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ABSTRACT

To fulfill the need in the industry for fast and accurate PFE calculations in practice, a
new, semi-analytical method of calculating the PFE metric for CCR has been developed,
tested and analyzed in this thesis. Herewith we focus on the calculation of PFEs for liquid
IR and FX portfolios involving up to three correlated risk-factors: a domestic and foreign
short rate and the exchange rate of this currency pair. Both netting-set level and coun-
terparty level PFEs are covered in our research. The short rates are modelled under the
one-factor Hull–White (HW1F) model and for the exchange rate we assume they follow
geometric Brownian motion. The key insight is that the cumulative distribution func-
tion (CDF) can be recovered semi-analytically using Fourier-cosine expansion, whereby
the series coefficients are readily available from the characteristic function of the total
exposure. The characteristic function in turn can be solved numerically via quadrature
rules. Risk metrics, such as the potential future exposure (PFE), can be attained once the
CDF is reconstructed using the Fourier series.

Our theoretical error analysis predicts stable convergence of the COS method and
observed exponential convergence of the COS method for both netting-set and coun-
terparty level PFE calculations. For three artificial portfolios of different sizes, it was
observed that the COS method is at least five times more accurate than the Monte Carlo
(MC) simulation method but takes only one-tenth of the CPU time of the MC method.
The advantage of the COS method becomes even more prominent when the number of
derivatives in a portfolio increases. We conclude that the COS method is a much more
efficient alternative for MC method for PFE calculations, at least for portfolios involving
three risk factors.

Key words. counterparty credit risk, potential future exposure, Hull–White model,
geometric Brownian motion model, Monte Carlo simulation, COS Method, spectral filter
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1
INTRODUCTION

The 2007 financial crisis saw banks topple and set the financial world in turmoil. An-
other name for this series of events is the credit crisis. The name reflects the nature of
the problem that led to the economic collapse. The main problem was the counterparty
credit risk (CCR), which is the loss in the to exposure with a counterparty that fails to
meet its financial obligations. This risk was not new, as it was also a factor in the Asian
crisis (1997), the default of Russia (1998) and the collapse of LTCM (1998, was saved).
Past crises have led to the formation of the Basel Committee on Banking Supervision
(BCBS), which set up capital regulations for banks to stay solvent in case of extreme ad-
verse scenarios. However, the 2007 credit crisis made it unmistakably clear that in order
to restrict excessive risk taking in the over-the-counter (OTC) derivatives market, banks
needed to be subject to stricter regulations.

Interest rate derivatives make up the largest portion of the traded OTC derivatives
in the financial market. According to International Swaps and Derivatives Association
(ISDA), interest rate derivatives made up 80% of the total OTC notional in 2020. One-
tenth of these, amounting to 46 trillion dollars, were under-collateralised [1]. The quan-
tification of CCR is the important first step for properly managing CCR in these deriva-
tives.

Mathematically, exposure in a trade is defined as

Et (X t ) = max{Vt (X t ),0} ,

where Xt is the risk factor, and Vt is the mark-to-market (MtM) price of a portfolio at time
t . In other words, the calculation of the exposure essentially projects the current expo-
sure of the underlying assets into the future [2]. Because the risk factors are unknown
for future time points, we need to assume appropriate stochastic models for the market
variables which then lead to an exposure distribution.

The potential future exposure (PFE) is a measure that quantifies and limits the CCR
in banks. It can be regarded as the worst loss over a time horizon to a certain confidence
level. It is usually considered at the counterparty level and netting-set level. Note that
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netting can reduce the market exposure by up to 93% [3]. An example of the PFE is shown
in Figure 1.1.

Figure 1.1: Illustration of the potential future exposure defined as a quantile of the future distribution. The
grey area represents the exposure. (Source: [4])

Monte Carlo simulation is the industry-standard numerical method to simulate the
risk factors according to chosen stochastic models. In a backward sweep, the generated
paths are fed to the pricers to yield the MtM values of a portfolio at that future time point.
By flooring all simulated MtM values by zero, one yields a distribution for the exposure of
the portfolio at a future time point. Afterwards, risk measures like PFE can be calculated
easily.

One can find various ways to calculate future exposures in the literature. For exotic
derivatives, the most straightforward and robust method is the nested Monte Carlo (MC)
method, which simulates paths using MC and another nested MC simulation is used to
price the derivative for each scenario. However, due to the low convergence rate of MC,
a large number of simulations is needed to acquire a high level of accuracy, making the
method very time consuming.

An alternative method is the finite difference Monte-Carlo (FDMC) method proposed
by Tavella [5]. This method solves the option pricing PDE given by the Feynman–Kac
theorem on a chosen grid for different time points. It is accurate and can price multiple
options on one grid; however, it becomes infeasible for products using more than three
risk factors [6]–[8].

Furthermore, regression-based modelling techniques are popular in practice like the
least squares Monte-Carlo (LSMC) [9]. The method is useful when pricing path-dependent
structures like lookback or Asian options. However, the technique has high computation
costs, performance in the tail of the distribution is poor, and calibration is difficult [10],
[11]. The stochastic grid bundling method (SGBM) is a similar regression-based mod-
elling technique that decreases the noise in the tail distribution [7]. The technique pro-
posed by Oosterlee clusters paths in bundles based on their stock and variance values
[12]. The bundles are assumed to have similar properties, like coefficients. Nevertheless,
this method shows slower convergence results than the LSMC [13], [14].

Chebyshev polynomial interpolation is a recent promising method to calculate the
PFE proposed by Glau in [15]. It approximates the option prices using basis functions
on Chebyshev grid points. This method is shown to outperform the LSMC method on
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accuracy and runtime [2].
Another technique involving MC path discretisation is the Monte-Carlo COS (MC-

COS) method [16]. The exposure is calculated using a Fourier-cosine transform method
proposed by Fang and Oosterlee in [17]. The method shows high accuracy at the cost of
lower computational speed [7].

This paper proposes a potential replacement of the MC methods which is much
faster and more accurate and is based on the COS method. The COS method, short name
for Fourier-cosine series based method, is in essence a highly efficient method to calcu-
late the expectation of a function defined on random variables. It was first proposed by
Fang and Oosterlee for pricing options. Here in our context, instead of applying the COS
method to price options for each path like the MCCOS method, the aim is to directly cal-
culate the PFE from the cumulative distribution function (CDF). The key insight we have
is that the CDF can be recovered by applying the COS method using the characteristic
function solved numerically.

The next chapter covers the mathematical descriptions of the models and numerical
methods used. Using the mathematical foundation, Chapter 3 explains how to obtain
the PFE for portfolios involving up to three risk factors. The convergence rate of the
COS method is analyzed theoretically in Chapter 4. Chapter 5 elaborates on numerical
tests and analysis on the convergence rate. In addition, Chapter 5 also compares the
performance of the MC simulation and the COS method for both individual trades and
different netting sets.



2
MATHEMATICAL FRAMEWORK

In this chapter, we give the mathematical definition of the problem-to-solve and the
notations, and prepare the mathematical toolkits needed for he quantification of CCR.

2.1. EXPOSURE QUANTIFICATION
In this section, the quantification measures used in the rest of the thesis are discussed
in more detail, based on [4], [18]. To start, the definition of the exposure given in the
introduction is repeated below.

Definition 2.1.1 (Exposure). The (positive) exposure, E(t), can be defined on three levels.
First, we have contract-level exposure, which is defined as

Et (X t ) := max{Vt (X t ), 0} , (2.1)

where X t is the risk factor and Vt (X t ) represents the MtM value or price of a derivative
contract at time t. Second, there is netting-set level exposure, which is the exposure of
netting sets, the net value of multiple homogeneous contracts. The netted exposure is given
by

En(t ) = max{Vt (t )+V2(t ), 0} . (2.2)

Lastly, there is Counterparty-level exposure, which involves all traded derivatives with
a certain counterparty. This gives

Ec (t ) = max{V1(t ), 0}+max{V2(t ), 0} =: E1(t )+E2(t ). (2.3)

A netting set is defined in the next definition.

Definition 2.1.2 (Netting set). A netting set is a group of transactions with a single coun-
terparty that are subject to a legally enforceable bilateral netting arrangement, which al-
lows the offsetting of all transaction values.

4
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The value of a risk factor, such as interest rate or FX rate, is not known before hand,
and thus, is a random variable and can be assumed to follow a certain distribution.
Therefore, the exposure at any future time instance is also a random variable and fol-
lows its own distribution. A few measures are used in industry to quantify CCR, which
include expected exposure (EE), potential future exposure PFE, expected positive expo-
sure (EPE), etc.

Definition 2.1.3 (Expected exposure). Given the exposure profiles, Et (X t ), we wish to cal-
culate the expected (positive) exposure EE at time t, which is defined as follows:

EEt (X t ) = EQ [Et (X t )] , 0 ≤ t ≤ T. (2.4)

PFE, on the other hand, is is essence value-at-risk (VaR) metric on the distribution of
the exposure. The mathematical definition is given as,

Definition 2.1.4 (Potential future exposure). The potential future exposure (PFE) at time
t, as seen from time zero, is defined as

PFEα,t = inf{x : P(Et ≤ x) ≥α} , 0 ≤ t ≤ T, (2.5)

where α is the given confidence level, and P is the real-world measure.

If the risk factors were modelled with a deterministic function, the (future) exposure
could be acquired by simply solving the equation analytically. However, as mentioned
before, the risk factor at a future time point is not known beforehand. Hence, the risk
factors involved in valuing interest rate derivatives, that is, the short rates, should be
modeled with a level of uncertainty. The short rate is defined below.

Definition 2.1.5. The short rate, or instantaneous spot rate, is defined as the instanta-
neous rate at which the bank account accrues. That is,

r (t ) = lim
T→t+

L(t ,T ), (2.6)

where L(t ,T ) is the simply-compounded spot interest rate as defined in definition 2.4.3.

A formal definition of the bank account is given in definition 2.4.1.

The next section is devoted to the mathematical definitions needed to understand the
stochastic modelling framework, followed by the derivative pricing theory.

2.2. STOCHASTIC CALCULUS DEFINITIONS AND NOTATION
The definitions and notation used in the field of stochastic calculus are adapted from the
books [18]–[20] by Morters and Peres, Le Gall and Oosterlee and Grzelach, respectively.
These definitions are needed or the derivation of the derivative pricing theory in Section
2.3.

We consider a probability space (Ω,F ,P) where Ω is the sample space, F is the event
space, and P is the probability measure.
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Definition 2.2.1 (Filtration). A filtration on (Ω,F ,P) is a collection (Ft )0≤t≤∞ indexed by
[0,∞] of sub-σ-fields of F , such that Fs ⊂Ft for every s ≤ t ≤∞.

Definition 2.2.2 (Brownian motion). A real-valued process {W (t ):t ≥ 0} is called a Brow-
nian motion if

1. Starting at 0: W(0)=0.

2. Normally distributed increments: ∀s, t such that 0 ≤ s ≤ t ,W (t )−W (s) ≃ N (0, t −s).

3. Independent increments: For 0 ≤ t0 < t1 < . . . < tn , the random variables Yi :=
W (ti )−W (ti−1), i = 1, . . . ,n are independent.

4. Continuous trajectories: The map t 7→W (t ) is continuous.

For Brownian motions, we will usually consider the filtration defined as

Ft =σ(Ws , 0 ≤ s ≤ t ).

Definition 2.2.3 (Martingale). We say that the process {Mt : t ≥ 0} is a {Ft , t ≥ 0 martin-
gale if

1. Adapted: Mt is Ft measurable for all t ≥ 0.

2. Integrable: Mt is integrable for all t ≥ 0.

3. Martingale property: ∀s, t such that 0 ≤ s ≤ t :

E(Mt |Fs ) = Ms . (2.7)

Similar to a martingale, we will also define a semimartingale, as this definition is
often used.

Definition 2.2.4 (Semimartingale). A semimartingale S = (St )t≥0 is a càdlàg, adapted
process of the form

St = S0 +Mt + At (t ≥ 0),

for a finite and F0 measurable S0, a local martingale (Mt )t≥0 with M0 = 0 and a process
with finite variation (At )t≥0 with A0 = 0. The definition of these last two can be found in
Appendix A.0.1 and Appendix A.0.2, respectively.

Definition 2.2.5 (Itô integral). For any square-integrable adapted process f(t) with con-
tinuous sample paths, we can define the stochastic integral, also known as the Itô integral,
by

I (T )
def=

∫ T

0
f (s)dW (s) = lim

n→∞ In(T ), in L2. (2.8)

Here Im(T ) = ∫ T
0 fm(s)dW (s) for some elementary process f (t ) =∑n−1

j=0 η j
(
W (t j+1 −W (t j )

)
satisfying

lim
n→∞E

[∫ T

0
( fm(s)− f (s))2d s

]
= 0. (2.9)

In the above equations, η j is Ft j measurable for all j = 0,1, . . . ,n−1 and square integrable.
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A very useful property of the Itô integral is that it is a martingale with respect to fil-
tration Ft .

Theorem 2.2.6 (Itô’s formula). Let f ∈ C 2(R) and consider a continuous semimartingale
S = M +A with M ∈Ml oc and A ∈ ν. Then f (St ))t≥0 is also a semimartingale, and it holds

f (St ) = f (S0)+
∫ t

0

∂ f

∂s
(Su)dSu + 1

2

∫ t

0

∂2 f

∂s2 (Su)d [S]u , (2.10)

where the first and second partial derivatives are with respect to the considered semi-
martingale. The last operator [S] signifies the quadratic variation of the stochastic process
(St )t≥0.

2.3. DERIVATIVE PRICING
The definitions and theorems needed for pricing derivatives as found in [21] are summa-
rized in this section. Throughout the remaining sections, we will use S = St : 0 ≤ t ≤ T to
denote an adapted semimartingale to model the price process of a security. To be more
specific, S is multi-dimensional, allowing for a security to be dependent on multiple as-
sets. The general convention is that asset 0, denoted by S0, is the money-market account
as defined in definition 2.4.1. This allows us to define the value Vt of a trading strategyφ.

Definition 2.3.1. A trading strategy is a processφ= {φt : 0 ≤ t ≤ T }, whose components are
locally bounded and predictable. The value process associated with a strategy φ is defined
by

Vt (φ) =φt St =
K∑

k=0
φk

t Sk
t , 0 ≤ t ≤ T.

where φk
t is the k-th component of the strategy φ at time t.

This allows us to define one of the most fundamental concepts in financial mathe-
matics, which is the notion of arbitrage.

Definition 2.3.2 (Arbitrage). An arbitrage opportunity is defined as a self-financing strat-
egy (see Appendix A.0.3), such that V0(φ) = 0, but Q{VT (φ) > 0} > 0.

In the absence of arbitrage, Harrison and Pliska proved the fundamental proposition
that every attainable contingent claim H has a unique price πt [22].

Proposition 2.3.3. Assume there exists an equivalent martingale measure Q and let H be
an attainable contingent claim. Then, for each time t, 0 ≤ t ≤ T , there exists a unique price
πt associated with H, that is,

πt = EQ
(

B(t )

B(T )
H |Ft

)
. (2.11)

The risk-neutral measure is often a natural choice for an equivalent martingale mea-
sure (Appendix A.0.4). However, the risk-neutral measure is not necessarily the best
choice for pricing a contingent claim. Sometimes, real-world risk should be considered
in pricing an option. When considering a foreign and domestic currency, it may be more
convenient to consider the foreign currency in the domestic measure [23]. Geman et al.
formulated the following proposition to switch between measures [24].
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Proposition 2.3.4. Assume there exist a numeraire N and a probability measure QN ,
equivalent to the initial Q0, such that the price of any traded asset X (without interme-
diate payments) relative to N is a martingale under QN ; that is,

X t

Nt
= EN

{
XT

NT
|Ft

}
0 ≤ t ≤ T. (2.12)

Let U be an arbitrary numeraire. Then there exists a probability measure QU , equivalent
to the initial Q0, such that the price of any attainable claim Y normalised by U is a mar-
tingale under QU ; that is,

Yt

Ut
= EU

{
YT

UT
|Ft

}
0 ≤ t ≤ T. (2.13)

Moreover, the Radon–Nikodym derivative defining the measure QU is given by

dQU

dQN
= UT N0

U0NT
. (2.14)

The numeraire in this proposition is any positive non-dividend-paying asset [21].
Switching from the original measure will result in an additional drift term in the consid-
ered dynamics. The additional drift term can be calculated with the help of Girsanov’s
theorem,

Theorem 2.3.5 (Girsanov’s Theorem). Consider a Wiener process Wt on the probability
space {Ω,F ,P}. Let X t be a measurable process adapted to natural filtration. We define a
process Zt such that

Zt = E (X )t ,

where E (X ) is the Doléans–Dade exponential, better known as stochastic exponential, of
X with respect to the Wiener process W . The exponential is given by

E (X )t = e
X t−1

2 [X ]t . (2.15)

If Zt is a martingale, then a probability measureQ can be defined such that the Radon–
Nikodym derivative is equal to Zt ; that is,

dQ

dP

∣∣∣∣
Ft

= Zt = E (X )t . (2.16)

In addition, if X t is a continuous process, and Wt is a Brownian motion under measure
P, then the Brownian motion under the new measure Q is given by

W̃t =Wt − [W, X ]t . (2.17)
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2.4. INTEREST RATE DERIVATIVES
This section will elaborate on the mathematical foundation of several important interest
rate derivatives. Additionally, the pricing of such derivatives will be discussed. All defi-
nitions and theorems can be found in [21].

We start by defining the money-market account, which is the riskless investment of
putting money in your savings account continuously accruing the instantaneous (spot)
rate. Also known as the short rate, this is the continuously compounded interest rate at
which one can borrow money over an infinitesimally small time horizon.

Definition 2.4.1 (Money-market account). B(t ) is the value of the bank account at time
t ≥ 0. We assume B(0) = 1 such that we get

B(t ) = e
∫ t

0 rs d s , (2.18)

where rs is the instantaneous rate.

Definition 2.4.2 (Zero-coupon bond). A T-maturity zero-coupon bond (ZCB) is a con-
tract that guarantees its holder the payment of one unit of currency at time T, with no
intermediate payments. The contract value at time t < T is denoted by P (t ,T ) and is given
as

P (t ,T ) = EQ
[

B(t )

B(T )
P (T,T ) |Ft

]
= EQ

[
e

∫ T
t r (s)d s |Ft

]
, (2.19)

where we used the definition of the ZCB, P(T,T)=1 and proposition 2.3.3. Furthermore, the
superscript Q denotes that the expectation is taken in the risk-neutral probability mea-
sure.

Different from the earlier mentioned continuous compounded interest rate, simple
compounding is used to define interbank rates like the LIBOR.

Definition 2.4.3 (Simply-compounded spot interest rate). The simply compounded spot
interest rate prevailing at time t for the maturity T is denoted by L(t,T) and is the constant
rate at which an investment must be made to produce an amount of one unit of currency
at maturity, starting from P(t,T) unit of currency at time t, when accruing occurs propor-
tionally to the investment time. This can be given in formulas as

L(t ,T ) := 1−P (t ,T )

τ(t ,T )P (t ,T )
, (2.20)

where P(t,T) is the ZCB at time t with maturity T, and τ(t ,T ) is the year fraction according
to the day-count convention, usually Act365.

Forward rates are similar to the previously discussed interest rates. Forward rates are
used to lock in an interest rate over a future time period. Therefore, forward rates depend
on three time points, the current time t , the expiry time T and the maturity S. Forward
rates are agreed upon in a forward-rate agreement (FRA), which sees the exchange of a
fixed rate K at maturity S against a floating rate L(T,S) resetting in T . The payoff of an
FRA is given by
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V F R A(t ,T,S,τ(T,S), N ,K ) = Nτ(T,S) (K −L(T,S))

= N [P (t ,S)τ(T,S)K −P (t ,T )+P (t ,S)] .
(2.21)

As stated before, K is a constant interest rate that is exchanged for the floating rate,
τ is the year fraction, P (t ,T ) is the ZCB at time t with maturity T and N is the notional
amount of the transaction. It is clear from the payoff formula of an FRA that there exists
a K for which the payoff is zero at each time t . This results in the simply-compounded
forward interest rate defined below.

Definition 2.4.4 (Simply-compounded forward interest rate). The simply-compounded
forward interest rate prevailing at time t for the expiry T > t and maturity S > T is denoted
by F (t ;T,S) and is defined by

F (t ;T,S) := 1

τ(T,S)

(
P (t ,T )

P (t ,S)
−1

)
. (2.22)

It is the value of the fixed rate in a prototypical FRA with expiry T and maturity S that
renders the FRA a fair contract at time t.

If we let the maturity date S get infinitely close to the expiry date T , we can define
the instantaneous forward interest rate. This forward rate will be of importance in the
calibration of the interest rate model to the observed market, discussed in Subsection ??.

Definition 2.4.5 (Instantaneous forward interest rate). The instantaneous forward in-
terest rate prevailing at time t for the maturity T > t is denoted by f (t ,T ) and is defined
as

f (t ,T ) := lim
S→T + F (t ;T,S) =−∂ ln(P (t ,T ))

∂T
. (2.23)

In the same way that the FRA was defined, we can also define the interest rate swap
(IRS). An IRS is a derivative exchanging two different legs, usually a fixed and a floating
leg. The fixed and floating legs pay coupons during a period divided into terms with their
agreed interest rates, a fixed amount K for the fixed leg and a forward rate for the floating
leg. The forward rate depends on the reset and maturity date, where we will assume that
they overlap with the coupon payment dates, instead of the industry standard T +2, for
mathematical readability. Additionally, we will use the convention that the interest rate
resets at Ti−1 over the coupon period [Ti ,Ti+1] throughout this thesis. The MtM, or price
of an IRS, is its discounted payoff. Hence, the MtM value of an IRS can be calculated by
discounting the net cashflows of the fixed and floating legs using the zero-coupon curve.
A formula of the receiver IRS (RFS)1 for t < Tα is given below and shows the relationship
to the previously stated FRA.

1A RFS receives the fixed leg and pays the floating leg.
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V RF S (t ,T ,τ, N ,K ) =
β∑

i=α+1
V F R A(t ,Ti−1,Ti ,τi , N ,K )

= N
β∑

i=α+1
τi P (t ,Ti ) (K −F (t ;Ti−1,Ti )

=−N P (t ,Tα)+N P (t ,Tβ)+N
β∑

i=α+1
τi K P (t ,Ti ),

(2.24)

where N is the notional amount of the RFS, K is the fixed rate, T is the set of dates
{Tα, . . . ,Tβ}, and τ := {τα+1, . . . ,τβ} the set of year fractions.

2.5. FX DERIVATIVES
In addition to interest rate derivatives, dependent on only one interest rate, FX deriva-
tives are prominently traded products. As the name suggests, they are contracts involv-
ing the exchange of two currencies. This brings forth another risk factor, the spot ex-
change rate X connecting the two currencies. Throughout the literature, the spot rate
is defined as the amount of domestic currency needed to buy one unit of foreign cur-
rency. Domestic and foreign merely distinguish between the numeraire currencies used
to value the trading leg. The names domestic and foreign currency are often replaced by
quote and base currency [25]. However, there is ambiguity in this naming convention, as
domestic is sometimes also called the base currency [26]. In practice, these ambiguities
disappear because of the default quotations for currency pairs. For example, the con-
vention in trading is to quote the spot rate of the currency pair of euros and US dollars
as EUR-USD, meaning the amount of USD exchanged for one euro.

To evaluate the MtM value of an FX derivative, one needs to compare the value of the
different cashflows in one valuation currency. This does not necessarily have to be one
of the currencies of the traded cashflows, although, for analytical tractability, it will be
assumed that the valuation currency is the domestic currency in the rest of this thesis.
This means that the cashflows of the trade leg in the foreign currency must be converted
to the domestic (valuation) currency. Due to the absence of arbitrage, it does not matter
whether the cashflows are first discounted using the foreign money-market account and
thereafter converted to the domestic currency or whether the cashflows are first con-
verted to the domestic currency and then discounted using the domestic money-market
account.

A simple and common FX derivative is the FX forward contract. The contract is an
agreement to exchange a certain amount of currency for another currency at a fixed ex-
change rate on a specified day in the future. Suppose one wants to exchange an amount
of domestic currency N d for an amount of foreign currency N f at time t = T . At the time
of the agreement, the two parties agree on the spot FX rate X (0) to make the exchange at
time t = T fair. The value of the FX forward contract at a time t ≤ T is given by
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VF X (t ) = N f P f (t ,T )X (t )−N d P d (t ,T )

= N d
[

P f (t ,T )
X (t )

X (0)
−P d (t ,T )

]
,

(2.25)

where the superscripts d and f specify the currency. Note that although mathemati-
cally correct, the last expression in Equation 2.25 is not used in practice. It is impossible
to know the exact time at which parties enter the contract beforehand, which would be
of importance for the continuously changing spot rate. Therefore, the parties will agree
to the exchange of notional based on the spot rate.

The FX forward rate XF (t ,T ) is defined similarly to the simply-compounded forward
interest rate. It renders the FX forward agreement a fair contract.

Definition 2.5.1 (FX forward rate). The FX forward rate prevailing at time t for the ma-
turity T > t is denoted by XF (t ;T ) and is defined by

XF (t ;T ) = P d (t ,T )

P f (t ,T )
X (t ). (2.26)

Here, P d ,P f are the ZCBs in the domestic and foreign currencies, respectively. X (t ) is the
exchange rate at time t defined as the number of units in domestic currency for one unit of
foreign currency. XF is the value of the FX exchange rate in an FX forward agreement with
maturity T that renders the FX forward a fair contract at time t.

Another very liquid FX derivative is the cross-currency swap (XCS). A cross-currency
swap is a contract agreeing on the exchange of two currencies. There are fixed-for-fixed,
fixed-for-floating and floating-for-floating currency swaps, indicating the fixed or float-
ing types of the traded legs. The value of a fixed-for-floating currency swap in which
one receives the fixed foreign currency and pays the domestic floating currency can be
valued as

VXC S (t ) =
β∑

i=α+1

[
N f X (t )Kτi P f (t ,Ti )−N d Ld (t ;Ti−1,Ti )τi P d (t ,Ti )

]
,

= N d

[
X (0)

β∑
i=α+1

τi K X (t )P f (t ,Ti )−P d (t ,Tα)+P d (t ,Tβ)

]
.

(2.27)

Here, N d is the notional given in domestic currency τi corresponds to the days according
to the day-count convention, K is the fixed rate, X (t ) is the exchange rate defined as the
number of units of domestic currency for one unit foreign currency, and P f (t ,T ), P d (t ,T )
are the foreign and domestic ZCBs. T is the set of dates {Tα, . . . ,Tβ}, and τ := {τα+1, . . . ,τβ}
is the set of year fractions.

Additionally, it is common for cross-currency swaps to include a notional exchange.
This is the upfront borrowing of funds that will be returned at the maturity of the swap.
The discounted value of the notional exchange for both the domestic and foreign leg
given in domestic currency is added to the swap value and given by



2.6. INTEREST RATE MODELS

2

13

V d
exchang e = N d P d (t ,Tβ)−N d P d (t ,T0)

V f
exchang e = X (t )

[
N f P f (t ,Tβ)−N f P f (0,T0)

]
.

(2.28)

2.6. INTEREST RATE MODELS
The choice of an interest rate model forms the basis for acquiring the potential future
exposure distribution. There are many different stochastic interest rate models that sim-
ulate the path of the short rate over time. The short rate is the interest rate over money
borrowed for an infinitesimally small period of time. The early models by Vasicek (1977),
Dothan (1978) and CIR (1985) had success in the analytical pricing of interest rate deriva-
tives. However, they were endogenous [27]–[29]. This means that the resulting term
structure is dependent on the calibration of the input variables to the real world instead
of being imposed on the model [4]. Hull and White extended the Vasicek model using
the same mean-reverting characteristic but making the constant drift and volatility de-
terministic functions of time [30]. This enabled the reproduction of the initial interest
rate curve, making it exogenous.

This section will discuss the general affine term-structure models, followed by the
Hull–White model and the equivalent G1++ model adapted from [21], [30], [31], respec-
tively.

2.6.1. AFFINE TERM-STRUCTURE MODELS
Affine term-term structure models are a general class of stochastic models where the
driftµ(t ,r (t )) and volatilityσ(t ,r (t )) are of the affine form. Thus, an affine term-structure
model has short-rate dynamics of the form,

dr (t ) =µ(t ,r (t ))d t +σ(t ,r (t ))dW Q(t ), (2.29)

where the drift and volatility parameters are both of the affine form, respectively satisfy-
ing,

µ(t ,r (t )) = a0 +a1r (t ), (2.30a)

σ2(t ,r (t )) = b0 +b1r (t ). (2.30b)

Here, all coefficients a0, a1, b0 and b1 are deterministic functions of time.

It is highly desirable for a term-structure model to be an affine process because affine
processes have a convenient relationship with the ZCB. That is, the ZCB can be written
as

P (t ,T ) = A(t ,T )e−B(t ,T )r (t ). (2.31)

The coefficients A, B depend on the term-structure model and can be obtained using
the Ricatti differential equations. The Ricatti equations are given by

∂

∂t
B(t ,T )+a1B(t ,T )− 1

2
b1B(t ,T )2 +1 = 0, B(T,T ) = 0, (2.32a)
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∂

∂t
[ln(A(t ,T ))]−a0B(t ,T )+ 1

2
b0B(t ,T )2 = 0, A(T,T ) = 1. (2.32b)

Here a0, a1, b0, b1 are the coefficients from the affine drift and volatility parameters, and
the boundary conditions follow from the definition of a ZCB, P (T,T ) = 1.

2.6.2. THE HULL–WHITE MODEL
The Hull–White one-factor model (HW 1F ) falls into the affine term structure class [30].
In addition to being affine, the Hull–White model is mean-reverting, meaning that in the
long term, the process will revert to a mean. The Hull–White model is an extension of the
Vasicek model using deterministic time-dependent parameters. This thesis will consider
the Hull–White dynamics of the form,

dr (t ) = [θ(t )−ar (t )]d t +σdW Q(t ), (2.33)

where the speed of mean-reversion is a, the volatility σ are positive constants and θ(t ) is
a deterministic function of time used to calibrate the model to the observed market. To
calibrate the model to fit the observed market, the drift θ(t ) can be calculated analytically
[21]. The derivation can be found in A.0.7, and the expression for θ(t ) is given by

θ(t ) = ∂ f M (0, t )

∂T
+a f M (0, t )+ σ2

2a

(
1−e−2at ) . (2.34)

The market instantaneous forward rate f m is defined as a function of the price of a ZCB
observed in the market P M ,

f M (0,T ) = −∂ ln
(
P M (0,T )

)
∂T

. (2.35)

Integrating the Hull–White dynamics shown in Equation 2.33 yields the solution,

r (t ) = r (s)e−a(t−s) +
∫ t

s
e−a(t−u)θ(u)du +σ

∫ t

s
e−a(t−u)dW (u). (2.36)

This representation shows that r (t ) contains a deterministic part and an Itô integral.
From Section 2.2, it is known that an Itô integral is a martingale. It is easily proven that
r (t ) conditional on Fs is normally distributed. The proof is given in A.0.6. The mean and
variance of r (t ) can be found from Equation 2.36,

EQ (r (t ) |Fs ) = r (s)e−a(t−s) +
∫ t

s
e−(t−u)θ(u)du (2.37a)

Var(r (t )|Fs ) = σ2

2a

[
1−e−2a(t−s)] . (2.37b)

Due to the affinity of the Hull–White model, we know that the ZCB can be written in
an expression of the form of Equation 2.31. A derivation uses the fact that the short rate
r (t ) conditional on Ft is normally distributed. Notice that

∫ T
t r (u)du|Ft is also normally

distributed. Using the moment generating function for a normal distribution, the final
expression is obtained, which is of the form,

P (t ,T ) = A(t ,T )e−B(t ,T )r (t ),
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with parameters

B(t ,T ) = 1

a

[
1−e−a(T−t )] , (2.38a)

A(t ,T ) = P M (0,T )

P M (0, t )
exp

{
B(t ,T ) f M (0, t )− σ2

4a
(1−e−2at )B(t ,T )2

}
. (2.38b)

Notice that the above expression is dependent on the market instantaneous forward
rate. However, the value of the market instantaneous forward rate cannot be observed
because it cannot be traded. To use the above expression to calculate the ZCB, one would
have to use the relation between the market instantaneous forward rate and the ob-
served ZCB price, as shown in Equation 2.35. However, taking the derivative of the ZCB
price observed in the market with respect to the maturity T is a problem. Even though
the price of a ZCB can be observed in the market because it is traded, it is only traded for
specific maturities. This means that it is a discrete function of maturity T . To take the
derivative, one would first need to interpolate between the known ZCB prices and then
take the derivative with respect to maturity to get the market instantaneous forward rate.
Doing this would severely impact the accuracy of the results. To solve this problem, we
shall look at the G1++ model, which is equivalent to the Hull–White model.

2.6.3. THE G1++ MODEL
The Gaussian one-factor model (G1++) is equivalent to the Hull–White model. It as-
sumes that the dynamics of the short rate r(t) are given by

r (t ) = x(t )+β(t ), (2.39)

where x(t ), hereafter also referred to as ‘shifted short rate’, is modelled using an Ornstein–
Uhlenbeck process satisfying the stochastic differential equation,

d x(t ) =−ax(t )d t +σdW (t ),

x(0) = 0.
(2.40)

In the Ornstein–Uhlenbeck dynamics, the mean-reversion constant a and the volatil-
ityσ are the same as in the Hull–White model. Theβ(t ) is a deterministic function of time
that can be acquired by fitting the process to the term structure observed in the market,
similar to what was done for the drift θ(t ) in the Hull–White model. The relationship
between the parameters of the different models is

θ(t ) = aβ(t )+ ∂β(t )

∂t
. (2.41)

The process x(t ) from the driftless Ornstein–Uhlenbeck process 2.40 is known to be
normally distributed with zero mean µX and variance σ2

X (t ) given by

σ2
X (t ) = σ2

2a

(
1−e−2at ) . (2.42)



2.6. INTEREST RATE MODELS

2

16

Analogous to what was done for the Hull–White model, integrating the Ornstein–
Uhlenbeck dynamics and adding the deterministic function β(t ) gives us

r (t ) = x(s)e−a(t−u) +σ
∫ t

s
e−a(t−u)dW (u)+β(t ). (2.43)

This again shows that r (t ) conditional on Ft is normally distributed with the mean
and variance given by

EQ (r (t ) |Fs ) = x(s)e−a(t−s) +β(t ) (2.44a)

Var(r (t )|Fs ) = σ2

2a

[
1−e−2a(t−s)] . (2.44b)

As a result of the equivalence of the models, we indeed see that the variance is the
same. The expectation will also be the same whenever β(t ) is chosen to satisfy the re-
lation given in Equation 2.41. Whenever the G1++ model is calibrated to fit the market
data, we find

β(t ) = f M (0, t )+ σ2

2a2

(
1−e−at )2

. (2.45)

The proof of this expression is an intermediate result in Appendix A.0.8.
In the previous section about the Hull–White model a ZCB pricing formula is presented.
It was explained that the inclusion of the market instantaneous forward rate is incon-
venient in practice, which brings the need for another formulation of the ZCB price. A
derivation of the ZCB price under the G1++ model is shown below. A proof is given in
Appendix A.0.8 adapted from the work of Francesco [31].

P (t ,T ) = A(t ,T )e−B(t ,T )X (t ), (2.46)

where

B(t ,T ) = 1

a

[
1−e−a(T−t )] , (2.47a)

A(t ,T ) = P M (0,T )

P M (0, t )
e1/2[V (t ,T )−V (0,T )+V (0,t )]. (2.47b)

Here, V (t ,T ) is the variance of
∫ T

t x(s) conditional on Ft given by

V (t ,T ) = σ2

a2

(
T − t −2

1−e−a(T−t )

a
+ 1−e−2a(T−t )

2a

)
.

Notice that the expression 2.46 only needs the market discount curve and the process
x(t ), which only depends on the mean-reversion coefficient a and the volatility coeffi-
cient σ. This makes the expression more convenient than the earlier expression of the
ZCB found with the HW1F model with coefficients given in 2.38. Equation 2.46 with the
corresponding coefficients is very important in simulation because all other rates are
derived from this expression.
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2.6.4. THE GBM MODEL
The geometric Brownian motion (GBM) model is the stochastic model popular in indus-
try to model the foreign exchange rate. It is described by the dynamics

d X (t ) =µX (t )d t +σX X (t )dW P
X , (2.48)

where X (t ) defines the units of domestic currency exchanged for one unit of foreign cur-
rency, µ is the drift, and σX is the volatility. The subscript P in the Brownian motion
indicates the real-world measure. Under the domestic risk-neutral measure Qd , the dy-
namics of Equation 2.48 are transformed to

d X (t ) = (
rd (t )− r f (t )

)
X (t )d t +σX X (t )dW Qd

X . (2.49)

A derivation is shown in Appendix A.0.10. Here, it is also reasoned that the dynamics of
the FX rate under the foreign risk-neutral measure are the same as Equation 2.49 with
the subscripts d and f flipped.

2.7. SOLVERS
This thesis will consider two methods of calculating the potential future exposure of a
portfolio containing basic interest rate derivatives. These two methods are the MC sim-
ulation framework and the COS method. The former serves as a benchmark, employing
stochastic models for the interest and cross currency rate, and the latter is an innovative
numerical method to calculate the PFE based on earlier work by Fang and Oosterlee,
who applied the same method to price options [17]. The theoretical framework of both
methods will be discussed in this section.

2.7.1. MONTE CARLO
Throughout the literature, there is an extensive framework about the use of Monte Carlo
simulation for stochastic term-structure models. The theory on the application of the
MC simulation to price options is based on the paper by Boyle et al. [32]. This subsec-
tion will discuss the basic principles of the Monte Carlo simulation. Its application in
acquiring the potential future exposure will be discussed in Chapter 3.

In this thesis, we focus on the calculation of PFE for netting sets that concern three
risk factors. Two are short rates in two currencies, and the other is the exchange rate
X t . These risk factors are modelled using the Hull–White or G1++ models and the GBM
model, respectively. Because the risk factors are stochastic, an inherent uncertainty must
be modelled. This uncertainty originates from the Itô integral as shown by the dynamics
of the Hull–White model 2.33 with its solution 2.36 in Subsection 2.6.2.

Analysis of the short rate shows that it can be split into a Riemann integral over a de-
terministic function and an Itô integral as defined in 2.2.5. For the Riemann integral, we
can use the stochastic Euler scheme as a numerical integration method. On a uniform
grid 0 = t0 < t1 < . . . < tN = T , this gives the approximation∫ T

0
f (t )d t = lim

m→∞
m−1∑
i=0

f (ti ) (ti+1 − ti ) . (2.50)
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We cannot do this for the Itô integral, but we use a similar way of evaluating the
integral. Instead of the Riemann integral, the Stratonovich integral is used to compute
the Itô integral. That is,∫ T

0
g (t )dW (t ) = lim

m→∞
m−1∑
i=0

g (ti ) (W (ti+1)−W (ti )) , (2.51)

where the increments of the Brownian motion can be simulated using the relation,

W (ti+1)−W (ti ) = Z
p
∆t , with Z ∼N (0,1). (2.52)

Here, Z is the standard normal distribution, and we use ∆t = ti+1 − ti . Relation 2.52
follows from the definition of a Brownian motion, which says that every increment is
normally distributed.

Combining the two numerical integration methods, we get the following recursion
step, known as the Euler discretization:

r (ti+1) = r (ti )+ (θ(ti )−ar (ti ))∆t +σ
p
∆t Z (ti ). (2.53)

Here, θ(ti ) is a deterministic function calibrated to the observed market as defined in
2.34, a is the coefficient of mean-reversion obtained from market data, σ is the volatility
and Z (ti ) is a random draw from the standard normal distribution at time ti .

Taking a random draw from Z (ti ) gives us a possibility of the solution for the short
rate rti . We call this a path. The Monte Carlo simulation finds its essence in the law
of large numbers, which states that the sample average converges almost surely to the
expected value. By simulating many different paths and taking the average, we find an
approximation to the expected value of the short rate rt .

2.7.2. FOURIER-COSINE SERIES EXPANSION
Earlier work by Fang and Oosterlee [17], [33] showed that the COS method is an alterna-
tive method to price options. The method makes use of the relation between the weights
of the Fourier-cosine expansion and the characteristic function (ch.f.). The latter is often
easier to obtain; hence, the convenience of the method. This subsection will show the
basic theory behind the COS method; the next chapter will use apply theory in calculat-
ing the PFE for portfolios of interest rate derivatives. The COS method finds its roots in
the (inverse) Fourier transform shown below,

φ(ω) =
∫
R

e i xω f (x)d x, (2.54a)

f (x) = 1

2π

∫
R

e−iωxφ(ω)dω. (2.54b)

Here, φ(ω) is the characteristic function, f (x) is the probability density function and i is
the imaginary unit.
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PDF RECOVERY

The Fourier-cosine series expansion is used to recover the probability density function
f (x). For a function supported on the interval [a,b], the cosine expansion is given by2,

f (x) =
∞∑′

k=0
AK ·cos

(
kπ

x −a

b −a

)
, (2.55a)

Ak = 2

b −a

∫ b

a
f (x)cos

(
kπ

x −a

b −a

)
d x, (2.55b)

where
∑′

indicates that the first term is multiplied by half. The cosine expansion exists
for any real function with finite support. Additionally, it gives the optimal approxima-
tion on a finite support as well [34]. This is important because the ch.f. is often only
known on an infinite domain, as shown in Equation 2.54b. Equation 2.55b, on the other
hand, shows that the cosine series coefficients are defined for a finitely supported func-
tion f (x). If we consider a truncated characteristic function on a finite domain, we can
rewrite Equation 2.55b to

Ak ≡ 2

b −a
Re

{
φ1

(
kπ

b −a

)
·e

−i kaπ
b −a

}
, (2.56)

with φ1(ω) := ∫ b
a e iωx f (x)d x being the ch.f. of a probability density with finite support.

The Fourier-cosine expansion is only an accurate approximation whenever the trun-
cated characteristic function is a close approximation to the original ch.f. This must
be true because the assumption of the existence of the ch.f. implies that it decays to zero
at ±∞. Truncating the characteristic function in the tails will give a close approximation
to the infinite characteristic function. Using the known ch.f. on an infinite instead of the
finitely supported one has a similar expression for the cosine coefficients as Expression
2.55b,

Ak ≈ Fk ≡ 2

b −a
Re

{
φ

(
kπ

b −a

)
·e

−i kaπ
b −a

}
, (2.57)

where φ is now the characteristic function with infinite support. The probability density
function can be approximated using the COS method with the following formula:

f1(x) =
N∑′

k=0
Fk cos

(
kπ

x −a

b −a

)
. (2.58)

This approximation of the probability density function has two main sources of er-
rors. The first error originates from the use of the ch.f. on an infinite domain in the calcu-
lation of the cosine coefficients. The second error is introduced by the need to truncate
the series summation given in Equation 2.55a to a finite amount of expansion terms N .
An error analysis of the COS method approximation will be given in Chapter 4.

2A derivation is given in A.0.9
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CDF RECOVERY

As a result of the relation of the PDF and the cumulative density function CDF, it is also
possible to use the COS method to approximate the CDF. This is easily shown by consid-
ering that the CDF is defined as the integral of the probability density function fX (x),

FX (x) =
∫ x

−∞
fX (t )d t ≈

∫ x

a
fX (t )d t . (2.59)

Approximating the CDF using the COS method requires the integration of Equation
2.55a. First, the integration range is truncated to [a, x]. The order of integration and
summation is also interchanged. This is allowed by Fubini’s theorem as both the density
function and the cosine basis functions are bounded. This gives

FX (x) ≈ A0

2
· (x −a)+

∞∑
k=1

Ak
b −a

kπ
sin

(
kπ

x −a

b −a

)
, (2.60)

where Ak are the same coefficients as defined in 2.55b. The approximation is, in actu-
ality, a Fourier-sine expansion but will hereafter also be referred to as the COS approxi-
mation to be in line with the literature. To approximate the CDF using the COS method,
the series coefficients, the domain of support and the summation must again be finite.
Therefore, 2.60 becomes

F̃X (x) ≈ F0

2
· (x −a)+

N∑
k=1

Fk
b −a

kπ
sin

(
kπ

x −a

b −a

)
, (2.61)

where Fk are the coefficients defined in 2.57.

2.7.3. NUMERIC INTEGRATION
As we will see in the next section, it is not always possible to get a (semi)-analytical
expression for an integral like the ch.f. Another way to evaluate an integral is by us-
ing numerical integration. The numeric integration quadrature that will be considered
throughout this thesis is the Clenshaw–Curtis quadrature. This quadrature ensures the
periodicity of the considered function, thereby warranting exponential convergence of
the integration method [35]. Discretisation of an integral using the Clenshaw–Curtis
quadrature gives us

I f =
∫ π

0
f (cos(θ))sin(θ)dθ ≈ a0 +

N∑
ν=1

ν even

2aν

1−ν2 , (2.62)

where the coefficients ak are given by

ak ≈ 2

N

[
f (1)

2
+ f (−1)

2
(−1)k +

N−1∑
n=1

f (cos(nπ/N ))cos(nkπ/N )

]
. (2.63)

In these equations, N is the number of quadrature points. Also, we notice that Expres-
sion 2.63 for the coefficients of the Clenshaw–Curtis quadrature is very similar to dis-
crete cosine transform Type 1. For this reason, we can use the fast Fourier transform
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implementation from Python to efficiently calculate these coefficients. Numeric inte-
gration can only consider finite integration ranges. The calculation of the ch.f. requires
the evaluation of an infinite integral; therefore, an error will be introduced. There is an
additional numeric integration error from the Clenshaw–Curtis quadrature itself. Both
these errors are propagated to the approximation using the Fourier-cosine expansion.
The analysis of these errors will be discussed in more detail in Chapter 4.



3
METHODOLOGY

The definitions and theorems given in the previous chapter are essential for us to formu-
late the calculation of the potential future exposure for interest rate derivatives mathe-
matically. In this chapter, we will develop a new method based on Fourier-cosine series
expansion to calculate PFEs of small liquid portfolios, i.e. involving up to 3 risk factors.
We refer to this method as the COS method to align with [17], because the it is an ex-
tension to the original COS method from derivative pricing to portfolio level risk quan-
tification. The Monte Carlo simulation framework is also built up, which is to serve as a
benchmark to our innovative COS method.

In the beginning of this chapter, the calculation of PFE for a single trade is detailed,
involving only one risk factor, the short rate rt . As the literature revolving around the
industry standard Monte Carlo (MC) simulation is large, the discussion regarding MC
method will only be brief. The application of the COS method for PFE calculations will
be discussed in detail, starting with a convergence analysis on a simple log-normal dis-
tribution, followed by the approximation of the distribution of a ZCB, IRS and the expo-
sure of an IRS.

Next, the complexity will be increased to a small IR portfolio typically involving three
correlated risk factors: a domestic and foreign short rate and the exchange rate of this
currency pair. Again, the Monte Carlo simulation will be briefly recapped, followed by a
sensitivity analysis of the COS method for a case of which the analytical solution of the
PFE exists.

Thereafter, the COS method is extended to approximate the CDF of a FX Forward, a
Cross-currency Swap, and a netting set of IR, FX and cross-currency trades. Finally, we
will tackle the counterparty level PFE calculation using the COS method.

3.1. ONE-DIMENSIONAL MONTE CARLO
The methodology of Monte Carlo simulation to calculate thePFE of an interest rate deriva-
tive with only one risk factor is quite straightforward. The time interval over which the
trade is evaluated is first discretised. For each of the discretized time points, many sce-
narios of the short rate are generated using Expression 2.53, whereby each scenario is

22
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drawn from the standard normal distribution Z (ti ). The next step is to calculate the
MtM value of an interest rate derivative at each point in time for each possible short-rate
path. Exposure is then the positive part of the MtM price, as given in Definition 2.1.1.
When we get a vector with exposures for each point in time, we can directly obtain the
PFE, which is VaR at 97.5% quantile.

A pseudo code for the one-dimensional Monte Carlo algorithm is given below.

Algorithm 1: 1D Monte Carlo algorithm

Start : Initialise model parameters a and σ, choose number of paths Np and time
points Nt

Generate shifted short rate paths x:
Randomly sample standard normal distribution Z for i=1,. . . ,Nt do

Compute the Brownian Motion Wi using 2.52;
Compute shifted short rate using the model dynamics 2.40;

end
Calculate the exposure of the portfolio:
for i=1,. . . ,Nt do

Compute the MtM value of the portfolio for each path;
Floor the MtM values for each path to find the exposure;
Find the 97.5% quantile to obtain the PFE;

end

3.2. ONE-DIMENSIONAL COS METHOD
The application of the COS method to the potential future exposure calculation rests
on the idea that the distribution of the MtM prices of interest rate derivatives at future
points in time can be recovered directly with the help of the COS method.. As described
in Section 2.7.2 of the previous chapter, the COS method can be used to approximate the
CDF, from which one can immediately retrieve the 97.5% quantile from the cumulative
distribution.

3.2.1. LOG-NORMAL DISTRIBUTION
As we will see later, the distribution of the interest rate derivatives has no analytic ex-
pression. To test the accuracy of the approximations with the COS method, a sensitivity
analysis is conducted.

An implementation of Expressions 2.57, 2.58 is needed to approximate the density func-
tion of a log-normal variable using the COS method. These expressions indicate that two
parameters that control the accuracy of the approximation, namely the number of COS
terms N and the interval on which the COS method is supported, or in other words, the
function is approximated by the COS method, say [a,b].

The ch.f. of a log-normal distribution has no closed-form expression, but another
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key insight is that, it can be calculated via numeric integration. The definition of the
characteristic function reads:

φ(ω) =
∫ ∞

−∞
e iωexp(x) · 1p

2πσX

e
− (x −µX )2

2σ2
X d x, (3.1)

where µX and σX are the mean and standard deviation of the log-normal distribution.
The characteristic function is approximated by applying an advanced quadrature rule
on 3.1 after we truncate the integration range. In this thesis, we employ Clenshaw–Curtis
quadrature rule, but other higher order integration methods are also applicable.

Worth mentioning that, this step of calculating ch.f. numerically already introduces
two types of errors: integration range truncation error and the numerical integration
error. Errors originating from the computation of the characteristic function using nu-
meric integration will resonate with the approximation of the density function. For this
reason, the integration range and the number of quadrature points are two important
parameters that need to be studied in the sensitivity analysis and analyzed theoretically
in the error analysis section. Only this way, we could fully understand the method and
know how to set the parameter values properly.

Note that the convergence test is meant to check whether a regular error convergence
rate can be observed in the experiments. A regular convergence is crucial to the stability
of any numerical method. To achieve this goal, we have to segregate the combined im-
pact from different error sources, by means of suppressing other errors than the targeted
one we want to examine to a much lower level, or, even better, to a negligible level. For
example, to analyse the convergence of the COS method in the number of cosine terms,
or in other words, the impact of increasing the number of COS expansion terms on the
accuracy, we fix the following parameters, at conservative levels, that jointly control the
error resulted from characteristic function approximation: the number of Clenshaw–
Curtis quadrature points Nq , the domain on which the COS method is supported [a,b]
and the integration range for the Clenshaw–Curtis quadrature [l ,u].

Below we elaborate on how to define the truncation ranges that occur in different places.
The chosen domain for the COS method and the integration range for the quadrature
both impact the accuracy of the recovered distribution function. Both ranges can be
chosen precisely according to a pre-defined error tolerance level, thanks to prior infor-
mation contained in the integral form of the characteristic and density functions, re-
spectively. The characteristic function is defined as a complex integral on an infinite
domain, as shown in Expression 3.1. The integrand is a complex exponential multiplied
the density of the normal distribution. The density of the normal distribution causes
the integrand to go to zero exponentially fast far from the mean µ. This ensures that the
approximation of the truncated characteristic function is still accurate. Additionally, it
enables us to choose the integration range in a smart way. As the normal distribution
is known, the truncated integration range can be chosen precisely by using the per cent
point function (ppf), i.e. the inverse CDF function, of the normal distribution with a
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chosen tolerance. The ppf of a normal distribution is given by

PPFnormal(p) =µ+σp2erf−1(2p −1), (3.2)

where µ, σ are the mean and standard deviation of the normal distribution, respectively,
and p is the quantile level at the tails of the Normal distribution, such as 1e −12.

Similarly, the density function of a log-normal variable is to be recovered and is,
therefore, known. The support of the COS method can be chosen as the ppf of the
log-normal distribution with a chosen tolerance such that it covers the desired domain.
Since the exponential function is monotonic, the ppf of a log-normal distribution is the
exponent of the ppf of a normal distribution:

PPFlog-normal(p) = eµ+
p

2σ2 erf−1(2p−1)). (3.3)

3.2.2. RECOVERING THE CDF AND PFE
In this section, the COS method is applied to approximate the CDF of the MtM price
of an interest rate derivative at any future point in time. To build up the complexity
step by step, the MtM distribution of a ZCB is recovered first using the COS method.
This special case is chosen because the analytical solution of the CDF exists and we can
directly measure the error from the COS method. This is then followed by the extension
of the COS method to approximate the MtM distribution of an RFS.

ZERO-COUPON BOND

A ZCB modelled under a Gaussian one-factor model, the equivalent of a Hull–White
model, is described by Equation 2.46. Furthermore, the shifted short rate x(t ) is normally
distributed. Rewriting Expression 2.46 one can see that the MtM of a ZCB is log-normally
distributed. That is

P (t ,T ) = A(t ,T )e−B(t ,T )x(t )

= e log(A(t ,T ))−B(t ,T )x(t ).

The above expression shows that a ZCB is log-normally distributed with mean log(A(t ,T ))
and variance B(t ,T )2σ2

X . Here A(t ,T ) and B(t ,T ) are defined in 2.47, µX ,σX are, respec-
tively, the mean and standard-deviation of the shifted short-rate process x(t ).

Because a ZCB is log-normally distributed, a convergence test can be done in the
same way as in the last chapter. Since the ZCB is used in the definitions of all interest
rate derivatives, as discussed in section 2.4, it is important to check the convergence of
the approximated CDF. The convergence test is meant to check whether a regular error
convergence rate can be observed whenever the quadrature points and number of ex-
pansion terms are increased. The expression of the characteristic function that needs to
be solved using numeric integration is

φ(ω) =
∫ ∞

−∞
e iωA(t ,T )exp(−B(t ,T )x) · 1p

2πσX

e
−1

2

(
x −µX

σ2
X

)2

d x. (3.4)
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Notice that this expression of the characteristic function is very similar to the one of
a simple log-normal distribution given in 3.1. Hence, the same way of defining the inte-
gration range can be used. The ppf used for the COS support can be written as a function
of A(t ,T ),B(t ,T ) using the same form as 3.3.

After evaluating the characteristic function using numeric integration, Expressions 2.57,
2.61 can be used directly to recover the CDF of the MtM price. The PFE is then obtained
by employing a root-finding algorithm to the difference between the quantile of the ap-
proximated CDF at different values of the MtM prices and the 97.5% quantile.

INTEREST RATE SWAP

Equation 2.24 shows that the MtM price of a single receiver interest rate swap can be
given as a linear combination of ZCBs P (t ,Ti ). Therefore, the probability distribution
of an IRS is a linear combination of log-normal variables, which unfortunately has no
closed-form expression. However, a key insight here is that the characteristic function
can be solved numerically, which means, in turn, the CDF can be recovered using the
Fourier-sine expansion.

The integral form of the characteristic function is given by

φ(ω) =
∫ ∞

−∞
e iωVI RS (x) · 1p

2πσX

e
−1

2

(
x −µX

σ2
X

)2

d x, (3.5)

where VI RS (x) is the function defined as

VI RS (x) =−N A(t ,Tα)eB(t ,Tα)x +N A(t ,Tβ)eB(t ,Tβ)x +
β∑

i=α+1
τi K A(t ,Ti )eB(t ,Ti )x . (3.6)

It is important to note that the x parameter in Expression 3.6 is the integration pa-
rameter and not the shifted short rate. A(t ,Ti ),B(t ,Ti ) are defined in 2.47 with Ti repre-
senting the maturity, whereby the subscripts α,β denote the first and last date, respec-
tively. The same is true for the year-fractions τi . Additionally, N denotes the notional,
and K denotes the fixed rate.

Because the integration again concerns the normal distribution of the shifted short rate,
the ppf of the normal distribution is used to specify the truncated integration range. As
mentioned before, the MtM price of the RFS is a linear combination of log-normal vari-
ables. For this reason, there is no closed-form representation of the distribution of the
MtM price of the RFS, making it not straight forward to accurately define the COS sup-
port based on the a priori knowledge about its distribution. The COS support should be
chosen in such a way that the lower and upper bounds include all relevant information

of the CDF. As a rule of thumb, one could use [a,b] = [±N
2 ] as a COS support, where N

represents the notional. However, a possibility for future research is the finding of a more
accurate rule of thumb.

The PFE term structure of an IRS looks as follows: it first rises rapidly due to the uncer-
tainty that comes with time, and, as time approaches maturity, more coupon payment
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dates have passed, causing the PFE to decrease again and reaches zero at maturity. At
maturity, the PFE of the IRS should be 0 again as all payment dates have passed. An
illustration of the PFE term structure of an IRS is given in Figure 3.1. The PFE near ma-
turity is low compared to other evaluation times. In other words, the distribution of the
MtM price (and thus that of the exposure) is the widest somewhere in the middle of the
life time of the trade and is much narrower close to maturity. It is therefore not a good
idea to use an uniform truncation range of the MtM price distributions, i.e. the COS
support, for different points in time: when this truncation range is too wide, we need to
include more cosine terms in the Fourier-cosine series expansion. One could dynami-
cally change the COS support depending on the evaluation time.

Figure 3.1: Illustration of the PFE term structure of an IRS [4].

Using the calculated characteristic function for the MtM of an RFS, the expressions for
the Fourier-sine expansion given in 2.7.2 can be used to obtain an approximation of the
CDF. The PFE is found by searching for the value of the input parameter of the CDF func-
tion that returns the quantile at 97.5%.

A pseudo code for the one-dimensional COS method is given in Algorithm 2.

EXPOSURE

In the previous subsection, we discussed the methodology of using the COS method to
recover the CDF of the MtM of an RFS. However, we are interested in the exposure of an
RFS in the context of CCR. Here we explain how to recover the CDF of the exposure using
the COS method.

For a single RFS, the exposure is defined as Et (X t ) := max{Vt (X t ,0} following Defini-
tion 2.1.1. The maximum operator yields a jump in the CDF of the exposure of an RFS
at where the MtM price equals 0. The discontinuity gives rise to the Gibbs phenomenon
around the jump when we use Fourier series to reconstruct the exposure function di-
rectly. It is still possible, as we will show later in counterparty level PFE calculation, to
follow the same methodology as set out earlier, but with a filter added, to recover the
CDF of the exposure. In that case the ch.f. we need to calculate using the quadrature
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Algorithm 2: 1D COS method

Input : Initialise model parameters a and σ, choose number of expansion terms
Ne , quadrature points Nq and time points Nt ;

Set the integration range [l , u] and COS support [a, b] ;
Find the PFE:
for i=1,. . . ,Nt do

Use numeric integration to calculate the characteristic function, having a form
as in 3.5, using the Clenshaw–Curtis quadrature ;

Calculate the Fourier-cosine coefficients using the numerically integrated
characteristic function;

Multiply the Fourier-cosine coefficients with the sine basis functions to obtain
the CDF as in 2.61;

Use transformation 3.8 to find the CDF of the exposure;
Use root finding algorithm to find the PFE;

end

rule is the following:

φ(ω) =
∫ ∞

−∞
e iωmax{VI RS (x),0} · 1p

2πσX

e
−1

2

(
x −µX

σ2
X

)2

d x. (3.7)

There is, however, an alternative way to recover the CDF of the exposure highly effi-
ciently, despite of the presence of the jump. It is done as follows.

One can observe that the distribution of the exposure is the same as the distribution
of the MtM of an RFS, when the MtM price is larger than 0. This means we can first
approximate the CDF of the smooth MtM of an RFS and then use a transformation to get
the CDF of the exposure. More specifically, we use

FX (x > 0) =
{

0 if x ≤ 0,

FX (x) if x > 0.
(3.8)

This gives the desired CDF of the exposure where FX (x) = 0 for x ≤ 0, and FX (x) for x > 0.
This transformation ensures that the COS method is still applied to a smooth function
because the discontinuity at zero is omitted. This ensures a convergence rate.

3.3. THREE-DIMENSIONAL DYNAMICS
To extend the COS method developed in the previous section to FX derivatives, we need
to involve two more risk factors, and thus, two more dimensions to the problem-to-solve.

The interest rate swap discussed in the previous section exchanges the floating leg
for the fixed leg when both legs have the same currency. However, the legs can also be of
different currencies.
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We start with Gaussian one-factor shifted short-rate processes xd (t ) and x f (t ) under

their respective risk-neutral measures Qd and Q f . The subscripts d and f indicate the
domestic and foreign interest rates, respectively. The FX rate X (t ) is modelled using a ge-
ometric Brownian motion under the domestic risk-neutral measure, as commonly seen
in literature, such as [36]–[38]. The dynamics are given by

d xd (t ) =−ad xd (t )d t +σd dW Qd

d , (3.9a)

d x f (t ) =−a f x f (t )d t +σ f dW Q f

f , (3.9b)

d X (t ) = (
rd (t )− r f (t )

)
X (t )d t +σX X (t )dW Qd

X . (3.9c)

Here, ad and a f are the speed of mean reversion for each currency, andσd ,σ f andσX are
the volatilities of the respective models. The short rates rd (t ) and r f (t ) in the dynamics
of the exchange rate are required for the absence of arbitrage A.0.10. The short rates in
the dynamics of the exchange-rate are acquired using the relation ri (t ) = xi (t )+βi (t ),
where βi (t ) is a deterministic function, and the subscript i can be d or f .

Notice that the foreign shifted short rate is given in the foreign risk-neutral measure.
The dynamics of the foreign short rate must be converted to the domestic measure to be
able to combine the dynamics in one model. Using Girsanov’s theorem, Equation 3.9b
becomes

d x f (t ) = [−a f x f (t )+σ f σXρ f X
]

d t +σ f dW Qd

f , (3.10)

where ρ f x is the correlation between the FX rate and the foreign interest rate. A deriva-
tion is given in Appendix A.0.11.

For risk management purposes like calculating the potential future exposure, we
need to consider the dynamics in the real-world measure P. The change to the real-
world measure relaxes the no-arbitrage restriction of the exchange-rate drift. Another
way of looking at this is that in practice the theoretical triangle relation between the in-
terest rates and the FX rate does not hold, which suggests that we can relax the relation
between the drift terms.

In the real-world measure, the dynamics of the exchange rate are given by

d X (t ) =µX (t )d t +σX (t )dW Pd
(t ). (3.11)

The change in dynamics for the shifted short rates from the domestic risk-neutral
measure, as in Equation 3.9, to the domestic real-world measure is entirely captured in
the choice of coefficients ad , a f ,σd ,σ f and σX . The solutions to the processes in the
domestic real-world measure are then given by

xd (t ) = xd (0)e−ad t +σd

∫ t

0
e−ad (t−s)dWd (s),

x f (t ) = x f (0)e−a f t + σ f σXρ f X

a f

(
1−e−a f t )+σ f

∫ t

0
e−a f (t−s)dW f (s),

log(X (t )) = log(X (0))+
(
µ− 1

2
σ2

X

)
t +σX WX (t ).

(3.12)
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3.4. THREE-DIMENSIONAL MONTE CARLO
To obtain the potential future exposure using Monte Carlo simulation for a portfolio
involving three risk factors, paths for each risk factor need to be generated first. The
path generation of each risk factor is done in the same way as the one-dimensional case.
However, an extra step is needed to incorporate the correlations between the three risk
factors, which are fully determined by the correlations of the Brownian motions of the
respective dynamics. The usual way of simulating correlated random Normal variables
is to apply Cholesky decomposition on the correlation matrix, i.e.

dWdWT =
 1 ρd f ρd X

ρd f 1 ρ f X

ρd X ρ f X 1

d t . (3.13)

The Cholesky decomposition decomposes the above matrix using a lower triangular
matrix L such that W = L ·W̃, where

L =


1 0 0

ρd f

√
1−ρ2

d f 0

ρd X
ρ f X −ρd f ρd X√

1−ρ2
d f

√√√√ρ2
d f −2ρd f ρd Xρ

2
f X +ρ2

d X +ρ4
f X −1

ρ2
d f −1

 . (3.14)

The computer generates a system of independent Brownian motions, and the cor-
relation is incorporated by multiplying the lower triangular matrix shown above. After-
wards, the same steps as for the 1D case are followed to yield the paths for the short rates
and the exchange rate.

Once the scenarios are generated for all risk factors at each discretised time point,
the MtM price or exposure scenarios can be calculated for each time point. The PFE
is then again obtained by finding the 97.5%-quantile from the distribution at each time
point.

A pseudo code for the three-dimensional Monte Carlo algorithm is given in Algo-
rithm 3.

3.5. THREE-DIMENSIONAL COS METHOD
Here we extend the COS method to calculate PFEs of a trade involving three risk factors.
The COS method in the case of three risk factors is similar to the case of one risk factor,
i.e. one dimension. The difference purely lies in the calculation of the characteristic
function.

The characteristic function is an integral over its state variables. In the 1D case, we
could replace the short-rate process by the state variable x multiplied by the probabil-
ity density of a normal distribution with the mean and variance matching the short-
rate process. In the case of three risk factors, the dynamics are given in Equation 3.12,
and the substitution of the processes by their state variables is more complex. Equation
3.12 shows that all processes consist of a deterministic part and a stochastic part. The
stochastic part of the processes contain the random variables, which will hereafter be
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Algorithm 3: 3D Monte Carlo algorithm

Start : Initialise model parameters ad , a f , σd , σ f σx ,σX , µx , ρxd , ρx f , ρd f and
X0, and choose number of paths Np and time points Nt ;

Calculate the Cholesky decomposition matrix L;
Generate paths for the risk-factor xd ,i , x f ,i and Xi :
Randomly sample standard normal distribution Z for i=1,. . . ,Nt do

Compute the Brownian Motion Wi using 2.52;
Compute the correlated Brownian Motion W̃i = L ·Wi ;
Compute the shifted short rates using the model dynamics 2.40 taking into

account the change of measure from 3.10 Compute the exchange rate using
the GBM dynamics 3.11

end
Calculate the exposure of the portfolio:
for i=1,. . . ,Nt do

Compute the MtM value of the portfolio for each path;
Floor the MtM values for each path to find the exposure;
Find the 97.5% quantile to obtain the PFE

end

referred to as the state variables Zd (t ), Z f (t ), ZX (t ). We then write

xd (t ) = xd (0)e−ad t +σd Zd (t ),

x f (t ) = x f (0)e−a f t + σ f σXρ f X

a f

(
1−e−a f t )+σ f Z f (t ),

log(X (t )) = log(X (0))+
(
µ− 1

2
σ2

X

)
t +σX ZX (t ),

(3.15)

with the state variables

Zd (t ) =
∫ t

0
e−ad (t−s)dWd (s),

Z f (t ) =
∫ t

0
e−a f (t−s)dW f (s),

ZX (t ) =WX (t ).

(3.16)

Normalising these state variables gives Zd (t ) =σzd Ẑd (t ), Z f (t ) =σz f Ẑ f (t ) and ZX (t ) =
σzX ẐX (t ) where Ẑd , Ẑ f , ẐX are standard normally distributed. These state variables are
correlated due to the correlation of the Brownian motions as shown in Equation 3.13. For
numerical integration, it is required to rewrite the correlated state variables as a linear
combination of independent state variables.

Note that, to solve the ch.f. numerically, we have to apply a multi-dimensional quadra-
ture rule. To reduce the computational complexity there, a separation of the variables is
desired. Even though it is difficult to fully separate the variables in the integrand of the
ch.f. definition, we could employ Cholesky decomposition to do it partially.
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Using the Cholesky decomposition of the correlation matrixΣof variables Ẑd , Ẑ f , ẐX ,
we find a lower triangular matrix L such that Ẑ = L · Z̃, where Z̃ = [Z̃d Z̃ f Z̃X ]T is a vec-
tor of independent standard normally distributed variables. The correlation matrix Σ is
defined as

Σ=
 1 Cor(Ẑd , Ẑ f ) Cor(Ẑd , ẐX )

Cor(Ẑ f , Ẑd ) 1 Cor(Ẑ f , ẐX )
Cor(ẐX , Ẑd ) Cor(ẐX , Ẑ f ) 1

 , (3.17)

where the entries of the correlation matrix can be calculated using Itô’s isometry and the
fact that all processes Zd , Z f , Zx have zero mean. The entries are given below:

Cor(Ẑd , Ẑ f ) =

ρd f

ad +a f
(1−e−(ad+a f )t )√

1

2ad
(1−e−2ad t )

√
1

2a f
(1−e−2a f t )

, (3.18a)

Cor(Ẑd , ẐX ) =
ρd X

ad
(1−e−ad t )√

1

2ad
(1−e−2ad t )

p
t

, (3.18b)

Cor(Ẑ f , ẐX ) =

ρ f X

a f
(1−e−a f t )√

1

2a f
(1−e−2a f t )

p
t

. (3.18c)

Note that the correlation matrix is a positive definite matrix. This allows us to use the
Cholesky decompositionΣ= LLT with L acquired by calculating

L =


p
Σ11 0 0

Σ21/L11

√
Σ22 −L2

21 0

Σ31/L11 (Σ32 −L31L21)/L22

√
Σ33 −L2

31 −L2
32.

 (3.19)

The complex exponent in the characteristic function now contains the processes
from 3.15 multiplied corrected for correlation using the lower triangular matrix. The
complex exponential is then multiplied by three standard normal distributions for each
standard normal state variable Z̃i . This integral is then solved using the three-dimensional
Clenshaw–Curtis quadrature. Whenever the characteristic function is obtained, the co-
sine coefficients from Expression 2.57 can then be used in Expression 2.61 to obtain the
CDF.

3.5.1. LOG-NORMAL DISTRIBUTION
In Subsection 3.2.1, it was explained that there were four parameters influencing the
overall accuracy of approximation using the Fourier-cosine expansion. The analysis be-
low mainly focuses on the effect of the number of quadrature points on the error of the
COS method.
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The number of quadrature points is the only parameter of which the value needs to
be adjusted to cope with a three-dimensional quadrature to calculate the characteristic
function. Increasing the number of quadrature points increases the accuracy of the char-
acteristic function and thus of the approximation of the CDF. However, the drawback is
the increase in computational costs. This drawback becomes especially significant con-
sidering three state variables, discretization of which form a three-dimensional matrix.
For this reason, it is essential to balance the accuracy and computation time.

To get an indication of the effect of the number of quadrature points on the accuracy
in a three-dimensional case, we analyse a function of which the distribution is known.
Section 2.5 shows that the MtM values of an FX Forward or XCS have closed-form distri-
bution functions because they are linear combinations of log-normally distributed vari-
ables, that is, both ZCBs and the exchange rate. However, we observe that omitting the
subtraction of the domestic part in the expression of an FX Forward gives a distribution
that can be evaluated analytically. The expression with analytical distribution is

Vt = N f P f (t ,T )X (t ). (3.20)

Both the foreign ZCB and the exchange rate are log-normally distributed, and thus,
their product is as well. In Equation 3.21, the distribution of both the foreign ZCB and the
exchange rate are given along with the distribution of the entire expression of Equation
3.20. The distributions are as follows:

ln
(
P f (z f , t ,T )

)
∼N

(
log

(
A f (t ,T )

)−B f (t ,T )γ(t ),B 2
f (t ,T )σ2

f σ
2
z f

)
,

ln(X (zx , t )) ∼N

(
log(X0)+

(
µ− σ2

X

2

)
t ,σ2

Xσ
2
zx

)
,

ln
(
N f P f (z f , t ,T )X (zx , t )

)
∼N

(
log

(
N f A f (t ,T )X0

)−B f (t ,T )γ(t )+
(
µ− σ2

X

2

)
t ,{(

σXσzx L[2,0]−B f (t ,T )σ f σz f L[1,0]
)2

+
(
σXσzx L[2,1]−B f (t ,T )σ f σz f L[1,1]

)2

+ (
σXσzx L[2,2]

)2
}1

2
)

.

(3.21)

In these expressions, A f (t ,T ),B f (t ,T ) are the parameters from the definition of a ZCB
as given in Equation 2.47. The subscripts denote that the parameters use the coeffi-
cients corresponding to the foreign G1++ model. L is the lower triangular Cholesky-
decomposition matrix, which is needed to incorporate the correlation of the state vari-
ables. For the sake of notation, we define

γ(t ) = σ f σXρ f X

a f

(
1−e−a f t ) .

In the previous section, it was shown how to rewrite the correlated risk factors as a
linear combination of independent risk factors. The independence of the variables is



3.5. THREE-DIMENSIONAL COS METHOD

3

34

used to calculate the characteristic function of the MtM of our analytic case. That is,

φ(ω) = E
(
e iωVt

)
= E

(
e iω

[
N f P f (z f ,t ,T )X (zX ,t )

])
= E

(
e iωg (Z̃d ,Z̃ f ,Z̃X )

)
=

Ñ
R3

e iωg (z̃d ,z̃ f ,z̃X ) f (z̃d , z̃ f , z̃X )d z̃d d z̃ f d z̃X

=
Ñ

R3
e iωg (z̃d ,z̃ f ,z̃X ) f (z̃d ) f (z̃ f ) f (z̃X )d z̃d d z̃ f d z̃X .

(3.22)

Notice that in the third equality, we transformed the equation to a linear combination
of independent, uncorrelated random variables denoted by a Z̃ . The expression after
the fourth equality shows the characteristic function is a function of the independent,
uncorrelated state variables. Consequently, the joint probability density can be split into
f (z̃d ), f (z̃ f ), f (z̃X ), which are all independent standard normal variables. The function

g (z̃d , z̃ f , z̃X ) is the multiplication of the foreign notional N f and the parts

P f (z f , t ,T ) = A f (t ,T )e
−B f (t ,T )

(
γ(t )+σ f σz f

{
L[1,0]z̃d+L[1,1]z̃ f

})
,

X (zx , t ) = X0e(µ−σ2
X \2)t+σXσzX

{
L[2,0]z̃d+L[2,1]z̃ f +L[2,2]z̃X

}
,

(3.23)

with γ(t ) defined as before.
The integration range for each state variable can be chosen in the same way as in the

one-dimensional case. Because state variables are all normalised, their density func-
tions are standard normal distributions. The integration range for each state variable
is, therefore, chosen using the per cent point function of a standard normal distribution
with a chosen tolerance as given in Equation 3.2. By virtue of analysing an expression
with a known distribution, the COS support can be chosen using the prior knowledge
of the log-normal distribution given in 3.21. The COS support can, therefore, be chosen
as the per cent point function of the log-normal distribution from 3.21 using Equation
3.3. The sensitivity analysis is then performed by changing the number of quadrature
points while leaving the number of expansion terms, the integration ranges and the COS
support the same, while looking at the difference between the analytical log-normal dis-
tribution and the approximation using the COS method. The results are presented in
section 5.1

A pseudo code for the three-dimensional COS method is given in Algorithm 4.

3.5.2. RECOVERING THE CDF AND PFE OF A LIQUID PORTFOLIO
Below, the methodology for calculating the CDF and PFE using the COS method is fur-
ther extended to FX Forwards, cross-currency swaps, a netting set including both types
of products and a higher level portfolio (such as counterparty level).

FX FORWARD

The methodology of recovering the CDF of the MtM price and the PFE of an FX Forward
trade remains exactly the same as in the previous section. The MtM of an FX Forward is
given by

VF X = N f P f (t ,T )X (t )−N d P d (t ,T ). (3.24)
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Algorithm 4: 3D COS method

Start : Initialise model parameters ad , a f , σd , σ f σx ,σX , µx , ρxd , ρx f , ρd f and
X0, and choose number of paths Np and time points Nt ;

Set the integration ranges [li , ui ] and COS support [a, b];
Find the PFE:
for i=1,. . . ,Nt do

Calculate the Cholesky decomposition L of 3.17;
Use numeric integration to calculate the characteristic function, having a form

as in 3.25, using the Clenshaw–Curtis quadrature ;
Calculate the Fourier-cosine coefficients using the numerically integrated

characteristic function;
if Considering counterparty-level exposure then

Multiply the Fourier-cosine coefficients with the spectral filter (described in
Subsection 3.5.2);

Multiply the above with the sine basis functions to obtain the CDF as in
3.31b

else
Multiply the Fourier-cosine coefficients with the sine basis functions to

obtain the CDF as in 2.61;
end
Use transformation 3.8 to find the CDF of the exposure;
Use root finding algorithm to find the PFE;

end

The first part is log-normally distributed, as was explained in the previous subsection.
The domestic ZCB is also log-normally distributed. Hence, the distribution of the MtM
of an FX Forward is a linear combination of log-normal variables, which has no closed-
form distribution; therefore, we cannot choose the COS support using information about
the distribution. The characteristic function is given by

φ(ω) = E
(
e iωVF X

)
= E

(
e iω

[
N f P f (z f ,t ,T )X (zX ,t )−N d P d (zd ,t ,T )

])
= E

(
e iωVF X (Z̃d ,Z̃ f ,Z̃X )

)
=

Ñ
R3

e iωVF X (z̃d ,z̃ f ,z̃X ) f (z̃d ) f (z̃ f ) f (z̃X )d z̃d d z̃ f d z̃X .
(3.25)

In the above equations VF X (z̃d , z̃ f , z̃X ) is a function dependent on state variables, not
to be confused with the distribution given in Expression 3.24. It is composed of the parts

P d (z̃d , t ,T ) = Ad (t ,T )e−B d (t ,T )σdσzd
z̃d ,

P f (z̃d , z̃ f , t ,T ) = A f (t ,T )e
−B f (t ,T )

(
γ(t )+σ f σz f

{
L[1,0]z̃d+L[1,1]z̃ f

})
,

X (z̃d , z̃ f , z̃X , t ) = X0e(µ−1\2σ2
X )t+σXσzX

{
L[2,0]z̃d+L[2,1]z̃ f +L[2,2]z̃X

}
.

(3.26)

The integration ranges for each state variable are set as the ppf of the standard nor-
mal distributions in the same way as was done in the analytical case. The COS sup-
port cannot be chosen in the same way because there is no a priori information about
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the approximated distribution. It has to be chosen wide enough such that the CDF is
well represented within the range or, more mathematically, the error in the COS method
stemming from the truncation of the distribution is negligible. Therefore, it is better to
choose the COS support too wide instead of too narrow. As a rule of thumb, we again set
the COS support as [a,b] = [±N d ] with the note that more research needs to be done to
improve this choice.

Using the three-dimensional Clenshaw–Curtis quadrature, we obtain an approxima-
tion of the CDF based on Equations 2.57 and 2.61. The PFE is then again found via a
root-finding algorithm.

CROSS-CURRENCY SWAP (XCS)
Again, the methodology to acquire the PFE profile of a cross-currency swap is exactly the
same as we have seen in the previous sections. A XCS is defined in such a way that one
receives the constant foreign rate and pays the floating domestic rate (and sometimes
with reset of the Notional in the fixed leg). From Subsection 2.5, we know that the MtM
price of an XCS is given by

VXC S = N d

[
X (0)

β∑
i=α+1

τi K X (t )P f (t ,Ti )−P d (t ,Tα)+P d (t ,Tβ)

]
.

The characteristic function corresponding with the cross-currency swap is calcu-
lated in the same way as before, again requiring a transformation to independent, uncor-
related state variables using the Cholesky decomposition. Thus the characteristic func-
tion is calculated by applying the three-dimensional Clenshaw–Curtis algorithm to the
integral shown below:

φ(ω) = E
(
e iωVXC S

)
= E

(
e

iω
[

N d
[

X (0)
∑β

i=α+1 τi K X (zX ,t )P f (z f ,t ,Ti )−P d (zd ,t ,Tα)+P d (zd ,t ,Tβ)
]])

= E
(
e iωVXC S (Z̃d ,Z̃ f ,Z̃X )

)
=

Ñ
R3

e iωVXC S (z̃d ,z̃ f ,z̃X ) f (z̃d ) f (z̃ f ) f (z̃X )d z̃d d z̃ f d z̃X ,

(3.27)

where the functions making up VXC S (z̃d , z̃ f , z̃X ) are of the same form as the functions
in Equation 3.26. As a rule of thumb, the COS support is chosen as half of the notional
N
2 . The integration range is chosen in the same way as for the FX Forward, and the pro-

cedure to approximate the CDF and PFE using the calculated characteristic function is
the same as well. However, similar to the one-dimensional case of the IRS, it is neces-
sary to define the COS support dynamically for the sake of efficiency. The COS support
that is wide enough for a high PFE value may be too wide for the calculation of PFE near
maturity using the same number of cosine terms.

NETTING-SET-LEVEL EXPOSURE

The recovery of the individual derivatives, IRS, FX Forward and XCS, has already been
discussed. The next step is to recover the PFE of a netting set consisting of multiple
derivatives.

In the beginning of Chapter 2 in Definition 2.1.1, the netting-set-level exposure was
defined. It is the maximum between the summation of the MtM value of all derivatives
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and 0. In Subsection 3.2.2, a transformation was discussed such that we can approx-
imate the CDF of the MtM of the netting set instead of approximating the CDF of the
exposure of the netting set. This transformation ensured that a high accuracy around
the discontinuity at 0 can be achieved in the absence of a jump at the origin.

The methodology of calculating the PFE for a netting set is exactly the same as the
previous cases which deal with three risk factors.

For testing purposes, we generate an artificial portfolio as follows. Using a Python
script, a portfolio is generated with different derivatives having random currency, fixed
rate, tenor and maturity. An MS Excel file containing the used portfolio will be attached
in Appendix C. For replicability, the file shows year-count fractions where Act360 is used
as the day-count convention instead of dates.

The netted MtM price of the portfolio is calculated by adding up the value of each
derivative. Therefore, the characteristic function becomes

φ(ω) = E
(
e iωVnet

)
= E

(
e iωVnet (Z̃d ,Z̃ f ,Z̃X )

)
=

Ñ
R3

e iωVnet (z̃d ,z̃ f ,z̃X ) f (z̃d ) f (z̃ f ) f (z̃X )d z̃d d z̃ f d z̃X ,
(3.28)

where Vnet is the sum of all derivatives in the portfolio. After we evaluate the ch.f. using
numerical integration, we can calculate the CDF of the total MtM price of the netting
set using Equations 2.57 and 2.61. The PFE is obtained using a root-finding algorithm
similar to the other cases discussed.

The integration range for the state variables of the netted portfolio is the per cent
point function of a standard normal distribution like in the previous cases. The COS
support must be chosen large enough such that the error from the COS method (that
particularly originated from truncating the density function) is suppressed to an ignor-
able level and is suggested to be updated dynamically for the balance between accuracy
and speed. The dynamic updating is needed because as time increases, more and more
derivatives will have matured, thereby lowering the PFE value. In this thesis we will not
give a rule of thumb for choosing the COS support but assume that an accurate choice
of the COS support is known by observing the PFE term structure acquired using the
MC simulation. Among others, one future research topic is to define the COS support
properly.

COUNTERPARTY-LEVEL EXPOSURE

In addition to the netting-set-level PFE quantification, it is also of interest to calculate the
PFE on counterparty-level. Counterparty-level exposure is the total exposure with one
counterparty, from multiple netting sets, often based on product type, as per Definition
2.1.1. Therefore the only change needs to be made, comparing to the netting-set-level
exposure is in the definition of the characteristic function. For the exposure of a single
derivative or of a netting set, Definition 2.1.1 shows that the exposure is the maximum
between the MtM value of the derivative(s) and zero and it is thus possible to re-use the
CDF for MtM price to resemble the CDF for the exposure, as we explained before. For
counterparty-level exposure, however, a maximum is taken for every added netting set
with a counterparty, and it is not possible to use the transformation of Equation 3.8 to
retrieve the CDF of the counterparty-level exposure of a portfolio from that of the MtM
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price. Approximating the CDF with a discontinuity at 0 using the COS method without
any adjustment would give rise to the Gibbs phenomenon near the discontinuity. Below
two methods are discussed to which preserve the accuracy of the COS approximation of
a piecewise smooth CDF.

The first method is to rewrite the CDF of the counterparty-level exposure into an expres-
sion only involving netting-set-level exposure. This would allow the use of Transforma-
tion 3.8 and thus prevent any jumps in the CDF, thereby upholding accuracy. The second
method is to utilize a spectral filter, a method well studied in the field of Engineering to
reduce the Gibbs phenomenon and of which the main idea is to decrease the weights of
high frequencies in the Fourier domain [39].

We will first analyse the possibility of rewriting the CDF of counterparty-level exposure
into an expression involving netting-set-level exposure for two netting sets, both having
one risk factor. The counterparty exposure in this situation is written as

Ec (x) = max{V1(x),0}+max{V2(x),0} , (3.29)

where V1(x), V2(x) specify the first and second netting set, respectively, and the variable
x denotes the shifted short rate. The CDF of the counterparty-level exposure is defined as
P

(
Ec (x) ≤ y

)
. From the pricing functions given in Subsections 2.4 and 2.5, we can safely

assume the pricing functions to be decreasing for increasing interest rate x because of
the negative exponential relation in the ZCB formula. We assume that V −1

2 (0) > V −1
1 (0).

Using this and the fact that both netting sets are decreasing for increasing x, we can
rewrite the CDF of the counterparty-level exposure as follows:

P
(
Ec (x) ≤ y

)=


0 whenever y < 0,

P
(
V2(x) ≤ y

)
whenever 0 ≤ y ≤V2(V −1

1 (0)),

P
(
V1(x+V2(x) ≤ y

)
whenever y >V2(V −1

1 (0)).

(3.30)

This theoretically predicted behaviour is replicated using two netting sets, both consist-
ing of only one interest-rate swap as shown in Figure 3.2.

Figure 3.2a shows that the pricing functions are monotonic decreasing functions with
respect to the interest rate x. Figure 3.2 shows the CDFs of the MtM value of two dif-
ferent netting sets consisting of only one interest-rate swap. Additionally, the CDF of
the total netting-set-level exposure and the counterparty-level exposure are compared.
From Figure 3.2a, we can find the point V2(V −1

1 (0)). This matches the point in Figure 3.2
where the CDF of netting set 2 and the total netting-set-level exposure intersect. This
is predicted by Equation 3.30 because the CDF of a continuous random variable must
be continuous, and at y = V2(V −1

1 (0)), we must have P
(
V2(x) ≤ y

) = P
(
V1(x+V2(x) ≤ y

)
.

Moreover, the graph shows that the CDF of the counterparty-level exposure follows the
CDF of the exposure of netting set 2 for 0 ≤ y ≤V2(V −1

1 (0)) and the total netting-set level
thereafter.

The same method cannot, however, be applied to a situation in which the pricing
functions depend on multiple risk factors. Suppose the MtM values of two netting sets
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(a) Pricing functions of two netting sets, both consist-
ing of one IRS

(b) A comparison between the CDFs of different expo-
sure levels.

Figure 3.2: A graphic representation of rewriting the counterparty-level exposure into netting-set-level expo-
sure. The considered netting sets contain one IRS each.

depend on two risk factors. The pricing functions would form a plane in space instead
of the lines in the case of one risk factor. Two planes in space have an intersection
line instead of an intersection point. The intersection line can either be constant in the
MtM value of the netting sets or decreasing. The method of rewriting the counterparty-
level exposure into netting-level exposure is not easily generalised for multiple risk fac-
tors. As the intersection line is decreasing, there is no simple region for y where the
counterparty-level exposure can be split into netting-set-level exposure. Because this
idea is not easily generalised to pricing functions depending on multiple risk factors, it
was not further researched. Figure 3.3 shows that the idea used for one risk factor does
not work for three risk factors. The CDF of the counterparty-level exposure does not fol-
low any of the other plotted CDFs.

Figure 3.3: A comparison between the CDFs of different exposure levels depending on three risk factors.

The second method of alleviating the problem of the Gibbs phenomenon in the CDF
of the counterparty-level exposure of a portfolio is the use of a spectral filter. A spec-
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tral filter is applied in the Fourier domain, that is, the series coefficients are multiplied
by a decreasing function in k. It is straightforward to include in the COS method with-
out extra computational costs. The Fourier-cosine expansion of the PDF and CDF from
Equations 2.58, 2.61 with added spectral filter become, respectively,

f σX (x) ≈
N∑′

k=0
Fk σ(

k

N
) cos

(
kπ

x −a

b −a

)
, (3.31a)

Fσ
X (x) ≈ F0

2
· (x −a)+

N∑
k=1

Fk σ(
k

N
)

b −a

kπ
sin

(
kπ

x −a

b −a

)
. (3.31b)

The Gibbs phenomenon plays an important role whenever there is a high probability
of the exposure being negative, causing the CDF to make a jump at 0. If the CDF makes
a large jump at 0, the PFE will not be far from the jump. For these situations, a low-order
filter is desirable [39]. In this research, we use an exponential filter with p = 2 from [40],
which is σ(η) = exp

(−αηp
)

where p must be even, α=− log(ϵm), and ϵm is the machine
precision. Research by Ruijter et al. [39] shows that the approximation is smoothed when
a spectral filter is used and that the absolute error is dependent on the distance from the
discontinuity. This behaviour is indeed observed when plotting the convergence rate in
the L1-norm for both the EE and the PFE, as shown in 5.16. The convergence rate at the
discontinuity will not improve. The smoothing of the approximation increases the relia-
bility of the result because any rapid fluctuations at the PFE will be smoothed out. The
fluctuations are problematic for the root-finding algorithm used to recover the PFE.

Figure 3.4 shows the effect of adding a second-order exponential filter to acquire the
CDF of the counterparty-level exposure of a portfolio with 100 derivatives. Because the
CDF is evaluated at t = 14 years, only three derivatives have not matured and add to the
exposure. The three derivatives have a low exposure and a high probability of negative
exposure, as shown by the Gibbs phenomenon around 0. The exponential filter reduces
the high-frequency fluctuations and becomes more accurate further from the jump, as
expected.

Because there is no intelligent way to rewrite the counterparty-level exposure, the char-
acteristic function is defined using the definition directly. This is shown in the equation
below:

φ(ω) = E
(
e iωEc (Vt )

)
= E

(
e iωEc (Vt (Z̃d ,Z̃ f ,Z̃X ))

)
=

Ñ
R3

e iωEc (Vt (z̃d ,z̃ f ,z̃X )) f (z̃d ) f (z̃ f ) f (z̃X )d z̃d d z̃ f d z̃X ,
(3.32)

where Ec (Vt ) represents the counterparty-level exposure of all derivatives in the portfo-
lio. We now calculate the CDF of the MtM of the netted portfolio using Equations 2.57
and 3.31b. We now have the CDF of the counterparty-level exposure of the portfolio. The
PFE is obtained using a root-finding algorithm similar to the other cases discussed.

Finally, the integration range and the COS support are acquired in the same way as
explained for the netting-set-level exposure.



3.5. THREE-DIMENSIONAL COS METHOD

3

41

Figure 3.4: The CDF of a the counterparty-level exposure of a portfolio with 100 derivatives at t = 14 with a
discontinuity at 0.



4
ERROR ANALYSIS

We have seen that an error is introduced in the derivation of the COS method. The error
convergence will be studied for the COS approximation of the CDF of the exposure of a
portfolio. The last section showed that depending on the type of exposure, it may be nec-
essary to include a spectral filter in the COS method. Therefore, an error analysis will be
performed for the situation with and without a spectral filter. Both situations have been
studied extensively throughout the literature. First, the error analysis will be performed
for the errors introduced in the derivation of the CDF without a spectral filter, as given
in Equation 2.61. This will be followed by an investigation of the error introduced when
applying a spectral filter to the COS approximation of the CDF, as shown in Expression
3.31b.

4.0.1. WITHOUT FILTERING
The COS method can be used without a spectral filter to approximate the CDF of the
MtM value of a derivative or the netting-set level exposure of a portfolio. Two sources of
errors are introduced in the derivation of Equation 2.61. These two sources are the series
truncation of the Fourier cosine series expansion and the error related to approximat-
ing Ak (x) by Fk (x). Two more errors are introduced in the numerical integration step
of the characteristic function. Truncation of the integration range gives rise to an er-
ror. Given the truncated integration range, the Clenshaw–Curtis quadrature introduces
another error in the evaluation of the characteristic function. The propagation of the
numerical integration errors will be studied rather than the numerical integration errors
themselves, as they have been well studied in the literature. The first two error sources
are well studied in [17] for the PDF approximation. The same approach is used for the
error analysis of the CDF approximation.

The series truncation of the Fourier-cosine series on [a,b] gives rise to the error:

ϵ1 = 2

b −a

∞∑
k=N+1

Ak
b −a

kπ
sin

(
kπ

x −a

b −a

)
(4.1)
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The substitution of the cosine series coefficients by the characteristic function approxi-
mation introduces the error:

ϵ2 = x −a

b −a

∫
R\[a,b]

f (x)d x+
N∑

k=1

b −a

kπ
sin

(
kπ(x −a)

b −a

)
Re

{∫
R\[a,b]

e
i kπV (x)

b −a f (x)d xe
−i kaπ

b −a

}
(4.2)

The probability densities in this expression are, by fabrication, standard normally dis-
tributed as explained in Chapter 3.

To classify the errors from Expressions 4.1 and 4.2, we will give the definitions of the
convergence rate. The definitions will consider different function classes, as the con-
vergence rate depends on the decay rate of the cosine coefficients. We will derive the
convergence rate of ϵ1 and ϵ2 using the following definitions from [34].

We start by defining the algebraic and exponential indexes of convergence in the fol-
lowing definitions.

Definition 4.0.1 (Algebraic index of convergence). The algebraic index of convergence
n(≥ 0) is the largest number for which

lim
k→∞

| Ak | kn <∞, k ≫ 1,

where the Ak are the coefficients of the series. An alternative definition is that if the coeffi-
cients of the series, Ak , decay asymptotically as

Ak ∼O (1/kn), k ≫ 1,

then n is the algebraic index of convergence.

Definition 4.0.2 (Exponential index of convergence). If the algebraic index of conver-
gence n(≥ 0) is unbounded – in other words, if the coefficients, Ak , decrease faster than
1/kn for any finite n – the series is said to have exponential convergence. Alternatively, if

Ak ∼O (e−γkr
), k ≫ 1,

with γ, the constant, being the ‘asymptotic rate of convergence’, for some r > 0, then the
series shows exponential convergence. The exponent r is the index of convergence.

For r < 1, the convergence is called subgeometric.
For r = 1, the convergence is either called supergeometric with

Ak ∼O (k−ne−(k/ j ) ln(k))

(for some j > 0) or geometric with

Ak ∼O (k−ne−γk ) (4.3)

The next two propositions show the behaviour of both the algebraically and geometri-
cally converging series. They use the definition of the algebraic and exponential index of
convergence, respectively.
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Proposition 4.0.3 (Series truncation error of algebraically converging series). It can be
shown that the series truncation error of an algebraically converging series behaves like

∞∑
k=N+1

1

kn ∼ 1

(n −1)N n−1 .

The proof of this proposition is given in [41].

Proposition 4.0.4 (Series truncation error of geometrically converging series). If a series
has geometric convergence, then the error after truncation of the expansion after (N +1)
terms, ET (N ), reads

ET (N ) ∼ P∗e−Nν.

Here, constant ν> 0 is called the asymptotic rate of convergence of the series, which satis-
fies

ν= lim
n→∞(−log | ET (n) | /n),

and P∗ denotes a factor which varies less than exponentially with N .

Using the next proposition along with the previous propositions, we can analyse the con-
vergence of errors ϵ1 and ϵ2.

Proposition 4.0.5 (Convergence of Fourier-cosine series). If g (x) is infinitely differen-
tiable with nonzero derivatives, then its Fourier-cosine series expansion on [a,b] has geo-
metric convergence. The constant γ in 4.3 is then determined by the location in the com-
plex plane of the singularities nearest to the expansion interval. Exponent n is determined
by the type and strength of the singularity.

Otherwise, the convergence is algebraic. Integration by parts shows that the algebraic
index of convergence, n, is at least as large as n′, with n′ denoting the highest order of
derivative that exists or is nonzero.

If the function g (x) has a discontinuity in [a,b], say at x0, then at the discontinuity,

the series value converges to 1
2 (g (x+

0 )+ g (x−
0 )), as the Fourier-cosine series has, in essence,

the same properties as a Fourier series.

The proof of this proposition is referred to in [34]. Moreover, Proposition 4.0.5 tells us
that the approximation of the CDF will converge algebraically with low order in the case
of a discontinuity. The low order of convergence is expected because of the Gibbs phe-
nomenon observed in the case when a discontinuity is approximated using a Fourier
series expansion.

We now have the theory needed to analyse the series truncation error and the error
originating from the replacement of Ak by Fk . Applying the triangle inequality to the
error coming from the truncation of the Fourier-cosine series gives us

ϵ1 ≤
∞∑

k=N+1

∣∣∣∣Ak ·
b −a

kπ

∣∣∣∣ ∣∣∣∣sin

(
kπ(x −a)

b −a

)∣∣∣∣
≤

∞∑
k=N+1

∣∣∣∣Ak ·
b −a

kπ

∣∣∣∣
≤C

∞∑
k=N+1

|Ak |

(4.4)
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where C is a constant. In the last step, we used that (b−a)/kπ is decreasing for increasing
k. Using propositions 4.0.3 and 4.0.4, we can formulate the following lemmas specifying
the convergence for ϵ1. The lemmas are taken from [17].

Lemma 4.0.6. Error ϵ1 converges exponentially in the case of density functions g (x) ∈
C∞([a,b]) with nonzero derivatives:

|ϵ1| < Pe−(N−1)ν, (4.5)

where ν> 0 is a constant, and P is a term that varies less than exponentially with N.

Lemma 4.0.7. Error ϵ1 for densities having discontinuous derivatives can be bounded as
follows:

|ϵ1| < P

(N −1)β−1
, (4.6)

where P is a constant and β≥ 1.

The next lemma gives a bound on error ϵ2 and is taken from [17].

Lemma 4.0.8. Error ϵ2 consist of integration range truncation errors and can be bounded
by

|ϵ2| <Q |ϵ3| (4.7)

where Q is some positive constant and

ϵ3 :=
∫
R\[a,b]

f (x)d x.

The proof of this lemma is added in Appendix A.0.12.

An additional error is introduced by the propagation of the numerical integration error
in the calculation of the characteristic function. A lower bound will be presented for the
error propagated in the COS approximation. The lower bound is a loose bound taken
from the working paper [42]. The error bound given in Lemma 4.0.9 holds for the COS
approximation of the CDF both with and without the use of a spectral filter.

Lemma 4.0.9.
F̃σ

X (x) = Fσ
X (x)+O (

p
K ) ·ϵ(J ,TOL), (4.8)

with ϵ(J ,TOL) is an error term arising from the Clenshaw–Curtis quadrature rule and con-
verging to 0 as J →∞ and TOL → 0. J is the number of points adopted in the Clenshaw–
Curtis quadrature rule, and TOL is the integration truncation error.

The proof of this lemma is given in Appendix A.0.13. Here, it is also shown that the lemma
also holds for the COS approximation without a spectral filter.

Using the results from 4.0.8, 4.0.6, 4.0.7 and 4.0.9, we can formulate a bound for the
total error of the COS approximation to the CDF. Considering a high accuracy level in the
characteristic function, that is, a sufficiently large amount of quadrature points on a wide
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integration range, the total error either converges exponentially or algebraically. The to-
tal error converges exponentially whenever the density function has nonzero derivatives,
belonging to C∞([a,b]) ⊂R, that is,

|ϵ| < Pe−(N−1)ν+C |ϵ3|. (4.9)

or algebraically whenever one of the derivatives has a discontinuity, that is,

|ϵ| < P

(N −1)B−1
+C |ϵ3|. (4.10)

The probability density function in the definition of ϵ3 is standard normal. Therefore
this error will converge exponentially. The convergence rate of the total error therefore
depends on the distribution of the approximated cumulative density function. For a
simple log-normal distribution we know that the density function belongs to C∞([a,b]).
Hence, it will show exponential convergence. The distribution of the other interest rate
derivatives is a a linear combination of log-normal distributions, which has no known
analytical expression. Hcine and Bouallegue showed in [43] that the distribution of a
linear combination of log-normal random variables can be approximated by a skew log-
normal distribution. Consequently, we expect the convergence rate to be exponential.
However, a formal analysis of this error is left for future research.

4.0.2. WITH FILTERING
We add a spectral filter to the Fourier-cosine expansion whenever approximating the
CDF of the counterparty-level exposure of a portfolio. It was presented in [39] that the
application of spectral filters can restore the convergence of the Fourier series approx-
imation of piecewise smooth functions. The convergence rate can even be restored to
exponential convergence for functions with known discontinuities.

The convergence rate of a Fourier series approximation of a piecewise smooth func-
tion making use of a spectral filter turns out to be dependent on the order of the spectral
filter. This behaviour was formulated in a theorem by Fang et al. [42], based on the find-
ings by [39] and [40].

Theorem 4.0.10. Let f (y) be a piecewise p-times continuously differentiable C p ([−π,π])
function with one point discontinuity η; and ck = (1/2π)

∫ π
π f (y)exp

(−k y
)

d y is the k-th
Fourier coefficient. σ(k/N ) is a filter of order p. Then, if y ̸= η, it holds that∣∣ f σN (y)− f (y)

∣∣∼O (K 1−p ),

where f (y) is the filtered partial sum of a Fourier series, that is,

f σN (y) = ∑
|k|≤N

ckσ(k/N )e i k y .

This theorem states that the filtered Fourier expansion f σN (y) converges to the PDF
f (y). Using the integration relation between the PDF and CDF, we find that the fil-
ter Fourier series expansion Fσ

N (x) given in Equation 3.31b converges to the CDF F (x).
Hence, Theorem 4.0.10 can be applied to find a bound on the convergence rate of Fσ

N .
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As mentioned in [42], the bound is to be understood as a lower bound because [39] ob-
served numerical evidence of faster convergence. However, no theoretical proof was
given. The lower bound of the convergence rate of Fσ

N is given in Lemma 4.0.11.

Lemma 4.0.11. If the CDF F (x) is continuous at x, the absolute difference between Fσ
N (x)

given in 3.31b and F (x) converges as follows:∣∣Fσ
N (y)−F (y)

∣∣∼O (K 1−p ),

where N is the number of Fourier series terms, and p is the order of the spectral filter.

The filtered Fourier series requires an expression for the characteristic function. The
characteristic function is obtained using numerical integration. The numeric integra-
tion error is propagated in the filtered Fourier series. Lemma 4.0.9 gives an error bound
for this additional propagated error.

If we consider a high accuracy level in the characteristic function, that is, a suffi-
ciently large amount of quadrature points on a wide integration range, then the bound
of the convergence rate of the filtered Fourier series is obtained from Lemma 4.0.11. We
therefore expect to see an exponential convergence rate.



5
NUMERICAL RESULTS

This chapter includes the results of the numerical tests evaluating the efficiency and con-
vergence of the COS method for calculating PFEs. The methodology of the performed
numerical tests has been discussed in the previous chapter 3. The overview per section
is given below.

The first section covers the numerical results of recovering CDF and calculating PFE
using the COS method for cases involving only one risk factor. It starts with the sensi-
tivity analysis of a simple log-normal PDF for the four control parameters of the COS
method, which are the number of expansion terms, the number of quadrature points,
the COS support and the integration range. These tests are followed by the sensitivity
analysis of the MtM distribution of a ZCB, which is also log-normally distributed. The
last numerical results check the performance of the COS based approximation of the
exposure of an RFS. The accuracy of using the transformation 3.8 for the exposure are
examined, followed by tests on the PFE profile of an RFS. Moreover, the importance of a
dynamic COS support is demonstrated.

In the second section, the numerical results of PFE calculations using the COS method
for cases involving three risk factors are presented and analyzed. This again follows the
methodology set out in Chapter 3. The first result shows the impact of the number of
quadrature points on the overall error of the COS method. The next results verify the
accuracy of COS-recovered PFE profile of both the FX forward and the XCS. Finally, com-
parisons are made between the COS method and the MC method regarding the calcula-
tion speed and accuracy of PFEs on both the netting-set and counterparty level, whereby
all tests are conducted for a portfolio with 100 derivatives.

5.1. ONE-DIMENSIONAL RESULTS

5.1.1. CONVERGENCE TESTS FOR LOG-NORMAL MODEL
In this subsection, a few sets of convergence tests are performed for a simple log-normal
distribution with mean µ = 0.01 and standard deviation σ = 0.007 using the methodol-
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ogy described in 3.2.1.

As discussed earlier, when focusing on the error coming from the number of COS terms,
the value of other variables are chosen as accurately are assigned conservative values
such that other errors than the COS error are suppressed to an negligible level. Therefore,
2000 quadrature points are chosen on the truncated integration range [l ,u] = [−0.55,0.57],
obtained by taking the ppf of a normal distribution at an error tolerance level of 1e −15.
In practice, taking 400 quadrature points already achieves an accuracy of 10−9. The sup-
port is chosen as [a,b] = [0.62,1.65], resulting from the ppf of a log-normal distribution
with an error tolerance of 10−12.

The accuracy of the COS approximations of the log-normal PDF is illustrated in Fig-
ures 5.1 and 5.2. The figures show the convergence of the approximation in both the
L1,L2 norms. Logarithmic scaling is used for the y-axis in both plots, for the ease of ob-
serving the exponential convergence rate in Fourier-cosine series expansion w.r.t. the
number of cosine terms. Figure 5.1 is based on 400 quadrature terms. The plot shows
that increasing the number of expansion terms after 64 increases the total error. The
reason is as follows. The numerical integration error originating from the calculation
of the characteristic function adds to the total error via each cosine series coefficient.
Therefore, the more expansion terms, the more times the numerical integration error is
aggregated up. Using 2000 quadrature points increases the accuracy of the numeric inte-
gration and thereby alleviates the problem of a propagated numeric integration error, as
shown in Figure 5.2. This confirms our theoretical error analysis in the previous chapter.
The residual error in both figures comes from one of the other three control parameters
or from the error introduced by the numeric integration in general.

Figure 5.1: Approximating the log-normal PDF with µ= 0.01, σ= 0.007 using 400 Clenshaw–Curtis quadrature
points and varying the number of expansion terms.

Next, we further analyse the impact of the number of quadrature points on the accu-
racy of the COS method. The characteristic function of a log-normal variable has no
closed-form expression; therefore, the exact PDF of the log-normal is compared to the
approximation using the COS method. To ensure that the error is not coming from the
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(a) Approximated log-normal density function for
multiple COS expansion terms.

(b) Convergence of log-normal PDF in the L1 and L2

norm as a function of the number of expansion terms.

Figure 5.2: Approximating the log-normal PDF with µ = 0.01, σ = 0.007 using 2000 Clenshaw–Curtis quadra-
ture points and varying the number of expansion terms.

number of expansion terms, we take 128 expansion terms in this set of tests. The inte-
gration range and the COS support are determined the same way as before. The results
of approximating the log-normal PDF by varying the number of quadrature points are
summarized in Figure 5.3.

(a) Approximated log-normal density function for dif-
ferent numbers of quadrature points.

(b) Convergence of log-normal PDF in the L1 and L2

norm.

Figure 5.3: Approximating the log-normal PDF with µ= 0.01, σ= 0.007 using 128 expansion terms and varying
the number of quadrature points.

Subfigure 5.3b indicates an exponential convergence rate of the COS method in the num-
ber of quadrature points. Similar to the convergence plot of the number of expansion
terms, the curve flattens after 400 quadrature points, the residual error coming from
other control parameters. Recall that we have already observed the same level of remain-
ing errors in the convergence tests for the number of expansion terms, and thus, it can
be concluded that the residual error comes either from the truncation of the integration
range or from the chosen COS support.
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Figure 5.3a shows that the approximations of the PDF of a log-normal are very oscilla-
tory for a low number of quadrature points. These fluctuations give rise to the large error
of the COS method. The fluctuations in the approximation of the log-normal PDF are a
result of the resonation of the fluctuations of the characteristic function, as shown in B.1.
Increasing the number of quadrature points dampens the fluctuations in the character-
istic function for higher frequencies and thereby increases the convergence.

As a third set of tests, the integration range is varied to analyse the impact of the integra-
tion range on the accuracy of the COS approximation. The number of expansion terms
and the number of quadrature points are fixed at 128 and 500, respectively. The error
tolerance level of the COS support is the same as before. The error tolerance level of
the integration range is tuned, thereby the width of the integration range is varied. The
results are presented in Figure 5.4. Figure 5.4b suggests that the error converges expo-
nentially w.r.t. the width of the integration range, measured in terms of L1 and L2 norms.
The same behaviour is observed as for the sensitivity analysis of the number of expan-
sion terms and the number of quadrature points. The curve flattens when the tolerance
is larger than 10−12, giving the integration range [l ,u] = [−0.48,0.50]. The error of the
COS approximation of the log-normal PDF is 10−9, like before. The residual error must
be either from Fourier-cosine series truncation error, the COS support truncation error,
or from the Clenshaw–Curtis quadrature.

(a) Approximated log-normal density function for dif-
ferent numbers of quadrature points.

(b) Convergence of log-normal PDF in the L1 and L2

norm.

Figure 5.4: Approximating the log-normal PDF with µ = 0.01, σ = 0.007 using 128 expansion terms and 400
quadrature points. The integration range is varied.

Finally, the impact of the COS support on the approximation of the PDF of a log-normal
distribution is shown in Figure 5.5. Figure 5.5a indicates that the approximation of the
PDF is accurate away from the boundaries of the domain of the COS support. This means
that if one wants an approximation that is accurate on the domain [a1,b1], then the COS
support should be chosen at least 5% larger. Additionally, the graph shows that the ap-
proximation of the PDF using the Fourier-cosine expansion gives back an even function,
which is aligned with the fact that Fourier-cosine series expansion is derived from the
Fourier series expansion of an even-ed copy of the original function. This is even more
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clearly visible in Figure 5.5b. The beginning of the COS support is fixed at a = 0.6, and the
end point b is variable. The graph shows clearly that the function is even in the point b.
If the Fourier-sine expansion were used to approximate the PDF instead of the Fourier-
cosine expansion, then the approximation would be odd in the boundaries as shown in
B.2.

(a) Approximated log-normal density function for dif-
ferent numbers of quadrature points.

(b) Convergence of log-normal PDF in the L1 and L2

norm.

Figure 5.5: Approximating the log-normal PDF with µ = 0.01, σ = 0.007 using 128 expansion terms and 400
quadrature points. The COS support is varied.

In the end, the goal is to calculate the potential future exposure. This risk quantifi-
cation measure can be quickly retrieved from the CDF. The calculation of the CDF is
analogous to the PDF, as shown in the previous chapter; the only difference is the basis
functions used in the Fourier expansion. A convergence plot for the CDF of a log-normal
distribution w.r.t. the number of expansion terms is presented in Figure 5.6. The other
control parameters are set the same way as in the corresponding convergence tests for
PDF.

Figure 5.6 shows that the COS approximation of the CDF converges faster than the
COS approximation of the PDF in Figure 5.2, which is not surprising since the CDF is
by definition one order higher differentiable than PDF and the Fourier series expansion
convergence speed is determined by the smoothness of the original function. Similar to
the approximation of the PDF, the convergence is exponential until 64 expansion terms,
and the error curve flattens out afterwards. The residual error is from the same roots
as we have seen for all considered convergence plots for the PDF tests but is of a lower
level. This suggests that the CDF is easier to approximate using a Fourier expansion,
which aligns with the fact that the CDF is by definition one order higher differentiable
than the PDF.

During the sensitivity analysis, the observation was made that the COS method has
an inherent difficulty in approximating the distribution of a log-normal distribution for
a large standard deviation. Especially for σ > 0.5, the COS method needs significantly
more expansion terms to approximate the CDF of a log-normal distribution. This be-
haviour is depicted for σ = 0.5 and σ = 1 in Figures B.3 and B.4, respectively. Addition-
ally, Figure B.3 shows that whenever the number of expansion terms becomes very large,
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(a) Approximated log-normal density function for
multiple COS expansion terms.

(b) Convergence of log-normal PDF in the L1 and L2

norm as a function of the number of expansion terms.

Figure 5.6: Approximating the log-normal PDF with µ = 0.01, σ = 0.007 using 2000 Clenshaw–Curtis quadra-
ture points and varying the number of expansion terms.

that is, > 1024, the error made in the quadrature is blown-up, increasing the overall error.
This can be solved by adding more quadrature points, thereby increasing the accuracy
of the calculated characteristic function. This is again another topic for future research.

5.1.2. COS-RECOVERED CDF AND PFE
In this subsection, we test the performance of the COS method in recovering the CDF of
single trades as well as of a portfolio, and in turn, the performance of the COS method in
calculating the corresponding PFEs.

ZERO-COUPON BOND

From Subsection 3.2.2, we know that a ZCB has a log-normal distribution. This enables
us to compare the exact distribution to the approximation using the COS method.

The convergence of the COS method is checked w.r.t. both the number of expansion
terms and the number of quadrature points. The distribution of the ZCB in the G1+
+ is given by Expression 2.46 with the A,B parameters given by Expression 2.47. The
numerical results are obtained using the same setup as used by Pitterbarg [37] and by
Oosterlee and Grzelak [38]. The values of the mean-reversion coefficient, volatility and
the ZCB using this setup are

a = 1%, σ= 0.7%, P M (0,T ) = e−0.02T .

The number of expansion terms and quadrature points used in the numerical test
for the ZCB are 64, 500, respectively. These numbers are used because the previous
sensitivity analysis showed that these values are conservative enough to ensure a high
level of accuracy. The integration range and the COS support are defined in the same
way as before, i.e. using their respective per cent point functions and an error toler-
ance level close to machine precision, resulting in the ranges [l ,u] = [−3.96,3.98] and
[a,b] = [0.03,34.03]. The testing ZCB has a maturity of 10 years, a notional of 1000 Euro
and the PFE is studied at the point of 3.5 years in the future. The error convergence of the
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COS method w.r.t. both the number of expansion terms and the number of quadrature
points are plotted in Figure 5.7.

(a) Convergence of the CDF approximation of the ZCB
in the L1 and L2 norm as a function of the number of
expansion terms.

(b) Convergence of the CDF approximation of the ZCB
in the L1 and L2 norm as a function of the number of
quadrature points.

Figure 5.7: Approximating the CDF of a ZCB with a = 1%, σ = 0.7%. The number of quadrature points and
expansion terms are 500,64, respectively, for their corresponding graphs.

Figure 5.7a shows that the approximation of the CDF of a ZCB converges exponentially.
The curve flattens after 64 expansion terms at the level of 10−14. This behaviour is in
agreement with the behaviour observed for a simple log-normal distribution. Using
more than 64 expansion terms does not increase accuracy. The residual error comes
from the inherent error of the Clenshaw–Curtis quadrature, which resonates through
the series expansion. Analogously, the convergence plot shown in Figure 5.7b also sug-
gests exponential convergence with respect to the number of quadrature points used.
However, using only 160 quadrature points is already enough to get an error of order
10−14, whereas 400 were needed for the simple log-normal distribution. The mean and
standard deviation of the log-normal ZCB, log(A(t ,T )) ≈ 0.86, B(t ,T )σ≈ 0.09, are more
favourable to approximate using the COS method than we have seen for the previous
log-normal distribution.

INTEREST RATE SWAP

The PFE profile of a single receiver interest-rate swap calculated using the COS method
is compared to the PFE acquired using the benchmark Monte Carlo simulation. The
PFE profile is obtained by finding the 97.5% quantile for each point in time. The same
values for the variables are used as in the tests for the ZCB. As an initial guess for the

COS support, we chose the notional N
2 of the RFS with N = $1000,−. Therefore, the

COS support is [a,b] = [±500]. The considered RFS has 10 payment dates starting one
year from now and ending after 10 years. The fixed rate K is chosen to be 0.01. Based
on the results of the previous analysis, we deem 64 expansion terms and 500 quadrature
points sufficient to ensure a high level of accuracy. The PFE results of the MC method
are generated for both 10,000 and 100,000 paths representing the possible scenarios of
the interest rate.
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Figure 5.8 illustrates the typical profile of a PFE term structure of an interest rate
swap. The PFE falls at each payment date because the amount owed by the counterparty
drops each time a coupon is just paid out, thereby decreasing the counterparty credit
risk. All curves have zero PFE at t = 0, a PFE of N ·K at t = Tb = 10 and, naturally a
PFE of zero for t > Tb . Moreover, the graph shows that the PFE profiles calculated using
the Monte Carlo simulations fluctuate around the PFE acquired using the COS method.
Increasing the number of simulated interest-rate paths improves the accuracy of the MC
method and thus MC based PFEs converge to the PFEs from the COS method.

Figure 5.8: The PFE profile of a single RFS with 10 payments between Ta = 1 and Tb = 10.

Table 5.1 compares the computational time and error between COS and MC in more de-
tail. The reference values are calculated using the COS method with very conservative
parameters: 2000 quadrature points and 256 expansion terms, and 20 discretised time
points. The error of both methods is the time average of the calculated PFEs at 20 dif-
ferent time points, expressed as a percentage of the total notional at t = 0. The table
shows that the COS method, calculated using 100 quadrature points and 64 expansion
terms, is more than 40 times faster than the MC method using 0.5 ·105 paths yet with a
much lower error. The table also indicates that MC method converges w.r.t. the number
of simulations. It is clear from the table that reaching the accuracy of the COS method
would require many more simulations and, thus, much more time.

Table 5.1: Comparing the computational time and accuracy of calculating the PFE for different numbers of
MC paths and the COS method. The error is averaged over the 20 considered time points and is expressed as a
percentage of the total notional.

Method CPU Time (seconds) Time-averaged Error (%)
MC (0.5 ·105) 38.3 0.043
MC (106) 54.2 0.033
MC (2 ·106) 113.3 0.029
COS 0.9 0.006
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The COS support used in Figure 5.8 is initialised as [a,b] = [±500]. However, the PFE
decreases as the RFS approaches maturity. As a result, the rise of the CDF happens on a
very small interval of the initially chosen COS support. Graphically, this makes the CDF
look like a step function on the wide interval, a step-function being a function with a
discontinuity. At the place of the discontinuity, the Fourier-expansion approximation
shows the Gibbs phenomenon, thereby making the PFE results inaccurate and unreli-
able. Theoretically, this behaviour can be explained by the fact that whenever the COS
support is chosen too large, a large number of expansion terms is needed to capture the
important cosine basis functions. The importance of the basis functions is determined
by the weight of the cosine coefficients. The observed problem could be solved by ei-
ther adding more expansion terms or shrinking the COS support. We chose to update
the COS support dynamically to maintain a high level of efficiency. Figure 5.9a shows
the approximated CDF of an IRS for a wide COS support [a,b] = [±300] and for a smaller
interval [a,b] = [0, 50]. It is clear that when the COS support is chosen too large, the CDF
will look like a step-function, and the resulting CDF approximation has the Gibbs phe-
nomenon near the jump. Choosing a smaller COS support solves this problem and gives
an accurate CDF. Figure 5.9b compares a static with a dynamically chosen COS support
to calculate the PFE profile of a single RFS. We can see that the statically chosen COS
support has a large error when the evaluation times are close to the maturity 9 < t < 10.
The difference between the results are substantial; not changing the COS support gives
PFE results 450% larger than with the updated COS support. Changing the COS support
for t > 9 to a smaller interval again gives the accurate approximation.

(a) Comparison of the approximated CDF of an IRS at
time t = 9 close to maturity T = 10 for two sizes of the
COS support.

(b) Comparison of the static and dynamically chosen
COS support to acquire the PFE profile of a single RFS.

Figure 5.9: The observed behaviour in the situation that the COS support is chosen too large for a single RFS
with 10 payments between Ta = 1 and Tb = 10.

EXPOSURE

Exposure is defined as the maximum of the MtM value of a derivative and 0, as defined
by Definition 2.1.1. The Gibbs phenomenon will present itself when we approximate
a function with a discontinuity using the COS method. The fluctuations significantly
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decrease the accuracy and reliability of the approximation. Subsection 3.2.2 discussed
the possibility of using a transformation on the CDF of the continuous MtM distribution
to obtain the CDF of the exposure. Figure 5.10a demonstrates the presence of the Gibbs
phenomenon when we try to approximate the CDF of the exposure of an RFS directly.
Figure 5.10b plots the resulting CDF of the exposure using a transformation: the Gibbs
phenomenon disappears and the level of accuracy is much higher.

(a) Calculating the exposure of an RFS directly by em-
ploying a maximum in the integrand of the character-
istic function.

(b) Calculating the exposure of an RFS by employing a
transformation of the MtM distribution of the RFS.

Figure 5.10: A comparison between calculating the exposure of an RFS directly using the characteristic function
and transforming the MtM distribution.

5.2. THREE-DIMENSIONAL RESULTS
The numerical results for the three-risk-factor cases are again based on the same setup as
by Pitterbarg [37] and Grzelak and Oosterlee [38]. To this extent, we define the functions
for the ZCB by P M

d (0,T ) = exp(−0.02T ) and P M
f (0,T ) = exp(−0.05T ). The coefficients

used to study the sensitivity of the COS method w.r.t. the number of quadrature points
are

σd = 0.7%, σ f = 1.2%, σX = 0.02%, ad = 1%, a f = 5%, µX = 0.008.

The correlation parameters as found in the correlation matrix 3.13 are

ρd f = 25.00%, ρd X =−15.00%, ρ f X =−15.00%.

Furthermore, the initial spot FX rate (yen per dollar) is chosen to be 105.00.

5.2.1. CONVERGENCE TESTS FOR LOG-NORMAL MODEL
The sensitivity analysis is performed for the analytic distribution given in 3.20. The CDF
of the MtM of this expression has a log-normal distribution, which can be compared
to the COS-recovered CDF. The expression has three risk factors; therefore, the charac-
teristic function is defined as the integral over three state variables. It thus requires a
three-dimensional Clenshaw–Curtis quadrature to calculate the characteristic function.



5.2. THREE-DIMENSIONAL RESULTS

5

58

The quadrature part is the only part changed from the one-dimensional setup, and thus,
we will only analyze the impact of the number of quadrature points on the error of the
COS approximation.

The foreign ZCB used in the sensitivity analysis has a maturity of 11 and we analyse
the MtM value at t = 4 years. The integration ranges [l ,u] for the state variables z̃d , z̃ f , z̃X

are identical and defined as the 10−15 quantiles of the standard normal distribution giv-
ing [l ,u] = [±7.94]. The COS support [a,b] can be analytically calculated and is chosen
as the 10−10 quantiles of the distribution given in 3.21. The number of quadrature points
ranges from 10 to 120 in all three directions. Further, 64 COS terms are used to repro-
duce the CDF of Expression 3.21. In Figure 5.11, the difference between the calculated
and analytical CDF is measured in both the L1 and L2-norm. The plot uses a logarithmic
y-scaling.

Figure 5.11: Exponential convergence results for the log-normally distributed CDF of a foreign ZCB exchanged
to domestic currency in L1, L2-norm. The ZCB has a maturity of 11 years and is considered at t = 4.

The convergence plot shows exponential convergence w.r.t. the number of quadrature
points. There is no increase in accuracy after 100 quadrature points in all directions.
This behaviour is comparable to the one-dimensional case. The residual error is resulted
from the Clenshaw–Curtis quadrature, which resonates to the final approximation error.

5.2.2. COS-RECOVERED CDF AND PFE
FX FORWARD

The parameters are the same as in the previous section. This is also true for the integra-
tion range [l ,u]. Based on the convergence plot 5.11, we choose 60 quadrature points for
a balance between high accuracy and a reasonable computation time. The COS support
cannot be chosen as a quantile of the analytical distribution and is, therefore, set manu-
ally as [a,b] = [±Nd /2] = [±500], following our rule-of-thumb. The number of expansion
terms remains 64.
Figure 5.12 shows a comparison of the PFE profiles of an FX Forward with a maturity of
11 years generated by the COS method and the MC simulation. The plot indicates that
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Figure 5.12: A comparison of the PFE profiles of an FX forward with maturity T = 11 created using the COS
method and the MC simulation.

MC results with the lower amount of MC paths deviate further from the other two pro-
files. This behaviour is as expected due the fact that the accuracy of the MC method is
lower as we go further to the right detail of the distribution due to fewer number of rele-
vant scenarios in the details. The orange curve from the 100,000 path simulation is only
faintly visible, meaning that PFE profiles from the COS method and the MC simulation
with 100,000 simulations are nearly the same for all times t .

CROSS-CURRENCY SWAP

For the tests for the Cross-currency swaps, the parameters used in the MC simulation
and the COS method are the same as in Section 3.5.1. Moreover, the testing XCCY swap
starts at date Tα = 1 year and ends at Tβ = 10 years, with 10 payments between the start
and end date. The constant rate K is chosen in such a way that the XCCY swap is fair val-
ued at t = 0, giving K = 0.02. The integration ranges [li ,ui ] for all state variables are also
the same, and 60 quadrature points are used to discretize the integral of each dimension.
Similar to the calculation of the PFE profile of a FX Forward, the COS support cannot be
chosen as a quantile of an analytical distribution and is, therefore, set manually, using
our rule-of-thumb: The COS support [a,b] is chosen to be [±Nd /2] = [±500] for t ≤ 9
years and [0, 50] for 9 < t < 10.

Figure 5.13 compares the PFE profile from the MC simulation and that from the COS
method. The MC simulation is done for 10,000 and 100,000 paths, where the PFE profile
of the latter shows better alignment with the PFE profile of the COS method, as expected.
To acquire the PFE profile using the COS method, the COS support must be updated for
t ≥ 9 years to maintain accuracy, as is explained in Subsection 5.1.2. The PFE profile of
the XCCY swap has the classical form with 0 at t = 0, and N ·K ·τ= 20 at t = Tβ = 10 with a
rise and fall in between. After each coupon payment, the PFE first drops and then starts
to rise again as the uncertainty of the next coupon payment grows.
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Figure 5.13: A comparison of the PFE profiles of an XCS swap between the COS method and MC simulation.
The XCS has 10 payments between Tα = 1 year and Tβ = 10 years and considers a constant rate of K = 0.02.

NETTING-SET-LEVEL EXPOSURE

The coefficients for the G1++ model are the same as in the preceding subsections. A
testing portfolios are generated as follows: Using a Python script, different derivatives
are created with a random currency, fixed rate, tenor and maturity. The portfolios are
attached in Appendix C. For replicability, the tables show year-count fractions based on
Act360 day-count convention instead of dates. For the tests of netting-set level PFE cal-
culations, the MtM value of the portfolio is the sum of the value of each derivative, re-
flecting the netting-set definition. The derivatives in the portfolio have different maturi-
ties, with the longest being T = 14.7 years.

The convergence is analysed for t = 9.87 years. First, the CDF of the exposure is ap-
proximated using conservative parameters, 130 quadrature points for all state variables
and 200 expansion terms. The COS support is [a,b] = [−2000, 2500]. The results are
compared to approximations that vary the number of expansion terms while keeping
the number of quadrature points constant and vice versa. Figure 5.14 shows the results
of the convergence analysis. Figure 5.14a shows that the error converges exponentially
until 32 expansion terms are used. Using more does not decrease the error. Similarly,
Figure 5.14b shows exponential convergence with respect to the number of quadrature
points.
Figure 5.15a shows the PFE of the netting-set-level exposure of the portfolio attached
in the appendix. The PFE profile consists of 101 equidistant time points between to-
day, t = 0, and the longest maturity date, T = 14.7 years. The COS support is preset at
[a,b] = [−3000,15000] and is changed to [a,b] = [−1000,2000] whenever the calculated
PFE at the previous time point is below 1500.0. In the Monte Carlo simulation, 100,000
is considered. The figure shows that the potential future exposure is initially high and
starts decreasing after 4.5 years. The decrease can be explained by an increasing num-
ber of matured derivatives. These matured derivatives have no inherent risk and, thus,
do not add to the PFE.
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(a) Convergence of the CDF approximation as a func-
tion of the number of expansion terms.

(b) Convergence of the CDF approximation as a func-
tion of the number of quadrature points.

Figure 5.14: Convergence of the CDF approximation of the netting-set-level exposure using a COS benchmark
with 100 quadrature points and 200 expansion terms.

The PFE results for the Monte Carlo algorithm and the COS method show identical
profiles and results that are nearly the same. Figure 5.15b shows the relative difference
between the PFE acquired using COS and MC as a percentage of the benchmark MC re-
sults. The plot shows that the relative difference is below 1% for the first 8 years and
starts increasing with spikes after these 8 years. The width of the COS support is the rea-
son for the increasing error after 8 years. The CDF of the netting set will reach the 97.5%
quantile at values far smaller than the upper bound of the COS support, even though
the COS support is already changed to account for this. Whenever the COS support is
too broad, the CDF begins to look like a step function, as explained in the previous sub-
section for Figure 5.9. As the PFE is decreasing and the COS support remains the same,
the COS method is increasingly inaccurate. However, an actual trading institution has a
constant flux of trades, thereby maintaining exposure levels. In that case, the inaccuracy
problems are not an issue.
In addition to the accuracy, it is important to analyse the time it takes to compute the PFE
for both the COS method and the Monte Carlo algorithm. Three portfolios of different
sizes are considered. The portfolio used in the error analysis consists of 100 derivatives
and the other two consist of 64 and 32 derivatives, respectively. The portfolios are added
in Appendix C. The PFE is calculated for 20 equidistant points in time ranging from to-
day’s date t = 0 until the maturity of the longest running derivative T . The benchmark
PFE is calculated using the COS method with conservative parameters, 200 expansion
terms and 130 quadrature points for every state variable. Analysis of the computational
time is done using the ’cProfile’ package, which shows both the total computation time
and the computation time per function in the code. The time-averaged error is the dif-
ference between the benchmark PFE results and the PFE of the considered method. It
is expressed as a percentage of the total notional at t = 0 of the corresponding portfolio.
The total notional of the portfolios containing 100,64 and 32 derivatives are, respectively,
$154,166.80, $97,812.29 and $46,368.27.
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(a) PFE profile of netting-set-level exposure of a ran-
dom portfolio.

(b) Relative difference of the calculated PFE expressed
as a percentage of MC.

Figure 5.15: The PFE profile of the netting-set-level exposure of a randomly generated portfolio containing 100
derivatives for both MC and COS.

Tables 5.2, 5.3 and 5.4 compare the accuracy and computational time required to calcu-
late the PFE of a portfolio with different numbers of derivatives. The tables show no ap-
parent convergence for the number of MC simulations increasing from 0.5 ·106 to 2 ·106.
The computational time of the MC simulation approximately doubles when the number
of simulations is doubled. Moreover, the COS method is much faster and more accu-
rate for all considered portfolios. It would take far more simulations in the Monte Carlo
method to reach the level of accuracy of the COS method.

Table 5.2: The accuracy and computational time required to calculate the PFE of netting-set-level exposure of
a portfolio with 100 derivatives. The error is averaged over the 20 considered time points and is expressed as a
percentage of the total notional.

Method CPU Time (seconds) Time-averaged Error (%)
MC (0.5 ·106) 91.6 0.021
MC (106) 179.6 0.019
MC (2 ·106) 371.0 0.022
COS 11.5 0.002

Table 5.3: The accuracy and computational time required to calculate the PFE of netting-set-level exposure of
a portfolio with 64 derivatives. The error is averaged over the 20 considered time points and is expressed as a
percentage of the total notional.

Method CPU Time (seconds) Time-averaged Error (%)
MC (0.5 ·106) 50.1 0.033
MC (106) 96.8 0.032
MC (2 ·106) 193.2 0.034
COS 11.0 0.001
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Table 5.4: The accuracy and computational time required to calculate the PFE of netting-set-level exposure of
a portfolio with 32 derivatives. The error is averaged over the 20 considered time points and is expressed as a
percentage of the total notional.

Method CPU Time (seconds) Time-averaged Error (%)
MC (0.5 ·106) 29.2 0.014
MC (106) 57.5 0.014
MC (2 ·106) 126.6 0.014
COS 10.5 0.002

Another interesting result is that increasing the number of derivatives has little ef-
fect on the computation time of the COS method but a large effect on the computation
time of the Monte Carlo algorithm. The computation time of the Monte Carlo method
increases whenever the number of derivatives in a portfolio increases. The MC method
takes almost twice as long for a portfolio with 100 derivatives compared to a portfolio
with 64 derivatives. This behavior can be explained by the computational complexity
of the two methods: for the COS method the computation per time point is dominated
by the numerical integration, i.e. the computational complexity is O (Ncos N d

quad ); the

MC method on the other hand has the computational complexity linear in the number
of trades per time point, i.e. O (Nsi m)Ntr ade . And this is confirmed by a profile analysis
using the Python package ’cProfile’, which shows the time spend in each function of the
code. The MC algorithm evaluates the pricing functions that are linear combinations of
ZCBs for each path. Adding more derivatives will increase the number of ZCBs that need
to be evaluated at all paths. Because the number of paths is large, this takes a long time.
The COS method, in contrast, must only evaluate the ZCBs at the quadrature points and
so evaluates 60 for each state variable, which does not take much time.

In addition to the effect of the number of derivatives in a portfolio, we will analyse the
effect of the number of time points used in the PFE calculation on the computational
time. We have not seen a sign of convergence for the number of simulations; therefore,
the computational times will be studied using 0.5 ·106 paths. Three different numbers
of timesteps are considered. To be more precise, we consider 20, 50 and 100 timesteps.
Table 5.5 shows average computation times over five measurements1 for three different
portfolios and for increasing numbers of timesteps.

Table 5.5: Comparison of the computational times (in seconds) needed to compute the PFE for a netting-set
portfolio with, respectively, 20, 50 and 100 time steps.

Number of Derivatives MC COS MC COS MC COS
32 28.6 10.8 73.1 26.0 151.5 51.9
64 47.6 11.2 119.4 26.6 241.0 53.6

100 94.1 11.9 233.5 28.4 469.5 56.8

Again, the analysis of the computational time is done using the ’cProfile’ package. The
table shows that there is a direct relation between the computation time and the number

1All measurements are added to the tables in Appendix B.2.
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of timesteps. Whenever the number of timesteps increases, the computation time also
increases. This relationship is almost linear. Using the analysis from the cProfile pack-
age, we can see that almost all computation time in the COS method comes from the
discrete cosine transform. This transform is used to obtain the weights for the Fourier-
cosine expansion. Obtaining the weights must be redone for each timestep and so scales
linearly with the number of timesteps, independent of the number of derivatives.

COUNTERPARTY-LEVEL EXPOSURE

In this section, we test the performance of the COS method for counterparty level PFE
calculations. It is demonstrated that the COS method has the potential to serve as a
much faster alternative of the MC method for PFE calculations of real portfolios.

The model coefficients used in the counterparty level PFE calculations are the same
as in the case of the netting-set-level. The same portfolio containing 100 derivatives is
used.

First, we will analyse the statement by Ruijter et al. about the relation between the
convergence rate and the distance from the discontinuity. The reference values of the
CDF of the counterparty-level exposure of the portfolio are approximated using the COS
method with very conservative parameters: 130 quadrature points for all state variables
and 150 expansion terms. The convergence of the COS-recovered CDF is verified via
varying first the number of quadrature points and then the number of expansion terms.
For both reference value generation and the convergence tests we use the same COS
support [a,b] = [−100,2500] and consider the CDF at t = 9.87 years. The errors for the
EE and PFE, obtained from both CDFs, are studied in terms of L1-norm, which is shown
in Figure 5.16. Indeed, the absolute error in the L1-norm is higher for the EE than for
PFE. This is expected because, by definition, the EE is smaller than the PFE and, thus,
closer to the discontinuity at 0.

(a) Convergence of the CDF approximation as a func-
tion of the number of expansion terms.

(b) Convergence of the CDF approximation as a func-
tion of the number of quadrature points.

Figure 5.16: Error convergence of the filtered COS method in the L1 observed in the EE and PFE.

In the same way, we examine the convergence rate of the entire CDF using the L1 and L2-
norms. Figure 5.17 indicates that the filtered COS method still converges exponentially,
as the y-axis is in log-scale, only that the slope is not as sharp as in the netting-set level
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calculations. Moreover, the magnitude of the errors is three orders larger than the errors
observed for the netting-set-level calculations. This difference in convergence rate is
caused by the smoothness of the true CDFs. The CDF of the counterparty-level exposure
directly approximates the exposure having a discontinuity at 0, whereas the CDF of the
netting-set-level exposure is acquired by approximating the CDF of the MtM price of the
portfolio, which is a smooth function, and then using the transformation in 3.8. The COS
method converges faster for smooth functions [17].

(a) Convergence of the CDF approximation as a func-
tion of the number of expansion terms.

(b) Convergence of the CDF approximation as a func-
tion of the number of quadrature points.

Figure 5.17: Error convergence of the filtered COS method in the L1 and L2-norms

The PFE profile of the counterparty-level exposure of a portfolio containing 100 deriva-
tives is plotted in Figure 5.18. The COS support is initialised as [a,b] = [−100,15,000] and
changed to [a,b] = [−100,2000] if the previous PFE is below 1500. The numerical results
are attained using the COS method with a second-order exponential filter as described
in 3.5.2.

A comparison between the PFE profile using the COS method and that using a MC
method is made in Figure 5.18. The graph shows that the PFE profile of the MC simula-
tion closely match that of the COS method.
Figure 5.19 presents the plots between the absolute and relative difference of the PFEs
calculated using the MC simulation and the PFEs from the COS method without a filter.
The absolute difference between the two methods fluctuates around 40 euros on a max-
imal PFE of 12,300. The relative difference for the first 10 years stays below 0.5%. After
10 years, most derivatives have matured, and PFE decreases. If the absolute difference
remains the same and the PFE decreases, then the relative difference logically increases.
Initially, the changed COS support lowers the absolute difference near t = 8.5, although
as the PFE keeps increasing, both the absolute difference and the relative difference in-
crease. In practice, the portfolio is always be filled with derivatives that have not expired;
therefore, it will most likely be in the situation of the first 6 years.
Analogous to the netting-set-level tests, Tables 5.6, 5.7 and 5.8 summarize the compu-
tational time and accuracy of three portfolio of different sizes. The PFE is calculated
for 20 equidistant points in time ranging from today’s date t = 0 until the maturity of
the longest running derivative T . The reference value of the PFE is calculated using
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Figure 5.18: A comparison of the PFE profiles of counterparty-level exposure of a portfolio with 100 derivatives
for the MC method and the COS method with and without a filter.

(a) Absolute difference of the PFE between the MC
simulation and the COS method.

(b) Relative difference of the calculated PFE expressed
as a percentage of MC.

Figure 5.19: The absolute and relative difference between the PFEs of counterparty-level exposure of a portfolio
created by the MC simulation and the COS method.

the COS method with conservative parameters: 200 expansion terms and 130 quadra-
ture points for every state variable. We again use the ’cProfile’ package, to analyze both
the total computation time and the computation time per function in the code. The
time-averaged error is the average of the differences between the reference value and
the tested PFEs across all time points. It is expressed as a percentage of the total notional
at t = 0 of the corresponding portfolio. The total notionals of the portfolios containing
100,64 and 32 derivatives are, respectively, $154,166.80, $97,812.29 and $46,368.27.
Again, convergence in MC method is hardly observed by increasing the number of sim-
ulations from 0.5 · 106 to 2 · 106. The CPU times are similar to those observed for the
netting-set-level exposure calculations, which is as expected because the same number
of calculations need to be done or, in other words, the computational complexity of the
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Table 5.6: The accuracy and computational time required to calculate the PFE of counterparty-level exposure
of a portfolio with 100 derivatives. The error is averaged over the 20 considered time points and is expressed as
a percentage of the total notional.

Method CPU Time (seconds) Time-averaged Error (%)
MC (0.5 ·106) 92.4 0.026
MC (106) 183.3 0.027
MC (2 ·106) 370.5 0.028
COS 11.5 0.007

Table 5.7: The accuracy and computational time required to calculate the PFE of counterparty-level exposure
of a portfolio with 64 derivatives. The error is averaged over the 20 considered time points and is expressed as
a percentage of the total notional.

Method CPU Time (seconds) Time-averaged Error (%)
MC (0.5 ·106) 48.0 0.035
MC (106) 96.4 0.035
MC (2 ·106) 196.5 0.030
COS 11.0 0.003

Table 5.8: The accuracy and computational time required to calculate the PFE of counterparty-level exposure
of a portfolio with 32 derivatives. The error is averaged over the 20 considered time points and is expressed as
a percentage of the total notional.

Method CPU Time (seconds) Time-averaged Error (%)
MC (0.5 ·106) 28.8 0.019
MC (106) 58.8 0.019
MC (2 ·106) 127.3 0.019
COS 10.5 0.003

MC method is the same as for netting-set level calculations. Hence, very similar results
are observed for MC method considering the computational time: as we have previously
seen, the computational time doubles whenever the number of paths is doubled, and
the computational time almost doubles when comparing 64 to 100 derivatives.

The time-averaged error is higher for all considered portfolios compared to the netting-
set-level exposure calculations. From the tables, it is clear that the COS method is much
faster and more accurate. It would take far more simulations to reach the level of accu-
racy of the COS method.

Table 5.9 presents the impact of the number of timesteps used in the PFE calculations
on the computational time. Theoretically, it is clear that the overall computational com-
plexity 1) is linear in the number of time steps for both MC method and the COS method,
2) grows linearly in the number of derivatives for the MC method, while 3) stays un-
affected by the number of derivatives for the COS method. Like before, we test these
relations for three different portfolio sizes. We consider 0.5 ·106 paths for this analysis,
as we did not observe an improved accuracy when increasing the number of MC simu-
lations. The analysis was done in the same way as for the netting-level case, using the
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’cProfile’ module of Python. The computation times in the table are averages of five
runs, which are added in Appendix B.3. Table 5.9 suggests that the computation time of
the Monte Carlo method increases linearly in the number of derivatives. The increase in
computation time for an increasing number of derivatives is much smaller for the COS
method. The reason is the same as before for the netting-level exposure. For the MC
simulation, the derivatives must be priced for all paths, which takes most of the compu-
tation time. The computation of the COS method stems mainly from the retrieval of the
weights of the Fourier-cosine series and the large matrix multiplications. Because the
number of quadrature points is constant, this does not increase for increasing number
of derivatives. This is also the reason that the computation times grow almost linearly
when increasing the number of timesteps for the COS method. The COS method is more
efficient when considering a portfolio with a large number of derivatives.

Table 5.9: Comparison between the computational times (in seconds) needed to compute the PFE for a
counterparty-level portfolio with, respectively, 20, 50 and 100 time steps.

Number of Derivatives MC COS MC COS MC COS
32 29.2 10.5 74.7 26.5 156.4 53.0
64 47.8 11.0 119.1 26.7 246.0 53.6

100 89.5 11.5 233.8 28.5 482.0 58.3



6
CONCLUSION

In this thesis, a new, semi-analytical method of calculating the PFE metric for CCR has
been developed, tested and analyzed. The method is based on the Fourier-cosine expan-
sion, and thus, is an extension of the COS method to the field of CCR quantification. This
method aims to fulfill the need in the industry for fast and accurate PFE calculations in
practice.

The research in this thesis focuses on the calculation of PFEs for liquid IR and FX
portfolios involving up to three correlated risk-factors: a domestic and foreign short rate
and the exchange rate of this currency pair. Both netting-set level and counterparty level
PFEs are covered in our research. Regarding model choices, the short rates are modelled
under the Hull–White model and for the exchange rates we assume they follow geometric
Brownian motion. Note that, even though not directly tested, other model choices can
be incorporated to the COS method as well.

The COS method is based on the key insight that the Fourier series coefficients of the
CDF (and of the PDF) of the total exposure of the portfolio are readily available from the
characteristic function. Once the model choices are made regarding interest rates and
FX rates, the characteristic function of the total exposure can be solved numerically via
quadrature rules, such as the Clenshaw–Curtis quadrature rule. The risk metrics, in our
case, the PFE, can be attained once the CDF is reconstructed using the Fourier series.

A small adjustment is needed to the Fourier series coefficients when it comes to the
counterparty level PFE calculations, since the CDF of the counterparty-level exposure of
a portfolio has a discontinuity at 0. Fourier series expansion on such functions gives rise
to the problem of the Gibbs phenomenon. To alleviate this problem, a well-studied spec-
tral filter method is applied, which is simply to multiply the original series coefficients
by a filter and thus requires no additional computation costs.

Our theoretical error analysis predicts stable convergence of the COS method and
that the spectral filter restores the high convergence rate.

The numerical tests indeed confirm our theoretical analysis and we have observed
exponential convergence of the COS method for both netting-set and counterparty level
PFEs.

69



6

70

Additionally, the industry-standard MC simulation is compared to the COS method.
For three artificial portfolios of different sizes, it was observed that the COS method is
at least five times more accurate but takes only one-tenth of the CPU time of the MC
method. Especially for portfolios with a large number of derivatives, the COS method
is demonstrated to be at least one order of magnitude faster while reaching a higher
accuracy. We conclude that the COS method is a much more efficient alternative for MC
method, at least for portfolios involving three risk factors.
The limitation of applying the COS method for risk management purposes lies in the
characteristic function calculation. The required numerical integration suffers from the
‘curse of dimension’ when more risk factors are added. Hence, the team already picks up
the research topics on dimension reduction techniques, such as the canonical polyadic
decomposition (CPD) method, or the recent machine learning integration methods.

Another possible way to speed up the COS method is to identify and exclude unim-
portant Fourier series terms (i.e. the terms with very small series coefficients). The idea
is to find the principal basis functions somehow, e.g. by decomposing the marginal dis-
tribution of each risk factor. Basis functions with a small series coefficient are not impor-
tant for the approximation, and thus, leaving them out could greatly reduce the compu-
tational complexity while having little impact on accuracy.

Furthermore, a rule of thumb is currently used for the initial choice of the COS sup-
port. It was observed that a too-large COS support leads to a poor representation of
the important basis functions, and thus low accuracy if we do not increase the number
of expansion terms. Hence, another future research topic is to define the COS support
properly for portfolios.
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A
MATHEMATICAL DEFINITIONS AND

PROOFS

Definition A.0.1 (Local martingale). A process M is called a local martingale if there exists
an increasing sequence of stopping times (τn ↗∞ almost surely), such that the stopped
process

Mτn = (Mτn
t )t≥0 with Mτn

t (ω) := Mτn (ω)∧t (ω)

is a martingale.

Definition A.0.2 (Finite variation). A process A has finite variation if for every ω ∈Ω, the
path of t 7→ At (ω) has finite variation for each finite [0, t ]; that is,

VA(ω)[0, t ] := sup

{
τ∑

k=1

| Atk (ω)− Atk−1 (ω) | : 0 ≤ t0 < t1 < ·· · < tr ≤ t

}
<∞

Definition A.0.3 (Self-financing). A trading strategy φ is self-financing if V (φ) ≥ 0, and

Vt (φ) =V0(φ)+Gt (φ), 0 ≤ t < T.

Definition A.0.4 (Equivalent martingale measure). An equivalent martingale measureQ
is a probability measure on space (Ω,F ) such that

1. Q0 and Q are equivalent measures, that is, Q0(A) = 0 if and only if Q = 0, for every
A ∈F ;

2. the Radon–Nikodym derivative dQ/dQ0 belongs to L2(Ω,F ,Q0).

3. the ‘discounted asset price’ process D(0, ·)S is an (F,Q)-martingale; that is, E
(
D(0, t )Sk

t |Fu
)=

D(0,u)Sk
u , for all k = 0,1, . . . ,K and all 0 ≤ u ≤ t ≤ T , with E denoting expectation

under Q.
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Theorem A.0.5 (Itô isometry). Let W(t) be a Brownian motion defined up to time T > 0
for any stochastic process g (t ) satisfying regularity conditions. Then the following relation
holds:

EQ

[(∫ T

0
g (t )dW (t )

)2
]
=

∫ T

0
EQ

[
g 2(t )

]
d t

Proposition A.0.6. For all f ∈ L2[0,1], the process
{∫ t

0 f (s)dW (s) : 0 ≤ t ≤ 1
}

is a Gaussian
process.

Proof. First, we note that (W (t (n)
i )−W (t (n)

i−1)) is normally distributed with zero expecta-

tion and variance t (n)
i − t (n)

i−1. I (Sn , f ) is defined as the finite sum of normal distributions
and is, therefore, also normally distributed. We calculate the expectation as follows:

E(I (Sn , f )) = E(
k(n)∑
i=1

f (t (n)
i−1)(W (t (n)

i )−W (t (n)
i−1)))

=
k(n)∑
i=1

E( f (t (n)
i−1)(W (t (n)

i )−W (t (n)
i−1)))

=
k(n)∑
i=1

f (t (n)
i−1)E(W (t (n)

i )−W (t (n)
i−1))

=
k(n)∑
i=1

f (t (n)
i−1) ·0 = 0

where we used the linearity of the sum and the fact that (W (t (n)
i )−W (t (n)

i−1)) is normally

distributed with zero expectation and variance t (n)
i − t (n)

i−1.

Similarly, we calculate the variance:

Var
(
I (Sn , f )

)= Var

(
k(n)∑
i=1

f (t (n)
i−1)(W (t (n)

i )−W (t (n)
i−1))

)

=
k(n)∑
i=1

f 2(t (n)
i−1)V ar (W (t (n)

i )−W (t (n)
i−1))

=
k(n)∑
i=1

f 2(t (n)
i−1)(t (n)

i − t (n)
i−1) =σ2(Sn , f )

where we again used the linearity to switch the variance and the summation and took
out f (t (n)

i−1) using the calculation rules of the variance for constants. In the third equality,

we used that (W (t (n)
i )−W (t (n)

i−1)) is normally distributed with zero expectation and vari-

ance t (n)
i − t (n)

i−1.

Now we define, for 0 ≤ t ≤ 1 and f ∈ L2([0,1]) :
∫ t

0 f (s)dW (s) = I ( f × 1[0, t ]) where
I(f) is the Paley–Wiener integral defined as I ( f ) = limn→∞ I (Sn , f ), and I (Sn , f ) is the

Paley–Wiener sum defined as I (Sn , f ) =∑k(n)
i=1 f (t (n)

i−1)
(
W (t (n)

i −W (t (n)
i−1)

)
.
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For a Gaussian process, we must have that for all vector v ∈Rn holds< v, (X t1 , . . . , X tn ) >=∑n
i=1 vi X ti is normally distributed. I ( f ) is normally distributed with zero expectation

and a variance of
∫ 1

0 f (s)2d s. Similarly, we see that I ( f ×1[0, ti ]) is normally distributed

with expectation 0 and variance
∫ ti

0 f (s)2d s. Thus we have:

n∑
i=1

vi X ti =
n∑

i=1
vi

∫ ti

0
f (s)dW (s)

= (
n∑

i=0
vi )

∫ t1

0
f (s)dW (s)+ (

n∑
i=2

vi )
∫ t2

t1

f (s)dW (s)+ . . .+ (
n∑

i=n
vi )

∫ tn

tn−1

f (s)dW (s)

We see that these are all independent increments, which are, therefore, also normally
distributed. The sum of a finite number of normal distributions is again normally dis-
tributed, so the defined process is Gaussian.

Proposition A.0.7. The drift parameter θ(t ) in the Hull–White model to calibrate the
model to the observed market is given by

θ(t ) = ∂ f M (0, t )

∂T
+a f M (0, t )+ σ2

2a

(
1−e−2at ) .

Proof. We start from the Hull–White dynamics, given as

dr (t ) = (θ(t )−ar (t ))d t +σdW (t ).

Furthermore, we observe that

d
(
eat r (t )

)= aeat r (t )d t +eat dr (t )

= aeat r (t )d teat [(θ(t )−ar (t ))d t +σdW (t )]

= eatθ(t )d t +σdW (t ).

Next, we observe that for any v ≥ t , we can integrate both sides of the equation above to
get

r (v) = e−a(v−t )r (t )+e−av
[∫ v

t
ea(s−v)θ(s)d s +

∫ v

t
ea(s−v)σdW (s)

]
.

For 0 ≤ t ≤ T , we know that the ZCB is defined as in Definition 2.4.2. If we fill in the
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solution to the short rate from above, we get

P (t ,T ) = EQ
(
e−

∫ T
t rv d v |Ft

)
= EQ

[
exp

(∫ T

t

{
ea(t−v)r (t )+

∫ v

t
ea(s−v)θ(s)d s +

∫ v

t
ea(s−v)σdW (s)

}
d v

)
|Ft

]
= e−r (t )B(t ,T )EQ

[
exp

(
−

∫ T

t

∫ v

t
ea(s−v)θ(s)d sd v −

∫ T

t

∫ v

t
ea(s−v)σdW (s)d v

)
|Ft

]
= e−r (t )B(t ,T )EQ

[
exp

(
−

∫ T

t

∫ T

s
ea(s−v)θ(s)d vd s −

∫ T

t

∫ T

s
σea(s−v)d vdW (s)

)
|Ft

]
= e−r (t )B(t ,T )EQ

[
exp

(
−

∫ T

t
θ(s)B(s,T )d s −

∫ T

t
σB(s,T )dW (s)

)
|Ft

]
= e−r (t )B(t ,T )e−

∫ T
t θ(s)B(s,T )d sEQ

[
e−

∫ T
t σB(s,T )dW (s) |Ft

]
= e−r (t )B(t ,T )−∫ T

t θ(s)B(s,T )d s+V (t ,T )/2.

In the last expression, the moment-generating function of a normal distribution is used.
Because an Itô integral is a martingale, it will have zero mean. The variance is denoted by
V(t,T). The full expression, together with the expression of B(t,T), is given below. These
parameters were defined to decrease the amount of notation.

B(t ,T ) =
∫ T

t
ea(t−v)d v = 1

a

(
ea(t−T ) −1

)
,

V (t ,T ) =
∫ T

t
σ2B 2(s,T )d s = Var

(∫ T

t
σB(s,T )dW (s)|Ft

)
.

The Itô isometry, defined in A.0.5, is used to calculate the expression of the variance
V(t,T). Furthermore, we can use the definition of the market instantaneous forward rate
to get

f M (0, t ) =− ∂

∂t
ln

(
P M (0, t )

)
= r (0)

∂

∂t
B(0, t )+θ(t )B(t , t )+

∫ t

0
θ(s)

∂

∂t
B(s, t )d s − 1

2
∂V (0, t )

= r (0)e−at +
∫ t

0
θ(s)ea(s−t )d s − 1

2

∂

∂t
V (0, t ),

∂

∂t
f M (0, t ) =−ar (0)e−at +θ(t )−a

∫ t

0
θ(s)ea(s−t )d s − 1

2

∂2

∂t 2 V (0, t )

=−a

(
f M (0, t )+ 1

2

∂

∂t
V (0, t )

)
+θ(t )− 1

2

∂2

∂t 2 V (0, t ).

Combining these expressions and reshuffling the variables gives us the expression,

θ(t ) = ∂

∂
f M (0, t )+a f M (0, t )+ 1

2

(
∂2

∂t 2 V (0, t )+a
∂

∂t
V (0, t )

)
= ∂ f M (0, t )

∂T
+a f M (0, t )+ σ2

2a

(
1−e−2at ) .
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Proposition A.0.8. The price of a ZCB for the G1++ model can be expressed in the form,

P (t ,T ) = A(t ,T )e−B(t ,T )x(t ),

where

B(t ,T ) = 1

a

[
1−e−a(T−t )] ,

A(t ,T ) = P M (0,T )

P M (0, t )
e1/2[V (t ,T )−V (0,T )+V (0,t )].

Here, V (t ,T ) is the variance of
∫ T

t x(s) conditional on Ft given by

V (t ,T ) = σ2

a2

(
T − t −2

1−e−a(T−t )

a
+ 1−e−2a(T−t )

2a

)
.

Proof. In the end, we want to obtain an expression for the ZCB defined by

P (t ,T ) = EQ
(
e−

∫ T
t r (s)d s |Ft

)
.

Furthermore, we must have for all maturities T that it holds that P (0,T ) = P M (0,T ) be-
cause then the ZCB from the model exactly fits the market. We calculate the above ex-
pectation to find P (0,T ). First, we take the integral over the instantaneous short rate r(t),∫ T

0 r (s)d s. It is known that the process x(t) is normally distributed conditional on F0 by

the nature of its Ornstein–Uhlenbeck SDE. Then,
∫ T

0 x(t )d t is also normally distributed.
Indeed, ∫ T

0
x(t )d t =

∫ T

0

∫ t

0
σe−a(t−u)dW (u)d t

Fubi ni= σ

∫ t

0

∫ T

u
e−at d tdW (u)

= σ

a

∫ T

0

(
1−e−a(t−u))dW (u).

(A.2)

From the result of A.0.6, we know this is again normally distributed. From the fact that it
is an Itô integral, we can immediately deduce that it has zero mean. The variance can be
defined as

V (0,T ) = Var

(∫ T

0
x(t ) |F0

)
= σ2

a2

∫ T

0

(
1−e−a(T−u))2

du

= σ2

a2

(
T −2

1−e−aT

a
+ 1−e−2aT

2a

)
.
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From the moment generating function of a normal distribution defined as N (µ,σ2), we

know that E(ez ) = eµz+1/2σ2
z . Using this, we find

P (0,T ) = EQ
(
e−

∫ T
0 r (s)d s |F0

)
= EQ

(
e−

∫ T
0 x(s)d s−∫ T

0 β(s)d s |F0

)
= e−

∫ T
0 β(s)d sEQ

(
e−

∫ T
0 x(s)d s |F0

)
= e−

∫ T
0 β(s)d s e1/2V (0,T ).

Because we must have P M (0,T ) = P (0,T ) for all maturities T > 0 for the model to be
perfectly fitted to the market, we must have

P M (0,T ) = e−
∫ T

0 β(s)d s e1/2V (0,T ).

Taking into consideration the definition of the market instantaneous forward rate,

P M (0,T ) = e−
∫ T

0 f M (0,s)d s

we can rewrite the expression above to the form

e−
∫ T

0 f M (0,s)d s = e−
∫ T

0 β(s)d s e1/2V (0,T ).

The exponents can be removed on all sides. Then, by differentiation, we find

β(T ) = f M (0,T )+ σ2

a

∫ T

0

(
1−e−a(T−u))e−a(T−u)du

= f M (0,T )+ σ2

2a2

(
1−e−aT )2

.

The same steps can be done for P (t ,T ), which does not need the entire β curve. There-
fore, we have ∫ T

t
x(s)d s = x(t )

1−e−a(T−t )

a
+ σ

a

∫ T

t

(
1−e−a(T−u))dW (u).

Using a similar argument as before, we find that the integral conditional on Ft is nor-
mally distributed with mean and variance given by

EQ
[∫ T

t
x(s)d s |Ft

]
= x(t )

1−e−a(T−t )

a
,

Var

(∫ T

t
x(s)d s |Ft

)
= σ2

a2

∫ T

t

(
1−e−a(T−u))2

du

= σ2

a2

(
T − t −2

1−e−a(T−t )

a
+ 1−e−2a(T−t )

2a

)
=V (t ,T ).
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Using the found expressions, we can formulate a new expression for the ZCB P (t ,T )
given by

P (t ,T ) = EQ
(
e−

∫ T
t r (s)d s |Ft

)
= EQ

(
e−

∫ T
t x(s)d s−∫ T

t β(s)d s |Ft

)
= e−

∫ T
t β(s)d sEQ

[
e

∫ T
t x(s)d s

]
= e−

∫ T
0 β(s)d s e−

∫ t
0 β(s)d s e−(1−e−a(T−t ))x(t )/aeV (t ,T )/2

= P M (0,T )

P M (0, t )
e(V (t ,T )−V (0,T )+V (0,t ))/2e−B(t ,T )x(t ),

where

A(t ,T ) = P M (0,T )

P M (0, t )
e[V (t ,T )−V (0,T )+V (0,t )]/2

B(t ,T ) = 1−e−a(T−t )

a
.

Theorem A.0.9. The probability distribution function can be retrieved using the COS
method using the following expressions:

f (x) =
∞∑′

k=0
AK ·cos

(
kπ

x −a

b −a

)
,

Ak = 2

b −a

∫ b

a
f (x)cos

(
kπ

x −a

b −a

)
d x,

Proof. 1 The proof starts from the definition of the Fourier expansion of a function f (x)
on an interval [−1,1]. This is defined as

f (θ) =
∞∑′

k=0
Ak cos(kπθ)+

∞∑
k=1

Bk sin(kπθ) ,

where the prime at the sum,
∑′, denotes that the first term in the summation must be

halved. The coefficients Ak ,Bk are given by

Ak =
∫ 1

−1
f (θ)cos(kπθ)dθ, Bk =

∫ 1

−1
f (θ)sin(kπθ)dθ.

To obtain the Fourier cosine expansion, we set Bk = 0. The cosine expansion can repre-
sent even functions around θ = 0 exactly. To express a function f (x) as a cosine expan-
sion, we need the function to be even. Any function f : [0,π] → R can be made even on
[−π,π], as follows:

f (θ) =
{

f (θ), θ ≥ 0

f (−θ). θ < 0

1This proof is adopted from [18].
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Now that the function f (x) is made even, the cosine expansion supported on [−π,π]
reads

f (θ) =
∞∑′

k=0
Ak cos(kθ) ,

with

Ak = 1

π

∫ π

−π
f (θ)cos(kθ)dθ = 2

π

∫ π

0
f (θ)cos(kθ)dθ.

A change of variables is required to change the support from [−π,π] on which the cosine
expansion is originally defined to any arbitrary support [a,b]. That is,

θ := x −a

b −a
π, x = b −a

π
θ+a.

The cosine expansion on the support [a,b] is then given by

f (x) =
∞∑′

k=0
Ak ·cos

(
kπ

x −a

b −a

)
,

with

Ak = 2

b −a

∫ b

a
f (x)cos

(
kπ

x −a

b −a

)
dx.

Proposition A.0.10. The stochastic process for the FX rate X (t ) is defined as

d X (t ) =µX (t )d t +σX (t )dW P(t ).

Under the domestic risk-neutral measure Qd , the dynamics will be transformed to

d X (t ) = (
rd (t )− r f (t )

)
X (t )d t +σX X (t )dW Qd

X .

Here, the subscripts d , f indicate whether the interest rate is domestic or foreign, respec-
tively. The dynamics under the foreign risk-neutral measure Q f are obtained by switching
the subscripts d , f

Proof. Consider the FX rate X (t ) indicating the amount of domestic currency per unit of
foreign currency. It has the dynamics defined as

d X (t ) =µX (t )d t +σX (t )dW P(t ).

A money-savings account in the foreign market B f (t ) can be expressed in the domes-
tic currency using the exchange rate. So, in the domestic currency, the foreign-money
savings account is worth X (t )B f (t ). In the domestic risk-neutral measure Qd , any as-
set discounted by the domestic savings account as the numeraire is a martingale. Thus,

Y (t ) = X (t )
B f (t )
Bd (t ) is a martingale under the domestic risk-neutral measure. Itô’s Lemma
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gives,

dY (t ) = (
r f (t )− rd (t )

) B f (t )

Bd (t )
X (t )d t + B f (t )

Bd (t )
d X (t )

= (
r f (t )− rd (t )

) B f (t )

Bd (t )
X (t )d t +µX (t )

B f (t )

Bd (t )
d t +σX

B f (t )

Bd (t )
X (t )dW P

X

= (
r f (t )− rd (t )

)
d t +µd t +σX dW P

X .

The process Y (t ) is a martingale whenever the dynamics are free of drift. This can only
hold whenever we have

dW Qd

X = r f (t )− rd (t )+µ
σX

+dW P
X .

Incorporating this into the dynamics of the FX rate, we get the dynamics under the do-
mestic risk-neutral measure,

d X (t ) = (
rd (t )− r f (t )

)
X (t )d t +σX X (t )dW Qd

X .

Analogously to the above derivation, one could define the FX rate X (t ) as the amount
of foreign currency per unit of domestic currency. Following the same steps, one would
obtain the dynamics under the foreign risk-neutral measure Q f . The dynamics are the
same as the one shown above, with the subscripts d , f switched.

Proposition A.0.11. The foreign interest rate under the domestic risk-neutral measure in
the Gaussian one-factor model is given by

dr f (t ) = [−a f r f (t )+σ f σXρ f x
]

d t +σ f dW Qd

f .

Proof. We start by defining the dynamics for the foreign interest rate r f (t ) and the FX
rate X (t ). X (t ) specifies the amount of foreign currency that is exchanged for one unit of
domestic currency.

d X (t ) = (
r f (t )− rd (t )

)
X (t )+σX dW Q

X ,

dr f (t ) =−a f r f (t )d t +σ f dW Q f

f .

Using the fundamental theorem of asset pricing, we find the Radon–Nikodym derivative
defined as

dQd

dQ f
= B d (T )X (T )

X (0)B f (T )
,

where B d (T ),B f (T ) are the money-savings accounts at time T in the domestic and for-
eign currency, respectively. To use Girsanov’s theorem, we want to fill in the expressions
for B d (T ),B f (T ), X (T ). For a money savings account, we can solve the dynamics easily;
that is,

B f (T ) = B f (0)e
∫ T

0 r f (s)d s

B d (T ) = B d (0)e
∫ T

0 r d (s)d s
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We will find an expression for X (T ) by defining the function g (X (t )) = log(X (t )). Using
Itô’s formula, we find

g (t ) = g (0)+
∫ t

0

∂g

∂t
d t +

∫ t

0

∂g

∂x
d x + 1

2

∫ t

0

∂2g

∂x2 [d x]

= log(X (0))+
∫ t

0
(r f (s)− r d (s)− 1

2
σ2

X )d s +
∫ t

0
σX dW f (s).

Taking the exponent on both sides, we get the result for X (T ):

X (T ) = X (0)e
∫ T

0 (r f (s)−r d (s)−1
2σ

2
X )d s+∫ T

0 σX dW f (s)
.

Using the expressions found above, the Radon–Nikodym derivative is

dQd

dQ f
= B d (T )X (T )

X (0)B f (T )

= e
∫ T

0 (r f (s)−r d (s)−1
2σ

2
X )d s+∫ T

0 σX dW f (s)
e

∫ T
0 r d (s)−r f (s)d s

= e
1
2σ

2
X T−σX W f (T )

Thus, we find E (L)t where Lt = σX W Q

X (t ). From Girsanov’s theorem follows that the
Brownian motion under the domestic risk-neutral measure is given by

dW Qd

f = dW Q f

f −〈dW Q f

f ,σX dW Q f

X 〉

= dW Q f

f −σxρx f d t .

Here, the correlation between the Brownian motion of the foreign currency and the FX
rate used is ρx f . Filling in the above expression in the dynamics for the foreign currency,
the result from the proposition follows.

Lemma A.0.12. Error ϵ2 consists of integration range truncation errors and can be bounded
by

|ϵ2| <C |ϵ3| (A.6)

where C is some positive constant, and

ϵ3 :=
∫
R\[a,b] f (x)d x

Proof. 2 We first assume f (x) to be a real function. As we will only work with normal
densities, this assumption will hold true in our problems. This enables us to rewrite 4.2
as

ϵ2 = x −a

b −a

∫
R\[a,b]

f (x)d x +
N∑

k=1

b −a

kπ
sin

(
kπ(x −a)

b −a

) ∫
R\[a,b]

cos

(
i kπ(V (x)−a)

b −a

)
f (x)d x

2This proof is adapted from [17].
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We apply the triangle inequality twice to the equation above. This gives us

ϵ2 ≤C1

∣∣∣∣∫
R\[a,b]

f (x)d x

∣∣∣∣+ N∑
k=1

∣∣∣∣b −a

kπ

∣∣∣∣ ∣∣∣∣sin

(
kπ(x −a)

b −a

)∣∣∣∣ ∣∣∣∣∫
R\[a,b]

cos

(
i kπ(V (x)−a)

b −a

)
f (x)d x

∣∣∣∣
≤C1

∣∣∣∣∫
R\[a,b]

f (x)d x

∣∣∣∣+ N∑
k=1

∣∣∣∣b −a

kπ

∣∣∣∣ ∫
R\[a,b]

∣∣∣∣cos

(
i kπ(V (x)−a)

b −a

)∣∣∣∣ ∣∣ f (x)d x
∣∣

where C1 is a positive constant, and we have used that |sin(t )| ≤ 1. Also, |sin(t )| ≤ 1, and
f (x)g eq0, which enables us to write:

ϵ2 ≤C1

∣∣∣∣∫
R\[a,b]

f (x)d x

∣∣∣∣+ϵ3 ·
N∑

k=1

∣∣∣∣b −a

kπ

∣∣∣∣
where ϵ3 = ∫

R\[a,b] f (x)d x. The magnitude of this error depends on the size of [a,b].

Moreover, b −a
kπ is algebraically converging. It is easy to see that the summation is bounded;

that is,
N∑

k=1

∣∣∣∣b −a

kπ

∣∣∣∣≤C2

where C2 is again a positive constant. It then follows that error ϵ2 can be written as

|ϵ2| <C |ϵ3|

Lemma A.0.13.
F̃σ

X (x) = Fσ
X (x)+O (

p
K ) ·ϵ(J ,TOL),

with ϵ(J ,TOL) is an error term arising from the Clenshaw–Curtis quadrature rule and con-
verges to 0 as J →∞ and TOL → 0. J is the number of points adopted in the Clenshaw–
Curtis quadrature rule, and TOL is the integration truncation error.

Proof. 3 The COS approximation of the CDF without the integration error in Ak is given
by

Fσ
X (x) = A0

2
· (x −a)+

∞∑
k=1

Ak
b −a

kπ
sin

(
kπ

x −a

b −a

)
.

Introducing the numerical integration error to Ak , we get

F̃σ
X (x) = A0 +ϵ(J ,TOL,0)

2
x +

N∑
k=1

(Ak +ϵ(J ,TOL,k))σ

(
k

N

)
b −a

kπ
sin

(
kπ

x −a

b −a

)
where ϵ(J ,TOL,k) refers to the difference between Fk in 2.57 and Ak in 2.55b; that is
ϵ(J ,TOL,k) = Fk − Ak .

{ϵ(J ,TOL,k), k ≥ 0} has a uniform bound. This can be shown by observing the ap-
proximation of φ(ω) by φ(ω). The latter is the numerical integration of the integrand

3This proof is adapted from [42].
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exp(iωV (x)) f (x), where V (x) is the pricing function, and f (x) is the density of the risk-
factor.

The Clenshaw–Curtis quadrature evaluates the integrand at the selected Chebyshev
points and sums the values at the evaluated points. Notice that the integrand includes
a complex exponential; therefore, we have |exp(iωV (x)) | ≤ 1 for all ω = kπ/(b −a), k ≥
0. Using this bound, we see that the integrand is independent of k. Hence, there is a
uniform bound denoted by ϵ(J ,TOL).

Using that ϵ(J ,TOL) bounds each ϵ(J ,TOL,k), we find

∣∣F̃σ
X (x)−Fσ

X (x)
∣∣= ∣∣∣∣∣ϵ(J ,TOL,0)

2
x +

N∑
k=1

ϵ(J ,TOL,k)σ(k/N )
b −a

kπ
sin

(
kπ

x −a

b −a

)∣∣∣∣∣
≤

(
(K +1)ϵ(J ,TOL)2

(
x2

4
+

N∑
k=1

σ(k/N )2 (b −a)2

k2π2 sin
(
kπ

x −a

b −a

)2
))1

2

≤
(

(K +1)ϵ(J ,TOL)2

(
x2

4
+σ2

N∑
k=1

1

k2

))1
2

,

where barσ is the maximum of the spectral filter function on the interval [0,1]. Notice
that the same can be done whenever we take σ(k/N ) = 1, which gives back the COS
approximation of the CDF without a spectral filter.

Using
N∑

k=1

1

k2 <
∞∑

k=1

1

k2 = π2

6
,

we find the error bound ∣∣F̃σ
X (x)−Fσ

X (x)
∣∣<C

p
K ϵ(J ,TOL)

where the constant C is asymptotically independent of K .
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B.1. LOG-NORMAL APPROXIMATION USING COS

Figure B.1: The characteristic function of a log-normal(0.01, 0.007) variable is recovered using a Clenshaw–
Curtis quadrature for various quadrature terms on [l ,u] = [0.55,0.57].
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Figure B.2: Approximation of the log-normal PDF with µ = 0.01, σ = 0.007 using the COS and SIN method on
the support [0.62,1.65]. The characteristic function is acquired using 500 quadrature points on [−0.55,0.57].

(a) Approximated log-normal density function for
multiple COS expansion terms.

(b) Convergence of log-normal PDF in the L1 and L2

norm as a function of the number of expansion terms.

Figure B.3: Approximating the log-normal PDF with µ= 0.01, σ= 0.5 using 2000 Clenshaw–Curtis quadrature
points and varying the number of expansion terms.
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(a) Approximated log-normal density function for
multiple COS expansion terms.

(b) Convergence of log-normal PDF in the L1 and L2

norm as a function of the number of expansion terms.

Figure B.4: Approximating the log-normal PDF with µ= 0.01, σ= 1.0 using 2000 Clenshaw–Curtis quadrature
points and varying the number of expansion terms.
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B.2. COMPUTATION TIME NETTING-SET LEVEL

Table B.1: Computational times of the PFE using a Monte Carlo algorithm for a netting-set portfolio with a
different number of derivatives using 20 timesteps. The measurement is repeated five times, and the average
is computed.

Number of Derivatives 1 2 3 4 5 Average
32 29.059 28.905 28.214 28.534 28.445 28.631
64 47.462 47.424 47.307 48.309 47.455 47.591

100 94.700 94.534 96.099 93.318 91.760 94.082

Table B.2: Computational times of the PFE using the COS method for a netting-set portfolio with a different
number of derivatives using 20 timesteps. The measurement is repeated five times, and the average is com-
puted.

Number of Derivatives 1 2 3 4 5 Average
32 10.543 10.86 10.495 11.078 10.903 10.776
64 11.224 11.607 11.126 10.753 11.517 11.245

100 11.947 11.619 11.642 11.747 12.339 11.859

Table B.3: Computational times of the PFE using a Monte Carlo algorithm for a netting-set portfolio with a
different number of derivatives using 50 timesteps. The measurement is repeated five times, and the average
is computed.

Number of Derivatives 1 2 3 4 5 Average
32 73.23 73.190 73.279 72.527 73.199 73.085
64 119.592 118.927 120.041 119.350 119.297 119.441

100 232.661 236.560 231.518 233.690 233.041 233.494

Table B.4: Computational times of the PFE using the COS method for a netting-set portfolio with a different
number of derivatives using 50 timesteps. The measurement is repeated five times, and the average is com-
puted.

Number of Derivatives 1 2 3 4 5 Average
32 26.868 25.859 25.679 25.820 25.936 26.032
64 26.744 26.748 26.561 26.432 26.606 26.618

100 28.067 28.307 28.503 28.690 28.456 28.405
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Table B.5: Computational times of the PFE using a Monte Carlo algorithm for a netting-set portfolio with a
different number of derivatives using 100 timesteps. The measurement is repeated five times, and the average
is computed.

Number of Derivatives 1 2 3 4 5 Average
32 154.534 148.577 152.258 151.926 150.087 151.476
64 240.352 241.685 240.314 240.371 242.087 240.962

100 469.514 475.465 466.663 470.005 466.005 469.530

Table B.6: Computational times of the PFE using the COS method for a netting-set portfolio with a different
number of derivatives using 100 timesteps. The measurement is repeated five times, and the average is com-
puted.

Number of Derivatives 1 2 3 4 5 Average
32 52.258 51.771 52.149 51.431 52.084 51.939
64 53.109 52.418 56.255 52.990 53.353 53.625

100 56.043 58.360 57.275 56.223 56.315 56.843

B.3. COMPUTATION TIME COUNTERPARTY-LEVEL

Table B.7: Computational times of the PFE using a Monte Carlo algorithm for a counterparty-level portfolio
with a different number of derivatives using 20 timesteps. The measurement is repeated five times, and the
average is computed.

Number of Derivatives 1 2 3 4 5 Average
32 28.846 27.394 29.262 29.251 31.233 29.197
64 47.955 47.892 47.547 47.837 47.970 47.840

100 92.357 93.965 85.295 88.014 87.695 89.465

Table B.8: Computational times of the PFE using the COS method for a counterparty-level portfolio with a
different number of derivatives using 20 timesteps. The measurement is repeated five times, and the average
is computed.

Number of Derivatives 1 2 3 4 5 Average
32 10.505 10.580 10.449 10.600 10.473 10.521
64 10.837 11.272 11.347 10.679 10.659 10.959

100 11.494 11.604 11.218 11.916 11.505 11.547

Table B.9: Computational times of the PFE using a Monte Carlo algorithm for a counterparty-level portfolio
with a different number of derivatives using 50 timesteps. The measurement is repeated five times, and the
average is computed.

Number of Derivatives 1 2 3 4 5 Average
32 75.446 74.907 74.237 74.292 73.329 74.721
64 119.59 118.745 118.584 119.401 118.992 119.08

100 236.056 231.859 233.928 237.403 236.001 234.812
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Table B.10: Computational times of the PFE using the COS method for a counterparty-level portfolio with a
different number of derivatives using 50 timesteps. The measurement is repeated five times, and the average
is computed.

Number of Derivatives 1 2 3 4 5 Average
32 26.208 26.344 26.381 26.249 27.207 26.478
64 26.597 26.847 26.539 26.795 26.752 26.706

100 28.470 28.664 28.119 28.472 28.705 28.486

Table B.11: Computational times of the PFE using a Monte Carlo algorithm for a counterparty-level portfolio
with a different number of derivatives using 100 timesteps. The measurement is repeated five times, and the
average is computed.

Number of Derivatives 1 2 3 4 5 Average
32 160.341 154.442 151.848 160.006 155.182 156.364
64 249.556 242.359 251.907 244.103 242.292 246.043

100 482.565 480.340 485.284 481.421 480.199 481.962

Table B.12: Computational times of the PFE using the COS method for a counterparty-level portfolio with a
different number of derivatives using 100 timesteps. The measurement is repeated five times, and the average
is computed.

Number of Derivatives 1 2 3 4 5 Average
32 53.431 53.601 52.701 52.386 52.664 52.957
64 53.649 53.550 53.797 53.484 53.572 53.610

100 57.517 57.173 60.192 58.632 57.736 58.250



C
PORTFOLIOS

The next sections will include the portfolios used throughout the thesis. The first sec-
tion shows the portfolio with 100 derivatives, the second with 64 derivatives and the last
shows the 32-derivative portfolios. The derivatives have unique trade ids. The deriva-
tives have properties belonging to their product type, which is specified in the second
column. All derivatives consist of two legs, the paying and receiving leg. These can have
different currencies. The notional value of the legs is either the same if the legs have the
same currency, or if they do not, a factor difference of 105 signifies the initial spot rate.
Furthermore, the legs can be fixed or floating, which in turn has an effect on the ‘Coupon’
column. The fixed rate will be a number, and ‘IBOR’ signifies the floating rate. The start
date and maturity of the derivatives are given in a year-count fraction based on Act360.
This signifies the number of years from today t = 0. The coupon frequency represents
the number of months between each payment date. To make coding easier, the number-
of-coupons column was added to show the total number of coupons for each derivative.
These columns are omitted for the FRAs and FX forwards, as they are not applicable.
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TradeId ProductType PayOrReceive Ccy Notional IsFixed StartDate Coupon CouponFrequency NumberOfCoupons Maturity

0 FRA -1 USD 968 FALSE 0.255555556 IBOR 1.777777778

0 FRA 1 USD 968 TRUE 0.255555556 0.011 1.777777778

1 FRA -1 USD 2160 FALSE 1.438888889 IBOR 7.019444444

1 FRA 1 USD 2160 TRUE 1.438888889 0.033 7.019444444

2 FRA -1 JPY 68563 FALSE 0.511111111 IBOR 5.072222222

2 FRA 1 JPY 68563 TRUE 0.511111111 0.023 5.072222222

3 FRA -1 JPY 106856 TRUE 0.086111111 0.012 8.713888889

3 FRA 1 JPY 106856 FALSE 0.086111111 IBOR 8.713888889

4 FRA -1 USD 1910 TRUE 1.525 0.054 6.6

4 FRA 1 USD 1910 FALSE 1.525 IBOR 6.6

5 FRA 1 JPY 244011 FALSE 0.341666667 IBOR 2.372222222

5 FRA -1 JPY 244011 TRUE 0.341666667 0.043 2.372222222

6 FRA -1 JPY 110295 TRUE 0.761111111 0.021 9.894444444

6 FRA 1 JPY 110295 FALSE 0.761111111 IBOR 9.894444444

7 FRA -1 JPY 154244 TRUE 0.172222222 0.005 7.275

7 FRA 1 JPY 154244 FALSE 0.172222222 IBOR 7.275

8 FRA -1 JPY 198682 FALSE 0.341666667 IBOR 5.919444444

8 FRA 1 JPY 198682 TRUE 0.341666667 0.012 5.919444444

9 FRA -1 USD 1591 TRUE 0.425 0.033 8.033333333

9 FRA 1 USD 1591 FALSE 0.425 IBOR 8.033333333

10 FRA 1 JPY 148287 TRUE 0.425 0.016 6.005555556

10 FRA -1 JPY 148287 FALSE 0.425 IBOR 6.005555556

11 FRA -1 JPY 245248 TRUE 0.761111111 0.018 1.777777778

11 FRA 1 JPY 245248 FALSE 0.761111111 IBOR 1.777777778

12 FRA 1 JPY 101599 TRUE 0.425 0.023 4.483333333

12 FRA -1 JPY 101599 FALSE 0.425 IBOR 4.483333333

13 FRA -1 USD 811 FALSE 1.186111111 IBOR 6.763888889

13 FRA 1 USD 811 TRUE 1.186111111 0.048 6.763888889

14 FRA 1 JPY 94341 FALSE 0.341666667 IBOR 0.844444444

14 FRA -1 JPY 94341 TRUE 0.341666667 0.028 0.844444444

15 FRA 1 JPY 75371 TRUE 1.438888889 0.026 4.988888889

15 FRA -1 JPY 75371 FALSE 1.438888889 IBOR 4.988888889

16 FRA 1 USD 1791 TRUE 1.013888889 0.043 1.525

16 FRA -1 USD 1791 FALSE 1.013888889 IBOR 1.525

17 FRA 1 USD 2459 TRUE 0.675 0.048 5.244444444

17 FRA -1 USD 2459 FALSE 0.675 IBOR 5.244444444

18 FRA 1 JPY 105362 FALSE 1.438888889 IBOR 4.483333333

18 FRA -1 JPY 105362 TRUE 1.438888889 0.031 4.483333333

19 FRA -1 USD 658 TRUE 0.341666667 0.022 7.444444444

19 FRA 1 USD 658 FALSE 0.341666667 IBOR 7.444444444

20 FRA -1 USD 1936 FALSE 1.1 IBOR 8.713888889

20 FRA 1 USD 1936 TRUE 1.1 0.008 8.713888889

21 FRA -1 JPY 229981 FALSE 1.186111111 IBOR 2.705555556

21 FRA 1 JPY 229981 TRUE 1.186111111 0.054 2.705555556

22 FRA 1 USD 1479 TRUE 1.013888889 0.05 8.116666667

22 FRA -1 USD 1479 FALSE 1.013888889 IBOR 8.116666667

23 FRA 1 USD 2455 TRUE 1.691666667 0.007 4.733333333

23 FRA -1 USD 2455 FALSE 1.691666667 IBOR 4.733333333

24 FRA 1 JPY 196459 FALSE 0.675 IBOR 7.275

24 FRA -1 JPY 196459 TRUE 0.675 0.043 7.275

25 FRA 1 USD 689 FALSE 0.675 IBOR 7.275

25 FRA -1 USD 689 TRUE 0.675 0.036 7.275

26 FRA -1 JPY 169941 TRUE 1.611111111 0.034 2.627777778

26 FRA 1 JPY 169941 FALSE 1.611111111 IBOR 2.627777778

27 FRA 1 USD 1948 FALSE 0.172222222 IBOR 8.791666667

27 FRA -1 USD 1948 TRUE 0.172222222 0.034 8.791666667

28 FRA 1 JPY 211128 FALSE 1.438888889 IBOR 8.541666667

28 FRA -1 JPY 211128 TRUE 1.438888889 0.022 8.541666667

29 FRA 1 JPY 124135 TRUE 1.525 0.053 7.613888889

29 FRA -1 JPY 124135 FALSE 1.525 IBOR 7.613888889

30 IRS 1 JPY 109990 FALSE 0.341666667 JPY_3M 3 7 1.861111111

30 IRS -1 JPY 109990 TRUE 0.341666667 0.02 6 4 1.861111111

31 IRS -1 USD 1214 FALSE 0.930555556 USD_3M 3 7 2.455555556

31 IRS 1 USD 1214 TRUE 0.930555556 0.048 3 7 2.455555556

32 IRS -1 JPY 86571 TRUE 1.691666667 0.05 1 11 2.541666667

32 IRS 1 JPY 86571 FALSE 1.691666667 JPY_1M 1 11 2.541666667

33 IRS -1 USD 1634 TRUE 0.930555556 0.014 1 5 1.269444444
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33 IRS 1 USD 1634 FALSE 0.930555556 USD_1M 1 5 1.269444444

34 IRS -1 USD 2149 FALSE 0.425 USD_6M 6 22 11.07777778

34 IRS 1 USD 2149 TRUE 0.425 0.016 6 22 11.07777778

35 IRS -1 USD 2489 FALSE 0.597222222 USD_3M 3 5 1.611111111

35 IRS 1 USD 2489 TRUE 0.597222222 0.046 3 5 1.611111111

36 IRS -1 JPY 210504 FALSE 1.611111111 JPY_1M 1 20 3.216666667

36 IRS 1 JPY 210504 TRUE 1.611111111 0.014 1 20 3.216666667

37 IRS 1 JPY 192237 FALSE 1.691666667 JPY_3M 3 20 6.513888889

37 IRS -1 JPY 192237 TRUE 1.691666667 0.028 3 20 6.513888889

38 IRS -1 JPY 185564 FALSE 1.438888889 JPY_6M 6 9 5.497222222

38 IRS 1 JPY 185564 TRUE 1.438888889 0.017 6 9 5.497222222

39 IRS -1 USD 1045 TRUE 0.511111111 0.029 3 24 6.344444444

39 IRS 1 USD 1045 FALSE 0.511111111 USD_3M 3 24 6.344444444

40 IRS -1 USD 1611 TRUE 1.013888889 0.04 6 12 6.6

40 IRS 1 USD 1611 FALSE 1.013888889 USD_6M 6 12 6.6

41 IRS -1 USD 1163 TRUE 1.438888889 0.04 12 14 14.63055556

41 IRS 1 USD 1163 FALSE 1.438888889 USD_12M 12 14 14.63055556

42 IRS -1 USD 1567 TRUE 0.425 0.036 6 21 10.57222222

42 IRS 1 USD 1567 FALSE 0.425 USD_3M 3 41 10.57222222

43 IRS 1 USD 2272 FALSE 1.525 USD_6M 6 27 14.71666667

43 IRS -1 USD 2272 TRUE 1.525 0.025 12 14 14.71666667

44 IRS 1 USD 1217 TRUE 1.611111111 0.032 3 21 6.686111111

44 IRS -1 USD 1217 FALSE 1.611111111 USD_3M 3 21 6.686111111

45 IRS 1 JPY 60121 FALSE 1.355555556 JPY_3M 3 11 3.888888889

45 IRS -1 JPY 60121 TRUE 1.355555556 0.055 6 6 3.888888889

46 IRS -1 USD 1982 TRUE 1.691666667 0.007 6 8 5.244444444

46 IRS 1 USD 1982 FALSE 1.691666667 USD_3M 3 15 5.244444444

47 IRS -1 USD 744 FALSE 0.172222222 USD_6M 6 9 4.230555556

47 IRS 1 USD 744 TRUE 0.172222222 0.045 6 9 4.230555556

48 IRS 1 USD 2002 FALSE 1.611111111 USD_3M 3 20 6.430555556

48 IRS -1 USD 2002 TRUE 1.611111111 0.041 3 20 6.430555556

49 IRS 1 USD 1687 TRUE 0.172222222 0.027 6 14 6.763888889

49 IRS -1 USD 1687 FALSE 0.172222222 USD_6M 6 14 6.763888889

50 FX -1 USD 1832 TRUE 2.541666667

50 FX 1 JPY 192360 TRUE 2.541666667

51 FX -1 JPY 169451 TRUE 5.583333333

51 FX 1 USD 1613.819048 TRUE 5.583333333

52 FX -1 USD 870 TRUE 9.641666667

52 FX 1 JPY 91350 TRUE 9.641666667

53 FX 1 JPY 201390 TRUE 2.541666667

53 FX -1 USD 1918 TRUE 2.541666667

54 FX -1 JPY 85705 TRUE 4.569444444

54 FX 1 USD 816.2380952 TRUE 4.569444444

55 FX -1 USD 1158 TRUE 1.525

55 FX 1 JPY 121590 TRUE 1.525

56 FX -1 USD 1895 TRUE 4.569444444

56 FX 1 JPY 198975 TRUE 4.569444444

57 FX 1 JPY 155295 TRUE 7.102777778

57 FX -1 USD 1479 TRUE 7.102777778

58 FX -1 USD 2439 TRUE 7.613888889

58 FX 1 JPY 256095 TRUE 7.613888889

59 FX -1 USD 1457 TRUE 5.072222222

59 FX 1 JPY 152985 TRUE 5.072222222

60 FX -1 JPY 192469 TRUE 3.555555556

60 FX 1 USD 1833.038095 TRUE 3.555555556

61 FX -1 USD 2231 TRUE 4.569444444

61 FX 1 JPY 234255 TRUE 4.569444444

62 FX -1 JPY 233123 TRUE 2.030555556

62 FX 1 USD 2220.219048 TRUE 2.030555556

63 FX 1 JPY 229005 TRUE 10.14722222

63 FX -1 USD 2181 TRUE 10.14722222

64 FX 1 USD 819.6857143 TRUE 7.613888889

64 FX -1 JPY 86067 TRUE 7.613888889

65 FX -1 JPY 218258 TRUE 1.525

65 FX 1 USD 2078.647619 TRUE 1.525

66 FX 1 USD 1955.228571 TRUE 7.613888889

66 FX -1 JPY 205299 TRUE 7.613888889

67 FX 1 USD 625.3714286 TRUE 4.058333333



67 FX -1 JPY 65664 TRUE 4.058333333

68 FX 1 USD 1690.495238 TRUE 2.030555556

68 FX -1 JPY 177502 TRUE 2.030555556

69 FX 1 JPY 194460 TRUE 4.569444444

69 FX -1 USD 1852 TRUE 4.569444444

70 FX -1 USD 1091 TRUE 9.641666667

70 FX 1 JPY 114555 TRUE 9.641666667

71 FX -1 USD 2315 TRUE 8.627777778

71 FX 1 JPY 243075 TRUE 8.627777778

72 FX -1 JPY 159930 TRUE 1.013888889

72 FX 1 USD 1523.142857 TRUE 1.013888889

73 FX -1 JPY 121809 TRUE 1.013888889

73 FX 1 USD 1160.085714 TRUE 1.013888889

74 FX 1 JPY 88935 TRUE 7.613888889

74 FX -1 USD 847 TRUE 7.613888889

75 FX -1 JPY 139698 TRUE 7.102777778

75 FX 1 USD 1330.457143 TRUE 7.102777778

76 FX 1 USD 2094.028571 TRUE 0.511111111

76 FX -1 JPY 219873 TRUE 0.511111111

77 FX 1 USD 2309.580952 TRUE 8.627777778

77 FX -1 JPY 242506 TRUE 8.627777778

78 FX 1 USD 1728.952381 TRUE 8.627777778

78 FX -1 JPY 181540 TRUE 8.627777778

79 FX 1 JPY 192570 TRUE 8.116666667

79 FX -1 USD 1834 TRUE 8.116666667

80 XCS 1 USD 1742 TRUE 1.269444444 0.05 3 16 5.072222222

80 XCS -1 JPY 182910 FALSE 1.269444444 JPY_3M 3 16 5.072222222

81 XCS -1 JPY 79631 TRUE 0.172222222 0.033 12 15 14.37777778

81 XCS 1 USD 758.3904762 FALSE 0.172222222 USD_12M 12 15 14.37777778

82 XCS -1 USD 2283 FALSE 1.1 USD_6M 6 20 10.74444444

82 XCS 1 JPY 239715 TRUE 1.1 0.006 6 20 10.74444444

83 XCS -1 USD 1296 FALSE 0.341666667 USD_12M 12 6 5.413888889

83 XCS 1 JPY 136080 TRUE 0.341666667 0.043 6 11 5.413888889

84 XCS -1 JPY 126486 FALSE 1.525 JPY_6M 6 7 4.569444444

84 XCS 1 USD 1204.628571 TRUE 1.525 0.044 3 13 4.569444444

85 XCS -1 JPY 255527 TRUE 1.525 0.053 3 15 5.072222222

85 XCS 1 USD 2433.590476 FALSE 1.525 USD_3M 3 15 5.072222222

86 XCS -1 USD 635 TRUE 0.172222222 0.052 3 25 6.261111111

86 XCS 1 JPY 66675 FALSE 0.172222222 JPY_3M 3 25 6.261111111

87 XCS 1 USD 2294.257143 FALSE 1.438888889 USD_3M 3 13 4.483333333

87 XCS -1 JPY 240897 TRUE 1.438888889 0.011 3 13 4.483333333

88 XCS -1 USD 738 TRUE 1.355555556 0.041 3 4 2.116666667

88 XCS 1 JPY 77490 FALSE 1.355555556 JPY_3M 3 4 2.116666667

89 XCS -1 JPY 93759 FALSE 0.425 JPY_12M 12 10 9.555555556

89 XCS 1 USD 892.9428571 TRUE 0.425 0.054 12 10 9.555555556

90 XCS -1 USD 528 FALSE 0.425 USD_3M 3 9 2.455555556

90 XCS 1 JPY 55440 TRUE 0.425 0.008 3 9 2.455555556

91 XCS 1 JPY 120540 FALSE 0.597222222 JPY_12M 12 8 7.7

91 XCS -1 USD 1148 TRUE 0.597222222 0.007 12 8 7.7

92 XCS 1 JPY 168210 FALSE 0.172222222 JPY_6M 6 5 2.202777778

92 XCS -1 USD 1602 TRUE 0.172222222 0.008 6 5 2.202777778

93 XCS 1 USD 1162.971429 FALSE 1.269444444 USD_1M 1 8 1.861111111

93 XCS -1 JPY 122112 TRUE 1.269444444 0.014 1 8 1.861111111

94 XCS -1 USD 1273 TRUE 1.186111111 0.042 3 15 4.733333333

94 XCS 1 JPY 133665 FALSE 1.186111111 JPY_3M 3 15 4.733333333

95 XCS 1 JPY 110040 TRUE 1.013888889 0.034 6 17 9.130555556

95 XCS -1 USD 1048 FALSE 1.013888889 USD_6M 6 17 9.130555556

96 XCS 1 USD 531.0857143 FALSE 0.597222222 USD_3M 3 29 7.7

96 XCS -1 JPY 55764 TRUE 0.597222222 0.05 6 15 7.7

97 XCS 1 JPY 240975 TRUE 1.611111111 0.014 12 8 8.713888889

97 XCS -1 USD 2295 FALSE 1.611111111 USD_12M 12 8 8.713888889

98 XCS 1 JPY 252735 TRUE 1.186111111 0.051 3 25 7.275

98 XCS -1 USD 2407 FALSE 1.186111111 USD_3M 3 25 7.275

99 XCS -1 JPY 252329 TRUE 0.844444444 0.049 6 10 5.413888889

99 XCS 1 USD 2403.133333 FALSE 0.844444444 USD_3M 3 19 5.413888889



TradeId ProductType PayOrReceive Ccy Notional IsFixed StartDate Coupon CouponFrequency NumberOfCoupons Maturity

0 FRA -1 USD 2169 FALSE 1.525 IBOR 4.569444444

0 FRA 1 USD 2169 TRUE 1.525 0.046 4.569444444

1 FRA 1 JPY 140333 FALSE 1.186111111 IBOR 5.244444444

1 FRA -1 JPY 140333 TRUE 1.186111111 0.032 5.244444444

2 FRA -1 USD 906 FALSE 0.255555556 IBOR 9.386111111

2 FRA 1 USD 906 TRUE 0.255555556 0.013 9.386111111

3 FRA -1 USD 925 TRUE 0.675 0.027 10.82222222

3 FRA 1 USD 925 FALSE 0.675 IBOR 10.82222222

4 FRA -1 JPY 215695 TRUE 0.425 0.047 2.961111111

4 FRA 1 JPY 215695 FALSE 0.425 IBOR 2.961111111

5 FRA -1 JPY 93817 TRUE 0.086111111 0.047 6.175

5 FRA 1 JPY 93817 FALSE 0.086111111 IBOR 6.175

6 FRA -1 USD 1932 FALSE 1.186111111 IBOR 3.216666667

6 FRA 1 USD 1932 TRUE 1.186111111 0.044 3.216666667

7 FRA -1 JPY 186182 FALSE 1.525 IBOR 2.541666667

7 FRA 1 JPY 186182 TRUE 1.525 0.009 2.541666667

8 FRA -1 USD 2302 TRUE 1.611111111 0.009 5.669444444

8 FRA 1 USD 2302 FALSE 1.611111111 IBOR 5.669444444

9 FRA 1 JPY 71078 FALSE 1.611111111 IBOR 9.216666667

9 FRA -1 JPY 71078 TRUE 1.611111111 0.012 9.216666667

10 FRA 1 JPY 87325 FALSE 0.511111111 IBOR 6.088888889

10 FRA -1 JPY 87325 TRUE 0.511111111 0.01 6.088888889

11 FRA 1 USD 2157 TRUE 0.930555556 0.021 5.497222222

11 FRA -1 USD 2157 FALSE 0.930555556 IBOR 5.497222222

12 FRA -1 JPY 113859 TRUE 1.525 0.028 9.641666667

12 FRA 1 JPY 113859 FALSE 1.525 IBOR 9.641666667

13 FRA -1 JPY 137938 TRUE 1.355555556 0.021 3.888888889

13 FRA 1 JPY 137938 FALSE 1.355555556 IBOR 3.888888889

14 FRA -1 JPY 164900 FALSE 1.355555556 IBOR 5.919444444

14 FRA 1 JPY 164900 TRUE 1.355555556 0.052 5.919444444

15 FRA -1 USD 1411 FALSE 0.255555556 IBOR 8.372222222

15 FRA 1 USD 1411 TRUE 0.255555556 0.018 8.372222222

16 FRA -1 USD 650 FALSE 0.341666667 IBOR 4.4

16 FRA 1 USD 650 TRUE 0.341666667 0.014 4.4

17 FRA -1 JPY 243114 FALSE 0.675 IBOR 3.216666667

17 FRA 1 JPY 243114 TRUE 0.675 0.054 3.216666667

18 FRA 1 USD 1941 TRUE 1.1 0.018 7.7

18 FRA -1 USD 1941 FALSE 1.1 IBOR 7.7

19 FRA 1 USD 1859 FALSE 0.930555556 IBOR 6.513888889

19 FRA -1 USD 1859 TRUE 0.930555556 0.03 6.513888889

20 IRS -1 JPY 228406 TRUE 1.1 0.017 6 24 12.77222222

20 IRS 1 JPY 228406 FALSE 1.1 JPY_6M 6 24 12.77222222

21 IRS 1 JPY 161953 FALSE 0.511111111 JPY_1M 1 7 1.013888889

21 IRS -1 JPY 161953 TRUE 0.511111111 0.03 1 7 1.013888889

22 IRS -1 USD 1545 FALSE 1.355555556 USD_6M 6 18 9.977777778

22 IRS 1 USD 1545 TRUE 1.355555556 0.036 6 18 9.977777778

23 IRS 1 USD 621 FALSE 1.355555556 USD_12M 12 4 4.4

23 IRS -1 USD 621 TRUE 1.355555556 0.043 12 4 4.4

24 IRS 1 JPY 110482 FALSE 1.1 JPY_3M 3 25 7.188888889

24 IRS -1 JPY 110482 TRUE 1.1 0.025 3 25 7.188888889

25 IRS -1 JPY 176998 FALSE 1.013888889 JPY_6M 6 15 8.116666667

25 IRS 1 JPY 176998 TRUE 1.013888889 0.024 6 15 8.116666667

26 IRS -1 USD 714 TRUE 0.930555556 0.035 6 10 5.497222222

26 IRS 1 USD 714 FALSE 0.930555556 USD_6M 6 10 5.497222222

27 IRS -1 USD 666 TRUE 0.425 0.04 3 23 6.005555556

27 IRS 1 USD 666 FALSE 0.425 USD_3M 3 23 6.005555556

28 IRS -1 JPY 199543 TRUE 1.611111111 0.01 1 21 3.3

28 IRS 1 JPY 199543 FALSE 1.611111111 JPY_1M 1 21 3.3

29 IRS -1 JPY 259297 FALSE 0.511111111 JPY_6M 6 10 5.072222222

29 IRS 1 JPY 259297 TRUE 0.511111111 0.005 6 10 5.072222222

30 IRS -1 USD 2079 TRUE 0.255555556 0.013 12 14 13.44444444

30 IRS 1 USD 2079 FALSE 0.255555556 USD_12M 12 14 13.44444444

31 IRS 1 JPY 223790 FALSE 1.013888889 JPY_3M 3 8 2.791666667

31 IRS -1 JPY 223790 TRUE 1.013888889 0.018 3 8 2.791666667

32 FX -1 JPY 164355 TRUE 8.116666667

32 FX 1 USD 1565.285714 TRUE 8.116666667

33 FX 1 USD 2300.92381 TRUE 3.044444444
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33 FX -1 JPY 241597 TRUE 3.044444444

34 FX -1 USD 585 TRUE 7.102777778

34 FX 1 JPY 61425 TRUE 7.102777778

35 FX -1 USD 743 TRUE 3.044444444

35 FX 1 JPY 78015 TRUE 3.044444444

36 FX 1 JPY 133560 TRUE 4.058333333

36 FX -1 USD 1272 TRUE 4.058333333

37 FX -1 JPY 139367 TRUE 7.613888889

37 FX 1 USD 1327.304762 TRUE 7.613888889

38 FX -1 JPY 190090 TRUE 3.555555556

38 FX 1 USD 1810.380952 TRUE 3.555555556

39 FX -1 JPY 100466 TRUE 4.569444444

39 FX 1 USD 956.8190476 TRUE 4.569444444

40 FX 1 JPY 230265 TRUE 4.569444444

40 FX -1 USD 2193 TRUE 4.569444444

41 FX 1 USD 2095.552381 TRUE 6.088888889

41 FX -1 JPY 220033 TRUE 6.088888889

42 FX 1 USD 1858.780952 TRUE 4.569444444

42 FX -1 JPY 195172 TRUE 4.569444444

43 FX 1 JPY 200865 TRUE 9.130555556

43 FX -1 USD 1913 TRUE 9.130555556

44 FX 1 USD 822.1619048 TRUE 8.627777778

44 FX -1 JPY 86327 TRUE 8.627777778

45 FX -1 USD 1917 TRUE 1.525

45 FX 1 JPY 201285 TRUE 1.525

46 FX -1 JPY 101898 TRUE 7.613888889

46 FX 1 USD 970.4571429 TRUE 7.613888889

47 FX -1 USD 1368 TRUE 8.627777778

47 FX 1 JPY 143640 TRUE 8.627777778

48 FX -1 JPY 148502 TRUE 4.058333333

48 FX 1 USD 1414.304762 TRUE 4.058333333

49 FX -1 JPY 138407 TRUE 9.641666667

49 FX 1 USD 1318.161905 TRUE 9.641666667

50 FX 1 USD 2350.695238 TRUE 5.583333333

50 FX -1 JPY 246823 TRUE 5.583333333

51 FX 1 JPY 183015 TRUE 9.641666667

51 FX -1 USD 1743 TRUE 9.641666667

52 XCS -1 JPY 123821 FALSE 1.1 JPY_3M 3 14 4.4

52 XCS 1 USD 1179.247619 TRUE 1.1 0.046 3 14 4.4

53 XCS 1 USD 2126.142857 FALSE 0.675 USD_6M 6 13 6.763888889

53 XCS -1 JPY 223245 TRUE 0.675 0.05 6 13 6.763888889

54 XCS -1 JPY 101904 FALSE 1.186111111 JPY_3M 3 21 6.261111111

54 XCS 1 USD 970.5142857 TRUE 1.186111111 0.054 3 21 6.261111111

55 XCS 1 USD 578.5619048 FALSE 0.511111111 USD_3M 3 16 4.313888889

55 XCS -1 JPY 60749 TRUE 0.511111111 0.037 3 16 4.313888889

56 XCS -1 JPY 159870 FALSE 1.438888889 JPY_12M 12 10 10.57222222

56 XCS 1 USD 1522.571429 TRUE 1.438888889 0.049 12 10 10.57222222

57 XCS -1 USD 1491 TRUE 1.186111111 0.009 6 18 9.808333333

57 XCS 1 JPY 156555 FALSE 1.186111111 JPY_6M 6 18 9.808333333

58 XCS -1 JPY 256214 FALSE 0.172222222 JPY_3M 3 11 2.705555556

58 XCS 1 USD 2440.133333 TRUE 0.172222222 0.052 3 11 2.705555556

59 XCS -1 JPY 192705 FALSE 0.597222222 JPY_12M 12 6 5.669444444

59 XCS 1 USD 1835.285714 TRUE 0.597222222 0.049 12 6 5.669444444

60 XCS -1 JPY 195997 TRUE 0.675 0.052 3 9 2.705555556

60 XCS 1 USD 1866.638095 FALSE 0.675 USD_3M 3 9 2.705555556

61 XCS -1 JPY 196190 FALSE 1.438888889 JPY_6M 6 6 3.975

61 XCS 1 USD 1868.47619 TRUE 1.438888889 0.051 6 6 3.975

62 XCS 1 USD 1855.12381 FALSE 0.172222222 USD_12M 12 25 24.52222222

62 XCS -1 JPY 194788 TRUE 0.172222222 0.035 12 25 24.52222222

63 XCS -1 USD 870 TRUE 1.611111111 0.008 12 25 25.96111111

63 XCS 1 JPY 91350 FALSE 1.611111111 JPY_12M 12 25 25.96111111



TradeId ProductType PayOrReceive Ccy Notional IsFixed StartDate Coupon CouponFrequency NumberOfCoupons Maturity

0 FRA -1 JPY 184942 FALSE 0.341666667 IBOR 1.861111111

0 FRA 1 JPY 184942 TRUE 0.341666667 0.008 1.861111111

1 FRA -1 USD 1441 TRUE 1.355555556 0.034 4.902777778

1 FRA 1 USD 1441 FALSE 1.355555556 IBOR 4.902777778

2 FRA -1 JPY 166127 FALSE 1.186111111 IBOR 3.719444444

2 FRA 1 JPY 166127 TRUE 1.186111111 0.044 3.719444444

3 FRA -1 JPY 126909 FALSE 0.086111111 IBOR 5.158333333

3 FRA 1 JPY 126909 TRUE 0.086111111 0.032 5.158333333

4 FRA 1 USD 2145 TRUE 1.525 0.006 9.130555556

4 FRA -1 USD 2145 FALSE 1.525 IBOR 9.130555556

5 FRA -1 JPY 60636 TRUE 1.691666667 0.034 7.275

5 FRA 1 JPY 60636 FALSE 1.691666667 IBOR 7.275

6 FRA -1 USD 2300 TRUE 0.425 0.054 1.438888889

6 FRA 1 USD 2300 FALSE 0.425 IBOR 1.438888889

7 FRA -1 JPY 167729 TRUE 0.844444444 0.014 2.372222222

7 FRA 1 JPY 167729 FALSE 0.844444444 IBOR 2.372222222

8 FRA -1 JPY 182821 FALSE 1.186111111 IBOR 4.230555556

8 FRA 1 JPY 182821 TRUE 1.186111111 0.018 4.230555556

9 FRA -1 USD 2140 FALSE 1.013888889 IBOR 5.072222222

9 FRA 1 USD 2140 TRUE 1.013888889 0.038 5.072222222

10 IRS -1 USD 2298 TRUE 0.597222222 0.029 12 9 8.713888889

10 IRS 1 USD 2298 FALSE 0.597222222 USD_12.0M 12 9 8.713888889

11 IRS -1 USD 1968 TRUE 0.255555556 0.031 12 8 7.358333333

11 IRS 1 USD 1968 FALSE 0.255555556 USD_12.0M 12 8 7.358333333

12 IRS -1 JPY 150640 TRUE 0.255555556 0.053 3 4 1.013888889

12 IRS 1 JPY 150640 FALSE 0.255555556 JPY_3.0M 3 4 1.013888889

13 IRS -1 JPY 118091 TRUE 0.675 0.052 12 23 22.99722222

13 IRS 1 JPY 118091 FALSE 0.675 JPY_12.0M 12 23 22.99722222

14 IRS -1 JPY 147468 FALSE 0.086111111 JPY_3.0M 3 12 2.875

14 IRS 1 JPY 147468 TRUE 0.086111111 0.022 3 12 2.875

15 IRS 1 JPY 205801 FALSE 0.675 JPY_3.0M 3 25 6.763888889

15 IRS -1 JPY 205801 TRUE 0.675 0.009 3 25 6.763888889

16 FX -1 USD 845 TRUE 2.541666667

16 FX 1 JPY 88725 TRUE 2.541666667

17 FX -1 JPY 191396 TRUE 3.044444444

17 FX 1 USD 1822.819048 TRUE 3.044444444

18 FX -1 JPY 96292 TRUE 1.013888889

18 FX 1 USD 917.0666667 TRUE 1.013888889

19 FX 1 USD 1032.209524 TRUE 4.058333333

19 FX -1 JPY 108382 TRUE 4.058333333

20 FX -1 USD 567 TRUE 5.583333333

20 FX 1 JPY 59535 TRUE 5.583333333

21 FX 1 JPY 56490 TRUE 9.130555556

21 FX -1 USD 538 TRUE 9.130555556

22 FX -1 JPY 105026 TRUE 4.058333333

22 FX 1 USD 1000.247619 TRUE 4.058333333

23 FX -1 USD 950 TRUE 9.641666667

23 FX 1 JPY 99750 TRUE 9.641666667

24 FX -1 USD 802 TRUE 5.583333333

24 FX 1 JPY 84210 TRUE 5.583333333

25 FX -1 USD 1632 TRUE 5.072222222

25 FX 1 JPY 171360 TRUE 5.072222222

26 XCS -1 USD 2261 TRUE 1.355555556 0.052 6 11 6.430555556

26 XCS 1 JPY 237405 FALSE 1.355555556 JPY_6M 6 11 6.430555556

27 XCS -1 USD 1579 TRUE 1.186111111 0.015 3 4 1.947222222

27 XCS 1 JPY 165795 FALSE 1.186111111 JPY_3M 3 4 1.947222222

28 XCS -1 JPY 139008 FALSE 0.761111111 JPY_3M 3 21 5.836111111

28 XCS 1 USD 1323.885714 TRUE 0.761111111 0.043 3 21 5.836111111

29 XCS -1 USD 2444 FALSE 1.269444444 USD_12M 12 5 5.327777778

29 XCS 1 JPY 256620 TRUE 1.269444444 0.019 12 5 5.327777778

30 XCS 1 JPY 66150 TRUE 0.341666667 0.032 12 22 21.64722222

30 XCS -1 USD 630 FALSE 0.341666667 USD_12M 12 22 21.64722222

31 XCS -1 USD 1340 FALSE 1.438888889 USD_6M 6 9 5.497222222

31 XCS 1 JPY 140700 TRUE 1.438888889 0.022 3 17 5.497222222
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