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1 Introduction

This literature review investigates efficient numerical methods for large-scale linear systems
of equations, that can be applied in context of model predictive control (MPC) for the
thermal and the mechanical part of thermo-mechanical systems. These types of problems
are solved at ASML in the next generation Extreme Ultra Violet (EUV) machines. Here,
the thermal disturbances induced by the exposure to EUV cause imaging distortions. Such
imaging distortions are unwanted, so they have to be actively suppressed. This encounters
challenges like dealing with the limited range of a thermal actuator and with the many
possibilities of spatially distributed thermal loads. Therefore, high fidelity models are
employed. Within ASML, usually the finite element method (FEM) is used to model the
thermo-mechanical system, yielding large dynamical systems. For such situations, this
review explores efficient numerical methods, in terms of memory, scalability and overall
computation time.

The aim is to give an overview of successful algorithms for large-scale linear systems.
Recent studies have come up with new ways of combining different solvers, creating
even more effective ones. However, as the performance of solvers is generally problem
dependent, only an impression of the effectiveness for the specific thermo-mechanical
systems can be given.

The report is organized in the following way: the next section presents some well-known
basic techniques for solving linear systems. Hereafter, developments are discussed in
deflation, algebraic multigrid, model order reduction and domain decomposition methods.
The final section gives a conclusion on the found results.

2 Preliminaries

This section introduces methods for solving linear systems of equations, Ax = b, that are
referred to later in the review. The algorithms itself are not explained — for this, see [1] —
but their classification with characteristics and possibly their abbreviation are given.

Methods for solving linear equations can broadly be divided into two categories: direct
methods and iterative methods [1]. Direct methods, like LU or Cholesky decomposition,
are accurate, reliable and robust. However, they are expensive in terms of memory and
computational demands. The accuracy in iterative methods is less than the theoretical
machine precision of direct methods for well-conditioned problems. But in many cases,
this is justified by the fact that the models themselves also have a certain level of
inaccuracy [1].

The two main classes of iterative methods are stationary iterative methods and Krylov
subspace methods. Examples of stationary iterative methods are (damped) Jacobi,



Gauss-Seidel and (symmetric) successive over-relaxation ((S)SOR). Examples of Krylov
subspace methods are the induced dimension reduction method (IDR(s), see Appendix
A), generalized minimum residual method (GMRES), (preconditioned) conjugate gradient
((P)CQG), biconjugate gradient (BiCG), conjugate gradient squared (CGS) and BiCG
stabilized (BiICGSTAB). Like the direct methods, the stationary iterative methods are not
efficient as standalone solvers for large-scale systems, but can be used as preconditioner
or smoother. A preconditioner turns the problem into a better conditioned one. A
smoother removes fast/(spatially) high frequent error-components [1]. Preconditioning is
for instance used in PCG. The convergence of CG depends on the condition number and
the amount and distribution of near-zero eigenvalues, since the corresponding eigenvectors
do significantly contribute to the solution but may converge slowly. Preconditioning is
then used to improve the convergence behavior. The resulting PCG has cheap iterations,
is easy to implement and does not require too much memory; though compared to the
CG, the preconditioner does increase the work per iteration and memory [2].

Multigrid (MG) methods can also be used as preconditioner to accelerate Krylov
subspace methods. They use two complementary processes: smoothing and coarse-grid
correction. The smoothing step dampens the high frequent errors components. On the
other hand, the coarsening step accelerates the convergence of smooth/low frequent error
components. The various MG methods are defined by their choice of smoothing operators,
coarsening strategy, interpolation operators and application strategy [3]. The application
strategy entails the order in which the coarser grids are visited. A two-grid cycle simply
goes from the fine grid to the next coarsest grid and immediately back to the fine grid; but
more complex cycles are possible as well. For instance, when at the coarser grid another
two-grid cycle is applied before going back to the fine grid, is called the V-cycle; other
well known cycles are the W- and F-cycle [4]. In geometric multigrid (GMG) methods,
the coarser grids and the transition operators between them are based on the physical
properties of the mesh. On the other hand, in algebraic multigrid (AMG) methods, these
are based on the matrix-entries, and derived in a purely algebraic sense without explicit
knowledge of the geometry [2]. For systems of partial differential equations (PDEs), there
are various AMG approaches, like the classical AMG (also known as the Ruge-Stiiben
AMG) or smoothed aggregation AMG (SA-AMG) [2].

Deflation methods show similarities with the basis of MG methods, but use model
order reduction (MOR) techniques instead of coarser grids. MOR techniques can lessen
the computational complexity. However, they can destroy the physical interpretation of
the states, they are user-intensive and not flexible. Therefore, MOR techniques are not
used on their own but considered as a complement, like in deflation methods. To clarify
the relation between deflation with multigrid methods, consider a two-grid multigrid cycle
solving Az = b. Take as interpolation operator I the deflation-subspace matrix (i.e. the
matrix consisting of the deflation vectors), as restriction R its transpose, and as coarse grid
operator A, := RAI. If also one preconditioning step is applied with as preconditioner the



deflation matrix!, then the resulting multigrid is the deflation method. For the deflation
method to yield good results, the deflation subspace should contain most of the system’s
variability; this is usually problem-dependent. Standard choices for deflation vectors are:
eigenvectors, recycling solutions (snapshots), subdomain deflation vectors, multigrid and
multilevel deflation vectors [5-7].

Proper orthogonal decomposition (POD) is an MOR technique where a basis is
constructed via a collection of snapshots. Snapshots are solutions of the system at certain
points in time and should capture the dynamics of the system to be solved. They can be
obtained via tactics like the recycling deflation approach, moving window approach, and
training phase approach [6].

A class of techniques that exploits parallel computing is domain decomposition. These
methods rely on the divide-and-conquer strategy, where they aim to solve the problem
on the whole domain by dividing it into subdomains and computing solutions on those.
This leads to easier to solve subproblems because of e.g. simpler geometry or different
modeling equations. The domain decomposition methods are determined by how they
deal with the unknown at the interfaces. For small problems, the interface values can
be obtained via a block-Gaussian elimination, but this becomes too expensive for larger
problems. Then Schwarz Alternating Procedures can used; these alternate between the
subdomains, solving the subproblems and updating the boundary conditions. The domain
decomposition methods are distinguished by their type of partitioning (along edges, vertices
or by elements), the amount of overlap of the subdomains, the processing of interface values
and whether the subdomain solution is computed exactly or approximated iteratively [1].

3 Overview of Literature

In this section, literature is discussed on deflation, algebraic multigrid methods, model
order reduction techniques and finally domain decomposition.

3.1 Deflation

First, deflation methods are investigated as a way of accelerating iterative methods. Con-
sider solving Az = b with PCG, where A is symmetric positive semi-definite (SPSD) and
has d zero eigenvalues. Then even after preconditioning by M, the spectrum of M 1A
can still contain unfavorable eigenvalues that degrade the convergence of PCG and make
it less robust. Deflation techniques can be employed to treat these eigenvalues, in order
to improve the convergence, robustness and scalability of the method. Deflation works as
follows: first solve the deflated system PAZ = Pb for 7, then compute the solution z via

'For the definition of the deflation matrix, see Definition 1



z = Qb+ PTZ. The matrices P and Q used, are defined in the Definition 1, which is given
for SPSD coefficient matrices but can be generalized to non-SPSD matrices [7].

Definition 1. Let the coefficient matrix A be as above, and the deflation-subspace matrix
Z € R™F with full rank and k < n — d be given. Then the Galerkin matrix is defined
as B = ZTAZ € RF** where Z must be chosen such that E is invertible, the correction
matrix is Q := ZE1ZT € R™*" and the deflation matrix is P := I — AQ € R™*",

The columns of the deflation-subspace matrix Z are called the deflation/projection vec-
tors and are such that E is nonsingular (which is the case if N (A) ¢ R(Z)). Eigenvectors
can be used as deflation vectors and can be effective in reducing the effective condition
number and is expected to accelerate the convergence. However, eigenvectors are often
expensive to compute and dense. Meanwhile, the deflation-subspace matrix is wanted to
be sparse yet give good approximations of the eigenvectors [7].

Solving large, ill-conditioned systems of equations is investigated in the paper POD-
Based Deflation Method For Reservoir Simulation [6]. Tt is written by Gabriela Diaz Cortes
in 2019 and concerns the simulation of single- and two-phase flow through highly hetero-
geneous porous media. The paper notes that, usually, preconditioned iterative methods
are employed to solve these problems, but that there are other options like reduced order
models (ROM) or deflation methods that can be combined with iterative methods. Com-
mon options for deflation vectors are expensive to compute (like eigenvectors of the system
matrix) or problem dependent (like subdomain vectors). Therefore, the paper introduces
a deflation method based on POD. This method requires collecting a set of snapshots from
which a POD basis is constructed. Then, the POD basis vectors are used as deflation
vectors. The article employs the POD-based deflation method in order to accelerate the
Krylov subspace iterative method PCG preconditioned with incomplete Cholesky factoriza-
tion (DICCG), for the porous media flow problem. Moreover, the article considers multiple
options for obtaining the snapshots, compares different deflation methods and compares
various two-level preconditioned conjugate gradient (2L-PCG) methods using POD-based
deflation.

The numerical analysis shows that for the incompressible single-phase problem, the
POD-based deflation subspace works better than eigenvectors of the system matrix and
preconditioned matrix, and better than subdomain deflation vectors. For both the com-
pressible single-phase problem and the incompressible two-phase problem, the POD-based
deflation method used in DICCG reduces the number of iterations compared to ICCG.
Finally, the deflated PCG can be seen as a 2L-PCG method and is compared to other
such methods (PCG, DEF1, DEF2, A-DEF1, A-DEF2, BNN, R-BNN1, R-BNN2, ROM,
SROM). 2L-PCG methods consist of a traditional single-level preconditioner (IC in this
case) and a second-level preconditioner (e.g. the deflation matrix). All methods show a



similar performance in terms of work and number of iterations when using POD-based de-
flation vectors, reducing the number of ICCG iterations. With 70-72% of the ICCG work,
Balancing-Neumann-Neumann (BNN) is the most expensive. The methods that performed
best are the deflated PCG (implemented as DEF1, DEF2) and R-BBN2 (obtained by re-
moving the matrices from BNN), which require only 37-40% of the ICCG work.

The advantages of the POD-based deflation method are that it is problem indepen-
dent: while it is introduced for reservoir simulations, it can be adapted to any time-varying
problem. Moreover, it is linear solver independent: while it is applied with PCG, it can be
implemented for various preconditioners and linear solvers. The article shows that among
the various 2L-PCG methods considered, deflated PCG worked best, when all used POD-
based deflation. For further research, G. Diaz Cortes [6] suggests among others a theoretical
study of using POD-bases as deflation vectors, investigating the influence of time-stepping,
using a solution as initial guess and further development of the methodology (combining
parallelization, machine learning, ROM and preconditioners like MG methods together
with deflation methods) [6].

Another paper that investigates 2L-PCG methods is the thesis Two-Level Precondi-
tioner Conjugate Gradient Methods with Applications to Bubbly Flow Problems [7] from
2008, focussing on deflation methods (DPCG or DEF). As in the previous article, incom-
plete Cholesky is used as the traditional preconditioner. Deflation can be used as the
second preconditioner, but also multigrid or domain decomposition methods can be em-
ployed. From an algebraic point of view, these three variants of 2L-PCG methods are
rather close or even equivalent.

For the choice of deflation vectors, first approximated eigenvector deflation, recycling
deflation and subdomain deflation are compared. The vectors should give good approx-
imations of the eigenvectors corresponding to unfavorable eigenvalues of the coefficient
matrix. The preferred deflation vectors depend on the specific problem, but in general,
subdomain deflation works best and is used throughout the paper. In this deflation vari-
ant, the deflation vectors are determined algebraically: the computational domain is split
into multiple subdomains, each corresponding to one or more deflation vectors. Moreover,
subdomain deflation does not require any prior knowledge of the density field and can be
implemented and parallelized in a straightforward manner. Other deflation approaches
are level-set deflation and level-set-subdomain deflation, and could also be attractive. The
numerical analysis of the methods is based on bubbly flow problems. Compared to PCG,
DEF decreases the computational cost for most test cases and is scalable in terms of iter-
ations and CPU time.

Besides deflation, also some other 2L-PCG methods are investigated. Namely, the ad-
ditive coarse-grid correction (AD), balancing Neumann-Neumann (BNN) and its reduced
variants (R-BNN), and multigrid V(1,0), V(0,1) and V(1,1)-cycles. The difference between
the methods is small, so similar convergence behavior is predicted. However, the paper



notes that it has been proven that the deflation variant is theoretically expected to con-
verge faster than AD and BNN. The BNN and multigrid cycles are more robust than DEF
and R-BNN. Multigrid V(1,0)-cycle preconditioner is the best method based on effective-
ness, efficiency and robustness for a class of problems. Usually, the V(1,1)-cycle is faster
than the 2L-PCG methods but requires more work per iteration. When comparing DEF
and multigrid V(1,1)-cycle, considering various approaches for the multigrid algorithms, it
turns out that DEF and V(1,1)-cycle based on Dendy’s blackbox multigrid preconditioner
are the most robust and efficient 2L-PCG methods [7].

A different option for deflation vectors is using multigrid vectors, which are the columns
of the matrix representing the interpolation operator. The paper Accelerating the shifted
Laplace preconditioner for the Helmholtz equation by multilevel deflation [8] (2016) uses
deflation with multigrid vectors. Two-level deflation is a deflation method where the de-
flation vectors (i.e. the columns of the deflation-subspace matrix) are multigrid vectors.
The deflation-subspace matrix then represents the interpolation operator from the coarse
to the fine grid. Multilevel deflation is used if in the two-level method, the coarse grid
problem remains too large to solve exactly via matrix inversion. The multilevel extension
is achieved by introducing a shift and solving the coarse grid problem by going to even
coarser grids, until the problem is small enough.

The Helmholtz equation is a physical model for waves. After discretization, the result-
ing coeflicient matrix is complex, symmetric, non-Hermitian and indefinite. Most iterative
methods do not give good results for this equation. The paper considers complex shifted
Laplacian preconditioners (CSLP) which via damping make the system easily solvable by
for example multigrid methods. However, the number of the outer Krylov subspace itera-
tions increases with the wave number. As a solution, (multilevel) deflation techniques are
introduced, in two possible ways. The first option is deflate the CSLP preconditioned sys-
tem (first precondition, then deflate). The second option is to deflate the original Helmholtz
operator and combine it multiplicatively with the CSLP preconditioner (first deflate, then
precondition). Both options are preconditioned multilevel Krylov methods (which resemble
MG methods, but the coarse-grid problem is solved by a Krylov method), using a flexible
Krylov method for every level. The first option yields better clustering, but also has a
higher computational cost. Numerical results confirm that deflation reduces the amount
of iterations needed [8].

Also concerning the Helmholtz equation is the very recent (2020) article Scalable Con-
vergence using Two-Level Deflation Preconditioning for the Helmholtz Equation [9]. It
concerns solving the Helmholtz equation via deflation. Deflation techniques for accelerat-
ing the convergence of Krylov subspace methods have been investigated in recent research
like the previous article. For larger wave numbers, the CSLP shifts eigenvalues of the



preconditioned system towards zero. The combination of CSLP with a two-level-deflation
preconditioner seemed promising in terms of reducing this phenomenon. However, for
large wave numbers, small eigenvalues reappear. This is due to a misalignment of the
near-singular eigenmodes of the fine- and coarse-grid operators. Therefore, the article sug-
gests using higher-order approximation schemes to construct the deflation vectors. The
resulting method yields better results than the other deflation-based preconditioners for
the Helmholtz equation, and the convergence is almost independent of the wave number [9].

The paper Comparison of the deflated preconditioned conjugate gradient method and
algebraic multigrid for composite materials [2] from 2011 focuses on parallel precondition-
ers for finite element problems in structural mechanics. In structural mechanics, many
applications involve composite materials, where large discontinuities in material properties
cause many small eigenvalues. The problems are translated via FEM to large linear sys-
tems. These are difficult to solve since the small eigenvalues slow down the convergence
of iterative methods like PCG using a simple preconditioner. There exists a correlation
between the number of rigid body modes (RBM) and the number of small eigenvalues of
the stiffness matrix. Therefore, the RBM of elements with homogeneous material proper-
ties are used as deflation vectors, in order to remove those small eigenvalues, resulting in
a more stable and robust method. Nowadays, parallel computing is the standard in finite
element software packages, so only parallel algorithms are discussed in this paper. As the
stiffness matrix is SPD and PCG is well parallelizable, the PCG method is employed. The
paper compares deflated PCG (DPCG) and PCG preconditioned with an AMG method
(more information on AMG is given in the next section). As preconditioner, two variants
of AMG smoothed aggregation (SA-AMG) methods are employed, and compared to diag-
onal scaling (where one choses diagonal matrices D, Dy such that the condition number
of D1ADy is minimal) in numerical simulations on asphalt concrete. For these problems,
the DPCG method proves to be efficient, robust and parallelizable, as it decouples regions
with homogeneous material properties via a subdomain deflation technique.

The DPCG method is compared to using SA-AMG — the best AMG adaptation — as
preconditioner, which is known to be a successful parallel preconditioner for various struc-
tural mechanics applications. The article compares PCG with as preconditioners diagonal
scaling, default and optimal SA-AMG, against DPCG with as preconditioners diagonal
scaling and default SA-AMG; all implemented in a parallel setting. These methods are
applied to meshes derived from real-life samples of asphaltic material and the following is
observed.

e DPCG preconditioned with diagonal scaling has a low cost per iteration and reaches
the solution much faster than PCG with diagonal scaling or even with default SA-
AMG. It is expected that this is due to the fact that deflation and scaling are com-
plementary operations, operating on respectively the lower and upper part of the
spectrum.



e DPCG preconditioned with default SA-AMG reduces the number of iterations com-
pared to diagonal scaling, but does not reach the solution faster.

e For the larger test problems considered (roughly 3 million degrees of freedom), PCG
preconditioned with optimized SA-AMG does outperform the DPCG preconditioned
with diagonal scaling. However, PCG with optimized SA-AMG needs significantly
more software development effort than the much simpler DPCG with diagonal scaling.

While the DPCG has higher memory demands and computation costs, these are worth
it since the deflation ensures convergence even for highly ill-conditioned problems, giving
more accurate results than PCG. Thus, DPCG is efficient, scalable, robust; it improves the
convergence and computation time, and is easily implemented and parallelized [2].

RBM are also used in the article On the use of rigid body modes in the deflated precon-
ditioned conjugate gradient method [10] (2013), which considers mechanical problems with
materials that have strongly varying stiffness. The linear equations arising from problems
with large discontinuities in material properties, are ill-conditioned systems. Namely, the
discontinuities cause small eigenvalues that can deteriorate the convergence of iterative
methods; like noted in the discussion of the previous article considered. This paper
considers as iterative method DPCG. The RBM of the sets of elements with homogeneous
material properties are used to construct the deflation space, to remove those small
eigenvalues corresponding to the slowly converging solution-components. However, a
different preconditioner is employed than in the previous article. Namely, in the previous
article diagonal scaling and smoothed aggregation were used as preconditioners, while
now diagonal scaling and incomplete Cholesky are considered. The convergence of the
resulting DPCG is independent of the discontinuities in the material properties.

RBM deflation broadens the scope of applicability of deflation techniques, as it can
be used for discretized coupled PDEs. Using RBM to accelerate computations has also
been employed in AMG methods, among others. The parallel implementation of DPCG
was compared with SA-AMG, which is a state-of-the-art solver for these mechanical
problems. Numerical experiments showed that DPCG is quite competitive with SA-
AMG. For most applications, when using sparse deflation vectors, the cost of speeding
up via deflation is that DPCG is takes roughly 30% more time per iteration than PCG [10].

3.2 Algebraic Multigrid

In the 1980s, the classical AMG methods were introduced, which are efficient for M-matrices
and Poisson models. AMG determines the transition operators between grids (restriction
and interpolation/prolongation) automatically. The methods are based on the observation
that the near-kernel of the operator A can be approximated by a constant vector. But this



limits their use in for example elasticity problems [3,11]. Smoothed aggregation AMG (SA-
AMG) is an AMG method modified to solve elasticity equations [2]. Also, methods like
the adaptive AMG (0AMG), Bootstrap AMG (BAMG) and AMG based on element inter-
polation (AMGe) have been developed to solve problems where the classical and smoothed
AMG do not work well. Contrary to classical AMG, for these methods there are no re-
strictions on the near-kernel of A. Instead, they approximate the near-kernel adaptively.
The main idea of adaptive AMG is finding algebraically smooth modes (vectors that are
not damped by relaxation) of A. In elasticity problems, RBM can be used to define an
approximation of (part of) the near-kernel beforehand. This can be exploited to create
effective methods in e.g. aggregation-based AMG, domain decomposition, and deflation
methods as was shown in the previous section [3].

Focussing on parallel implementation, there are two general-purpose parallel AMG
codes, namely BoomerAMG? for classical AMG and ML? for SA-AMG. It is shown that
SA-AMG generally performs better than classical AMG. A generalized version of SA-AMG
is even more robust, but also more expensive. The parallel smoother employed in SA-AMG
has a big impact on the performance of the methods. It is shown that when comparing
parallel hybrid Gauss-Seidel orderings with polynomial (Chebyshev) smoothers, the poly-
nomial smoothers are preferred. Therefore, the article [2] discussed in the previous section
used Chebyshev smoothers for both the default and optimal version of SA-AMG [2].

The article Algebraic Multigrid Based On Element Interpolation (AMGe) [11] (2002)
introduces AMGe. In MG methods, the interpolation operator must be constructed such
that its range can well-approximate the error components remaining after relaxation, called
the smooth error components. This brings forward the problem of determining smooth
error components. Here, two local measures are suggested to find local representations of
such error components.

As mentioned, classical AMG was designed for M-matrices, where the strength of
connections (SoC) is easily measured. The SoC is used in the coarsening process as it can
be used to determine which variables represent smooth error components. However, for
many problems (when the matrix is not an M-matrix) the SoC is not as easily measured,
and AMG has to be modified. There are many different AMG versions, constructed for
specific problems. Generally, these methods work well on the problems for which they are
designed, but break down in different situations or it cannot be determined beforehand
whether or not they will be effective. Therefore, the AMGe method — for solving PDEs
discretized by Ritz-type FEMs — is introduced, with the aim of having a method that
is robust: “it is expected to perform well in more general problems involving high aspect
ratios, so they should be widely applicable for problems based on unstructured grids having

2Contained in the Hypre package (https://hypre.readthedocs.io/en/latest/solvers-boomeramg.html)
3 Algebraic multi-level preconditioner package, contained in Trilinos project
(https://trilinos.github.io/ml.html)
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thin domains or regions”. But this wider applicability comes at the cost of needing more
information than in classical AMG, namely access to the element stiffness matrices. These
matrices are used to localize two existing global measures M; and Ms, discussed in more
detail later. The resulting local measures are in turn used to find smooth error components
and to determine the interpolation operator. The restriction matrix is then chosen to be
the transpose of interpolation matrix, and the Galerkin coarse-grid operator is used. The
method derived from Mj is denoted AMGel, and from My is AMGe2.

Consider the linear system Au = f arising from finite element discretizations, where A
is SPD and can be expressed as the sum of known finite element stiffness matrices. In MG
methods, the relaxation and coarse-grid correction must be complement to each other, i.e.
errors not reduced by the relaxation must be reduced by the coarse-grid correction and vice
versa. This article uses a simple point-wise method as relaxation — like Richardson, damped
Jacobi or Gauss-Seidel — which reduces error components in the direction of eigenvectors
corresponding to large eigenvalues quickly, while those corresponding to small eigenvalues
are reduced slowly. In classical AMG, multigrid components are constructed based on the
properties of M-matrices causing smooth error components to vary slowest in the direction
of strong dependence. Classical AMG is not necessarily restricted to M-matrices, but
does require this feature associated with M-matrices regarding smooth error components.
To get a more robust method, this feature is here replaced by the requirement of the
interpolation operator to approximate eigenvectors of A with an error bound proportional
to the size of its corresponding eigenvalue; to ensure it is complement to the relaxation.
Note that in the next article [3] discussed, a method is investigated that instead uses a
more generally applicable SoC definition. The M; and M measure how well this new
requirement on the interpolation operator is satisfied, but do so globally. In practice, we
want to measure the quality of the interpolation locally, hence the measures are localized.
The requirement then relates the interpolation quality to local eigenvectors. To localize the
measures, access is needed to the finite element stiffness matrices. The interpolation matrix
is then constructed by solving a constrained min-max problem, that aims to minimize the
bound on the localized measure while maximizing sparsity of the coarse-grid operator.

In the numerical analysis, two test cases are considered: a Poisson equation discretized
on stretched quadrilaterals, and a plane-stress cantilever beam with various thicknesses
of the beam. Three versions of standard AMG, AMGel, AMGe2, and the CWF method
(presented by Chang et al. [12]) are applied. The coarse grids are constructed the same way
for AMG and AMGe, but in AMGe the interpolation matrix is based on elements and hence
is different than for AMG. In the stretched quadrilaterals problem, the AMGe methods
improve upon one of the three AMG variants. While the other two AMG variants give
results similar to AMGe, it could not be determined beforehand how they would perform.
On the other hand, from AMGe it was expected that they would yield good results. For the
plane-stress cantilever beam problems, the AMGe methods are independent of the beam
size or improve for thinner beams, while the AMG methods and even GMG become less
stable for thinner beams.
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For both test cases, AMGe methods outperformed the AMG methods, yielding better
convergence rates. As further research the article suggests that the construction of the
coarse grid could be improved by using the information in the local measures [11].

In Solving Tensor Structured Problems with Computational Tensor Algebra [13] (2010),
a tensor multigrid (TMG) algorithm is presented. Tensors are here considered as objects
with more than two dimensions, like higher dimensional matrices (a more detailed de-
scription of tensors is given in MOR section). Multidimensional problems are viewed as
tensor structured problems and a framework is introduced to solve them via tensor algebra.
Usually, multidimensional problems are reshaped into matrices and vectors, which can be
solved with the common methods of matrix algebra, and then the solution is changed back
into its original form. However, this way the multidimensional structure of the problem
is lost, possibly deteriorating the convergence of the solvers. On the other hand, the new
framework preserves the structure and data coherence of the problems. A tensor space is
an outer product of multiple vector spaces. In this paper, the vector spaces have a unique
predefined order. This makes the tensor multiplication commutative. Also, note that all
the properties of a tensor are gathered in its component values and indices. This framework
enables automated optimization of solving algorithms. Moreover, the decomposition of the
tensor multiplication allows parallelization of the computations.

To solve the tensor equations, tensor modifications of well-known solvers are considered.
Direct tensor methods, like tensor extensions of Gauss elimination or LU decomposition, are
not effective for large systems of tensor equations, similar to the non-tensor case. Then, use
iterative tensor solvers. Stationary iterative tensor solvers, like the tensor Jacobi method,
reduce the amount of memory needed, but do not converge for all problems. Therefore,
Krylov subspace tensor solvers, like tensor CG, are developed, which perform better for
most problems. As final class, the tensor multigrid (TMG) methods are introduced. Re-
call that AMG derives meshes and operators based on the matrix entries only, but risks
the loss of data coherence which could deteriorate the convergence. On the other hand,
GMG does preserve spatial coherence in multidimensions, but is problem dependent. Via
tensors, the two methods are combined in the TMG algorithm. TMG is similar to AMG,
but due the the use of tensors, it can preserve the multidimensional structure and spatial
data coherence like in GMG. TMG and AMG are compared numerically for a test-problem
of image reconstruction, where TMG converges faster and gives a better solution.

The paper introduced a tensor framework in which to solve multidimensional problems.
This, contrary to the matrix-approach, maintained the structure of the problems and en-
sured commutativity of tensor multiplications. This resulted in computationally efficient
solvers, benefitting from automatic expression analysis, and separability properties [13].
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The paper A robust adaptive algebraic multigrid linear solver for structural mechan-
ics [3] (2019) considers numerical simulations of structural mechanics problems via finite
elements. This requires solving large, ill-conditioned linear systems of equations, hence a
robust and efficient linear solver is sought. Direct solvers are only able to reach superlinear
complexity at most. However, iterative solvers combined with AMG preconditioners
can reach up to linear complexity if the problem is sufficiently regular. However, these
methods do not guarantee convergence and need more user-knowledge for an efficient
setup. Therefore, the paper presents an adaptive AMG method which is designed to
improve its usability and efficiency for structural problems.

The article continues on the the adaptive Smoothing and Prolongation based Algebraic
Multigrid (aSP-AMG) method proposed in [14]. The modifications made improve its
applicability for large-scale and challenging SPD linear systems resulting from linear
elasticity PDEs. The aSP-AMG method automatically constructs an approximation of
the near-kernel of the system matrix. The paper proposes a new way of determining the
interpolation operators in a least-squares sense. Moreover, it automatically tunes the
accuracy of the Adaptive Factorized Sparse Approximate Inverse (aFSAI), which is used
as a smoother and has a very high degree of parallelism. Coarsening algorithms rely on
the SoC, which measures the connection between nodes. aSP-AMG uses an affinity-based
SoC, which is wider applicable than the commonly used definition of SoC. It needs a
test space, which is a matrix with smooth modes as its columns. The Simultaneous
Rayleigh Quotient Minimization by Conjugate Gradients (SRQCG) is used to compute
the test space, as its initial convergence is often faster than that of other eigensolvers
like the Lanczos algorithm. For the adaptive prolongation, an interpolation operator is
constructed — using the dynamic pattern least squares (DPLS) algorithm — that is close
to the set of test vectors.

In the sensitivity analysis the most important configuration parameters for aSP-AMG,
their useful range and prospective default value are determined. From this, it is shown
that the majority can be set to a default value without compromising their performance.
Then, the aSP-AMG (as preconditioner for PCG) is compared to state-of-the-art MG
methods like GAMG (geometric agglomerated algebraic multigrid) and BoomerAMG.
They are applied to real-world structural problems, chosen for their large size and sources
of ill-conditioness. In most cases, the aSP-AMG method has smallest computation time.
Moreover, it still yields good results when using the default parameter values, hence
decreasing the need for fine tuning.

As next steps, the paper suggests among others extending to a block version, where z,
y and z unknowns of each physical node are grouped together [3].
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3.3 Model Order Reduction

The goal of MOR techniques is to reduce the complexity of large systems of equations,
resulting in a computationally efficient model yet still giving an accurate representation of
the original system [15].

A tensor decomposition approach to data compression and approximation of ND sys-
tems [15] (2010) introduces a new MOR technique for systems with multiple independent
variables by combining the techniques of tensor decomposition and POD. The resulting
method has as benefit that the multidimensional structure of the original model is main-
tained. Earlier work mostly focussed on the evolution of systems with as only independent
variable the time. This paper aims to obtain reduced order models for multidimensional
systems, by explicitly taking the structure of the various independent variables into ac-
count. While POD can already be applied to such systems, it only separates space and
time and no further structure is assumed regarding the space-domain. So basically, POD
is a method considering two variables. POD is generalized by assuming a more general
Cartesian structure for the independent (spatial) variables and employing tensors, so that
the multidimensionality of these variables is taken into account. Also, prior knowledge of
the structure of the problem can be used to improve the approximations.

The paper first introduces the original POD method. Consider the PDE describing
a linear distributed system in a signal evolving over multiple independent variables. The
domain is assumed to have a Cartesian structure, which is in most cases the product of
a spatial and temporal domain. A Hilbert space of functions on the spatial domain is
considered, and (given some assumptions) every solution allows a spectral expansion in the
orthonormal basis functions of this Hilbert space. Given some r > 0, the lower rank r ap-
proximation of the solution is defined by a truncation of this expansion. The reduced order
model is defined by the set of lower rank approximations satisfying the Galerkin projection
for all functions in the finite dimensional projection space being the span of the first r basis
functions of the Hilbert space. This way, the original PDE is reduced to an approximate
model consisting of » ODEs. The quality of this reduced model is determined by its choice
of basis functions for the Hilbert space. For POD, these are determined empirically, from
a set of measured /simulated data representative for the model. The basis functions are the
solution to a constrained optimization problem, and they minimize the integrated error be-
tween the solution and all its truncated rank r approximations. Moreover, the POD basis
is determined by the eigenfunctions of the data correlation operator. In many applications,
FEM can be used to discretize the PDE, yielding a difference equation. The finite element
solutions are defined on a domain of finite cardinality and also the (solution) Hilbert space
becomes finite dimensional. Finding the POD basis functions then is simply an algebraic
eigenvalue/singular value decomposition problem.

As mentioned, the original POD puts all spatial variables together. Therefore, modifi-
cations based on tensors are introduced to preserve the multidimensional nature of the sys-
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tem. The data in multiple independent variables can be associated with a tensor. Namely,
assume that the spatial domain itself also has a Cartesian structure. Then the data can be
stored in a multidimensional array, which in turn defines a tensor. The projection spaces
are constructed via orthonormal decompositions of the tensor, and are then used to con-
struct reduced order models via Galerkin projections on equation residuals. Here, tensors
are defined as multilinear functionals. A tensor decomposition is an expansion of the ten-
sor in more elementary building blocks, like low-rank tensors. For matrices, decomposition
is done via SVD, but for higher order tensors this is not as straightforward. The paper
considers the Tucker decomposition of tensors and proposes an algorithm to compute the
the singular values, vectors and singular value core tensor. The tensor SVD (TSVD) is
then used to determine a projection basis to construct reduced order models.

While the TSVD decomposes the entire tensor, one might only be interested in the or-
thonormal bases for the vector space of functions on the spatial domain, not the temporal
domain. Therefore, the TSVD can be modified such that only these vector spaces are or-
thonormalized, removing unnecessary constraints from the optimization problem (namely
the constraints orthonormalizing vector spaces of functions defined on temporal domain).
This results in more accurate models since there is more freedom to capture information
of the original data in the POD basis. The new construction for decomposing a tensor
is by dropping these constraints and then computing the dedicated* singular values and
vectors of the tensor. The dedicated representation is used to define the dedicated modal
truncation.

To conclude, the paper adapted the POD method such that the multidimensional na-
ture is explicitly considered. First, it was shown how the new POD basis functions are
computed via a lower rank decomposition of a tensor. Second, it was shown how prior
knowledge can be used to yield better approximations, illustrated by examples [15].

The article Tensor-based reduced order modeling in reservoir engineering: An applica-
tion to production optimization [16] from 2015 introduces tensor-based MOR for reservoir
engineering. In reservoir simulations, the evolution of saturation and pressure over time
and space are simulated, generally represented with a three-dimensional Cartesian plane.
Empirical subspaces are created via tensor representations of flow profiles. The paper
considers the Single Directional Modal-rank decomposition (SDM) for the decomposition
of tensors. The flow equations are then projected independently in every physical
dimension onto these empirical tensor subspaces via Galerkin projections. This results in
reduced order approximations of the original mass and momentum conservation equations.
This tensor MOR technique is employed in the setting of water flooding to compute
gradient-based optimal production strategies via tensor-based reduced order adjoints.
In such optimization problems to maximize the financial output of a reservoir, large

4 dedicated stands for dropping certain orthonormalization constraints in the computation of the singular
values and vectors
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numerical reservoir models are used as equality constraints. These constraints can be
solved using MOR. The original POD method has limitations in reservoir engineering.
Namely, the obtained reduced reservoir models are often unstable or inaccurate, due to
the highly nonlinear systems with gravity terms in the flow equations. To overcome these
problems, tensors are used to maintain the spatial correlation that get lost in the classical
POD projection spaces; like noted in the previous article.

In the numerical analysis, both POD and tensor MOR. techniques are applied to a
reservoir model. Projection onto the POD subspaces means the loss of the diffusive-
convective nature of the model. On the other hand, the tensor MOR technique does
represent most of the dynamical characteristics of the model; but the accuracy of the
tensor models depends on method for generating the empirical projection spaces. The
computational gains were only 5% to 10% for POD and tensor MOR, compared to the
full model. This is rather low and is a known limitation of projection-based methods, and
methods are known to improve on this like trajectory piecewise linearization (TPWL) [17].
Also, the MOR techniques are applied to optimization problems related to water flooding.
There, POD and tensor-based MOR are compared for the financial performance. POD
encounters limitations in terms of accuracy, while the tensor strategy yields better results
and is close to the optimal strategy for the full model.

The advantages of using tensor representations over POD-based MOR techniques
are the higher approximation accuracy and their application in optimization problems [16].

3.4 Domain Decomposition

Domain decomposition (DD) methods are generally inefficient as stand-alone solvers,
but can yield efficient (parallel) preconditioners. DD divides the domain into multiple
subdomains, consequently splitting the problem into multiple subproblems which are
coupled through their interface-values. The coupling is then replaced by an iterative
process. Efficient DD preconditioners consist of both local and global components. The
strong connections between neighboring subdomains are captured in the local part. The
global component (a.k.a. the “coarse space correction”) allows cheap communications
among all subdomains. In homogeneous DD, every subdomain has the same model and
discretization, while in heterogeneous DD these can vary per subdomain [18].

The thesis Domain decomposition preconditioners: theoretical properties, applications
to the compressible Euler equations, parallel aspects [18] (2003) suggests efficient parallel
preconditioners based on DD techniques, for problems with unstructured grids. Domain
decomposition preconditioners based on both overlapping and non-overlapping decompo-
sitions are proposed and applied to the compressible Euler equations (CEE, a classic aero-
dynamic problem) in a parallel setting. Moreover, grid adaptation is used to improve the
results and optimize the use of computational resources. The final framework is called
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aVUNKS, where the o stands for grid adaptation, WN for the pseudo-transient continu-
ation Newton method, K for Krylov subspace method and S for the DD preconditioner
(either Schwarz or Schur complement based).

The large class of homogeneous DD methods is split into two groups: overlapping and
non-overlapping subdomains. The overlapping a.k.a. Schwarz group ensures communica-
tion among the subdomains through the overlapping areas. However, these overlapping
areas are not enough to get scalability. Considering the simplest one-level Schwarz precon-
ditioners, they are not scalable —i.e. the performance degrades as the number of processors
increases — since information is exchanged only in this local manner. The Schwarz methods
are made scalable by introducing a coarser grid, here constructed via (smoothed) aggre-
gation/agglomeration procedures. This is an algebraic procedure which does not require
a geometric definition of the grid, but operates on the matrix entries. The advantage is
that it can be used on unstructured grids and does not require any user-input besides the
matrix and the dimension of the coarse space. The resulting two-level Schwarz precondi-
tioners have an additional coarse level correction term on the subdomains. Typically, the
group of nodes in a subdomain form an aggregate. Among the two-level Schwarz methods
the additive and multiplicative Schwarz methods are considered. In the context of parallel
computing, the additive Schwarz method is preferred over the multiplicative one.

In the non-overlapping group, the unknowns are divided into two sets: those on the
interface between or internal nodes within subdomains. By “condensing” the internal
unknowns, the Schur complement (SC) matrix is formed. The solution is determined by
computing the interface unknowns and then computing the internal unknowns for each sub-
domain by solving the independent subproblems. The SC method is derived from element-
(EO) or vertex-oriented (VO) non-overlapping decompositions. In EO respectively VO de-
compositions, the domain is decomposed such that each element respectively vertex of the
grid belongs to a different subdomain. The advantage of the VO decompositions is that the
local operators are derived directly from the assembled global matrix, while for EO decom-
positions this involves the problem dependent assembly process. The VO decomposition
suggested to use is such that one subdomain is connected to all the other disconnected sub-
domains; allowing fast information-exchange and the definition of global preconditioners.
For the resulting SC matrix, various preconditioners are investigated, like the Swiss carpet
preconditioner which is a Dirichlet-Neumann domain decomposition method®. The Swiss
carpet preconditioner for VO is compared to the state-of-the-art BNN preconditioner for
EO. While BNN requires fewer iterations to converge, its preconditioning phase is much
more expensive in both CPU-time and memory. Also, a class of approximate Schur comple-
ment (ASC) preconditioners is suggested since the exact SC matrix is dense and expensive
to compute.

The CEE is discretized via a multidimensional upwind residual distribution (MURD)
scheme, which is applicable to unstructured grids. The resulting large system of nonlinear

SFor more information on the Swiss carpet preconditioner, see [19]
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equations which is solved via the Newton method. At each Newton iteration, a linear sys-
tem with the Jacobian matrix is solved via a Krylov subspace method with a preconditioner
based on DD techniques. To get even better results and improve the use of computational
resources, a-posteriori adaption cycles are employed. These mesh adaptation procedures
decrease the mesh size when the solution is not yet accurate enough, and decrease the num-
ber of elements where the solution is accurate. The resulting parallel algorithm aW N K S
combines a non-linear solver, Krylov accelerator, DD preconditioners (of both the Schwarz
and SC-based group), and mesh adaptation procedures. The numerical results for aeronau-
tical test problems show that this algorithm improves on the results from MURD schemes.

Finally, the numerical simulations are performed, on distributed memory parallel com-
puters. First, the Krylov accelerators Bi-CGSTAB, CGS, TFQMR, GMRES(25) and GM-
RES(60) are applied to a test problem with as preconditioner the one-level Schwarz precon-
ditioner with ILU(0) and one-element of overlap among the subdomains. The size of the
overlap is a compromise between the number of iterations required for convergence and the
CPU-time, and this minimal overlap used is optimal. Regarding the Krylov accelerators, it
is found that GMRES is preferred if there are no memory restrictions, otherwise TFQMR
should be used. Next, within the two-level Schwarz methods, the additive and hybrid
version are compared, also with the one-level Schwarz method, based on CPU-time. The
numerical results show that for low CFL numbers, the one-level Schwarz preconditioner
is preferred. Otherwise, the hybrid two-level Schwarz preconditioner is preferred. Finally,
the SC-based methods are analyzed. For the test cases considered, the SC solver requires
more CPU-time than methods operating on the unreduced matrix. But note that the per-
formance depends on the computer architecture and processors used in the simulations. It
is suspected that — due to the cost of solving the internal problems — the SC solver only
performs well when the there are few unknowns compared to the number of processors, or
when the the CPU speed is high compared to the communication speed. When investi-
gating the ASC preconditioner, its scalability turns out to be rather good, but it requires
more CPU-time than the two-level hybrid Schwarz preconditioner. Though, both meth-
ods have superlinear speedups, and the ASC is an effective method for the test-problem.
Overall, the numerical analysis showed that combining Krylov accelerators with Schwarz
preconditioners and a mesh adaptation procedure yields effective and scalable methods for
solving CEE on unstructured grids [18].

The paper Comparison of domain decomposition methods for elliptical partial differen-
tial problems with unstructured meshes [20] (2012) parallelizes finite element simulations
via the non-overlapping DD methods: Schur Complement (SC) method and the Finite
Element Tearing and Interconnecting (FETI) method. The paper considers finite element
problems concerning two-dimensional linear elliptic PDEs and introduces a parallel
solution method.

The FEM requires solving large systems of equations, where time can be saved by
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distributing computations over multiple parallel processors. First, the finite element
domain is partitioned into subdomains such that each contains approximately the same
number of nodes. Usually, the number of subdomains equals the number of processors. To
ensure the computational load is divided equally over the processors and to minimize the
communication required amongst them, minimize the number of subdomains per processor
and the number of common elements between them. The paper uses a combination of
Gmsh® and METIS” algorithm for the domain discretization and partitioning. Then, a DD
method splits the large-scale problem into several smaller interconnecting subproblems.
The independent subproblems can be solved in parallel.

Consider the linear problem Kx = b where K is SPD, arising from discretizing a static
field on the domain. Two DD methods are investigated to solve this problem. First,
the SC method is used. After dividing the domain into subdomains, each subdomain is
assigned to an independent processor and the equation is split into blocks. The unknowns
on the interface boundaries of the subdomains are computed via the Schur complement
matrix; this is called the coarse grid problem, as it only uses unknowns of the interior
boundaries. While these cannot be computed in parallel, the system is much smaller
than the original problem. Then, the unknowns in each subdomain can be computed in
parallel. Note that after computing the unknowns at the subdomains interface boundaries,
their values must be communicated to other processors in order to compute the unknowns
in the subdomains. The cost of this communication is worth it if the problem is large
enough. Next, the FETI method is investigated, which is a powerful and popular solver.
It replaces Kz = b by a system of equations incorporating a vector of Lagrange multipliers
introduced for enforcing a constraint on the subdomain interface boundaries. In the
resulting equations floating subdomains can be encountered, which are subdomains where
there are not enough Dirichlet boundary conditions. To ensure solvability also in these
cases a condition is added, and some algebraic manipulations then yield the FETT interface
problem, which is to be solved for the Lagrange multiplier vector. This can be done via
an iterative algorithm, or as is done here via a direct solver based on splitting the vector.

In the numerical analysis, two problems are considered: single-phase transformer and
parallel-plate capacitor, which are both static problems resulting in elliptic PDEs. The
former problem is considered for two sizes of degrees of freedom (DOFs). The problems
are solved by both DD methods on a massively parallel computer, for various amounts
of processors and unknowns per subdomain. Due to the symmetry of the test problems,
they only need to be solved on a quarter of their domain. However, when many processors
are used, FETI benefits from solving the full problem as this does not contain floating
subdomains, and is done with a mesh size as large as the quarter problem. The FETI
method is faster than Schur, except when many processors (around 6 or higher) are used,
then Schur is faster on the quarter problem. However, when FETI solves the full problem

6Gmsh is an open source three-dimensional finite element mesh generator (https://gmsh.info)
"METIS is a set of serial programs for partitioning graphs and finite element meshes, and for producing
fill reducing orderings for sparse matrices (http://glaros.dtc.umn.edu/gkhome/views/metis)
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it is faster again. Note, both methods are for all the number of processors considered (2 up
to 8) faster than the sequential computation. The speedup by adding processors compared
to two processors is also investigated. For the single-phase transformer, a larger number
of DOFs gives a greater speed-up for the full FETI method. For the Schur method, its
speedup increases when there are more processors, for all test cases.

This paper compared execution time and speedup for the FETI and SC method for
two problems. The parallel FEM works properly with both FETI and SC, namely, for
both the execution time decreases when more processors are employed. The speedup for
eight processors (compared to two processors) was seven times and five times for SC and
FETI, respectively. For further research, the paper suggests investigating more complex,
large two- and three-dimensional problems, and constructing preconditioned iterative
solvers for the FETI method, which can handle subdomains with Neumann boundary
conditions [20].

4 Conclusion & Discussion

This literature review has given an overview of various methods used to solve large
systems of equations. Deflation, algebraic multigrid (AMG), model order reduction
(MOR) and domain decomposition (DD) have been reviewed to determine what might be
good methods for solving large thermo-mechanical models.

First, papers on deflation methods as a way of accelerating iterative methods have
been investigated. The deflation techniques treat the unfavorable eigenvalues that degrade
the convergence of the iterative method. [7] shows that subdomain deflation works best
in general, compared to eigenvector deflation and recycling deflation. [6] introduces
POD-based deflation methods for reservoir simulation, which improve upon deflation
subspaces based on eigenvectors of the system matrix and preconditioned matrix, and
subdomain deflation vectors. The deflated PCG preconditioned with incomplete Cholesky
(DICCG) reduces the number of iterations compared to ICCG, and works well compared
to various other 2L-PCG methods as well. [8,9] both use multigrid vectors (i.e. the
columns of the interpolation matrix) as deflation vectors. Combining this deflation
with CSLP for the Helmholtz equation reduces the amount of iterations needed. Using
higher-order approximation schemes to construct the deflation vectors yields convergence
almost independent of wave number. [2,10] use RBM of elements with homogeneous
material properties as deflation vectors, for composite material problems in structural
mechanics. DPCG preconditioned with diagonal scaling is faster than PCG with diagonal
scaling or even default SA-AMG. While DPCG has higher memory demands and compu-
tational costs, these are worth it since the deflation ensures convergence even for highly
ill-conditioned problems.
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Second, some papers on AMG methods have been discussed. AMG is a class of multi-
grid methods where the hierarchy of meshes and the transition operators between them
are derived in a purely algebraic sense using only the matrix-entries, not requiring explicit
knowledge of the geometry. [11] introduces AMG based on element interpolation (AMGe)
for solving PDEs discretized by Ritz-type FEMs. Both of the two versions of AMGe
outperform the AMG methods considered. [13] presents tensor multigrid (TMG), in which
AMG and GMG are combined. TMG converges faster and gives better solutions than
AMG in the test-problem of image reconstruction. Finally, in [3], the adaptive smoothing
and prolongation based AMG (aSP-AMG) method is considered for structural mechanics
problems. When used as preconditioner to PCG, aSP-AMG has smaller computation time
compared to the state-of-the-art MG methods like GAMG and BoomerAMG.

Third, papers investigating MOR have been considered. MOR techniques aim to
reduce the computational complexity while still giving an accurate representation of the
original system. [15,16] both use a tensor-based MOR technique for systems with multiple
independent variables, by combining techniques of tensor decomposition and POD. The
resulting method preserves the multidimensional structure of the original model. In
reservoir engineering, the tensor MOR outperforms POD for an example problem, however
both gains are not very large. In optimization problems, the tensor strategy is close to
the optimal strategy for the full model.

Finally, papers focussing on DD have been treated. DD methods exploit parallel
computing by a divide-and-conquer strategy. They solve the problem by splitting the
domain into subdomains and computing solutions on those. [18] investigates efficient
parallel preconditioners based on DD techniques for problems on unstructured grids.
One- and two-level Schwarz preconditioners and (approximate) Schur complement based
methods are used to accelerate a Krylov subspace method. This, combined with a mesh
adaptation procedure yields effective and scalable methods for solving compressible Euler
equations on unstructured grids. [20] investigates DD methods for elliptical PDEs with
unstructured grids. The parallel FEM works properly with both SC method and FETI
method, with a greater speedup (compared to two processors) for SC than for FETT.

With respect to the objective of investigating efficient numerical methods (in terms of
memory, scalability, and overall computation time) that can be exploited in the context
of model predictive control for both the thermal as the mechanical part of the system, the
following techniques discussed in this review paper could be useful. POD-based deflation,
and also the tensor-based MOR technique combining tensors and POD can be investigated
as it maintains the multidimensional structure of a system. For the mechanical part of the
system, deflation based on RBM can be considered. Within the AMG methods, SA-AMG,
AMGe, TMG or aSP-AMG could be considered. DD techniques could be used as well,

like the two-level Schwarz and (approximate) Schur complement methods.
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A IDR(s)

The induced dimension reduction method (IDR(s)) is a Krylov subspace method for large
non-symmetric linear systems of equations, introduced in the paper IDR(s): a family of
simple and fast algorithms for solving large nonsymmetric systems of linear equations [21]
(2008). IDR(s) is based on the induced dimension reduction (IDR) theorem. It is a
robust and efficient short-recurrence method, hence no excessive computational power and
memory are needed. Moreover, in exact arithmetic the true solution is reached in at most
N + N/s matrix-vector products, where N is the problem size and s the codimension of a
fixed subspace.
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Consider a linear system of equations Az = b, where A is a general matrix and rg the
initial residual. Then it is impossible for a method to have both an optimal minimization
of some error norm over the Krylov subspace K™(A, 1) as well as short recurrences; like
CG has for Hermitian and positive definite A. The development of Krylov methods for
such general problems has focussed on two different ways of generalizing CG. In the first
class, short recurrences are not mandatory. A well-known method of this class is GMRES,
which has as drawback that if the number of required iterations is large, the memory and
computations costs become too high. The second class does enforce short recurrences but
not the optimality property. A typical example is the Bi-CG method, which is equivalent
to CG in the symmetric case but at about twice the cost. Other examples in this class
are CGS, Bi-CGSTAB and TFQMR. The latter two are ways to stabilize CGS since while
CGS is faster than Bi-CG, it exhibits erratic convergence behavior. Developments in
fast Krylov methods with short recurrences were centered around Bi-CG-type methods.
However, different to both these classes, new methods can be developed based on the IDR
theorem.

IDR(s) generates residuals located in a sequence of mnested subspaces
G;i = (I —wjA)(S N Gj_1) of decreasing dimensions. Here w; are nonzero scalars
and S denotes a certain proper subspace of CV which may be assumed to be left nullspace
of some N X s matrix P. By the IDR theorem, such subspaces exist and under mild
conditions G; = {0} for some j < N. By the extended IDR theorem, the decrease in
dimension per step is between zero and s, where zero being very unlikely and s being
the case in practice. There is quite some freedom in the translation of the IDR theorem
into an algorithm; namely, the choice of P, w;, and the computation of the intermediate
residuals.

Numerical experiments are performed in the article, where IDR(s) is compared with
the best known Bi-CG-type methods: Bi-CG, CGS, Bi-CGSTAB, BiCGstab(l), and QMR.
While it is not a limited memory method, GMRES is also included as it is optimal with
respect to the amount of matrix-vector multiplications (so no method can improve on
this). Since IDR(1) is mathematically equivalent to Bi-CGSTAB — in the sense that at
even steps they yield the same residuals — they are similar in stability and the amount
of computations and memory needed. If s > 1, then IDR(s) performed better than
Bi-CGSTAB. While increasing s slightly increased the cost per iteration, it significantly
decreased in the number of iterations required in all of the experiments and for most
came close to the optimal performance of GMRES. Even for problems with a highly
nonsymmetric or indefinite matrix, IDR(s) was efficient. Overall, the numerical experi-
ments showed that IDR(s) performs similarly or better than most Bi-CG-type methods [21].
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