
DIFFUSION PROBABILISTIC MODEL FOR IMPLIED
VOLATILITY SURFACE GENERATION AND

COMPLETION

Xiaochan MA

to obtain the degree of Master of Science
in Applied Mathematics

at the Delft University of Technology,

Student number: 5462533
Project duration: February 2023 – December 2023
Thesis committee: Dr. Shuaiqiang Liu, TU Delft & ING Bank, supervisor

Prof.Dr. Cornelis Vuik, TU Delft
Prof.Dr. Papapantoleon, TU Delft

ACKNOWLEDGEMENT

I would like to acknowledge my supervisor, Dr. Shuaiqiang Liu. His unwavering
commitment and dedication have been a beacon of guidance throughout my thesis
journey. Despite his busy schedule, Dr. Liu consistently made time to mentor me almost
every week, meticulously reviewing and improving my work with an exceptional level of
detail and care. His valuable insights, critical comments, and constructive suggestions
have significantly shaped my research and writing, instilling in me a pursuit of excellence
and thoroughness. His high standards and relentless dedication have not only made me
better at what I do but have also deeply inspired me in my academic endeavors.

I also extend my heartfelt thanks to Dr. Kees Vuik and Dr. Antonis Papapantoleon for
their guidance and willingness to serve as my thesis defense examiners. Their expertise
and feedback have been invaluable in shaping my thesis and aiding my graduation
journey.

I would also like to give special thanks to my boyfriend, and my family as a whole for
their continuous support and understanding when undertaking my research and writing
my report.

Last, but not least, I want to express my deepest gratitude and appreciation to my
friends and classmates who helped me in one way or another during my study and thesis
work.

iii

ABSTRACT

Implied volatility surfaces are integral to option pricing and risk management but
often display missing data. Prior research has typically engaged mathematical models or
data-driven methods for generating or completing these surfaces. Given the similarity
between implied volatility surfaces and images, our paper introduces the Denoising
Diffusion Probabilistic Model (DDPM), a novel deep learning image generation model,
for this task. A distinctive aspect of DDPM’s training involves progressively adding
noise to the surfaces until they resemble pure noise, and then learning to denoise back
to the original surfaces. We employ the Heston model to simulate implied volatility
surfaces, then train the DDPM using this synthetic data. Additionally, a Variational
Autoencoder model (VAE) is implemented as a comparative benchmark for assessing
DDPM’s efficacy. Our experiments demonstrate that DDPM excels in generating and
reconstructing missing areas in implied volatility surfaces, highlighting its potential
in this field. Looking to the future, combining DDPM with VAE could provide more
interpretable results, enhancing the model’s utility and applicability in financial analysis.

v

CONTENTS

1 Introduction 1
1.1 Problem description . 1

1.2 Background . 2

1.3 Overview of methods for IVs . 3

1.3.1 Mathematical modeling . 3

1.3.2 Data-driven modeling . 4

1.4 Research objectives . 5

1.5 Contributions . 6

1.6 Thesis outline . 6

2 Implied Volatility Surface 9
2.1 Related Research . 9

2.2 Black–Scholes model . 10

2.3 Implied volatility surface . 12

2.4 Heston model . 13

3 Generative Deep Learning Models 17
3.1 Deep learning framework . 17

3.2 Generative Model . 20

3.3 Denoising Diffusion Probabilistic Model (DDPM). 21

3.3.1 Forward Diffusion Process . 22

3.3.2 Reverse Diffusion Process . 23

3.3.3 Training . 25

3.3.4 Latent Diffusion Model (LDM) . 26

3.4 Variational Autoencoder (VAE) . 27

3.4.1 Autoencoder (AE) . 27

3.4.2 Architecture of VAE . 28

3.4.3 Training . 29

4 Methodology 33
4.1 Generative Models on Implied Volatility Surfaces 33

4.2 Training Methodology . 34

4.3 Application on implied volatility surface 35

4.3.1 Reconstruction. 35

4.3.2 Generating new surfaces . 35

4.3.3 Completion . 37

vii

4.4 Evaluation Metric . 39
4.4.1 Training . 40
4.4.2 Reconstruction. 40
4.4.3 Completion . 40
4.4.4 Generation. 41

5 Numerical results analysis and discussion 43
5.1 Training . 43
5.2 VAE . 46
5.3 DDPM . 50
5.4 Summarization . 56

6 Conclusions and future research 59
6.1 Conclusions. 59
6.2 Future work . 60

Bibliography 61

7 AppendixA 65

8 AppendixB 67

1
INTRODUCTION

1.1. PROBLEM DESCRIPTION

Implied volatility plays a crucial role in the financial industry, with its applications
spanning from options pricing to risk management. This indicator is an indispensable
part of financial markets and provides a unique window into market expectations
regarding future price fluctuations. In the options market, implied volatility impacts
option prices and the choice of trading strategies since it is one of the core factors
in options pricing. Furthermore, financial institutions and investors rely on implied
volatility to assess and manage the risk in their portfolios, with high implied volatility
suggesting increased market uncertainty and low implied volatility potentially reflecting
market stability and optimism.

When dealing with European options, a holder possesses the right, though not the
obligation, to exercise the contract upon reaching maturity time T . The fair price V (t ,S)
can be determined by the Black-Scholes (BS) equation, and computing the implied
volatility is searching for volatility for the Black-Scholes pricing model so that the model
can provide an option price that matches the observed option price. We will discuss
more details about the BS model in chapter 2.

Unfortunately, a direct formulaic representation of the implied volatility is
unavailable. It requires the use of numerical calculation methods, such as the bisection
method or the Newton-Raphson method, to approximate the solution.

In reality, the implied volatility also experiences variations across strike prices and
maturity periods. This leads to the formation of implied volatility surfaces, symbolized
by σ∗ :=σ∗(T − t ,K). Such volatility surfaces are extensively utilized in pricing financial
derivatives and find profound significance in hedging and risk management. The
complexity of these surfaces as in Figure 1.1 is evident in patterns like the volatility
smile/skew and term structure. However, clear-cut formulas that capture the essence
of these volatility surfaces are also absent.

1

1

2 1. INTRODUCTION

Figure 1.1: Implied volatility surface S&P-500 options, November 5th 2023.

There have been a lot of efforts in the literature to model implied volatility surfaces,
mainly categorized into two approaches: using mathematical models for fitting and
utilizing data-driven methods. In the latter approach, many researchers have applied
various machine learning models to estimate implied volatility surfaces. We aim to
explore a novel model and compare its performance with existing models. Through
this approach, we aim to advance the research on implied volatility surface estimation,
potentially providing more accurate and reliable tools for forecasting market volatility.

1.2. BACKGROUND
An option is a financial derivative that gives the holder the right, but not the

obligation, to buy or sell an underlying asset at a predefined price within a set period.
When two parties enter into an option contract, the buyer acquires the right to choose
to exercise it or not. The seller of the option is obligated to honor the contract if the
buyer decides to exercise it. As a result of this imbalance between rights and obligations,
the buyer pays a premium to the seller for the rights granted by the option. The value
of this premium is influenced by several factors, including the current price of the
underlying asset, the option’s strike price, the time until expiration, and notably, the
expected volatility of the underlying asset’s price. This expected volatility embedded in
the option’s market price is referred to as the ’implied volatility’.

In real markets, implied volatility is a dynamic quantity that reflects traders’ changing
expectations and sentiments about future price movements. Since it is impossible to
determine the future volatility of an asset, implied volatility is an important consensus
of market expectations. This consensus is particularly important because it helps
determine the risk and reward trade-offs of options and influences the decisions of
individual and institutional investors.

1.3. OVERVIEW OF METHODS FOR IVS

1

3

In addition, it is important to understand that implied volatility is not uniform
across strike prices and expiry dates. This variation in implied volatility is often visually
represented using an implied volatility surface. The implied volatility surface provides a
comprehensive picture of how the market views future price movements under different
scenarios, making it a valuable tool for traders, risk managers and financial strategists.

1.3. OVERVIEW OF METHODS FOR IVS

Implied volatility surface modeling is a key component in the pricing and risk
management of financial derivatives. Due to its significance, researchers have
proposed various methods to model and predict implied volatility. Broadly speaking,
these methods can be categorized into two main types, mathematical modeling and
data-driven approaches.

1.3.1. MATHEMATICAL MODELING

Mathematical modeling primarily relies on specified mathematical models to
describe the price dynamics of the underlying asset. The core idea of this approach
is to capture and describe the variations in asset prices through specific mathematical
formulas.

For example, the Heston stochastic volatility model presumes volatility to be a
stochastic process, and its dynamics can be described by certain stochastic differential
equations [1]. Researchers use historical market data to estimate the parameters of
these mathematical models, hoping to more accurately capture the characteristics of
volatility in the market. Building on the foundational Heston model, other mathematical
approaches have been developed to enhance the modeling of implied volatility surface.
Affine jump-diffusion models introduced by [2] provide a rich framework for capturing
the term structure of implied volatility surface. Non-parametric models offer flexibility
without the constraint of predefined functional forms, with spline-based methods
ensuring an arbitrage-free surface as demonstrated by [3].

The challenge of calibrating these models to market data has led to various numerical
techniques. Fast calibration methods using Fourier transforms, as shown by [4], have
improved the efficiency of the Heston model calibration. [5] have provided insights
into the calibration of affine jump-diffusion models, which are crucial for capturing the
dynamics of implied volatility surface.

The main advantage of the mathematical modeling method is its interpretability
since models are often based on principles from economics or physics, offering a
deeper understanding of market volatility changes. However, this method also has its
drawbacks. The most apparent limitation is that no single model can perfectly fit all
volatility surfaces. Even if a model performs well during a specific period or market
environment, it might fail under other conditions. This is because market behaviors
and dynamics are intricate and ever-changing, influenced by numerous unpredictable
external factors.

1

4 1. INTRODUCTION

1.3.2. DATA-DRIVEN MODELING

On the other hand, data-driven approaches focus more on the data itself rather than
relying on any predetermined mathematical model. In the domain of implied volatility
surface modeling, traditional data-driven approaches have been foundational. Principal
Component Analysis (PCA) is one such technique that has significantly contributed
to the field. Alexander’s work [6] on PCA has been instrumental in distilling the
essential factors that influence the volatility surface. By reducing the dimensionality
of the data, PCA helps in identifying the major movements of the surface, which is
beneficial for simplifying the complex structure of the financial markets. Time series
analysis represents another cornerstone of implied volatility surface modeling. The
study by Cont and da Fonseca using autoregressive models [5] is a prime example of this
approach. By capturing the evolution of the implied volatility surface over time, these
models reveal persistent and mean-reverting features of volatility.

With the advent of machine learning, particularly deep learning, new methodologies
have been developed to address the intricate patterns found in financial markets. For
instance, when using deep learning to model the volatility surface, researchers might
design a neural network model and train it with vast amounts of market data, enabling it
to predict future volatilities. In recent years, researchers have begun to experiment with
the application of the Variational Autoencoder (VAE) in financial modeling, particularly
in the modeling of implied volatility surfaces. This trend highlights the attractiveness
of combining traditional quantitative financial modeling with modern data-driven
approaches.

Ning et al. [7] is an early exploration of using VAE to generate arbitrage-free implied
volatility surfaces. Initially, they used a stochastic differential equation (SDE) model
to fit parameters and then used VAE to generate them directly. In doing so, they
have innovatively combined the mathematical rigor of SDEs with the adaptability of
data-driven VAEs, providing a powerful framework for modeling volatility surfaces well
suited to real-world financial market requirements.

In contrast, other researchers have chosen to use a purely data-driven approach. For
example, Bergeron et al. [8] have innovated a "hands-off" approach. This approach
emphasizes the minimal manual intervention required for VAE, in contrast to traditional
models that often require calibration and fine-tuning. In particular, their work
highlights the adaptability of VAEs to the multifaceted nature of fluctuating surfaces,
demonstrating their resilience. Similarly, Dierckx, Davis and Schoutens [9] harnessed the
VAE to autonomously learn volatility characteristics, surpassing conventional volatility
modeling techniques. Their study underscores its practical implications for the financial
sector through synthetic surface generation, portfolio stress-testing, and anomaly
detection.

On the other hand, unlike the Gaussian distribution used by most, Borovkova and
van den Oever [10] introduce a completely new perspective by integrating the Student-t
distribution into a latent space of VAE tailored for large portfolios. This approach is
particularly important because the Student-t distribution is adept at capturing the "fat
tails" that are common in financial returns, ensuring that VAE models remain resilient
even under extreme market conditions.

The primary advantage of the data-driven method is its flexibility since it does not

1.4. RESEARCH OBJECTIVES

1

5

require any explicit assumptions about the dynamics of the underlying asset price,
allowing it to adapt better to market changes. However, a significant downside of
data-driven approaches is their lack of interpretability. Given that these models often
function as a "black box," it is challenging to understand their inner workings or how
they make predictions.

Deep learning techniques have shown promising results in generating arbitrage-free
implied volatility surfaces, as demonstrated in recent research. Two distinct
methodologies emerge from the literature: penalization in training neural networks and
combining stochastic differential equation models with variational autoencoders.

The first method, explored in [11] and [8], involves the incorporation of penalization
terms during the training of Generative Adversarial Networks (GANs) and VAEs,
respectively. In GANs, the generator network is trained specifically to minimize
arbitrage violations, assisted by a discriminator network. For VAEs, the approach is
slightly different. Although initially penalization for constructing arbitrage surfaces was
considered, it was found to be largely unnecessary as VAEs naturally tended to produce
arbitrage-free surfaces.

On the other hand, the second method, as presented in [7], diverges from the concept
of penalization. Instead, it integrates model-free VAEs with stochastic differential
equation (SDE) driven models, including regime switching models and Lévy additive
processes. This approach involves projecting historical volatility surfaces onto the SDE
models’ parameter space and then training the VAEs on these parameters. The key here
is the combination of VAEs’ generative capabilities with the robustness of SDE models,
ensuring that the resulting implied volatility surfaces are consistent with historical data
and inherently free from arbitrage.

1.4. RESEARCH OBJECTIVES
This study aims to delve deeper into data-driven methods. Specifically, it attempts to

apply one of the emerging models in image generation, namely the Denoising Diffusion
Probabilistic Model (DDPM), to the modeling of implied volatility surfaces. We aim to
provide a more stable and precise method for predicting and modeling implied volatility
surfaces.

The main applications center on two areas, the generation of new implied volatility
surfaces and the completion of these surfaces. Generating new implied volatility
surfaces is particularly crucial for financial institutions. In practical operations, by
generating new volatility surfaces, investors and traders can predict and evaluate
potential future market trends, offering them valuable decision-making insights. Given
the demonstrated excellence of the DDPM model in image generation, we have reason
to believe that it could hold similar potential for generating implied volatility surfaces.

The significance of surface completion lies in the fact that in real market scenarios,
implied volatility surfaces might exhibit partial data missing. These omissions could
arise due to insufficient trading volumes, market anomalies, or other reasons. However,
when engaging in asset pricing, risk management, or other financial analyses, a
complete implied volatility surface is essential. By employing the DDPM model
for surface completion, we can efficiently bridge these data gaps, offering financial
professionals a more comprehensive and accurate implied volatility reference. This not

1

6 1. INTRODUCTION

only aids them in better understanding the current market situation but also bolsters
their decision-making.

1.5. CONTRIBUTIONS
As previously mentioned, our contributions, primarily focusing on the data-driven

approach, can be detailed as follows:

1. Implementation of DDPM on Implied Volatility Surfaces: We endeavored to apply
the DDPM model to implied volatility surface modeling. With its notable success
in the image generation domain, we aim to leverage DDPM’s capabilities for
generating new volatility surfaces and completing existing ones with potentially
improved stability and precision.

2. Reproduction and Enhancement of Existing Method: We reproduced the existing
VAE method applied to the implied volatility surface. Further, we use the VAE
model for the generation of new surfaces and surface completion. Notably, for
surface completion, we optimized by calibrating the latent space. This calibration
offers a thorough adjustment that potentially better models and predicts missing
parts of the implied volatility surface.

3. Comparative analysis of DDPM and VAE: We compare the results obtained
using the DDPM and VAE methods. Using a variety of metrics and qualitative
assessments, we evaluate the performance, stability, and accuracy of both
models in generating and completing implied volatility surfaces. Our findings
provide valuable insights into the strengths and limitations of each methodology,
providing practitioners in the field with a more informed decision-making process.

In summary, our work not only reproduced and enhanced the already prevailing
models but also integrated newer models. This improved implied volatility surface
modeling and forecasting accuracy and reliability in real financial applications. This
innovative integration and application of data-driven approaches aim to provide
advanced insights and viable solutions to the challenges faced in modeling implied
volatility surfaces.

1.6. THESIS OUTLINE
This thesis extensively explores the implications of generative deep learning models

on the implied volatility surface. Beginning with an introduction that frames the
problem, the work offers an overview of current methods applied to implied volatility
surfaces and a literature review of recent research. Subsequently, there is an in-depth
look into the fundamentals of the implied volatility surface, highlighting models like
Black–Scholes and the Heston model in Chapter 2. Chapter 3 dives deep into generative
deep learning, elucidating concepts of deep learning, generative models, the Variational
Autoencoder, and the Denoising Diffusion Probabilistic Model. Chapter 4 discusses
how these models interact with implied volatility surfaces, including data generation
techniques, training methodologies, and various applications. Several robust evaluation

1.6. THESIS OUTLINE

1

7

metrics are presented to assess the performance of these methods. Chapter 5 provides a
detailed analysis of the numerical results, comparing the results of VAE with DDPM, and
giving a comparative analysis. Chapter 6 finally offers a summary of the insights gained
from the research and points toward future areas of exploration in this domain.

2
IMPLIED VOLATILITY SURFACE

2.1. RELATED RESEARCH
Research into implied volatility traces back many years. It is an indispensable

concept in financial mathematics, providing insight into the market’s expectations of
future asset price fluctuations [12]. Implied volatility is not derived from historical
data, as historical volatility is, but is inferred directly from the market price of an
option. It represents the market’s general expectation of the future level of volatility of
the underlying asset. The interest in implied volatility stems from its forward-looking
nature, which makes it the indicator of choice for traders and investors who are more
concerned with future uncertainty than past movements.

At the center of modern financial theory is the Black-Scholes equation. Proposed by
Fischer Black, Myron Scholes and Robert Merton, this differential equation provided the
first continuous-time mathematical model for option pricing[12, 13]. Their framework
made several simplifying assumptions, including persistent volatility. Although it has
had a significant impact on derivatives trading by providing a structured approach to
valuation, real-world differences have been observed, leading to further research and
model enhancements.

The difference between the theoretical price of the Black-Scholes model and the
actual market option price has given rise to the implied volatility surface [14]. This
graphical representation shows how implied volatility varies with different strike prices
and expiry dates. It provides valuable insights into market anomalies, sentiment or
external factors that may not be immediately apparent from price data alone. The
complexities and shapes found in the implied volatility surface, such as the "volatility
smile", have led to further research into more advanced models.

The Heston model is one of such advances. Recognizing the limitations of the
assumption of constant volatility in the Black-Scholes model, Steven Heston introduced
a model in which volatility itself follows a stochastic process [1]. The innovation of
the model is its ability to account for the clustering of volatility observed in real-world
financial markets, where periods of high volatility tend to be accompanied by periods of

9

2

10 2. IMPLIED VOLATILITY SURFACE

similar volatility and vice versa. The flexibility and adaptability of Heston’s model made it
more consistent with observed market behavior and cemented its position as the model
of choice for many financial practitioners.

2.2. BLACK–SCHOLES MODEL
The Black-Scholes model is a landmark in the option pricing field. It provides a

theoretical framework for calculating the value of European-style options. The model
takes into account a variety of factors including the current price of the asset, the strike
price of the option, the risk-free rate, the time to expiration, and the volatility of the
asset price. In other words, the Black-Scholes model provides a quantitative method
of measuring the value of an option, allowing traders to have a clearer picture of their
investment.

Then we turn to see how can we get the framework of the Black-Scholes model.
Generally speaking, option pricing models like the Black-Scholes model are based on
the concept of a portfolio of hedged securities. An investor can create a portfolio of
options and their underlying stocks to ensure a certain return. In equilibrium, this
guaranteed return must be equal to the risk-free rate. The nature of option pricing
is consistent with the principle of no-arbitrage pricing. This principle states that any
zero-cost investment can only earn zero return, and any non-zero-cost investment can
only earn a return corresponding to its inherent risk, without generating excess profits.
The derivation of the Black-Scholes option pricing model clearly shows that option
pricing is fundamentally no-arbitrage pricing.

The BS model makes several key assumptions. First, stock price movements are
random and follow a lognormal distribution. Second, the risk-free rate, the stock’s
expected return variable, and price volatility remain constant over the life of the option.
Further, the market is frictionless, which means there are no taxes or transaction costs.
Fourth, the stock does not pay dividends or any other income during the option term,
an assumption that can be relaxed. Fifth, the option is a European-style option,
which means it cannot be exercised before expiration. Sixth, there are no risk-free
arbitrage opportunities in financial markets. Finally, trading in financial assets can occur
continuously and allows short selling with the entire proceeds of the financial asset.

The Black-Scholes model is fundamentally based on the concept of geometric
Brownian motion (GBM), which describes the random movement of an asset’s price over
time. GBM is a continuous-time stochastic process in which the logarithm of the asset
price follows a Brownian motion with drift. Mathematically, it is expressed as

dS =µSdt+σSdW,

where S is the asset price, µ is the drift rate, σ is the volatility, and dW is the increment of
a Wiener process or standard Brownian motion. This model assumes that the percentage
change in the asset price is normally distributed, making GBM a suitable model for the
random behavior of financial markets.

With this foundation, the BS model can be derived using a no-arbitrage argument,
which establishes the relationship between an option and its underlying asset. By
constructing a portfolio (Π) consisting of a position in an option (V) and a position in

2.2. BLACK–SCHOLES MODEL

2

11

the underlying asset (S), one can hedge away the risks. The portfolio’s value is defined as

Π=V (S, t)−∆S,

where ∆ represents the number of shares of the underlying. The differential change in
this portfolio, dΠ, can be expressed as

dΠ= ∂V

∂t
dt+ ∂V

∂S
dS+ 1

2
σ2S2 ∂

2V

∂S2 dt−∆dS.

To create a risk-free portfolio, the term involving dS is set to zero, resulting in

∆= ∂V

∂S
.

Subsequently, the risk-free portfolio change is

dΠ=
(
∂V

∂t
+ 1

2
σ2S2 ∂

2V

∂S2

)
dt.

Equating this to the risk-free rate return

dΠ= rΠdt.

Upon integrating, we arrive at the Black-Scholes partial differential equation,

∂V

∂t
+ 1

2
σ2S2 ∂

2V

∂S2 + r S
∂V

∂S
− r V = 0.

This equation provides the theoretical foundation for the Black-Scholes option
pricing formula. In this formula, we have understood the meaning of all symbols except
for σ. This remaining σ represents the volatility of the underlying asset’s returns. It is
a measure of the asset’s future uncertainty and is a crucial input in the option pricing
formula. However, σ is not directly observable in the market. What traders and analysts
do observe are the prices at which options are traded. This is where the concept of
implied volatility (σ) comes in. Instead of inputting the volatility into the Black-Scholes
model to find the option price, market practitioners use the observed market price of
the option and infer the volatility. This reverse-engineered volatility, σ, represents the
market’s aggregate expected volatility of the underlying asset for the remaining life of
the option.

The process of deriving σIV involves using the Black-Scholes model in conjunction
with market prices, and iteratively adjusting σ until the output price of the model
matches the market price. The σ that achieves this matching is implied volatility, a key
parameter used by market participants to measure market sentiment and make trading
decisions.

2

12 2. IMPLIED VOLATILITY SURFACE

2.3. IMPLIED VOLATILITY SURFACE
As we mentioned before, one of the key assumptions of the Black-Scholes model is

that the volatility of the underlying asset remains constant. However, in the real world,
this assumption is clearly invalid or flawed. Numerous empirical studies have shown
that the volatility of financial asset prices is not a fixed constant, but rather a process that
changes over time. As a result, the implied volatility derived from option market prices
and the BS formula exhibits two main patterns: the "volatility smile" and the volatility
term structure.

First, the volatility smile refers to the phenomenon that implied volatility varies
with the strike price of the option. Since implied volatility is a function of strike price
and expiry date, it is worth noting that implied volatility is at its lowest level when the
strike price is equal to the initial stock price of S0. As the strike price deviates from
S0, implied volatility increases, creating what is commonly referred to as a "volatility
smile". In addition, the implied volatility increases as the maturity date increases. This
means that for the same underlying product with a fixed residual maturity, the implied
volatility will vary with its strike price. The curve plotted on the axis of the strike price
and implied volatility forms a volatility "smile". The existence of the volatility smile
suggests that the assumptions underpinning the BS pricing model are only partially
validated in real financial markets. The shape of implied volatility is not always the
same for different financial options. In general, the implied volatility of currency options
is roughly U-shaped. Flat options have the lowest volatility, while the volatility of real
and imaginary options increases with their currency and appears somewhat symmetric
on both sides. On the other hand, the implied volatility of stock options is usually
L-shaped, sloping to the lower right. Volatility decreases as the strike price increases,
and options with lower strike prices imply significantly higher volatility than options
with higher strike prices. The slope of the stock volatility smile is usually negative due to
the significant negative skewness of stock returns.

Volatility Term Structure refers to the phenomenon where the implied volatility
changes with different option expiration dates. Specifically, with all other factors
remaining constant, it represents the variation in implied volatility corresponding to
at-the-money options due to different expiration dates. In general, the term structure’s
exact shape differs for various underlying assets.

In the long term, volatilities tend to mean-revert. This means that as the expiration
date approaches, the changes in implied volatility become more pronounced. As the
time to maturity extends, the implied volatility gradually moves closer to the historical
volatility’s average value.

The shape of the volatility smile is also influenced by the option’s expiration date.
Generally, the closer the expiration date, the more pronounced the volatility "smile."
For longer maturities, the difference in implied volatilities across various strike prices
diminishes, approaching a constant.

Combining the volatility smile with the volatility term structure, we can derive the
volatility surface, which provides insights into the market’s expectations of the future
distribution of the asset. This volatility surface is also known as the volatility matrix.
Suppose for a specific stock S, the options market has effective quotes for a set of options
with tenures Ti (where i = 1,2,3, ...I) and strike prices K j (where j = 1,2, ...J , represented

2.4. HESTON MODEL

2

13

as Ci j =C (Ti ,K j)). We can then calculate the corresponding implied volatilitiesσi j . This
allows us to form a surface representing the implied volatilities.

2.4. HESTON MODEL
In our exploration of option pricing models, it becomes evident that to fully capture

the intricacies of the implied volatility surface observed in markets, a more complex
model is required. While the Black-Scholes model has its merits, it assumes constant
volatility, an oversimplification that fails to capture the dynamics seen in real markets.
One solution to this limitation is to introduce stochastic volatility models, which allow
volatility to be a random process.

In the Black-Scholes model, the only source of randomness is the stock price, so it
can be hedged with the underlying stock. However, in the stochastic volatility model,
volatility is also stochastic, which means that the portfolio needs to be hedged against
two sources of randomness: stock price and volatility. Assume both the stock price and
its instantaneous volatility satisfy the SDEs:

dSt =µt St d t +p
vt St d Z1,

d vt =α (St , vt , t)d t +ηβ (St , vt , t)
p

vt d Z2,

〈d Z1d Z2〉 = ρd t .

To achieve a risk-free investment, we need to construct a portfolio with two
hedging terms, a position in the underlying stock with quantity −∆, which means
that the portfolio is delta-hedged against changes in the stock price, and a position
in a volatility-dependent asset with quantity −∆1, which means that the portfolio is
vega-hedged against changes in implied volatility. By doing so, we can eliminate the risk
associated with both the stock price and the volatility, and create a risk-free investment

Π=V (S, v, t)−∆S −∆1V1(S, v, t).

The change in the portfolio value can be written as

dΠ=
{
∂V

∂t
d t + ∂V

∂S
dS + ∂V

∂v
d v + 1

2

∂2V

∂S2 (dS)2 + 1

2

∂2V

∂v2 (d v)2 + ∂2V

∂S∂v
dSd v

}
−∆dS

−∆1

{
∂V1

∂t
d t + ∂V1

∂S
dS + ∂V1

∂v
d v + 1

2

∂2V1

∂S2 (dS)2 + 1

2

∂2V1

∂v2 (d v)2 + ∂2V1

∂S∂v
dSd v

}
.

Here we use Ito’s lemma to derive the dV ,dV1. Then we can substitutes the
expressions for dS, d v and 〈d Z1d Z2〉 = ρd t from the given stochastic process. Thus,
we have

dΠ=
{
∂V

∂t
+ 1

2
vS2 ∂

2V

∂S2 +ρηvβS
∂2V

∂v∂S
+ 1

2
η2vβ2 ∂

2V

∂v2

}
d t

−∆1

{
∂V1

∂t
+ 1

2
vS2 ∂

2V1

∂S2 +ρηvβS
∂2V1

∂v∂S
+ 1

2
η2vβ2 ∂

2V1

∂v2

}
d t

+
{
∂V

∂S
−∆1

∂V1

∂S
−∆

}
dS +

{
∂V

∂v
−∆1

∂V1

∂v

}
d v.

2

14 2. IMPLIED VOLATILITY SURFACE

To ensure that the portfolio is risk-free, we need to eliminate the stochastic terms dS
and d v , i.e. ∂V

∂S −∆1
∂V1
∂S −∆= 0 and ∂V

∂v −∆1
∂V1
∂v = 0.

This leaves us with

∆1 = ∂V1

∂v
/
∂V

∂S
, (2.1)

and

dΠ=
{
∂V

∂t
+ 1

2
vS2 ∂

2V

∂S2 +ρηvβS
∂2V

∂v∂S
+ 1

2
η2vβ2 ∂

2V

∂v2

}
d t

−∆1

{
∂V1

∂t
+ 1

2
vS2 ∂

2V1

∂S2 +ρηvβS
∂2V1

∂v∂S
+ 1

2
η2vβ2 ∂

2V1

∂v2

}
d t

.

(2.2)

In addition, since the risk-free portfolio has a return at the risk-free rate r , we have

dΠ= rΠd t = r (V −∆S −∆1V1)d t (2.3)

where the left-hand side represents the change in the value of the portfolio Π over a
small time increment d t . The right-hand side represents the rate at which the value of
the portfolio is expected to grow over time due to the risk-free interest rate r .

Combining equations (2.1), (2.2), (2.3), we get

∂V
∂t + 1

2 vS2 ∂2V
∂S2 +ρηvβS ∂2V

∂v∂S + 1
2η

2vβ2 ∂2V
∂v2 + r S ∂V

∂S − r V

∂V
∂v

=
∂V1
∂t + 1

2 vS2 ∂2V1
∂S2 +ρηvβS ∂2V1

∂v∂S + 1
2η

2vβ2 ∂2V1
∂v2 + r S ∂V1

∂S − r V1

∂V1
∂v

The left-hand side is a function of V only and the right-hand side is a function of V1

only. The only way that this can be done is for both sides to be equal to some function f
of the independent variables S, v and t . We deduce that

∂V

∂t
+ 1

2
vS2 ∂

2V

∂S2 +ρηvβS
∂2V

∂v∂S
+ 1

2
η2vβ2 ∂

2V

∂v2 + r S
∂V

∂S
− r V =−(α−φβpv)

∂V

∂v
(2.4)

where, without loss of generality, we have written the arbitrary function f of S, v , and t
as α−φβpv .

Among various stochastic volatility models, the Heston model stands out as one of
the most prominent. We assume that the Heston process generates the risk-neutral
measure, so the market price of volatility risk φ in the general valuation equation (2.4) is
set to zero now. Then (2.4) becomes

∂V
∂t + 1

2 vS2 ∂2V
∂S2 +ρηvS ∂2V

∂v∂S + 1
2η

2v ∂2V
∂v2 + r S ∂V

∂S − r V =λ(v − v̄) ∂V
∂v .

Then suppose that we consider only the future value, we derive the European option

pricing formula under the Heston model by replacing some variables, x = log (
Ft ,T

K) and

2.4. HESTON MODEL

2

15

τ= T − t .

−∂C

∂τ
+ 1

2
vC11 − 1

2
vC1 + 1

2
η2vC22 +ρηvC12 −λ(v − v̄)C2 = 0 (2.5)

The solution of (2.5) is

C (x, v,τ) = K
{
ex P1(x, v,τ)−P0(x, v,τ)

}
,

where the first term P1 represents the pseudo-expectation of the final index level given
that the option is in-the-money, similar to the N (d1) in the BS model, and the second
term represents the pseudo-probability of exercise P (ST > K), similar to the N (d1) in the
BS model. By processing the complex variable integral, we can obtain

P j (x, v,τ) = 1

2
+ 1

π

∫ ∞

0
du Re

{
exp

{
C j (u,τ)v̄ +D j (u,τ)v + i ux

}
i u

}
.

Finally, the simulation of the Heston model can be obtained by discretizing the
iterative relationship equation. Common methods include Eulerian discretization
(negative variance problem), Milstein discretization, etc.

3
GENERATIVE DEEP LEARNING

MODELS

This chapter mainly provides background knowledge of generative deep learning
models related to our research. Section 3.1 offers a brief introduction to deep learning,
introducing its foundational concepts and several neural network architectures needed
in our explorations. Moving forward, Section 3.2 provides an overview of generative
models, with a specific focus on their application in image generation. In Section 3.3 and
Section 3.4, we respectively discuss the mechanics, architectures and training processes
of DDPM and VAE models.

3.1. DEEP LEARNING FRAMEWORK
Deep Learning is a research direction in the field of Machine Learning. It

was introduced into machine learning to bring it closer to its initial goal, Artificial
Intelligence.

Deep Learning is about understanding the intrinsic patterns and hierarchical
representations in sample data. The information acquired during these learning
processes greatly assists in interpreting data such as text, images, and sounds. Its
ultimate goal is to endow machines with the ability to analyze and learn, akin to human
capabilities, and to recognize data like text, images, and sounds. Deep Learning is a
sophisticated machine learning algorithm. The results it achieves in speech and image
recognition far surpass those of previous related technologies.

In our research, we mainly employed theories and algorithms from the field of
image generation in deep learning. Before delving into specific details, we need first
to understand some basic neural network architectures.

Fully Connected Network The Fully Connected network structure (FC) is the most
basic layer in neural networks. Each node in a fully connected layer is connected
to all nodes of the previous layer. In the early days, the fully connected layer was

17

3

18 3. GENERATIVE DEEP LEARNING MODELS

primarily used for classifying extracted features. However, since every output in the fully
connected layer is connected to every input, the fully connected layer typically has a
pretty high number of parameters. This requires a significant amount of storage and
computational space.

Figure 3.1: A sample structure of FC with two hidden layers.

The problem of parameter redundancy means that conventional neural networks,
consisting purely of FC layers, are rarely applied in more complex scenarios.
Conventional neural networks are typically used in simple scenarios that depend on
all features. For example, the house price prediction model and the online advertising
recommendation model both use relatively standard fully connected neural networks.

Convolutional Neural Network The Convolutional Neural Network (CNN) is also a
type of neural network specifically designed to handle data with a grid-like structure,
such as image data (which can be viewed as a two-dimensional pixel grid). Unlike FC,
not all neurons in the upper and lower layers of a CNN are directly connected. Instead,
they are connected through convolutional kernels as intermediates, and then sharing of
these kernels to greatly reduce the number of parameters in the hidden layer.

A basic CNN consists of a series of layers, and each layer transforms one neuron
into another through a differentiable function. These layers primarily include the
convolutional layer, pooling layer, and fully connected layer.

The convolutional layer is the core building block of a CNN. The primary role of
the convolutional layer is to extract features from images. It achieves this through the
learning of convolutional kernel weights according to an objective function to capture
the required features. The convolutional kernel is capable of dimension reduction
or elevation, facilitating cross-channel interactions and information integration.
Additionally, the kernel can deepen and widen the depth of learning network layers at
a minimal parameter cost.

The pooling layers follow the convolutional layers and are responsible for reducing
the spatial size of the convolved featured. It keeps feature invariance, enabling the
model to prioritize certain features over their exact spatial placement within the image,
thus helping to screen essential features. In addition, through feature dimensionality

3.1. DEEP LEARNING FRAMEWORK

3

19

reduction, the model is able to extract a wide range of feature information. The pooling
layer can also effectively prevent overfitting and enhance the generalization ability of the
model.

The fully connected layer mainly plays the role of a classifier in deep learning. After
previous convolution, pooling and activation layer processing, the raw data has been
mapped to the feature space of the hidden layer. The task of the fully connected layer
is to map these distributed features to the label space of the samples. However, due
to the problem of parameter redundancy in the fully connected layer, many recent
high-performance network models, such as ResNet and GoogLeNet, employ global
average pooling instead of the traditional fully connected layer in order to fuse deep
features.

CNNs have shown excellent performance in many application domains, especially
in large-scale image-processing scenarios. They are the backbone of most computer
vision systems for tasks like image classification, image generation, object detection, and
segmentation. The hierarchical nature of CNNs ensures that they can learn patterns
from data at various levels of abstraction.

Figure 3.2: A ConvNet arranges its neurons in three dimensions (width, height, depth), as visualized in one of
the layers [15].

Figure 3.2 shows the structural format of a CNN, where neurons are arranged in three
dimensions (width, height, and depth) to form the convolutional neural network. As
demonstrated by one of the layers in the figure, each layer of the CNN transforms a 3D
input into a 3D output.

As for general structure, CNNs typically use an architecture resembling
autoencoders. Such architecture consists of an encoding part, a bottleneck that
represents high-level features in the latent space, and a decoder that synthesizes the
output using transposed convolutions, also known as deconvolutions. The distinction
of transposed convolution is the application of strides on the output instead of the
input.

Notably, there is a specialized CNN architecture called U-Net from [15], which
incorporates direct skip connections between down-sampling and up-sampling layers of
the same level. These connections are particularly beneficial when the input and output
share abundant low-level structures. In our research on the DDPM, we primarily employ
the U-Net structure for the model’s architecture.

3

20 3. GENERATIVE DEEP LEARNING MODELS

Figure 3.3: U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds
to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is

provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the
different operations [15].

3.2. GENERATIVE MODEL
Generative models, literally speaking, can be understood as models designed to

generate samples. Conceptually, the process begins with a given dataset. Based on this
dataset, a model is built, and model parameters are learned from the data. Using the
learned parameters, new data can be constructed using the model.

Generative models occupy a notable place in the field of machine learning, aspiring
to model the underlying distribution of data to generate new, similar instances [16].
These models are designed based on the characteristics of the sample distribution and
aim to generate images based on user needs. On the one hand, research on image
generation helps build large data sets required for deep learning training and helps
computers enhance their understanding of image information. On the other hand,
advances in image generation have led to critical applications such as image editing,
image restoration, and text-to-image conversion, offering huge potential in practical
applications.

These models are broadly categorized into various types such as Variational
Autoencoder (VAE), Generative Adversarial Network (GAN), Diffusion models, and
Autoregressive models like PixelRNN and PixelCNN, each boasting unique mechanisms
and strengths [17, 18, 19, 20]. Their utilities extend across a diverse spectrum of
applications, not limited to synthesizing images, but also encompassing tasks like
drug discovery, text-to-speech conversion, and reinforcement learning environments
[21, 22, 23]. Essentially, these models endeavor to decipher and embody the intrinsic
structure and regularities within a dataset, enabling the generation of samples that
are not merely imitative but hold the statistical essence of the original data [24]. Our
research primarily focuses on VAE and DDPM, and the following sections will discuss
these two models in detail.

Variational Autoencoder (VAE) was introduced by Kingma and Welling in 2013. By

3.3. DENOISING DIFFUSION PROBABILISTIC MODEL (DDPM)

3

21

combining deep learning with probabilistic graphical models, VAE establishes a balance
between data representation and generation. This paved the way for its use from
unsupervised learning to data generation [25].

Over time, various improvements and extensions have emerged that have enhanced
its applicability [26]. For instance, [27] exploring the structure of the VAE model,
a novel anomaly detection technique based on reconstruction probabilities was
introduced. It provides a more principled measure of anomalies compared to traditional
reconstruction error methods. This approach integrates anomaly detection into VAE
by primarily utilizing data from typical instances and positioning low reconstruction
probability data points as criteria. Further advances in the field of VAE have
proposed models such as β-VAE and CVAE. The β-VAE introduced by [28] employs the
hyperparameter β to reconcile the reconstruction error with the KL divergence, which
affects the quality of the latent space representation. On the other hand, the CVAE
proposed by [29] provides a mechanism in which the generative model is conditioned
on input observations, and the input is modulated with the a priori Gaussian latent
variables responsible for the output.

Further contributions of VAE have been observed in various fields. For example,
molecular design has been automated using VAE,[30] and similarity metrics beyond
pixels have been explored [31]. Other research has dissected sources of disentanglement
in VAEs [32], developed neural audio synthesis [33], and even ventured into collaborative
filtering [34].

The evolution of diffusion models in the domain of deep learning traces back to the
work on Denoising Diffusion Probabilistic Models (DDPM) presented in 2020 [19]. Such
models take inspiration from the theory of stochastic processes [35] and advancements
in nonequilibrium thermodynamics [36]. These models offered a robust framework
where data generation can be perceived as a reversed noise addition process. Following
this, Song et al. proposed the Denoising Diffusion Implicit Model (DDIM) [37] which
introduced novel techniques for accelerating the diffusion sampling procedure and
demonstrated the importance of variance schedule selection.

Building upon these foundational contributions, a lot of recent works have emerged,
pushing the boundaries of diffusion models in various dimensions. Among these, the
GLIDE model [38] has made strides towards achieving photorealistic image generation
and editing, guided by textual inputs. Similarly, DALL·E2 [39] and Imagen [40] have
shown the versatility of text-conditional image generation, by integrating CLIP latent
for hierarchical image synthesis and deep language understanding. Furthermore, the
diffusion model with latent space was explored by Rombach et al. [41], named the latent
diffusion model. This model greatly accelerates the diffusion process. It also introduces
the notion of conditioning, specifically translating textual inputs to images, tapping into
the area of AI painting. Today, the confluence of diffusion models, latent spaces, and
conditional mechanisms has made them a cornerstone in AI painting, signifying their
indispensable role in modern generative methods.

3.3. DENOISING DIFFUSION PROBABILISTIC MODEL (DDPM)
Diffusion denoising relies on the concept of diffusion, inspired by the natural process

where molecules move from areas of high to low concentration. In the context of

3

22 3. GENERATIVE DEEP LEARNING MODELS

data denoising, especially images, the idea is to smooth out noise while preserving key
features. More specifically, the DDPM defines a Markov chain of diffusion steps to slowly
add random noise to data and then learn to reverse the diffusion process to construct
desired data samples from the noise. Unlike VAE, diffusion models are learned with a
fixed procedure and the latent variable has the same dimension as the original data. As
shown in 5.8, generating the original image from Gaussian random noise is a reverse
process, and vice versa is a forward process.

Figure 3.4: The Markov chain of forward (reverse) diffusion process.

3.3.1. FORWARD DIFFUSION PROCESS

The so-called forward process is the process of adding noise to the image step by
step. Although this process cannot directly generate images, it is a crucial part of
understanding the diffusion model. Beginning with an image represented as x0 ∼ q(x),
this image serves as the origin of the diffusion process. As part of the diffusion forward
process, Gaussian noise is systematically applied over T iterations, leading to a series
of transformed images: x1, x2, . . . , xT . This series can be visualized in the q process as
shown in 5.8.

To determine the nature of the Gaussian noise at each iteration, a set of
hyperparameters is defined. Specifically,

{
βt ∈ (0,1)

}T
t=1 outlines the variances of the

Gaussian distributions at each step. One key aspect of this process is its Markovian
nature. The image at stage t is influenced solely by its predecessor at stage t − 1. This
can be mathematically expressed as

q (xt | xt−1) =N
(
xt ;

√
1−βt xt−1,βt I

)
, q (x1:T | x0) =

T∏
t=1

q (xt | xt−1) (3.1)

where I represents the identity matrix. As the iterations t increases, the image xt

becomes more dominated by noise. Given a sufficiently large T , xT approaches an
isotropic Gaussian distribution. The reparameterization trick mentioned in Section
3.4 helps in understanding the noise evolution. For simplification, some terms can
be represented as αt = 1 − βt and ᾱt = ∏T

i=1αi . Then the relations rewrite the
reparameterization of xt as

3.3. DENOISING DIFFUSION PROBABILISTIC MODEL (DDPM)

3

23

xt =p
αt xt−1 +

√
1−αtϵ1, where ϵ1,ϵ2, . . . ∼N (0,I)

=p
αt

(p
αt−1xt−2 +

√
1−αt−1ϵ2

)
+

√
1−αtϵ1

=p
αtαt−1xt−2 +

(√
αt (1−αt−1)ϵ2 +

√
1−αtϵ1

)
=p

αtαt−1xt−2 +
√

1−αtαt−1ϵ̄2, where ϵ̄2 ∼N (0,I)(∗)

...

=
√
ᾱt x0 +

√
1− ᾱt ϵ̄t (3.2)

The inherent Gaussian properties of the noise in this process enable the application
of Gaussian properties. The additive property suggests that the sum of two independent
Gaussian noises gives another Gaussian distribution with a variance equal to the sum of
their individual variances, i.e.

√
αt (1−αt−1)ϵ2+

√
1−αtϵ1 ∼N (0, [αt (1−αt−1)+(1−αt)]I) =N (0, (1−αtαt−1)I). (3.3)

Merging two Gaussian distributions yields a consolidated Gaussian distribution with
a modified standard deviation. This observation guarantees the fact that ϵ̄2 remains
Gaussian in (3.2). Consequently, any xt in our process can be expressed as

q(xt |x0) =N (xt ;
√
ᾱt x0, (1− ᾱt)I)

This mathematical representation emphasizes our ability to generate random noise
directly from the starting image.

In summary, the forward diffusion process offers a clear method to progressively
transform an initial image into its noisy counterpart.

3.3.2. REVERSE DIFFUSION PROCESS
If the forward diffusion process is characterized as the procedure of noise addition,

the reverse diffusion process can be understood as a denoising inference mechanism of
diffusion. This process essentially reverses the original data, denoted as x0, from its final
noisy representation, which can be considered as xT ∼N (0,I).

It has been proven in [42] that if the forward transition q (xt | xt−1) follows a
Gaussian distribution and the noise parameter βt is sufficiently small, then the reverse
transition q (xt−1 | xt) retains its Gaussian nature. However, a straightforward inference
of q (xt−1 | xt) is complex. As a resolution, deep learning models, specifically the U-Net
model in our paper, are employed to predict this inverse transition

pθ (xt−1 | xt) =N
(
xt−1;µθ (xt , t) ,Σθ (xt , t)

)
, pθ (x0:T) = p (xT)

T∏
t=1

pθ (xt−1 | xt) . (3.4)

Even though directly computing the reverse distribution q (xt−1 | xt) remains
intractable, possessing knowledge of x0 permits the computation of q (xt−1 | xt , x0) as

3

24 3. GENERATIVE DEEP LEARNING MODELS

q (xt−1 | xt , x0) =N
(
xt−1; µ̃ (xt , x0) , β̃t I

)
. (3.5)

More specifically, we can prove it using Bayes’ rule

q (xt−1 | xt ,x0) = q (xt | xt−1,x0)
q (xt−1 | x0)

q (xt | x0)

∝ exp

(
−1

2

((
xt −p

αt xt−1
)2

βt
+

(
xt−1 −

p
ᾱt−1x0

)2

1− ᾱt−1
−

(
xt −

p
ᾱt x0

)2

1− ᾱt

))

= exp

(
−1

2

(
x2

t −2
p
αt xt xt−1 +αt x2

t−1

βt
+ x2

t−1 −2
p
ᾱt−1x0xt−1 + ᾱt−1x2

0

1− ᾱt−1
−

(
xt −

p
ᾱt x0

)2

1− ᾱt

))

= exp

(
−1

2

((
αt

βt
+ 1

1− ᾱt−1

)
x2

t−1 −
(

2
p
αt

βt
xt + 2

p
ᾱt−1

1− ᾱt−1
x0

)
xt−1 +C (xt ,x0)

))
.

(3.6)
C (xt ,x0) is a function not involving xt−1, so we can omit it. (3.6) transforms the

entire reverse process back to the forward process. Meanwhile, following the standard
Gaussian density function, the mean and variance can be calculated as

β̃t = 1/

(
αt

βt
+ 1

1− ᾱt−1

)
= 1/

(
αt − ᾱt +βt

βt (1− ᾱt−1)

)
= 1− ᾱt−1

1− ᾱt
·βt ; (3.7)

µ̃t (xt ,x0) =
(p

αt

βt
xt +

p
ᾱt−1

1− ᾱt−1
x0

)
/

(
αt

βt
+ 1

1− ᾱt−1

)
=

(p
αt

βt
xt +

p
ᾱt−1

1− ᾱt−1
x0

)
1− ᾱt−1

1− ᾱt
·βt

=
p
αt (1− ᾱt−1)

1− ᾱt
xt +

p
ᾱt−1βt

1− ᾱt
x0.

(3.8)

Based on reparameterization, we can express x0 in terms of xt as x0 =
1p
āt

(
xt −

p
1− āt ϵ̄t

)
. Then incorporating this into (3.8), we could derive

µ̃t = 1p
at

(
xt − βtp

1− āt
ϵ̄t

)
.

In this framework, the Gaussian distribution ϵ̄t symbolizes the noise predicted by the
deep learning model for denoising purposes. This can be equated to ϵθ (xt , t), which
gives the final expression

µθ (xt , t) = 1p
at

(
xt − βtp

1− āt
ϵθ (xt , t)

)
. (3.9)

As such, the inference of each step in DDPM can be summarized as

1. At each time step, the Gaussian noise ϵθ (xt , t) is predicted based on xt and t .
Subsequently, the mean µθ (xt , t) is obtained according to equation (3.9).

3.3. DENOISING DIFFUSION PROBABILISTIC MODEL (DDPM)

3

25

2. The variance Σθ (xt , t) is then determined. In DDPM, an untrained Σθ (xt , t) = β̃t

is used, and it is believed that the results of β̃t =βt and β̃t = 1−ᾱt−1
1−ᾱt

·βt are similar.

3. Based on equation (3.5), q (xt−1 | xt) is obtained. Then, xt−1 is derived using
reparameterization.

3.3.3. TRAINING
So far, we have discussed the entire process of diffusion. The next step is to train a

neural network to obtain reliable values for µθ (xt , t) and Σθ (xt , t). This is achieved by
maximizing the log-likelihood of the model’s predicted distribution under the true data
distribution, specifically by optimizing the cross entropy of pθ (x0) under x0 ∼ q (x0):

L = Eq(x0)
[− log pθ (x0)

]
(3.10)

As seen in 5.8, this process is similar to VAE, implying that the negative log-likelihood
can be optimized using the Variational Lower Bound (VLB). Since the KL divergence is
non-negative, we have

− log pθ (x0) ≤− log pθ (x0)+DK L
(
q (x1:T | x0) ||pθ (x1:T | x0)

)
=− log pθ (x0)+Eq(x1:T |x0)

[
log

q (x1:T | x0)

pθ (x0:T)/pθ (x0)

]
=− log pθ (x0)+Eq(x1:T |x0)[log

q (x1:T | x0)

pθ (x0:T)
+ log pθ (x0)]

= Eq(x1:T |x0)

[
log

q (x1:T | x0)

pθ (x0:T)

]
.

(3.11)

where pθ (x1:T | x0) = pθ(x0:T)
pθ(x0) .

Taking the expectation of both sides of (3.11) for Eq(x0) and applying Fubini’s theorem
in the double integral, we then get

LV LB = Eq(x0)

(
Eq(x1:T |x0)

[
log

q (x1:T | x0)

pθ (x0:T)

])
= Eq(x0:T)

[
log

q (x1:T | x0)

pθ (x0:T)

]
≥ Eq(x0)

[− log pθ (x0)
]

Therefore, minimizing LV LB suffices to minimize our target loss L in (3.10). Further
deriving LV LB , we can get the accumulation of entropy and multiple KL divergences

LVLB = Eq(x0:T)

[
log

q (x1:T | x0)

pθ (x0:T)

]
= Eq

[
− log pθ (xT)+

T∑
t=1

log
q (xt | xt−1)

pθ (xt−1 | xt)

]

= Eq

[
log

q (xT | x0)

pθ (xT)
+

T∑
t=2

log
q (xt−1 | xt ,x0)

pθ (xt−1 | xt)
− log pθ (x0 | x1)

]

= Eq [DKL
(
q (xT | x0)∥pθ (xT)

)+ T∑
t=2

DKL
(
q (xt−1 | xt ,x0)∥pθ (xt−1 | xt)

)− log pθ (x0 | x1)].

(3.12)

3

26 3. GENERATIVE DEEP LEARNING MODELS

Since there are no learnable parameters in the forward process q , XT is pure
Gaussian noise. In the derived results, the first term, that is, the entropy term, can
be regarded as a constant and ignored; and Every KL term compares two Gaussian
distributions and therefore they can be computed in closed form, i.e.

DKL
(
q (xt | xt+1,x0)∥pθ (xt | xt+1)

)= Ex0,ϵ̄t

[
1

2∥Σθ (xt , t)∥2
2

∥∥µ̃t (xt , x0)−µθ (xt , t)
∥∥2

]

= Ex0,ϵ̄t

[
β2

t

2αt
(
1− ᾱt ∥Σθ∥2

2

) ∥ϵ̄t −ϵθ (xt , t)∥2

]

= Ex0,ϵ̄t

[
β2

t

2αt
(
1− ᾱt ∥Σθ∥2

2

) ∥∥∥ϵ̄t −ϵθ
(√

ᾱt x0 +
√

1− ᾱt ϵ̄t , t
)∥∥∥2

]
.

(3.13)
Finally, based on [19], DDPM further simplifies the loss by omitting the weight. Then

we can get the simplifying form of loss LVLB,

Lsimple = Ex0,ϵ̄t

[∥∥∥ϵ̄t −ϵθ
(√

ᾱt x0 +
√

1− ᾱt ϵ̄t , t
)∥∥∥2

]
+C , (3.14)

where C is a constant. So in fact the core of the training is to minimize the MSE
between the Gaussian noise ϵ̄t and ϵθ.

3.3.4. LATENT DIFFUSION MODEL (LDM)
As mentioned before, it can be observed that DDPM suffers from high computational

cost issues. Generally speaking, the reverse process of DDPM requires thousands of
sampling processes. The trained neural network is used to predict noise in each single
process, which leads to high memory consumption and long computation times. To
solve this, [43] proposed to train an Encoder-decoder (in the form of an Autoencoder)
using methods like VAE or GAN. Subsequently, the Diffusion Model can be modeled in
the latent space of this generator.

For a LDM, initially, an autoencoder model containing an encoder, denoted as E , and
a decoder, denoted as D, is trained. This enables image compression via the encoder.
Subsequently, diffusion operations are performed in the latent representation space, and
the original pixel space is recovered using the decoder. This methodology is referred to
as Perceptual Compression.

Introducing Perceptual Compression means processing the original image through
autoencoder models like VAE. It ignores the high-frequency information in the image
and retains only essential, foundational features. As mentioned in [43], the advantage
of this approach is that it greatly reduces the computational complexity during the
training and sampling stages. This allows tasks like text-to-image generation to produce
images on consumer-grade GPUs within a time frame of about 10 seconds, significantly
lowering the barriers to practical application. Therefore, such an approach that
compresses high-dimensional features to a lower dimension and conducts operations in
this low-dimensional space possesses universality. It can be easily generalized to various
domains, including text, audio, and video.

3.4. VARIATIONAL AUTOENCODER (VAE)

3

27

Executing diffusion operations in the latent representation space largely mirrors
the standard diffusion model. However, a significant distinction lies in introducing
Conditioning Mechanisms for the diffusion operation. By employing a cross-attention
scheme, multi-modal training is realized, enabling the implementation of conditional
image generation tasks.

As for the training objective function, in our previous work, we obtained the objective
function for the DDPM model as (3.14). It can also be represented in the following form,

LDDP M = Ex,ϵ∼N (0,1),t
[∥ϵ−ϵθ (xt , t)∥2

2

]
, (3.15)

where t is uniformly sampled from {1, . . . ,T }.
In the LDM, we introduced a pre-trained perceptual compression model, which

consists of an encoder E and a decoder D. This allows us to utilize the encoder to obtain
zt during training, enabling the model to learn in the latent representation space. The
corresponding objective function can be written as

LLDM = EE (x),ϵ∼N (0,1),t
[∥ϵ−ϵθ (zt , t)∥2

2

]
(3.16)

In summary, when compared to the DDPM, the LDM offers significant
improvements. However, its advantages are more pronounced in more complex cases.
As the datasets become increasingly complex and pixel-dense, the LDM becomes more
advantageous, providing an efficient model that capitalizes on its latent representation
space to enhance the diffusion process. Regarding our ongoing experiments, the current
scales and complexities of the implied volatility surfaces do not necessarily need a
reduction into the latent space. Looking ahead, if there’s a pivot towards applying the
DDPM model to larger, potentially more complex surfaces, adopting the LDM would be
a strategically sound choice.

3.4. VARIATIONAL AUTOENCODER (VAE)
3.4.1. AUTOENCODER (AE)

Before understanding VAE, it is essential to first get acquainted with the Autoencoder
(AE). An autoencoder is a neural network that learns to encode input data into a
compressed representation and then directly decode it back to its original form.

Figure 3.5: The architecture of AE.

3

28 3. GENERATIVE DEEP LEARNING MODELS

As illustrated in 3.5, the AE, through self-supervised training, is capable of taking
the raw input feature x and, after encoding via an encoder, obtaining the latent
feature representation z. This process achieves automated feature engineering and
accomplishes both dimensionality reduction and generalization. Subsequently, by
decoding z, we can reconstruct the output x̂. An optimal state for an AE is when the
decoder’s output can perfectly or nearly restore the original input, i.e., x̂ ≈ x.

For this purpose, the loss function required to train an AE is

loss = ∥x − x̂∥.

The core of AE is on reconstruction. So the decoding result, based on the training
objective, will be identical to the input if the loss is sufficiently small. From this
perspective, the value of decoding has no practical significance, except to add error to
smoothen some initial zeros or have slight utility.

It is evident that the entire process from input to output in AE is based on the
mapping of existing training data. Even though the dimension of the hidden layer is
often much smaller than the input layer, the probability distribution of the hidden layer
still depends only on the distribution of training data. This leads to a discontinuous
distribution in the hidden state space. It only sparsely records the one-to-one
correspondence between the input samples and generated images. Therefore, if we
randomly generate states in the hidden layer, its decoding will likely no longer retain
the characteristics of input features. As a result, using the decoder to generate data is
quite challenging.

3.4.2. ARCHITECTURE OF VAE
Compared to the AE, the VAE introduces a probabilistic interpretation of the latent

space representation of the input. Instead of mapping an input sample directly to a
discrete latent value, the VAE models the latent variables as a probabilistic distribution,
p(z|x), the conditional distribution of latent variables given the input data. In practice,
this distribution is often assumed to be Gaussian, with the encoder network producing
the mean µ and variance σ2. Instead of using a fixed point in the latent space, the VAE
samples a feature from this Gaussian distribution defined byµ andσ2. The decoder then
utilizes this sampled feature to try to reconstruct the output.

Figure 3.6: The architecture of VAE.

3.4. VARIATIONAL AUTOENCODER (VAE)

3

29

Referring to 3.6, we can observe that the VAE process consists of three stages.
First, the input data is processed by the encoder to produce µ and σ. Next, features
are sampled, and finally, the features are transformed by the decoder to get the
reconstructed data. It is noteworthy that the second step not only requires µ and σ

but also a random variable ϵ which follows the standard Gaussian distribution. This
implementation detail is referred to as the reparameterization trick.

To sample z from p(z|x), although we recognize that p(z|x) is a Gaussian
distribution, both the mean and variance of it are determined by the model. The
challenge is that we need to reverse this sampling process, which is non-differentiable, to
optimize the model that determines these values. However, the outcome of the sampling
process is differentiable. This leads to using a known fact: sampling a Z from N (µ,σ2) is
equivalent to sampling an ϵ from N (0,1) and then calculating z =µ+σ ·ϵ.

By this transformation, sampling from N (µ,σ2) is effectively replaced with sampling
from N (0,1), followed by a parameter transformation to obtain the result of the original
sampling process. As a consequence, the sampling operation no longer participates in
gradient descent. Instead, the result of sampling is involved, rendering the entire model
trainable.

Beyond the loss of AE, VAE adds a regularization term, the KL divergence between
the encoding inference distribution and a standard Gaussian distribution. The reason
for adding this regularization term is to prevent the model from degrading into a regular
AE. During the neural network training process, to minimize reconstruction error, the
variance is inevitably reduced to zero. This means there would be no random sampling
noise, and the VAE would gradually turn into a standard AE.

Therefore, the loss function required to train a VAE is

loss = ∥x − x̂∥+KL(N (µ,σ), N (0,1)).

In summary, for an input x, the VAE generates a latent probability distribution p(z|x).
It then randomly samples from this distribution, creating a continuous and complete
latent space, which addresses the problem in AE where it can not be used for generation.

3.4.3. TRAINING

The above subsection only provides an intuitive explanation of VAE. Next, we will
delve deeper into VAE from the perspective of Bayesian probability theory.

Firstly, assume that we have a batch of data samples X = {x1, x2, . . . , xn}, which
are independent and identically distributed (i.i.d.). Our goal is to generate more data
that also follows this distribution, so our task is to estimate the distribution of these
sample data. But for a set of arbitrary data, we might not know the parametric form
of its distribution, making a direct estimation almost impossible. We denote the data
distribution as xi ∼ p(x;θ) or pθ(x), where θ represents the parameters we aim to
estimate.

Naturally, we can use maximum likelihood estimation to solve for it, expressing the
likelihood function as

p(x;θ) ≈ p(X ;θ) =
n∏

i=1
p (xi ;θ) .

3

30 3. GENERATIVE DEEP LEARNING MODELS

In practice, we often minimize the negative log-likelihood as

θ∗ = argmin
θ

−
n∑

i=1
log p(xi ;θ).

However, the parameter θ here can be quite complex. We consider it as also following
a new distribution θ ∼ p(θ;φ). Here, we use the marginal likelihood, which is an
integration over the parameter θ:

p(x;φ) =
∫
θ

p(x;θ)p(θ;φ)dθ.

So, when estimating the data distribution model, we first turn to estimate p(x;φ),
then consider the model parameters θ.

Directly solving the above formulas is intractable. Thus, we introduce a new variable
to assist in the solution, referring to it as the latent variable model. Leveraging the
Bayesian formula, we get:

p(x;φ) =
∫

p(x, z;φ)d z =
∫

p(x|z;φ)p(z)d z.

This breaks down the generation process into two steps, firstly sampling a z from
the prior distribution p(z), and then generating a sample through the conditional
probability p(x|z;φ).

Now if we Look back at 3.6, p(z) is easy to understand — it is the prior distribution
for the features, and p(x|z;φ) represents the effect of the decoder. We use q(z|x;θ) to
depict the effect of the encoder. The final generated result is denoted as p(x).

Next, we can express the following two equations

qθ(x, z) = q(z|x)p(x);

pθ(x, z) = p(x|z)p(z).

If the above two equations could be equal, we could then use q(x, z) to approximate
p(x, z) and calculate p(x). Here we introduce the KL divergence to quantify the similarity
between those two probability distributions,

K L(q(x, z)||p(x, z)) =
Ï

q(x, z) log
q(x, z)

p(x, z)
d z d x

=
Ï

q(z|x)p(x) log
q(z|x)p(x)

p(x|z)p(z)
d z d x

=
∫

p(x)

[∫
q(z|x) log

q(z|x)p(x)

p(x|z)p(z)
d z

]
d x

= Ep(x)

[∫
q(z|x)

(
log p(x)+ log

q(z|x)

p(x|z)p(z)

)
d z

]
= Ep(x)

[
log p(x)

∫
q(z|x)d z

]
+Ep(x)

[∫
q(z|x) log

q(z|x)

p(x|z)p(z)
d z

]
= Ep(x)[log p(x)]+Ep(x)[K L(q(z|x)||p(z))−Eq(z|x)[log p(x|z)]].

(3.17)

3.4. VARIATIONAL AUTOENCODER (VAE)

3

31

Rearranging the terms, we then get

Ep(x)[log p(x)]−K L(q(x, z)||p(x, z)) = Ep(x)[Eq(z|x)[log p(x|z)]−K L(q(z|x)||p(z))].

The first term on the left side is to maximize the likelihood, and the second term
is also to be maximized (minimizing KL divergence taken as negative). Therefore,
maximizing the left side is equivalent to maximizing the right side, and thus our
optimization objective becomes

maxEp(x)[Eq(z|x)[log p(x|z)]−K L(q(z|x)||p(z))]

Here, we got the final objective function of VAE, also known as Evidence Lower Bound
(ELBO),

ELBO := Eq(z|x)[log p(x|z)]−K L(q(z|x)||p(z)) (3.18)

4
METHODOLOGY

After developing a thorough understanding of the underlying theoretical knowledge
of generative models, our focus will turn to how to apply these models to the implied
volatility surface. In Section 4.1, we will explore why generative models can be applied
to the implied volatility surface; Section 4.2 then elaborate on The setting of the training
process; Section 4.3 will delve into the specific application scenarios of the model; and
in Section 4.4, we will introduce the indicators used to evaluate the performance of the
model.

4.1. GENERATIVE MODELS ON IMPLIED VOLATILITY SURFACES
Before we focus on the application of generative models on implied volatility

surfaces, it is essential to clarify why image-based generative models are applicable to
these surfaces. Here are three primary reasons.

Structural Similarity While implied volatility surfaces might not be as complex
as standard images, they both have a two-dimensional framework, and each
two-dimensional point contains specific information. For images, each point represents
its pixel value. In contrast, for implied volatility surfaces, each point signifies the implied
volatility at a given expiration date and strike price. This structural alignment allows
image-based generative models to be directly employed in the creation and modification
of implied volatility surfaces.

Features Learning and Generation Image generative models inherently try to learn
the internal distribution of an image or its latent features, such as object shapes or
color patterns. Similarly, implied volatility surfaces also contain features like the implied
volatility smile. These features can be learned by the generative model to generate
synthetic surfaces based on historical surfaces, ensuring the resulting surfaces have
financial relevance. For instance, when a generative model is applied to images, it
might learn the attributes of the digit ’1’ by training on numerous images containing

33

4

34 4. METHODOLOGY

this number, subsequently producing a new image of the digit ’1’. When applied to
implied volatility surfaces, the model can learn features of surfaces with a volatility smile,
subsequently crafting a new surface with a smile.

Practicality and Direction of Application Generative models can not only be used to
generate new surfaces with learned features but can also be used to repair or interpolate
missing values or outliers in existing surfaces to enhance financial analysis. and
decision-making accuracy. This is particularly important in aspects such as financial
engineering and risk management, especially in situations where it is difficult to obtain
an accurate volatility surface under certain market conditions.

4.2. TRAINING METHODOLOGY

The general steps for training the two generative models, VAE and DDPM, are
similar. They all need to take the complete implied volatility surface as input x, and
after obtaining the latent variable z, calculate the loss function and perform a gradient
descent step in the process of reconstructing z to x.

More specifically, the training process of VAE involves feeding the complete implied
volatility surfaces as input to the encoder, represented by the latent variables. This
encoded representation captures the essential features of the implied volatility. The
decoder then attempts to reconstruct the original implied volatility surfaces from latent
variables. During this reconstruction process, the loss function (3.18) is computed. The
model’s parameters are optimized via gradient descent to minimize this loss, iteratively
refining the encoder and decoder to better represent and reconstruct the implied
volatility surfaces, respectively. The whole process is described as Algorithm 1 below.

Algorithm 1 VAE Training Algorithm

1: repeat
2: (µ,σ) ← Encoder(x)
3: z ∼N (µ,σ)
4: xreconstructed ← Decoder(z)
5: Take gradient descent on ∆θ

[
Eq(z|x)[log p(x|z)]−KL(q(z|x) ∥ p(z))

]
6: until converged

For DDPM, the original implied volatility surface x is gradually added with noise (iid
N (0,1)) over 500 timesteps, until it becomes a pure noise latent variable in the final
step. Subsequently, the neural network learns the inverse of this noise-adding process to
reverse it. More specifically, in each of the 500 timesteps, a neural network fits the noise
using the loss function (3.14) until the pure noise is restored to the original surface. The
whole process is described as Algorithm 2 below.

4.3. APPLICATION ON IMPLIED VOLATILITY SURFACE

4

35

Algorithm 2 DDPM Training Algorithm

1: repeat
2: t ∼ Uniform(1, ...,T)
3: ϵ∼N (0, I)
4: Take gradient descent on ∆θ

[
Lsimple

]
5: until converged

From this, we can see that, unlike VAE, DDPM requires training a neural network
at each timestep of the reverse process to ensure that each ϵθ can fit ϵ. This means we
need to train 500 neural networks throughout the entire process. So we chose to employ
UNet for learning distributions principally due to its adeptness at retaining information.
For the reverse process in DDPM, even the slightest degradation of information during
a single step can blur the outcome. Over hundreds or thousands of steps, this could be
detrimental. UNet, with its nearly lossless data transition capabilities, thus emerges as
the aptest choice for the task.

4.3. APPLICATION ON IMPLIED VOLATILITY SURFACE

4.3.1. RECONSTRUCTION
We applied the reconstruction of implied volatility surfaces only to the VAE model.

This is because the essence of the VAE model lies in capturing essential low-dimensional
information within the surface as latent variables. Operations based on these latent
variables are then carried out to achieve our subsequent objectives. Therefore, verifying
whether the latent variables truly encapsulate sufficient information to represent the
original surface is an indispensable step before real-world application. On the other
hand, the latent variables of DDPM have the same dimensionality as the original surface,
meaning they are not reduced in dimension, eliminating concerns in this regard.

The process of surface reconstruction is straightforward. Once the VAE model is
fully trained, we feed the implied volatility surface from the test set into the VAE’s
encoder. Upon obtaining the latent variables, they are input into the decoder, resulting
in a reconstructed surface that closely mirrors the original. The detailed algorithm is
presented below.

Algorithm 3 Surface Reconstruction using VAE

1: Train VAE until convergence using the training set.
2: For a given implied volatility surface xtest:
3: (µ,σ) ← Encoder(xtest)
4: ztest ∼N (µ,σ2)
5: x̃test ← Decoder(ztest)
6: Output: the reconstructed surface x̃test.

4.3.2. GENERATING NEW SURFACES
In this subsection, we will introduce how to use generating models to generate

implied volatility surfaces which are synthetic but based on historical data. This is the

4

36 4. METHODOLOGY

most common application for generating models.

In general, once the generative model is trained, one can obtain latent variables
through sampling from specific distributions. Then by transforming these variables back
to the original space, newly generated data can be achieved.

For VAE, after the VAE model has been trained, new surfaces can be generated
by sampling latent variables from a standard Gaussian distribution and feeding them
into the VAE’s decoder. This process decodes the latent variables into newly generated
surfaces. The complete algorithm is shown in the following algorithm.

Algorithm 4 Surfaces Generating using VAE

1: Train VAE until convergence using the training set.
2: Determine the number of surfaces to generate, N .
3: for i = 1 to N do
4: Sample latent variable z ∼N (0,1).
5: Generate implied volatility surface xgenerated ← Decoder(z).
6: end for
7: Output: Set of N generated surfaces.

For DDPM, we return to the end of Section 3.3.2 to further explain the reverse process
of DDPM, that is, how to sample and obtain the synthesized new surface.

During the training process, we have predicted the noise ϵ through the UNet neural
network, so we can calculate the mean ϵ of the normal distribution using (3.9). Here,
the variance is assumed to be independent of the noise and can be directly calculated
from β. At this point, we have obtained the distribution of xt−1. Given xt , xt−1 can be
obtained through reparameterization

xt−1 = 1p
αt

(
xt − 1−αtp

1− ᾱt
ϵθ(xt , t)

)
+βtϵ. (4.1)

The initial xt here is pure Gaussian noise, which means that by inputting pure
noise, a new synthetic surface can be generated step by step through the noise addition
process. The algorithm is shown below.

Algorithm 5 Generating Surfaces with DDPM

1: Input: An already trained NN ϵθ
2: Determine the number of timesteps to generate a surface, T .
3: Sample initial state xT ∼N (0,I).
4: for t = T , ... , 1 do
5: xt−1 = 1p

αt

(
xt − 1−αtp

1−ᾱt
ϵθ(xt , t)

)
+βtϵ

6: end for
7: Output: A synthetic surface.

4.3. APPLICATION ON IMPLIED VOLATILITY SURFACE

4

37

4.3.3. COMPLETION

In our research, the process of surface completion involves restoring incomplete
surfaces to form a cohesive and smooth entity. To simulate surfaces with missing data,
we intentionally remove parts from the corners of the implied volatility surfaces in
our test set. Figure 4.1 shows a sample of an implied volatility surface with its corner
parts missing. This specific absence indicates that the associated implied volatility,
particularly for exercise prices near the time to maturity, is either missing or cannot be
observed. This simulation approach reflects the reality that data incompleteness and
absence are more prevalent as the time to maturity approaches.

Figure 4.1: One sample incomplete implied volatility surface.

COMPLETION WITH OPTIMIZATION FOR VAE
For surface completion using VAE, we believe the most optimal scenario would be

to directly employ the model trained on complete implied volatility surfaces, input an
incomplete surface, and eventually obtain a fully reconstructed and completed surface.
So the whole process is similar to the reconstruction process. The only difference is that
in the process of surface completion, the input is the incomplete surface instead of the
complete surface.

In our approach, we employed models trained on complete surfaces rather than
incomplete ones. The reason behind this choice is that even though we currently
simulate incomplete surfaces by removing parts from the complete ones, in real market
conditions, we cannot access the completed form of these incomplete surfaces. As a
result, it becomes unfeasible to compute the Mean Squared Error as the reconstruction
error in the objective function.

When we employ the VAE to directly complete the surface as described in the
initial approach, the outcome is less than ideal. Even though we do generate a surface
that’s both comprehensive and seamlessly smooth, the morphological attributes of this
newly produced surface diverge significantly from the original one. This observation

4

38 4. METHODOLOGY

points towards an inherent need for an additional layer of refinement—specifically,
an optimization step applied to the latent space created by the encoder. Such an
optimization would be instrumental in guaranteeing that the surface regenerated from
the decoder mirrors the original one as closely as feasible.

Our primary objective centers around the notion that, once the latent variable is
introduced to the decoder, it should yield a surface that remains faithful to the known
segments of the original one. To quantify this faithfulness, we adopt the Mean Squared
Error (MSE) between the surface stemming from z and its original counterpart as our
benchmark metric. This metric subsequently forms the basis upon which we calibrate
and optimize z.

To achieve this optimization, we turn to the Levenberg-Marquardt (LM) algorithm,
known for its prowess in parameter refinement. The LM algorithm shines particularly in
scenarios where the parameter count remains on the lower side. In our context, given
that our latent variables are relatively few, the LM algorithm not only offers an effective
solution but also ensures computational efficiency. The methodology involves iteratively
fine-tuning the latent variable values, a process driven by the difference between
actual observations and the model’s predictions. Through this iterative method, the
LM algorithm facilitates the enhancement of latent portrayals, ensuring they aptly
encapsulate the innate dynamics and interdependencies within the dataset.

Algorithm 6 Surface Incompletion with latent variable optimization using VAE

1: zorigin ← Encoder(xoriginal)
2: Initialize zoptimized with z
3: while not converged do
4: Decode zoptimized to obtain reconstructed surface: x̃ ← Decoder(zoptimized)
5: Compute MSE between x̃ and xoriginal: E = MSE(x̃, xoriginal)
6: Update zoptimized using the LM algorithm to minimize E
7: end while
8: return Optimized surface x̃

COMPLETION FOR DDPM
For DDPM, the method of conditioning becomes a core part of its completion

strategy. When dealing with incomplete surfaces, DDPM can utilize the available
information to guide the sampling process.

Instead of directly feeding the incomplete surface to the model, in the context
of DDPM, this incomplete data serves as a condition or guiding constraint. The
conditioning can be thought of as a way to "inform" the sampling process about which
parts of the data space are known or available, thus refining the generated output to be
consistent with these known portions.

For instance, suppose an incomplete implied volatility surface is missing data in a
certain region. By conditioning the DDPM on this incomplete surface, the model can
be guided to fill in the missing values, while being consistent with the known values.
This conditioning effectively acts as a "soft constraint" that biases the sampling process
towards regions of the data space that are likely to be consistent with the known values.

4.4. EVALUATION METRIC

4

39

In general, this completion process utilizes a pre-trained unconditional DDPM as
the generative prior. To regulate the generation process, the completion process only
applies the reverse diffusion iterations by sampling from the missing areas of the given
surface. As this method does not alter or adjust the original neural network itself,
the model can generate high-quality and diverse outputs for any form of restoration.
Furthermore, it is convenient since this approach does not require retraining a new
DDPM model, especially considering that training DDPM consumes significant time
and computational resources.

Initially, we are faced with an implied volatility surface that contains missing parts,
which means it includes both xknown

0 and xunknown
0 . For the known sections represented

by xknown
0 , according to the forward process (3.2) of the DDPM, one can directly

introduce noise to derive the state at any given time t , symbolized as xknown
t .

During the completion procedure, there is a notable difference compared to the
sampling process. Instead of indiscriminately introducing pure noise across the entire
surface, the approach focuses on adding noise exclusively to the unknown segments.
This strategy ensures that the completion is grounded in the known data while
simultaneously allowing for the exploration of possible states for the unknown regions.
This is mathematically represented as

xt−1 = m⊙xknown
t−1 + (1−m)⊙xunknown

t−1 .

In this equation, the parameter m stands for a mask whose value is 1 for the known
regions and 0 for the unknown regions. The mask hence plays a pivotal role in guiding
the noise addition process. Thus, m⊙ xknown

t−1 corresponds to the portion of the surface
where we have known data and do not introduce noise. On the other hand, (1−m)⊙
xunknown

t−1 represents the section where the data is unknown, and noise is added to aid
the completion process. The incorporation of noise in this targeted manner facilitates a
more informed and efficient mechanism for data reconstruction, potentially leading to
more accurate and reliable outcomes.

Algorithm 7 Completing IVS with DDPM

1: Input: An already trained NN ϵθ and incomplete IVS x̂0.
2: Sample initial state xT ∼N (0,I).
3: for t = T, . . . ,1 do
4: z ∼N (0,I), ϵ∼N (0,I)

5: xunknown
t−1 = 1p

αt

(
xt − 1−αtp

1−ᾱt
ϵθ(xt , t)

)
+βt z

6: xknown
t−1 =p

αt x̂0 + (1−αt)ϵ

7: xt−1 = m⊙xknown
t−1 + (1−m)⊙xunknown

t−1
8: end for
9: Output: A completed IVS x0.

4.4. EVALUATION METRIC
In the following section, we will dive deep into the evaluation criteria, providing a

comprehensive overview of the metrics, methodologies, and the underlying rationale
that guide our assessment.

4

40 4. METHODOLOGY

4.4.1. TRAINING
Assessing the training process is relatively straightforward. Our evaluation is based

on comparing the training time of different models and analyzing their training loss
plots. These metrics offer insights into the model’s complexity and the extent of
its training. By combining these elements, we can measure both the efficiency and
effectiveness of various models in the context of our specific objectives.

4.4.2. RECONSTRUCTION
For implied volatility surface reconstruction, the primary criterion for evaluating a

model lies in the similarity between the output surface and the original surface. This
similarity determines the accuracy and usability of the model. If the output surface
closely mirrors the original one, it indicates that the model can effectively reconstruct
the entire volatility surface. Conversely, if there is a significant deviation between the
two, it might necessitate reconsideration of the model’s approach or parameter choices.
We chose to employ four distinct metrics: Mean Squared Error (MSE), Mean Absolute
Error (MAE), Max distance, and Hausdorff Distance.

Given that surfaces can be represented as a series of points in a multi-dimensional
space, the MSE serves as a fundamental measure. It quantifies the average squared
deviations between the reconstructed surface’s coordinates and those of the original.
The formula for MSE is given by:

MSE(X ,Y) = 1

n

n∑
i=1

(xi − yi)2

Larger discrepancies between surfaces will yield higher MSE values, making it a useful
indicator of overall model accuracy. Similarly, MAE calculates the average absolute
differences between predicted and true surface points, given by:

MAE(X ,Y) = 1

n

n∑
i=1

|xi − yi |

Max distance, on the other hand, helps understand the most significant singular
deviation and is crucial for surface data. It is calculated as:

Max Distance(X ,Y) = max
i

d(xi , yi)

Lastly, the Hausdorff Distance is pivotal for surface reconstruction. It evaluates the
extent to which each point on one surface is close to some point on another surface:

Hausdorff(X ,Y) = max

(
sup
x∈X

inf
y∈Y

d(x, y),sup
y∈Y

inf
x∈X

d(x, y)

)

4.4.3. COMPLETION
For the completion of implied volatility surfaces, we also focus on ensuring the

similarity between the completed and original surfaces. This ensures the model
can effectively fill in data gaps. The metrics used for completion are the same as

4.4. EVALUATION METRIC

4

41

those used for reconstruction, as they provide a comprehensive evaluation of the
model’s performance in terms of accuracy, typical deviations, largest discrepancies, and
topological consistency.

4.4.4. GENERATION
When it comes to generating new surfaces, our evaluation criteria become somewhat

hard to define. The quality of generated surfaces is challenging to define using
conventional benchmarks.

The FID (Frechet Inception Distance) score stands out as a gold standard for
generic image generation, predominantly within the realms of GANs and DDPM
frameworks. This score quantifies both the variation and sharpness of the images
produced. Its methodology involves a combination of the statistics of features extracted
from authentic versus synthetic images. In mathematical terms, the FID score computes
the Frechet distance between two multivariate Gaussians that are fitted to feature vectors
mined from the Inception network, comparing real and produced images as

FID(x, g) = |µx −µg |22 +Tr(Σx +Σg −2(ΣxΣg)0.5),

where the pairs (µx ,Σx) and (µg ,Σg) represent the mean and covariance of the feature
vectors for the authentic and synthetic images, respectively.

However, this metric is not suitable for our cases. One obvious problem is the
inherent design of Inception networks for 3-channel images (usually RGB). However, our
implied volatility surface has only one channel and cannot be input into the Inception
network, so the traditional FID score is not applicable.

To synthesize IV surfaces that are synthetic but based on historical patterns, we
introduce a metric to evaluate the precision of our methodology named Wasserstein
distance. Wasserstein distance is used to express the similarity of two distributions. It
measures the minimum average distance required to move data from one distribution
to another distribution. Suppose G symbolizes the probabilistic distribution of implied
volatility surfaces drawn from our model, while F embodies the original distribution.
The formal expression of Wasserstein distance is as follows,

W (G ,F) = inf
γ∼∏

(G ,F)
Ex,y∼γ[∥x − y∥]

Among them,
∏

(G ,F) represents the set of all possible joint distributions combining
the distributions G and F . For each possible joint distribution γ, you can sample
(x, y) ∼ γ to get a sample x and y and calculate the pair The distance of the sample
∥x − y∥. Therefore, the expected value of the sample distance Ex,y∼γ[∥x − y∥] under the
joint distribution γ can be calculated. The lower bound that can be obtained on this
expected value among all possible joint distributions is the Wasserstein distance.

Given the suitability of the Wasserstein distance in the domain of probability
distribution spaces, we have opted for the 1-Wasserstein distance to ascertain the
discrepancy between our model’s output and the genuine distribution. This metric
can be approximated by analyzing the 1-Wasserstein distance amid the multivariate
distribution of IVs at 784 grid points, comparing the Heston dataset against our model’s
generation. We label this as the Wasserstein metric.

5
NUMERICAL RESULTS ANALYSIS

AND DISCUSSION

5.1. TRAINING
In this section, we delve into the training, which is a key stage in the construction

of an implied volatility surface. The process is exhaustive, from parameter selection to
surface generation and training dynamics. We begin by defining the parameters of the
Heston model.

SETTINGS FOR HESTON MODEL

At the outset of constructing the implied volatility surface, the initial setup of crucial
parameters becomes our primary point. In our research, we employ a 28× 28 implied
volatility surface. This implies that both T and K have 28 distinct values, culminating
in a complete surface with 784 points. The parameters we set are depicted in Table 5.1
below.

Parameter Setting
S0 1
K [0.7, 1.3]
T [0.1, 0.6]
r 0
ρ [-0.9, -0.1]
v̄ [0.1, 0.3]
κ [1.0, 2.0]
γ [0.1, 0.9]

Table 5.1: Main Parameter Settings for the Implied Volatility Surface

Transitioning from parameter selection, our spotlight narrows down to the
parameterγ. It is particularly noteworthy due to its robust association with the curvature

43

5

44 5. NUMERICAL RESULTS ANALYSIS AND DISCUSSION

variances observed in the implied volatility curve. As illustrated in Figure 5.1, an increase
in the value of γ manifests a more pronounced implied volatility smile. Consequently,
a higher volatility parameter increases the curvature of the implied volatility. In our
research, we aim for the implied volatility surfaces used for training to exhibit a
significant range in curvature. This would help in showcasing both the implied volatility
smile and the implied volatility skew. Consequently, for γ, we have chosen a range from
0.1 to 0.9.

Figure 5.1: Impact of variation of the Heston vol-vol parameter γ.

To create a detailed implied volatility surface, we apply Latin hypercube sampling
to get a variety of parameter combinations. This makes sure our implied volatility
surfaces represent a wide range of scenarios. Then for the option pricing calculation,
we use the COS method and the Heston model parameters from our sampling, then
calculate the prices for European options for each parameter combination. At last, we
need to reverse the calculation to calculate implied volatility. We start with an initial
implied volatility, like 0.2. Then, we calculate the implied volatility in steps using the
Black-Scholes formula and the market’s option prices. After each step, we check if the
error is small enough, like below 0.0001, to continue.

Figure 5.2: A sample of implied volatility surface generated by COS method (left) and some samples of
implied volatility curves (right).

5.1. TRAINING

5

45

Ultimately, we generated 10,000 implied volatility surfaces for subsequent training
data. As illustrated in Figure 5.2, the left panel shows a sample implied volatility surface
generated using the COS method and adhering to the Heston model, capturing the
characteristics of implied volatility surfaces observed in the market. The right panel
presents several K −σ slices at T = 0.5, where σ represents the implied volatility. It
demonstrates that the diversity in our generated implied volatility curves, with some
exhibiting implied volatility smiles and others displaying skews.

Having delineated the processes and methodologies related to implied volatility
surfaces, we now pivot our focus to the settings of the VAE and DDPM architectures.

TRAINING SETTINGS FOR VAE
In the realm of VAE, the onus of training predominantly rests on a singular

neural network architecture, subject to repetitive cycles. In our research, to further
compare the effects of different layers and different dimensions of the latent space
on the experimental results, we used different architectures shown in Table 5.2.
Considering that the Heston model is determined by five parameters, our choice for
the dimensionality of the latent space in VAE was influenced by multiples of five. This
decision was made to ensure a more intuitive alignment between the model parameters
and the latent representations.

Architecture Encoder Bottleneck Decoder
FC_dim10 3-layer fully connected (FC) dim = 10 3-layer fc
FC_dim15 3-layer fc dim = 15 3-layer fc

CNN_dim10 3-layer CNN + 1-layer fc dim = 10 1-layer fc + 3-layer CNN
CNN_dim15 3-layer CNN + 1-layer fc dim = 15 1-layer fc + 3-layer CNN

Table 5.2: Different architectures for VAE used in the research

As for the optimizer and learning rate in the training process, to refine our model,
the Adam optimizer is deployed with a learning rate set at 5e-4. We choose the
Adam optimizer because it is suitable for models with many parameters and it can
automatically adjust the learning rate. The choice of the initial value of the learning rate
could strike a balance between rapid convergence and stability, ensuring the optimal
performance of the model throughout its training phase.

Furthermore, in the loss function of VAE, we need to balance the reconstruction error
and the KL divergence. The reconstruction error ensures the VAE’s decoder reconstructs
the original data accurately, while the KL divergence encourages the encoder’s
distributions to approximate a prior distribution, a standard normal distribution. To
explore the impact of the balance between these components, we experimented with
different values of the weight parameter ‘β‘. Specifically, we employed ‘β values of 0.05,
0.005, and 0.0005‘. A smaller ‘β‘ value emphasizes the reconstruction error more, while
a larger value leans towards prioritizing the KL divergence.

TRAINING SETTINGS FOR DDPM
For DDPM, the UNet model is initialized with an input channel and output channel

set for single-channel data processing. The core architecture comprises layers that

5

46 5. NUMERICAL RESULTS ANALYSIS AND DISCUSSION

successively deepen in nodes, starting with a foundational channel number of 96 nodes.
It then doubles to 192 nodes, and maintains this depth for subsequent layers, handling
the data’s inherent complexities. The timestep is configured to 500, implying that
evolving from pure noise to the final generated surface needs 500 sampling steps. The
detail is shown in Table 5.3. One thing that needs to be mentioned is that the latent space
in the table is not pure noise in the DDPM model. Other settings like the learning rate
and optimization function are the same as VAE.

Architecture Encoder Bottleneck Decoder
UNet 3-layer CNN shape = (7×7) 3-layer CNN

Table 5.3: The architectures used for DDPM in the research

In addition to the above, the DDPM model also involves unique parameter settings.
During the noise-adding and denoising processes in DDPM, we also need to provide
a series of hyperparameters for the variances of Gaussian distributions, denoted as
{βt ∈ (0,1)}. The value of β should increase with the increase of t . Common approaches
include linear interpolation, cosine interpolation, etc. Here, we choose the first method,
linearly interpolating from 0.0001 to 0.02.

TRAINING DURATION ANALYSIS

The computational efficiency and speed of training play crucial roles, especially
when dealing with intricate architectures and large datasets. The following table details
the training duration for each of the architectures we employed in our research.

Model Architecture Training Duration (hours)
VAE (FC_dim10) 0.12
VAE (FC_dim15) 0.15
VAE (CNN_dim10) 2.96
VAE (CNN_dim15) 3.21
DDPM 9.3

Table 5.4: Training duration for various architectures. We used the DelftBlue supercomputer to train the
DDPM model [44].

Looking at the training times, it is clear that different architectures have different
demands of training. The VAE models using fully connected layers, like FC_dim10 and
FC_dim15, trained faster, taking only 0.12 and 0.15 hours respectively. This is much
quicker than the VAE models with convolutional layers. The jump in training time from
FC_dim10 to FC_dim15 shows that adding more to the latent space can make training
take longer. The DDPM model took the longest at 9.3 hours, showing that its design is
complex and needs more time to train properly. These times remind us that choosing a
model is often a balance: some models might give better results but take longer to train.

5.2. VAE

5.2. VAE

5

47

RECONSTRUCTION

As we discussed before, only in the context of the VAE, the ability to faithfully
reconstruct the original input from the encoded latent space is essential. This
is especially significant since the latent space needs to include all the necessary
information, to ensure the model’s efficacySo in this section, we aim to determine the
best choice for the β value in the VAE’s loss function with respect to reconstruction
quality and the optimal architecture. By employing a set of metrics—MSE, MAE,
Maximum Distance, and Hausdorff Distance—we can systematically evaluate and select
the conditions under which the VAE offers the most precise reconstruction of the implied
volatility surface.

Following an assessment, we ascertained the most appropriate architectural choices
and β values for the reconstruction quality of the implied volatility surface. The
detailed comparison can be found in the appendices. After running numerous trials and
scrutinizing the outcomes under the lens of the chosen metrics—MSE, MAE, Maximum
Distance, and Hausdorff Distance—we converged on an optimal configuration for the
VAE. The CNN architecture with 10 dimensions of latent space surfaced as the superior
choice. Within this framework, the bet a value in the loss function that produced the
most accurate reconstructions was found to be 0.005. This setting effectively balanced
the trade-off between the fidelity of reconstructions and the smoothness or regularity of
the encoded latent space.

A sample of the implied volatility surface reconstructed using the trained VAE is
depicted in Figure 5.4. The surface captures the shifts inherent to the original data. To
further elucidate the exactitude of our reconstruction, we present slices of the surface
along the K −σ dimension. These slices serve to highlight specific cross-sections. By this,
we can get a more detailed and focused view of how closely our reconstructed surface
adheres to the original.

Figure 5.3: Examples of the implied volatility surfaces reconstructed by the VAE.

5

48 5. NUMERICAL RESULTS ANALYSIS AND DISCUSSION

Figure 5.4: Slices of the reconstructed surface along K −σ.

The numerical metrics are tabulated as Table 5.5. The metrics show our VAE’s
strong ability to reconstruct. Both MSE and MAE are low, meaning the original and
reconstructed surfaces are very close. The Hausdorff Distance confirms our model keeps
the shape of the original data well. And even the Max Distance, which shows the biggest
difference, is still pretty low. This means good quality throughout the surface.

It should be noted that the table below, as well as the tables appearing later in this
chapter, are all based on the average values obtained from a random selection of 640
results.

Metric Value
MSE 0.0274
MAE 0.1373

Max Distance 0.0481
Hausdorff Distance 0.3507

Table 5.5: Quantitative metrics for the reconstructed surface.

In conclusion, we have identified an optimal setup for the VAE to achieve a
high-quality reconstruction of the implied volatility surface. This setup serves as a basis
for future VAE-based volatility surface modeling.

GENERATION

Then we turn to see the result of using VAE to generate synthetic implied volatility
surfaces. The use of VAE for generating new surfaces has been a topic of interest in
prior works, so our exploration here will be succinct, focusing on essential outcomes
and observations and leaving a detailed analysis for our subsequent discussions on the
DDPM.

Having trained our VAE on the training dataset, we were able to generate nearly a
thousand implied volatility surfaces. For a visual representation, Figure 5.5 shows one of
the generated surfaces, emblematic of the quality and features exhibited by our model.

A pivotal metric in our evaluation is the 1-Wasserstein distance, a measure denoting
the difference between our generated and original distributions. The VAE model
achieves a 1-Wasserstein distance score of 7.57. This score is a quantitative testament

5.2. VAE

5

49

to the VAE’s effectiveness, indicating the model’s proficiency in generating surfaces that
closely resemble the original data distribution. While it indicates a small distinction,
in the multifaceted landscape of financial markets, such a result is notable. It shows
the VAE’s efficacy in approximating the original volatility structure while introducing
nuanced variations, which is the hallmark of generative models. Of course, interpreting
the score in isolation can be challenging, but its relevance will become clearer when
contrasted with the Wasserstein score from the DDPM model in the subsequent sections.

Figure 5.5: An example of an implied volatility surface generated by the VAE.

For our experiment, we procured test set surfaces and deliberately removed a central
portion to simulate surfaces with missing data. This created an environment that mimics
real-world scenarios where parts of surface data might be unavailable or corrupted.
Once these ’incomplete’ surfaces were generated, we subjected them to the VAE for
completion.

COMPLETION

VAEs are not just for reconstruction. They can also fix or complete incomplete
implied volatility surfaces. Calibrating the latent space makes this repair work better.
We compared the results before and after calibrating the latent space. The results are
clear in the table and figure below.

Metric Before optimization After optimization
MSE 0.1762 1.1836e-06
MAE 0.3085 0.0008

Max Distance 0.4729 0.0051
Hausdorff Distance 0.9674 0.0305

Table 5.6: Comparison of repair metrics before and after latent space optimization.

5

50 5. NUMERICAL RESULTS ANALYSIS AND DISCUSSION

Figure 5.6: Comparison of surface completion before (left) and after (right) latent space optimization.

Figure 5.7: Comparison of the slice of surface completion before (left) and after (right) latent space
optimization.

The metrics present compelling evidence of the advantages of optimization. The
sharp decline in MSE highlights how closely the repaired surface matches the original
after optimization. Similarly, the significant drop in MAE indicates fewer average
differences across the entire surface. Furthermore, the changes in Max Distance and
Hausdorff Distance are noteworthy. While the Max Distance provides insights into the
maximum deviation between the original and repaired surfaces, the Hausdorff Distance
measures shape preservation. The improvements in both these metrics underscore the
VAE’s enhanced ability to maintain consistency and shape fidelity post-optimization.

But beyond the numbers, the visual representation in the figure offers a tangible
perspective. The completion and smoothness of the surface after optimization are
evident, demonstrating the practical benefits of the process.

5.3. DDPM
GENERATION

Next, we turn to the DDPM method. In Section 3.3, we visually present a step-by-step
progression of how the DDPM method is employed to generate a sample of IVs. This
illustration clearly represents the transformation from an initial state to the eventual
outcome. As shown in Figure 5.8, the starting point represents noise following a
standard Gaussian distribution. This noise serves as the foundational layer upon
which subsequent transformations are built. As we advance through the diffusion

5.3. DDPM

5

51

model, each timestep progressively applies a denoising procedure to this base. This
denoising, extended over 500 timesteps. By the end of this process, we eventually
obtain the synthetic but based-on-historical surface. In this experiment, we generated
960 synthetic surfaces by training 8000 original surfaces, which will be evaluated and
analyzed in this section.

Figure 5.8: 500 Timesteps to Implied Volatility Surface.

Before we go any further with the analysis, it is noticeable that the emergence of
the implied volatility surface shape is mainly concentrated in the last half timesteps.
This means that the reverse process of DDPM manifests significant features in the final
steps. This phenomenon can be explained to some extent by the DDPM sampling
formula. As shown in Figure 5.9, with the increase of t , βt grows linearly, reflecting the
proportion of noise added during the forward diffusion at each timestep. On the other
hand, the growth of

p
1− ᾱt is nonlinear due to the cumulative multiplication effect,

capturing the accumulated proportion of noise up to the timestep t . As a result, in
the reverse denoising process, the earlier timesteps primarily address the removal of a
smaller portion of noise. As we approach the end of the process, the timesteps begin
to remove larger and more significant portions of the noise, which correspond to the
main features of the original surface. This culminates in the significant emergence of
the primary characteristics of the surface, notably in the final steps.

5

52 5. NUMERICAL RESULTS ANALYSIS AND DISCUSSION

Figure 5.9: Ratio value.

Next, we will analyze the generated surfaces. An example of the generated surface is
showcased in Figure 5.8. The subfigure at timestep=499 represents the implied volatility
surface produced by the DDPM at its final stage. Inspecting multiple surfaces can be
challenging to the naked eye, so we start by looking at cross-sectional curve plots to
observe more features of the generated samples. This approach also provides insight
into the behavior of options in the market. Therefore, to further assess the quality of the
generated surfaces and to align with common analytical practices, we chose to examine
a K−σ slice, capturing the relationship between the implied volatility and the strike price
at T = 0.5.

Figure 5.10: Generated curves post-training.

Visually, the generated curves display a diverse range in slope and value range.
More importantly, they accurately capture the distinctive features of implied volatility,
highlighting both the skew and the smile curve patterns. This underscores the ability of
DDPM to grasp and reproduce the complex behaviors observed in market data and also
demonstrates that the model can distinguish and emulate these pivotal attributes inside
the implied volatility.

5.3. DDPM

5

53

Figure 5.11 provides a visualization of the relationship between the distribution
of the original implied volatility surface and the distribution synthesized through the
DDPM method. We can see the similarity between the two sets of medians, which
suggests that the DDPM method effectively reflects the central tendency of the original
surface. Upon closer inspection, it is clear that the original surface has a slightly wider
interquartile range (IQR). This suggests that the middle range of the original dataset is
slightly more diverse compared to the DDPM-generated surfaces. However, the latter’s
more compact IQR may also indicate its efficiency in capturing the most frequent and
representative patterns from the original dataset. It is worth noting that outliers are
present in both datasets. Although the raw surface has a wider range, it is commendable
that the DDPM method is still able to model some of these extreme cases.

Figure 5.11: The box plot of original surfaces v.s. synthetic surfaces.

Analyzing further using the Wasserstein metric, Table 5.7 shows that the between
the generated and historical surfaces progressively reduces as the denoising process
continues. This reduction indicates the model’s capability to converge towards the
historical data distribution. Furthermore, it implies that as denoising refines the
samples, they become closer in distribution to the true data. Consistent with the surface
generation visualized earlier, the most significant reduction in distance happens in the
last few steps. This emphasizes that the primary characteristics of the surface become
evident towards the end of the denoising process.

Timestep 1-Wasserstein Distance
0 611.23

300 461.37
450 75.52
490 7.09
497 4.04
499 3.68

Table 5.7: 1-Wasserstein distance between generated and historical surfaces at different timesteps.

5

54 5. NUMERICAL RESULTS ANALYSIS AND DISCUSSION

Figure 5.12: An illustration of the transition from the incomplete surfaces (left) to their completions (right).

5.3. DDPM

5

55

COMPLETION

For the DDPM method, upon obtaining the completed surfaces from it, we also
provide the relevant metrics and comparison images before and after completion.

From the comparison images in Figure 5.12, it is clear that the DDPM method
effectively completes the surface. The restored areas integrate smoothly with the original
sections, eliminating any evident discrepancies. This results in a uniform and seamless
surface, demonstrating the strength of the DDPM approach. The ability to maintain the
surface’s integrity, even in areas that were previously incomplete, speaks volumes about
its precision and reliability. The visual outcome ensures the method’s robustness and its
adeptness at ensuring continuity.

The provided metrics in Table 5.8 show the proficiency of the DDPM model in its
predictions. With an extremely low MSE and MAE, the model demonstrates remarkable
accuracy, suggesting that its predictions closely align with actual observations. Even
in the worst-case scenarios, as indicated by the Max Distance, the deviation of DDPM
remains minimal. While the Hausdorff Distance is relatively larger, it still underscores
the capability of DDPM to produce results that are close to the actual data. Overall, these
metrics collectively highlight the DDPM’s efficacy and precision in its application.

Metric Value
MSE 1.598×10−6

MAE 0.001
Max Distance 0.004

Hausdorff Distance 0.035

Table 5.8: Numerical results for completion of DDPM.

To provide a more tangible representation of our results, we have obtained the K −σ
slices of implied volatility surfaces to highlight the ability of DDPM in the completion
task. Each K − σ slice embodies specific features commonly observed in implied
volatility data, ensuring a comprehensive assessment of the adaptability and robustness
of DDPM.

5

56 5. NUMERICAL RESULTS ANALYSIS AND DISCUSSION

Figure 5.13: The K −σ curves of completion of implied volatility surfaces.

All surfaces were effectively and accurately completed by the DDPM, demonstrating
its capacity to understand and reproduce intricate patterns. The consistency observed
across both surfaces emphasizes the capability to handle diverse data scenarios, even
when faced with specific complexities.

5.4. SUMMARIZATION
As seen from our experiments, DDPM stands out for its accuracy in generating

implied volatility surfaces. DDPM performs well in tasks related to surface generation
with a significantly lower 1-Wasserstein distance (only 3.68), which contrasts with the
higher values found in the VAE model. This low distance highlights the excellent
accuracy of DDPM in modeling the original data distribution, but also its fast
convergence rate. Furthermore, DDPM’s lower score points to its enhanced ability to
consistently produce outputs that are more aligned with historical data. It implies
a higher degree of reliability and robustness, especially when dealing with complex
patterns and outliers. Therefore, when solely considering the 1-Wasserstein distance,
DDPM stands out as the more favorable model for generating implied volatility surfaces,
offering greater precision, consistency, and adaptability compared to the VAE.

Furthermore, DDPM’s capabilities are not limited to surface generation but extend
to surface completion tasks. Its performance in these tasks demonstrates superior
adaptability and accuracy. The inherent functionality of the model allows for impressive

5.4. SUMMARIZATION

5

57

results without the need for additional optimization processes. The DDPM is also
capable of producing satisfactory completions when the complexity of volatile surfaces
is high.

The DDPM has showcased itself as a more reliable approach for generating implied
volatility surfaces, given its superior accuracy and consistency. However, it’s crucial
to underscore that its advantages come into play when the costs associated with its
deployment are feasible. On the other hand, while VAE might exhibit a slight trade-off
in precision, it stands as a valuable alternative in scenarios constrained by time and
budget. The decision between the two, thus, should be made based on a balance of
desired accuracy and available resources.

6
CONCLUSIONS AND FUTURE

RESEARCH

6.1. CONCLUSIONS
Implied volatility, which can not be straightforwardly computed, remains a pivotal

concept in financial markets. There are mainly two methodologies for determining it:
through mathematical model fitting and through data-driven computations. Our work
leans toward the latter, aiming to apply image generating models to implied volatility
surfaces in the financial domain.

We started our work from the VAE model, the subject of extensive prior research.
During training, VAE extracts pivotal information from original images, compressing
them into a lower-dimensional latent space. This latent representation is then decoded
back to produce the original images. Our investigations on VAE revolved around three
key dimensions. Firstly, we ensured that through surface reconstruction, our latent
space captured a rich set of information. Secondly, when generating new surfaces, the
1-Wasserstein distance between our newly formed surface set and the training set stood
at 7.57. Lastly, we employed optimization on the latent space to fill in missing surfaces,
resulting in a MSE of about 10−6 between the completing and original surfaces.

Conversely, the DDPM employs a different philosophy. It continually adds noise
to the original images until a point of pure noise is reached. The model then learns
the denoising process to restore the noise-infused images to their original state during
the training process. our extensive training and evaluation of the DDPM model yielded
promising results. The surfaces generated under DDPM not only displayed remarkable
clarity but also showcased diverse characteristics, vividly representing implied volatility
smiles and skews. An impressive aspect of DDPM’s capability was its 1-Wasserstein
distance, which measured at a mere 3.68. More strikingly, when it came to completing
surfaces, the DDPM effortlessly achieved an MSE of roughly 10−6 without needing extra
optimization.

In comparing the VAE and DDPM models, each has its unique benefits. The VAE

59

6

60 6. CONCLUSIONS AND FUTURE RESEARCH

model only needs to train one neural network to get reconstructed surfaces. This
makes VAE suitable for situations where quick results with less computational power are
desired. On the other hand, DDPM stands out for its precision and quality. The crispness
and diversity of surfaces generated by DDPM, as well as its ability to capture features
distinctly sets it apart. In a word, while VAE had its advantages, DDPM showcased
superior performance in applications.

However, it is worth noting that our current study relies on data from the Heston
model only. Further research and testing are needed to assess their potential in
real-world financial markets.

6.2. FUTURE WORK
For future work, it would be beneficial to incorporate financial constraints, such

as no-arbitrage conditions, into the DDPM framework. This could be accomplished
through conditional DDPM techniques such as the Classifier Guidance Diffusion Model
in [45] or the Semantic Guidance Diffusion in [46]. First is the Classifier Guidance
Diffusion Model, this method does not need to train the diffusion model additionally.
We can use an external classifier to guide the generation of arbitrage-free surfaces on
top of the original trained diffusion model. The only place that needs to be changed
is the mean value of the Gaussian sampling in the sampling process. During the
sampling process, it is expected that the closer the sampling center of the noisy surface
is to the arbitrage-free condition guided by the discriminator, the better. We can
also consider Semantic Guidance Diffusion, which can be implemented to guide the
denoising process of the diffusion model by replacing the no-arbitrage condition with
other more complex discriminators instead of classifiers. This enhancement could
ensure that generated volatility surfaces are not only statistically precise but also in
compliance with fundamental financial principles, potentially improving the model’s
fidelity to the finance domain.

In addition, applying DDPM to real-world financial market data is worth
investigating. The performance of our current model in the Heston dataset is promising,
but real-world financial markets present a more complex and volatile landscape. Testing
the model against real-time market conditions would provide a clearer assessment of its
utility and robustness.

Finally, the potential application of Latent Diffusion Models to larger and more
complex datasets presents a promising area for exploration. It is particularly adept at
navigating the intricacies of big datasets and could offer significant improvements in
the accuracy and computational efficiency of generating implied volatility surfaces.

BIBLIOGRAPHY

[1] S. L. Heston, “A closed-form solution for options with stochastic volatility with
applications to bond and currency options,” The Review of Financial Studies, vol. 6,
no. 2, pp. 327–343, 1993.

[2] D. Duffie, J. Pan, and K. Singleton, “Transform analysis and asset pricing for affine
jump-diffusions,” Econometrica, vol. 68, no. 6, pp. 1343–1376, 2000.

[3] M. R. Fengler, “Arbitrage-free smoothing of the implied volatility surface,”
Quantitative Finance, vol. 9, no. 4, pp. 417–428, 2009.

[4] V. Piterbarg, “A fast strong approximation monte carlo scheme for stochastic
volatility models,” Quantitative Finance, vol. 6, no. 2, pp. 135–140, 2005.

[5] R. Cont and J. da Fonseca, “Dynamics of implied volatility surfaces,” Quantitative
Finance, vol. 2, no. 1, pp. 45–60, 2002.

[6] C. Alexander and D. Korovilas, “Orthogonal methods for generating large positive
semi-definite matrices,” Working Paper, 2001.

[7] B. Ning, S. Jaimungal, X. Zhang, and M. Bergeron, “Arbitrage-free implied
volatility surface generation with variational autoencoders,” arXiv preprint
arXiv:2108.04941, 2021.

[8] M. Bergeron, N. Fung, J. Hull, Z. Poulos, and A. Veneris, “Variational autoencoders:
A hands-off approach to volatility,” The Journal of Financial Data Science, 2022.

[9] T. Dierckx, J. Davis, and W. Schoutens, “Towards data-driven volatility modeling
with variational autoencoders,” in Machine Learning and Principles and Practice of
Knowledge Discovery in Databases: International Workshops of ECML PKDD 2022,
Grenoble, France, September 19–23, 2022, Proceedings, Part II. Springer, 2023, pp.
97–111.

[10] S. Borovkova and M. van den Oever, “Variational autoencoders with student-t
distribution for large portfolios,” Available at SSRN 4264976, 2022.

[11] A. Na, M. Zhang, and J. Wan, “Learning volatility surfaces using generative
adversarial networks,” arXiv preprint arXiv:2304.13128, 2023.

[12] F. Black and M. Scholes, “The pricing of options and corporate liabilities,” Journal
of Political Economy, vol. 81, no. 3, pp. 637–654, 1973.

[13] R. C. Merton, “Theory of rational option pricing,” The Bell Journal of Economics and
Management Science, vol. 4, no. 1, pp. 141–183, 1973.

61

6

62 BIBLIOGRAPHY

[14] J. Gatheral, The Volatility Surface: A Practitioner’s Guide. John Wiley & Sons, 2006.

[15] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer, 2015, pp.
234–241.

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems, 2014, pp. 2672–2680.

[17] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[18] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning
with deep convolutional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015.

[19] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances
in neural information processing systems, vol. 33, pp. 6840–6851, 2020.

[20] A. van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves, and
K. Kavukcuoglu, “Conditional image generation with pixelcnn decoders,” in
Advances in Neural Information Processing Systems, 2016, pp. 4790–4798.

[21] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato,
B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams,
and A. Aspuru-Guzik, “Automatic chemical design using a data-driven continuous
representation of molecules,” ACS central science, vol. 4, no. 2, pp. 268–276, 2018.

[22] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang,
Y. Wang, R. Skerritt et al., “Natural tts synthesis by conditioning wavenet on mel
spectrogram predictions,” in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 4779–4783.

[23] N. Justesen, P. Bontrager, J. Togelius, and S. Risi, “Illuminating generalization in
deep reinforcement learning through procedural level generation,” arXiv preprint
arXiv:1806.10729, 2018.

[24] L. Theis, A. van den Oord, and M. Bethge, “A note on the evaluation of generative
models,” in International Conference on Learning Representations, 2015.

[25] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and
approximate inference in deep generative models,” arXiv preprint arXiv:1401.4082,
2014.

[26] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint
arXiv:1606.05908, 2016.

BIBLIOGRAPHY

6

63

[27] J. An and S. Cho, “Variational autoencoder based anomaly detection using
reconstruction probability,” 2015.

[28] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins, and
A. Lerchner, “Understanding disentangling in β-vae,” NeurIPS, 2018.

[29] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-supervised
learning with deep generative models,” NeurIPS, 2014.

[30] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato,
B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams,
and A. Aspuru-Guzik, “Automatic chemical design using a data-driven continuous
representation of molecules,” ACS Central Science, 2018.

[31] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther, “Autoencoding beyond
pixels using a learned similarity metric,” arXiv preprint arXiv:1512.09300, 2015.

[32] R. T. Q. Chen, X. Li, R. Grosse, and D. Duvenaud, “Isolating sources of
disentanglement in variational autoencoders,” NeurIPS, 2018.

[33] J. Engel, C. Resnick, A. Roberts, S. Dieleman, M. Norouzi, D. Eck, and K. Simonyan,
“Neural audio synthesis of musical notes with wavenet autoencoders,” arXiv
preprint arXiv:1704.01279, 2017.

[34] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara, “Variational autoencoders
for collaborative filtering,” The Web Conference, 2018.

[35] W. Feller, “On the theory of stochastic processes, with particular reference to
applications,” 1949.

[36] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep
unsupervised learning using nonequilibrium thermodynamics,” in International
Conference on Machine Learning. PMLR, 2015, pp. 2256–2265.

[37] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” arXiv
preprint arXiv:2010.02502, 2020.

[38] A. Nichol et al., “Glide: Towards photorealistic image generation and editing with
text-guided diffusion models,” arXiv preprint arXiv:2112.10741, 2021.

[39] A. Ramesh et al., “Hierarchical text-conditional image generation with clip latents,”
arXiv preprint arXiv:2204.06125, 2022.

[40] C. Saharia et al., “Photorealistic text-to-image diffusion models with deep language
understanding,” arXiv preprint arXiv:2205.11487, 2022.

[41] R. Rombach et al., “High-resolution image synthesis with latent diffusion models,”
arXiv preprint arXiv:2112.10752, 2021.

[42] W. Feller, “Retracted chapter: On the theory of stochastic processes, with particular
reference to applications,” in Selected Papers I. Springer, 2015, pp. 769–798.

6

64 BIBLIOGRAPHY

[43] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution
image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2022, pp. 10 684–10 695.

[44] Delft High Performance Computing Centre (DHPC), DelftBlue Supercomputer
(Phase 1), 2022, https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1.

[45] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,”
Advances in neural information processing systems, vol. 34, pp. 8780–8794, 2021.

[46] X. Liu, D. H. Park, S. Azadi, G. Zhang, A. Chopikyan, Y. Hu, H. Shi, A. Rohrbach,
and T. Darrell, “More control for free! image synthesis with semantic diffusion
guidance,” in Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2023, pp. 289–299.

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1

7
APPENDIXA

DDPM GENERATES IMPLIED VOLATILITY SURFACES

We provide a collection of ten implied volatility surface examples generated by the
DDPM.

65

7

66 7. APPENDIXA

8
APPENDIXB

DDPM COMPLETES MISSING IMPLIED VOLATILITY SURFACES

We provide a collection of eight implied volatility surfaces with missing parts
completed by the DDPM.

67

8

68 8. APPENDIXB

8

69

	Introduction
	Problem description
	Background
	Overview of methods for IVs
	Mathematical modeling
	Data-driven modeling

	Research objectives
	Contributions
	Thesis outline

	Implied Volatility Surface
	Related Research
	Black–Scholes model
	Implied volatility surface
	Heston model

	Generative Deep Learning Models
	Deep learning framework
	Generative Model
	Denoising Diffusion Probabilistic Model (DDPM)
	Forward Diffusion Process
	Reverse Diffusion Process
	Training
	Latent Diffusion Model (LDM)

	Variational Autoencoder (VAE)
	Autoencoder (AE)
	Architecture of VAE
	Training

	Methodology
	Generative Models on Implied Volatility Surfaces
	Training Methodology
	Application on implied volatility surface
	Reconstruction
	Generating new surfaces
	Completion

	Evaluation Metric
	Training
	Reconstruction
	Completion
	Generation

	Numerical results analysis and discussion
	Training
	VAE
	DDPM
	Summarization

	Conclusions and future research
	Conclusions
	Future work

	Bibliography
	AppendixA
	AppendixB

