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1. Theoretical background
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How can mathematical models, specifically the
combination of traffic models and machine
learning algorithms, be used to improve estimates
of the effect of road work on traffic?
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1.1 Different traffic models

Fundamentals of
Traffic Simulation

@ Springer

5
TuDelft CGI



1.1 Different traffic models

Macrﬂscﬂpic i ]_

Microscopic model

Kesting, Arne et al. “Agents for Traffic
Simulation.” Multi-Agent Systems (2008).
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1.2 LWR model

M. J. Lighthill and G. B. Whitham, On kinematic waves. ii. a theory of traffic flow on long crowded roads, Proceedings of the
Royal Society of London A: Mathematical, Physical and Engineering Sciences, 229 (1955), pp. 317-345

P. I. Richards, Shock waves on the highway, Operations research, 4 (1956), pp. 42-51
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1.2 LWR model

dq 09
ot  Ox

— () Conservation law
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1.2 LWR model

3q | 8¢ =0 Conservation law
ot Ox
Qb((J) Fundamental relation
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1.2 LWR model

dq 09
ot Ox =0
?(q)

5
TuDelft CGI

Conservation law

Fundamental relation



1.3 Fundamental relations

’7(l o L);@’ fOI‘q > dc

{uo(l —aq), forg<q.
q  q;
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1.3 Fundamental relations
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1.3 Fundamental relations

0 0.02 0.04 0.06 0.08 0.1
Density (1/m)

Dirk Helbing. “Derivation of a fundamental diagram for
urban traffic flow”. In: The European Physical Journal B 70
(2009), pp. 229-241.
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1.4 The Godunov scheme
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1.4 The Godunov scheme

Definition 6 (Cauchy problem) The problem

@ +0(q).=0, z€R, t>0,
q(,0) = qo(z), =€eR,

for some function ¢ : R — R is called a Cauchy problem [4]. In this context, Cauchy data represents
the initial conditions qy(xz) from which a unique solution can be found.

5
TuDelft CGI



1.4 The Godunov scheme
Definition 6 (Cauchy problem) The problem

@ +0(q).=0, z€R, t>0,
q(,0) = qo(z), =€eR,

for some function ¢ : R — R is called a Cauchy problem [4]. In this context, Cauchy data represents
the initial conditions qy(x) from which a unique solution can be found.

Definition 7 (Riemann problem) A Cauchy problem with initial values

{q,g forz <0 (2.11)

(S
o
et
8
\"\-n——"l

qg- forx >0

where q;, q, € R is called a Riemann problem. [8]
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1.4 The Godunov scheme

Finite volume method Ax
< >
Conserved implicitly i ' ' |
Shockwaves stay intact | F 'F |
: 1 ,I—I.‘Z’ : IQ.HI"?. -
E E LU E
[ S — S
xi—l X i ‘xio 1 X
https://www.sciencedirect.com/science/article/abs/pii/S030
9170812000760
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2. Combining ML and FR
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2. Combining ML and FR
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Dirk Helbing. “Derivation of a fundamental
diagram for urban traffic flow”. In: The European
Physical Journal B 70 (2009), pp. 229-241.
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2. Combining ML and FR
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2. Combining ML and FR
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2. Combining ML and FR
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2. Combining ML and FR

u

Wi
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Traffic forecasting using graph neural networks and LSTM

(keras.io)



https://keras.io/examples/timeseries/timeseries_traffic_forecasting/
https://keras.io/examples/timeseries/timeseries_traffic_forecasting/

2. Combining ML and FR

Table 2. ML — based traffic analysis summary

Technigue used Ohjectives
Sommer and Paxson | Machine learning ML methods have been applied to spam detection more effectively than
J13] technique intrusion detection because the detection of anomalies is best for finding

different forms of known attacks.

Zhang et al.[24]

Artificial neural network using
Voting Experts (VE) algorithm

Extract out the protocol features from feature words that are extracted by VE
algorithm.

Wang et al [25]

Machine learning (SVM)

Classification the energy that is used in data flows.

Fumo et al. [26]

Machine learning using
Exploratory factor analysis
(EFA)

Spatial structure analysis and bridge the temporal to mobile traffic data by
using EFA technique

Mirsky et al.[27]

Artificial neural network using
Kitsune

Detection of malicious traffic entering and leaving the network

Suthaharan et
al.[28]

Machine learning
Using supervised leaming
technique

Classification of network intrusion traffic by learning the network
charactenistics

Blowers et al.[29]

Machine learning use a
DBSCAN clustering

Anomaly detection based on clustering

Laskov et al[21].

Machine learning (SVM).(kNN)
y-algorithm, k-means

Compare both supervised and unsupervised leamning for detecting malicious
activities

Mukkamala et al[9]

Machine learning (SVM)

To discover patterns or features that describe user behaviours to build
classifiers for recognizing anomalies

Zamani et al [16]

artificial immune algorithm

Intrusion detection in distributed systems.

Bujlow et al.[30]

Machine learning using C5.0
algorithm

Classification of traffic in network

Amuna and Vinoth

[31]

Machine learning using Decision
Tree and Naive Bayes ML
algorithms

Classification of traffic in network

Bartos et al. [32]

Machine learning
Using supervised leaming
technique

Detect both known and previously unseen security threats

Alqudah, Nour, and Qussai Yaseen. "Machine learning for
traffic analysis: a review." Procedia Computer Science 170
(2020): 911-916.
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3. Planning
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4. Results
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4. Results

Gudonoy Scheme Gudonoy Scheme
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Godunov Scheme for a shock solution at T = 2 (left) and Rarefraction at T = 1 (right). k = 0.001.
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Numerical Solutions of Traffic Flow on Networks (ntnu.no)



https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/259317/730608_FULLTEXT01.pdf?sequence=3&isAllowed=y

4. Results
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Godunov Scheme for a shock solution at T = 2 (left) and Rarefraction at T = 1 (right). k = 0.001.
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4. Results
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Subquestions

1. What is a measure of performance of different traffic models
and ML algorithms in terms of their ability to accurately
estimate the effects of road work on traffic?

2. How can macroscopic traffic models be used as a framework
to estimate the effect of road work on traffic using ML?

3. How can we use ML algorithms to identify and predict the
impact of road work based on historical data?

4. How can the insights gained from the traffic model be used to
improve the efficiency of road work planning processes?
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FEM around shock waves

Figure 6.2.1: Exact and numerical solutions for the inviscid Burger equation using the upwind scheme(6.2.2)(left) and
the Lax-Friedrichs scheme(6.2.3)(right). k = 0.001.
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FEM around shock waves

Lax-Friedrich and Gudonov

Lax-Friedrich and Gudonov
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Figure 7.1.2: Godunov and Lax-friedrich for a Rarefraction solution h =
0.001(left) and h = 0.01(right). £ = 0.001 and T = 1.
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Pseudocode for the Godunov scheme
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1. q. = ¢ gives the constant solution g(x,t) = qo(z) and ¢(g(0)) = 0.

2. qi < ¢, means that there is a higher density of traffic on the right than on the left. This higher

density on the right leads to lower speeds. As traffic moves from left to right, it follows that the
shockwave will stay a discontinuity. It is concluded that the solution has the form:

q forax < st
T, t) = 212
ol ) {qr s (2.12)

where the shock speed s is found to be

¢la) — dlar) (2.13)
q — qr

This choice for s is called the Rankine-Hugoniot condition [4]. This means the value of ¢(¢(0))
depends on the value of s; if s > 0, then the shock moves to the right and ¢(0) = g;, while s < 0
yields ¢(0) = ¢,.. s = 0 is impossible in this situation, as that implies ¢(¢;) = ¢(g,-) which is only
possible if ¢; = q,..

. q; > q, has multiple weak solutions, but only one physically meaningful solution; the rarefraction

wave. This means the shock will not stay a discontinuity, but it will spread out. This type of
rarefraction wave is the correct solution in this situation as it satisfies the entropy condition as
defined in [4] and [8]. Mathematically, this looks like this:

qi for @ < &' (qi)t
q(z,t) = ¢ (¢')7H(F) for ¢'(q)t <z < &'(q,)t (2.14)
qr forz > ¢'(g.)t

For the Godunov method, we will need &(¢(0)). This can be found from this equation:

q if ¢'(q:) >0
q(0) = { (¢')"10) if¢'(q) <0<¢'(gr) <0 (2.15)
qr if ¢'(gr) <0

In the case of traffic models, ¢(q) is a concave function and (¢’)~'(0) is the unique solution to
¢@'(gq) = 0 which represents the point of maximum flux. [4, 8]



Pseudocode for the Godunov scheme

Data: Some initial ¢o(z), a fundamental relation ¢(¢) with maximum flux ¢(¢,...), @ domain x
and boundary values Qvoundary point(t)-

Result: An approximation of the traffic flow over time.

begin

Discretize t as ¢,, size k, and x as x; size h

Discretize qo(x) as ¢ = £ [ ”2 qo(z)dz

for n in timerange do
for all i do
We will find ¢ at the interface between z; and z;1
if ¢'(¢i') > 0and ¢'(¢i%, 1) > 0 then ¢ «— ¢ ;
if ¢'(q;') < 0and ¢'(q 1) <O0then ¢ «— g, ;
if ¢'(¢) > 0 and ¢/ (¢,,) < 0 then
#(ai')—o(ai1)
a' =47y,
if s > 0then ¢ «+— ¢;
if s <0then ¢ «— ¢/ ;
| if¢'(q") <0and¢'(giy,) > 0then ¢ «— gas ;
for all interior i do
| @ =af — 5 (0(g)) — 8(gi-1))
for all boundary points i do
L @ = Qiltny)

S <
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2.1 NDW data

= Loopdata

= Incidents instead of (planned) road work
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1.4 The Godunov scheme

Timet=0.0
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http://www.clawpack.org/
http://www.clawpack.org/

1.4 The Godunov scheme

Time t = 40.0
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1.4 The Godunov scheme
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