodes with Mi i < 10−2 in the
mass matrix, then the computation becomes stable. The result for the displacement is shown in Figure 5.4.
Note that the simulation managed to finish, and thus no great instabilities have occurred, despite that an
entire element has become empty during the simulation. The choice of Mi i < 10−2 has purely been chosen
based on trial and error. For a bound of 10−3, the simulation still became unstable, again due to the fact that
the mass matrix M was already ill-posed before the bound was reached and basis functions were deactivated.
In theory, the bound should be chosen small to interfere as little as possible, but large enough such that the
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simulation remains stable. If the bound is chosen too small, basis functions with insignificant support will not
be detected in time, and the simulation remains unstable. If the bound is chosen too large, basis functions will
be deactivated when they should be active and new errors are introduced. Therefore, the choice for the bound
at which to deactivate a basis function is still vague, inconsistent and in many cases hard to apply.

(a) The particle positions at t = 0.18s in the soil column, sim-
ulated with PS-spline MPM with deactivating nodes.

(b) The resulting y-displacement in the middle particle.

Figure 5.4: The results for the simulations with a 1×8 block grid using PS-spline MPM with deactivating a basis function i when Mi i < 10−2.
On the left, the particle positions are shown at the moment of greatest deformation, on the right, the result of the simulation for the y-
displacement is shown.

Besides the fact that it is hard to determine a proper deactivation bound, this method also has the large
drawback that the numerical solution is prone to new errors. From Figure 5.4b, it is visible that deactivating
basis functions also inflicts a large error. Due to the deactivation bound, basis functions with insufficient sup-
port are deactivated, which causes an additional error when calculating the acceleration and reconstructing
the velocity. These degrees of freedom are set to zero, and the system of equations is solved under the con-
dition that the coefficients of these basis functions are zero. Unfortunately, due to the deactivation of basis
functions and replacing entries in the right hand side, mass and momentum momentum conservation is no
longer guaranteed, and the reconstruction of the acceleration and velocity field will lose quality as well, es-
pecially at the boundary where the basis functions were deactivated. As the deactivated basis functions still
had significant diagonal entries of Mi i ≈ 10−2, the error will also be significant in the acceleration and velocity
field.

5.2.1. DEACTIVATING BASIS FUNCTIONS: SUMMARY

In summary, deactivating basis function can be done when a basis function has few particles left in its molecule,
and the basis function values in these particles are very small as well. From the mass matrix, it can be checked
if this is the case, and as a result the basis function may be disabled. It has been shown that such an approach
has a stabilising effect, but also introduces new errors. The deactivation bound currently has to be chosen
relatively large in order to prevent an ill-posed mass matrix, but this causes significant errors in the solution.
If these errors can be reduced sufficiently in future research, this method may be promising for further imple-
mentation.

5.3. POSSIBLE SOLUTION: LUMPING
The second stability improving method we will consider here is lumping of the mass matrix. For more general
details on matrix lumping for MPM, see Appendix A.2. As the instabilities occur when solving an ill-posed
system of equations, approximating the solution to this system of equations by lumping may stabilise the
simulation. Although lumping is very common in MPM, so far we have not used lumping as mostly coarse
grids were used, and lumping on a coarse grid leads to additional errors in the L2-projection [21]. In this
section however, we are in the first place interested in increased stability.

In order to understand why lumping may have a stabilising effect, we first shortly revise the most impor-
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tant aspect of lumping. When solving a system of equation Ax = b with lumping, the system is replaced by its
lumped counterpart, Ãx = b with A sparse. The lumped matrix Ã is created by summing the mass of each en-
tire row and put in the diagonal element, which leads to a diagonal matrix Ã. The lumped system of equations

is then solved as xi = bi

Ã(i ,i )
, as Ã is now a diagonal matrix. Lumping is a technique commonly used in MPM and

significantly improves the speed of computations, as the coefficient x can be found without solving a system
of equation. The cost of lumping is that the spatial accuracy of the L2-projections decreases. Lumping may
also have a stabilising effect: because no longer a system of equations is solved, the ill-posedness of a matrix is
no longer a problem, as each coefficient xi is calculated directly.

Next, we consider simulations with PS-spline MPM with lumping. Recall that the soil column with large
deformations would show instabilities for the unadapted PS-spline MPM simulations on a 1×8 block grid. We
will now consider the same simulation again, but using a lumped mass matrix for determining the acceleration
field and reconstructing the velocity as in Equation 2.18 and Equation 2.37 respectively. The results for lumped
PS-spline MPM simulations of a soil column undergoing large deformations with a 1×8 block grid is shown in
Figure 5.5.

(a) The y-displacement with lumped PS-spline MPM. (b) The y-velocity with lumped PS-spline MPM.

Figure 5.5: The results for the simulations with a 1×8 block grid using lumped PS-spline MPM

Note that the simulation was fully finished for multiple cycles, so we can conclude that the simulation is
stable. Also the frequency of the main oscillation is captured very well. However, the amplitude of the dis-
placement shows errors that have not been seen before in PS-spline MPM, and the results for the velocity are
much worse than in the non-lumped PS-spline simulation in Figure 4.13. We can conclude that lumping does
have a stabilising effect: again elements were completely empty during this simulation, but the simulation was
never unstable. However, the increased stability comes at the cost of decreased accuracy of the solution. We
have investigated if this error can be compensated by refining the grid into more elements, Figure 5.6 shows
results of lumped PS-spline MPM on a 2×16 block grid. Despite the refinement, the results are similar to the
less refined case. Apparently, the refinement of the grid is not the main cause of the observed error in the dis-
placement and velocity.

As we know that lumping causes additional errors in the L2-projection, we will further investigate the spa-
tial velocity profile instead of only investigating the time profile of a single particle. To do so, we have con-
sidered again the test case of a vibrating bar undergoing small deformations. This is the most plain test case
considered in this thesis: particles rarely leave their elements, all elements are always completely occupied,
and therefore, any error should be due to the lumping of the mass matrix. The results are shown in Figure 5.7.
For this case, a refined grid of 24×1 blocks was used, but again the solution shows differences from the an-
alytical solution that were not present for unadapted PS-spline MPM. The cause of the error becomes visible
from Figure 5.7b: large oscillations occur in the velocity profile through the bar. This is in agreement with
the fact that lumping causes additional errors in the L2 projection. This would also explain the errors in the
oscillation in the movement of a single particle: the main movement of the entire bar is captured well, but due
to spatial oscillations, errors will also appear in the time profile of a single particle. We have further inspected
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(a) The y-displacement with lumped PS-spline MPM. (b) The y-velocity with lumped PS-spline MPM.

Figure 5.6: The results for simulations of a soil column with a 2×16 block grid using lumped PS-spline MPM

the L2-projection using a lumped mass matrix, but these vibration are not directly caused by the function re-
construction: the lumped L2-projection of a sin on this basis of PS-splines yield much smaller smaller errors
than displayed in Figure 5.7b, however, the oscillation in Figure 5.7b has the same frequency: 24 oscillation
for a 24×1 block grid. The magnitude of the error may therefore be caused by the fact that at each iteration,
the acceleration is calculated with about the same error due to lumping every time step. The total error in
the velocity would then be the sum of all these errors, causing larger oscillations in the velocity profile over
time. This is in correspondence with the observation that the errors for the observed cases grow larger over
time, but are quite small at the start of the simulation. However, for lumped Lagrange MPM, these large spa-
tial oscillation have not been observed. Further research may be conducted to find out why PS-spline MPM
is more effected by lumping than Lagrange MPM, and how these errors can be mitigated for PS-spline MPM.
This research would be of great importance for many engineering applications, as lumping is a very common
technique within MPM and many applications require lumping to run large simulations in reasonable time.

(a) Vibrating bar, x-displacement of middle particle.
(b) Vibrating bar, the x-velocity through the entire bar at t =
2.5s.

Figure 5.7: The results for simulation of a vibrating bar undergoing small deformation. A 24×1 block grid was used, together with lumped
PS-spline MPM. The velocity at t = 2.5s is shown on the right, at this time, the analytical absolute velocity is at its maximum.

5.3.1. LUMPING: SUMMARY
We have found that lumping greatly improves the stability of PS-spline MPM, but at the same time adds sig-
nificant errors to the solution. Using a lumped mass matrix causes additional errors in the L2-projection com-
pared to using a consistent mass matrix, and therefore additional spatial inaccuracies can appear. Large errors
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can appear as these spatial errors increase over time. This still poses a problem for application in engineering,
as lumping is often required for MPM simulations with many degrees of freedom. However, if the lumping
errors could be mitigated, lumped PS-spline MPM would be both stable and accurate, and be promising to
further develop for engineering applications.

5.4. POSSIBLE SOLUTION: PARTIAL LUMPING
In the previous section, we have observed that lumped PS-spline MPM has very good stability properties, but
also additional L2-projection errors appear. To get a method that is stable, without adding large additional er-
rors, we will also consider an additional method: partial lumping. Recall that the objective of this section is to
find a PS-spline MPM method that is stable when elements become partially empty. Lumping has proven suc-
cessful in stabilising PS-spline MPM, but is accompanied with large errors. The lumping is mainly necessary
for preventing that the consistent mass matrix becomes ill-posed due to the basis functions at the partially
empty elements. The idea of partial lumping is to only lump the mass matrix for these specific basis functions,
and solve the remaining system consistently.

To implement partial lumping, first the basis functions on the edge of the element must be identified. To
find the boundary basis functions, we simply check if the corresponding vertex connects a filled element and
an empty element. The empty element is per definition outside the domain, and the filled element inside, so
a vertex connecting a filled and an empty elements must be a boundary vertex. The Powell-Sabin spline basis
functions associated with these vertices are considered boundary functions. During the MPM time stepping
process, the rows in the mass matrix will be lumped for specifically these basis functions and solved consis-
tently for all the other degrees of freedom. In order for this procedure to function, the grid simulation needs
additional information on where its boundaries are. Additional empty elements are required on the top of the
soil column benchmark, to identify the top basis functions as boundary basis functions. Therefore, the grid is
extended at the top with an additional block of elements, without any particles inside, see Figure 5.8a. These
will then be recognised as empty elements outside the domain, and the basis function at the physical top of
the soil column will be recognised as boundary basis functions.

Using the 1× 8 grid shown in Figure 5.8a, the soil column simulation has been run again with partially
lumped PS-spline MPM. Recall that this test case became unstable when the same grid was used with un-
adapted PS-spline MPM. The result for the velocity is shown in Figure 5.8b, which looks relatively good. The
displacement is not shown here, but it was almost indistinguishable from the ULFEM solution. Altogether,
the results are quite good, and very similar to the result we have seen before in Figure 4.13 for the unadapted
PS-spline MPM on a very coarse grid. This is to be expected, as most of the system used in partially lumped
PS-spline MPM is solved with the consistent mass matrix, and only the boundary basis functions are lumped.
The oscillations that can still be observed in the velocity are due to the lumping at the boundary, but the gen-
eral picture is conserved well enough. However, when the grid was refined further, from 1×8 blocks to 2×16
blocks, the simulation would become unstable again. Apparently, for this case we have not lumped enough
basis functions, as it is known that fully lumped PS-spline MPM is stable. To get a method that is both stable
and accurate, a balance has to be made between lumping more elements near the boundary for better stabil-
ity on one hand, and lumping as few basis functions as possible to retain an accurate solution on the other
hand. Further research may investigate a better rule to determine a more general balance on whether a basis
function should be lumped or not to guarantee stability.

5.4.1. PARTIAL LUMPING: SUMMARY
In summary, partial lumping is a combination between consistent and lumped PS-spline MPM, which only
lumps the mass matrix entries of basis functions on the boundary of the domain. As more basis functions
are lumped, the method becomes more stable, but less accurate. One simulation was run which showed good
results for both the stability and the accuracy of the solution. Further research can be conducted on optimising
the balance between stability and accuracy for general cases.
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(a) Soil column grid, with an extra block on top. (b) y-velocity of middle particle in a soil column.

Figure 5.8: The results of partially lumped PS-spline MPM for a simulation of a soil column undergoing large deformation. A 1×8 block
grid was used with one additional empty block on top

66



6
CONCLUSION

The material point method (MPM) is a well known finite element technique to numerically simulate large soil
deformation problems using a triangular grid. However, it is classically operated with piece-wise linear basis
functions, which causes low-order spatial convergence and grid crossing errors due to the discontinuity of the
derivatives of the basis functions. The goal of this study was to extend the material point method with higher-
order C 1-continuous basis functions on triangulations to solve these issues. For this reason, a C 1-continuous
higher-order B-spline basis on arbitrary triangulations has been investigated for MPM, which has led to the use
of quadratic Powell-Sabin (PS) splines, which are non-negative and C 1-continuous. It has been shown that the
L2-projection of an analytic function onto a basis of PS-splines shows the expected higher-order spatial con-
vergence. Furthermore, the PS-splines have also successfully been implemented in MPM, and benchmarks
have been run for small and large deformations in both a vibrating bar and in a soil column. For the vibrat-
ing bar benchmark, higher-order spatial convergence of PS-spline MPM has been observed. Furthermore,
grid crossing no longer causes errors when PS-spline MPM is used. In the investigated benchmarks, PS-spline
MPM has shown good results when few elements were used, and the method seems promising for further
application in problems which require a large number of basis functions: PS-spline MPM may significantly
reduce the number of basis functions required and therefore save time. However, PS-spline MPM also faces a
number of unsolved issues before it may actually be used in engineering applications.

The largest problem we have encountered with PS-spline MPM is the occurrence of instabilities in the
method. If these instabilities occur, particles will have nonphysical speeds and travel out of the domain. In
general, sliver elements should be avoided and stability conditions for the time step size should be respected,
but a more fundamental problem shows up as well: PS-spline MPM has large difficulties in handling par-
tially empty elements. The values of PS-spline basis functions can become very small in its support, and if all
particles in the support are located in such regions, this leads to very small entries in the mass matrix. As a
consequence, the mass matrix becomes ill-conditioned, and consistently solving the mass matrix causes in-
stabilities. We have proposed several solutions in this thesis, that have proven to enhance stability, though
often at the cost of a loss of accuracy.

One possible solution proposed was to deactivate the PS-spline basis function with insufficient support.
If a basis function only attained very small values in all particle locations in its support, it would be deacti-
vated and its coefficient is set to zero. This method has proven effective in stabilising the method, but causes
significant errors in the final solution for the displacement. Furthermore, the choice of bound at which basis
functions are deactivated is very arbitrary, and may differ greatly for different problems and different grids. All
together, this method would require a lot of development to function properly.

The most promising mitigation strategy for the instabilities due to almost empty elements is to incorporate
lumping of the mass matrix into the method. In most engineering applications, lumping is an essential part
of MPM, as it saves a lot of time for the computations, and therefore, lumping was also incorporated into PS-
spline MPM. Lumping is known to have a stabilising effect, and when implemented in PS-spline MPM, the
computations became very stable. However, lumping caused large additional errors in the spatial accuracy. It
has been observed that the L2-projection using a lumped matrix shows small spatial errors, but these errors
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may be summed over time, resulting in a large spatial error for longer simulations. Further study would be
required to solve or mitigate this issue for lumped PS-spline MPM. Instead of using fully lumped PS-spline
MPM, it is also possible to use partial lumping. In this method, the consistent mass matrix is used, but only
the entries of the basis functions at the boundary that cause the instabilities are lumped. This leads to a more
stable method, without adding a very large additional error. As more entries of basis function in the mass
matrix are lumped, the method becomes more stable at the cost of a larger additional lumping error.

RECOMMENDATIONS
For follow-up research, the most important issue would be to mitigate the lumping error. For many engi-
neering application, lumping is essential, as it significantly reduces the time required for MPM simulation
compared to using a consistent system of equations. Therefore, PS-spline MPM will be less attractive for com-
putations with many degrees of freedom if full lumping is still prone to large errors. This is one of the larger
issues of PS-spline MPM and should be further researched with higher priority than the other recommenda-
tions. Once this has been resolved, other possible tracks may also be pursued.

Another possible follow-up research may be on the use of function interpolation and Gauss quadrature
integration. It may be possible to incorporate Gauss integration into the method, to reduce the integration
error, such that less particles can be used for a comparable accuracy. Tielen [19] and Wobbes et al. [22] have
shown that function reconstruction for using a Gauss quadrature rule can further improve MPM, and this may
also be the case for PS-spline MPM.

In this thesis, we have spent some attention on implementing cubic PS-splines into MPM, but currently
this track seems less promising. The errors in PS-spline MPM are no longer dominated by the spatial recon-
struction method. Therefore, using cubic PS-splines would have little advantage over quadratic PS-splines.
Furthermore, the implementation of cubic splines is more cumbersome than quadratic PS-splines, and the
construction of the functions is more expensive as well. For these reasons, we would recommend further
study into these basis functions mainly when the spatial function reconstruction of quadratic PS splines be-
comes a limiting factor for the total error in MPM. Once a higher-order time stepping method and quadrature
integration method have been implemented as well, the spatial error may become more dominant again, in
which case cubic PS-splines would become interesting.

Another recommendation is to use 2D PS-spline MPM to simulate representative 2D benchmarks, instead
of 1D benchmarks with an additional dimension. Some examples of these are pile driving and the collapse of
a soil slope. The 1D benchmarks have proven useful to investigate the performance of PS-spline MPM, but the
method should also be tested for more advanced 2D benchmarks.

A final recommendation for follow-up research is the extension of PS-spline MPM to 3D. The step from
1D to 2D spline MPM was cumbersome, but scaling up PS-spline MPM from 2D to 3D will most probably
prove more straightforward. For most aspects, we expect that the 3D case will be similar to the 2D case, often
simply adding one extra coordinate. Further study into 3D PS-spline MPM may prove very beneficial, as for 3D
problems, the number of basis functions are often much higher than for 1D and 2D. Therefore higher-order
spatial convergence may be of even greater importance to reduce the number of basis functions required than
for 1D or 2D.
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A
APPENDIX

A.1. STRESS AND STRAIN
For the reader who is not familiar with the concepts of stress and strain, and the resulting motion, we sum-
marise the basics in this appendix.

STRESS
The stress is defined as the internal force, that neighbouring particles exert on each other. Two types of stress
can be distinguished, normal stress and shear stress. Normal stress is the force per area in the normal direction
of the considered plane. For example, consider the stress over a horizontal plane in a vertical bar, as shown
in Figure A.1. The upper part pushes on the lower part and vice versa. This imaginary plane is being pushed
on from two sides in a direction normal to the plane. This is the normal stress component of this specific
plane. It is also possible that the upper and lower part of the bar are pulling at each other, then the normal
stress changes sign. In this thesis, tensile forces will be assumed to be positive, whereas compressive forces are
negative. Also note that the normal stress is dependent on the orientation of the plane. If a vertical plane is
considered, then there would be no normal stress on that plane, as in this example there is only a force field in
the z-direction, which is not a normal direction of a vertical plain.

Figure A.1: Illustration of normal stress in a compressed bar.

The shear stress is defined as the force per area parallel to the plane it is exerted on. An example is shown
in Figure A.2. When two blocks are horizontally next to each other, and the right one is pushed down and the

69



Figure A.2: Illustration of shear stress when two bars are pressed along each other.

left one pushed up, there will be shear stress over the interface. This stress has two components, in the figure,
the component in the z-direction is non-zero, but the shear stress in the y-direction is zero.

Having defined the normal and the shear stress of a certain plane, it is possible to describe the full stress
in a point by considering an infinitesimal cube around that point. The stress on opposite planes is equal, as
the cube is infinitely small, so we only consider three planes: the three planes respectively orthogonal to the
x1()-, x2()- and x3()-direction, as is illustrated in Figure A.3. On each of these planes, there is one normal stress
component and two parallel stress components. These components can be stored in the stress tensor, where
σi j represents the j th component of the force on the plane normal to the xi direction, as shown in Figure A.3.
Note that when σi j 6= σ j i in the cube in the figure, there will be an angular momentum and thus a rotational
acceleration. In case the cube is in steady state, then σi j =σ j i and so the stress tensor should be symmetric.

σ11

x1

x3

x2

σ12

σ13

σ21

σ22

σ23

σ31

σ32

σ33

Figure A.3: The stress components in a single point, described as infinitesimal cube.

FROM STRESS TO MOTION

In order to get the resulting force from the stress, a small volume can be considered. A 2D volume will be
considered and the resulting total force on this volume will be calculated. Figure A.4 shows a square with four
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Figure A.4: A 2D volume of size ∆x by ∆y . On each of the four faces of the cube, the stress is assumed to be constant. The stress vector
working on each of the faces is depicted, decomposed in its x and y components.

sides. The center of the rectangle is (x, y), and the corners are at (x ± ∆x
2 , y ± ∆y

2 ). A force field works on each of
those sides, and is assumed to be constant over the side. Now consider the total force in the x-direction. This
force is equal to

Fx =∆y
[
σ11

(
x + ∆x

2 , y
)−σ11

(
x − ∆x

2 , y
)]+∆x

[
σ21

(
x, y + ∆y

2

)
−σ21

(
x, y − ∆y

2

)]
⇒ Fx

∆x∆y
=σ11

(
x + ∆x

2 , y
)−σ11

(
x − ∆x

2 , y
)

∆x
+
σ21

(
x, y + ∆y

2

)
−σ21

(
x, y − ∆y

2

)
∆y

By taking the limit of ∆x and ∆y to zero, we get

fx (x, y) = ∂σ11

∂x
(x, y)+ ∂σ21

∂y
(x, y). (A.1)

Note that f is a force density. Equation A.1 can be generalised for any direction. Rename x as x1 and y as x2

etc. Using the Einstein summation convention, the internal force can be written as [23]:

fi =
∂σ j i

∂x j
. (A.2)

In divergence notation, this becomes

f = (
f1, f2

)= (
∂

∂x1
,
∂

∂x2

)
·
[
σ11 σ12

σ21 σ22

]
=∇·σ. (A.3)

This accounts for the internal force in the conservation of momentum in Equation 2.3.

STRAIN
The theory about strain in this part was retrieved from [1] and [24], see these for more details. The strain of a
material is the deformation from its original geometry. The strain ε is denoted as a tensor,

ε=
 ε11

1
2γ12

1
2γ13

1
2γ21 ε22

1
2γ23

1
2γ31

1
2γ32 ε33

 . (A.4)

The diagonal element represents the normal strain, whereas the non-diagonal elements denote the shear
strain. The strain can be determined from the position dependent displacement u(x), similar to the stress

71



∆x

∆y

duy

dy ∆y

∂ux
∂x ∆x

∂uy

∂x ∆x

∂ux
∂y ∆y

x

y

A B

DC

b

d

c

a
α

β

Figure A.5: A 2D volume element undergoing infinitely small deformation. The deformation in the illustration is exaggerated for the sake
of clarity. The dotted rectangle is the original geometry, and the solid quadrilateral is the deformed cube.

tensor. To derive the strain, consider an infinitesimal small rectangle of size∆x×∆y . This rectangle may move
and deform over time, as shown in Figure A.5. If the stretching of AB is considered, the length after deforma-
tion of the line piece is equal to

ab =
√(
∆x + ∂ux

∂x
∆x

)2

+
(
∂uy

∂x
∆x

)2

=∆x

√
1+2

∂ux

∂x
+

(
∂ux

∂x

)2

+
(
∂uy

∂x

)2

.

Under assumption that ∂ux
∂x ¿ 1 and

∂uy

∂y ¿ 1, the second-order terms can be neglected and the square root
can be approximated,

ab =∆x

√
1+2

∂ux

∂x

≈∆x ·
(
1+ ∂ux

∂x

)
====⇒
∆x→0

ab =∆x + ∂ux

∂x
∆x (A.5)

Therefore, line piece AB has stretched with ∂ux
∂x ∆x, so the stretching per unit length is ∂ux

∂x . In general, the
normal strain in direction xi becomes

εi i = ∂ui

∂xi
. (A.6)
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The shear strain is related to the change in angle of corner A. This change in angle is equal to α+β in
Figure A.5. The formulas for α and β can be derived from geometric rules, under the assumption of small
displacements and small angles.

tan(α) =
∂uy

∂x ∆x

∆x + ∂ux
∂x ∆x

=
∂uy

∂x

1+ ∂ux
∂x

(A.7)

(
tanα≈α,

∂ux

∂y
¿ 1

)
⇒α=∂uy

∂x
(A.8)

tan(β) =
∂ux
∂y

1+ ∂uy

∂y ∆y
(A.9)

(
tanθ ≈ θ,

∂ux

∂y
¿ 1

)
⇒β=∂ux

∂y
(A.10)

Therefore, the total change in angle will beα+β= ∂uy

∂x + ∂ux
∂y . In general, for infinitesimal deformations this

yields a total shear strain of

γi j =
(
∂ui

∂x j
+ ∂u j

∂xi

)
. (A.11)

Note that the shear strain is symmetric, γi j = γ j i . The term will appear twice in the strain tensor, and for
normalisation, this term appears as 1

2γi j in the tensor. Note that the strain can also be written in incremental
form

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (A.12)

This form is in agreement with Equations A.6 and A.11.

For MPM the strain is required in differential form. Each time step, the total strain will change slightly.
Therefore, the derivative with respect to the strain to the time is needed. The differential form is easily retrieved

from Equation A.12, as ∂ui
∂t = vi , where vi is the velocity in the xi direction. Therefore, the strain in differential

form becomes
∂εi j

∂t
= 1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)
. (A.13)

CONSTITUTIVE RELATION
To determine the stress from the strain, a so called constitutive relation is required. The constitutive relation
used here was retrieved from [1] and [9]. The constitutive relation gives the change in stress as function of the
strain. Note that the Einstein summation convention for repeated indices is used throughout this section. The
constitutive relation between stress and strain is given by

∂σi j

∂t
=∇ j
σ i j +ωi kσk j −σi kωk j , (A.14)

in which
∇J
σ i j denotes the Jaumann rate of stress andωi j the spin tensor. The Jaumann rate of stress represents

the non-rotational part of the change in stress. The last two terms with the spin tensor represent the torque,
which results in the rotational acceleration. The spin tensor ωi j is defined as the anti-symmetric part of the
velocity gradient,

ωi j = 1

2

(
∂vi

∂x j
− ∂v j

∂xi

)
. (A.15)

The Jaumann rate of stress is defined as
∇J
σ i j=∇H

σ i j +∂εkk

∂t
σi j , (A.16)

in which
∇H
σ i j denotes the Kirchhoff stress, also known as the Hill stress. The second term represents a non-

linear term, which is of importance in case of large deformations. In this thesis, the material is assumed to be
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isotropic and linear elastic, so the force caused by stretching the material is proportional to the deformation.
This implies a linear inversible relationship between the Kirchhoff stress and strain, independent of direction.
In this case, the Kirchhoff stress can be written as

∇H
σ i j= Di j kl

∂ε

∂t
. (A.17)

Substituting the equations above into Equation A.14 leads to the final constitutive relation,

∂σi j

∂t
= Di j kl

∂εkl

∂t
− ∂εkk

∂t
σi j +ωi kσk j −σi kωk j , (A.18)

Only the term Di j kl has not been defined yet. This term gives a linear relation between the Kirchhoff stress
and the strain, derived from Hooke’s law. The relation is given by

Di j kl =
(
K − 2

3
G

)
δi jδkl +G

(
δi kδ j l +δi lδ j k

)
. (A.19)

The δi j denotes the Kronecker delta, which is 1 if i = j and zero otherwise. K and G represent the bulk mod-
ulus and shear modulus respectively; the bulk modulus is the ratio between pressure and the corresponding
decrease of volume, and the shear modulus is the ratio between the shear strain and the resulting shear stress.
The bulk modulus and shear modulus are both determined by the Poisson ratio ν and the Young’s modulus E ,
which are material properties:

K = E

3(1−2ν)
and G = E

2(1+ν)
. (A.20)

The Poisson ratio ν describes the ratio between transversal expansion to axial compression. That is, when a
volume gets compressed in one direction, it will generally expand in directions orthogonal to the compression.
The rate at which this happens is the Poisson ratio. Finally, the Young’s modulus is the ratio between axial stress
and the corresponding axial strain. For all numerical simulations, the Poisson ratio and Young’s modulus will
be given for a material. With these, the bulk and shear moduli are determined and substituted in Equation
A.18. Finally this constitutive relation is used to determine the stress from the strain.

A.2. MATRIX LUMPING
In the material point method, matrix lumping is often used to solve a system of equations

M a = F ,

in which M is the mass matrix. The mass matrix is constructed as

Mi j =
∫
Ω
φiρφ j dΩ≈

np∑
p=1

Vpρpφi (x p )φ j (x p ).

As the basis functions φ have only local support, most φi and φ j do not share any support at all, and the mass
matrix will therefore be sparse. Solving a = M−1F costs O (n3) time, with n the number of equations. As the
matrix is sparse, several techniques exist to accurately approximate the solution of the system of equation in
only O (n2) time, but this can often still take too much time, as the number of basis functions n may go up to a
million for large problems.

Instead of solving the system of equations in the previously mentioned ways, it is also possible to solve
this system of equation with the lumped matrix M̃ , which is very common in MPM. The lumped matrix can
be constructed from the original mass matrix, which is often referred to as the consistent mass matrix. To
construct the lumped mass matrix, all entries or ’mass’ of a row in the consistent mass matrix is summed and
put on the diagonal, whereas all other entries are set to zero:

M̃i i =
n∑

j=1
Mi j ,

74



The result is a diagonal matrix M̃ , with all the mass of the rows lumped onto the diagonal, hence the name
lumped mass matrix. An example is given for a small matrix:

M =


4 2 0 1
1 8 1 0
0 0 3 1
0 2 0 1

 ⇒ M̃ =


7 0 0 0
0 10 0 0
0 0 4 0
0 0 0 3


The system M̃ a = F can then be solved as

ai = Fi

M̃i i
.

An important condition for lumping is that no negative entries may occur in the consistent mass matrix. If
negative entries do occur, it is possible that the lumped mass matrix can have diagonal entries equal or close
to zero, which may result in nonphysical high accelerations.

In MPM, the lumped mass matrix M̃ can either be assembled by first constructing the consistent mass
matrix and then lumping, however, we may also use direct lumping. For direct lumping, recall the partition of
unity property of the basis functions:

n∑
j=1

φ j = 1.

Therefore, the lumped mass matrix can be constructed as

M̃i i =
n∑

j=1
Mi j

=
n∑

j=1

np∑
p=1

Vpρpφi (x p )φ j (x p )

=
np∑

p=1
Vpρpφi (x p ) ·

n∑
j=1

φ j (x p )

⇒ M̃i i =
np∑

p=1
Vpρpφi (x p )

A.3. CUBIC POWELL-SABIN SPLINE BASIS FUNCTIONS
In this section, the construction of cubic Powell-Sabin B-splines will be considered and analysed for use in
MPM. The cubic PS-spline basis function are piece-wise cubic polynomials, with C 1 continuity over (sub-
)element interfaces. Furthermore, they possess the same properties as quadratic PS-splines: local support,
partition of unity and non-negativity. These basis functions have not been implemented in the MPM scheme
considered in this thesis, but would be the natural choice for higher-order basis function in case higher-order
spatial convergence is desired.

The construction process of the cubic PS-splines is in many ways similar to the construction process of
quadratic PS-splines; first the grid is refined, second, from the grid, control triangles are constructed, which
are similar to the PS-control triangles for quadratic PS-splines. Finally, the basis functions are created from the
control points. First, we will start again with the refinement of the grid.

Given an arbitrary triangulation ∆, the grid may again be refined into a PS-refinement ∆∗. An example of a
PS-refinement is shown in Figure A.7. A grid with 5 large elements is divided into 30 sub-elements, 6 for each
large element. The sub-elements are marked with dotted lines. The procedure for this refinement is identical
to the refinement for quadratic PS-splines, which is repeated here for convenience:

1. Choose an interior point Z j in each triangle t j , such that if two triangles t j and tm have a common edge,
the line between Z j and Zm intersects the edge. The intersection point is called Z j m . A way to guarantee
the existence of the point Z j m is by choosing all Z j as the incenter of each triangle t j , the intersection
point of the angle bisectors. Different choices are also possible, but throughout this thesis, the incenters
are used an interior points.
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2. Connect all Z j to the vertices of its triangle t j with straight lines.

3. Finally connect the Z j to all points Z j m on the edges of triangle t j with straight lines. In case t j is a
boundary element, t j will have at least one edge without a neighbouring element, and therefore no
point Z j m on this edge to connect Z j with. In that case, join Z j with an arbitrary point on that edge.
Throughout this thesis, Z j is connected to the middle of the edge.

The idea behind the construction of each basis functions is that it is a piece-wise cubic polynomial, which
consists of a cubic polynomial on each sub-triangle that smoothly connect to the cubic polynomials of the
neighbouring sub-triangles. On each sub-triangle, a cubic polynomial can be defined in barycentric coordi-
nates (η1,η2η3) as a linear combination of 10 Bernstein polynomials:

p(x, y) := b(ζ) = ∑
i+ j+k=3,

i , j ,k≥0

bi , j ,k B 2
i , j ,k (ζ). (A.21)

The coefficient bi , j ,k are known as the Bézier ordinates. This exact same construction was also used for
quadratic PS-spline basis functions, except that the used Bernstein polynomials were of order 2, whereas now
the Bernstein polynomials are of order 3, and 10 Bernstain polynomials are required instead of 6. Figure A.6
depicts the Bézier ordinates bi , j ,k at barycentric coordinates (η1,η2,η3) = (i /3, j /3,k/3) in its corresponding
sub-triangle. This notation will be used for defining the Bézier ordinates on a sub-triangle, and these 10 coef-
ficients fully determine the cubic polynomial over the sub-triangle.

V1

V2

V3

b3,0,0

b1,2,0

b1,0,2

b1,1,1

b2,1,0

b2,0,1

b0,0,3

b0,3,0

b0,2,1

b0,1,2

Figure A.6: A sub-triangle in which the location of the Bézier ordinates bi , j ,k are marked corresponding to the Bernstein polynomial Bi , j ,k .
The location of the Bézier ordinate bi , j ,k in barycentric coordinates is (η1,η2,η3) = (i /3, j /3,k/3).

For the construction of the cubic PS-spline basis functions, and determining the Bézier ordinates in each
sub-triangle corresponding to the basis function, control triangles are used. To determine suitable control
triangles, first a number of PS-points must be defined. For each main vertex Vi , we mark all points in the
neighbouring sub-triangles that have barycentric coordinates (η1,η2,η3) = (i /3, j /3,k/3), i + j +k = 3, 0 ≤
i , j ,k. The relevant PS-points are marked in Figure A.7, which are the points in the first shell around Vi , and
the points in the second shell around Vi that are not on main-element interfaces. The PS-points in the first
shell around Vi are marked red in the figure, and the PS-points in the second ring are marked blue. From
these points, the control triangles are defined. The first control triangle is constructed by finding a triangle
containing all PS-points in the first shell around Vi , a possible triangle is shown in Figure A.7 in red. In the
same figure, the blue control triangles are constructed by considering the two sub-triangles in each element
closest to Vi . These two sub-triangles are separated by the interface Vi −Zk , the line between a main vertex and
an element center vertex. These two sub-triangles together contain 1 inner shell PS-point (marked red) and
3 outer shell-PS points (marked blue). A control triangle is now created by setting one of the control triangle
vertices in the inner shell point, and varying the other two control triangle vertices such that all 3 outer shell-PS
points are also contained in the control triangle. This concludes the construction of the control triangles.
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The red control triangle represents three cubic PS-spline basis functions, and each blue control triangle
represent two cubic PS-spline basis functions, one for each control triangle vertex that had to be chosen.
Therefore, there are three basis functions per vertex Vi , similar to quadratic PS B-splines, but also one addi-
tional cubic PS B-spline per sub-triangle. Finally, there are also two additional basis function at each boundary
edge of a boundary element.

Z j

Z j m

Vi

Zm

tm

t j

Figure A.7: A PS refinement of a triangulation for cubic splines. Each element is divided into six sub-elements, marked with the dotted
lines. For this refinement, a possible choice for control triangles is indicated with red and blue. The black dots mark the control triangle
vertices that need to be chosen. Each black dot may be associated with a basis function.

For all three types of basis functions, the non-zero Bézier ordinates are marked in an example element, see
Figures A.8a, A.9a and A.10a for the vertex-, sub-triangle- and edge basis functions respectively. In the same
Figures, an example is also shown for each type of basis functions. The exact values of the Bézier ordinates
for each type of basis function are fully determined by the control triangles. The process for constructing the
Bézier ordinates is omitted here, as the main purpose of this section is to show the possibility for cubic PS-
spline MPM, but not the exact implementation. For the exact process of determining the Bézier ordinates
from the control triangles, we refer to Grošelj and Speleers [18]. More importantly, note that the support of a
vertex basis function can be up to an entire molecule around a vertex. For a sub-triangle basis function, the
support is up to a full element, and two sub-triangles of a neighbouring element. For the edge basis function,
the support is only the two sub-triangles at the boundary of the element on which the edge basis function
is defined. Altogether, each element has three control triangles at its vertices, so nine non-zero vertex basis
functions. Furthermore, on each element there are its six non-zero sub-triangle basis functions. Finally, each
sub-triangle in the element also has two non-zero basis functions, either two edge basis function, or two sub-
triangle basis function from the main element neighbouring the sub-triangle. This structure in combination
with the non-zero Bézier ordinates can be used for efficiently storing the non-zero basis function on each
(sub-)element.
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(a) The Bézier ordinates in an element for a vertex
basis function.

(b) One of the vertex basis functions.

Figure A.8: Construction of a vertex basis function on a triangular grid. The vertex Vi in the left figure would correspond to the middle
vertex in the grid in the right plot.
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(a) The Bézier ordinates in an element for a sub-
triangle basis function.

(b) One of the sub-triangle basis functions.

Figure A.9: Construction of sub-triangle basis function on a triangular grid. The vertex Vi in the left figure would correspond to the bottom
middle vertex in the grid in the right plot.
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(a) The Bézier ordinates in an element for an edge
basis function.

(b) One of the edge basis functions on a triangular grid.

Figure A.10: Construction of boundary edge basis function on a triangular grid. The vertex Vi in the left figure would correspond to the
middle vertex at the top of the grid in the right plot.
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