
Computation of thermo-acoustic modes
in combustors

Jan-Willem van Leeuwen
Master’s Thesis for Applied Mathematics

Delft, June 5th 2007

Ass. Prof. M. VAN GIJZEN

Dr. H. SCHUTTELAARS

Prof. Dr. Ir. K. VUIK

Prof. Dr. Ir. P. WESSELING (President)
Delft University of Technology

Prof. F. NICOUD

Université Montpellier II

Abstract

When constructing airplanes, safety is the most important issue. Engines
are a critical part of airplanes, and have to be very robust to provide safety.
Thermo-acoustic instabilities are a possible weakness of these engines.
Unfortunately, it is very hard to predict these instabilities. At CERFACS,
Toulouse, a method has been developed to use the wave equation to model
the acoustic pressure inside combustion chambers. To solve this equation,
the equation is discretized and written as a nonlinear eigenvalue problem.
The complexity of the geometry of the combustion chamber leads to very
complicated grids with many gridpoints. This means large, sparse, nonlinear
eigenvalue problems have to be solved. So far, no method has been designed
for this specific problem. Currently, the problem has to be rewritten and
solved using a Picard iteration. The resulting linear problem can be easily
solved by the state-of-the-art method for large, sparse eigenvalue problems
called Arnoldi’s method. Another method for solving eigenvalue problems
is Jacobi-Davidson. Theoretically, the Jacobi-Davidson method for linear
problems is easily extended to quadratic and nonlinear eigenvalue problems,
without rewriting the problem. We believe Jacobi-Davidson has the potential
to solve nonlinear problems very fast in comparison to the current method.
To test this potential, we have compared the Jacobi-Davidson method with
Arnoldi on three levels: linear problems, quadratic problems and nonlinear
problems. All these problems have been formulated to closely resemble the
actual problem of thermo-acoustic instability. For linear problems, Arnoldi
has proven to be faster than Jacobi-Davidson. This was expected, since
Arnoldi is a very simple yet powerful method, whereas Jacobi-Davidson is
more complex. For quadratic problems however, Jacobi-Davidson fulfills its
potential by finding the desired solution much faster than Arnoldi. We have
not been able to find acceptable solutions of fully nonlinear problems with
Jacobi-Davidson. However, we believe that this is where Jacobi-Davidson
has the most potential and should be researched further.

Acknowledgments

I would like to express my gratitude to the department of numerical
mathematics at the Technological University in Delft, especially my
supervisor Martin van Gijzen. He has helped me throughout the entire
development of this thesis, providing me with information, wisdom and
friendship. Jok Tang, Fang Fang and Elise van Aken for helping me during
the periods I was sharing an office with them. I am also greatly indebted to
the people at CERFACS for letting me use their facilities and helping me with
their knowledge and experience. Special thanks go out to Claude Sensiau for
his friendship and dedication to the project, to Thierry Poinsot and Franck
Nicoud for their supervision and to Serge Gratton and the parallel algorithm
team for providing me with help and support on the mathematical part of
the research. Finally, I would like to thank my parents, family and friends for
mental and financial support during my studies at the TU Delft, and I thank
God for everything I have.

i

Contents

1 Introduction 1

2 Problem Formulation 3

2.1 Solution methods . 3

2.2 Derivation of the equation . 4

2.2.1 Basic equations . 4

2.2.2 Flame response . 5

2.2.3 Helmholtz equation . 5

2.2.4 Boundary conditions . 6

2.3 The numerical method . 7

2.3.1 Discretization of the equation 7

2.3.2 Incorporating the flame response 9

3 Linear Eigenvalue Problems 10

3.1 Power Method . 11

3.1.1 Shift-and-Invert . 11

3.2 Search spaces and Ritz Values 13

3.3 Basic Arnoldi . 14

3.3.1 Restart . 14

3.4 Jacobi-Davidson . 15

3.4.1 Jacobi . 15

3.4.2 Davidson . 16

3.4.3 Jacobi-Davidson . 16

3.4.4 Search spaces and Harmonic Ritz values 17

3.4.5 The Jacobi-Davidson Algorithm 19

3.5 The QZ decomposition . 21

ii

4 Generalized and Quadratic Eigenvalue Problems 22

4.1 Generalized Eigenproblems . 22

4.1.1 Properties of the Generalized Eigenvalue Problem . . . 23

4.1.2 Projection Methods . 24

4.2 Quadratic Eigenvalue Problems 25

4.2.1 Rewriting into a Generalized Eigenvalue Problem . . . 25

4.2.2 Direct Solving of the Quadratic Eigenproblem 25

5 Nonlinear Eigenvalue Problems 29

5.1 Numerical Methods for Nonlinear Eigenproblems 29

5.2 Newton Type Methods for Small Dense Problems 29

5.2.1 Inverse Iteration . 30

5.2.2 Residual Inverse Iteration 30

5.2.3 Successive linear problems 31

5.3 Iterative Projection Methods . 33

5.3.1 A General Algorithm for Nonlinear Eigenproblems . . 33

5.3.2 Arnoldi type methods 33

5.3.3 Jacobi-Davidson type methods 34

5.4 Picard iteration methods . 34

5.4.1 Arnoldi with Picard iteration 35

5.4.2 Jacobi-Davidson with Picard iteration 35

6 MATLAB Tests 36

6.1 Description of the Test Problems 36

6.1.1 Physical Parameters . 37

6.2 Implementation . 37

6.2.1 Numerical Parameters 38

6.3 Results . 39

6.3.1 Linear Problem . 39

6.3.2 Quadratic Problem . 40

6.3.3 Nonlinear Problem . 41

6.4 Nonlinear problems with direct solving of the small
eigenproblem . 42

6.5 Provisional Conclusions . 42

iii

7 Fortran Tests 43

7.1 Description of the testcases . 43

7.2 Parameter settings . 45

7.2.1 Stopping criterion . 46

7.2.2 Maximal search space size 46

7.2.3 Maximal GMRES subspace size 48

7.3 Numerical Results . 48

7.3.1 Academic two-dimensional testcase 49

7.3.2 Academic three-dimensional testcase 51

7.3.3 ARRIUS combustion chamber 53

8 Conclusions 54

9 Future Research 55

A Plots 56

B Matlab code 58

C Fortran Code 63

iv

Chapter 1

Introduction

In combustion chambers, acoustic pressure levels may oscillate under the
influence of the heat release and geometrical aspects of the chamber. This
can cause instabilities which might damage the combustion chamber. Many
different approaches have been used in the past to predict these instabilities.
A promising method is to model the acoustic pressure fluctuations using the
wave equation. When discretized, this gives an eigenvalue problem where
the eigenvalue is related to the frequency of the oscillation. This value is very
important in analyzing the design of combustion chamber, and being able to
predict it before building a prototype for testing could save valuable time and
money.

The goal of this thesis is to make a comparison between two state-of-the-art
methods for solving the large, sparse eigenvalue problems that arise from
the combustion problems described above. This comparison will be based
on theoretical analysis of both methods, as well as numerical results from
implementations specifically designed for this type of problem. The most
important testing criterion will be the time it takes to solve eigenvalue
problems arising from realistic grids. By implementing a method that is
faster a lot of time can be saved in the design phase of engines.

The theoretical part of the study has been done in Delft at the Technical
University. We have conducted the practical research part of the thesis at
CERFACS in Toulouse, France, where the solution method described above
is used to aid the design of airplane and helicopter combustors. CERFACS
stands for ’Centre Europeèn de Recherche et de Formation Avancée en
Computation Scientifique’, or in English: European Center for Research
and Advanced Training in Scientific Computing. CERFACS is a research
organization that aims to develop advanced methods for the numerical
simulation and the algorithmic solution of large scientific and technological
problems of interest for research as well as industry, and that requires
access to the most powerful computers presently available. CERFACS hosts
interdisciplinary teams, both for research and advanced training that are
comprised of: physicists, applied mathematicians, numerical analysts, and
software engineers. Approximately 100 people work at CERFACS, including

1

about 90 researchers and engineers, coming from 10 different countries. They
work on specific projects in six main research areas: parallel algorithms,
aerodynamics, combustion, climate and environment, data assimilation, and
electromagnetism.

A software package called AVSP [11] has been developed at CERFACS to
easily discretize realistic problems. A mathematical routine is then called to
solve the eigenvalue problems related to the realistic problems. The current
numerical method implemented into this mathematical routine is based on
Arnoldi’s method [1]. This algorithm, as implemented in the mathematical
package ARPACK [8] is currently state-of-the-art for solving eigenvalue
problems. However, there is a drawback. The particular application
studied at CERFACS gives rise to large, nonlinear eigenvalue problems.
Solving these mathematical problems with traditional methods such as
Arnoldi’s method is often costly, because Arnoldi’s method cannot solve
these problems directly but has to transform them, increasing computing
time and often causing the matrices involved to lose their nice properties.

In recent years, a new method, called Jacobi-Davidson, has been developed to
deal with these drawbacks. It is based on the same idea as Arnoldi, but gives
it an interesting twist that provides faster convergence and removes the need
to transform nonlinear eigenvalue problems. These two methods have been
tested and compared at CERFACS, as part of this master’s thesis. The results
of these comparisons indicate that the two methods perform almost the same
for linear problems, but for quadratical problems Jacobi-Davidson is much
faster.

We start in chapter 2 by describing the problem in detail, and the underlying
modeling of the combustion effects. We show how the eigenvalue problem
is derived, starting from a coupled system for the important variables. This
system is rewritten to a Helmholtz equation for the fluctuating acoustic
pressure. This equation is discretized using finite elements.

In chapters 3, 4 and 5 we describe various solution methods for linear,
generalized, quadratic and nonlinear eigenvalue problems. We go into detail
in explaining how Arnoldi’s method and Jacobi-Davidson work, including
the earlier methods they were based on. We show how variations of both
methods can be constructed to deal with more complex eigenvalue problems,
and how they relate to each other. We point out what the strengths and
weaknesses of the methods are.

In chapters 6 and 7 the methods are compared. We define several academic
testcases, and a realistic testcase. We use implementations of both methods
in MATLAB and FORTRAN to be able to compare the methods as fairly
as possible. We also explain the choices for the necessary parameters, and
discuss the validity of the results. The conclusion of our research, based on
the numerical results, is given in chapter 8, and in the last chapter we discuss
possibilities for future research.

2

Chapter 2

Problem Formulation

The physical background of the research presented in this paper is based on
the research done by Nicoud, Benoit, Sensiau and Poinsot in [11] where a
method to solve the problem of oscillating pressure in combustion chambers
is described. Because the acoustics in a gas chamber are coupled to the heat
produced by combustion, fluctuations in combustion may start to resonate
according to their modes and grow over time. This will cause the pressure
inside the combustor to become unstable. The most dangerous oscillations
are the ones with the smallest frequencies. Until now, this behavior was hard,
if not impossible to predict by simulation during the design stage, because of
a lack of sufficient computational power and the complex geometrical details
of modern gas chambers. However, it is important to be able to predict and
control these oscillations as early as possible.

2.1 Solution methods

Several very different methods have been proposed. Unfortunately, most
methods are either too demanding in terms of computational work, or
they are based on a greatly simplified model. An example of the first kind
is to perform Large Eddy Simulations (LES), that are based on the full
three-dimensional unsteady Navier Stokes equations. Another popular
method is to model the geometry of the combustor, leaving out details, and
to suppose the flame to be infinitely thin. In some cases, this method works
good enough, but in general these assumptions are too restrictive.

An intuitive method is to linearize the Navier-Stokes equations. The
combustion oscillations have to be taken into account in the energy equation.
If the heat release caused by the combustion oscillations can be modeled,
the system of equations is closed. We can then proceed in two ways: we can
solve the discretized PDE’s in the time domain, or in the frequency domain
using the Helmholtz equation instead of the wave equation. An important
drawback of the first option is that it only offers information about the most
unstable modes. The second method yields an eigenvalue problem which
will become non-linear when combustion occurs or when there is impedance

3

on the boundary. In this study, we will follow the research from [11] of the
second method, that is: to find a way of solving the Helmholtz equation
arising from the thermo-acoustic problem numerically by writing it as a
nonlinear eigenvalue problem. This is also the method used at CERFACS.

2.2 Derivation of the equation

In this section, the acoustic problem will be described by the wave equation.
Then, the equation will be transformed into a Helmholtz equation. The
numerical solution methods in the following section will be aiming to
approximate the solution of this equation.

2.2.1 Basic equations

Under certain assumptions, further specified in [11], we can describe the
physical model by the following equations for mass density, momentum and
entropy, together with the state equation and entropy expression:

Dρ

Dt
= −ρ∇ · u (2.1)

ρ
Du

Dt
= −∇p (2.2)

Ds

Dt
=

rq

p
(2.3)

p

ρ
= rT (2.4)

s− sst =
∫ T

Tst

Cp(T ′)
T ′

dT ′ − r ln
(

p

pst

)
(2.5)

The variables that we introduced are: ρ is the density, u is the flow speed,
p stands for the pressure, q is the heat release, s is the entropy and T is the
temperature. D

Dt is the total derivative with respect to time. The subscript st
indicates a state variable.

We linearize this by writing p = p0 + p1, ρ = ρ0 + ρ1 and s = s0 + s1.
The second (fluctuating) term in these definitions is of order ε compared
to the first (steady) term, where ε � 1. In the linearization of u we assume
that u0/c0, the Mach number, is practically zero. We write u = u1 where√

u1 · u1/c0 is also of order ε. In this equation, c0 =
√

γp0/ρ0 is the mean
speed of sound, with γ the heat capacity per unit mass at fixed pressure
divided by the heat capacity per unit mass at fixed volume. With the
assumptions of the zero Mach number and the neglection of the heat
capacity fluctuations the following set of linear equations for the fluctuating
quantities ρ1, u1, s1 and p1 is obtained:

4

∂ρ1

∂t
+ u1 · ∇ρ0 + ρ0∇ · u1 = 0 (2.6)

ρ0
∂u1

∂t
+∇p1 = 0 (2.7)

∂s1

∂t
+ u1 · ∇s0 =

rq1

p0
(2.8)

p1

p0
− ρ1

ρ0
− T1

T0
= 0 (2.9)

Cp
T1

T0
− rp1p0 = s1 (2.10)

Note that the total derivative has been reduced to the partial derivative
with respect to time, because with the assumption that u0 = 0 the nonlinear
convective terms are always of second order in ε. In these equations, also the
fluctuating unknowns q1 and T1 play a role. To close the set of equations for
the fluctuating quantities we need an equation that expresses q1 in the other
variables.

2.2.2 Flame response

Finding a suitable equation for q1 is, from a physical point of view, the
most difficult part of the modeling phase. A choice has to be made between
working with global heat release from the whole flame zone or using a local
flame model. For modern efficient combustors, the first model does not
suffice since the flame is not acoustically compact, that is, the flame region is
not small enough compared to the characteristic acoustic wavelength. The
second model relates the local unsteady heat release to a reference acoustic
velocity in the injector mouth. In equation form, we find that:

q1(x, t)
qtot

= nu(x)
u1(xref , t− τu(x)) · nref

Ubulk
(2.11)

where nu(x) is the directional interaction field and τu(x) is the field of time
lag and nref is a fixed unitary vector defining the direction of the reference
velocity. nu(x) has been made dimensionless by scaling u1 and q1 by Ubulk,
the bulk velocity, and qtot, the total heat release, respectively. The difficulty
with this equation is that the fields of parameters τu(x) and nu(x) are hard to
approximate empirically. The alternative to find reasonable values is to use
compressible reacting LES.

By substituting q1 in equation (2.8) using equation (2.11) we find the
following equation:

∂s1

∂t
+ u1 · ∇s0 =

r

p0
nu(x)

qtot

Ubulk
u1(xref , t− τu(x)) · nref (2.12)

2.2.3 Helmholtz equation

Combining equations (2.6), (2.7), (2.9), (2.10) and (2.12) we arrive at the wave
equation for p1:

5

∇ ·
(

1
ρ0
∇p1

)
− 1

γp0

∂2p1

∂t2
= −γ − 1

γp0

∂q1

∂t
. (2.13)

Since this equation is linear, we can safely assume that all fluctuating
variables are oscillating harmonically at a complex frequency f = ω/(2π).
Therefore, we can introduce harmonic variations for pressure, velocity and
local heat release perturbations:

p1 = R(p̂(x)e−iωt) (2.14)
u1 = R(û(x)e−iωt) (2.15)
q1 = R(q̂(x)e−iωt). (2.16)

If we translate equations 2.11 and 2.13 into the frequency domain we have
all the tools necessary to describe the transformed pressure field p̂ by the
following Helmholtz equation:

∇·
(

1
ρ0
∇p̂

)
+

ω2

γp0
p̂ =

γ − 1
γp0

qtot

ρ0(xref)Ubulk
nu(x)eiωτu(x)∇p̂(xref) ·nref (2.17)

2.2.4 Boundary conditions

An important part in modeling the thermo-acoustic behavior in a gas
chamber is the effect of the boundary conditions. Three different types of
conditions are possible on the boundary ∂Ω:

Zero pressure: This corresponds to boundaries that are fully reflective, and
where the pressure should be equal to the outer pressure. This means
that there can be no fluctuations, or in mathematical terms: p̂ = 0 on
∂ΩD

Zero normal velocity: This corresponds to boundaries where there can be
no fluctuation in the velocity of the flow through the boundary. This
happens at walls (where there is no flow at all) or at inlets where
the velocity is supposed to be constant. Consequently, û · nBC = 0.
Combined with equation (2.7) this gives for the pressure: ∇p̂ · nBC = 0
on ∂ΩN

Imposed reduced complex impedance: On boundaries where neither
the pressure fluctuation nor the normal velocity fluctuation is
zero, there will be a combination of both boundary conditions:
c0Z∇p̂ · nBC − iωp̂ = 0 on ∂ΩZ where Z is the imposed reduced
complex impedance, that may depend on the frequency ω.

With these boundary conditions equation (2.17) will lead to a nonlinear
eigenvalue problem. This will be further elaborated in the next section.

6

2.3 The numerical method

In this section, we will see how the Helmholtz equation (2.17) translates into a
nonlinear eigenproblem. Various ways to solve these problems are described
in section (5). As discretizing the equation is not a simple task, we will first
consider a simplified version of equation (2.17) where we don’t take the flame
response into account. That is, we will discretize the equation

∇ ·
(

1
ρ0
∇p̂

)
+

ω2

γp0
p̂ = 0

combined with the boundary conditions defined before.

2.3.1 Discretization of the equation

To discretize the above problem, we use the finite element method. We divide
the domain Ω into tetrahedra and define a piecewise linear function φj for
every vertex vj . The testfunction φj equals 1 on its respective vertex vj and 0
on the other nodes, with linear interpolation. So, for every tetrahedron there
are only four test functions that are not zero on the entire area. We can then
approximate p̂ by p̂(x) ≈

∑
j p̂jφj(x), where pj = p(vj). Because we already

know that p̂ = 0 on ∂ΩD from the boundary condition on ∂ΩD, we can restrict
ourselves to the set of vertices Sv of the mesh that do not belong to ∂ΩD:

p̂(x) ≈
∑

j:vj∈Sv

p̂jφj(x).

There are now N unknowns, where N is the number of vertices belonging
to Ω \ ∂ΩD. Now the continuous function p̂ is discretized: all that is left is to
determine the complex coefficients pj . This can be done by using the Galerkin
method. Starting from the Helmholtz equation:

∇ ·
(

1
ρ0
∇p̂

)
+

ω2

γp0
p̂ = 0

we replace p̂ by its approximation, multiply with the test function and
integrate over Ω, and obtain ∀k : vk ∈ Sv:

∫
Ω

φk∇

 1
ρ0
∇ ·

∑
j:vj∈Sv

p̂jφj(x)

 dx + ω2

∫
Ω

φk

γp0

∑
j:vj∈Sv

p̂jφj(x)dx = 0.

Interchanging the summation and integration operands, and taking out the
constants pj gives ∀k : vk ∈ Sv:∑

j:vj∈Sv

∫
Ω

1
ρ0

φk∇ · (∇φj)dxp̂j + ω2
∑

j:vj∈Sv

∫
Ω

1
γp0

φkφjdxp̂j = 0.

The first integral is integrated by parts:

7

∫
φk∇ · ∇φjdx = −

∫
∇φk∇φjdx +

∮
φk∇φj · ndξ

So the equation becomes ∀k : vk ∈ Sv:

∑
j:vj∈Sv

(
−

∫
Ω

1
ρ0
∇φk∇φjdx +

∫
∂Ω

1
ρ0

φk∇φj · ndξ + ω2

∫
Ω

1
γp0

φkφjdx

)
p̂j = 0.

Note that φk(x) = 0 ∀k : vk ∈ Sv, x ∈ ∂ΩD so ∂ΩD does not contribute to the
boundary integral. On ∂ΩN we can rewrite the boundary integral by using
the boundary condition ∇p̂ · n = 0:∑

j:vj∈Sv

∫
∂Ω

1
ρ0

φk∇φj · ndxp̂j =
∫
∂Ω

1
ρ0

φk∇(
∑

j:vj∈Sv
φj p̂j) · ndξ

=
∫
∂Ω

1
ρ0

φk∇p̂ · ndξ

= 0
.

Showing that only ∂ΩZ contributes to the boundary integral. Rewriting the
integral over ∂ΩZ in the same way as for ∂ΩN and substituting ∇p̂ · n =
iω/c0Z

∑
φj p̂ gives us our final equation ∀k : vk ∈ Sv:

∑
j:vj∈Sv

(
−

∫
Ω

1
ρ0
∇φk∇φjdx + iω

∫
∂ΩZ

1
ρ0c0Z

φkφjdξ + ω2

∫
Ω

1
γp0

φkφjdx

)
p̂j = 0.

Combining all N equations for all N unknowns pj into a matrix equation
gives:

AP + ωB(ω)P + ω2CP = 0 (2.18)

where P is the vector containing the unknowns pj and A,B and C are
symmetric matrices with generic element

Akj = −
∫

Ω

1
ρ0
∇φk∇φjdx

Bkj =
∫

∂ΩZ

i

ρ0c0Z
φkφjdξ

Ckj =
∫

Ω

1
γp0

φkφjdx.

To get rid of the nonlinearity that is caused by the fact that B depends on Z
and therefore on ω Nicoud et al. suggest in [11] to model the impedance by
1/Z = 1/Z0 +Z1ω +Z2/ω. This way it will be possible to rewrite the problem
as a quadratic problem, because of the multiplication by ω. The quadratic
equation is easier to solve with traditional methods. However, solution
methods for fully nonlinear eigenvalue problems have been developed, as
stressed in chapter 5.

8

2.3.2 Incorporating the flame response

In the context of the finite elements method described above it is not at
all hard to incorporate the flame response. Equation (2.17) needs to be
discretized completely, whereas we only did two terms in the section before.
So all that is left is to discretize is γ−1

γp0

qtot

ρ0(xref)Ubulk
nu(x)eiωτu(x)∇p̂(xref) · nref

in terms of p̂j . Following the same strategy as before, this term gives us
another term DP in the matrix equation (2.18) with generic element

Dkj =
∫

Ω

γ − 1
γ

qtot

ρ0(xref)
Ubulknu(x) expiωτu(x) φk∇φj(xref) · nrefdx.

As is noted in [11], this term is nonlinear in ω and cannot be as easily be
rewritten in such a way that we are provided with a quadratic eigenvalue
problem, as can be done for the nonlinearity of the impedance. So, we must
find a way to solve the following nonlinear eigenvalue problem:

(A−D(ω))P + ωB(ω)P + ω2CP = 0.

Nicoud et al suggest in [11] to use a simple Picard iteration:

(A−D(ωk−1))P + ωkB(ωk−1)P + ω2
kCP = 0,

or with the assumption about the impedance that 1/Z = 1/Z0 +Z1ω +Z2/ω :

(A−D(ωk−1))P + ωkBP + ω2
kCP = 0 (2.19)

where A, B and C are altered versions of A, B and C to take the modelled
impedance in account. However, we can solve the nonlinear eigenproblems
without rewriting them as linear problems by using Jacobi-Davidson’s
method that will be presented in this report.

9

Chapter 3

Linear Eigenvalue Problems

The aim of this report is to compare methods that can be used to solve the
type of eigenvalue problems that arise from combustion. These problems are
often quadratic or even more non-linear. Not many solution methods have
been developed for this type of problems. A basic strategy would therefore be
to rewrite the problem as a linear problem, for which many highly optimized
methods can be used. In this chapter two state-of-the-art methods, Arnoldi’s
method and Jacobi-Davidson, are presented. These methods can be used
to efficiently solve linear eigenvalue problems. Jacobi-Davidson can also
easily be extended to solve quadratic and non-linear problems. But before
we go into detail about either method we will explain the simple eigenvalue
problem and basic strategies to solve it.

An eigenvector of a transformation is a non-null vector whose direction
remains unchanged when the transformation is applied to that vector. The
length of the vector may be changed. The factor with which the vector is
multiplied is called the eigenvalue. For example, imagine a 2D picture that is
transformed so that its height is doubled, its width remains the same and it
is mirrored in the y-axis. The eigenvectors will be the unit vectors [1, 0]T and
[0, 1]T and the eigenvalues are −1 and 2 respectively.

The standard eigenvalue problem is how to find pairs of eigenvalues and
eigenvectors for a given linear transformation. We can write this in matrix
notation as follows:

Av = λv

where A is the square matrix associated with the transformation, v is
the eigenvector and λ is the eigenvector. Another way to describe the
eigenvalues is as the roots of the characteristic polynomial of A: Since
(A − λI)v = 0 we must have that det(A − λI) = 0. From basic algebra we
know that a polynomial must have n roots, this shows that any n× n matrix
has n eigenvalues. However, these eigenvalues need not be distinct. In some
cases A has less than n distinct eigenvectors. We call such a matrix defective.

Although the mathematical formulation is simple, solving it is hard,
especially for large matrices. But since the problem arises from many
practical situations studying it is very important. That is why several

10

solution methods have been developed. We will describe three methods,
namely the Power method, the Arnoldi method and the Jacobi-Davidson
method.

3.1 Power Method

The Power Method is the most basic method to approximate eigenvectors
and eigenvalues. The information given here about the power method has
largely been taken from [14]. The method creates a sequence of vectors by
multiplying by A and scaling. Or mathematically: vk = 1

αk
Avk−1. It is easily

seen that if the sequence converges, then it must converge to an eigenvector.
If we write v = limk→∞ vk then:

Av = A lim
k→∞

vk = lim
k→∞

Avk = lim
k→∞

αkvk+1 = lim
k→∞

αk lim
k→∞

vk+1 = lim
k→∞

αkv.

This means that we immediately have found an eigenvalue, namely the
limit of αk. It can be shown that the sequence only converges under the
assumption that there is one and only one eigenvalue with the largest
modulus. Unfortunately, this cannot be checked beforehand. Another
drawback of this method is that when the starting vector is orthogonal to the
eigenvector associated with the eigenvalue with the largest modulus then
the sequence will not converge to that eigenvector.

Convergence speed is another problem for the power method. To explain this
clearly we will first point out a nice property of eigenpairs. Since we know
that Avk = λkvk, we can combine this for all k in a matrix equation (assuming
that A is not defective):

[Av1, . . . , Avk] = [λ1v1, . . . , λkvk] ⇒ AV = V Λ

where Λ is the diagonal matrix containing the eigenvalues. This shows we
can write A = V ΛV −1 so Ak = V ΛkV −1, which implies that multiplying a
vector by Ak will be dominated by the largest eigenvalues. This means that
convergence speed depends on how much larger the largest eigenvalue is
than the second-largest one. If the relative difference is small, convergence
will be slow. It also shows that the power method will only converge to the
eigenvalue with the largest modulus.

To make the use of the Power Method more attractive, a few possible
amendments have been developed. We will introduce the Shift-and-Invert
technique and Deflation.

3.1.1 Shift-and-Invert

The Shift-and-Invert technique is designed to improve performance of the
power method, and to make it possible to find other eigenvalues than the
one with the largest modulus. It uses two properties of matrices: If (λ, x) is
an eigenpair of A then (λ + σ, x) is an eigenpair of (A + σI), and λ−1 is an

11

eigenvalue of A−1. Adding a constant diagonal is called shifting of a matrix,
and σ is the shift. It is clear that when the shift is close to an eigenvalue λk of A
then (λ−σ)−1 is the largest eigenvalue of (A−σI)−1. So, if we can efficiently
use a method on the matrix (A − σI)−1 we can target certain eigenvalues.
The closer the shift is to λ, the better the convergence. However, if the shift is
chosen equal to an eigenvalue, the matrix will be singular. This is no problem,
since we have found the desired eigenvalue.

If we use the Shift-and-Invert technique in combination with the power
method, we will have to calculate (A − σI)−1x = y. Because inverting
a matrix is expensive, it is better to write (A − σI)y = x and solve for
y by decomposing (A − σI). The standard decomposition is the LU-
decomposition. It may seem dangerous to use this technique of shifting
and decomposing, because the shift could cause the matrix (A − σI) to be
almost singular when it’s close to an eigenvalue. Solving for y using an LU-
decomposition will blow up round-off errors. However, this only happens in
the direction of the eigenvector that belongs to the desired eigenvalue. But
since a multiple of an eigenvector is again an eigenvector belonging to the
same eigenvalue, this error has hardly any influence on convergence speed,
even if we change the shift to be as close to the approximated eigenvalue as
possible during the iterations. This makes it seem like we should update the
shift as often as possible. However, every time the shift is changed, we will
have to re-calculate this decomposition. Note that decomposing a matrix
is more costly than solving a decomposed system, so there is a trade-off in
convergence speed between the amount of work needed per iteration and
the number of iterations until convergence. This also depends on the size of
A. The larger the matrix, the more work is needed to decompose it. In case A
is very large it may be better to use an iterative method to solve the system.

Iterative methods on the other hand, are often more prone to the possible
problems arising from the fact that the matrix becomes almost singular. This
means that changing the shift so that it is closer to an eigenvalue might
even slow down convergence. The most important problem is that iterative
methods are generally based on multiplying vectors by A, or in this case the
shifted version A− σI . The closer σ is to λ the slower these iterative methods
will converge, even though the two largest eigenvalues of (A − σI)−1 are
further apart the closer σ is to λ. This is a crucial weakness of the shift-and-
invert method.

Deflation

A second technique to change the matrix such that another eigenvalue
has the largest modulus is the so-called deflation technique. It is similar to
the shift-and-invert technique in that it adds a matrix to A to change the
eigenvalues, but it does not invert. The idea is to add a matrix that changes
only one eigenvalue. To use it, only the right eigenvector corresponding
to the eigenvalue with largest modulus is needed. We shift the matrix A
by subtracting σu1v

H where u1 is the known eigenvector and vH is the

12

Hermitian transpose of a vector v such that vHu1 = 1. σ is the desired shift:
the eigenvalues of A − σu1v

H will be {λ1 − σ, λ2, . . . , λn}. In [14] it has been
shown empirically that, assuming the eigenvectors are normalized when
they are found, choosing v = u1 speeds up convergence in comparison to
choosing a random vector with the property that vHu1 = 1. When already
m eigenpairs are known, we can create an n × m matrix Q containing the
eigenvectors as columns, and an m ×m diagonal matrix Σ with the desired
shifts as non-zero elements. It can be shown that the eigenvalues of the
shifted matrix A − QΣQH are {λ1 − σ2, . . . , λm − σm, λm+1, . . . , λn}. We can
use this technique to find the eigenvalues of A, starting with the one with
largest modulus and working our way down. Unfortunately, because the
eigenvalues found are only approximations there will be some rounding
errors that cause an increased error for each eigenvalue found.

3.2 Search spaces and Ritz Values

Although the shift-and-invert technique makes the Power method more
powerful, it still has a weakness. The Power method only uses the last
approximation to compute a new one. This means that all information from
previous approximation is not used. An obvious improvement would be to
work with subspaces. Important methods that use subspaces are Arnoldi
and Jacobi-Davidson. As a supporting technique, we introduce the concept
of Ritz values: θk is Ritz value of A with respect to the subspace Vk with Ritz
vector uk if

uk ∈ Vk, uk 6= 0, Auk − θkuk⊥Vk.

This means that if we solve the projected eigenvalue problem on the subspace
Vk, we find Ritz values of A. A Ritz pair (uk, θk) is a solution of the equation

W ∗
k AVkuk = θkW

∗
k Vkuk

which is found by writing x = Vkuk and multiplying the equation by an
appropriate matrix W ∗

k . Usually, we choose Wk = Vk.

Vk is a matrix of column vectors spanning Vk. Note that we can choose Vk

to consist of the orthonormal basis of Vk, in which case V ∗
k Vk = I and the

problem above reduces to an k× k eigenvalue problem: (V ∗
k AVk− θI)uk = 0.

13

3.3 Basic Arnoldi

A more sophisticated algorithm than the power method is the Arnoldi
method. This method originally was developed last century by Arnoldi
in [1] to transform dense matrices into Hessenberg form. Arnoldi himself
already noted that this method could be used to approximate certain
eigenvalues, even without finishing the transformation algorithm. Later on,
the method was used to find eigenvalues of large sparse matrices.

Arnoldi’s method is a Krylov subspace method. Krylov subspaces are based
on the simple power method. They are formed as followed: first a starting
vector is chosen, say v0. Then the Krylov subspace is defined as:

Kk(A, v) ≡ span{v,Av,A2v, . . . , Ak−1v}.

Notice that Kk is k-dimensional, while A ∈ Rn×n. Of course, k is always
chosen (much) smaller than n.

Arnoldi’s method creates k orthonormal vectors that form a basis forKk. The
vectors are combined in an n×m-matrix Vk, while an k×k-Hessenberg matrix
Hk is formed by hij = (Avj , vi). The exterior eigenvalues of Hk can be used
as approximations of eigenvalues of A. Usually, this will be a small fraction
of the k eigenvalues of Hk. Note that by construction, Hk = V ∗

k AVk.

The basic algorithm is as follows:

Algorithm 1 Arnoldi
1: Start: Choose an initial vector v1 of length one,
2: for j = 1, 2, . . . ,m do
3: hij = (Avj , vi), i = 1, 2, . . . , j, {1}
4: wj = Avj −

∑j
i=1 hijvi, {2}

5: hj+1,j = ||wj ||2,
6: if hj+1,j = 0 then
7: stop
8: end if
9: vj+1 = wj/hj+1,j .

10: end for

At line 3, we have to do a matrix-vector multiplication. This is a costly
operation. We can store the result to use it again at line 4, where we perform
Gram-Schmidt orthogonalization. In practice, this orthogonalization will
be modified Gram-Schmidt. Keep in mind that this algorithm is only a
very simple version, that only shows the idea of using a Krylov subspace
as a search space for eigenvectors. For practical implementation, a lot of
improvements can be made.

14

3.3.1 Restart

When working with a Krylov-subspace algorithm, we build a subspace from
approximations of eigenvectors. When convergence is slow, for instance due
to the starting vector, the subspace will continue to grow. This gives two
problems. The first is that a growing subspace means larger matrices to work
with, and this increases the cost in terms of computation work and time
quadratically. The second problem is that we need a lot of memory to store
all the information we have about the subspace. To solve these problems,
a technique called restart has been developed. This is a general name for
techniques that reduce the size of the Krylov subspace when a certain size
is reached. Some methods restart with a one-dimensional subspace spanned
by the latest approximation of the eigenvector. Other methods use several
approximations as a basis of the starting subspace. Especially when working
with the Jacobi-Davidson method, that will be introduced in the next section,
it is common to restart with a subspace with dimension larger than 1. For
Arnoldi’s method, extensive research has been done to improve performance
with clever restarts. Many of the results are implemented in the well-known
Computational package ARPACK [8], that is used in e.g. MATLAB to
calculate eigenvalues.

15

3.4 Jacobi-Davidson

Similar to the Arnoldi method, Jacobi-Davidson is a subspace method. It
was first published in [17]. However, it does not use a Krylov subspace as
search space for the eigenvector. In this method, we also construct matrices
Vk and Hk, and use eigenvalues of Hk as approximations of the eigenvalues
of A. The main difference is the way in which the matrix Vk is constructed.
Instead of using the power method to create a Krylov subspace, we combine
ideas of Jacobi and Davidson to look at the orthogonal projection of A onto
the complement of our current approximation uk to create the search space.
Before we go deeper into the Jacobi-Davidson method, we will introduce the
Jacobi and the Davidson method.

3.4.1 Jacobi

Jacobi published in [6] a method to find eigenvalues of a diagonally dominant
matrix A of which the largest diagonal element is a1,1 = α. The idea is to write
the eigenvalue problem as:

A

[
1
z

]
=

[
α cT

b F

] [
1
z

]
= λ

[
1
z

]
.

This can be written as a system of two equations, writing θ as the
approximation of λ:

α + cT z = θ
(F − θI)z = −b

.

If we start with a vector z we can compute θ from the first equation, and
insert this value in the second equation and solve for z, thus iteratively
approximating λ by θ. To use Jacobi for an arbitrary matrix A, one needs to
diagonalize the matrix first (or at least do a few steps in order to make it a
diagonally dominant matrix) and exchange some rows and columns to get
the largest diagonal-value on the right place.

3.4.2 Davidson

Davidson’s method [2] creates a subspace that is built from subsequent
approximations of the desired eigenvector. Suppose that we have a subspace
K of dimension k, with basis v1, . . . , vk. We can compute the Ritz value
θk and the Ritz vector uk of the matrix A over this subspace. The residual
is rk = Auk − θkuk. The method of expanding the search space is first to
compute t = (DA − θkI)−1rk. Here, DA is the diagonal of A, which is chosen
because the cost of inverting (DA−θkI) is drastically lower than for (A−θkI).
Notice that in this way, we are actually approximating a shift-and-invert
step. But because we use a diagonal approximation of (A − θkI), we don’t
have to worry about decomposing, avoiding shift-changes or iteratively
solving for t. The vector t is made orthogonal to v1, . . . , vk, and the resulting

16

vector will be vk+1, expanding K. uk will approximate an eigenvector of A,
and θk again approximates the corresponding eigenvalue.

3.4.3 Jacobi-Davidson

The Jacobi-Davidson method finds inspiration in ideas from both methods
described above. Starting with an initial guess, we search for a correction
for the approximate eigenvector in the directions orthogonal to the current
approximation, that is, in the subspace u⊥k . We will do so by first finding
an approximation for the eigenvalue using the current approximation of
the eigenvector. Then we use the approximated eigenvalue to find an
approximation of the eigenvector. Clearly, this idea is similar to Jacobi’s.

The approximation θk for the eigenvalue λ is found as follows:

Ax = λx ⇒ x∗Ax = x∗λx

Inserting uk as approximation for x we will define θk = u∗kAuk, where we
assume that uk has been normalized.

To approximate the eigenvector, we use the idea from Davidson to look in the
subspace u⊥k . We want to find a correction v ∈ u⊥k such that:

A(uk + v) = λ(uk + v)

⇒ (A− λI)v = −(A− λI)uk = −rk + (λ− θk)uk (3.1)

where rk = (A − θkI)uk is the residual from the latest approximation. We
project this equation on the subspace u⊥k by multiplying on the left side by
I − uku

∗
k. We use the following observations:

(I − uku
∗
k)v = v,

(I − uku
∗
k)rk = (I − uku

∗
k)(A− θkI)uk

= rk − uk(u∗kAuk − θk)
= rk,

(I − uku
∗
k)uk = 0

.

If we now multiply (3.1) with I − uku
∗
k and replace the unknown λ by the

known approximation θk, we find the so called Jacobi-Davidson correction
equation:

(I − uku
∗
k)(A− θkI)(I − uku

∗
k)v = −rk (3.2)

Since the (A − θkI) is transformed to be in u⊥k the rank is less than n and
the equation is in fact ill-posed. But we are only interested in the part of
the solution that is in the same direction as v, so we will use this equation
to iteratively approximate the correction v by v̂, and the next approximation
for the eigenvector will be uk + v̂. A popular method to use when solving
iteratively is GMRES [15].

17

It is clear that the correction equation is similar to a shift-and-invert step.
Remember that a shift-and-invert step is to find an update by multiplying the
current approximation by the shifted and inverted matrix: (A − θkI)−1vk =
vk+1. The difference between Jacobi-Davidson and Shift-and-invert is that
Jacobi-Davidson restricts itself to a particular search direction. The matrix
A − θkI will become almost singular when θk is close to an eigenvalue of A.
The projected matrix in the correction equation however, is restricted to the
direction that we have no information about in our search space. This means
that matrix is projected away from the direction in which the singularity
would occur, avoiding the problem of singularity when the shift is close to
an eigenvalue.

3.4.4 Search spaces and Harmonic Ritz values

An obvious adaption of the Jacobi-Davidson method is to use the correction
v not to correct the current approximation uk directly, but to store the k-th
correction as vk. We can then build a subspace Vk = span{v1, . . . , vk}
of dimension k and use it to compute Ritz pairs of A. In this way, we
obtain approximations of several eigenpairs at once. We can choose to
focus on one value, or we can try to let more than one value converge.
A problem with this technique is that it will only converge to exterior
eigenvalues. When researching instabilities in combustion only the smallest
eigenvalues are needed. For other applications however, interior eigenvalues
are also important. These can be found by shifting the matrix A, and to
keep convergence speed high, we could use so-called harmonic Ritz values.
Harmonic Ritz values were introduced in [12]. µk is a harmonic Ritz value of
A with respect to some linear subspace Wk if µ−1

k is a Ritz value of A−1 with
respect to Wk. If we choose Wk = span{Av1, . . . , Avk}, Wk = AVk, x = AVky
and µ = λ−1 then we can write, starting from the original eigenvalue
problem:

Ax = λx
⇒ µx = A−1x
⇒ µAVky = Vky
⇒ µW ∗

k Wky = W ∗
k Vky

We now have a generalized eigenvalue problem, which we will treat later in
this report. Solving this problem for µ will give us an approximation of the
smallest eigenvalues of the original problem. By combining harmonic Ritz
values with a shift of the matrix (see section 3.1.1) we can efficiently obtain
interior values. As mentioned before this technique will not be used in our
implementation for quadratical eigenvalue problems, because the application
does not make require it.

18

3.4.5 The Jacobi-Davidson Algorithm

The basic algorithm for calculation of a single eigenvalue of the standard
eigenproblem using Jacobi-Davidson is provided by Gerard L.G. Sleijpen et
al in [18]. The algorithm is:

Algorithm 2 Jacobi-Davidson Method for λmax of A

1: Start with t = v0, starting guess
2: for i=1,. . . ,k-1 do
3: t = t− (t∗vi)vi

4: end for
5: vk = t/||t||2
6: vA

k = Avk

7: for i=1,. . . ,m-1 do
8: Mi,k = v∗i vA

k

9: Mk,i = v∗kvA
i

10: end for
11: Mk,k = v∗kvA

k

12: Compute the largest eigenpair of the eigenproblem Ms = θs of the k × k matrix
M , (||s||2 = 1)

13: u = V s
14: uA = V As
15: r = uA − θu
16: if ||r||2 ≤ ε then
17: λ̃ = θ, x̃ = u
18: STOP
19: end if
20: Solve t⊥u (approximately) from (I − uu∗)(A− θI)(I − uu∗)t = −r

There are three important points in the algorithm that need some explaining.
First, the latest expansion to the basis of the search space is orthogonalized
using Gram-Schmidt. The basis vectors vk together form the matrix V . Then,
at lines 7-11, we construct the matrix V ∗AV , which we use to calculate the
Ritz values of A in the next step of the algorithm. At line 20 we solve the
correction equation, the fundamental equation of the Jacobi-Davidson theory.
Also note (again) that the correction equation is in fact a transformed shift-
and-invert step with shift θ. The shift was obtained as a Ritz value at line
11. We can actually target any eigenvalue by choosing another Ritz value. Of
course, this means that we need a good method to find the Ritz values. A
commonly used method is the QR algorithm for eigenvalues, see [4]. We can
solve for the eigenvalues directly in this case because it is typically a small
problem (size k).

In the same paper, Gerard L.G. Sleijpen et al proposed a more advanced
algorithm based on harmonic Ritz values and vectors, including restart and
deflation techniques. The algorithm is given on the next page. This algorithm
is very advanced, and has been implemented by Sleijpen in both MATLAB
and Fortran. It is, however, a very general implementation. This makes it
somewhat inefficient for the application at hand. Moreover, since this thesis
focuses on quadratical eigenvalue problems we decided to write a code that

19

could handle both linear, generalized and quadratic eigenvalue problems.
We will go into more detail about this in the next few chapters.

Algorithm 3 Jacobi-Davidson Method for kmax eigenvalues of A close to τ

1: Start with t = v0, k = 0, m = 0, Q = [], R = [].
2: while k < kmax do
3: for i = 1, . . . ,m do
4: t = t− (v∗i t)vi

5: end for
6: m = m + 1, vm = t/||t||2, vA

m = Avm − τvm, w = vA
m

7: for i = 1, . . . , k do
8: w = w − (q∗i w)qi

9: end for
10: for i = 1, . . . ,m− 1 do
11: MA

i,m = w∗
i w, w = w −MA

i,mwi

12: end for
13: MA

m,m = ||w||2, wm = w/MA
m,m

14: for i = 1, . . . ,m− 1 do
15: Mi,m = w∗

i vm, Mm,i = w∗
mvi

16: end for
17: Mm,m = w∗

mvm

18: Make a QZ decomposition MASR = SLTA, MSR = SLT , SR, SL unitary and
TA, T upper triangular, such that: |TA

i,i/Ti,i| ≤ |TA
i+1,i+1/Ti+1,i+1|

19: u = V sR
1 , uA = V AsR

1 , ϑ = ¯T1,1 · TA
1,1,

20: r = uA − ϑu, ã = Q∗r, r̃ = r −Qã
21: while ||r̃||2 ≤ ε do

22: R =
(

R ã
0 ϑ + τ

)
, Q = [Q, u], k = k + 1

23: if k = kmax then
24: STOP
25: end if
26: m = m− 1
27: for i = 1, . . . ,m do
28: vi = V sR

i+1, vA
i = V AsR

i+1, wi = WsL
i+1, sR

i = sL
i = ei

29: end for
30: MA, M are the lower m×m-blocks of TA, T respectively
31: u = v1, u

A = vA
1 , ϑ = M̄1,1 ·MA

1,1

32: r = uA − ϑu, ã = Q∗r, r̃ = r −Qã
33: end while
34: if m ≥ mmax then
35: for i = 2, . . . ,mmin do
36: vi = V sR

i , vA
i = vAsR

i , wiWsL
i

37: end for
38: MA, M are the leading mmin ×mmin-blocks of TA, T respectively
39: v1 = u, vA

1 = uA, w1 = WsL
1 ,m = mmin

40: end if
41: θ = ϑ + τ , Q̃ = [Q, u]
42: Solve t⊥Q (approximately) from (I − Q̃Q̃∗)(A− θkI)(I − Q̃Q̃∗)t = −r̃

43: end while

20

We will briefly explain some parts. The first part is used to orthogonalize the
latest correction t against the current search space, and to expand the matrices
and vectors accordingly. Then we use a QZ decomposition for both MA and
M using the same matrices SR and SL: MASR = SLTA and MSR = SLT .
See the next section for more information about the QZ algorithm.

After this we compute new approximations for the eigenpair and the residual
at line 21, and if we find that norm of the residual has fallen below a given
threshold, we are satisfied with the approximation ϑ + τ for the eigenvalue.
We store this value in the matrix R, together with the vector ã such that R is
an upper triangular matrix. Another matrix Q is formed such that AQ = QR.

From line 23 to line 39 the algorithm checks whether a restart is needed,
and if a restart is necessary the variables are changed appropriately. This
is the case if either the residual is below a certain threshold ε, meaning that
we are satisfied with the current approximation, or when the dimension of
the search space gets too large. In the first case we restart by removing the
converged eigenvector from the basis, so that the dimension of the search
space decreases by one. We also need to make appropriate choices for the
other variables, see lines 27-32 . If we don’t reach the threshold before m ≤
mmax we restart with m = mmin, where, mmin is the predetermined minimal
number of vectors that forms the new basis. Also here, we need to restrict the
other variables, see lines 35-39 . If neither condition is met, then we simply
continue by updating θ, Q̃ and t.

3.5 The QZ decomposition

In the algorithm for Jacobi-Davidson, we used the so called QZ decomposition.
This decomposition is a more general form of the Schur decomposition. In
fact, it is also referred to as the generalized Schur decomposition. The
Schur decomposition aims to write a square matrix A = Q∗UQ where Q
is a unitary matrix containing the orthogonalized eigenvectors of A and U
upper triangular with the eigenvalues of A on the main diagonal. The QZ
decomposition decomposes two matrices using the same unitary matrices
for both matrices. We will give this statement as a theorem:

Theorem 3.5.1 If A and B are in Cn×n, then there exist unitary Q and Z such that
Q∗AZ = T and Q∗BZ = S are upper triangular. If for some k, tkk and skk are both
zero, then λ(A,B) = C. Otherwise λ(A,B) = tii/sii : sii 6= 0.

λ(A,B) is the spectrum (subset of C containing the eigenvalues) of the
generalized eigenproblem Ax = λBx described in the next section. This
theorem and its proof can be found as theorem 7.7.1 in [4], as well as more
information about these and other decompositions.

21

Chapter 4

Generalized and Quadratic
Eigenvalue Problems

The standard eigenvalue problem is to find a vector and a scalar for a certain
transformation such that the transformed vector is the same as the value
multiplied with the vector. An obvious generalization of this problem is to
transform the right hand side as well, so for a given pair of matrices A, B
(representing transformations) we want to find a vector x and value λ such
that:

Ax = λBx.

If B is I then we get our original eigenvalue problem back. This more general
problem is called the generalized eigenvalue problem. It is usually preferred to
define λ = α/β and writing:

(βA− αB)x = 0,

since these numbers are even valid when β is zero, while λ will go to infinity
in this case. We will call (α, β) an eigenvalue of the problem (βA−αB)x = 0.

Generalized eigenproblems arise frequently from applications. If we expand
the generalized eigenproblem by a quadratic term, we can deal with even
more practical problems. This gives us the quadratic eigenvalue problem:

λ2Cx + λBx + Ax = 0

We will discuss both types of problems, restricting ourselves to what we need
to understand how to apply search space methods to these problems. The
theory presented in this section is for a large part taken from [14].

4.1 Generalized Eigenproblems

When dealing with Generalized Eigenproblems, a few problems may occur.
For instance, there are infinitely many eigenvalues (α, β), because we can
simply multiply with a constant to find another eigenvalue of the same

22

eigenvector. There are several ways to deal with this: we could just define β
to be 1, which could be established for any eigenvalue with β 6= 0 by scaling.
Even though the case that β = 0 is rare, it is not needed to discard the option.
A better solution is to scale the found eigenvalues such that |α|2 + |β|2 = 1.

Another problem is that the matrix pair (A,B) may be singular, that is
det(βA − αB) might be zero for all (α, β). In that case, any pair of numbers
is an eigenvalue. This is not very interesting of course. It is important to
realize that it is well possible for a matrix pair to be regular (non-singular)
even when one or both of the matrices involved are singular. In fact, if either
A or B is regular, we can write the Generalized eigenproblem as a standard
eigenproblem by multiplying with the inverted regular matrix. In case A
is singular, we also need to multiply by 1/λ to get a standard eigenvalue
problem.

4.1.1 Properties of the Generalized Eigenvalue Problem

Before we discuss methods of solving generalized eigenproblems, we
will look at two properties of these problems. We will see how certain
transformations influence the eigenvectors and eigenvalues of the problem.
When we multiply both A and B from the left with the same non-singular
matrix Y , the right eigenvectors are preserved, while the left eigenvectors
are multiplied by Y −∗. The first statement is trivial. The second statement
follows from:

v∗(βA− αB) = 0
⇔ v∗Y −1Y (βA− αB) = 0
⇔ (Y −∗v)∗(βY A− αY B) = 0.

Here, we have assumed that v is a left eigenvector of the original problem,
and 0 denotes the zero row vector of appropriate length. In the same way,
we can show that when we multiply both matrices from the right with a
non-singular matrix X the left eigenvectors are preserved, while the right
eigenvectors are multiplied by X−1. In both cases, the eigenvalues remain
the same. We say that for non-singular X and Y the pair (Y AX, Y BX) is
equivalent to (A,B).

23

The second interesting property is found as a theorem in [14]. The theorem
states:

Theorem 4.1.1 Let (A,B) be any matrix pair and consider the transformed matrix
pair (A1, B1) defined by:

A1 = τ1A− σ1B, B1 = τ2B − σ2A

for any four scalars τ1, τ2, σ1, σ2 such that the 2× 2 matrix

Ω =
(

τ2 σ1

σ2 τ1

)
is non-singular. Then the pair (A1, B1) has the same eigenvectors as the pair (A,B).
An associated eigenvalue < α(1), β(1) > of the transformed matrix pair is related to
the eigenvalue < α, β > of the original pair by:(

α
β

)
= Ω

(
α(1)

β(1)

)

4.1.2 Projection Methods

Previously, we discussed projection (or search space) methods like Arnoldi
and Jacobi-Davidson. We would like to find a way to solve generalized
eigenproblems using these methods. In general, projection methods search
for an eigenvalue (α, β) with an eigenvector u in a subspace K such that:

(βA− αB)u⊥L

for given subspaces K and L. If we know two bases V = v1, . . . , vm and
W = w1, . . . , wm of K and L respectively, we can rewrite the search space
problem as a normal generalized eigenproblem of dimension m:

(βWHAV − αWHBV)y = 0

where we have replaced u by V y. The way in which the subspaces K and L
are formed depends on the choice of method. Unfortunately, for the Arnoldi
method this is not possible, since we cannot construct an appropriate Krylov
subspace, so we have no K. To make this more clear, remember that Arnoldi
uses a Krylov subspace as a search space. To construct the Krylov subspace,
the current approximation is multiplied by A and orthogonalized. In the
case of a generalized eigenproblem, multiplying by A would not help
because we also have a matrix B. The appropriate Krylov subspace would
be (v,B−1Av, . . . , (B−1A)kv), which is the Krylov subspace associated with
the matrix B−1A. In other words, to use Arnoldi we will have to write
the problem as a standard eigenvalue problem B−1Ax = λx, except when
we can find X and Y such that Y BX = I (or Y AX = I), in which case
we write Y AX = λx where the eigenvectors are transformed as described
before. With Jacobi-Davidson, we can easily extend the method to work for
generalized or even quadratic problems, as will be shown in the following
section. Finally, an outline for an algorithm will be given in the section
about nonlinear eigenproblems. This algorithm can be easily adapted to fit
generalized or polynomial eigenproblems.

24

4.2 Quadratic Eigenvalue Problems

Quadratic eigenvalue problems are of the form λ2Cx + λBx + Ax = 0. These
problems often arise from practical applications, like a spring system. For
Arnoldi, it is impossible to solve these problems directly. Usually, one will
rewrite the problem to generalized form (linearization). We will present the
most common way of linearization, and then turn our attention to directly
solving a polynomial problem with Jacobi-Davidson.

4.2.1 Rewriting into a Generalized Eigenvalue Problem

When dealing with a quadratic eigenproblem it is always possible to rewrite
the problem to a generalized eigenproblem. We can rewrite the problem as:

λ

(
B C
I 0

) (
x
λx

)
=

(
−A 0
0 I

) (
x
λx

)
.

Notice that the Identity Matrix can be replaced by any matrix. This will
affect performance of the method that is used to solve the generalized
eigenproblem. The most popular alternative is to use C instead of I .
This will usually give better performance, especially when all matrices
involved are Hermitian (which happens often when the matrices arise from
numerically discretized equations), since then the blockmatrices will also be
Hermitian. If C is a symmetric positive definite matrix (which is the case for
certain classes of physical problems) it may be better to rewrite the quadratic
problem as follows:(

−B −A
I 0

) (
λx
x

)
= λ

(
C 0
0 I

) (
λx
x

)
This gives us a symmetric positive definite matrix on the left-hand side which
can be inverted cheaply or, by using the right pre- and postmultiplications, be
transformed to I . Notice that the size of the problem has increased to 2n. For
general polynomial eigenproblems of degree k the number of eigenvalues is
kn if C is non-singular.

4.2.2 Direct Solving of the Quadratic Eigenproblem

In one of G.L.G. Sleijpen’s articles [16] he indicates how to solve a quadratic
eigenproblem (or more general: a polynomial eigenproblem) with a Jacobi-
Davidson method. The general polynomial eigenproblem is to find a non-
trivial eigenvector x and its associated eigenvalue λ ∈ C such that:

A0x + λA1x + · · ·+ λnAnx = 0 (4.1)

25

For ease of notation, we write this in terms of a matrix-valued polynomial:

Ψ(λ)x = 0 where Ψ(ϑ) = A0 + ϑA1 + · · ·+ ϑnAn

We proceed much like we did for the standard eigenproblem. We suppose we
have a m-dimensional search subspace Vm and a m-dimensional projection
subspaceWm. We can then compute an approximation u of x with associated
approximation ϑ of λ, by solving the following projected problem:

u ∈ Vm, ϑ ∈ C such that Ψ(ϑ)u⊥Wm. (4.2)

The residual r is defined by r ≡ Ψ(θ)u, and for some arbitrary ũ we correct the
approximation u by z1, where z1 is an approximate solution of the correction
equation:

z⊥u and
(

I − w̃w∗

w∗w̃

)
Ψ(ϑ)

(
I − uũ∗

w̃∗u

)
z = −r

for relevant choices of w and w̃. The speed of convergence depends
heavily on the choice of these vectors. In their article, G.L.G. Sleijpen et al
have suggested a couple of possibilities. We will present their two most
straightforward choices: w̃ = w = ũ = u giving linear convergence, and
w = ũ = u and w̃ = T ′(ϑ) giving quadratic convergence [16].

The quadratic eigenvalue problems that arise from thermo-acoustic
combustion applications are generally modelled with C = I , and only
the eigenvalues with real part larger than zero are interesting. To efficiently
search for these eigenvalues, we implemented the algorithm for quadratical
eigenproblems as presented on the next page.

26

Algorithm 4 Jacobi-Davidson Method for quadratic eigenproblems arising
from combustion

1: Start with t = v0, starting guess.
2: Conv = 0, the number of converged eigenvalues.
3: v1 = t/‖t‖
4: for Iter = 1, . . . ,MaxIter do
5: for k = Conv + 1, . . . ,MaxSpace do
6: vA

k = Avk

7: vB
k = Bvk

8: for i=1,. . . ,m-1 do
9: MA

i,k = v∗i vA
k

10: MA
k,i = v∗kvA

i

11: MB
i,k = v∗i vB

k

12: MB
k,i = v∗kvB

i

13: end for
14: MA

k,k = v∗kvA
k

15: MB
k,k = v∗kvB

k

16: H =
(
−MB −MA

I O

)
17: Compute the eigenpairs of the eigenproblem Hy = θy of the 2k× 2k matrix

H .
18: Select θ with smallest positive real part, and s, the normalized lower half of

the corresponding eigenvector y
19: u = V s
20: uA = V As
21: uB = V Bs
22: r = uA + θuB + θ2u
23: if ||r||2 ≤ tolerance then
24: Conv = Conv + 1
25: Eival(Conv) = θ
26: Eivec(:, Conv) = u
27: if Conv = number of desired eigenvalues then
28: STOP
29: end if
30: Select new, unconverged eigenvalue θ with smallest positive real part,

and s, the normalized lower half of the corresponding eigenvector y
31: Determine new residual r and vector u as on lines 18-21
32: end if
33: if k = MaxSpace then
34: V (:, 1 : Conv) = Eivec(:, 1 : Conv)
35: V (:, Conv + 1) = u
36: Orthogonalize V
37: Calculate MA = V ∗AV and MB = V ∗BV
38: end if
39: Solve t⊥u (approximately) from (I − uu∗)(A + θB + θ2I)(I − uu∗)t = −r
40: for i = 1, . . . , k do
41: t = t− (v∗i t)vi

42: end for
43: t = t/‖t‖2
44: end for
45: end for

27

A few points might need more explanation. First of all, some parameters
need to be set. The values of MaxIter and MaxSpace, which represent the
maximal number of iterations and the maximal search space size, need to be
set by the user. Also, the tolerance needs to be defined. Usually the tolerance
depends on the current approximation of the eigenvalue. More information
about choices of the parameters and their effects is provided in chapter 7.

At lines 16 and 17 a small eigenvalue problem is constructed and solved.
This can be done in several ways. The most obvious way is to linearize as in
step 16 and solve using any available efficient method. Another possibility
is not to linearize but to write the problem as a small quadratic eigenvalue
problem. Methods to solve these problems are described in the following
chapter about non-linear eigenproblems, where also methods to solve small
non-linear problems are described. However, it is unlikely that this could
speed up convergence since linearizing a small system is inexpensive.

At lines 23 - 32 we describe the way the algorithm handles converged
eigenpairs. We could also check for the possibility that two eigenpairs
converge during the same iteration, but because of the size of the problem
this is very unlikely and would make the algorithm less efficient. Directly
after this, at lines 33 - 38, we check whether we need to restart. This makes
the upper bound of the for loop at line 5 redundant, but technically we do
need an upper bound so we leave it as it is. During the restart, we decide to
construct a new search space with the converged eigenvectors, together with
the latest Ritz vector. This is a good choice, but it is certainly not optimal. We
leave research about this topic to our successor(s).

Possibly the most important part of the algorithm is line 39, where we solve
the correction equation. This doesn’t have to be done exactly; in fact it will
be inefficient to do so. We only need to approximate the vector t for a good
convergence. There is a clear trade-off here. A better approximation of the
actual solution of the correction equation is more expensive, but also means
we need fewer iterations of Jacobi-Davidson. In our implementation we have
used a highly optimized version of GMRES [3], provided by the parallel
algorithms section of CERFACS.

28

Chapter 5

Nonlinear Eigenvalue Problems

The most difficult challenge in the context of eigenvalue problems is solving
the most general form: the nonlinear eigenvalue problem. We write the
problem as:

T (λ)x = 0 (5.1)

where T is a matrix function of λ. This is obviously a generalization of
the eigenproblems we have discussed so far. For example, if T := λ2C +
λB + A then (5.1) reduces to a quadratic eigenproblem. Various physical
problems are known to reduce to nonlinear eigenvalue problems, for example
in acoustic modeling.

5.1 Numerical Methods for Nonlinear Eigenproblems

We will investigate how the two methods we have been studying so far,
Arnoldi and Jacobi-Davidson, can be extended to the nonlinear case. It is
known that these methods perform better for sparse matrices. For dense
nonlinear eigenproblems, several other methods have been developed, some
of which are discussed by Mehrmann and Voss in [19] and in [9]. The same
articles research the iterative projection methods we are interested in: an
Arnoldi-type method for nonlinear eigenproblems, as well as an extension
of the Jacobi-Davidson method to the nonlinear case. A third projection is
also proposed, namely the Rational Krylov method. We will give a summary
of this research, with the exclusion of the Rational Krylov method as this falls
outside the scope of our own research.

5.2 Newton Type Methods for Small Dense Problems

Before we turn our attention to subspace methods, we will describe some of
the methods for small nonlinear eigenvalue problems presented in [19] and
in [9]. Subspace methods are all based on constructing small eigenproblems
and using the solutions of these problems to find a good approximation

29

of the eigenvalues of the large problem. This means that we need ways
to solve these small eigenproblems. Using linearization techniques or
approximation by Picard iteration we only need to solve linear eigenvalue
problems. However, it is likely that we can find these solutions faster by
directly solving the small, nonlinear problems. We will present the methods
of inverse iteration, residual inverse iteration and successive linear problems
as possibilities to do so. However, we have only implemented the third
method. We will leave comparing the different possibilities as a future
research topic.

5.2.1 Inverse Iteration

From the linear case where T (λ) = A−λI it is known that the inverse iteration
is equivalent to Newton’s method applied to the nonlinear system [9]:(

T (λ)x
v∗x− 1

)
= 0.

Here, v ∈ C is any vector that satisfies v∗x = 1. If we let T (λ) be nonlinear
and apply one step of Newton’s method to the same system we find:(

T (λk) T ′(λk)xk

v∗ 0

) (
xk+1 − xk

λk+1 − λk

)
=

(
T (λk)xk

v∗xk − 1

)
.

We can rewrite this in terms of xk+1:

xk+1 = −(λk+1 − λk)T (λk)−1T ′(λk)xk (5.2)
v∗xk+1 = 1. (5.3)

The first expression gives us a direction uk+1 for the new approximation of
the eigenvector:

uk+1 := T (λk)−1T ′(λk)xk.

Multiplying the first equation with v∗ and combining with the second gives
1 = −(λk+1 − λk)v∗uk+1 or:

λk+1 = λk −
1

v∗uk+1
.

So we obtain an approximation for both the eigenvalue and (after
normalization) the eigenvector.

5.2.2 Residual Inverse Iteration

A drawback of the inverse iteration is that in every iteration we need to
decompose T (λ) in order to find an update direction uk+1. This can be solved
by using T (σ) instead of T (λ), where σ is a fixed shift close to the desired
eigenvalue λ. However, Mehrmann and Voss argue that simply substituting
this in the inverse iteration will lead to misconvergence in the nonlinear case.

30

The residual inverse iteration proposed in [10] fixes this. According to the
inverse iteration method we have:

xk − xk+1 = xk + (λk+1 − λk)T (λk)−1T ′(λk)xk

= T (λk)−1(T (λk) + (λk+1 − λk)T ′(λk))xk

= T (λk)−1T (λk+1)xk +O(|λk+1 − λk|2)

⇒ xk+1 ≈ xk − T (λk)−1T (λk+1)xk (5.4)

where we can replace λk with the shift σ. Notice that in the third step we
used a Taylor expansion of T (λk+1) around T (λk).

The three important steps in the residual inverse iteration method are
the following: first we solve λk+1 from v∗T (σ)−1T (λk+1)xk = 0, then we
compute the residual rk = T (λk+1)xk and finally we solve T (σ)dk = rk for dk

which we can use to find our next approximation xk+1. Note that in this case
we have to solve two systems per iteration instead of one as in the inverse
iteration algorithm. However, since the system involves T (σ) both times we
only have to compute a decomposition once, before we start the algorithm.

5.2.3 Successive linear problems

A first order approximation of the non-linear eigenproblem is given by:

T (λ)x ≈ (T (µ̃)− θT ′(µ̃)x = 0, θ = µ̃− λ.

Ruhe suggested in [13] the method of successive linear problems, based on
this approximation. This method alternatively updates the approximation
of the eigenvalue and the approximation of the eigenvector, just like the
Residual inverse iteration. We start with an approximation of the eigenvalue,
λ1. Then we solve the linear eigenproblem T (λk)u = θT ′(λk)u. We choose
an eigenvalue θ of this problem which is smallest in modulus, and update
the eigenvalue by setting λk+1 = λk − θ. It is obvious that if λk+1 = λk

then θ = 0 and T (λk)u = 0, which means (λk, u) is an eigenpair of the non-
linear problem. The following theorem shows that the method converges
quadratically:

Theorem 5.2.1 Let T be twice continuously differentiable, and let λ̂ be a solution of
the nonlinear eigenvalue problem T (λ) = 0 such that T ′(λ̂) is nonsingular and 0 is
an algebraically simple eigenvalue of T ′(λ̂)−1T (λ̂). Then the method of successive
linear problems converges quadratically to λ̂.

Voss supplies the proof in [19] as follows:

Proof Let x̂ be an eigenvector corresponding to λ̂, and let v ∈ Cn such that
vH x̂ = 1. Let U(λ̂) be a neighborhood of λ̂, and Φ : Cn × C × U(λ̂) → Cn+1

be defined by

Φ(x, θ, λ) :=
(

T (λ)x− θT ′(λ)x
vHx− 1

)
31

Then Φ(x̂, 0, λ̂) = 0, and the matrix

∂

∂(x, θ)
Φ(x̂, 0, λ̂) =

(
T (λ̂) −T ′(λ̂)x̂
vH 0

)
is nonsingular. This will be proven later. By the implicit function theorem
Φ(x, θ, λ) = 0 defines differentiable functions x : U(λ̂) → Cn and θ : U(λ̂) →
C on a neighborhood of λ̂ again denoted by U(λ̂) such that Φ(x(λ), θ(λ), λ) =
0 for every λ ∈ U(λ̂). With this function the method of successive linear
problems can be rewritten as the fixed point iteration λn+1 = φ(λn) := λn −
θ(λn), which converges quadratically if φ′(λ̂) = 0. From the implicit function
theorem it follows that

d
dλ

(
x
θ

)
(λ̂) = − ∂

∂(x,θ)Φ(x̂, 0, λ̂)−1 ∂
∂λΦ(x̂, 0, λ̂)

= −
(

T (λ̂) −T ′(λ̂)x̂
vH 0

)−1 (
T ′(λ̂)x̂

0

)
which yields θ′(λ̂) = 1, and therefore φ′(λ̂) = 0.

All that is now left to prove is that the matrix ∂
∂(x,θ)Φ(x̂, 0, λ̂) is nonsingular.

Let
∂

∂(x, θ)
Φ(x̂, 0, λ̂)

(
z
µ

)
=

(
(λ̂) −T ′(λ̂)x̂
vH 0

) (
z
µ

)
= 0.

If µ = 0 then it follows from the first component T (λ̂)z = 0. Hence, z = αx
for some α ∈ C, and 0 = vHz = αvHx = α yields z = 0. If µ 6= 0 then
the first component reads T (λ̂)z = −µT ′(λ̂)x. Multiplying by T (λ̂)−1 yields
T ′(λ̂)−1T (λ̂)z = −µx 6= 0, from which we obtain

T ′(λ)−1T (λ))2z = −µT ′(λ)−1T (λ)x = 0

contradicting the fact that 0 is assumed to be an algebraically simple value of
T ′(λ)−1T (λ).

32

5.3 Iterative Projection Methods

When discussing Arnoldi and Jacobi-Davidson type methods, we will
follow the same path we did before: assuming that we have a search
space of dimension m and an orthonormal basis V , we try to find a new
approximation of the desired eigenvector and -value. To find the update,
we use the basis of the search space to reduce the dimension of the original
problem to m, that is we solve the nonlinear eigenproblem

V H
k T (ϑk)Vkyk = 0.

If we have found a solution (θk, ỹk) of this problem, and we write xk = Vkỹk

then (θk, xk) is a Ritz pair of T . We can use this Ritz pair to find an update for
the approximated eigenpair. Also, we need these values to expand the search
space. The way in which this is done makes the difference between Arnoldi
and Jacobi-Davidson.

5.3.1 A General Algorithm for Nonlinear Eigenproblems

A general algorithm for projective methods is outlined as follows:

Algorithm 5 General projection method for nonlinear eigenproblems
start with an initial shift σ and an orthonormal basis V
while m ≤ mmax do

compute appropriate eigenvalue θ and corresponding eigenvector y of the
projected problem V HT (λ)V y = 0
determine Ritz vector u = V y and residual r = T (θ)u
if ||r||/||u|| < ε then

accept approximate eigenpair λm = θ, xm = u
m = m + 1
choose new shift σ
restart if necessary
determine approximations θ and u of next desired eigenvalue and vector
compute residual r = T (θ)u

end if
determine expansion of search space

end while

When this algorithm is used for Arnoldi, we need a preconditioner M , which
will be shown later. This matrix has to be determined every time we change
the shift σ. It is used only to determine the vector that expands the search
space. For Jacobi-Davidson we do this using the correction equation, which
can be improved by adding a preconditioner. See Sleijpen et al [16], section
7.1 for a discussion on preconditioning the correction equation.

5.3.2 Arnoldi type methods

It is not possible to extend the original Arnoldi method for standard
eigenvalue problems to the nonlinear case because we cannot construct

33

a Krylov subspace to use as a search space. However, the method that
is proposed by Voss in [20] and [21] is named after Arnoldi because the
new search direction is orthonormalized against the previous vectors. The
expansion of the current basis Vk can be chosen as v̂k+1 = xk−T (σ)−1T (θk)xk

or equivalently as vk+1 = T (σ)−1T (θ)xk since xk is the Ritz vector and
therefore contained in Vk. This choice is based on the residual inverse
iteration method, see equation (5.4). A drawback of this method is that
we need to solve a large system because of the presence of T (σ)−1 in the
equation. When the problem under consideration is large (which is often the
case) then solving will be too expensive. In this case the Arnoldi type method
is only efficient if a reasonable preconditioner M ≈ T (σ)−1 is available.

5.3.3 Jacobi-Davidson type methods

A good alternative for Arnoldi is Jacobi-Davidson, especially when there is
no preconditioner available. Again we assume to have a Ritz pair (θk, xk). We
can simply use the correction equation 3.2 to find an expansion of our basis:(

I −
pkx

∗
k

x∗kpk

)
T (θk)

(
I −

xkx
∗
k

x∗kxk

)
zk+1 = −rk, zk+1⊥xk

where we choose pk := T ′(θk)xk and rk := T (θk)xk. If we solve this equation
approximately for zk+1 we can use this vector to expand Vk. Writing out the
correction equation, and using that x∗kzk+1 = 0 we find that:

T (θk)zk+1 − αkpk = −rk, with αk :=
x∗kT (θk)zk+1

x∗kpk

Solving for zk+1 gives that zk+1 = −xk + αkT (θk)−1T ′(θk)xk, and shows that
z̃k+1 := T (θk)−1T ′(θk)xk ∈ span[Vk, zk+1]. In [20] this vector z̃k+1 is shown to
be the direction in which the inverse iteration method with shift θ searches
after one step. This means that just as in the linear case, Jacobi-Davidson
is a subspace method based on shift-and-inverse iteration, giving quadratic
convergence.

5.4 Picard iteration methods

The extensions described above for Arnoldi and Jacobi-Davidson are
theoretically sound, but hard to implement. It is especially difficult to
find a good way to solve the small nonlinear eigenvalue problem. In our
comparison of Arnoldi and Jacobi-Davidson, we have decided to use a
Picard iteration to deal with nonlinearities in the eigenvalue problem. This
is done in different ways for Arnoldi and Jacobi-Davidson. We will describe
both methods as we used them.

34

5.4.1 Arnoldi with Picard iteration

In chapter 4 we discussed how Arnoldi’s method for standard eigenvalue
problems can be extended to generalized and quadratic problems. To deal
with nonlinear problems, we cannot simply write a linear version of the same
problem. A possibility is to use the method of successive linear problems
combined with Arnoldi, that is to repeatedly solve the problem T (ωi)u =
θT ′(ωi)u and the update equation ωi+1 = ωi − θ. This method is only useful
when the derivative of T with respect to ω is easy to calculate. However,
in our application we use the fact that combustion problems are typically
structured as quadratic eigenvalue problems. we can first write the problem
as a quadratic problem, and then add the remaining nonlinearity. Using
Picard, we then have to repeatedly solve equation (2.3.2):

(A−D(ωk−1))P + ωkBP + ω2
kCP = 0

We solve this equation as described in chapter 4.

5.4.2 Jacobi-Davidson with Picard iteration

In Jacobi-Davidson, we have no problems with applying the algorithm to
nonlinear problems. The only difficulty is that the algorithm requires us to
find solutions of the small nonlinear eigenvalue problem V HT (λ)V y = 0. It
will be very hard to find all eigenvalues, which is easy for small quadratic
or linear problems. The method of successive linear problems has the
possibility to provide one or a few eigenvalues. Another option is to apply
the same kind of Picard iteration to this small problem as we did for the large
problem with Arnoldi. First we will write the small problem as a quadratic
eigenproblem, and then use Picard to deal with the remaining nonlinearities.
In the case of Jacobi-Davidson, this means that we will have to repeatedly
solve a small problem, whereas with Arnoldi we have to repeatedly solve
a large problem. This will cause Arnoldi to suffer more from this adaption,
which again shows the limitation of Arnoldi’s method when it comes to
more complex eigenvalue problems.

35

Chapter 6

MATLAB Tests

We implemented Jacobi-Davidson in MATLAB as a prototype for the
implementation in Fortran, and to make a comparison with Arnoldi
for academic test problems. In particular, we made the MATLAB
implementation suitable even for nonlinear eigenvalue problems, which
we have not done in Fortran. In MATLAB, ARPACK is implemented
using Arnoldi’s method in a highly optimized fashion. This makes a fair
comparison hard - we would have to implement Arnoldi ourselves. We
decided to use MATLAB to design and test our implementation of Jacobi-
Davidson, and to convert this implementation to Fortran so that a fair
comparison can be made. This is done in the next chapter. In this chapter we
will present results from various small test problems. In Fortran we focused
on realistic problems with large grids, restricted to a quadratic nature.
In MATLAB we have solved truly nonlinear eigenvalue problems, with
non-constant impedance boundary conditions. With Fortran we only used
test cases where the impedance was constant, giving quadratic eigenvalue
problems. In Fortran however, we are able to handle much larger problems
because calculating in Fortran is faster and more memory efficient.

6.1 Description of the Test Problems

Our goal was to treat three different types of academic problems as
suggested by CERFACS. The first is simply solving the wave equation
with fully reflective boundaries numerically. This results in a generalized
eigenvalue problem as described in chapter 2. The second problem is to
change the boundary condition on one or more boundaries to an imposed
reduced complex impedance boundary condition. This can be written as
a Robin condition, or in physical terms a partially absorbing and partially
reflecting wall. The relation between absorbing and reflecting is determined
by the impedance parameter. Leaving it constant results in a purely quadratic
eigenvalue problem. The third problem is a truly non-linear eigenvalue
problem, which we have to solve when the complex impedance depends
on the frequency of the wave. This frequency is related to the eigenvalue

36

of the problem, as shown in equation 2.14, which is of course only known
by approximation during the calculation, so the impedance is not known
exactly either. This is more realistic than keeping the impedance constant
during the calculation, however.

6.1.1 Physical Parameters

We have to decide on several parameters. For the geometry, we have taken
a rectangular area of 0.5 m × 0.1 m. We use a coarse grid of 500 nodes
and a fine grid of 8000 nodes. To simulate a realistic combustion chamber
we would need to work with very large matrices which is not feasible in
MATLAB. We have done a realistic simulation with the Fortran code treated
in chapter 7. The grid with 8000 points is shown in the following image, as
well as a zoomed version:

Figure 6.1: The two-dimensional grid of 8000 points, left image is the
overview and right image zoomed in

The thermodynamic parameters are:
T = 300 K
p0 = 101.325Pa = 1 atm
γ = 1.4
r = 287 J K−1 kg−1

where T is the temperature, p0 the constant part of the pressure (the
eigenvalue problem will yield the fluctuating part), γ is the adiabatic
coefficient, or the heat capacity per mass unit at fixed pressure divided by
the heat capacity per mass unit at fixed volume, and finally r is the difference
in those heat capacities. These choices result in the following values for the
speed of sound c and the density ρ: c = 347 m s−1 and ρ = 1.1768 kg m−3.

6.2 Implementation

We have implemented the two methods in roughly the same way. The main
program loads the prefabricated matrices into the workspace, and sets the
parameters. It then either calls Arnoldi’s method or Jacobi-Davidson. We
implemented the latter ourselves, whereas Arnoldi is the method used by the

37

MATLAB function eigs. This function uses the implementation of Arnoldi
called ARPACK. Our implementation of Jacobi-Davidson constructs the
matrices W ∗AW , W ∗BW and W ∗CW , where W is a matrix containing basis
vectors that span the current search space. It then uses the QR algorithm 3.4.5
to solve the small generalized eigenvalue problem:(

−W ∗BW −W ∗AW
I O

) (
ωs
s

)
= ω

(
W ∗CW O

O I

) (
ωs
s

)
.

The algorithm we used for Jacobi-Davidson is given in section 4.2.2.

An alternative to linearizing and using Arnoldi’s method is to solve the non-
linear eigenproblem W ∗AWs+ωW ∗BWs+ω2W ∗CWs = 0. This can be done
using the successive linear problems method as described in section 5.2.3

From the different eigenpairs we find by solving the small eigenproblem we
select the one of which the eigenvalue is closest to the target. If the stopping
criterion is met then we have found a converged eigenpair. If not, then
we take the residual r and use GMRES to approximate the solution of the
correction equation (I − uu∗)(A − θI)(I − uu∗)t = −r for the vector t⊥u,
where u = Ws. This vector is then orthogonalized against W and expands
the search space.

6.2.1 Numerical Parameters

We have set the tolerance of Jacobi-Davidson at tol = 10−8. The stopping
criterion is ‖r‖ <= tol|ω|, where r is the residual and ω is the approximation
of the eigenvalue. For Arnoldi we use the MATLAB function eigs, which
uses ARPACK with shift-and-invert techniques. The stopping criterion for
Arnoldi is the default criterion of ARPACK. The starting vector as well
as the minimal and the maximal search space size are also the defaults
suggested by ARPACK for Arnoldi. For Jacobi-Davidson the starting vector
is the normalized version of a random vector. We set the maximal search
space size at 30, and the minimal size depends completely on the number
of converged eigenpairs. Jacobi-Davidson uses GMRES to find the solution
to the correction equation. The amount of GMRES iterations is 30 for linear
and quadratic problems, but only 5 for nonlinear problems. For the linear
problems, we used JDQZ (see algorithm 3). We have used the default
parameters suggested by the programmer, with the exception of the number
of iterations between restarts (we chose 15 instead of 5) and the number
of GMRES iterations to solve the correction equation. We decided to take
30 GMRES iterations, because throughout testing with both MATLAB and
Fortran this value seemed to work very good for acoustic problems.

38

6.3 Results

We present the results of the different tests. The first table shows the
eigenvalues found by both methods for a problem where the matrix B is
zero. This kind of problem can easily be rewritten as a linear problem, which
gives us the opportunity to compare the values found numerically with the
actual frequencies which can be determined analytically. In the second table
we show the results of the quadratic problem. This problem is the same as
the linear one, but with B a constant non-zero matrix, depending on the
constant-valued impedance. This means that we cannot rewrite it to a linear
problem, but it is still possible to find the analytical eigenvalues. This is also
the case for the third problem, which is nonlinear because of the dependence
of the impedance on the eigenvalue.

6.3.1 Linear Problem

For the linear problem, we have used JDQZ and compared it with the
MATLAB function eigs which uses ARPACK. The results are given in the
next table.

Small Large
AR JD AR JD

λ1 0 0 0 0
λ2 2181 2181 2181 2181
λ3 4360 4360 4363 4363
λ4 6535 6535 6544 6544
λ5 8703 8703 8725 8725
λ6 10855 10855 10904 10904

time in s 0.46 3.18 2.57 65.35

Table 6.1: Results for linear problems using ARPACK and JDQZ

This table shows that the built-in MATLAB is much faster in solving this
particular problem. The eigenvalues that are found are the same. ARPACK is
much faster because of the optimizations, and because it uses shift-and-invert
techniques. The following plot shows the convergence of Jacobi-Davidson.

These plots show that during the first iterations convergence is relatively
slow, but once an eigenpair has converged a new one is found every 10
iterations. An interesting detail is the trouble that Jacobi-Davidson has in
both cases with the 6th eigenvalue. It can be assumed that a bad restart takes
place, meaning that the method has to restart because the search space is
getting too big, but that useful information is being thrown away during
the restart. This is almost inevitable when restarting, and further research
is needed to find a way of restarting in a better way.

We can also use the methods that we have written for quadratic problems
to solve linear problems. This not smart to do in general, but the results for

39

Figure 6.2: Convergence history for JDQZ, left is for the small matrix, right
for the large matrix

Jacobi-Davidson in the case of a large matrix are surprisingly much better!
The reformulation of the quadratic eigenvalues has caused the eigenvalues
to become imaginary instead of real, but otherwise the values are equal to
those found by JDQZ and ’linear Arnoldi’.

Small Large
AR JD AR JD

λ1 0 0 0 0
λ2 ±2181i ±2181i ±2181i ±2181i
λ3 ±4360i ±4360i ±4363i ±4363i
λ4 ±6535i ±6535i ±6544i ±6544i
λ5 ±8703i ±8703i ±8725i ±8725i
λ6 ±10855i ±10855i ±10904i ±10905i

time in s 0.644 2.71 8.173 29.74

Table 6.2: Results for linear problems with methods for quadratic problems

6.3.2 Quadratic Problem

For quadratic problems naturally we can only use the methods that are
designed for these problems. We have checked the validity of the results.
The eigenvalues with negative imaginary part found by both methods
correspond directly with analytic eigenvalues. Notice that also eigenvalues
with positive imaginary part are provided by the numerical methods, but
these correspond to negative frequencies, which cannot be deducted from
the analytic eigenfrequencies, because those are always positive.

As mentioned before, the eigenvalues found are correct. It’s clear that
Arnoldi is again faster, but this can again be explained by the optimal
implementation of ARPACK. The fact that the difference between the
methods is smaller in this case gives good hope that when implemented in a
similar way, Jacobi-Davidson can be faster.

40

Small Large
AR JD AR JD

λ1 0 0 0 0
λ2 −240.6 + 272.7i −241.7 + 271.9i −241.4 + 272.1i −241.4 + 272.1i
λ3 −240.6− 1908.5i −246.7− 1920.6i −240.6− 1908.8i −240.6− 1908.8i
λ4 −240.7 + 2453.9i −241.2 + 2454.3i −240.7 + 2454.1i −240.7 + 2454.1i
λ5 −240.5− 4087.4i −242.0− 4089.1i −240.6− 4090.1i −240.6− 4090.2i
λ6 −240.6 + 4633.0i −240.8 + 4633.0i −240.7 + 4635.5i −240.7 + 4635.5i

time in s 0.775 1.20 11.74 26.70

Table 6.3: Results for quadratic problems

6.3.3 Nonlinear Problem

The easiest way to extend the method we used for quadratic methods to solve
general nonlinear problems is to implement Picard iterations. For Arnoldi,
this means taking an initial guess for the desired eigenvalue, and setting it
constant where the equation is nonlinear. This results in a quadratic problem,
which we can solve with ARPACK. The eigenvalue is then taken as a new
guess, which leads to a new quadratic problem. This continues until the
residual r = T (λ) is considered small enough, according to a predetermined
tolerance. For Jacobi-Davidson, we can do the same, but we can also avoid
having to solve a large problem over again, by implementing the Picard-
iteration in the inner loop. This means using the initial guess when the small
projected problem is constructed, providing a small quadratic eigenproblem.
We then simply create a new small quadratic eigenproblem using the result
of the previous. This Picard iteration is much cheaper.

Small Large
AR JD AR JD

λ1 0 0 0 N/A
λ2 380.3− 627.0i 380.4− 627.0i 380.3− 628.7i N/A
λ3 760.5− 1254.2i 760.8− 1254.1i 760.8− 1253.6i N/A
λ4 1140.4− 1880.6i 1524.8− 2505.2i 1142.1− 1880.1i N/A
λ5 1524.2− 2506.6i 1524.7− 2505.4i 1522.3− 2507.8i N/A
λ6 1885.7− 3135.1i 1524.1− 2505.9i 1903.5− 3135.8i N/A

time 177.5 31.4 2451 x

Table 6.4: Results for nonlinear problems

These results look worse than those of the quadratic problem. Jacobi-
Davidson finds one eigenvalue three times, skipping two others that are
found by Arnoldi. On the other hand, Arnoldi takes a very long time to
solve these problems. The nonlinearity increases computing time drastically.
Jacobi-Davidson takes less time, but if the problem becomes larger it fails to
even find one eigenvalue. This indicates that nonlinear eigenvalue problems
are very hard to solve indeed.

41

6.4 Nonlinear problems with direct solving of the small
eigenproblem

We have spent a lot of time trying to find a way to deal with nonlinear
eigenproblems. An obvious way to improve the performance of Jacobi-
Davidson is to replace the Picard-iteration in the inner loop by another
way of finding an eigenpair of the small nonlinear problem. This can be
done using the method of successive linear problems (SLP), as described
in section 5.2.3. This is a Newton method and should provide quadratic
convergence. However, when implemented in Jacobi-Davidson for quadratic
problems the performance of JD decreases, and when used to solve nonlinear
problems convergence is halted before the stop-criterion is met. Jacobi-
Davidson with SLP has a lot of potential, but needs to be studied upon more
before a working implementation can be provided. Especially the accuracy
is below an acceptable level.

6.5 Provisional Conclusions

From the results presented above we can conclude that Arnoldi and
Jacobi-Davidson both handle quadratic problems quite well. Because of
the optimized form of Arnoldi as implemented in ARPACK, this method
is still faster for almost all testcases. However, Jacobi-Davidson is far from
fully optimized in this implementation. The fact that both methods find the
correct eigenvalues in a comparable amount of time indicates that we need
to compare them at a lower-end level of programming, which makes it easier
to reach the same kind of optimization for both methods. For the nonlinear
test case, Jacobi-Davidson is even faster when using the coarse grid, but
does not converge at all when using the finer grid. Arnoldi finds the same
eigenvalues in both cases, indicating that the results are correct. However,
the long time it takes to find the results for the finer grid motivates further
research to find a method that performs better.

42

Chapter 7

Fortran Tests

In this section, we wish to compare the Arnoldi method and the Jacobi-
Davidson method for solving large quadratic eigenvalue problems in a
realistic setting. We will do so by performing several numerical tests using
AVSP, a tailor-made software product by CERFACS that is specialized in
solving the wave equation by transforming the equation to a Helmholtz
equation. This program is a linear finite elements code with triangular or
tetraedrical elements and lumped mass matrices. Before performing these
tests, we need to perform preliminary tests to determine the optimal values
of the parameters of the two methods. We cannot compare correctly if one
of the methods is not performing optimally. Unfortunately, the optimal
speed would only be obtained by using preconditioned GMRES in Jacobi-
Davidson to solve the correction equation and using shift-and-inverted
Arnoldi. This is difficult to do, since our implementation is matrix-free.
Instead, we use a subroutine to calculate the matrix-vector product every
time we need the vector Ax, Bx or Cx for given x. For this reason,
we will leave preconditioning for Jacobi-Davidson and shift-and-invert
techniques for Arnoldi outside the scope of the research. This way, we can
make a fair comparison as it is. After finding the optimal parameters we
compare the two methods for an academic two-dimensional problem, a
three-dimensional problem, and for a real combustion chamber. We will
apply three different boundary conditions in each case. We will use several
gridsizes for each problem. We will look for the time it takes to converge to a
fixed tolerance with optimal parameters, and we will investigate the number
of matrix-vector products and scalar products used by each method.

7.1 Description of the testcases

We have performed numerical tests on nine different problems. Each
problem is based on the wave equation. This equation is then discretized
on a given grid. The implementation is matrix-free, for every matrix-vector
multiplication AVSP simply determines the result by calculating the value
in every element. This means the eigenvalue problem must be solved using

43

matrix-vector product routines instead of the matrices themselves. ARPACK
was already used by AVSP to give the solution of the eigenproblem, and we
have branched Jacobi-Davidson into AVSP at the same place to compare the
performance of both methods at a level comparable to industrial application.
The only thing we did not do is to parallelize the program, but in [5] it is
shown that Jacobi-Davidson is very well parallelizable. Therefore, the results
for a serial implementation will be a strong indication for performance in a
parallel environment.

The first three problems are two-dimensional with the same geometry but
different boundary conditions. We define a rectangular area of 1 meter by
0.2 meter. The speed of sound will in all testcases be assumed constant at
340 m/s. The three sets of boundary conditions are chosen to represent three
levels of difficulty, as experienced with ARPACK. The first is to simply take
the normal velocity to be zero on all boundaries, in other words to have fully
reflecting walls. We know the analytical eigenvalues, which makes it easy
to check whether both methods have converged. In this case, the resulting
eigenvalue problem, with the assumption that the mass matrix is lumped,
reduces to a standard, linear eigenvalue problem. The second and third set
of boundary conditions only differ from the first by imposing an impedance
boundary condition on the inlet wall. This results in a quadratic eigenvalue
problem. We define two different (but constant) values for the impedance,
because from experience it is known that the performance of AVSP using
Arnoldi’s method is sensitive to this value. We solve the resulting equations
on four different regular grids with an increasing number of cells. We have
used respectively 500, 2000, 8000 and 32000 nodes. The structure of these
grids are the same as in the matlab tests where we also used grids with 500
and 8000 points.

The second set of three problems is closely related to the first. The geometry
is a rectangular box with dimensions 1m x 0.2m x 0.1m. We use the same
boundary conditions as in the two-dimensional problem, resulting in a linear
eigenproblem and two quadratic eigenproblems of varying difficulty. We
constructed regular grids of approximately 500, 2000, 8000 and 32000 nodes.
Finally we tested the two methods on the grid of an actual combustion
chamber named Arrius. This grid contains a little more than 22000 nodes. In
this testcase, we again applied three different sets of boundary conditions in
the same way as for the academic testcases.

44

Figure 7.1: Three-dimensional grids

7.2 Parameter settings

The parameters involved for ARPACK are the number of desired eigenpairs,
the minimal and maximal size of the search space and the tolerance. For
Jacobi-Davidson the latter three parameters are important as well, together
with the maximum size of the subspace used by GMRES to solve the
correction equation. The number of desired eigenvalues is not as important
for Jacobi-Davidson. In ARPACK, the minimal size of the subspace depends
on the number of desired eigenpairs, which means that when looking for e.g.
10 eigenvalues the first 4 may be found in a different amount of time then
when looking for 4 eigenvalues. In our implementation of Jacobi-Davidson,
the minimal search space size only depends on the number of converged
eigenpairs. This choice implies that the time needed to find a certain amount
of eigenpairs does not depend on how many are desired.

Other parameters, that do not influence the results in favor of either method,
are the tolerance and the starting vector. The tolerance is a constant used in
the stopping criterion, which is described in the following section. We have
decided to choose tol = 10−4 for the linear tests and 10−5 for the quadratic
tests to ensure adequate convergence. We found that decreasing the tolerance
any more doesn’t give more accurate eigenvalues. In fact, the difference
between eigenvalues found with ’low’ tolerance and ’high’ tolerance is in
the relative order of 0.1 %.

As starting vector we could not choose the constant vector because this is
an eigenvector with eigenvalue 0. For the application, we are not interested
in this eigenvalue, which means that choosing the eigenvector as starting
vector could cause problems. We decided to take the alternating vector
(1, 0, 1, 0, . . .) which is never an eigenvector. A random vector would only
be possible if we could keep the random seeds equal for Arnoldi and
Jacobi-Davidson. This seemed unnecessarily complicated. Moreover, a
known starting vector makes it easier to compare different tests and to solve
possible programming mistakes.

45

7.2.1 Stopping criterion

Of course, the stopping criterion should be equal between the two methods
to make a fair comparison. This cannot be done straightforward because the
problem is linearized when using Arnoldi making the residual in Arnoldi’s
method twice the size of the residual in Jacobi-Davidson. To make sure
both methods give equally precise answers we will rewrite the equation to
calculate the norm of the residual for Jacobi-Davidson:

‖rJD‖2 =
∥∥ApJD + ωBpJD + ω2CpJD

∥∥
2

=
∥∥∥∥(

−ApJD − ωBpJD − ω2CpJD

0

)∥∥∥∥
2

=
∥∥∥∥(

−B −A
I 0

) (
ωpJD

pJD

)
− ω

(
C 0
0 I

) (
ωpJD

pJD

)∥∥∥∥
2

This can be easily compared to the Arnoldi residual, which is given by:

‖rAR‖2 =
∥∥∥∥(

−B −A
I 0

) (
ωpAR

pAR

)
− ω

(
C 0
0 I

) (
ωpAR

pAR

)∥∥∥∥
2

The only thing left to do is to scale the equation for the Jacobi-Davidson
residual so that the vector (ωpJD, pJD)′ has norm 1. Since we know that
‖pJD‖2 = 1 this can simply be done by multiplying the equation by (1 +
|w|2)−0.5. This means that (1 + |w|2)−0.5‖rJD‖2 ≈ ‖rAR‖2.

For the stopping criterion used for Arnoldi, we stick to the criterion proposed
in ARPACK: ||rAR|| < tol · |ω|, where ω is the current approximation of λ. For
Jacobi-Davidson this becomes ||rJD|| < tol · |ω| ·

√
1 + |ω|2. Also, since we are

not interested in the eigenvalue zero or in eigenvalues with negative real part
we choose to ignore any eigenvalue that falls under this category. Note that
the condition for Jacobi-Davidson is almost the same as Arnoldi’s for linear
eigenproblems. This can be seen by writing the linear problem Ax+µx = 0 as
−Ax = λ2x, λ2 = µ. Arnoldi (for linear problems) uses the stopping criterion
||rAR|| < tol · |ωµ|where ωµ is the approximation of µ, while Jacobi-Davidson
(for quadratic problems) uses ||rJD|| < tol · |ωλ| ·

√
1 + |ωλ|2 where ωλ is the

approximation of λ. For eigenvalues (much) larger than 1 it’s obvious that
|ωλ| ·

√
1 + |ωλ|2 ≈ ω2

λ ≈ λ2 ≈ ωµ.

7.2.2 Maximal search space size

Both Arnoldi and Jacobi-Davidson construct search spaces in which to look
for eigenvectors. For very large and possibly ill-conditioned problems it will
be difficult to find the eigenvectors. To prevent constructing search spaces
that are too memory-demanding, it is necessary to implement restarts. A
restart takes place when the search space has reached a given size, after
which a small search space is taken as a new start for the search. This means
that we have to think about the minimal and maximal size of the search

46

space. Typically, the minimal size is based on the number of converged
eigenvectors or on the desired number of eigenvalues. A less obvious
parameter is the maximal size. When we take this number relatively large,
for example larger than 100, we need less iterations to converge. However,
this requires a larger amount of memory, and more time per iteration. From
preliminary tests it appeared that the optimal value for this parameter is
very problem dependent, and is restricted by memory issues. In general,
the best performance in terms of time will be obtained by increasing this
parameter when the problem size increases. In the tests we tried 5 different
values for both methods to make sure the comparison was made based on
optimal parameters.

For the three-dimensional testcase with 8000 nodes we have plotted the
behavior of Arnoldi and Jacobi-Davidson when the maximal search space is
changed. The performance of Arnoldi is shown using the red, dashed lines
and Jacobi-Davidson with the continuous blue line.

Figure 7.2: The grid with 8000 points

It seems that these test results indicate that with Arnoldi the expected
trade-off appears, but with Jacobi-Davidson it is simply a matter of choosing
the maximal search space size to be bigger than the (expected) number of
iterations, causing the algorithm to find the answer without restarting. We
suspect that this is not true for much larger problems, but we did not have
the opportunity to test this hypothesis. Also, some work might have to
be done to improve the current method of restarting which now takes the
converged eigenvectors and the last Ritz vector as a base for the search space.

From the graphs depicted above we can also conclude that Arnoldi’s method
takes much more time per matrix-vector operation than Jacobi-Davidson.
This can be explained from the observation that Arnoldi orthogonalizes a
growing set of vectors every time it does a matrix-vector operation. This
causes Arnoldi’s method to use (nmax − nmin)nmax vector operations per
iteration (an Arnoldi-iteration is the procedure of building an entire search
space, not just adding one vector to the base as with Jacobi-Davidson), where
nmax is the maximal and nmin the minimal size of the search space. Every
Arnoldi-iteration uses only nmax − nmin matrix-vector products, leaving us
with nmax vector operations per matrix-vector product. This explains why
increasing the maximal search space size over 100 increases calculation time

47

but not the amount of matrix-vector products. Most of Jacobi-Davidson’s
work is done in the GMRES algorithm that approximates the solution to the
correction equation. In this algorithm, like in Arnoldi’s, we need nGMRES −
1 vector products per matrix-vector operation. But nGMRES typically has
a value below 40 (we explain more about this value in the next section),
which means Jacobi-Davidson takes less vector operations per matrix-vector
product, especially when nmax is chosen large. This difference is only made
larger by the fact that for quadratical problems the size of vectors doubles
for Arnoldi’s method. Which means that every vector product in Arnoldi’s
method gives two times more work than in Jacobi-Davidson. Even though
Jacobi-Davidson also has a growing set of vectors that serves as a base for the
search space, and need to be orthogonalized, this amount is small per matrix-
vector operations because there are 40 matrix-vector operations needed to get
one new vector, effectively adding one or two vector operations per matrix-
vector operation.

7.2.3 Maximal GMRES subspace size

For Jacobi-Davidson the maximal GMRES-subspace size is another important
parameter. GMRES is used to approximate the answer of the correction
equation. The better the approximation, the fewer iterations Jacobi-Davidson
will need to find the desired eigenvalues. On the other hand, increasing the
maximal GMRES subspace size will require more memory and CPU-time to
find the approximation. From various tests we found that this parameter is
almost problem independent in our range of test cases, with an optimal value
of 30. Sometimes a slight change of this value improves performance a little,
but in general we can trust this value to be good enough. This consistency is
off course a good property of a numerical method for industrial application,
where it is more important that parameters are easy to predict than that they
are absolutely optimal. In our comparison with Arnoldi we have used 30 as
a standard value for the maximal GMRES subspace size.

7.3 Numerical Results

To make a fair comparison between the Arnoldi method and the Jacobi-
Davidson method we have written a Fortran code for Jacobi-Davidson, using
standard BLAS and LAPACK routines for the basic numerical operations
and a GMRES code provided by CERFACS [3]. At CERFACS, a FORTRAN
version of ARPACK is currently used to solve large sparse eigenvalue
problems. To compare the two methods, we made two versions of AVSP, one
of which used Jacobi-Davidson to solve the eigenvalue problem, the other
used ARPACK. We then compared with which method the program found
the desired eigenvalues faster.

48

7.3.1 Academic two-dimensional testcase

For the two-dimensional case, the results for the CPU-time are presented in
the following table. Directly after that we give a table with the values of the
maximal search space size parameter for each test case.

u = 0 y = 0.4+0.3 i y = 3+2 i
AR JD AR JD AR JD

500 0.12 0.53 0.7 1.3 1.4 1.05
2000 0.78 2.1 7.16 4.92 15.84 4.96
8000 8.05 14.69 60.98 29.82 167.04 33.49

32000 85.5 116.46 760.49 272.4 2675.51 299.03

Table 7.1: CPU-time in seconds for 2-dimensional test cases until 10
eigenvalues have been found, for 4 different gridsizes

u = 0 y = 0.4+0.3 i y = 3+2 i
AR JD AR JD AR JD

500 25 25 40 30 50 35
2000 30 40 60 35 60 55
8000 30 50 60 70 75 95
32000 50 130 60 150 90 150

Table 7.2: Maximal search space size parameter

From the upper table we see that in case of an impedance boundary condition
ARPACK’s performance decreases drastically, whereas Jacobi-Davidson only
needs about twice the amount of time to solve these more difficult problems.
Especially for fine grids Jacobi-Davidson is much faster than ARPACK. The
performance deterioration with Arnoldi is logical, since then the problem
becomes quadratic in which case Arnoldi has to solve a problem twice
the size of the original problem. In practice, a different implementation of
Arnoldi is needed to deal with this rewriting of the problem. An important
result for Jacobi-Davidson is that the value of the impedance has almost
no influence on calculation-time, as long as it’s constant. The currently
implemented method to deal with non-constant impedance is to iterate
using a Picard-iteration. This means that the value for the impedance is
chosen based on information from the last iteration, but taken constant
during the iteration. In other words, we do the same calculation for different
values for the impedance. If the calculation time would depend strongly on
this value then the total calculation time becomes very unpredictable. The
second table shows that it is hard to predict what value should be chosen
for the maximal search space size. To keep a balance between speed and
memory-efficiency the search space should not be chosen much larger than
120. The value of 150 for the grid with 32000 points is chosen purely to
get the solution as fast as possible, but with even larger problems memory
restrictions will play a larger role.

49

Another interesting aspect is the speed with which the different eigenvalues
are found. We will give the amount of time needed to find each of the 10
eigenvalues for the 2D testcase with 32000 nodes.

u = 0 y = 0.4+0.3 i y = 3+2 i
AR JD AR JD AR JD

λ1 55.23 53.64 523.35 57.43 1358.35 55.49
λ2 55.8 58.27 518.14 74.81 1918.77 83.77
λ3 57.23 62.12 507.39 95.53 1750.79 103.56
λ4 57.23 65.09 507.39 113.02 1358.35 120.77
λ5 62.78 70.19 528.77 135.34 1802.81 150.45
λ6 83.00 100.62 683.43 161.34 1384.73 174.51
λ7 76.49 102.05 698.34 204.43 2675.51 225.07
λ8 75.12 106.24 727.22 229.43 1581.31 252.81
λ9 85.5 111.96 760.49 253.4 1892.99 276.06
λ10 76.49 116.46 746.36 272.4 2059.02 299.03

Table 7.3: CPU-time needed to find the different eigenvalues

This table shows that Arnoldi finds the eigenvalues in groups. This is
because the method only checks for convergence after the maximal size of
the search space is reached. It can do so since the expansion of the search
space doesn’t depend on the residual, as with Jacobi-Davidson. This method
of building up the search space independent of one specific residual (which
is calculated using only one Ritz vector) causes all Ritz vectors to converge
at the same time. This is contrary to Jacobi-Davidson, where only one
vector is converging at a time. We see that in the above results because for
Jacobi-Davidson the time between finding two eigenvectors is often of the
same order. Also, Jacobi-Davidson converges to the smallest eigenvalue
first, and then finds them in order. ARPACK often finds the eigenvalues in
a different order. Since for many applications only the smallest eigenvalues
are important we see this as a nice property of Jacobi-Davidson.

50

To get more insight in the convergence behavior of Jacobi-Davidson, we have
made a graph depicting the convergence, for the 8000-point grid with two
different values for the impedance. Notice that only the norm of the residual
of the non-converged eigenpair closest to the target is plotted. We plot this
norm against the time, because not every iteration takes the same amount of
time. These plots show again the slow start.

Figure 7.3: Convergence history for Jacobi-Davidson, left has low impedance
and right has high impedance

7.3.2 Academic three-dimensional testcase

For the three-dimensional case, the results are as follows:

u = 0 y = 0.4+0.3 i y = 3+2 i
AR JD AR JD AR JD

500 0.32 1.10 0.72 1.42 2.02 1.44
2000 1.21 5.35 4.66 6.25 22.42 7.38
8000 6.53 26.27 32.27 32.57 172.36 49.15

32000 44.04 190.65 330.62 160.06 N/A 264.23

Table 7.4: CPU-time in seconds for 3-dimensional test cases

u = 0 y = 0.4+0.3 i y = 3+2 i
AR JD AR JD AR JD

500 40 40 50 35 70 35
2000 40 60 60 60 75 50
8000 60 90 80 90 80 90
32000 60 120 80 140 N/A 140

Table 7.5: Maximal search space size parameter

We see in this table the same behavior that we saw for the two-dimensional
test cases. When an impedance boundary condition is imposed, the
performance of Arnoldi decreases drastically whereas CPU-time needed
with Jacobi-Davidson hardly increases. The difficulties that Arnoldi has with

51

large quadratic problems become clear, especially for the case with y = 3+2i.
Since our computing time per test was limited to 900 seconds, Arnoldi did
not finish in the case with 32000 gridpoints and the difficult impedance. For
the three-dimensional quadratic problems with approximately 8000 points
we also give the convergence graphs. Notice the effect of restarting in the
middle of the plots.

Figure 7.4: Convergence history for Jacobi-Davidson, left has low impedance
and right has high impedance

52

7.3.3 ARRIUS combustion chamber

The results for the academic testcases indicate that Jacobi-Davidson performs
much better than Arnoldi for quadratic eigenvalue problems. For industrial
application however we will need to show that the same is true for an actual
combustion chamber. At CERFACS several grids of combustion chambers
are available. We chose a relatively small chamber called ARRIUS with 22000
nodes, to prevent calculation times to be too high. To give the reader an idea
of the way the pressure fluctuates according to different eigenmodes we plot
the eigenvectors belonging to the eigenvalues with the smallest real part. The
total pressure in the combustion chamber is a combination of the constant
part of the pressure and the sum of the fluctuating parts that follow from the
eigenvalue problem. These plots are shown in appendix A; Here we give the
numerical results of the comparison of the two methods. A value of 10−6 is
used for the tolerance, Arnoldi uses a search space spanned by at most 100
vectors, and Jacobi-Davidson builds a search space using at most 170 vectors.

u = 0 y = 0.4+0.3 i y = 3+2 i
AR JD AR JD AR JD

λ1 131 131 1158 284 2106 310
λ2 125 152 1171 507 2106 573
λ3 125 171 1117 668 3091 755
λ4 131 195 1171 1095 3913 1406
λ5 131 223 1211 1266 2302 1556
λ6 143 246 1251 1446 2251 2145
λ7 143 298 1290 1725 3141 2544
λ8 155 391 1290 1990 3888 2706
λ9 191 435 1675 2952 6059 3271
λ10 197 513 1662 3127 7724 3644

Matvecs 2669 7291 8018 39882 37747 46857

Table 7.6: CPU-time needed to find each eigenvalue of the ARRIUS
combustion chamber, and the total number of matrix-vector multiplications

This table shows the time at which each eigenvalue is found by the two
methods, and the total number of matrix-vector operations (matvecs) for
three different sets of boundary conditions. The results are comparable to the
results for the academic test cases, with the exception that when more than
5 eigenvalues are needed, Arnoldi now performs better for the case where
the impedance is relatively small. For the case with large impedance Jacobi-
Davidson is faster. Comparing the number of matvecs, we see that Jacobi-
Davidson still needs a lot more than Arnoldi, but for Arnoldi this amount
increases fast for larger impedances.

53

Chapter 8

Conclusions

Arnoldi’s method is known as a powerful method to solve eigenvalue
problems, and this report confirms that. The ARPACK package is
currently a state-of-the-art algorithm to find the eigenvalues of large,
sparse linear eigenvalue problems. This algorithm can be used to solve
quadratic eigenvalue problems as well, albeit in their linearized form, with
satisfactory performance. In comparison with Jacobi-Davidson however,
the performance is behaving too unpredictable. Some problems are solved
reasonably fast, but others take a lot of time. This depends on the shape
the spectrum of the linearized problem; Arnoldi is not very well suited to
find inner eigenvalues, although combining Arnoldi with shift-and-invert
techniques boosts performance for these problems.

In this report, we have compared the recently developed Jacobi-Davidson
method for different types of eigenvalue problems with Arnoldi’s method.
As expected, linear problems are solved faster using ARPACK then when
using the JDQZ implementation of Jacobi-Davidson. Jacobi-Davidson
however is more easily extended to quadratic or nonlinear eigenvalue
problems. This statement is proven by our test, that show that eigenpairs
of quadratic eigenvalue problems are found almost as fast as those of linear
problems with the same grid, only with different boundary conditions.

For nonlinear problems, we believe Jacobi-Davidson has the potential to
become the most important solution method. At the same time, our results
reveal that there are still some problems to be taken care of: even though
Jacobi-Davidson is faster than Arnoldi, it can fail in finding all desired
eigenvalues. This is inherent to the fact that Jacobi-Davidson is a Newton-
type method. A possible solution might be to combine Jacobi-Davidson with
a good method of finding eigenvalues of the small projected eigenvalue
problem. Our tests with the method of successive linear problems failed
because of a lack of accuracy of the eigenpairs provided by this method.
For implementation in AVSP, we believe that a parallel version of Jacobi-
Davidson is necessary to deal with quadratic eigenvalue problems arising
from thermo-acoustic problems. It could replace the current method of
linearization and using parallel ARPACK.

54

Chapter 9

Future Research

A lot of questions are still unanswered about Jacobi-Davidson. First of
all, we have not been able to develop a working method for the fully
nonlinear problem arising from the combustion problems that are dealt with
at CERFACS. These problems have a quadratic structure, but with added
nonlinear dependence on the eigenvalue because of both the boundary
conditions and the flame response. We have worked on a possible solution
in MATLAB for the nonlinearity caused by a non-constant impedance in the
boundary condition, but the results weren’t satisfactory. It must remain a
goal of research to find a method, possibly an extension of Jacobi-Davidson,
that can solve these fully nonlinear problems without having to use a Picard
iteration or linearizing the quadratic structure.

Possible improvements in performance of our current Jacobi-Davidson
algorithm are a more sophisticated restart strategy, using a preconditioner
when solving the correction equation, and a smarter selection method of
the Ritz pairs. This method has to select which pair is best suited to use
when searching for the next expanding vector, to prevent switching the
target of convergence. Finally, a parallel version of Jacobi-Davidson is being
developed at CERFACS, and is expected to be a straightforward adaption of
the current serial version.

55

Appendix A

Plots

We present here plots of the eigenmodes of two cases: the 2D academic
case, and the realistic 3D ARRIUS chamber. These eigenmodes indicate how
the acoustic pressure fluctuates for each separate (complex) eigenfrequency.
The real part of these frequencies are the physical frequencies of the
eigenmodes, the imaginary part is linked with the damping of the oscillation.
Unfortunately, for the 3D cases, we aren’t able to provide the frequencies.

Figure A.1: pressure levels for ten eigenfrequencies

56

Figure A.2: pressure levels for the three smallest eigenfrequencies

57

Appendix B

Matlab code

We present the code that we used as Jacobi-Davidson algorithm, and as
a blueprint for the Fortran code presented in the next chapter. The code
consists of the functions qjd, select and GMRES.

function [eival, eivec, converged, relres] = qjd(K, C, M, num, target, tol, n_gmres, rstart, maxit, droptol)
%
% Dimension of the problem:
n = length(K);

% Search spaces:
V = zeros(n,rstart);
KV = zeros(n,rstart);
MV = zeros(n,rstart);
CV = zeros(n,rstart);

% Projected matrices:
H_K = zeros(rstart,rstart);
H_C = zeros(rstart,rstart);
H_M = zeros(rstart,rstart);

% Space to solve small augmented eigenproblem
H1 = zeros(2*rstart,2*rstart);
H2 = zeros(2*rstart,2*rstart);
z = zeros(2*rstart,2*rstart);
alpha = zeros(2*rstart);
theta = zeros(num+1);

% Initialization
V(:,1) = rand(n,1);
V(:,1) = ones(n,1);
V(:,1) = V(:,1)/norm(V(:,1));

iter = 0;
converged = 0;
ritzval = target;

while (iter <= maxit & converged < num)
for (inner = converged+1:rstart)

iter = iter + 1;
%

58

% Multiply new basis vector with matrices
KV(:,inner) = K*V(:,inner);
CV(:,inner) = C*V(:,inner);
MV(:,inner) = M*V(:,inner);

%
% Calculate new row and column of projected matrix:

for i = 1:inner-1
H_K(i,inner) = dot(V(:,i), KV(:,inner));
H_K(inner,i) = dot(V(:,inner), KV(:,i));
H_C(i,inner) = dot(V(:,i), CV(:,inner));
H_C(inner,i) = dot(V(:,inner), CV(:,i));
H_M(i,inner) = dot(V(:,i), MV(:,inner));
H_M(inner,i) = dot(V(:,inner), MV(:,i));

end
H_K(inner,inner) = dot(V(:,inner), KV(:,inner));
H_C(inner,inner) = dot(V(:,inner), CV(:,inner));
H_M(inner,inner) = dot(V(:,inner), MV(:,inner));

%
% Projected augmented system:

O = zeros(inner);
I = eye(inner);
H1 = [-H_C(1:inner,1:inner) -H_K(1:inner,1:inner); I O];
H2 = [H_M(1:inner,1:inner) O; O I];

%
% Calculate eigenvalues/vectors of small augmented system

[z alpha] = eig(H1,H2);
alpha = diag(alpha);

%
% Find the converged and the first nonconverged ritz values and small vectors

[s theta] = select(z, alpha, converged, target);
ritzval = theta(converged+1);

%
% New Ritzvector:

t = s(:,converged+1)/norm(s(:,converged+1));
ritzvec = V(:,1:inner)*t;

%
% New residual:

r = (ritzvalˆ2*MV(:,1:inner) + ritzval*CV(:,1:inner) + KV(:,1:inner))*t;
rn = norm(r);
relres(iter) = rn;
if (rn < tol*abs(ritzval))

% if (rn < tol)
%
% Found new converged eigenvalue

converged = converged + 1;
eival(converged) = ritzval;
eivec(:,converged) = ritzvec;
if (converged == num) break; end;

% Find the new target ritz vector
[s theta] = select(z, alpha, converged, target);
ritzval = theta(converged+1);

%
% New Ritzvector:

t = s(:,converged+1)/norm(s(:,converged+1));
ritzvec = V(:,1:inner)*t;

%
% New residual:

r = (ritzvalˆ2*MV(:,1:inner) + ritzval*CV(:,1:inner) + KV(:,1:inner))*t;

59

end
if (inner == rstart)

%
% Throw away all vectors except converged ones + restart vector:

V(:,1:converged+1) = V*s;
%
% Orthogonalize the remaining basis vectors

for j = 1:converged+1
for i = 1:j-1

beta = dot(V(:,i), V(:,j));
V(:,j) = V(:,j) - beta*V(:,i);

end
V(:,j) = V(:,j)/norm(V(:,j));

end
%
% Multiply remaining basis vectors (only converged) with matrices

KV(:,1:converged) = K*V(:,1:converged);
CV(:,1:converged) = C*V(:,1:converged);
MV(:,1:converged) = M*V(:,1:converged);

%
% Compute projected matrices:

H_K(1:converged,1:converged) = V(:,1:converged)’*KV(:,1:converged);
H_C(1:converged,1:converged) = V(:,1:converged)’*CV(:,1:converged);
H_M(1:converged,1:converged) = V(:,1:converged)’*MV(:,1:converged);

else
%
% Compute new basis vector

if (n_gmres == 0)
V(:,inner+1) = r;

else
%
% Jacobian

J = K + ritzval*C + ritzvalˆ2*M;
w = 2*ritzval*(M*ritzvec) + C*ritzvec;
V(:,inner+1) = gmres(J, -r, ritzvec, w, n_gmres, droptol);

end
%
% Orthogonalize the new basis vector

for j = 1:inner
beta = dot(V(:,j), V(:,inner+1));
V(:,inner+1) = V(:,inner+1) - beta*V(:,j);

end
V(:,inner+1) = V(:,inner+1)/norm(V(:,inner+1));

end
end

end

60

function [s, theta] = select(z, alpha, converged, target)
n = length(alpha);
mask = zeros(n,1);
% Find the converged and the first unconverged Ritz value
for i = 1:converged+1

mindist = 1e10;
for j = i:n

if (mask(j) == 0)
if (abs(alpha(j)-target) < mindist)

mindist = abs(alpha(j)-target) ;
loc = j;

end
end

end
s(:,i) = z(n/2+1:n,loc);
theta(i) = alpha(loc);
mask(loc) = 1;

end
return

61

function [x] = gmres(J, b, u, w, m, droptol);

if (droptol < 0)
precon = 0;

else
precon = 1;

end

n = length(b);
x = 0*b;

uw = dot(u, w);
v = b;

if (precon)
[L U] = luinc(J,droptol);
v = v - dot(u, v)*u;
v = U\(L\v);
v = v - (dot(u,v)/uw)*w;

end

beta = norm(v);
v = v/beta;
V = zeros(n,m);
H = zeros(m+1,m);

for k = 1:m,
V(:,k) = v;
v = v - dot(u, v)*u;
v = J*v;
v = v - (dot(u,v)/uw)*w;

% Preconditioning
if (precon)

v = v - dot(u, v)*u;
v = U\(L\v);
v = v - (dot(u,v)/uw)*w;

end
%
% Orthogonalize the new basis vector

for j = 1:k
H(j,k) = dot(V(:,j),v);
v = v - H(j,k) * V(:,j);

end
alpha = norm(v);
H(k+1,k) = alpha;
v = v/alpha;

end;
%
% Solve small system
e1 = zeros(k+1,1); e1(1)=beta; y =H\e1;
x = V*y;

return;

62

Appendix C

Fortran Code

We provide the code that we have written as an implementation of Jacobi-
Davidson. We have used a routine called QJD.f as a portal to choose the
correct version of the algorithm. In practice, we have only used one algorithm
(RQJD, Regular Quadratic Jacobi-Davidson) because we have always taken
C = I and a constant (or zero) impedance boundary condition for our tests.
For this reason, we only present the routine RQJD.f. The other three only
differ slightly, and can easily be recreated from the basic algorithm. We
have also used several smaller subroutines. Some of those routines were
written by us, we present those as well. Other routines, that we don’t present,
are BLAS or LAPACK routines, available through the net. The subroutines
init_ZGMRES and Drive_ZGMRES are available via the CERFACS website
as part of the GMRES package.

63

CC
C
C Subroutine QJD calls any of the four possible
C Jacobi-Davidson Algorithms, depending on the
C User input for the variable ProbType.
C
C This implementation of the Jacobi-Davidson algorithm
C is designed to solve quadratic eigenvalue problems of
C the form A*P + z*w*B*P + wˆ2*C*P = 0
C where A, B and C are square matrices of equal size,
C z is the complex impedance, P is the desired eigenvector
C and w the desired eigenvalue. When C = I or z = constant,
C the memory requirements can be lowered by adapting the
C variable Probtype (more on this below)
C
C Programmers:
C Jan-willem van Leeuwen
C Martin van Gijzen
C
C Version 1.5, finished 26-01-06
C
CC

Subroutine QJD(Eival, Eivec, N, Target, Tol, Neig, MaxSpace,
+ MaxGMRES, MaxIter, ProbType, Conv)

CC
C
C Info about the program:
C Call the algorithm with the statement:
C Call QJD(Eival, Eivec, N, Target, Tol, Neig, MaxSpace,
C + MaxGMRES, MaxIter, ProbType)
C
C The Jacobi-Davidson method is implemented in a matrix-free
C way. To let the method function, the user should supply 4 Subroutines:
C
C AMUL(N, X, Y) for the multiplication Y = A*X
C BMUL(N, X, Y) for the multiplication Y = B*X
C CMUL(N, X, Y) for the multiplication Y = C*X
C Double complex function impedance(w) for the calculation
C of the complex non-constant impedance. The matrix B will
C be multiplied by this value, not divided!
C
C When C = I, the subroutine CMUL still has to be supplied, but won’t
C be referenced. The same is true for the function for the impedance.
C
C Info about the Parameters:
C
C Eival: Double Complex (Neig) Array.
C Contains on output an array of Neig eigenvalues.
C Eivec: Double Complex (N, Neig) Array.
C Contains the Neig eigenvectors, with the i-th column
C corresponding to the eigenvalue Eival(i)
C N: Integer. Size of the problem
C Target: Double Complex number. The eigenvalues that are returned
C are closest to target
C Tol: Double Precision number. Tolerance for the Residu. Higher
C Tolerance will increase convergence speed, but decreases

64

C accuracy. Advised value: between 1d-6 and 1d-9.
C Neig: Integer. On input: number of eigenvalues wanted with
C positive complex part. On output: Number of converged
C Eigenvectors/Eigenvalues with pos. complex part.
C MaxSpace: Integer. Maximal allowed size for the search space.
C Advised value: between 20 and 40. For problems
C where A is non-symmetrical, higher values of Maxspace
C are more efficient.
C MaxGMRES: Integer. Maximal allowed GMRES iterations per
C Jacobi-Davidson iteration
C Advised value: between 10 and 30
C MaxIter: Integer. Maximal allowed number of iterations.
C Advised value: between 200 and 600
C Probtype: Logical (2) array. Sets the problem type.
C Set Probtype(1) = .TRUE. when the mass matrix C
C is equal to the identity matrix
C Set Probtype(2) = .TRUE. if impedance is constant
C make sure to add the impedance in the BMUL subroutine!
C
CC

Implicit none

Integer N, Neig, MaxSpace, MaxGMRES, MaxIter, MVCounter, Conv
Double Precision Tol
Double Complex Target, Eivec(N,Neig), Eival(Neig)
Logical Probtype(2)

C----- Check validity of the parameters

If(N.LE.0.OR.Neig.LE.0.OR.MaxSpace.LE.0.OR.
+ MaxIter.LE.0.OR.Tol.LE.0) Then

Print*, ’An important parameter is negative or zero’
Return

End if

C----- Call the correct subroutine

If (Probtype(1)) Then
If (Probtype(2)) Then

Call RQJD(Eival, Eivec, N, Target, Tol, Neig,
+ Conv, MaxSpace, MaxGMRES, MaxIter)

Else
Call IQJD(Eival, Eivec, N, Target, Tol, Neig,

+ Conv, MaxSpace, MaxGMRES, MaxIter)
End If

Else
If (Probtype(2)) Then

Call GQJD(Eival, Eivec, N, Target, Tol, Neig,
+ Conv, MaxSpace, MaxGMRES, MaxIter)

Else
Call NLJD(Eival, Eivec, N, Target, Tol, Neig,

+ Conv, MaxSpace, MaxGMRES, MaxIter)
End If

End If

Print*, Eival

End

65

CC
C
C Subroutine RQJD supplies the eigenvectors and eigenvalues
C for problems with C = I and constant impedance
C
CC

Subroutine RQJD(Eival, Eivec, N, Target, Tol, Neig, Conv,
+ MaxSpace, MaxGMRES, MaxIter)

Implicit none

C----- Declare In- and output parameters

Integer N, Neig, Conv, MaxSpace, MaxGMRES, MaxIter
Double Precision Tol
Double Complex Target, Eivec(N,Neig), Eival(Neig)

C----- Declare program variables

Integer I, I2, J, J2, Iter, Iseed(2), INFO

Double Precision Delta, Limit
Double Precision, allocatable :: Rwork(:)

Double Complex One, Zero, Tempval(2), Ritzval, Gamma, VL(1,1)
Double complex, dimension(:), allocatable ::
+ P, R, W1, Ritzvec, T, Work, Y1
Double complex, dimension(:,:), allocatable ::
+ Y, W, H1, AW, WAW, BW, WBW

C----- Declare Functions

Double Precision Norm
Double Complex zdotc
Real Etime

C----- Allocate memory

Allocate (Rwork(8*MaxSpace))
Allocate (P(N), R(N), W1(N), Ritzvec(N), T(2*MaxSpace),
+ Work(8*MaxSpace), Y1(MaxSpace))
Allocate (Y(2*MaxSpace, 2*MaxSpace), W(N, MaxSpace),
+ H1(2*MaxSpace, 2*MaxSpace),
+ AW(N, MaxSpace), WAW(MaxSpace, MaxSpace),
+ BW(N, MaxSpace), WBW(MaxSpace, MaxSpace))

C------ Initialize variables.

Delta = 1d-3
Limit = 1d-10
iseed = (3, 8)

c call zlarnv(1, Iseed, N, P)
Do J = 1,N

P(J) = cmplx(mod(J,2),0d0)
End Do
P = P/norm(N,P)
I = 0

66

One = (1d0,0d0)
Zero = (0d0, 0d0)
W(:,1) = p
Call Zeros(2*MaxSpace, 2*MaxSpace, Y)

Conv = 0
Iter = 0

C------ Start the main loop.
DO WHILE (Iter .LT. MaxIter)

C------ Start the inner loop.
DO I = Conv+1, MaxSpace

Iter = Iter + 1
I2=2*I

Call Amul(N, W(1,I), AW(1,I))
Call Bmul(N, W(1,I), BW(1,I))

Do J = 1,I-1
WAW(J,I) = zdotc(N, W(1,J), 1, AW(1,I), 1);
WAW(I,J) = zdotc(N, W(1,I), 1, AW(1,J), 1);
WBW(J,I) = zdotc(N, W(1,J), 1, BW(1,I), 1);
WBW(I,J) = zdotc(N, W(1,I), 1, BW(1,J), 1);

End Do
WAW(I,I) = zdotc(N, W(1,I), 1, AW(1,I), 1);
WBW(I,I) = zdotc(N, W(1,I), 1, BW(1,I), 1);

C------ Construct the small matrix.

H1(1:I,1:I) = -WBW(1:I,1:I)
H1(1:I,I+1:I2) = -WAW(1:I,1:I)
Call Eye(I,H1(I+1:I2,1:I))
Call Zeros(I,I,H1(I+1:I2,I+1:I2))

C------ Solve the small eigenproblem.

Call ZGEEV(’N’, ’V’, I2, H1, 2*MaxSpace, T, VL, 1, Y,
+ 2*MaxSpace, WORK, 4*MaxSpace, RWORK, INFO)

If (INFO .NE. 0) Then
Print*, ’Info=’, Info

Endif

C------ Select the ritzvalue closest to the target.

Call Select(I2, Y(1:I2,1:I2), T(1:I2), Target,
+ Conv, Ritzval, Y1(1:I), Neig, Eival)

C------ Determine the ritzvector.

Call zgemv(’N’, N, I, ONE, W, N, Y1, 1,
+ ZERO, Ritzvec, 1)

C------ Calculate the residu.

Call zeros(N, 1, R)
Do J=1,I

67

Do J2=1,N
R(J2) = R(J2) + (AW(J2,J) +

+ Ritzval * BW(J2,J) +
+ Ritzval**2 * W(J2,J))*Y1(J)

End Do
End Do

C------ Test for convergence.

If (norm(N,R) .LE. Tol*abs(ritzval)**2) Then
Conv = Conv+1

Print*, ’Found eigenvalue #’, Conv, Ritzval
Eival(Conv) = Ritzval
Eivec(:,Conv) = Ritzvec
If (Conv.EQ.Neig) Then

Deallocate (p, R, W1, Ritzvec, T, Work, Y1)
Deallocate (Y, W, H1, AW, WAW, BW, WBW)
Return

End If

C------ Find the new target ritzvector

Call Select(I2, Y(1:I2,1:I2), T(1:I2), Target,
+ Conv, Ritzval, Y1(1:I), Neig, Eival)

Call zgemv(’N’, N, I, ONE, W, N, Y1, 1,
+ ZERO, Ritzvec, 1)

C------ Calculate Residu

Call zeros(N, 1, R)
Do J=1,I

Do J2=1,N
R(J2) = R(J2) + (AW(J2,J) +

+ Ritzval * BW(J2,J) +
+ Ritzval**2 * W(J2,J)) * Y1(J)

End Do
End Do

End if

C------ Check for restarting.

If (I.EQ.MaxSpace) Then
W(:,1:Conv) = Eivec(:,1:Conv)
W(:,Conv+1) = Ritzvec
Do J = 1,Conv+1

Do J2 = 1,J-1
Gamma = zdotc(N, W(1,J2), 1, W(1,J), 1)
W(:,J) = W(:,J) - Gamma*W(:,J2)

End Do
W(:,J) = W(:,J)/norm(N, W(1,J))

Call Amul(N, W(1,J), AW(1,J))
Call Bmul(N, W(1,J), BW(1,J))

End Do
Call zgemm(’C’, ’N’, Conv+1, Conv+1, N,

68

+ One, W, N, AW, N, Zero, WAW, MaxSpace)
Call zgemm(’C’, ’N’, Conv+1, Conv+1, N, One,

+ W, N, BW, N, Zero, WBW, MaxSpace)
Else

C------ Find the next expanding vector.

If (MaxGMRES.GT.0) Then
call zeros(N, 1, W1)
Do J = 1, I

W1 = W1 + (2*ritzval*W(:,J)+BW(:,J))*Y1(J)
End do
Call GMRES(N, MAXGMRES, -R, Ritzvec, W1,

+ .TRUE., Ritzval, Ritzval**2, P)
Else

P = R
End If

C------ Orthogonalize the new vector.

Do J=1,I
P = P - zdotc(N, W(1,J), 1, P, 1)*W(:,J)

End Do
W(:,I+1) = P/Norm(N, P, 1)

End if
End do

End do

Deallocate (p, R, W1, Ritzvec, T, Work, Y1)
Deallocate (Y, W, H1, AW, WAW, BW, WBW)

End

69

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C Subroutine Select selects the ritzpair of which the ritzvalue is
C the converged+1st closest to target
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Subroutine Select(I2, Y, T, Target, Converged, Ritzval, Y1,
+ Neig, eival)

Implicit none

Integer Converged, Idamin, I, I2, J, J1, J2,
+ K, Neig
Double Complex Y(I2,I2), Ritzval, Y1(I2/2), Target, T(I2),
+ eival(Neig)
Double Precision Norm, T2(I2), T3(I2), Tmax

C---- First move converged eigenvalues away from target

Do J = 1,I2
T3(J) = abs(T(J)-Target)

End Do
Tmax = T3(1)
Do J=2,I2

If (T3(J).GT.Tmax) Then
Tmax = T3(J)

End If
End do

C----- For our application, we ignore the zero-valued eigenvalues

Do J1 = 1, I2
if (real(T(J1)).lt.1d0) then
T3(J1)=Tmax+1d0
endif

end do

C----- Now ignore the values close to converged ones.

Do J1 = 1, Converged
Do J = 1,I2

T2(J) = abs(T(J)-Eival(J1))
End Do
K = Idamin(I2, T2, 1)
T3(K) = Tmax+2d0

end do

K = Idamin(I2, T3, 1)
Ritzval = T(K)
I=I2/2
Y1(1:I) = Y(I+1:I2,K)
Y1(1:I) = Y1(1:I)/Norm(I, Y1(1:I))

End

70

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C Subroutine GMRES finds an approximate solution to the correction equation
C This Subroutine uses the GMRES driver supplied by the CERFACS algo-team
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Subroutine GMRES(N, MAXGMRES, B, U1, W1, NOC, C, C1, P)

Implicit none

C----- Declare Subroutine Parameters

Integer N, MAXGMRES
Double Complex B(N), U1(N), W1(N), C, C1, P(N)

C----- Declare Calculation Variables

Integer LWORK, INFO(3), IRC(5), ICNTL(8), J, StartX,
+ StartZ
Double Precision CNTL(5), RINFO(2)
Double Complex X(N), Z(N), Temp(N), UU, UW
Double Complex, Allocatable :: Work(:)
Logical NOC

C----- Declare called functions

Double Complex zdotc
Double Precision Norm

C------ Allocate GMRES Workspace

LWORK = MaxGMRES**2+MaxGMRES*(N+5)+5*N+2
Allocate (Work(LWORK))

C------ Initialize GMRES Variables

Call Init_zgmres(ICNTL, CNTL)
ICNTL(2) = 0
ICNTL(4) = 0
ICNTL(6) = 0
ICNTL(7) = MaxGMRES

Work(N+1:2*N) = B(:)
IRC(1) = 1

C------ Determine iteration-specific variables

UW = zdotc(N, U1, 1, W1, 1)
UU = zdotc(N, U1, 1, U1, 1)

C------ Start the reverse communication loop

Do While(IRC(1).NE.0)
Call Drive_ZGMRES(N, N, MAXGMRES, Lwork, work,

+ IRC, ICNTL, CNTL, INFO, RINFO)

StartX = IRC(2)

71

StartZ = IRC(4)

If(IRC(1).EQ.1)Then
X = Work(StartX:StartX+N-1)
X = X - zdotc(N, U1, 1, X, 1)*U1
Call Zeros(N, 1, Z)
Call Zeros(N, 1, Temp)
Call Amul(N, X, Z)
Call Bmul(N, X, Temp)
Z = Z + C*Temp
Call Zeros(N, 1, Temp)
If(NOC)Then

Temp = X
Else

Call Cmul(N, X, Temp)
End If
Z = Z + C1*Temp
Z = Z - (zdotc(N, U1, 1, Z, 1)/UW)*W1
Work(StartZ:StartZ+N-1) = Z

Else If(IRC(1).EQ.2)Then
Work(StartZ:StartZ+N-1) = Work(StartX:StartX+N-1)

Else If(IRC(1).EQ.3)Then
Work(StartZ:StartZ+N-1) = Work(StartX:StartX+N-1)

Else If(IRC(1).EQ.4)Then
Do J=0,IRC(5)-1

Work(StartZ+J) = zdotc(N, Work(StartX+J*N), 1,
+ Work(IRC(3)), 1)

End Do

End If

End Do

P = Work(1:N)
If(Norm(N,P).LT.1d-16)Then

P = B
End If
Deallocate (Work)
Return
End

72

CC
C
C Subroutine Eye provides an N x N unity matrix
C
CC

Subroutine Eye(N, A)

Implicit none

Integer N, I
Double Complex A(N,N)

Call Zeros(N, N, A)

Do I=1,N
A(I,I)=(1d0,0d0)

End Do

End

73

CC
C
C Subroutine Zeros provides an N x M zero-matrix
C
CC

Subroutine Zeros(N, M, A)

Implicit None

Integer N, M, J1, J2
Double Complex A(N,M)

Do J1=1,N
Do J2=1,M

A(J1, J2)=(0d0,0d0)
End Do

End Do

End

CCC
C
C The function Norm provides |X| where X is a vector of dimension N
C
CCC

Double Precision Function Norm(N, X)

Implicit none

Integer N, J
Double Complex X(N), zdotc

Norm = Real(zdotc(N, X(1:N), 1, X(1:N), 1))**5d-1

End

74

Bibliography

[1] W.E. Arnoldi, The principle of minimized iteration in the solution of the matrix
eigenvalue problem, Quarterly of Applied Mathematics, volume 9, pages
17-25 (1951).

[2] E.R. Davidson, The iterative calculation of a few of the lowest eigenvalues
and corresponding eigenvectors of large real-symmetric matrices, Journal of
Computational Physics, volume 17, pages 87-94 (1975).

[3] F. Frayss, L. Giraud, S. Gratton, and J. Langou, A set of GMRES routines
for real and complex arithmetics on high performance computers, ACM Trans.
Math. Softw. , Volume 31(2), pages 228–238 (2005).

[4] G.H. Golub and C.F. van Loan, Matrix Computations, The Johns Hopkins
University Press, Baltimore and Londen (1983).

[5] Martin B. van Gijzen, The parallel computation of the smallest eigenpair of
an acoustic problem with damping, Int. Journal for Numerical Methods in
Engineering, Volume 45, pages 765-777 (1999).

[6] C.G.J. Jacobi, ‘̀Uber ein leichtes Verfahren, die in der Theorie der
Skularstrungen vorkommenden Gleichungen numerisch aufzulsen (1846).

[7] C. Lancszos, An iteration method for the solution of the eigenvalue problem of
the linear differential and integral operators, Journal on Res. Nat. Bur. Stand.,
Volume 45, pages 51-94 (1950).

[8] R.B. Lehoucq, D.C. Sorensen and C. Yang, ARPACK Users’ Guide: Solution
of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods,
SIAM, Philadelphia, (1998).

[9] V. Mehrmann and H. Voss, Nonlinear Eigenvalue Problems: A challenge for
Modern Eigenvalue Methods, Report 83, Arbeitsbereich Mathematik, TU
Hamburg-Harburg (2004) GAMM Mitteilungen 27, pages 121-152 (2004).

[10] A. Neumaier, Residual inverse iteration for the nonlinear eigenvalue problem,
SIAM Journal on Numerical Analysis, Volume 22, pages 914-923 (1985).

[11] F. Nicoud, L. Benoit, C. Sensiau and T. Poinsot, Acoustic modes in
combustors with comlex impedances and multidimensional flames, AIAA
Journal, Volume 45, No. 2, pages 426-441 (2007).

75

[12] C.C. Paige, B.N. Parlett, and H.A. van der Vorst, Approximate solutions
and eigenvalue bounds from Krylov subspaces, Numerical Linear Algebra
Applications, Volume 2, pages 115-134 (1995).

[13] A. Ruhe, Algorithms for the nonlinear eigenvalue problem, SIAM Journal on
Numerical Analysis, Volume 10, pages 674-689, 1973

[14] Y. Saad, Numerical Methods for Large Eigenvalue Problems (1992),
Manchester University Press Series in Algorithms and Architectures for
Advanced Scientific Computing.

[15] Y. Saad, Martin H. Schultz, GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems, SIAM Journal on
Scientific and Statistical Computing, Volume 7, pages 856-869. Society for
Industrial and Applied Mathematics, Philadelphia (1986).

[16] G.L.G. Sleijpen, J.G.L. Booten, D.R. Fokkema and H.A. van der Vorst,
Jacobi-Davidson type methods for generalized eigenproblems and polynomial
eigenproblems: Part I, BIT Numerical Mathematics, Volume 36, Number
3, pages 595-633 (1996).

[17] G.L.G. Sleijpen and H.A. van der Vorst, A Jacobi-Davidson Iteration
Method for Linear Eigenvalue Problems SIAM Journal on Matrix Analysis
and Applications, Volume 17, Number 2, pages 401-425 (1996).

[18] G.L.G. Sleijpen, H.A. van der Vorst and Zhaojun Bai Jacobi-Davidson
algorithms for various eigenproblems -A working document-, Preprint nr. 1114
Department of Mathematics, University Utrecht, (1999).

[19] H. Voss, Numerical Methods for Sparse Nonlinear Eigenvalue Problems,
Report 70, Arbeitsbereich Mathematik, TU Hamburg-Harburg (2004)
Proc. XVth Summer School on Software and Algorithms of Numerical
Mathematics, Hejnice, Czech Republic

[20] H. Voss An Arnoldi method for nonlinear symmetric eigenvalue problems,
Online Proceedings of the SIAM Conference on Applied Linear Algebra,
Williamsburg, http://www.siam.org/meetings/laa03/ (2003).

[21] H. Voss An Arnoldi method for nonlinear eigenvalue problems BIT Numerical
Mathematics 44, pages 387-401 (2004).

76

