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Option Pricing Theory
Definition: Zero Coupon Bond (ZCB)

A zero-coupon bond with a value at time t with maturity time T,
denoted by B(t, T), is a financial instrument that can be bought at
time t =0 for a price of B(0, T), and pays one unit of currency (euro,
dollar, etc.) at maturity time T, i.e,, B(T,T) =1.

B(TT)=1
B(0,T)

Figure: Payments for a zero-coupon bond with maturity time T.
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Option Pricing Theory

e Constant interest r:

e T OB(t, T)=1=B(t, T)=e"(T71.
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Option Pricing Theory

® Constant interest r:

e T OB(t, T)=1=B(t, T)=e"(T71.

* Continuously differentiable interest: r: [0, T] — R:

B(t, T) = e Ji (9%,
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Option Pricing Theory

Definition: European call option

A European call option gives an option holder the right, but not the
obligation, to buy an asset at a pre-specified maturity time T for a
pre-specified strike price K from the option writer.
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Option Pricing Theory

Definition: European call option

A European call option gives an option holder the right, but not the
obligation, to buy an asset at a pre-specified maturity time T for a
pre-specified strike price K from the option writer.

payoff

St

|
K

Figure: The pay-off diagram of a European call
option: (St - K)" := max{St - K,0}.
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Option Pricing Theory

Definition: European put option

A European put option gives an option holder the right, but not the
obligation, to sell an asset at a pre-specified maturity time T for a
pre-specified strike price K from the option writer.
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Option Pricing Theory
Definition: European put option
A European put option gives an option holder the right, but not the

obligation, to sell an asset at a pre-specified maturity time T for a
pre-specified strike price K from the option writer.

payoff

St

[
K

Figure: The pay-off diagram of a European put
option: (K —S7)" :=max{K - S(T),0}.
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Option Pricing Theory

® Value of a call option: V.

* Value of a put option: V.
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Option Pricing Theory

® Value of a call option: V.

* Value of a put option: V.

Theorem: Put-call parity

Let S be some asset, V;(S,t) the value of an option at time t for

i € {call, put} with S being the underlying asset, K the strike price and
T —t the time to maturity. Moreover, let r be the risk-free interest rate
and assume that r is constant. If S(t) is the price of the asset at time

t, we have the following equality:

Vear(t, §) + Ke (770 = Vout(£,S) + 5(t).
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Option Pricing Theory

® Black-Scholes model

Figure: From left to right: Robert Merton, Myron
Scholes, and Fischer Black.
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Option Pricing Theory

%\t/ 1 252852+r5‘?9—g—rv=0,
\1520 V(T,S)=F(S).
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Option Pricing Theory

o 4 152520Y 1 SOV v =0,
v520. V(T,S) =F(S).

Parameter analysis:
e V: the value of the call or put option,
* S: the value of the asset (or stock),
® r: risk-free interest rate,
* o: volatility of the asset (or stock),
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Option Pricing Theory

o 4 152520Y 1 SOV v =0,
¥S>0: V(T, S) = F(S).

Parameter analysis:
e V: the value of the call or put option,
* S: the value of the asset (or stock),
® r: risk-free interest rate,
* o: volatility of the asset (or stock),
Boundary condition:
* For a call option: F(S)=(St-K)".
* For a put option: F(S)=(K-S7)".
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Option Pricing Theory
The Black-Scholes PDE can be solved analytically!
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Option Pricing Theory
The Black-Scholes PDE can be solved analytically! Write
Iog(%) + (r + %02) T
B o T

and

dy = |0g(70) U\(/r_‘ %02) T -

Moreover, let ® be the CDF of the standard normal distribution.
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Option Pricing Theory
The Black-Scholes PDE can be solved analytically! Write
Iog(%) + (r + %02) T
B o T

and

Iog(—o) (r—laz) T
dy= —K 2 =dh-oVT.
b = /T 1
Moreover, let ® be the CDF of the standard normal distribution.
e Call option:

Veanl(£,5) = S(£) (dy) - Ke " T 90 ().
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Option Pricing Theory
The Black-Scholes PDE can be solved analytically! Write
Iog(%) + (r + %02) T
o T

and

log (32 -1 T
d2_0g(K) (r 20) —di—oVT.

o T
Moreover, let ® be the CDF of the standard normal distribution.
e Call option:

Veanl(£,5) = S(£) (dy) - Ke " T 90 ().

® Put option:
Vout(t,S) = Ke"T D0 (~dy) - S(£)® (~dh) .
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Option Pricing Theory

About the Black-Scholes model:
* Advantages:
® Quick
® Fair price for writer and holder of an option.

<3
TUDelft 11/ 24



Option Pricing Theory

About the Black-Scholes model:
¢ Advantages:
® Quick
® Fair price for writer and holder of an option.
* Disadvantage:

® r and o are assumed to be constant.
® Trading is not a continuous process.
® Dividend payments are considered absent.
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Sustainable Finance

® Brown derivatives — Green derivatives
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Sustainable Finance

® Brown derivatives — Green derivatives

® Copying behavior
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Sustainable Finance

Green bonds

3 /
TUDelft 12



Sustainable Finance

Green bonds
* Multiple definitions
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Sustainable Finance

Green bonds
* Multiple definitions

* Greenwashing
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Sustainable Finance

Green bonds
* Multiple definitions
* Greenwashing
* European Green Bond Standard (EUGBS)
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Sustainable Finance

Green bonds
* Multiple definitions
* Greenwashing
* European Green Bond Standard (EUGBS)

® Greenium
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Sustainable Finance

Key question: How can we determine the value of a green bond?
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Numerical Analysis

* Exact solution — numerical solution (approximated).
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Numerical Analysis

* Exact solution — numerical solution (approximated).
¢ Discretize the time and spatial direction.
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Numerical Analysis

* Exact solution — numerical solution (approximated).
¢ Discretize the time and spatial direction.

0 x Stmax

Figure 1: Finite difference grid {mh,nk},, , for 0 <m < M and
0<n<N.
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Numerical Analysis

Time stepping methods:
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Numerical Analysis

Time stepping methods:
* Explicit
* Forward Euler (FE)
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Numerical Analysis

Time stepping methods:
* Explicit
* Forward Euler (FE)
* Implicit
* Backward Euler (BE)
® Crank-Nicolson (CN)

.3
TUDelft 16/ 24



Numerical Analysis

Time stepping methods:
* Explicit
* Forward Euler (FE)
* Implicit
* Backward Euler (BE)
® Crank-Nicolson (CN)

Differences between explicit and implicit time methods:

® Less computations are required for explicit methods.
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Numerical Analysis

Time stepping methods:
* Explicit
* Forward Euler (FE)
* Implicit
* Backward Euler (BE)
® Crank-Nicolson (CN)

Differences between explicit and implicit time methods:
® Less computations are required for explicit methods.

® Implicit methods tend to be more stable than explicit methods.
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Stability of the Numerical Methods

Consider the test equation for A < 0:

y'=Ay+g(t), t>to,
y (to) = yo.
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Stability of the Numerical Methods

Consider the test equation for A < 0:

y (to) = yo.
The perturbed system is given by
y' =2y +g(t),t> 1o,
N (2)
7 (to) = yo + €o,
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Stability of the Numerical Methods

Consider the test equation for A < 0:

y (to) = yo.
The perturbed system is given by
¥ (to) = yo + €o,
Subtracting (1) from (2), we obtain
€=y -y =A(F-y)=Aet>10,
B (3)
G(t()) = €g,
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Stability of the Numerical Methods
The solution to system (3) is given by

e(t) = ege (1),
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Stability of the Numerical Methods
The solution to system (3) is given by

e(t) = ege (1),
Goal:

tIim le(t)] = 0.
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Stability of the Numerical Methods
The solution to system (3) is given by

e(t) = ege (1),
Goal:
tILTo le(t)] = 0.
Recurvise formula for the error €,:

€n+]_ = Q ()\At) gn.
—_—
Amplification factor
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Stability of the Numerical Methods
The solution to system (3) is given by

e(t) = ege (1),
Goal:
tILTo le(t)] = 0.
Recurvise formula for the error €,:

€n+]_ = Q ()\At) gn.
—_—
Amplification factor

|Q (\At)|<1 < Stability.
|Q (AAt)| <1 <= Absolute stability.
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Stability of the Numerical Methods

Consider again the test-equation for A < 0:

y' =Xy +g(t), t>to,
y (to) = yo.
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Stability of the Numerical Methods

Consider again the test-equation for A < 0:

y' =Xy +g(t), t>to,
y (to) = yo.

® Forward Euler:

2
stable < AtS—X.
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Stability of the Numerical Methods

Consider again the test-equation for A < 0:

y' =Xy +g(t), t>to,
y (to) = yo.

® Forward Euler:

2
stable < AtS—X.

® Backward Euler and Crank Nicolson: unconditionally stable.
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Stability of the Numerical Methods

Consider again the test-equation for A < 0:

y' =Xy +g(t), t>to,
y (to) = yo.

® Forward Euler:

2
stable < AtS—X.

® Backward Euler and Crank Nicolson: unconditionally stable.

We also will consider von Neumann stability.
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Numerical Analysis

The usage of an implicit method forces us to solve a system of linear
equations: Au =f, where A is invertible.
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Numerical Analysis

The usage of an implicit method forces us to solve a system of linear
equations: Au =f, where A is invertible.

c Au=f=—u=A1f
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Numerical Analysis

The usage of an implicit method forces us to solve a system of linear
equations: Au =f, where A is invertible.

* Au=f=—u=A"'f.
‘Too expensive'

® [terative solution methods
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Numerical Analysis

The usage of an implicit method forces us to solve a system of linear
equations: Au =f, where A is invertible.

* Au=f=—u=A"'f.
‘Too expensive'

® [terative solution methods

{uFV s st lim uX = u.
k—o0
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Numerical Analysis

Three iterative solution methods:
¢ Conjugate Gradient

* A must be positive definite: Vv e R"\{0} :v"Av >0,
® Short recurrences.
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Numerical Analysis

Three iterative solution methods:
¢ Conjugate Gradient
* A must be positive definite: Vv e R"\{0} :v"Av >0,
® Short recurrences.
* BiCG-STAB
® Can be used for general matrices A,

® Short recurrences,
® No optimality property.
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Numerical Analysis

Three iterative solution methods:

¢ Conjugate Gradient
* A must be positive definite: Vv e R"\{0} :v"Av >0,
® Short recurrences.

* BiCG-STAB
® Can be used for general matrices A,
® Short recurrences,
® No optimality property.

* GMRES

® Can be used for general matrices A,
® Long recurrences,
® Optimality property.
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Numerical Analysis

The PDE for pricing a green bond is derived by Juriaan Rutten:
ov ov ov
E +(pc = Aeocc) _C + (Oé(ﬁ -r)- )\ro'r\/;) -

2

74 74 2V
t3 (o c2(2—2+a2r86 +2Cp0car\/_ )—rV:O.

® ¢: carbon price,
® r: risk-free interest rate,
® 0,0, volatility of the carbon price and the risk-free rate.
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Research Questions

Are the stability conditions for FE, BE, and CN still valid for this
PDE?
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Research Questions

Are the stability conditions for FE, BE, and CN still valid for this
PDE?

® How do the changing interest rate r and the volatility o influence
the stability of the numerical methods?
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Research Questions

Are the stability conditions for FE, BE, and CN still valid for this
PDE?

® How do the changing interest rate r and the volatility o influence
the stability of the numerical methods?

* What role do the boundary conditions play in when determining
the stability?
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Thank you for listening. Are there any questions?
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