B-spline MPM in 2D and 3D

Pascal de Koster

Department of Numerical Analysis Delft, University of Technology

March, 2018

Supervisors: Dr. M. Möller and Dr. V. Galavi

• Pile driving

- Pile driving
- Large deformations

Discretise the domain

- Discretise the domain
- Derive equations of motion

- Discretise the domain
- Derive equations of motion
- Solve using MPM (type of FEM)

• Current: Piecewise linears

- Current: Piecewise linears
- Wanted: High order, non-negative, smooth

- Current: Piecewise linears
- Wanted: High order, non-negative, smooth
- B-splines

Outline

- Mathematical model
- Material Point Method
- 3 Higher order basis functions
 - Lagrange basis functions
 - B-spline basis functions
- Preliminary results
- Conclusion

Outline

- Mathematical model
- Material Point Method
- Higher order basis functions
 - Lagrange basis functions
 - B-spline basis functions
- Preliminary results
- Conclusion

Conservation of momentum

Conservation of momentum

$$\underbrace{\rho \frac{\partial \mathbf{v}}{\partial t}}_{\mathbf{m} \cdot \mathbf{a}} = \underbrace{\nabla \cdot \boldsymbol{\sigma}}_{\mathbf{F}_{int}} + \underbrace{\rho \mathbf{g}}_{\mathbf{F}_{ext}}$$

Conservation of momentum

$$\underbrace{\rho \frac{\partial \mathbf{v}}{\partial t}}_{\mathbf{m} \cdot \mathbf{a}} = \underbrace{\nabla \cdot \boldsymbol{\sigma}}_{\mathbf{F}_{int}} + \underbrace{\rho \mathbf{g}}_{\mathbf{F}_{ext}}$$

 $\bullet \ \mathsf{Displacement} \to \mathsf{Stress} \to \mathsf{Force} \to \mathsf{Displacement}$

Outline

- Mathematical model
- Material Point Method
- Higher order basis functions
 - Lagrange basis functions
 - B-spline basis functions
- Preliminary results
- Conclusion

 Particle in grid method: particles store information, equations solved on grid

- Particle in grid method: particles store information, equations solved on grid
- Particles properties are projected onto the grid

- Particle in grid method: particles store information, equations solved on grid
- Particles properties are projected onto the grid
- Equations are solved on the grid

- Particle in grid method: particles store information, equations solved on grid
- Particles properties are projected onto the grid
- Equations are solved on the grid
- Update particles and reset the grid

Outline

- Mathematical model
- Material Point Method
- 3 Higher order basis functions
 - Lagrange basis functions
 - B-spline basis functions
- Preliminary results
- Conclusion

Triangulations

- Easy refinement, good geometry description
- Basis functions: local support, non-negative, smooth

• Polynomial over each element

- Polynomial over each element
- ullet Interpolatory property: δ_{ij}

- Polynomial over each element
- Interpolatory property: δ_{ij}
- Discontinuous derivatives over edges, negative parts

Discontinuous derivatives

Discontinuous derivatives
 → Grid crossing error

- Discontinuous derivatives
 → Grid crossing error
- Negative parts

- Discontinuous derivatives
 - $\rightarrow \text{Grid crossing error}$
- Negative parts
 - $\rightarrow \, \mathsf{Negative} \,\, \mathsf{masses} \,\,$

B-spline basis functions

B-spline basis functions

 Piecewise quadratic (or higher order polynomial), smooth, non-negative

B-spline basis functions

- Piecewise quadratic (or higher order polynomial), smooth, non-negative
- Not interpolatory (δ_{ij})

B-spline basis functions in 2D

- Basis functions over triangulations
- Smooth, continuous, smooth to zero at edge

Refine grid

• 6 sub-elements per element

Piecewise parabola

 Define parabola over each subtriangle

$$p(x,y) := b(\zeta) = \sum_{\substack{i+j+k=2,\ i,j,k \geq 0}} b_{i,j,k} B_{i,j,k}^2(\zeta).$$

Piecewise parabola

- Define parabola over each subtriangle
- Barycentric coordinates and Bézier ordinates

$$p(x,y) := b(\zeta) = \sum_{\substack{i+j+k=2,\ i,j,k \geq 0}} b_{i,j,k} B_{i,j,k}^2(\zeta).$$

• Piecewise parabola, smooth, local, non-negative, partition of unity

- Piecewise parabola, smooth, local, non-negative, partition of unity
- 3 basis functions per vertex

Outline

- Mathematical model
- 2 Material Point Method
- Higher order basis functions
 - Lagrange basis functions
 - B-spline basis functions
- Preliminary results
- Conclusion

Spatial convergence of basis functions

MPM benchmark: vibrating bar

Lagrange basis

With grid crossing

Without grid crossing

Lagrange basis

With grid crossing

Without grid crossing

B-spline basis

6 particles per element

96 particles per element

B-spline basis

6 particles per element

March, 2018

No grid crossing error

B-spline basis

6 particles per element

- No grid crossing error
- Many integration points necessary

B-spline basis

6 particles per element

March, 2018

- No grid crossing error
- Many integration points necessary
- Non-zero y-velocity

B-spline basis

6 particles per element

Outline

- Mathematical model
- Material Point Method
- Higher order basis functions
 - Lagrange basis functions
 - B-spline basis functions
- 4 Preliminary results
- Conclusion

Conclusion for B-spline basis

Conclusion for B-spline basis

- Disadvantages
 - Cumbersome implementation
 - Hard to extend to higher order polynomials
 - Many particles required for integration

Conclusion for B-spline basis

- Disadvantages
 - Cumbersome implementation
 - Hard to extend to higher order polynomials
 - Many particles required for integration
- Advantages
 - No grid-crossing error
 - Higher order spatial convergence

• Goal: implement B-spline basis in MPM

- Goal: implement B-spline basis in MPM
- Grid refinement
- Piecewise parabolic basis function

- Goal: implement B-spline basis in MPM
- Grid refinement
- Piecewise parabolic basis function
- Problems with quadrature integration

- Goal: implement B-spline basis in MPM
- Grid refinement
- Piecewise parabolic basis function
- Problems with quadrature integration
- Outlook
 - Gauss point for integration
 - Implement B-splines in Deltares code

Questions?

