Jan-Willem van Leeuwen

Outlin

The ARRIUS Engine

Combustion

Mathematic

iviathematic

Discretizatio

Ergenvalue

Problems

Solution

ivietnous

Reculto

Conclusion

Computation of Thermo-Acoustic Instabilities in Combustors

Jan-Willem van Leeuwen

June 5th, 2007

Outline

- 1 The ARRIUS Engine
- 2 Combustion
- 3 CERFACS
- 4 Mathematics

Discretization Eigenvalue Problems Solution Methods Implementation

- 6 Results
- 6 Conclusion

Jan-Willem van Leeuwen

Outlin

The ARRIUS Engine

Combustion

Marthamaria

iviatiiciiiatic

Eigenvalue Problems

Solution Methods

Implemen

Result

Conclusion

Helicopter

Figure: The AS355 helicopter

Jan-Willem van Leeuwen

Outline

The ARRIUS Engine

Combustion

Mathematic

Wathematic

Eigenvalue Problems

Solution

Methods

Result

Conclusion

Engine

Figure: The Turbomeca ARRIUS 1A1 turbine engine

Jan-Willem van Leeuwen

Outline

The ARRIUS Engine

Combustion

Mathematic

iviatiiciiiatii

Eigenvalue Problems

Solution Methods

Impleme

Result

Conclusion

Engine, mesh of combustion chamber

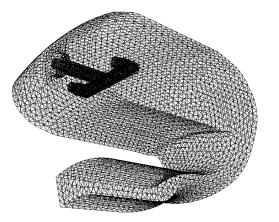


Figure: The numerical grid of a part of the combustion chamber

Mathematic

Discretization

Eigenvalue Problems Solution Methods

Danula

Conclusion

Combustion

Combustion is a sequence of chemical reactions between a fuel and an oxidant accompanied by the production of heat and (sometimes) light.

Outline

The ARRIUS

Combustion

Mathematic

Discretization

Eigenvalue Problems Solution

Solution Methods

Result

Conclusion

Heat causes pressure change (1)

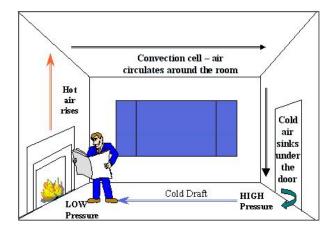


Figure: Heat causes movement of air

Outlin

The ARRIUS Engine

Combustion

Mathematic

Discretization

Eigenvalue Problems Solution

Implemen

Conclusion

Heat causes pressure change (2)

Examples

- Balloon pops due to heat
- Warm air rising

Francis Bacon: "Heat itself, its essence and quiddity is motion and nothing else."

CEREACS

Mathematic

Discretizațio

Eigenvalı Problems

Solution Methods

mplemen

Conclusion

Combustion in an Engine

Pressure changes within a small space

- Modelled by wave equation
- Three Boundary Conditions
 - Opening in wall (constant pressure)
 - Inlet and solid walls (constant speed)
 - Outlet (acoustic impedance)
- Flame response

Mathematic

Discretization

Eigenvalue

Problems

Methods

Decelle

Conclusion

Helmholtz equation

Transformation from time to frequency domain. The wave equation:

$$\nabla \cdot \left(\frac{1}{\rho_0} \nabla \rho_1\right) - \frac{1}{\gamma \rho_0} \frac{\partial^2 \rho_1}{\partial t^2} = -\frac{\gamma - 1}{\gamma \rho_0} \frac{\partial q_1}{\partial t}$$

Becomes the Helmholtz equation:

$$\nabla \cdot \left(\frac{1}{\rho_0} \nabla \hat{p}\right) + \frac{\omega^2}{\gamma \rho_0} \hat{p} = i\omega \frac{\gamma - 1}{\gamma \rho_0} \hat{q}(x)$$

Jan-Willem van Leeuwen

Outline

The ARRIUS

Combustion

CERFACS

Mathematic

Wathematic

Eigenvalue Problems

Solution Methods

Implementa

Results

Conclusion

Internship

Figure: Signs at the entrance

Jan-Willem van Leeuwen

CERFACS

Eigenvalue Problems

Work

Figure: A Sunblade 200

CEREACS

Mathematic

Discretization

Eigenvalue Problems Solution

Solution Methods

Results

Conclusion

CERFACS

CERFACS ...

- is located in Toulouse, France
- employs ca. 100 researchers
- works in 5 fields:
 - Parallel Algorithms
 - Electromagnetism
 - Aviation & Environment
 - Computational Fluid Dynamics
 - Climate Modelling and Global Change

The ARRIUS

Combustion

Mathematics

iviatnematic

Eigenvalue Problems Solution

Solution Methods Implementa

Results

Conclusion

Overview

Three different mathematical topics:

- Discretization of the equation
- Eigenvalue problems
- Solution methods
 - Arnoldi
 - Jacobi-Davidson

CLINIACS

Mathematic

Discretization

Problems Solution

Solution Methods

Results

Conclusion

Discretization (1)

Equation:

$$\nabla \cdot \left(\frac{1}{\rho_0} \nabla \hat{p}\right) + \frac{\omega^2}{\gamma \rho_0} \hat{p} = i\omega \frac{\gamma - 1}{\gamma \rho_0} \hat{q}(x)$$

LHS: homogeneous Helmholtz equation

- Use finite elements and Galerkin method
- Use integration by parts

RHS: $\hat{q}(x) = \text{Non-linear in } \omega$

Mathematic

Discretization

Eigenvalue Problems

Solution Methods

Results

Conclusion

Discretization (2)

Galerkin method:

- divide the domain in elements
- define test functions ϕ_j
- define S_v : the set of vertices outside the boundary where the pressure is 0.
- approximate \hat{p} by $\hat{p}(x) \approx \sum_{j:v_j \in S_v} \hat{p}_j \phi_j(x)$
- multiply the LHS with the test function
- ullet integrate over the domain Ω

CERFACS

Mathematic

Discretization

Eigenvalu Problems

Solution

Implement

Results

Conclusion

Discretization (3)

We started with:

$$\nabla \cdot \left(\frac{1}{\rho_0} \nabla \hat{p}\right) + \frac{\omega^2}{\gamma \rho_0} \hat{p} = 0.$$

We obtain $\forall k : v_k \in S_v$:

$$\int_{\Omega} \phi_k \nabla \left(\frac{1}{\rho_0} \nabla \cdot \sum_{j: v_j \in S_v} \hat{p}_j \phi_j(x) \right) dx +$$

$$\omega^2 \int_{\Omega} \frac{\phi_k}{\gamma p_0} \sum_{j: v_i \in S_v} \hat{p}_j \phi_j(x) dx = 0.$$

Interchange summation and integration:

$$\sum_{j:v_i \in S_v} \int_{\Omega} \frac{1}{\rho_0} \phi_k \nabla \cdot (\nabla \phi_j) dx \hat{p}_j + \omega^2 \sum_{j:v_i \in S_v} \int_{\Omega} \frac{1}{\gamma p_0} \phi_k \phi_j dx \hat{p}_j = 0.$$

Outline

The ARRIUS

Combustion

CEREACS

Mathematic

Discretization

Eigenvalue

Problems Solution

Methods Implementati

Results

Conclusion

Discretization (4)

- Integrate the first integral by parts
- determine contributions from boundary conditions

Final equation:

$$\begin{aligned} \forall k: v_k \in S_v: & \sum_{j: v_j \in S_v} \left(-\int_{\Omega} \frac{1}{\rho_0} \nabla \phi_k \nabla \phi_j dx \hat{p}_j \right) \ + \\ & \omega \sum_{j: v_j \in S_v} \left(i \int_{\partial \Omega_Z} \frac{1}{\rho_0 c_0 Z} \phi_k \phi_j d\xi \hat{p}_j \right) \ + \\ & \omega^2 \sum_{j: v_j \in S_v} \left(\int_{\Omega} \frac{1}{\gamma \rho_0} \phi_k \phi_j dx \hat{p}_j \right) = 0 \end{aligned}$$

or in matrix notation:

$$AP + \omega B(\omega)P + \omega^2 CP = 0$$

Mathematic

Discretization

Problems
Solution
Methods

Decelo

Conclusion

Different degrees of reality

- No impedance: solve $AP + \omega^2 CP = 0$ (generalized)
- Assume $1/Z = 1/Z_0 + Z_1\omega + Z_2/\omega$: solve $\mathcal{A}P + \omega\mathcal{B}P + \omega^2\mathcal{C}P = 0$ (quadratic)
- RHS \neq 0: solve $(A D(\omega))P + \omega B(\omega)P + \omega^2 CP = 0$ (fully non-linear)

Eigenvalue Problems

Different types of Eigenvalue **Problems**

• Linear: $Ax = \lambda x$

• Quadratic: $Ax + \lambda Bx + \lambda^2 Cx = 0$.

• Linearized Quadratic (if C = I):

$$\left(\begin{array}{cc} -B & -A \\ I & 0 \end{array}\right) \left(\begin{array}{cc} \lambda x \\ x \end{array}\right) = \lambda \left(\begin{array}{cc} C & 0 \\ 0 & I \end{array}\right) \left(\begin{array}{cc} \lambda x \\ x \end{array}\right)$$

• Non-linear: $T(\lambda)x = 0$.

Mathematic

Discretization

Problems

Solution Methods

....

Conclusion

Search space methods

- Problem: dimension N of the problem is big (>10000)
- Idea:
 - Look in a small subspace \mathcal{W} of \mathbb{R}^N .
 - Use the approximation to construct a better subspace.
- How?
 - Construct base $v_1 \dots v_k$ of \mathcal{W} .
 - Solve the projected eigenvalue problem: $W'T(\omega)Wu = 0$.
 - Check whether $T(\omega)u < \text{tol}$.
 - Not good enough? Improve search space.

Combustic

Mathemati

Problems Solution

Solution Methods

impiemen

Conclusion

Arnoldi's Method

- Choose starting vector *v* and max. subspace size *k*.
- Construct Krylov space: $span(v, Av, ..., A^kv)$.
- Project the eigenvalue problem on the Krylov space, and solve it.
- Restart with a different starting vector, if necessary.

Mathematic

Discretization

Problems

Solution Methods

ь .

Conclusion

Jacobi-Davidson

- Choose starting vector v and max. subspace size k.
- Set W = v, and solve the projected eigenvalue problem.
- Select a Ritz pair (ω, u) , and calculate the residual $T(\omega)u$.
- Solve $t \perp u$ (approximately) from $(I uu^*)(A \theta I)(I uu^*)t = -r$.
- Orthogonalize t against W and set $W = [W \ t]$.
- Restart after *k* iterations with the latest Ritz vector.

Discontinuite

Problems

Solution Methods

implemen

Conclusio

Differences (1)

History

- Arnoldi exists since 1951, widely implemented and optimized
- Jacobi-Davidson exists since 1996, needs optimization
- Method:
 - Arnoldi constructs search space immediately (k iterations at once)
 - JD solves a small eigenvalue problem and an equation every iteration

Mashamasia

Discretization

Eigenvalue

Solution

Methods

Reculte

Conclusion

Differences (2)

Convergence speed

- Arnoldi has linear convergence and a low workload per iteration
- JD has quadratic convergence and a high workload per iteration
- Adaptability
 - Arnoldi is designed for linear problems
 - JD is designed for any problem

CEDEACS

Discretization
Eigenvalue
Problems
Solution

Methods Implementation

Result

Conclusion

Implementations of the algorithms

Arnoldi has been implemented in ARPACK.

Jacobi-Davidson has been implemented by Gerard Sleijpen for linear and generalized problems, and by Martin van Gijzen and Jan-Willem van Leeuwen for quadratic problems.

Issues:

- Must be matrix-free (in Fortran), only use matvec-subroutine.
- Stopping criterion must be equal.
- Maximal search space size must be (nearly) optimal.
- We need meshes for the tests.

The ARRIUS

Combustion

Mathematic

Eigenvalue Problems Solution

Methods Implementation

Results

Conclusion

Meshes

- Matlab
 - Rectangle of $0.5m \times 0.1m$, 2 grid densities
- Fortran
 - Rectangle of $1m \times 0.2m$, 4 grid densities
 - Rectangular box of $1m \times 0.2m \times 0.1m$, 4 grid densities
 - Combustion chamber ARRIUS, 22000 nodes

CEDEACC

Mathematic

Discretization

Problems

Solution Methods

Implementation

Danulka

Conclusio

Stopping Criterion (1)

The Arnoldi Residual:

$$\|r_{AR}\|_{2} = \left\| \begin{pmatrix} -B & -A \\ I & 0 \end{pmatrix} \begin{pmatrix} \omega p_{AR} \\ p_{AR} \end{pmatrix} - \omega \begin{pmatrix} C & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} \omega p_{AR} \\ p_{AR} \end{pmatrix} \right\|_{2}$$

The Jacobi-Davidson Residual:

$$\|r_{JD}\|_{2} = \left\|Ap_{JD} + \omega Bp_{JD} + \omega^{2}Cp_{JD}\right\|_{2}$$

$$= \left\| \left(\begin{array}{cc} -B & -A \\ I & 0 \end{array} \right) \left(\begin{array}{c} \omega p_{JD} \\ p_{JD} \end{array} \right) - \omega \left(\begin{array}{cc} C & 0 \\ 0 & I \end{array} \right) \left(\begin{array}{c} \omega p_{JD} \\ p_{JD} \end{array} \right) \right\|_2$$

$$\left\|\left(\begin{array}{c}\omega p_{JD}\\p_{JD}\end{array}\right)
ight\|_2=\sqrt{1+|\omega|^2},\; \left\|\left(\begin{array}{c}\omega p_{AR}\\p_{AR}\end{array}\right)
ight\|_2=1.$$

Mathamatic

iviatnemati

Discretizatio

Problems Solution

Methods Implementation

Results

Conclusion

Stopping Criterion (2)

The Arnoldi (ARPACK) criterion:

$$||r_{AR}||_2 < tol \cdot |\omega|$$

The Jacobi-Davidson criterion:

$$||r_{JD}||_2 < tol \cdot |\omega| \cdot \sqrt{1 + |\omega|^2}$$

Mashamasia

Discontinuit

Eigenvalue Problems

Solution Methods

Implementation

ivesuits

Conclusion

Maximal Search space size

Hard to predict the optimal value. Tests:

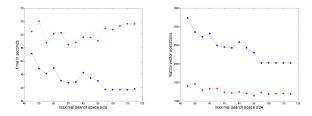


Figure: Left: CPU-time, Right: Matvecs

The ARRIU Engine

Combustion

iviatnemati

Eigenvalue Problems Solution

Solution Methods Implementat

Results

Conclusion

Results, overview

- Linear problems in MATLAB
- Quadratic and nonlinear problems in MATLAB
- Tests done with Fortran
- The ARRIUS chamber

Jan-Willem van Leeuwen

Outline

The ARRIUS

Combustion

Compustion

CEREACS

Mathematic

Discretization Eigenvalue Problems

Problems
Solution
Methods

Results

Conclusion

Linear Problems, MATLAB

	Small	Large	
AR	0.46 <i>s</i>	2.57 <i>s</i>	
JD	3.18 <i>s</i>	65.35 <i>s</i>	

Table: Results for linear problems using ARPACK and JDQZ

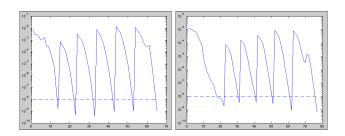


Figure: Convergence history for JDQZ

Outline

The ARRIUS

Combustion

Mathematic

iviaciiciiiaci

Eigenvalue Problems

Solution Methods

Results

Conclusion

Quadratic and Nonlinear Problems, MATLAB

	Small	Large	
AR (quad)	0.775 <i>s</i>	11.74 s	
JD (quad)	1.20 <i>s</i>	26.70 <i>s</i>	
AR (NL)	177.5 <i>s</i>	2451 <i>s</i>	
JD (NL)	3.14 <i>s</i>	N/A	

Table: Results for Quadratic and Nonlinear Problems

Outline

The ARRIUS

Combustion

Mashamasia

iviatnematic

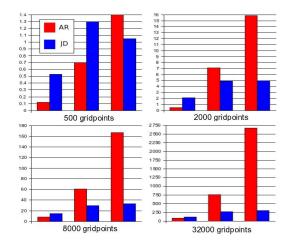
Discretizati Eigenvalue Problems

Problems Solution Methods

Results

Conclusion

Fortran Results, 2D academic case



Outline

The ARRIUS

Combustion

Mashamasia

iviathematic

Eigenvalue

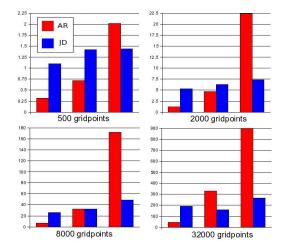
Problems Solution

Methods Implementati

Results

Conclusion

Fortran Results, 3D academic case



Jan-Willem van Leeuwen

Outline

The ARRIUS

Combustio

Discretization Eigenvalue Problems Solution Methods

Results

Conclusion

Fortran Results, 2D academic and ARRIUS

	u = 0		y = 0.4 + 0.3 i		y = 3 + 2 i	
	AR	JD	AR	JD	AR	JD
λ_1	55.23	53.64	523.35	57.43	1358.35	55.49
λ_5	62.78	70.19	528.77	135.34	1802.81	150.45
λ_{10}	76.49	116.46	746.36	272.4	2059.02	299.03

Table: Results for the 2D academic testcase with 8000 nodes

	u = 0		y = 0.4 + 0.3 i		y = 3 + 2 i	
	AR	JD	AR	JD	AR	JD
λ_1	131	131	1158	284	2106	310
λ_{5}	131	223	1211	1266	2302	1556
λ_{10}	197	513	1662	3127	7724	3644
Matvecs	2669	7291	8018	39882	37747	46857

Table: Results for the ARRIUS chamber with 22000 nodes

Mathematic

Discretization Eigenvalue Problems Solution Methods

Implemer

Conclusion

Conclusions

- Arnoldi is the best method for linear problems
- Jacobi-Davidson is better for quadratic problems
- Jacobi-Davidson has potential for nonlinear problems

Mathematic

Discretization Eigenvalue Problems Solution

Solution Methods Implementation

Results

Conclusion

Future Research

- Improve restart strategy
- Use preconditioning for the correction equation
- Improve JD method for nonlinear problems
- Implement parallel version

The ARRIUS Engine

Combustion

CEDEACC

Mathematics

Mathematic

Eigenvalue Problems

Problems Solution

Methods

Results

Conclusion

Questions

Questions?