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ABSTRACT

The TU Delft and the LUMC are creating a low-field MRI scanner to use in third world countries.
This type of MRI scanner has many advantages, but a downside is the amount of noise in the ob-
tained images. A way to reduce noise is diffusion filtering. This thesis discusses the theory of some
linear and nonlinear diffusion filtering methods and tests them on several test problems. The meth-
ods range from the basic linear method, the heat equation, to the more advanced Perona-Malik
method. The results indeed show that the Perona-Malik method generates better results, some-
times when combined with a Gaussian kernel to decrease its ill-posedness.
Two numerical methods have been compared for these anisotropic diffusion filtering methods: the
Forward Time, Central Space method and the Additive Operator Splitting method. The advantage
of the AOS method is the unconditional stability for al positive time step sizes∆t , while FTCS imple-
mentation is only stable for 0 < ∆t ≤ 0.25. The results for the AOS method were also slightly better
than for the FTCS method and almost never lead to instability. The FTCS method showed instability
more often.
The parameter choice is of significant importance for the outcome. Several options for determining
the gradient threshold parameter K , time step size ∆t and stopping time S have been investigated.
A new estimation for ∆t and stopping time S have been proposed and compared. The results are
images with good visual quality for both introduced methods. Also, an adaptive time step has been
tested to overcome the instability for unstable methods and this seems to be succesful.
Lastly, region growing segmentation has been applied to images obtained with the proposed stop-
ping time S. Segmentation is an additional way to investigate the quality of these outcomes. For
most test problems the partitioning resembles the partitioning of the original image.
However, choosing certain parameters stays a challenge and can be of interest for further examina-
tion. It also remains a goal to investigate the discussed methods on data obtained with the actual
TUD/LUMC MRI scanner.
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1
INTRODUCTION

This thesis is related to a project of the TU Delft and LUMC. The goal of this project is to develop
a low-field MRI scanner for developing countries. Penn State University is working on a similar
project and collaborates with the TU Delft to share information. Both projects are trying to build
a low-field MRI scanner, but of different types. A low-field MRI scanner has a lot of advantages to
make it suitable for developing countries: it is cheaper and easier to use than a conventional high-
field MRI scanner. However, a problem of a low-field MRI scanner is that it produces more noise.
Luckily a lot of this noise can be removed using mathematics. This thesis focuses on diffusion filter-
ing methods for noise reduction in the obtained images ([1]) and is part of the final stage of image
processing.

The goal of this thesis consists of three subgoals:
1. to give an overview of diffusion filtering methods and to evaluate them for two different numeri-
cal methods: the Forward Time, Central Space method and the Additive Operator Splitting method
([10]).
2. to describe several options for optimal parameter choice for the gradient threshold parameter K ,
time step size ∆t and stopping time S.
3. to use region growing segmentation on some results to compare their visual quality.
These subgoals will lead to a better understanding of image filtering and results of higher quality.

The report is organized in the following way. Since the images are obtained using an MRI scanner,
it is important to understand the basics of MRI theory. Therefore chapter 2 focuses on the theory of
both high-field and low-field MRI scanners. The general physics is discussed, as well as the differ-
ences between high- and low-field scanners.
The subsequent chapters focus on the first subgoal of the thesis: diffusion filtering methods and
their implentation. First the mathematics of diffusion filtering methods are described. Chapter 3
starts with linear diffusion filtering and the physical background of this method. This method is the
most basic form of diffusion filtering and while it is easy to implement, it has a few disadvantages.
Chapter 4 considers nonlinear or anisotropic diffusion filtering methods. These methods are more
advanced, but overcome the disadvantages of linear filtering methods. In this chapter the well-
posedness of nonlinear filtering is discussed, which leads to different approaches. We distinguish
three cases: a well-posed method, an ill-posed, but regularly used method and the well-known
Perona-Malik methods ([2]). These Perona-Malik methods are considered ill-posed, but have many
advantages. To enhance the stability of these methods a Gaussian kernel can be added to them,
which is also mentioned in chapter 4. All discussed methods are analyzed in the following chapters.

1



2 1. INTRODUCTION

Chapter 5 describes the numerical scheme named Forward Time, Central Space. Chapter 6 focuses
on the other numerical method, the Additive Operator Splitting method.
In chapter 7 all theory discussed so far is tested. All methods and both numerical schemes are
compared.
Chapter 8 and 9 are part of the second subgoal. Chapter 8 focuses on theory found in literature on
optimal parameter choice. In chapter 9 this theory is tested and when necessary modified for better
results.
Chapter 10 and 11 are about segmentation. First the method is described in chapter 10 and used to
partition several test images in chapter 11.
We conclude with an overall conclusion and ideas for improvement in chapter 12.



2
MRI BACKGROUND

Since this thesis is about diffusion filtering methods of MRI images, it is important to know the
theory of MRI scanners in general and in particular of the low-field MRI. This chapter uses the theory
mentioned in [3] to give a summary of the MRI physics.

2.1. MRI PHYSICS
An MRI scanner uses a magnetic field to obtain images. Usually a uniform background magnetic
field is applied in the longitudinal direction, the z-direction:

~B0 = B0~k (2.1)

with B0 the field strength. This magnetic field leads to an equilibrium magnetization given by:

~M 0 = Mx~i +My~j +Mz~k (2.2)

The vectors~i ,~j ,~k denote the unit vectors along the x, y, z axes respectively and~r = (x, y, z) is the 3D
spatial coordinate.
This equilibrium magnetization M0 is aligned with the magnetic field B0. In order to change the
direction of the magnetization a time-dependent magnetic field is added to the background field
leading to a total magnetic field ~B(~r , t ). This field gives a magnetization depending on time and
space:

~M(~r , t ) = Mx (~r , t )~i +My (~r , t )~j +Mz (~r , t )~k (2.3)

An MRI scan consists of alternations between two stages: the excitation stage and the readout stage.
During the excitation stage the magnetic field~B(~r , t ) is chosen in such a way that the magnetization
has a component in the transverse plane, the (x, y) plane. The magnetic field is oscillating at a
certain frequency called the Larmor frequency. This frequency is given by the Larmor relation:

ω= γ|~B | (2.4)

with ω the Larmor frequency and γ the gyromagnetic ratio. Due to this oscillating field the mag-
netization will precess in the transverse plane around the z-axis with the same Larmor frequency
(figure 2.1).
During the readout stage the magnetic field only has a longitudinal component and is given by:

~B(~r , t ) = Bz (~r , t )~k (2.5)

3



4 2. MRI BACKGROUND

Figure 2.1: Precession of magnetization M due to magnetic field B [4]

The instantaneous Larmor frequency is then given by:

ω(~r , t ) = γBz (~r , t ) (2.6)

which leads to a magnetization

M(~r , t ) = M(~r ,0)e−t/T2(~r )e−i
∫ t

0 ω(~r ,t ′)d t ′

= f (~r )e−t/T2(~r )e−iγ
∫ t

0 Bz (~r ,t ′)d t ′
(2.7)

The term e−t/T2(~r ) gives the decay with time constant T2(~r ). The integral runs from t = 0, which is
the time when the excitation stage ends, to a certain time t > 0 during the readout stage. We define
f (~r )B M(~r ,0), which is the magnetization immediately after the excitation stage. The goal is to
obtain an image of this f (~r ).

The magnetization M(~r , t ) will induce an electromotive force in a coil creating an electric poten-
tial. After demodulation this electric potential can be written as the following signal:

s(t ) =
∫

c(~r ) f (~r )e−t/T2(~r )e−iϕ(~r ,t )d~r (2.8)

Here c(~r ) is the sensitivity of the coil. We also define the phase:

ϕ(~r , t )B
∫ t

0

(
γBz (~r , t ′)−ω0

)
d t ′ (2.9)

where ω0 = γB0 is the demodulation frequency.

The obtained measurements are not exactly equal to this signal due to errors. The i th measure-
ment of the coil at time ti is given by:

yi = s(ti )+εi (2.10)

with i = 1, ...,nd , nd the number of samples and εi the measurement error of the i th sample.

As mentioned before the goal is to obtain an image of f (~r ). In order to do this we approximate
f (~r ) using a finite series expansion, which means we write f (~r ) as the sum of a finite number of
pixel values:
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f (~r ) =
N∑

j=1
f j b(~r −~r j ) (2.11)

and rewrite equation 2.8 as:

s(ti ) =
n∑

j=1
ai j f j (2.12)

with

ai j =
∫

c(~r )b(~r −~r j )e−ti /T2(~r )e−iϕ(~r ,ti )d~r

≈ c(~r j )e−ti /T2(~r j )e−iϕ(~r j ,ti )∆r
(2.13)

Here ∆r is the pixel area.
After substitution of 2.12 into 2.10 we get the following linear model, which can be solved for f:

y = A f +ε (2.14)

2.2. HIGH-FIELD AND LOW-FIELD MRI
The previous section discussed the physics of all MRI scanners. This section will discuss the dif-
ferences between the most common high-field MRI scanner and the low-field MRI scanner used in
this project and what the consequences of these differences are for matrix A.

In general the longitudinal component of the magnetic field, Bz (~r , t ), mentioned in 2.5 can be writ-
ten as:

Bz (~r , t ) = B0 +∆B0(~r )+~G(t ) ·~r (2.15)

Here ∆B0(~r ) is the spatial deviation of background field strength B0 and ~G(t ) = Gx~i +Gy~j +Gz~k is
the field gradient. These variations~G(t ) are generated by gradient coils and are known.
Substituting 2.15 into 2.9 we get:

ϕ(~r , t ) =
∫ t

0
γ∆B0(~r )+γ~G(t ) ·~r d t ′ (2.16)

and

e iϕ(~r ,t ) = e−i∆ω0(~r )t e−i 2π~k(t )·~r (2.17)

with ∆ω0(~r ) = γ∆B0(~r ) and~k(t ) = 1
2π

∫ t
0 γ
~G(t ′)d t ′.~k(t ) is called the k-space trajectory.

We can now write the elements ai j (equation 2.13) of matrix A as:

ai j ≈ c(~r j )e−ti /T2(~r j )e−i∆ω0(~r j )ti e−i 2π~k(ti )·~r∆r (2.18)

High-field and low-field MRI scanners have differences in the magnetic field Bz (~r , t ) and in the time
constant of the decay T2(~r ). These differences have an effect on ai j .
High-field MRI scanners have a background magnetic field with a high strength B0 and have a neg-
ligible deviating field: ∆B0 = 0. The time constant T2 is quite high, usually in the range of seconds,
which means the decay term can be neglected. The expression for ai j becomes:

ai j ≈ c(~r j )e−i 2π~k(ti )·~r j∆r (2.19)
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The elements ai j correspond to a standard Fourier transform, which means that operations with A
and its inverse can be efficiently performed using a Fast Fourier Transform and Inverse Fast Fourier
Transform, respectively.

All low-field MRI scanners have a very small background field ~B0, but can differ in the ∆B0 and
~G(t ) terms. The PSU scanner has an unknown ∆B0 and a known gradient field ~G(t ). Since ∆B0 is
assumed to be small, it is set to zero. In that case we obtain the same expression for ai j as for a high-
field scanner and the Inverse Fast Fourier transform can be applied to obtain the image. However,
since ∆B0 need not be close to zero, the images can be expected to be very noisy.
The scanner of the TUD/LUMC combines the low background field ~B0 with natural variations in
the magnetic field: ∆B0(~r ) 6= 0. This ∆B0 is considered constant in time. In contrast to high-field
scanners and the PSU scanner there is no gradient field: ~G(t ) = 0. The time constant T2(~r ) is in the
range of milliseconds and therefore the decay term cannot be neglected. The elements of matrix A
become:

ai j ≈ c(~r j )e−ti /T2(~r j )e−i∆ω0(~r j )ti∆r (2.20)

This expression does not correspond to the Fourier transform, which means it is more difficult to
obtain f from 2.14. This is a disadvantage of the TUD/LUMC scanner.
A disadvantage of all low-field MRI scanners is the lower signal-to-noise ratio. The SNR is linearly
dependent on B0, therefore the low background field causes a low SNR.

The PSU and TUD/LUMC use different magnets for their scanners. The TUD/LUMC scanner uses
a permanent magnet, which means it is always ready for use and no heat is generated. The PSU
scanner uses a resistive electromagnet. This type of magnet needs time to startup and does gen-
erate heat in the coils. However, due to the low background field not a lot of heat is generated and
less cooling is necessary than for a high-field MRI scanner. High-field MRI scanners do not generate
heat, but they need cooling to a temperature close to 0K to reach superconductivity. Needing less
or no cooling makes both low-field MRI scanners a lot cheaper than a general high-field MRI scan-
ner. This is one of the main reasons why a low-field MRI scanner is developed for these projects.
Also, since less cooling is needed, the magnets can be used at room temperature, which makes the
scanner more user-friendly ([5]).



3
LINEAR DIFFUSION FILTERING

Images obtained with the MRI scanner will contain noise. A way to reduce noise in images is dif-
fusion filtering, which is the main topic of this thesis. The most basic form of diffusion filtering is
linear diffusion filtering, which is the focus of this chapter.

3.1. PHYSICAL MOTIVATION OF DIFFUSION
The physical background of diffusion is explained in [1]. Diffusion is the process of reaching an
equilibrium in concentration without losing or creating mass. Due to random movements particles
move from a higher concentrated area to a lower concentrated area to reach this equilibrium state.
The equilibrium property is given by Fick’s first law:

J =−D ·∇u (3.1)

This equation gives the relation between the diffusion flux J and the concentration gradient ∇u. D
is the diffusion coefficient.
Since no mass is destroyed or created the continuity equation is also of importance:

∂t u =−divJ (3.2)

Combining Fick’s law with the continuity equation gives the diffusion equation:

∂t u = div(D ·∇u) (3.3)

The diffusion equation is applicable to many transport processes. By setting u as the gray value at
a certain location instead of the concentration, we can apply this equation to image processing. In
this section we assume the diffusion does not depend on the changing image and we set D = 1. This
leads to linear diffusion filtering. In later chapters we will assume D is a function dependent on
|∇u|, leading to nonlinear or anisotropic diffusion filters.

3.2. HEAT EQUATION
By setting D = 1 the diffusion equation in 2D becomes:

∂t u = div(∇u)

=∆u

= ∂xx u +∂y y u

(3.4)

7



8 3. LINEAR DIFFUSION FILTERING

which is also known as the heat equation. When using the heat equation as a filtering method for
images it satisfies the following two criteria according to [2]:
- causality: any features at a coarse resolution need to be caused by features at a finer level. This
means that no new features can be introduced at a coarse resolution.
- homogeneity and isotropy: the blurring is space invariant. Blurring is fading of the image due to
diffusion. This criterium states that every part of the image fades similarly.

The causality criterion says that no new features can be introduced at a coarser level. In other words,
no new minimum or maximum can be created in images other than the initial image. The criterium
can be validated by using the Maximum Principle. This principle states that all minima and maxima
of the solution exist in the original image and on the boundaries. When using Neumann boundary
conditions, the Maximum Principle is stronger and says that the minima an maxima can only occur
in the original image. Since the heat equation satisfies this principle, we can conclude that no new
minima and maxima can occur on coarser levels, thereby meeting the causality criterium.

3.3. IMPLEMENTATION
To implement the heat equation we use the FTCS (forward time, central space) method, which is
second order in space and first order in time. This method uses forward difference to estimate the
time derivative and central difference for the space derivatives:

∂t u(xi , y j , tk ) ≈ 1

∆t
(uk+1

i , j −uk
i , j )

∂xx u(xi , y j , tk ) ≈ 1

∆x2 (uk
i+1, j −2uk

i , j +uk
i−1, j )

∂y y u(xi , y j , tk ) ≈ 1

∆y2 (uk
i , j+1 −2uk

i , j +uk
i , j−1)

(3.5)

Plugging this in equation 3.4 and setting ∆y = ∆x and µ = ∆t
∆x2 we obtain the following numerical

scheme:

uk+1
i , j = uk

i , j +µ(uk
i+1, j +uk

i , j+1 −4uk
i , j +uk

i−1, j +uk
i , j−1) (3.6)

The number of pixels in the x-direction is equal to the number of pixels in the y-direction and
is denoted by n. On the boundaries we assume homogeneous Neumann boundary conditions:
∂u/∂~n = 0,~n the normal to the boundary. We have obtained the following system of equations:

~U
k+1 = (I −µA)~U

k
(3.7)

with

An2×n2 =


A1 A2 0 0 . . . 0
A3 A1 A3 0 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . 0 A3 A1 A3

0 . . . 0 0 A2 A1



A1,n×n =


4 −2 0 0 . . . 0
−1 4 −1 0 . . . 0

...
. . .

. . .
. . .

. . .
...

0 . . . 0 −1 4 −1
0 . . . 0 0 −2 4


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A2,n×n = 2I

A3,n×n = I

~U = [
U1,1 . . . Un,1 U1,2 . . . Un,2 . . . U1,n . . . Un,n

]T

and I the n ×n identity matrix.

3.4. PROPERTIES OF THE METHOD

First we discuss the stability. To determine the largest possible µ=∆t/∆x2 which ensures stability,
the Gershgorin circle theorem is used. In [6] it is written as follows:

GERSHGORIN CIRCLE THEOREM

The eigenvalues of a complex square matrix A with elements ai , j are in the union of the circles

|z −ai ,i | ≤
n∑

j 6=i
j=1

|ai , j | with z ∈C

When applying this theorem to matrix A we see that λ ≤ 8. We assume λmax = 8 and set ∆x = 1,
which means that µ=∆t . We see from 3.7 that we need for stability:

|1−∆tλ| ≤ 1

−1 ≤ 1−∆tλ≤ 1

−2 ≤−∆tλ and −∆tλ≤ 0

∆t ≤ 2

λ
and ∆tλ≥ 0

(3.8)

Since λ≥ 0 and λmax = 8 we conclude that the method is stable for 0 ≤∆t ≤ 2
8 = 1

4 . So when imple-
menting this method we need to consider time steps smaller than or equal to 0.25. We shall verify
this in chapter 7.

Next we want to prove that the total pixel value stays constant in time. In order to do this we use the
Gauss divergence theorem on the difffusion equation given by 3.4:∫

Ω
∂t u dΩ=

∫
Ω
∇·∇u dΩ

=
∫
∂Ω

∇u ·~n dS

=
∫
∂Ω

∂u

∂n︸︷︷︸
=0

dS

= 0

⇒ utot (t ) =
∫
Ω

u dΩ= const ant

(3.9)

For the numerical implementation of the method this means that the total pixel value should be
constant over time. In the numerical experiments chapter, chapter 7, we will check this. Of course,
the total numerical pixel value T PV is then given by the following sum:

T PV =
n∑

i=1

n∑
j=1

ui , j (3.10)
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Also, we know from [1] that the solution u converges to a constant value. This fact in combination
with the constant total pixel value leads to the conclusion that it converges to APV , the average
pixel value:

APV = 1

n2

n∑
i=1

n∑
j=1

ui , j (3.11)



4
ANISOTROPIC DIFFUSION FILTERING

In the previous chapter we used the heat equation as an image filtering method. As known from
the literature, a big disadvantage of this method is the space-invariant blurring. This means that
boundaries of regions are not preserved and edges lose their sharpness.
To overcome this problem the ’homogeneity and isotropy’ criterium mentioned in the previous sec-
tion is replaced by two other criteria. The new method needs to satisfy the following three criteria
([2]):
- causality: no new features can be introduced at a coarser grid. The ’cause’ of features needs to be
in a finer grid.
- immediate localization: at each resolution the region boundaries should have a sharpness suited
for that resolution.
- piecewise smoothing: this means that at each resolution intraregion smoothing occurs over inter-
region smoothing.

To achieve these criteria we can adjust the diffusion coefficient D of equation 3.3. The heat equation
was obtained by setting D = 1, but it is not necessary for D to be constant. By letting it be a suitable
function of |∇u| the three criteria mentioned above can be satisfied ([2]):
Let D = c(|∇u|), then:

∂t u = div(c(|∇u|)∇u) (4.1)

with |∇u| =
√

u2
x +u2

y .

Since this equation belongs to a certain class of elliptic equations that satify the Maximum Prin-
ciple ([2]), we can conclude that the causality criterium is achieved independent of c(|∇u|). The
other two criteria are depending on c(|∇u|), proved by the fact that for c = 1 these criteria are not
met. To determine which functions are suitable we need to look into edge enhancement.

4.1. EDGE ENHANCEMENT
The goal is to determine which functions c(|∇u|) are suitable for image filtering with conservation
of sharp boundaries. To do this we follow the steps taken in [2] and consider the 1D case only. First
we model an edge as a step function convolved with a Gaussian (figure 4.1a).
In that case equation 4.1 simplifies to:

∂t u = ∂x (c(∂x u)∂x u) (4.2)

11
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Figure 4.1: a) edge model b) 1st, 2nd, 3rd derivative of u

Let φ(∂x u) = c(∂x u) ·∂x u denote the flux, then we get:

∂t u = ∂xφ(∂x u) =φ′(∂x u) ·∂xx u (4.3)

Now we look at the variation in time of the slope of the edge, ∂t (∂x u). We assume c(·) > 0, then u(·)
is smooth and the order of differentiation can be inverted. We get:

∂t (∂x u) = ∂x (∂t u)

= ∂x (∂xφ(∂x u))

= ∂x (φ′(∂x u) ·∂xx u)

=φ′′(∂x u) ·∂2
xx u +φ′(∂x u) ·∂xxx u

(4.4)

Without loss of generality we can assume that the edge is oriented as in figure 4.1a with ∂x u > 0. We
can see that in that case ∂xx u = 0 and ∂xxx u << 0 at the point of inflection. From equation 4.4 it
follows that ∂t (∂x u) has a sign opposite to the sign of φ′(∂x u). Therefore we conclude that the slope
of the edge will increase for φ′(∂x u) < 0 and decrease for φ′(∂x u) > 0.

This conclusion leads to the following threshold property for some threshold value τ:

φ′(∂x u) =
{
> 0, ∂x u < τ
< 0, ∂x u ≥ τ (4.5)

This property states that for edge slopes ∂x u lower than τ edge blurring will occur and for slopes
higher than τ edge sharpening will occur. So by choosing τ correctly, we achieve intraregion smooth-
ing while maintaining sharp edges.

4.2. CHOICE OF DIFFUSION COEFFICIENT c(·)
In choosing a correct c(·) it is also important to consider the well-posedness. [7] investigates well-
posedness by minimizing the following energy function:

E(u) =
∫
Ω

F (|∇u|)dΩ=
∫
Ω

F (
√

u2
x +u2

y )dΩ (4.6)

with F (|∇u|) a strictly increasing function: F ′(|∇u|) > 0.
The energy function is a measure for the smoothness. Therefore minimizing the energy function
is similar to smoothing. The minima of 4.6 are given by the solutions of the following parabolic
equation:

∂t u = div

(
F ′(|∇u|)
|∇u| ∇u

)
(4.7)
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which is similar to 4.1 if the diffusion coefficient is set to:

c(|∇u|) = F ′(|∇u|)
|∇u| (4.8)

As mentioned before, the flux is denoted by φ(s) = c(s)s = F ′(s).

Now we look at the Hessian matrix of F (|∇u|) and its eigenvalues. The Hessian is given by:[
∂xx F (|∇u|) ∂y x F (|∇u|)
∂x y F (|∇u|) ∂y y F (|∇u|)

]
(4.9)

and has eigenvalues λ1 = F ′(|∇u|)/|∇u| = c(|∇u|) and λ2 = F ′′(|∇u|), as mentioned in [8].

To determine when the problem is well-posed, the surface of the energy function 4.6 and the ini-
tial conditions are of interest. When the energy surface is convex, it has a global minimum, which
means that any starting point converges to this minimum. The problem is then well-posed. The
energy surface is convex for:

λ1 ≥ 0 and λ2 ≥ 0 for all |∆u| (4.10)

Since F ′(|∇u|) > 0 we see that λ1 = F ′(|∇u|)/|∇u| ≥ 0 is always true. So we need λ2 = F ′′(|∇u|) ≥ 0 for
all |∇u|. However, λ2 > 0 corresponds to smoothing in the gradient direction, which means that the
edges will blur. Therefore we need to set λ2 = 0 and it follows that F (|∇u|) = |∇u|. We conclude that
for a well-posed problem a suitable diffusion coefficient is:

c(|∇u|) = F ′(|∇u|)
|∇u| = 1

|∇u| (4.11)

Choosingλ2 differently leads to inconvenient energy surfaces, thereby jeopardizing the well-posedness
of the problem. For example, the energy surface has a unique saddle-point for:

λ2 = F ′′(|∇u|) < 0 (4.12)

In this case there are no local minima and the solution converges to a boundary point. Images with
initial conditions close to each other will converge to the same solution as long as they are not across
the saddle ridge. We get a problem of this type when setting F (|∇u|) = |∇u|1/N , N > 1. The diffusion
coefficient becomes:

c(|∇u|) = F ′(|∇u|)
|∇u| = 1

N
|∇u| 1

N −2, N > 1 (4.13)

In the previous section we found a threshold property for φ′(|∇u|). This property corresponds to
a method which smooths the solution inside regions and sharpens the edges. Since φ′(|∇u|) =
F ′′(|∇u|) =λ2 we can rewrite the threshold property given by 4.5 to:

λ2 =
{
> 0, |∇u| < τ
< 0, |∇u| ≥ τ (4.14)

For this type of λ2 the problem is ill-posed. The surface is likely to have many local minima, which
means that images starting close to each other may converge to a different minimum.
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However, the most common anisotropic filtering methods are of this type, due to the importance of
the threshold propery. Perona and Malik ([2]) gave two possible functions satisfying the threshold
property:

c(|∇u|) = e−(|∇u|/K )2
, (K > 0) (4.15)

and

c(|∇u|) = 1

1+ (|∇u|/K )2 , (K > 0) (4.16)

The constant K is chosen by hand or can be estimated in several ways, which are described in chap-
ter 8.

Since the Perona-Malik methods satisfy the threshold property, they lead to ill-posed problems. The
ill-posedness can be decreased by adding a smoothing operator to the diffusion coefficient c(·) ([9]).
An example of such a smoothing operator is the Gaussian kernel, leading to:

∂t u = div(c(|∇ (G(s)∗u) |2)∇u) (4.17)

where G(s)∗u denotes a convolution of the image at time t with a Gaussian kernel of scale s. G(s)
can be seen as the solution at time s of the heat equation with u(x, y, t ) as initial data. A large s
suppresses more noise, but leads to a blurrier image, while a small s may cause instability.

4.3. PROPERTIES OF THE METHOD
Again we will look into some properties of these methods. First we will discuss the stability. In the
last chapter we concluded that the linear diffusion method is stable for all 0 <∆t ≤ 0.25 when using
the FTCS scheme. This was proved with the Gershgorin circle theorem, also given in chapter 3. The
theorem uses matrix A, given in the following system:

~U
k+1 = (

I −µA
)
~U

k
(4.18)

For the anisotropic case the matrix A is different than for the linear case. The matrix is now de-
pending on values of the diffusion coefficient c(·). However, we can still apply the Gershgorin circle
theorem to draw a few conclusions.
Consider the two Perona-Malik methods, given by 4.15 and 4.16. We know that both functions can
take on values between 0 and 1. Therefore cmax = 1 in both cases. So the values in the matrix for the
anisotropic case can maximally take on the values of the matrix A given in chapter 3. Therefore we
can make the same conclusion after using the Gershgorin circle theorem, namely λ≤ 8 leading to a
similar stability region of 0 <∆t ≤ 0.25.

Unfortunately the ill-posed and well-posed methods can be much larger than 1. Therefore the val-
ues in the matrix can be much higher as well. Using the Gershgorin circle theorem we conclude that
λ can take on a much higher value, leading to a much smaller stability region. The exact region is
unknown, but it is smaller than 0 <∆t ≤ 0.25. In the first section of chapter 7 on numerical experi-
ments, the stability regions will be investigated.
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Next we want to prove that also for anisotropic diffusion methods the total pixel value stays constant
in time. We can do this in the same manner as for the linear method:∫

Ω
∂t u dΩ=

∫
Ω
∇· (c(|∇u|)∇u) dΩ

=
∫
∂Ω

(c(|∇u|)∇u) ·~n dS

=
∫
∂Ω

c(|∇u|)∂u

∂n︸ ︷︷ ︸
=0

dS

= 0

⇒ utot (t ) =
∫
Ω

u dΩ= const ant

(4.19)

We see that for the anisotropic methods the total pixel value also stays constant. Numerically, this
value is given by T PV , given by equation 3.10.
Similar to the linear case, the solution now also converges to a constant value. Since the total pixel
value stays constant in time, we can conclude that u converges to APV , with APV the average pixel
value (equation 3.11).





5
FTCS IMPLEMENTATION

All anisotropic methods have been implemented in two ways. This chapter will describe the first:
implementation with the Forward Time Central Space (FTCS) method. First we will look into imple-
mentation of the Perona-Malik method, both with and without Gaussian kernel. The implementa-
tion of the other anisotropic methods are quite similar and are mentioned shortly in the final section
of this chapter.

5.1. PERONA-MALIK
Recall the threshold property mentioned in the previous chapter:

φ′(|∇u|) =
{
> 0, |∇u| < τ
< 0, |∇u| ≥ τ (5.1)

with φ(s) = c(s)s and c(·) the diffusion function of equation 4.1:

∂t u = div(c(|∇u|)∇u) (5.2)

A method satisfying this property is developed by Perona and Malik ([2]). Their article mentions two
possible options for c(·):

c(|∇u|) = e−(|∇u|/K )2
, (K > 0) (5.3)

and

c(|∇u|) = 1

1+ (|∇u|/K )2 , (K > 0) (5.4)

To implement any filtering method we need to approximate equation 5.2. We can write c(|∇u|) as
c(|∇u|2), since both functions are also a function of |∇u|2. We start by looking at c(|∇u|2)∇u and
approximating it using second order central difference:

c(|∇ui , j |2)∇ui , j = c(|∇ui , j |2)
[
∂ui , j

∂x
∂ui , j

∂y

]T

=
[

c(|∇ui , j |2)
∂ui , j

∂x c(|∇ui , j |2)
∂ui , j

∂y

]T

≈
[

c(|∇ui , j |2) 1
∆x (ui+1/2, j −ui−1/2, j ) c(|∇ui , j |2) 1

∆y (ui , j+1/2 −u1, j−1/2)
]T

(5.5)

17
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Now we look at the whole equation 5.2:

∂t u =div(c(|∇u|2) ·∇u)

≈div

([
c(|∇ui , j |2) 1

∆x (ui+1/2, j −ui−1/2, j ) c(|∇ui , j |2) 1
∆y (ui , j+1/2 −u1, j−1/2)

]T
)

= ∂

∂x

(
c(|∇ui , j |2)

1

∆x
(ui+1/2, j −ui−1/2, j )

)
+ ∂

∂y

(
c(|∇ui , j |2)

1

∆y
(ui , j+1/2 −u1, j−1/2)

)
≈ 1

∆x

(
c(|∇ui+1/2, j |2)

1

∆x
(ui+1, j −ui , j )− c(|∇ui−1/2, j |2)

1

∆x
(ui , j −ui−1, j )

)
+ 1

∆y

(
c(|∇ui , j+1/2|2)

1

∆y
(ui , j+1 −u1, j )− c(|∇ui , j−1/2|2)

1

∆y
(ui , j −u1, j−1)

)
(5.6)

We need to estimate the values for c(|∇ui±1/2, j |2) and c(|∇ui , j±1/2|2). We use the standard second
order central difference formula to estimate ∇ui , j , which leads to:

∇ui , j ≈
[

1
2∆x (ui+1, j −ui−1, j

1
2∆y (ui , j+1 −ui , j−1)

]T

⇒ |∇ui , j |2 ≈ 1

(2∆x)2 (ui+1, j −ui−1, j )2 + 1

(2∆y)2 (ui , j+1 −ui , j−1)2
(5.7)

All these values are known and we can calculate c(|ui , j |2) for all i , j .
To find c(|∇ui±1/2, j |2) and c(|∇ui , j±1/2|2) we take the average:

c(|∇ui+1/2, j |2) ≈ 1

2
(c(|∇ui+1, j |2)+ c(|∇ui , j |2))

c(|∇ui−1/2, j |2) ≈ 1

2
(c(|∇ui−1, j |2)+ c(|∇ui , j |2))

c(|∇ui , j+1/2|2) ≈ 1

2
(c(|∇ui , j+1|2)+ c(|∇ui , j |2))

c(|∇ui , j−1/2|2) ≈ 1

2
(c(|∇ui , j−1|2)+ c(|∇ui , j |2))

(5.8)

We use forward difference (first order Euler forward) to estimate the time derivative. Setting ∆x =
∆y = 1, giving µ=∆t , we obtain the following numerical scheme:

uk+1
i , j =uk

i , j +∆t
(
c(|∇uk

i+1/2, j |2)(uk
i+1, j −uk

i , j )− c(|∇uk
i−1/2, j |2)(uk

i , j −uk
i−1, j )

)
+∆t

(
c(|∇uk

i , j+1/2|2)(uk
i , j+1 −uk

1, j )− c(|∇uk
i , j−1/2|2)(uk

i , j −uk
1, j−1)

) (5.9)

with the values for the diffusion function obtained by using 5.7 and 5.8.

5.2. PERONA-MALIK WITH GAUSSIAN KERNEL
As mentioned many times before, the Perona-Malik method leads to an ill-posed problem. We can
add a smoothing operator to the method, such as a Gaussian kernel, to decrease this ill-posedness
([9]):

∂t u = div(c(|∇ (G(s)∗u) |2)∇u) (5.10)

where G(s)∗u denotes a convolution of the image at time t with a Gaussian kernel of scale s.
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The implementation is quite similar to the implementation in the previous chapter. There is only
one difference: instead of c(|∇u|2) we have c(|∇G(s)∗u|2. This means that instead of calculating the
norm of the gradient of u, we need the norm of the gradient of the convolution of u.

Let ũ =G(s)∗u. The numerical scheme is then similar to 5.9, but with ũ instead of u:

uk+1
i , j =uk

i , j +∆t
(
c(|∇ũk

i+1/2, j |2)(ũk
i+1, j − ũk

i , j )− c(|∇ũk
i−1/2, j |2)(ũk

i , j − ũk
i−1, j )

)
+∆t

(
c(|∇ũk

i , j+1/2|2)(ũk
i , j+1 − ũk

1, j )− c(|∇ũk
i , j−1/2|2)(ũk

i , j − ũk
1, j−1)

) (5.11)

with the values for the diffusion function obtained by using 5.7 and 5.8 with ũ instead of u.

5.3. OTHER DIFFUSION FILTERING METHODS
In [7] two other diffusion coefficients c(·) were mentioned. One of these methods leads to a well-
posed problem and was given by 4.11:

c(|∇u|) = 1

|∇u| (5.12)

The other diffusion coefficient, given by 4.13, leads to an ill-posed problem:

c(|∇u|) = 1

N
|∇u| 1

N −2, N > 1 (5.13)

The implementation is again quite similar to the implementation of the Perona-Malik model (chap-
ter 4). However, in this case it is not convenient to write c(|∇u|2) instead of c(|∇u|), since the func-
tions are only a function of |∇u|. We calculate |∇u| by taking the square root of equation 5.7:

∇ui , j ≈
[

1
2∆x (ui+1, j −ui−1, j

1
2∆y (ui , j+1 −ui , j−1)

]T

⇒ |∇ui , j | ≈
√

1

(2∆x)2 (ui+1, j −ui−1, j )2 + 1

(2∆y)2 (ui , j+1 −ui , j−1)
(5.14)

After setting ∆x =∆y = 1, the numerical scheme is similar to 5.9:

uk+1
i , j =uk

i , j +∆t
(
c(|∇uk

i+1/2, j |)(uk
i+1, j −uk

i , j )− c(|∇uk
i−1/2, j |)(uk

i , j −uk
i−1, j )

)
+∆t

(
c(|∇uk

i , j+1/2|)(uk
i , j+1 −uk

1, j )− c(|∇uk
i , j−1/2|)(uk

i , j −uk
1, j−1)

) (5.15)

with the values for the diffusion function again obtained by using 5.14 and taking the average:

c(|∇ui+1/2, j |) ≈ 1

2
(c(|∇ui+1, j |)+ c(|∇ui , j |))

c(|∇ui−1/2, j |) ≈ 1

2
(c(|∇ui−1, j |)+ c(|∇ui , j |))

c(|∇ui , j+1/2|) ≈ 1

2
(c(|∇ui , j+1|)+ c(|∇ui , j |))

c(|∇ui , j−1/2|) ≈ 1

2
(c(|∇ui , j−1|)+ c(|∇ui , j |))

(5.16)
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Due to the division by |∇u|, the methods diverge when |∇u| approaches zero. This is the case when
neighboring pixels have an almost similar pixel value. To overcome this problem we set c(|∇u|) as
follows for a certain constant K > 0:

c(|∇u|) =
{

1
|∇u| , |∇u| ≥ K
1
K , |∇u| < K

(5.17)

and

c(|∇u|) =
{

1
N |∇u| 1

N −2, |∇u| ≥ K , N > 1
1
N K

1
N −2, |∇u| < K , N > 1

(5.18)

By doing this we maintain the continuity of c(|∇u|) and when choosing K correctly we keep the
outcome of the original methods, without diverging to an unstable solution.



6
AOS IMPLEMENTATION

Another way of implementing nonlinear diffusion methods is by using the additive operator split-
ting (AOS) scheme. This scheme uses additive splitting, which ensures that all coordinate axes are
treated in the same manner. The scheme preserves the average gray level, satisfies the Maximum
Principle and converges to a constant steady state [10]. The scheme can be used for all methods,
the only difference is the diffusion coefficient c(·).

6.1. 1-DIMENSIONAL CASE
Recall the nonlinear diffusion equation, given by equation 4.1 in chapter 3:

∂t u = div(c(|∇u|)∇u) (6.1)

First we consider the 1D case [11]. Equation 6.1 becomes:

∂t u = ∂x (c(|∂x u|)∂x u) (6.2)

An approximation of this 1D equation can be obtained as follows, by using first order central differ-
ence:

∂t ui =∂x (c(ui )∂x ui )

≈ 1

h
(c(ui+1/2)∂x ui+1/2 − c(ui−1/2)∂x ui−1/2)

≈ 1

h

(
c(ui+1/2)

ui+1 −ui

h
− c(ui−1/2)

ui −ui−1

h

)
≈ 1

h2

(
c(ui+1)+ c(ui )

2
(ui+1 −ui )− c(ui−1)+ c(ui )

2
(ui −ui−1)

)
=c(ui+1)+ c(ui )

2h2 (ui+1 −ui )+ c(ui−1)+ c(ui )

2h2 (ui−1 −ui )

(6.3)

Using the Euler forward method for the time derivative, we obtain the following discretization,
known as the Perona-Malik scheme:

uk+1
i −uk

i

∆t
= ∑

j∈N (i )

ck
j + ck

i

2h2 (uk
j −uk

i ) (6.4)

21
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with
uk

i ≈ u(xi , tk ),
N (i ) the set of the two neighbouring pixels of pixel i in the x-direction and

ck
i ≈ c(|∂x u(xi , tk )|2), which is defined as ck

i := c
((ui+1−ui−1

2h

)2
)
.

By substituting uk
i , j for uk+1

i , j we can modify the explicit scheme to the following semi-implicit scheme:

uk+1
i −uk

i

∆t
= ∑

j∈N (i )

ck
j + ck

i

2h2 (uk+1
j −uk+1

i ) (6.5)

Using matrix-vector notation we can rewrite this to:

~U
k+1 −~U k

∆t
= A(~U

k
) ·~U k+1

(6.6)

which has the following solution:

~U
k+1 =

(
I −∆t A(~U

k
)
)−1

~U
k

(6.7)

with

A(~U
k

) = 1

2h2


−2(c1 + c2) 2(c1 + c2) 0 . . . 0

c1 + c2 −c1 −2c2 − c3 c2 + c3 . . . 0
...

. . .
. . .

. . .
...

0 . . . cn−2 + cn−1 −cn−2 −2cn−1 − cn cn−1 + cn

0 . . . 0 2(cn−1 + cn) −2(cn−1 + cn)


~U = [

u1 u2 . . . un
]T

.

6.2. HIGHER DIMENSIONAL CASE
In higher dimensions we can obtain a similar solution [11]. The nonlinear diffusion equation in m
dimensions is given by:

∂t u =
m∑
`=1

∂x`

(
c(|∇u|2)∂x`u

)
(6.8)

Using the same approximation as for the 1D case we obtain the following explicit scheme:

uk+1
i −uk

i

∆t
=

m∑
`=1

∑
j∈N`(i )

ck
j + ck

i

2h2

(
uk

j −uk
i

)
(6.9)

Again with the small modification we obtain the semi-implicit scheme:

uk+1
i −uk

i

∆t
=

m∑
`=1

∑
j∈N`(i )

ck
j + ck

i

2h2

(
uk+1

j −uk+1
i

)
(6.10)

Using matrix-vector notation we can rewrite this to:

~U
k+1 −~U k

∆t
=

m∑
`=1

A`(~U
k

)~U
k+1

(6.11)
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with its solution given by:

~U
k+1 =

(
I −∆t

m∑
`=1

A`(~U
k

)

)−1

~U
k

=
(

m∑
`=1

1

m

(
I −∆tm A`(~U

k
)
))−1

~U
k

(6.12)

To obtain the additive operator splitting (AOS) scheme we need to modify this solution slightly.
Instead of taking the inverse of the entire summation, we sum up the inverses of the operators

B`(~U
k

) = I −∆tm A`(~U
k

). This means the AOS scheme is given by:

~U
k+1 = 1

m

m∑
`=1

(
I −∆tm A`(~U

k
)
)−1

~U
k

(6.13)

The solution obtained with the AOS method is slightly different than the outcome of 6.12, but does

have the same order of approximation. The operators B`(~U
k

) = I −∆tm A`(~U
k

) describe the one-
dimensional diffusion processes along the x` axes. When choosing the pixel numbering correctly,
they are strictly diagonally dominant tridiagonal matrices, which makes solving the problem much
simpler.
Another advantage of the AOS method is the fact that this scheme is stable for all step sizes ∆t > 0,
which is shown in [1] . This means that it may be possible to find adequate results in only one time
step.

6.3. 2-DIMENSIONAL CASE
In MRI images we are dealing with two dimensions: the x-axis and the y-axis. Therefore we will look
at the 2D case of the AOS method in detail using some of the notation and theory of [12].

Figure 6.1: Discretization of the image: green dots are neighbours on the x-axis, blue dots are neighbours on the y-axis

As mentioned in the previous section we have the following semi-implicit approximation of the
diffusion equation.

uk+1
i −uk

i

∆t
=

m∑
`=1

∑
j∈N`(i )

ck
j + ck

i

2h2

(
uk+1

j −uk+1
i

)
(6.14)
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When discretizing the image as shown in figure 6.1, we can rewrite this to:

uk+1
i , j −uk

i , j

∆t
=

ck
i−1, j + ck

i , j

2h2︸ ︷︷ ︸
cW i , j

(
uk+1

i−1, j −uk+1
i , j

)
+

ck
i+1, j + ck

i , j

2h2︸ ︷︷ ︸
cE i , j

(
uk+1

i+1, j −uk+1
i , j

)

+
ck

i , j−1 + ck
i , j

2h2︸ ︷︷ ︸
cS i , j

(
uk+1

i , j−1 −uk+1
i , j

)
+

ck
i , j+1 + ck

i , j

2h2︸ ︷︷ ︸
cN i , j

(
uk+1

i , j+1 −uk+1
i , j

)

⇒ uk
i , j = (1+∆t (cW + cE + cS + cN ))uk+1

i , j

−∆tcW uk+1
i−1, j −∆tcE uk+1

i+1, j −∆tcSuk+1
i , j−1 −∆tcN uk+1

i , j+1

(6.15)

The notation c{W,E ,S,N }i , j come from the directions west, east, south and north.
We can write the equation in matrix-vector form, which leads to the following:

~U
k = (I −∆t A)~U

k+1

⇒ ~U
k+1 = (I −∆t A)−1~U

k
(6.16)

with

An2×n2 =


AC 1,p=1 2AN ,p=1 0 0 . . . 0
AS,p=2 AC 2,p=2 AN ,p=2 0 . . . 0

...
. . .

. . .
. . .

. . .
...

0 . . . 0 AS,p=n−1 AC 2,p=n−1 AN ,p=n−1

0 . . . 0 0 2AS,p=n AC 3,p=n



AC 1,p,n×n =


−2cE ,1,p −2cN ,1,p 2cE ,1,p 0 . . . 0

...
. . .

. . .
. . .

...
0 . . . cW,n−1,p −cW,n−1,p − cE ,n−1,p −2cN ,n−1,p cE ,n−1,p

0 . . . 0 2cW,n,p −2cW,n,p −2cN ,n,p



AC 2,p,n×n =


−2cE ,1,p − cS,1,p − cN ,1,p 2cE ,1,p 0 . . . 0

...
. . .

. . .
. . .

...
0 . . . cW,n−1,p −(cW + cE + cS + cN )n−1,p cE ,n−1,p

0 . . . 0 2cW,n,p −2cW,n,p − cS,n,p − cN ,n,p



AC 3,p,n×n =


−2cE ,1,p −2cS,1,p 2cE ,1,p 0 . . . 0

...
. . .

. . .
. . .

...
0 . . . cW,n−1,p −cW,n−1,p − cE ,n−1,p −2cS,n−1,p cE ,n−1,p

0 . . . 0 2cW,n,p −2cW,n,p −2cS,n,p



AN /S,p,n×n =


cN /S,1,p 0 . . . 0

...
. . .

. . .
...

0 . . . cN /S,n−1,p 0
0 . . . 0 cN /S,n,p


~U = [

u1,1 . . . un,1 u1,2 . . . un,2 . . . u1,n . . .un,n
]T

Note that cN ,i , j = cS,i , j+1 and therefore AN ,p=1 = AS,p=2. Also, cE ,i , j = cW,i+1, j .
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The matrix A is the matrix for both axes and is not a tridiagonal matrix, which can lead to a long
calculation time when solving the system. As mentioned in the previous section, we can obtain a
tridiagonal matrix A` for each dimension when choosing the pixel numbering correctly.
Consider the pixel numbering given by figure 6.2. The left image is a standard numbering of the pix-
els and the right image gives its transverse. We see that the neighbours in the x-direction become
neighbours in the y-direction, and the other way around. We can use this to obtain the two tridiag-
onal matrices A1,2.

Figure 6.2: a) original numbering, b) transverse of the original numbering

First consider the original numbering and look at each row separately. By only taking the neighbours
in the x-direction into account, we can simplify the problem to n 1D problems. The matrix A1

corresponding to the x-direction becomes:

A1,n2 ×n2 =


A1D,p=1 0 . . . 0

...
. . .

. . .
...

0 . . . A1D,p=n−1 0
0 . . . 0 A1D,p=n

 (6.17)

with A1D,p the matrix A of the 1D case, given in the first section of this chapter:

A1D,p,n×n = 1

2h2


−2cE ,1,p 2cE ,1,p 0 . . . 0

cW,2,p −cW,2,p − cE ,2,p cE ,2,p . . . 0
...

. . .
. . .

. . .
...

0 . . . cW,n−1,p −cW,n−1,p − cE ,n−1,p cE ,n−1,p

0 . . . 0 2cW,n,p −2cW,n,p


Now consider the right image with the transverse numbering. The neighbours in the y-direction
have become the neighbours in the x-direction. So by using the same tridiagonal matrix A1 on the
transverse numbering, we can obtain the solution for the y-direction.

Recall the AOS scheme, given by 6.13:

~U
k+1 = 1

m

m∑
`=1

(
I −∆tm A`(~U

k
)
)−1

~U
k

(6.18)



26 6. AOS IMPLEMENTATION

By using both the original and the transpose numbering this becomes:

~U
k+1 =1

2

2∑
`=1

(
I −2∆t A`(~U

k
)
)−1

~U
k

=1

2

(
I −2∆t A1(~U

k
)
)−1

~U
k + 1

2

(
I −2∆t A1(~U

k
tr )

)−1
~U

k
tr

(6.19)

with ~U tr the pixelvalues in vector notation corresponding to the transverse numbering.

6.4. TRIDIAGONAL MATRIX ALGORITHM

Since B`(~U
k

) = I−∆tm A`(~U
k

) are strictly diagonally dominant tridiagonal matrices, the tridiagonal
matrix algorithm (TDMA) or Thomas algorithm ([13]) can be used to find the solution in linear time.
The TDMA consists of two parts: a forward elimination phase and a backward substitution phase.

Consider the following tridiagonal system
b1 c1 0 . . . 0
a2 b2 c2 . . . 0
...

. . .
. . .

. . .
...

0 . . . an−1 bn−1 cn−1

0 . . . 0 an bn




x1

x2

.
xn−1

xn

=


y1

y2

.
yn−1

yn

 (6.20)

Now look at the following modification of the first two equations (forward substitution phase):

Eqi=2b1 −Eqi=1a2

⇒(b1b2 − c1a2)x2 +b1c2x3 = b1 y2 −a2 y1
(6.21)

By doing this modification x1 has been eliminated from the equation. In the same way we can
eliminate x2, now using the modified equation for i = 2 (given by 6.21) and the equation for i = 3:

Eqi=3(b1b2 − c1a3)−mod. Eqi=2a3

⇒(b3(b1b2 − c1a2)− c2b1a3)x3 + c3(b1b2 − c1a2)x4 = y3(b1b2 − c1a2)− (y2b1 − y1a2)a3
(6.22)

We can repeat this process until the equation for i = n. The final equation will only involve the un-
known xn and can be used to solve the modified equation for i = n −1 and so on. In this backward
substitution phase the total solution x is obtained.

Overall the algorithm is given by:

β1 = b1

γ1 = y1/β1

For i = 2, . . . ,n

βi = bi − (ai ci−1/βi−1)

γi = (yi −aiγi−1)/βi

End

xn = γn

For j = 1, . . . ,n −1

xn− j = γn− j − cn− j xn− j+1/βn− j

End
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The TDMA does have one limitation: it can only be used when

|bi | > |ai |+ |ci |, i = 1, . . . ,n (6.23)

Since our matrix B` is strictly diagonally dominant it fulfills this requirement.





7
NUMERICAL EXPERIMENTS:

IMPLEMENTATION

All diffusion filtering methods and implementations described so far are tested on three test prob-
lems. The first two test problems use the Shepp-Logan phantom, which is a model of the human
head. The third problem uses a different phantom, the Ella-phantom.
The first problem is created by adding Gaussian white noise with zero mean and standard deviation
0.06 to the phantom. The second and third problem are the most realistic, since they represent the
expected noise of the TUD/LUMC MRI scanner, which is thermal or Johnson noise. The second test
problem is an image calculated by the MRI simulator described in [5]. The simulator models the ε
given in 2.14 as thermal or Johnson noise. This type of noise is caused by small random voltage fluc-
tuations. The Johnson noise is approximated by Gaussian noise with a zero mean and a standard
deviation of the root mean square value given by the following equation:

Nr ms =
√

4kB Tt R∆ f (7.1)

Here kB = 1.38 ·10−23 m2 kg s−2 K−1 is the Boltzmann constant, Tt is the temperature, R is the resis-
tance of the receiver and ∆ f the bandwidth. The maximum bandwidth of the TUD/LUMC proto-
type scanner is 20 kHz and assuming a coil resistance of 1Ω and room temperature of 293 K leads to
a standard deviation of 20 nV. More details on the simulation can be found in [5].
The third problem also uses Johnson noise, but on the Ella phantom. Also, the standard deviation is
different, it is smaller than 20nV.
All methods were tested for several values of time step size ∆t , number of time steps T and param-
eter K . To determine which parameter combination has the best results for each method and to
compare the methods, a difference between the solution and the original Shepp-Logan phantom
needs to be calculated. This difference δ is chosen as the standard deviation of the noise in the
image. This is given by the 2-norm of the difference between uor i g i nal and u f i nal divided by the
number of pixels in one direction, n:

δ= 1

n
||uor i g i nal −u f i nal ||2 (7.2)

Before testing all diffusion filtering methods and their implementation, a section is dedicated to
the properties of the methods. These properties are the stability, the total pixel value and the con-
vergence to the average pixel value. All these qualities have also been tested on some of the test
problems.

29
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7.1. PROPERTIES OF THE METHODS
All experiments in this section have been implemented with the FTCS method.

7.1.1. LINEAR DIFFUSION FILTERING

This subsection discusses the properties of the linear diffusion filtering method, the heat equation.
First the stability is tested. In chapter 3 it was shown the stability region was given by 0 <∆t ≤ 0.25.
We test this region for the first test problem, Shepp-Logan with Gaussian noise (n = 200), and the
third test problem, Ella with Johnson noise. The experiment is executed for T = 50 and ∆t = 0.25
and 0.26. Figure 7.1 and 7.2 show the results.
The stability region seems to be correct. For∆t = 0.25 both test problems lead to a good result, while
the outcome for ∆t = 0.26 is clearly unstable.

Figure 7.1: Stability for a) ∆t = 0.25 and instability for b) ∆t = 0.26 for the Shepp-Logan phantom

Figure 7.2: Stability for a) ∆t = 0.25 and instability for b) ∆t = 0.26 for the Ella phantom
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Next the total pixel value is taken into consideration. We stated in chapter 3 that this T PV stays con-
stant over time. Also, we stated that the solution u converges to the average pixel value (APV ). Both
statements will be checked for the Shepp-Logan and Ella test problems. We calculated the T PV for
T = 0 (image with noise), 10, 20, 50, 100 and 100000, with a time step op∆t = 0.1. For T = 100000 we
calculated the average pixel value and checked if this was the value of all pixels in the image. The
values of T PV can be found in table 7.1 and 7.2. Figures 7.3 and 7.4 show the images corresponding
to the tables.

From the tables we can see that the total pixel value is not exactly constant, but changes only slightly.
For the Shepp-Logan phantom the T PV decreases at first, but comes back up to the original value.
For the Ella phantom it increases from 2.3085·103 to 2.3575·103. An explanation for these varia-
tions in T PV can be found in the fact that the matrix for this problem has eigenvalues 0. These
zero-eigenvalues come from the Neumann boundary conditions, which cause the problem to have
multiple solutions. We know the amplification factor is 1 for the zero-eigenvalues, which means that
the numerical errors are not damped. Each error in the direction of the corresponding eigenvectors
are added to the exisiting error, causing the total pixel value to either increase or decrease.
For both problems the solution does converge to the average pixel value (T PVT=100000/n2).

T 0 10 20 50 100 100000
T PV (·103) 7.2484 7.2475 7.2473 7.2473 7.2484 7.2484
APV (T = 100000) 0.1823

Table 7.1: Total pixel value for Shepp-Logan (n = 200)

T 0 10 20 50 100 100000
T PV (·103) 2.3085 2.3177 2.3216 2.3273 2.3317 2.3575
APV (T = 100000) 0.5756

Table 7.2: Total pixel value for Ella

Figure 7.3: Results for ∆t = 0.1 and various number of time steps T for the Shepp-Logan phantom
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Figure 7.4: Results for ∆t = 0.1 and various number of time steps T for the Ella phantom

7.1.2. ANISOTROPIC DIFFUSION FILTERING

Also for the anisotropic diffusion methods we looked into stability. For both Perona-Malik methods
(5.3 and 5.4) the stability region should be similar to the region for linear diffusion filtering, so 0 <
∆t ≤ 0.25. For the ill-posed and well-posed method we expect the region to be smaller. We will test
these statements in this subsection.
First we will consider the Perona-Malik methods. We only discuss one of these methods here, since
the other one has similar results. We will look at the results for Perona-Malik 5.4 with T = 400,
K = 0.5 and ∆t = 0.25 and 0.26. The images for the Shepp-Logan test problem (n = 200) and the Ella
test problem can be found in figure 7.5 and 7.6, respectively.

Figure 7.5: Stability for a) ∆t = 0.25 and instability for b) ∆t = 0.26 for the Shepp-Logan phantom
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Figure 7.6: Stability for a) ∆t = 0.25 and instability for b) ∆t = 0.26 for the Ella phantom

We can see very clearly a chequered pattern for ∆t = 0.26, meaning the solution is unstable. For
∆t = 0.25 we do not see this pattern. The stability region seems to be correct for the Perona-Malik
method 5.4. The results for the other Perona-Malik method were similar, so the conclusion also
holds for this method. Also for a value of K = 0.05 the results showed this difference between
∆t = 0.25 and ∆t = 0.26.

For the ill-posed and well-posed method we stated that the stability interval is smaller than 0 <∆t <
0.25. We tested both methods for the Shepp-Logan and Ella phantom for values of T = 100, K = 0.05
and K = 0.5. The results are shown in table 7.3.

ill posed method well-posed method
Shepp-Logan, n = 200, K = 0.05 0 <∆t ≤ 0.007 0 <∆t ≤ 0.01
Shepp-Logan, n = 200, K = 0.5 0 <∆t ≤ 0.14 0 <∆t ≤ 0.12
Ella, K = 0.05 0 <∆t ≤ 0.007 0 <∆t ≤ 0.01
Ella, K = 0.5 0 <∆t ≤ 0.15 0 <∆t ≤ 0.12

Table 7.3: Stability regions for the ill-posed and well-posed methods

From the table we see that the region is definitely smaller than 0 <∆t ≤ 0.25. It depends slightly on
the test problem and the value of parameter K . These values probably change the value of c(·) in
such a way that it influences the stability region.

The next property is the constant total pixel value. We have tested this problem for all methods, but
only the results for the Perona-Malik method 5.4 are given here. The other methods all gave simi-
lar results. In table 7.4 the values are shown for T PV and APV and the corresponding images are
shown in figure 7.7.
In the table we can see that the total pixel value changes slightly. Overall it stays quit constant. We
can also see that the image converges to a constant value, which was given by the average pixel value
for T = 100000. Therefore we can conclude that the statements made earlier are not exactly correct:
the total pixel value stays almost constant, but the solution converges to the average pixel value.
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T 0 10 20 50 100 100000
T PV (·103) 7.2414 7.2416 7.2413 7.2411 7.2412 7.2866
APV (T = 100000) 0.1822

Table 7.4: Total pixel value for Shepp-Logan, n = 200

Figure 7.7: Results for ∆t = 0.1 and various number of time steps T for the Shepp-Logan phantom

7.2. SHEPP-LOGAN: GAUSSIAN NOISE

7.2.1. FTCS IMPLEMENTATION

The parameters used for the Gaussian test problem using the FTCS implementation are n = 200
and ∆t = 0.01, 0.05, 0.1, 0.2. The number of time steps is T = 5, 10, 20, 50, 100, 200. K is chosen
as K = 0.05, 0.5 for all methods except the heat equation, which does not have a parameter K . The
value N in the ill-posed equation 5.13 is set as N = 3/2, this will be the case for all numerical exper-
iments.

The parameters of the best result of each method, as well as the standard deviation δ are given in
table 7.5. Recall that the initial value is δ= 0.06. The table is ordered by difference, starting with the
smallest difference. Figure 7.8 to 7.14 give the best results for all methods.

method ∆t T K standard deviation δ
Perona-Malik 5.4 0.05 100 0.05 0.0592
Perona-Malik 5.3 0.2 200 0.05 0.0592
Perona-Malik with Gaussian kernel 5.4 0.05 100 0.05 0.0594
Perona-Malik with Gaussian kernel 5.3 0.2 200 0.05 0.0594
Well-posed method 5.12 0.01 5 0.05 0.0595
Ill-posed method 5.13 0.01 5 0.05 0.0595
Heat equation 0.01 20 - 0.0597

Table 7.5: Parameters of each method’s best result ordered by difference
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Figure 7.8: Gaussian noise: best result of Perona-Malik 5.4, ∆t = 0.05, T = 100, K = 0.05

Figure 7.9: Gaussian noise: best result of Perona-Malik 5.3, ∆t = 0.2, T = 200, K = 0.05

Figure 7.10: Gaussian noise: best result of Perona-Malik with Gaussian kernel 5.4, ∆t = 0.05, T = 100, K = 0.05
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Figure 7.11: Gaussian noise: best result of Perona-Malik with Gaussian kernel 5.3, ∆t = 0.2, T = 200, K = 0.05

Figure 7.12: Gaussian noise: best result of the well-posed method 5.12, ∆t = 0.01, T = 5, K = 0.05

Figure 7.13: Gaussian noise: best result of the ill-posed method 5.13, ∆t = 0.01, T = 5, K = 0.05
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Figure 7.14: Gaussian noise: best result of linear diffusion filtering, ∆t = 0.01, T = 20

Based on the values of δ the Perona-Malik methods have the best results compared to the other
methods. By adding a Gaussian kernel to these Perona-Malik methods we obtain similar results.
This is as expected, since the Perona-Malik methods were developed to have better results than the
already existing other methods. They were chosen to satisfy the threshold property, which would
lead to edge preservation as well as intraregional blurring. Nonetheless, when looking at the result
of the Perona-Malik method (5.3) with a Gaussian kernel in figure 7.11, we see that the outer edges
are quite sharp, but the inner gray circles are blurry. By choosing the parameters slightly different
this problem can be overcome. This can be seen in 7.15, here the parameters are ∆t = 0.2, T = 100
and K = 0.05. However, with other parameter values the standard deviation δ becomes larger due
to increased intraregional inhomogeneity.
Another disadvantage of the Perona-Malik method 5.3 is the fact that the filtered image has noisy
speckles. We can see this in figure 7.9 and 7.11. Although these speckles have a negative effect on
the visual quality of the image, they do not seem to influence δ, since otherwise this Perona-Malik
method would be lower in the table.
According to table 7.5 linear diffusion filtering has the worst result, which is also not unexpected.
From the literature we know that the heat equation leads to homogeneous blurring, which means
that edges fade for a large number of time steps. However, the result shown in figure 7.14 has no
blurry edges, which means that for the right parameters the results can be quite good.

Figure 7.15: Gaussian noise: another result of Perona-Malik with Gaussian kernel 5.3, ∆t = 0.2, T = 100, K = 0.05
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It should also be noted that the well-posed and the ill-posed method showed instability for some of
the parameters. If K = 0.05, the solution diverged for all tested values of∆t . If K = 0.5 the divergence
started at ∆t = 0.2. This instability may be overcome with an adaptive time step, which is discussed
in the next chapter on parameter choice. The reason for this instability can be caused by two fac-
tors. The first was mentioned earlier in chapter 4 and is a too large time step ∆t . The exact stability
region for the ill-posed and well-posed method is unknown, but it is definitely smaller than 0.25.
The other reason may be the approximation of the two functions when |∇u| approaches zero. This
approximation is given by 5.17 and 5.18. Choosing the value K too low can also cause problems for
small |∇u|. So probably either a value of ∆t too large or a value of K too small causes the instability.

Overall we can conclude that the parameter choice is of significant importance. Choosing parame-
ters correctly for an inferior method like the heat equation may lead to great results, while choosing
incorrect parameters for Perona-Malik may give an unwanted outcome. We can also assume that
overall the Perona-Malik methods have the best results, while the heat equation the worst.

7.2.2. AOS IMPLEMENTATION

The parameters for the AOS implementation for the Gaussian test problem are different, since this
implementation method is stable for all ∆t > 0. However, when choosing ∆t too high, splitting may
become visible, leading to a less accurate outcome. In [10] a maximum value of∆t = 5 is used, which
is therefore also our maximum∆t . The parameters are n = 200 and∆t = 0.1, 0.5, 1, 2, 5. The number
of time steps is T = 1, 2, 3, 5, 10, 50 and again K = 0.05, 0.5.

Table 7.6 shows the best results for each method.

method ∆t T K standard deviation δ
Perona-Malik with Gaussian kernel 5.4 2 2 0.05 0.0590
Perona-Malik 5.3 5 10 0.05 0.0590
Perona-Malik 5.4 0.1 50 0.05 0.0592
Well-posed method 5.12 0.1 1 0.05 0.0593
Perona-Malik with Gaussian kernel 5.3 5 3 0.05 0.0596
Ill-posed method 5.13 0.1 2 0.05 0.0596

Table 7.6: Parameters of each method’s best result ordered by difference

Figure 7.16: Gaussian noise: best result of Perona-Malik with Gaussian kernel 5.4, ∆t = 2, T = 2, K = 0.05
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Figure 7.17: Gaussian noise: best result of Perona-Malik 5.3, ∆t = 5, T = 10, K = 0.05

Figure 7.18: Gaussian noise: best result of Perona-Malik 5.4, ∆t = 0.1, T = 50, K = 0.05

Figure 7.19: Gaussian noise: best result of the well-posed method 5.12, ∆t = 0.1, T = 1, K = 0.05
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Figure 7.20: Gaussian noise: best result of Perona-Malik with Gaussian kernel 5.3, ∆t = 5, T = 3, K = 0.05

Figure 7.21: Gaussian noise: best result of the ill-posed method 5.13, ∆t = 0.1, T = 2, K = 0.05

For the AOS implementation the Perona-Malik methods also seem to give the best results. However,
when looking at figure 7.17 we see that the visual quality of this image is quite poor. This is due to
the speckles caused by the Perona-Malik method 5.3, which we also noticed for the FTCS imple-
mentation. Again, these speckles do not seem to have an effect on the value of δ.

One of the advantages of the AOS method is the stability for all ∆t > 0. In the table we see that some
optimal results have been obtained with a high∆t . The best result, shown in figure 7.16, is obtained
with only two time steps of size ∆t = 2. This means this implementation can be more efficient than
the FTCS implementation, while also generating a good visual outcome.

If we compare table 7.5 and 7.6 we observe that the standard deviations δ are fairly close. How-
ever, the two best results obtained using the AOS implementation do have a smaller δ than the best
method generated with the FTCS implementation. It seems the AOS implementation leads to better
results.
Also, the well-posed and ill-posed method showed no instability for the tested parameters. This is
also an advantage compared to the FTCS implementation.
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7.3. SHEPP-LOGAN: JOHNSON NOISE
This test problem is slighty different from the first one. First of all, the noise is more realistic, since
it is a reconstructed image of the TUD/LUMC MRI scanner. The other difference is the size of the
image. The image given by the simulation is only 32×32, so n = 32. The other parameters depend
on the numerical scheme.

7.3.1. FTCS IMPLEMENTATION

For the FTCS method the parameters are ∆t = 0.01, 0.05, 0.1, 0.2, T = 5, 10, 20, 50, 100, 200 and
K = 0.05, 0.5. Again the results are given in a table, table 7.7, and the initial standard deviation is
δ= 0.064. The images are in figure 7.22 to 7.28.

method ∆t T K standard deviation δ
Perona-Malik with Gaussian kernel 5.3 0.2 10 0.05 0.0433
Perona-Malik with Gaussian kernel 5.4 0.01 50 0.05 0.0454
Perona-Malik 5.3 0.01 10 0.5 0.0585
Perona-Malik 5.4 0.01 5 0.5 0.0592
Ill-posed method 5.13 0.01 5 0.5 0.0648
Heat equation 0.01 5 - 0.0659
Well-posed method 5.12 0.01 5 0.5 0.0678

Table 7.7: Parameters of each method’s best result ordered by difference

The table for this type of noise has a somewhat different order compared to table 7.5. Combining the
Perona-Malik methods with a Gaussian kernel now does lead to a better result. Also, the heat equa-
tion is not the worst method here, the worst method is now the well-posed method 5.12. However,
the standard deviation δ of the ill-posed, well-posed and linear diffusion method are quite close
together and all lead to results worse than the Perona-Malik methods. So the overall conclusion is
still the same: Perona-Malik gives the best results. The visual perception of the images agrees with
this statement. The figures 7.22 and 7.23 show very good results. Not using the Gaussian kernel has
a large influence on the outcome, as can be seen in both the table and the corresponding figures.
The resulting images still have noise and differ only slighty from the test problem.
Also, the result of the well-posed problem, shown in figure 7.28, seems to have a higher visual quality
than Perona-Malik, but has the highest δ. Choosing other parameters for the Perona-Malik prob-
lem had results similar to this well-posed outcome, but as mentioned before: δ is higher. This means
that the standard deviation δ is inconsistent with visual observation.
Another observation is that the standard deviation δ is higher than the initial standard deviation of
0.064 for the three worst methods. This means that the amount of noise is higher than in the noisy
image, which is obviously not what we want.

The instability for the ill-posed and well-posed method we have seen for the first test problem
are also present here. The instability starts at ∆t = 0.05 for K = 0.05. There is no instability for
K = 0.5. Unfortunately, both Perona-Malik methods also show instability. Perona-Malik 5.3 only for
∆t = 0.01 and K = 0.05, but Perona-Malik 5.4 is unstable for all ∆t with K = 0.05. Adding a Gaussian
kernel to the methods eliminates the instability.
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Figure 7.22: Johnson noise: best result of Perona-Malik with Gaussian kernel 5.3, ∆t = 0.2, T = 10, K = 0.05

Figure 7.23: Johnson noise: best result of Perona-Malik with Gaussian kernel 5.4, ∆t = 0.01, T = 50, K = 0.05

Figure 7.24: Johnson noise: best result of Perona-Malik 5.3, ∆t = 0.01, T = 10, K = 0.5
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Figure 7.25: Johnson noise: best result of Perona-Malik 5.4, ∆t = 0.01, T = 5, K = 0.5

Figure 7.26: Johnson noise: best result of the ill-posed method 5.13, ∆t = 0.01, T = 5, K = 0.5

Figure 7.27: Johnson noise: best result of linear diffusion filtering, ∆t = 0.01, T = 5
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Figure 7.28: Johnson noise: best result of the well-posed method 5.12, ∆t = 0.01, T = 5, K = 0.5

7.3.2. AOS IMPLEMENTATION

For the AOS method the parameters are still ∆t = 0.1, 0.5, 1, 2, 5, T = 1, 2, 3, 5, 10, 20, 50, and
K = 0.05, 0.5. The results are given in table 7.8 ordered by standard deviation δ. The images are in
figure 7.29 to 7.34.

method ∆t T K standard deviation δ
Perona-Malik 5.3 0.1 5 0.05 0.0536
Perona-Malik 5.4 0.1 3 0.05 0.0570
Perona-Malik with Gaussian kernel 5.3 0.5 5 0.05 0.0848
Perona-Malik with Gaussian kernel 5.4 0.1 2 0.05 0.0883
Ill-posed method 5.13 0.1 2 0.5 0.1139
Well-posed method 5.12 0.1 2 0.5 0.1139

Table 7.8: Parameters of each method’s best result ordered by difference

There are a few differences with the results from the FTCS implementation. First of all, the order of
the table is slightly different. For the FTCS implementation the results were better for the Perona-
Malik methods in combination with the Gaussian kernel. For the AOS implementation Perona-
Malik showed better outcomes without the Gaussian kernel.
Another difference is the standard deviation δ. The standard deviation for the Perona-Malik meth-
ods are around the average δ we saw for the FTCS method. This means that it is still better to use
Perona-Malik with a Gaussian kernel in combination with FTCS implementation. The other four
values in the table of AOS implementation are much higher than even the worst value in the FTCS
implementation table. This means that for these methods more noise is present in the filtered im-
age than in the noisy image. This is confirmed by the images: only image 7.29 and 7.30 have a
reasonable visual quality, the other four are all much blurrier than any of the figures for the FTCS
implementation.
Even though the AOS method makes it possible to use higher∆t , the optimal parameters did not in-
clude these large values for ∆t . Only the Perona-Malik with a Gaussian kernel 5.3 used a value of ∆t
which is higher than the stability range for the FTCS method, but this value was still only ∆t = 0.5.
A positive outcome for the AOS method is the fact that no instability has been observed for the
ill-posed and well-posed methods. Also Perona-Malik 5.3 did not show instability.
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Figure 7.29: Johnson noise: best result of Perona-Malik 5.3, ∆t = 0.1, T = 5, K = 0.05

Figure 7.30: Johnson noise: best result of Perona-Malik 5.4, ∆t = 0.1, T = 3, K = 0.05

Figure 7.31: Johnson noise: best result of Perona-Malik with Gaussian kernel 5.3, ∆t = 0.5, T = 5, K = 0.05
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Figure 7.32: Johnson noise: best result of Perona-Malik with Gaussian kernel 5.4, ∆t = 0.1, T = 2, K = 0.05

Figure 7.33: Johnson noise: best result of the ill-posed method 5.13, ∆t = 0.1, T = 2, K = 0.5

Figure 7.34: Johnson noise: best result of the well-posed method 5.12, ∆t = 0.1, T = 2, K = 0.5
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7.4. ELLA: JOHNSON NOISE
This test problem uses a different phantom: the Ella phantom. The noise is of the same type as the
second test problem, namely Johnson noise, which is the expected noise of the TUD/LUMC MRI
scanner. The Ella phantom is 64×64, so n = 64.

7.4.1. FTCS IMPLEMENTATION

The other parameters are similar to the parameters mentioned before. So ∆t = 0.01, 0.05, 0.1, 0.2,
T = 5, 10, 20, 50, 100, 200 and K = 0.05, 0.5. The results are given in table 7.9 with initial standard
deviation of δ= 0.02. The images are in figure 7.35 to 7.41.

method ∆t T K standard deviation δ
Perona-Malik with Gaussian kernel 5.4 0.05 5 0.05 0.0189
Perona-Malik 5.4 0.01 50 0.05 0.0190
Perona-Malik with Gaussian kernel 5.3 0.01 50 0.05 0.0190
Perona-Malik 5.3 0.01 10 0.5 0.0191
Ill-posed method 5.13 0.01 5 0.5 0.0195
Heat equation 0.01 5 - 0.0195
Well-posed method 5.12 0.01 5 0.5 0.0199

Table 7.9: Parameters of each method’s best result ordered by difference

The order of the table is again what we expect: the Perona-Malik methods lead to the best results.
This is confirmed by the figures: the first three figures especially seem to show an improvement
compared to the test problem.
Again the ill-posed and well-posed method were unstable. The ill-posed method was unstable for
all ∆t when K = 0.05 and for ∆t = 0.2 when K = 0.5. The well-posed method did slightly better and
was unstable for ∆t ≥ 0.05 when K = 0.05 and ∆t = 2 when K = 0.5.

Figure 7.35: Johnson noise: best result of Perona-Malik with Gaussian kernel 5.4, ∆t = 0.05, T = 5, K = 0.05
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Figure 7.36: Johnson noise: best result of Perona-Malik 5.4, ∆t = 0.01, T = 50, K = 0.05

Figure 7.37: Johnson noise: best result of Perona-Malik with Gaussian kernel 5.3, ∆t = 0.01, T = 50, K = 0.05

Figure 7.38: Johnson noise: best result of Perona-Malik 5.3, ∆t = 0.01, T = 10, K = 0.5
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Figure 7.39: Johnson noise: best result of the ill-posed method 5.13, ∆t = 0.01, T = 5, K = 0.5

Figure 7.40: Johnson noise: best result of linear diffusion filtering, ∆t = 0.01, T = 5

Figure 7.41: Johnson noise: best result of the well-posed method 5.12, ∆t = 0.01, T = 5, K = 0.5
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7.4.2. AOS IMPLEMENTATION

The parameters for the AOS methods are again ∆t = 0.1, 0.5, 1, 2, 5, T = 1, 2, 3, 5, 10, 20, 50, and
K = 0.05, 0.5. The results are given in table 7.10. The corresponding images are in figure 7.35 to 7.41.

method ∆t T K standard deviation δ
Perona-Malik 5.4 0.5 2 0.05 0.0185
Perona-Malik 5.3 5 1 0.05 0.0186
Perona-Malik with Gaussian kernel 5.3 1 1 0.05 0.0192
Perona-Malik with Gaussian kernel 5.4 0.5 1 0.05 0.0193
Ill-posed method 5.13 0.1 1 0.5 0.0198
Well-posed method 5.12 0.1 1 0.5 0.0205

Table 7.10: Parameters of each method’s best result ordered by difference

The Perona-Malik methods without the addition of a Gaussian kernel are again in the upper part of
the table. This has been the case for all AOS implementated test problems.
And similar to the first test problem the standard deviation δ for these Perona-Malik results is lower
than for the best result achieved with the FTCS implementation. The figures agree with this state-
ment and show a significant improvement compared to the noise image.
In this case the best four test problems use a value of ∆t which would have been unstable for the
FTCS method. The best two even lead to better results than the best result of the FTCS method. This
unconditional stability has proved to be an advantage here.
Also, no instability for all methods and parameters has been seen, which is also an improvement.

Figure 7.42: Johnson noise: best result of Perona-Malik 5.4, ∆t = 0.5, T = 2, K = 0.05
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Figure 7.43: Johnson noise: best result of Perona-Malik 5.3, ∆t = 5, T = 1, K = 0.05

Figure 7.44: Johnson noise: best result of Perona-Malik with Gaussian kernel 5.3, ∆t = 1, T = 1, K = 0.05

Figure 7.45: Johnson noise: best result of Perona-Malik with Gaussian kernel 5.4, ∆t = 0.5, T = 1, K = 0.05
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Figure 7.46: Johnson noise: best result of the ill-posed method 5.13, ∆t = 0.1, T = 1, K = 0.5

Figure 7.47: Johnson noise: best result of the well-posed method 5.12, ∆t = 0.1, T = 1, K = 0.5

7.5. SUMMARY OF RESULTS
For all test problems and both numerical schemes the best result has always been obtained when
using one of the Perona-Malik equations, either with or without the addition of a Gaussian kernel.
Mostly the Perona-Malik method 5.4 gave the best outcome.
When comparing the numerical methods we can conclude that in the first and third test problem
the AOS method gave better results, often with a smaller value of ∆t and T . However, the results
were only slightly better for these two test problems and the results for the second test problem were
worse than the FTCS implemented outcomes. In addition to that, the running time was slightly less
for the FTCS method. This running time is not a problem for a single image, but does make a differ-
ence when testing many variables for multiple test problems. Therefore, the FTCS implementation
has been used for all test problems in the other chapters on numerical experiments (chapter 9 and
11)

However, the FTCS implementation does have a problem with the ill-posed and well-posed method.
In all test problems instability appeared for these methods, especially for low values of K . This in-
stability was not observed for the AOS implementation. Luckily, this instability may be overcome by
the use of an adaptive time step, which will be discussed in the next chapters.
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Another instability problem arised in the second test problem for both Perona-Malik methods. They
showed instability for either a small ∆t or even all ∆t in combination with a small K = 0.05. This in-
stability was not seen when these methods were combined with a Gaussian kernel, so this may be
the solution to the problem.

Lastly something can be said about parameter K . All best results have been obtained with a value of
K = 0.05. In most of the test problems even all results had this value for K .





8
CHOICE OF PARAMETERS

In the implementation of the methods three parameters are very important and have a lot of influ-
ence on the results. One of these parameters is part of the diffusion coefficient: parameter K . In
the Perona-Malik methods this parameter is part of the original function, in the other two methods
the parameter is added to the function to prevent problems for |∇u| close to zero. The other two
parameters come from the numerical schemes: size of a time step ∆t and the total number of time
steps T .

8.1. CHOICE OF K
The gradient threshold parameter or contrast parameter K describes the balance between blurring
and preserving edges. When K is close to zero, almost no effect will occur, since the diffusion coef-
ficient goes to zero. When K is high, the diffusion coefficient approaches 1, which means that the
method would be similar to the heat equation and would lead to blurring. This balance between
blurring and edge preservation we have seen before. Recall the threshold property:

φ′(|∇u|) =
{
> 0, |∇u| < τ
< 0, |∇u| ≥ τ (8.1)

We can state that K is similar to this threshold value τ. To maintain edges we need |∇u| ≥ K . In
each iteration some blurring occurs, which means that the average value of |∇u| decreases. Since
K ≤ |∇u| we need K to decrease in each iteration as well.
In [14] three possible methods are mentioned to estimate parameter K . All methods reduce K in
each iteration.

1. the first method uses a ’noise estimator’, which computes a histogram of all values of |∇u| through-
out the image and sets K equal to 90% of its integral. Since it was unclear what was meant by the
integral of a histogram, a different estimation based on the noise estimator was used in the imple-
mentation. K was chosen as 90% of the average absolute gradient of u throughout the image.

2. the second method was defined by Black et al. ([15]) and estimates K as K = 1.4826M AD(∇u),
with M AD the median absolute deviation given by MAD = median(|∇u −median(|∇u|)|). Note that
median(|∇u|) is a scalar and ∇u a vector, so this notation means that for each value in ∇u the value
median(|∇u|) is subtracted.
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3. the third method was described by Voci et al. ([16]) and uses the p-norm of the image to obtain
a value for K . They define K as K = σ|u|p /n2, with σ a constant proportional to the average image

density and |u|p the p-norm given by |u|p = (∑
i , j |u|p

)1/p . In the article they find a value of K in the
order of magnitude of 10−3. This order of magnitude can be used to find an estimate of σ, since σ is
not specified clearly in the article. The value of p is also not mentioned in the article.

8.2. CHOICE OF TIME STEP ∆t
The second parameter is the step size ∆t . We know that the AOS implementation is stable for all
values of ∆t > 0. The FTCS method does have a limitation: it is only stable for 0 <∆t ≤ 0.25.
Finding a correct value for ∆t can be difficult. When the image is changing rapidly a smaller time
step is beneficial, while at slow changes over time the time step can be much larger ([17]). Therefore
an adaptive time step can be a solution. In [17] the following time step was chosen:

∆t (i ) = 1

α

(
a +b exp

(
−max

( |Re(∂u(i )/∂t |)
Re(u(i ))

)))
(8.2)

with |Re(∂u(i )/∂t |)/Re(u(i )) the fraction of change of the image at iteration i . The parameters a
and b control the timestep. In the article this adaptive time step is used for the FTCS method with
0 < ∆t ≤ 0.25. They take α = 4 and therefore need a +b ≤ 1, which is the case for their choice of
a = 0.25 and b = 0.75.
We see that for large changes of the image the value of the exponent will approach zero, leading to a
time step∆t of a/α= 0.0625. When the image changes slowly, the exponent will go to 1, resulting in
a time step ∆t of (a+b)/α= 0.25. This means that for initial iterations ∆t will be around 0.0625 and
will increase to a value approaching 0.25.

For the well-posed and ill-posed methods in particular, we need a different approach of ∆t . We
have seen in the results that the problem can become unstable for some parameters. It might be
possible to overcome this problem with an adaptive time step. This time step should decrease when
the image seems to diverge from the solution. A possibility for a time step with this behaviour can
be:

∆t k = q ·∆t k−1, if
∑
i , j

uk
i , j > 1.0001

∑
i , j

uk−1
i , j ,k > 0 (8.3)

with 0 < q < 1.
This time step is based on the total pixel value of the image

∑
i , j ui , j . It is known that the total

pixel value of the image should stay constant in each iteration k. Therefore the total pixel value at
time t = 0, the noisy image, should also be the total pixel value of the optimal solution obtained
with diffusion filtering. When the total pixel value increases in an iteration, it means that the image
is diverging from this optimal solution. Decreasing ∆t bij a factor q can hopefully overcome this
deviation. We do need to keep in mind that the total pixel value can also increase due to numerical
errors, therefore the value 1.0001 has been chosen. It is sufficiently high that the difference is due to
instability and not due to numerical error.

8.3. OPTIMAL NUMBER OF TIME STEPS T
Another important parameter is the number of time steps T . Since in each iteration one neighbour
in each direction is used to determine a new pixel value, the value T gives the number of neighbours
in each direction integrated in the new pixel value.
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In this section we want to determine when to stop the diffusion. So from now on the number of time
steps T at which the diffusion is stopped is named the stopping time S. This parameter is crucial
in determining when the optimal solution is reached. Stopping too soon leads to an image with
leftover noise, but stopping too late causes the image to lose its accuracy due to blurring.

In [18] a method was proposed to determine the stopping time S. First they mentioned a method
based on the median absolute deviation (M AD) of the difference between the original solution and
the solution at time t . The stopping criterium was given by:

SM AD =arg min
t

MAD(u(t )−uor i g i nal )

=arg min
t

median
(|(u(t )−uor i g i nal )−median(|(u(t )−uor i g i nal )|)|) (8.4)

.
This stopping criterium can only be used when the original image is known, which is usually not
the case. However, they noticed that the plot of the M AD coincides with the plot of the correlation
coefficient corr(u(0)−u(t ),u(t )), as can be seen in figure 8.1. Since this correlation coefficient is
independent of the original image, it might be a suitable option for a stopping criterium.
In the article the stopping criterium was defined as:

Scor r = arg min
t

corr(u(0)−u(t ),u(t )) (8.5)

The conclusion in [18] was that the SM AD is a good estimator of the optimal stopping time. The ob-
tained results were very close to the solutions with the best visual quality. The other stopping time,
Scor r , underestimated the optimal stopping time: to obtain the visually optimal result the diffusion
should have stopped later than at Scor r .
Both stopping times SM AD and Scor r will be tested on our own test problems to verify these out-
comes.

Figure 8.1: Plot of MAD (solid line) and correlation coefficient (dashed line) [18]

Another possibility for a stopping time is based on the difference between the filtered image and the
noisy image |u(t )−u(0)| and |∇u(t )|. In every iteration the difference between the image u(t ) and
the initial noisy image u(0) becomes larger, while the gradient of u decreases. A balance between
these values can lead to a correct stopping time.
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Choose stopping time Sλ as:

Sλ = arg min
t

|u(t )−u(0)|2 +λ|∇u(t )|2 (8.6)

with λ> 0. This parameter λ may be difficult to determine.
Optimal values for λ will be investigated in the following chapter on numerical experiments of the
parameters. Both previously mentioned stopping times, SM AD and Scor r , will also be tested and
compared. Hopefully, these experiments will lead to an optimal formula for a stopping time.
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NUMERICAL EXPERIMENTS: CHOICE OF

PARAMETERS

Since previously the conclusion was made that the FTCS implementation in combination with the
Perona-Malik method 5.4 lead to good results, these methods are used to compare the results for all
parameters. The only exception is the adaptive time step for the well-posed and ill-posed method.
Obviously these methods are used here, but they are still implemented with FTCS.

9.1. PARAMETER K
First it is important to gain a better understanding of the behaviour of parameter K . Therefore the
optimal value K has been calculated for many parameters. The parameters were tested on two test
problems: the Shepp-Logan phantom with Gaussian noise with a standard deviation of 0.06 and
the Ella phantom with Johnson noise. The parameters for the first test problem are n = 64, 200, 400,
∆t = 0.05, 0.1, 0.2 and T = 1, 5, 10, 20, 50, 100, 200. Since the Ella phantom is only available for
n = 64, this is the only value for n tested for this test problem, ∆t and T have the same options.
To determine Kopt , the standard deviation δ has been used as before:

δ= 1

n
||uor i g i nal −u f i nal ||2 (9.1)

It was expected that many factors influence K . The following figure 9.1 shows the influence of the
image size n, the influence of the initial image and the influence of ∆t on K . The first two images
are both for a time step of ∆t = 0.05. These results are for the Shepp-Logan phantom.

Figure 9.1: Influence of a) n, b) initial image and c) ∆t on optimal K
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From this image we can conclude that the behaviour of K is similar for all plots. For small values of
∆t ·T the optimal K descends rapidly from a value of around 0.8 to 0.1 and remains between 0 and
0.1 for the higher values of∆t ·T . However, we can see from the first figure that the size of the image
n has an influence on the exact shape of the plot. It may seem like a small difference, but a slight
change in K has a large effect on the outcome. The second figure shows the influence of the initial
image on the optimal K . This was tested by calculating the value of Kopt for different runs of the
program. This means that the noise remained Gaussian with a standard deviation of 0.06, but the
initial images were not exactly the same. As can be seen from the figure, this has a slight influence
on the value of Kopt . The third variable was ∆t . From the third image we can conclude that it does
not matter what time step is chosen. The optimal K is depending on the product ∆t ·T .

A comparison between the Kopt values of the Shepp-Logan test problem (also with n = 64) and the
Ella test problem are showed in figure 9.2. These results were obtained with a time step of∆t = 0.05.
We can see that the behaviour of the plot is still the same, but the difference is quite large between
the two test problems.

Figure 9.2: Comparison of the Shepp-Logan phantom (n=64) and Ella phantom

Based on both figures, we must unfortunately conclude that it is hard to predict a correct value for
K . However, in the previous chapter we mentioned three ways of finding a reasonable value for K
([14]). These methods have been compared with the above shown results.

9.1.1. ’NOISE ESTIMATOR’ METHOD

The first method was a so-called ’noise estimator’. This estimator is computed by calculating a his-
togram of all values of |∇u| throughout the image and setting K equal to 90% of its integral. A slightly
different estimation has been used to estimate this noise estimator. K is chosen as 90% of the aver-
age absolute gradient of u throughout the image. Since K changes and decreases for each iteration,
the average value Kav g has been calculated and compared with the known optimal values. The re-
sults for both test problems and various values of n are in figure 9.3. These results have again been
obtained with ∆t = 0.05
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Figure 9.3: Comparison of Kopt and Kav g for the Ella and Shepp-Logan test problem

The behaviour of the average K obtained with the noise estimator method is not exactly similar to
that of the optimal K . It is decreasing as ∆t ·T increases, but the initial decrease is much less steep
than for the optimal K . In all four plots, the dotted line of Kav g starts out lower than the continuous
line of Kopt . At some point these lines cross and from then on Kav g is higher than Kopt . This point of
intersection is around ∆t ·T = 0.05 for the n = 64 Shepp-Logan and n = 64 Ella phantom. It is later,
at around ∆t ·T = 4, for the n = 200 Shepp-Logan phantom and much later, at around ∆t ·T = 10,
for the n = 400 Shepp-Logan phantom.

The point of intersection is very important, since for values of ∆t ·T around this point, the use of
the ’noise estimator’ leads to a result similar to the optimal result. This can be seen in image 9.4.
This figure shows the outcomes for the optimal K (9.4a) and for K obtained with the noise estimator
method (9.4b).
Unfortunately, if∆t and T are chosen in such a way that∆t ·T is not close to the point of intersection,
the results are visually very poor compared to the optimal solution. So the method has proved to
be useful only for the correct values of ∆t and T . The only assumption we can make is that for low
values of n we want ∆t ·T to be small and for higher values of n ∆t ·T has to be high as well.
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Figure 9.4: The results for n = 400, ∆t = 0.05 and T = 200: a) optimal b) noise estimator method

9.1.2. MAD METHOD

The second option mentioned in [14] estimates K as K = 1.4826M AD(∇u), with M AD the median
absolute deviation given by MAD = median(|∇u − median(|∇u|)|). Recall that median(|∇u|) is a
scalar and ∇u a vector, so it states that for each value in ∇u the value median(|∇u|) is subtracted.
This method also causes K to decrease in every iteration, so again the average value of K was used
to compare it to the optimal K . The results for Shepp-Logan (n = 64, 200, 400) and Ella are shown in
figure 9.5, all with ∆t = 0.05.
We can see that this average K shows a similar pattern as the average K obtained with the noise
estimator method. The only difference is that the values are much smaller. This has an immediate
effect on the intersection point. Due to the lower values of Kav g , the intersection point is much
later. Only for the Ella phantom the intersection is around a similar value. This means that in order
to generate an optimal result the value of ∆t ·T has to be quite high. Since the FTCS method is only
stable for 0 < ∆t ≤ 0.25, this leads to high number of time steps T , resulting in a longer calculation
time. We can conclude that this method of finding K is inferior to the noise estimator method.

9.1.3. P-NORM METHOD

The third method we discussed uses the p-norm of the image to obtain a value for K . K is defined
as K = σ|u|p /n2, with σ a constant proportional to the average image density and |u|p the p-norm

given by |u|p = (∑
i , j |u|p

)1/p . In the article a value of K in the order of magnitude of 10−3 is found.
Since σ is not specified clearly, we use this order of magnitude to find an estimate of σ. It was also
unspecified what value of p would be useful.
For the numerical experiments the same options for n and T were used and the time step was cho-
sen as ∆t = 0.05. Since it was unclear how to choose σ and p, both were tested for different values.
To obtain results in the region of 10−3 a value ofσ= 10 ·uav g was needed for p = 2 andσ= 100 ·uav g

for p = 3, with uav g denoting the average pixel density. However, even though article [16] states that
the value of K decreases, this was hardly the case for all parameters. The value remained almost
constant for all iterations. It means that this method is basically similar to manually choosing a
constant, but in a more unpredictable way. This method is therefore the worst of the tested meth-
ods.



9.2. TIME STEP ∆t 63

Figure 9.5: Comparison of Kopt and Kav g for the Ella and Shepp-Logan test problem

9.2. TIME STEP ∆t
In the theoretical part a method with an increasing time step was discussed for the Perona-Malik
method with FTCS implementation and a decreasing time step for the ill-posed and well-posed
methods. Both will be discussed in this section.

9.2.1. PERONA-MALIK

Before looking into the method we try to understand the behaviour of ∆t and investigate the influ-
ences of different parameters. We want to know how the size of the image n affects the optimal ∆t
and what happens for different values of K . We also compare the behaviour for the Shepp-Logan
phantom (n = 64) with the behaviour for the Ella phantom. These results are shown in figure 9.6.

We see that n has a significant influence on the optimal ∆t . During the initial time iterations the
optimal value for ∆t is the maximum time step for stability, ∆t = 0.25, and after a certain number of
iterations this optimal ∆t starts to decrease. For higher values of n, this decrease starts at a higher
number of iterations. This means that for the same number of iterations the optimal value for ∆t is
higher for a more detailed image than for an image with a low n.
Parameter K affects optimal ∆t even more. For higher values of K (K = 0.5), the decrease starts
immediately at the first iteration and this decrease is much steeper than for lower values of K . For
larger K the influence of n is similar, but the lines for n = 64 and n = 400 are closer together than for
lower K .
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Figure 9.6: Influence of a) n, b) parameter K and c) image on optimal ∆t

The third image shows the difference between the two phantoms. Even though both had similar
values for K and n, the curve of Ella decreases much sooner and steeper than the Shapp-Logan
curve. This behaviour is similar to the Shepp-Logan phantom with a high K , shown in the middle
image.
We can conclude that many factors play a role in finding the optimal ∆t . However, the behaviour
of the optimal ∆t is similar for all plots. It starts at the maximum value of 0.25 and decreases after
some number of iterations to a value close to 0. This is contradictory to the theory described in the
literature. The article ([17]) stated that for a rapidly changing image a smaller time step is beneficial,
while at slow changes over time the time step can be much larger. Based on this statement the
following adaptive time step was chosen, given by:

∆t (i ) = 1

α

(
a +bexp

(
−max

( |Re(∂u(i )/∂t |)
Re(u(i ))

)))
(9.2)

with |Re(∂u(i )/∂t |)/Re(u(i )) the fraction of change of the image at iteration i . In the article they take
α= 4, a = 0.25 and b = 0.75.
This method is based on the fact that for large changes of the image the value of the exponent will
approach zero, leading to a time step ∆t of a/α= 0.0625, and for slower changes, the exponent will
go to 1, resulting in a time step ∆t of (a +b)/α = 0.25. This means that for initial iterations ∆t will
be around 0.0625 and will increase to a value approaching 0.25, which is exactly the opposite of the
behaviour seen in figure 9.6.
Therefore this equation has been modified to give rise to a decreasing function, starting at∆t = 0.25
and decreasing to a value close to 0. The equation is now given by:

∆t (i )
mod = 1

α

(
a −bexp

(
−max

( |Re(∂u(i )/∂t |)
Re(u(i ))

)))
(9.3)

The constants have been chosen differently also: α= 4, a = 1 and b = 1.
The behaviour of the optimal ∆t , the original method and the modified method are given in figure
9.7. We see that in all images the original method is almost the opposite of the optimal∆t . However,
the curve for the modified method seems to resemble the optimal ∆t better. In the left image we
can see that the modified method curve is below the optimal curve. This is what we want, since the
optimal curve shows the optimal ∆t when using a constant time step. For example, for 50 iterations
the optimal∆t is given by 0.15. This means that every iteration used a constant value of∆t = 0.15 to
obtain the optimal solution. The modified method has a changing time step, so to get the best result
we want the average time step for 50 iterations to be 0.15. Since it starts at a high value of 0.25, we
need the curve to be below the optimal curve to get an average value close to 0.15.
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Figure 9.7: Comparison of optimal ∆t , original method and modified method for the Shepp-Logan and Ella test problem

The other two images show that the modified method is above the optimal curve. This is not ideal,
since this means that the average time step is higher than the optimal ∆t , leading to too much blur-
ring.

The following three figures show the optimal outcome and the outcomes when using the original
method and the modified method for Shepp-Logan (K = 0.05, figure 9.8, and K = 0.5, figure 9.9)
and Ella (K = 0.05, figure 9.10). As expected we see in the first figure that for both a low and a high
number of iterations T the modified method leads to better results (figure c) and f) are better than
respectively b) and e)). This was expected since the modified method stayed below the optimal
curve.

Figure 9.8: The best results obtained for K = 0.05 and a) T = 10, optimal∆t b) T = 10, original method c) T = 10, modified
method, d) T = 100, optimal ∆t , e) T = 100, original method, f) T = 100, modified method



66 9. NUMERICAL EXPERIMENTS: CHOICE OF PARAMETERS

Figure 9.9: The best results obtained for K = 0.5 and a) T = 10, optimal ∆t b) T = 10, original method c) T = 10, modified
method, d) T = 100, optimal ∆t , e) T = 100, original method, f) T = 100, modified method

Figure 9.10: The best results obtained for K = 0.05 and a) T = 10, optimal∆t b) T = 10, original method c) T = 10, modified
method, d) T = 100, optimal ∆t , e) T = 100, original method, f) T = 100, modified method
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The second figure shows that for T = 10 the original method leads to a slightly better result than
the modified method. This is because the modified method did not have enough time to decrease,
but stayed around a value of ∆t = 0.25, leading to a blurrier outcome. For higher values of T the
opposite is true: the original method used ∆t = 0.25 for many iterations, causing blurring, while
the modified method had a lower average ∆t . However, both methods are much blurrier than the
optimal result, due to an overall higher ∆t .
The third image shows the Ella phantom for K = 0.05. As predicted the modified method shows too
much blurring and is for both low and high values of T not a good option for estimating ∆t . Even
though the original method leads to better results, it is still a poor method for higher T , as can be
seen in figure 9.10e.

Overall the modified method seems to be the better option for more detailed images (higher n),
in that case the visual quality was high for both K = 0.05 and K = 0.5. Unfortunately, the method
showed too much blurring for images with a low n, especially for many iterations. The original
method had slightly better results for low n, but still of poor visual quality.

9.2.2. ILL-POSED AND WELL-POSED METHOD

For the ill-posed and well-posed method an adaptive time step was introduced to overcome the
instability seen for some parameters (chapter 8). It was given as:

∆t k = q ·∆t k−1, if
∑
i , j

uk
i , j > 1.0001

∑
i , j

uk−1
i , j ,k > 0 (9.4)

with 0 < q < 1. This equation causes the time step ∆t to decrease with factor q when the total pixel
value increases only slightly. This condition has been chosen, since an increase in the average pixel
value means deviation from the ideal solution.
The factor q is important for the outcome. Choosing q too small or too large can also cause insta-
bility. The stability interval has been determined for the Shepp-Logan phantom for n = 64, n = 200,
n = 400, n = 800 and the Ella phantom with a starting time step of ∆t k=1 = 0.05. The results are in
the following table.

test problem stability for
Shepp-Logan, n = 800 0.23 ≤ q ≤ 0.25
Shepp-Logan, n = 400 0.05 ≤ q ≤ 0.5
Shepp-Logan, n = 200 0.05 ≤ q ≤ 0.5
Shepp-Logan, n = 64 0.05 ≤ q ≤ 0.95
Ella 0.01 ≤ q ≤ 0.95

Table 9.1: Stability interval for several test problems

In the table we can observe that the size of the image n is important for the interval. For a value of
n = 800 the interval is the smallest, only 0.23 ≤ q ≤ 0.25. For the smallest images almost all values of
q lead to a stable problem. The table only shows the results for a starting time step of ∆t k=1 = 0.05.
For a higher starting time of ∆t k=1 = 0.2 the problem remains unstable for all q , but the outcomes
are most improved for values 0.2 ≤ q ≤ 0.3.
Within the stability interval the outcomes can be very different depending on q . The smallest stable
value for q leads to the best results, while the largest stable q gives a much blurrier result. Two
examples of this fact are shown in figure 9.11 and 9.12.
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Figure 9.11: Results of the adaptive time step with a) q = 0.01 b) q = 0.05 c) q = 0.1 d) q = 0.5 e) q = 0.95 f) no adaptive
time step (q = 1)

Figure 9.12: Results of the adaptive time step with a) q = 0.01 b) q = 0.05 c) q = 0.1 d) q = 0.5 e) q = 0.95 f) no adaptive
time step (q = 1)
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The first figure shows some outcomes for the Shepp-Logan phantom, n = 400, for various values of
q . Obviously all outcomes are better than the unstable solution for a constant time step. However,
image a) and e) give unstable results, agreeing with the table. Image b) gives the best result. A
similar pattern can be observed in the second figure of Ella. Here only e) gives an unstable result,
again corresponding to the table, and a) leads to the best result.
Since the size of the interval can be different for different n and starting time step sizes ∆t k+1, it is
difficult to find the minimal stable q . According to the table a value of q = 0.25 is the safest option,
since this always leads to stable results. Unfortunately, from figure 9.12 we can see that a value of
q = 0.25 would lead to poor results. However, for a small initial time step size most images lead to a
stable result for a much smaller value q = 0.05, so this value can be chosen for a small ∆t 1.
The overall conclusion is that this adaptive time step definitely leads to better results than a constant
∆t . The only difficulty is finding the optimal q .

9.3. NUMBER OF TIME STEPS T
The optimal number of time steps T is named the stopping time S. This stopping time is very impor-
tant for the outcome: if S is too small, noise remains in the image, but if S is too large the outcome
will be unclear due to too much diffusion.
To determine when we want the filtering to stop we looked into the visually optimal S for both phan-
toms and many parameters. These values are given in the three tables below (9.2, 9.3 and 9.4) in the
colums Svi sual .

In the theoretical part three methods were discussed. The first one used the median absolute devi-
ation (M AD) and was given by:

SM AD =arg min
t

MAD(u(t )−uor i g i nal )

=arg min
t

median
(|(u(t )−uor i g i nal )−median(|(u(t )−uor i g i nal )|)|) (9.5)

.
A big disadvantage of this stopping time is the fact that the original image is needed. For the test
problems the original is known, so we can calculate this stopping time. However, usually the orig-
inal is not known, which makes the stopping time useless. The results for the calculated stopping
times are also in the tables in the column SM AD .
The second method was based on the fact that the plot of the M AD coincides with the plot of the
correlation coefficient corr(u(0)−u(t ),u(t )). This correlation coefficient is independent of the orig-
inal image and is defined as:

Scor r = arg min
t

corr(u(0)−u(t ),u(t )) (9.6)

The results for this method are also given in the tables in the column Scor r .

The last method was the λ-method, which defined the stopping time as:

Sλ = arg min
t

|u(t )−u(0)|2 +λ|∇u(t )|2 (9.7)

with λ> 0.
For all visual optima given in the tables the corresponding λ was determined. This is the value λ
for which 9.7 reached its minimum at exactly the visual optimum. These values can be found in the
tables in the colums λvi sual .
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Ella, K = 0.05
∆t SM AD Scor r Svi sual λvi sual

∆t = 0.01 69 41 70 0.038
∆t = 0.05 14 8 15 0.036
∆t = 0.1 7 4 7 0.036
∆t = 0.2 3 3 5 0.034

Ella, K = 0.5
∆t SM AD Scor r Svi sual λvi sual

∆t = 0.01 6 25 25 0.030
∆t = 0.05 1 5 5 0.027
∆t = 0.1 1 3 2 0.019
∆t = 0.2 1 1 1 0.010

Table 9.2: Stopping times for Ella

Shepp-Logan, n = 64, K = 0.05
∆t SM AD Scor r Svi sual λvi sual

∆t = 0.01 461 236 350 0.040
∆t = 0.05 92 53 70 0.040
∆t = 0.1 46 30 35 0.038
∆t = 0.2 23 13 20 0.042

Shepp-Logan, n = 64, K = 0.5
∆t SM AD Scor r Svi sual λvi sual

∆t = 0.01 35 22 25 0.040
∆t = 0.05 6 5 5 0.032
∆t = 0.1 3 3 3 0.020
∆t = 0.2 1 1 2 0.012

Table 9.3: Stopping times for Shepp-Logan, n = 64

Shepp-Logan, n = 400, K = 0.05
∆t SM AD Scor r Svi sual λvi sual

∆t = 0.01 913 631 850 0.016
∆t = 0.05 181 126 180 0.015
∆t = 0.1 90 63 90 0.018
∆t = 0.2 46 31 45 0.018

Shepp-Logan, n = 400, K = 0.5
∆t SM AD Scor r Svi sual λvi sual

∆t = 0.01 111 86 90 0.020
∆t = 0.05 21 16 18 0.022
∆t = 0.1 10 7 8 0.024
∆t = 0.2 5 1 4 0.022

Table 9.4: Stopping times for Shepp-Logan, n = 400



9.3. NUMBER OF TIME STEPS T 71

In the tables we see that SM AD and Scor r are often completely different. They also differ quite a lot
with the optimal stopping time Svi sual . Scor r is always much lower than the optimum and SM AD is
either too low or too high. It seems like both these methods will not give the result we want.

We can make the following assumptions about the behaviour of λvi sual . We see that the values in
the first table are almost similar to the values in the second table. Both tables belong to a test prob-
lem with n = 64. It might mean that the values for λ are similar for different images with the same
n.
Unfortunately the value λvi sual is very different for the various parameters. Sometimes it does stay
around the same value for different∆t (all problems with K = 0.05 and Shepp-Logan K = 0.5), but it
can also decrease as∆t increases. Nevertheless, we can conclude thatλvi sual is depending on many
factors and no optimal value for λ can be easily determined.

Even though all tested methods do not lead to the optimal result, we might find a better stopping
time by using a combination of the methods. The M AD-method uses the original image, which is
in practice not available, so we do not want to use this method. The other two methods are only
depending on the noisy image and the filtered image, so both can always be used.
Since we want to use the λ-method, we need a value for λ. From the table we see that λvi sual is in
the range of 0.01−0.04. Therefore we decided to use the method with a value of λ= 0.02. This value
is often around the correct value and sometimes too high or too low. The stopping time obtained
with the λ-method with λ= 0.02 is named Sλ. The new stopping time Snew is chosen as:

Snew = [(4 ·min(Scor r ,Sλ))/3] f loor (9.8)

This stopping time is based on the fact that the optimal stopping time Svi sual is always higher than
or equal to Scor r . If Sλ is lower than Scor r , it is therefore also lower than the optimal. If Sλ is higher
than Scor r , the minimum of the two is still lower than Svi sual . By multiplying with a factor 4/3 the
stopping time Snew is higher than this minimum, which is what we want. Since the division can lead
to a noninteger, we round the value down to the lowest integer, which is denoted as [·] f loor .
The values for Scor r , Sλ, Svi sual and new stopping time Snew are given in table 9.5. The images
obtained using stopping time Snew for different ∆t are given in figures 9.13, 9.14 and 9.15 for Ella
(K = 0.05), Shepp-Logan (n = 400, K = 0.05) and Shepp-Logan (n = 400, K = 0.5), respectively.

In the table we observe that Snew is always similar to the maximum of Sλ and Scor r or it is higher
than this maximum. We can see that taking the maximum of Sλ and Scor r gives a similar result or a
result closer to the optimal Svi sual . Therefore taking max(Scor r ,Sλ) as a stopping time might seem
a better option. However, Scor r can change dramatically per program run, leading to a much higher
value of Scor r . This means it is not wise to have a stopping time depending on the maximum value,
since this value can be very different from the optimal stopping time.

Even though Snew is not always leading to the optimal stopping time, it is still a very good estimator.
This is confirmed by the figures. The resulting solutions are all of high visual quality, which is the
ultimate goal. In the following chapters segmentation is explained and tested on these outcomes to
visualize the difference between the noisy image and the results even better.
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Ella, K = 0.05 Ella, K = 0.5
∆t Sλ Scor r Svi sual Snew Sλ Scor r Svi sual Snew

∆t = 0.01 31 41 70 41 19 25 25 25
∆t = 0.05 6 8 15 8 4 5 5 5
∆t = 0.1 3 4 7 4 2 3 2 2
∆t = 0.2 2 3 5 2 2 1 1 1

Shepp-Logan, n = 64, K = 0.05 Shepp-Logan, n = 64, K = 0.5
∆t Sλ Scor r Svi sual Snew Sλ Scor r Svi sual Snew

∆t = 0.01 177 236 350 236 17 22 25 22
∆t = 0.05 40 53 70 53 4 5 5 5
∆t = 0.1 23 30 35 30 2 3 3 2
∆t = 0.2 10 13 20 13 2 1 2 1

Shepp-Logan, n = 400, K = 0.05 Shepp-Logan, n = 400, K = 0.5
∆t Sλ Scor r Svi sual Snew Sλ Scor r Svi sual Snew

∆t = 0.01 841 631 850 841 88 86 90 114
∆t = 0.05 168 126 180 168 18 16 18 21
∆t = 0.1 84 63 90 80 9 7 8 9
∆t = 0.2 41 31 45 41 2 1 4 1

Table 9.5: Stopping times for several test problems

Figure 9.13: Result for Ella, K = 0.05, for stopping time Snew (in image S)
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Figure 9.14: Result for Shepp-Logan, n = 400, K = 0.05, for stopping time Snew (in image S)

Figure 9.15: Result for Shepp-Logan, n = 400, K = 0.5, for stopping time Snew (in image S)
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9.4. SUMMARY OF RESULTS

9.4.1. PARAMETER K
To determine which method is the most useful for finding K we need to look at the value ∆t ·T . We
have seen in the figures that the optimal K intersects with the average K of one of the methods at
some value for ∆t ·T . Where this intersection point is, is depending on many factors. One of these
factors is the value of n. For low values of n this intersection is at a much lower value of ∆t ·T than
for larger values of n. For the first method, the noise estimator method, the intersection point was
in the region of ∆t ·T = 0.5 for small n and in the region of ∆t ·T = 10 for high n.
For the second method, the MAD method, the average value of K was much lower than for the first
method. This leads to a much later intersection between this Kav g and Kopt . Therefore a much
higher ∆t ·T is necessary for a correct estimation. This causes the calculation time to be much
higher than for the first method, which makes this method less suitable for the estimation of K .
The third method, the p-norm method, was the worst of the tested methods. First of all, the method
depends on two parameters,σ and p, and both were unknown. This made it hard to find the correct
estimation. But the biggest disadvantage was that even though the article stated that this method
leads to a decreasing value of K , the value remained almost constant. This means that it is basically
similar to manually choosing a constant, but in a more difficult manner due to the unknown values
of σ and p.

9.4.2. TIME STEP ∆t
For the Perona-Malik method we looked at the behaviour of ∆t . We noticed that the method dis-
cussed in the theory showed a behaviour opposite to the behaviour of the optimal ∆t . The optimal
value for ∆t starts for a low number of iterations at the maximal possibility for stability, ∆t = 0.25,
and slowly decreases to a value of zero for a larger number of iterations. The method starts at a value
of ∆t = 0.0625 for a low number of iterations and increases to the value of ∆t = 0.25.
To create a method with the same behaviour as the optimal value of ∆t , the method mentioned in
the theory was modified slightly. This new method showed good results for the Shepp-Logan phan-
tom. For the Ella phantom both methods did not estimate ∆t correctly and lead to blurry results.
Overall the new method seems like the better option. This new method is given by:

∆t (i )
mod = 1

α

(
a −bexp

(
−max

( |Re(∂u(i )/∂t |)
Re(u(i ))

)))
(9.9)

In an earlier chapter we noticed that the ill-posed and well-posed method were unstable for certain
combinations of parameters. Therefore an adaptive time step was introduced for these methods,
which decreases ∆t when the solution starts to diverge. This time step is depending on a parameter
q . This q should be chosen as low as possible, but if q is too low the solution becomes unstable.
Since this stability domain is also depending on many factors, finding the optimal value of q can
be difficult. However, for the correct value of q the results are very good and there exists no more
instability.

9.4.3. NUMBER OF TIME STEPS T
The number of time steps at which the diffusion is ended is named the stopping time S. Three es-
timators for S have been tested and compared. One of these methods used the median absolute
deviation (M AD) of u(t )−uor i g i nal . The biggest disadvantage of this method is that the original
image is needed, which is usually not the case. Therefore this method is not very useful in practice.
The second method, Scor r , uses the correlation coefficient of u(0)−u(t ) with u(t ) and is only de-
pending on the noisy image and the filtered image. This method showed promising results. How-
ever, this stopping time usually stopped too early, leading to a suboptimal image.
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The third method discussed in the theoretical chapter, chapter 8, is depending on parameter λ.
Unfortunately this λ was varying quite a lot. The average λ was around a value of 0.02. Using this λ
could lead to a good result, but also caused under- and overdiffusion of the image.
A new stopping time Snew was introduced. This stopping time is a combination of the second and
the third method and leads to either better or equally good results. Therefore this new stopping time
Snew seems to be the better option. It is given by:

Snew = [(4 ·min(Scor r ,Sλ))/3] f loor (9.10)

9.4.4. RECOMMENDATION

After the investigation of the behaviour of these three parameters, the conclusion is that all these
values are influencing each other. Therefore it is hard to come up with an optimal choice for K , ∆t
and S at the same time. Based on all the results discussed in this chapter, we would recommend
to choose a contant value for K and ∆t and decide on a stopping time to find the best solution.
Having a varying K , ∆t and stopping time would only make it harder to find the optimal outcome.
So choose for example K = 0.05 and∆t = 0.1 and use stopping time Snew to obtain the filtered result.
This should lead to good outcomes.
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SEGMENTATION

The overall goal of the methods discussed in the previous chapters is to remove noise in MRI images
to acquire a final image in which different structures can be identified. A correct identification of
structures is important, since this can lead to the detection of abnormalities. The differentiation
between structures can be achieved with image segmentation methods. These methods partition an
image into several regions, each region hopefully coinciding with a different structure. This chapter
will discuss a segmentation method called the seeded region growing method. A modified version
of this method is used on some of the previously obtained images to make a better comparison
between the results.

10.1. SEEDED REGION GROWING
In [19] the seeded region growing method is described. The method starts with a number of seeds,
which have been grouped into n sets, A1, A2, . . ., An . In each step of the algorithm one pixel is added
to one of the sets. To determine which pixel is added to a set, let T be the set of all so far unallocated
pixels which border at least one region:

T =
{

x ∉
n⋃

i=1
Ai |N (x)∩

n⋃
i=1

Ai 6= ;
}

(10.1)

with N (x) the set of immediate neighbours of pixel x. In the article the neighbours are chosen as
those being 8-connected to pixel x.
If x neighbours only one region, then i (x) is the index of this neighbouring region. A measure for
the difference between x and the adjoining region Ai (x) is given by:

δSRG (x) = |u(x)−mean
y∈Ai (x)

(u(y))| (10.2)

with u(x) the gray value of pixel x.
If x borders multiple regions, then i (x) is the index of the adjoining region with the smallest δSRG (x).
These pixels can be classified as boundary pixels and added to a set of already-known boundary
pixels B.
The last step is to take z ∈ T such that

δSRG (z) = min
x∈T

{δSRG (x)} (10.3)

and add z to Ai (z). The process is repeated until all pixels have been allocated.
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The method used to compare the obtained results is a modified version of this seeded region grow-
ing method. First of all, we are only interested in the region belonging to one specific seed point.
Therefore there is only one region A. The set T is now the set of all unallocated pixels which border
this one set A:

T = {x ∉ A|N (x)∩ A 6= ;} (10.4)

with N (x) the neighbours of pixel x. In the used algorithm the neighbours of pixel x are considered
the four pixels on the left/right and above/below x, not the 8-connected pixels.

The same measure δSRG (x) is used:

δSRG (x) = |u(x)−mean
y∈A

(u(y))| (10.5)

The pixel x ∈ T with the smallestδSRG (x) is added to the region. However, the process is not repeated
until all pixels have been allocated, but until the difference between each neighbouring pixel value
and the region mean have reached a certain threshold τSRG . This threshold value τSRG has a lot of
influence on the outcome of the region. To find the correct value of τSRG a few test runs can be
executed on different images and known structures. The results are discussed in the next chapter
on numerical experiments.
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NUMERICAL EXPERIMENTS: SEGMENTATION

As mentioned in the previous chapter seeded region growing has been used to segment the images.
This method uses a threshold τSRG to be able to make a distinction between regions. This τSRG is
important to segment the image correctly: if it is too low the region will be too small, and if it is too
high the region will contain multiple structures.

First we want to investigate how to determine a correct value for τSRG . The segmentation method
has been tested for different test problems. Most images have been obtained by using FTCS imple-
mentation and the stopping time Snew , described in chapter 9 by 9.8, for ∆t = 0.05 and K = 0.05.
Two images were given and are images of a normal MRI and an MRI of a hydrocephalus head (figure
11.1).
Manually the optimal values of τSRG have been determined for six test problems and they can be
found in the following table (table 11.1).

Figure 11.1: Image of a) normal head and b) hydrocephalus

test problem SL, = 400 SL, = 200 SL, n = 64 Ella Normal head Hydrocephalus
optimal threshold 0.030 0.050 0.040 0.075 0.030 0.080
mean(|∇u|) 0.020 0.036 0.124 0.123 0.032 0.059
median(|∇u|) 0.005 0.007 0.034 0.099 0.028 0.049

Table 11.1: Median for different test problems
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To understand how to find the optimal value for τSRG we need to look into some image properies.
The normal head given in figure 11.1a has some structures, which are very close in pixel value to
their surrounding tissue. To make a distinction between the structure and its surroundings we need
a low value of τSRG . In the second image the structures are much darker than their surrounding
tissue, therefore τSRG can be higher. We can conclude that the difference in pixel value has a high
influence on the optimal τSRG . It seems logical to assume a low average pixel gradient leads to a low
optimal value, but this is not always the case.
Recall the Shepp-Logan phantom. This phantom consists of many large circles. Within these circles
the gradient is probably low, leading to a low average pixel difference. However, it is not wanted
that within these regions a distinction is made, which will happen if the threshold τSRG is too low.
Therefore having a linear relation between the average pixel value as a parameter for τSRG does not
seem to be a good assumption.

We decided to look into other possibilities for parameters using the gradient of the pixels, given by
|∇u|.
Histograms of the gradient distribution for all test images were made. For values between 0− 0.1
they are given by figure 11.2. The average pixel values (mean(|∇u|)) were calculated as well as the
values of median(|∇u|) and they can all be found in the table above (11.1). In order to get values
which were truly corresponding to the image, the decision was made to only look at the middle part
of the images. By doing so, the black background does not have as much influence on the values.
The middle part was obtained by only taking the values of the inner 3

5 n × 3
5 n into account. This

means that the outer 1
5 n had been taken away in all directions.

Figure 11.2: Histograms for ∇u = 0−0.1 for a) Shepp-Logan, n = 400 b) Shepp-Logan, n = 200 c) Shepp-Logan, n = 64 d)
Ella e) Normal head f) Hydrocephalus
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From table 11.1 we can immediately see that there is no linear relation between the average of |∇u|
and the threshold. There is also no linear relation between median(|∇u|) and the threshold. How-
ever, the median is the stronger of the two averages, since it is corresponding to the behaviour of the
histograms. And to know where the bulk of the pixel difference values is located seems of more im-
portance. Therefore we look further into the relation between the median and the threshold τSRG .
The values can be interpreted as follows. The distribution for the highly detailed Shepp-Logan
phantoms are oriented to the far left, stating that most of their pixel differences are very small (in
the region of 0−0.01). The median values for these two test problems are also very small, lower than
0.01. This can be caused by the fact that the phantom consists of many large regions. Hopefully the
image has very small pixel gradients inside these regions, leading to a very low median and a far left
distribution. Having a very low threshold will cause segmentation within these large regions, which
is suboptimal. Therefore we need τSRG to be low, but slightly higher than is expected from the low
median.
The orientation of the normal head distribution and the less detailed Shepp-Logan is more to the
right. The median is also higher, it is now 0.028 and 0.035 respectively. This means that the image
does not have many very small gradient values (< 0.01), meaning that probably no large homoge-
neous structures are present. But the gradient values are sufficiently low (0.01−0.04) to assume that
different structures with almost equal gray tones are present. In that case we want a lower threshold
τSRG .
The remaining two test problems have a median higher than 0.045 and their distributions are also
further to the right. This means that the structures in these regions are either not homogeneous or
have surrounding tissue of a very different gray tone. In both cases we need the threshold value to
be higher.
This interpretation seems logical and is in accordance with the optimal threshold values. However,
no conclusions can be made about the median to obtain exact values for τSRG .

The following images show the segmentation results for all test problems. All images show three
different structures, resulting from three different seed points. For Ella, results for thresholds other
than the optimal τSRG are also shown.

We see in the first image that the correct value of τSRG leads to a very good segmentation, close to
the segmentation of the original. However, changing the threshold only slightly causes underseg-
mentation (11.3c) or oversegmentation (11.3d).
The results for the Shepp-Logan phantom with a high number of pixels (n = 400) are almost similar
to segmentation of the original. Unfortunately this is not the case for the other two Shepp-Logan
images. Both have a problem with the structure marked with a red cross. The value of τSRG has to
be lower to segment this part correctly. However, lowering the threshold causes the blue region to
be much smaller, which is also problematic.
The normal and hydrocephalus head both show a very good partitioning with their optimal thresh-
old τSRG .
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Figure 11.3: Segmentation results of Ella, a) original and image obtained with stopping method S b) optimal τSRG = 0.075
c) τSRG = 0.07 d) τSRG = 0.08
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Figure 11.4: Segmentation results of Shepp-Logan, n = 400, for a) original b) image obtained with stopping method S

Figure 11.5: Segmentation results of Shepp-Logan, n = 200, for a) original b) image obtained with stopping method S
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Figure 11.6: Segmentation results of Shepp-Logan, n = 64, for a) original b) image obtained with stopping method S

Figure 11.7: Segmentation results of the normal head image
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Figure 11.8: Segmentation results of the hydrocephalus image
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CONCLUSIONS AND FURTHER RESEARCH

The main goal of this thesis consisted of three subgoals. The first was to give an overview of diffu-
sion filtering methods and to implement these methods for comparison while using two numerical
methods. First the most basic linear diffusion filtering method, also known as the heat equation,
was discussed. Since the biggest disadvantage of this method is the homogeneous blurring, other
nonlinear diffusion filtering methods were invented. By using diffusion functions instead of a con-
stant the blurring of edges can be eliminated and edge sharpening can be achieved. An example
of such anisotropic diffusion filtering methods are the Perona-Malik methods. These two methods
satisfy an important threshold property, which leads to intraregional blurring and edge preserva-
tion. However, a downside of these methods is their ill-posedness. Fortunately, this ill-posedness
can be reduced by adding a Gaussian kernel to the methods. It is also possible to choose a well-
posed anisotropic diffusion filtering method, even though it does not satisfy the threshold property.
All these methods were implemented with both the FTCS implementation as well as the AOS imple-
mentation. The advantage of using the AOS method is its unconditional stability for ∆t , while the
FTCS method is only stable for 0 <∆t ≤ 0.25.
The results of the implementation of all these methods lead to a few conclusions. In all test problems
the Perona-Malik methods lead to the best results. Sometimes the addition of a Gaussian kernel im-
proved the results even more. This is exactly as predicted by the literature. The AOS implementation
usually leads to slightly better results compared to the FTCS method and showed less instability.
The ill-posed and well-posed method often showed instability when implemented with the FTCS
method. This was probably due to the fact that the diffusion coefficient function c(·) was altered to
deal with low values of |∇u|. Even though the AOS method had many advantages, its running time
was longer than the FTCS method.

The second goal was to find methods to determine the optimal values for the gradient threshold
parameter K , the time step size ∆t and the stopping time S. Several options were tried in combi-
nation with a Perona-Malik method and the FTCS implementation. For parameter K we found that
the noise estimator method showed the best results. However, it depends on ∆t ·T how well K is
estimated.
For ∆t an adaptive time step was used and a modification of a known method proved to be a rea-
sonable estimator. Also, the instability for the ill-posed and well-posed method was reduced by the
use of another adaptive time step.
The final parameter stopping time S had several options. One of these options depended on the
original image, which is never known in practice. Two other options only depended on the noisy
image and the filtered image. Both were compared with the visual optimal result and a new stop-
ping time was introduced as a combination of the two. This stopping time lead to good results.
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The final goal consisted of segmentation of some test problems. The test problems were either
obtained with the new stopping time S or were two given images of a normal head MRI and a hy-
drocephalus MRI. The region growing method showed a good partition of all images, but was also
depending on a parameter τSRG . Unfortunately, no good relation was found between properties of
this image and the optimal threshold.

12.1. FURTHER RESEARCH
Of course, there is still a lot unknown about how to use diffusion filtering methods optimally. There-
fore, we propose some ideas for further research.

- One of the goals of the thesis was to gain a better understanding of the parameters. Unfortunately
still a lot is unknown. The parameters K ,∆t and S have all been investigated and it can be concluded
that these values are all influencing one another and are also influened by other factors. Therefore it
is hard to find the exact optimal value. More methods can be studied or even invented to determine
the optimal parameters. This would greatly improve the use of diffusion filtering, since less manual
input would be necessary.
Also for the segmentation method the way of finding the threshold value τSRG can be improved. It
proved difficult to find a relation between the image and this value.

- Both numerical methods showed promising results, but the AOS implementation was usually the
best. Unfortunately this method is much slower than the FTCS method. A more efficient implemen-
tation of the AOS method can make it more useable.

- It is also a possibility to look at other numerical schemes. In this thesis the FTCS method with the
Euler forward method was used. In [20] the Euler forward method is compared to the Euler back-
ward method. The advantage of the Euler backward method is that this method is stable for all step
sizes and it can therefore lead to good results using less time steps. In the article the results are com-
parable to those of the Euler forward method. In the future other schemes can be tried also.

- Since there are many other image processing techniques, it may be interesting to combine anisotropic
diffusion filtering with these methods. Segmentation is one of these image processing techniques,
which we have already tested in this thesis. Another option is the combination with the level-set
method. This method facilitates the numerical analysis of time-varying surfaces and shapes. More
information on the level-set method can be found in [21]. Combining this method with diffusion
filtering methods may lead to new insights and techniques and is therefore a good starting point for
future research.

- In this thesis the methods were tested on images obtained with simulations. Obviously the ulti-
mate goal is to use these methods on real images obtained by a low-field MRI scanner, preferably
the TUD/LUMC scanner. Hopefully this will be possible in the near future.
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