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Nomenclature

v̄i The expected value of the displacement of the pore water in the xi -direction in a tube.

n The normal vector, pointing outwards.

δWσ Virtual work performed by body forces.

δWg Virtual work performed by body forces.

δWg Virtual work performed by internal and external forces.

εi j The strain tensor for soil.

γw The hydraulic conductivity.

µ The dynamic viscosity of the pore water.

ω Vorticity of the displacement field of the soil particles.

Ωp The part of the domain consisting of pore water.

Ωp The part of the domain consisting of soil particles.

ωv Vorticity of the displacement field of the pore water.

ρp The density of the soil skeleton.

ρs The density of the porous soil.

ρw The density of the ground water.

σi j The stress tensor for the soil skeleton.

σw
i j The stress tensor for the pore water.

σ̃i j The stress tensor for an unsaturated soil skeleton.

σ̃w
i j The stress tensor for a fully saturated soil skeleton.

ũi The local displacement of the soil particles in the xi -direction in a tube.

ṽi The local displacement of the pore water in the xi -direction in a tube.

G The shear modulus.

g The gravitational constant.

K The compression modulus.

Ks The calibration constant.

P The water pressure.

p The porosity of the soil.

qi The specific displacement in the xi -direction.

Sp The surface of domainΩp .

Sw The surface of domainΩw .

ui The displacement of the soil particles in the xi -direction.

vi The displacement of the pore water in the xi -direction.
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1
Introduction

Grass covers have shown to offer erosion protection to river levees and flood embankments. Overtopping
waves can trigger erosion of the levee slope. In this thesis it is hypothesized that the hydrodynamic load that
acts on a levee, induced by the overtopping flow, can result in deformation of the porous medium. This can
lead to failure due to ’head-cut’, ’roll-up’ and ’collapse’, that are thoroughly explained by Le et al. [8]. Accord-
ing to Steendam et al. [13], little research has been conducted with respect to the erosive effect of overtopping
flow on dike slopes, mostly because of complications of scale models and the costs of overtopping tests. There
have been some recent developments with respect on the other side of the spectrum. Van Bergeijk et al. [14]
have made it possible to make a prediction for stresses that originate from a given wave. In other words, this
model focuses on the external load on the levee. Moreover, with the development of the Wave overtopping
simulator (Van der Meer et al. [17]), more and more practical field research is conducted. This is a simulator
which is positioned on an isolated part of a flood embankment. For a given time, the simulator lets waves
flow over the slope. At the same time, measurements are made that are used to provide a solid basis between
the endured stresses and the reason of failure.

At the same time, theoretical models have been developed that predict water pressures in porous media.
One of these methods is the PORO-WSSI model by Ye et al. [6] that is based on the dynamic response in
porous seabeds. The idea is that harmonic waves on a porous seabed are somewhat equivalent to overtopping
waves on a levee, and hence the same model can be applied on overtopping waves. This method requires the
a priori assumption that the pore water pressures match the hydrodynamic pressures under the waves, with
the result that the effective stresses are assumed to be 0. In other words, the assumption is made that the pore
water instantaneously absorbs the full hydrodynamic surface load. Since the model results do not match the
measured reality, the assumption was made that entrapped compressible air is present in the seabed. By
accounting for the compressibility in tests, the model outcomes now fit the test results. In practice this is
done by including a calibrated Skempton coefficient. This method has been the state of the art approach for
some time now. However, this approach is rather questionable, since tests are being tweaked to match the
model outcomes and vice versa.

In a new proposed model by Van Damme and Den Ouden-van der Horst [15], these a priori assump-
tions have been disregarded, in pursuit of a process based approach to more accurately determine the effect
of overtopping flow. Instead of assuming that the pore water absorbs the full hydrodynamic surface load,
momentum balance equations are taken as boundary conditions, to enforce that the momentum balance
equation will be valid on the whole domain. This makes the system more complex, but also more similar
to a real situation. Furthermore, the assumed compressibility of the pore water is questionable. It is not a
reasonable assumption that pore water in a seabed contains air, since the air has had all the time to dissolve
in the sea water over time.

In this thesis, a Finite Element solver is applied to the new model. In case this solver proves to be accurate,
this model can provide significant insight in the way flood embankments fail. On top of that, the model can
be implemented for other interesting applications related with flows over porous media, e.g. oxygen uptake
in lung tissue. Being able to have a better understanding of the oxygen uptake in lung tissue can also provide
more insight in processes that oxygen uptake is a result of, such as diffusion capacity, lung volume, breathing
pattern, et cetera. (Lin et al. [9]). Another important application could be to analyze the effect of harmonic
waves on the sand layers on top of buried offshore pipelines. As described by Martin et al. [10], the sand layer
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6 1. Introduction

on top of these shallowly buried pipes can be affected by vibrations of the pipeline and by waves running over
the layer. When the sand layer disappears, the pipe might experience an undesirable uplift. The overtopping
waves model could potentially quantify the water pressures in the sand layer, therefor providing more insight
in this phenomenon.

In Chapter 2, the model describing the physics in the levee will be derived, including the boundary- and
initial conditions. In Chapter 3, a numerical approach will be chosen and applied to the model, which re-
sults in a linear system. Some time stepping methods will be discussed to solve this system. In Chapter 4,
conclusions will be drawn and some possible extensions will be discussed for future work.



2
Physical Model

2.1. Notation
Firstly, some notation will be introduced to improve the understandability of this thesis. As is often done in
soil mechanics, indices are replaced by the variable that belongs to the specific index. E.g. u2 will be written
as uy , the component in the y-direction and not the partial derivative of u with respect to y . The same thing
is done for tensors, e.g. σ12 is written asσx y . Partial derivatives will simply be written in the classical way, e.g.
∂uy

∂y . Einstein’s notation is often used, to make expressions more concise. In short, a repeated index represents
a summation over this index, i.e.

∂ui

∂xi
= ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
. (2.1)

2.2. Assumptions
In order to derive at the system which describes the physics in the levee, some assumptions are made. It is
possible that these assumptions will later be withdrawn, as an extension to the original goal of this thesis. The
assumptions are:

• The densities of the soil particles and pore water are taken to be constant.

• The pore water is assumed incompressible.

• The advective acceleration of the soil particle matrix is taken to be zero.

• The acceleration of the pore water is taken to be zero.

2.3. Definitions
Normally the effective stresses of soil are defined to be positive for compression and water stresses are defined
to be negative for tension. However to be consistent with the effective stress convention, the stress tensor
for pore water, σw

i j , as defined by Falconer [4] has been converted. The stress tensor for the soil matrix σi j

remains unchanged. The stress tensor is defined as:

σi i =−
(
β
∂u j

∂x j
+α∂ui

∂xi

)
, σw

i i =µ
(

2

3

∂2v j

∂x j∂t
−2

∂2vi

∂xi∂t

)
+P, (2.2)

σi j |i 6= j =−α
2

(
∂ui

∂x j
+ ∂u j

∂xi

)
+µ

(
∂2vi

∂x j∂t
+ ∂2v j

∂xi∂t

)
, σw

i j |i 6= j =−µ
(
∂2vi

∂x j∂t
+ ∂2v j

∂xi∂t

)
, (2.3)

where P denotes the water pressure, given by P = 1
3 (σw

xx +σw
y y +σw

zz ). ui represents the displacement of the
soil particles in the xi -direction, whereas vi represents the displacement of the pore water in the xi -direction.
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8 2. Physical Model

The stress tensor for the soil particles is equivalent to the one defined by Verruijt [21] when we define the
coefficients as

α=2G , (2.4)

β=K − 2

3
G , (2.5)

where K is the compression modulus and G is the shear modulus. The strain tensor, denoted by εp , is given
by

ε
p
i j =

1

2

{
∂ui

∂x j
+ ∂u j

∂xi

}
. (2.6)

Furthermore, note that the viscosity µ is the dynamic viscosity, otherwise the stresses σw
i j |i 6= j do not have the

right dimensions. Now that the definitions are set, the system of equations that describe the physics in the
levee, will be derived.

2.4. Mass balance equation
To arrive at the volume balance equations, some observations have been made. First of all, both the pore
water and the soil particles are assumed incompressible. This means that a change in volume can only be
induced by adding water or taking water out of the porous medium. The density formula for the porous
medium is given by

ρs = ρp (1−p)+ρw p, (2.7)

where ρs is the density of the porous medium, ρp is the density of the soil matrix, ρw is the density of the pore
water and p is the porosity. The density ρs can only change when p changes, since the densities ρp and ρw

are assumed constant. The change in porosity with respect to time is induced by the flux of the pore water;
hence the volume balance equation for incompressible pore water, in Cartesian coordinates, is given by

∂p

∂t
+ ∂

∂xi

(
p
∂vi

∂t

)
= 0, (2.8)

where vi represent the displacements of the pore water in the three different directions. This is similar to the
mass balance equations stated by Bui et al. [1], with the exception that in this expression the spatial gradient
of the void fractions over the distribution is not considered to be negligible. In a similar manner, the volume
balance equation for incompressible soil particles is given by

∂(1−p)

∂t
+ ∂

∂xi

[
(1−p)

∂ui

∂t

]
= 0, (2.9)

where ui represent the displacements of the soil particles in the three different directions. Now we impose
that soil particles and pore water are mixed so well, that functions ui and vi are defined everywhere on the
domain of interest. As a consequence, we can sum Equations (2.8) and (2.9) to arrive at the mass balance
equation for the porous medium

∂

∂xi

{
p

[
∂(vi −ui )

∂t

]}
+ ∂

∂xi

(
∂ui

∂t

)
= 0. (2.10)

This mass balance equation will be used several times throughout this thesis. In order to derive useful partial
differential equations, the expression for the virtual work will be derived.

2.5. Virtual work
The virtual work δŴg performed by body forces acting on both the soil matrix and the pore water, i.e. the
virtual work due to gravitational force, is given by

δŴg =
∫
Ωp

ρp g u∗
z dΩ+

∫
Ωw

ρw g v∗
z dΩ, (2.11)



2.5. Virtual work 9

whereΩp is the part of the domain consisting of soil particles,Ωw is the part of the domain consisting of pore
water, g is the gravitational constant and u∗

i and v∗
i are the virtual displacements of the soil particles and

pore water respectively in the three different directions. The sum of the virtual work performed by internal
and external forcing, denoted by δWσ, is given by Van Damme and den Ouden-van der Horst [15] as

δWσ =
∮

Sp

u∗
i σ̃i j n j dS −

∫
Ωp

ε
p∗
i j σ̃i j dΩ+

∮
Sw

v∗
i σ̃

w
i j n j dS −

∫
Ωw

εw∗
i j σ̃

w
i j dΩ, (2.12)

where the unknown stress tensors σ̃i j and σ̃w
i j are only defined onΩp andΩw respectively. Basically σ̃i j is a

stress tensor for completely unsaturated soil, where σ̃w
i j is the stress tensor for fully saturated soil. However,

the known stress tensors are only defined for the soil matrix as a whole, not for only the fraction containing
soil particles or pore water. For the second integral of Equation (2.12), we have that:

∫
Ωp

ε
p∗
i j σ̃i j dΩ=1

2

∫
Ωp

{
2
∂u∗

x

∂x
σ̃xx +

(
∂u∗

x

∂y
+
∂u∗

y

∂x

)
σ̃x y +

(
∂u∗

x

∂z
+ ∂u∗

z

∂x

)
σ̃xz

}
dΩ (2.13)

+1

2

∫
Ωp

{(
∂u∗

y

∂x
+ ∂u∗

x

∂y

)
σ̃y x +2

∂u∗
y

∂y
σ̃y y +

(
∂u∗

y

∂z
+ ∂u∗

z

∂y

)
σ̃y z

}
dΩ (2.14)

+1

2

∫
Ωp

{(
∂u∗

z

∂x
+ ∂u∗

x

∂z

)
σ̃zx +

(
∂u∗

z

∂y
+
∂u∗

y

∂z

)
σ̃z y +2

∂u∗
z

∂z
σ̃zz

}
dΩ. (2.15)

On every integral of this expression, Theorem 1 of Appendix A, will be applied, which is a corollary of Green’s
theorem. One term will be worked out explicitly, since the other terms can be done analogously. The second
term can be rewritten as

∫
Ωp

(
∂u∗

x

∂y
+
∂u∗

y

∂x

)
σ̃x y dΩ=−

∫
Ωp

∇·
u∗

y

u∗
x

0

 σ̃x y dΩ, (2.16)

=
∫
Ωp

u∗
y

u∗
x

0

 ·∇σ̃x y dΩ+
∮

Sp

σ̃x y

u∗
y

u∗
x

0

 ·ndS. (2.17)

Doing this for every term of Equation (2.13) gives

∫
Ωp

ε
p∗
i j σ̃i j dΩ=− 1

2

∫
Ωp

{∇σ̃xx ·
2u∗

x
0
0

+∇σ̃x y ·
u∗

y

u∗
x

0

+∇σ̃xz ·
u∗

z
0

u∗
x

+∇σ̃y x ·
u∗

y

u∗
x

0

 (2.18)

+∇σ̃y y ·
 0

2u∗
y

0

+∇σ̃y z ·
 0

u∗
z

u∗
y

+∇σ̃zx ·
u∗

z
0

u∗
x

+∇σ̃z y ·
 0

u∗
z

u∗
y

+∇σ̃zz ·
 0

0
2u∗

z

 ·n}dΩ (2.19)

+ 1

2

∮
Sp

{σ̃xx

2u∗
x

0
0

+ σ̃x y

u∗
y

u∗
x

0

+ σ̃xz

u∗
z

0
u∗

x

+ σ̃y x

u∗
y

u∗
x

0

 (2.20)

+ σ̃y y

 0
2u∗

y

0

+ σ̃y z

 0
u∗

z
u∗

y

+ σ̃zx

u∗
z

0
u∗

x

+ σ̃z y

 0
u∗

z
u∗

y

+ σ̃zz

 0
0

2u∗
z

 ·n}dS. (2.21)

Substituting this expression in
∮

Sp
u∗

i σ̃i j n j dS −∫
Ωp
ε

p∗
i j σ̃i j dΩ gives
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∮
Sp

u∗
i σ̃i j n j dS −

∫
Ωp

ε
p∗
i j σ̃i j dΩ (2.22)

=− 1

2

∫
Ωp

{∇σ̃xx ·
2u∗

x
0
0

+∇σ̃x y ·
u∗

y

u∗
x

0

+∇σ̃xz ·
u∗

z
0

u∗
x

+∇σ̃y x ·
u∗

y

u∗
x

0

 (2.23)

+∇σ̃y y ·
 0

2u∗
y

0

+∇σ̃y z ·
 0

u∗
z

u∗
y

+∇σ̃zx ·
u∗

z
0

u∗
x

+∇σ̃z y ·
 0

u∗
z

u∗
y

+∇σ̃zz ·
 0

0
2u∗

z

 ·n}dΩ (2.24)

+ 1

2

∮
Sp

−σ̃x y u∗
y − σ̃xz u∗

z + σ̃y x u∗
y + σ̃zx u∗

z

σ̃x y u∗
x − σ̃y x u∗

x − σ̃y z u∗
z + σ̃z y u∗

z
σ̃xz u∗

x + σ̃y z u∗
y − σ̃zx u∗

x − σ̃z y u∗
y

 ·ndS. (2.25)

Applying the Divergence Theorem gives

1

2

∮
Sp

−σ̃x y u∗
y − σ̃xz u∗

z + σ̃y x u∗
y + σ̃zx u∗

z

σ̃x y u∗
x − σ̃y x u∗

x − σ̃y z u∗
z + σ̃z y u∗

z
σ̃xz u∗

x + σ̃y z u∗
y − σ̃zx u∗

x − σ̃z y u∗
y

 ·ndS = 1

2

∫
Ωp

∇·
−σ̃x y u∗

y − σ̃xz u∗
z + σ̃y x u∗

y + σ̃zx u∗
z

σ̃x y u∗
x − σ̃y x u∗

x − σ̃y z u∗
z + σ̃z y u∗

z
σ̃xz u∗

x + σ̃y z u∗
y − σ̃zx u∗

x − σ̃z y u∗
y

dΩ. (2.26)

Writing out the gradient operator results in∮
Sp

u∗
i σ̃i j n j dS −

∫
Ωp

ε
p∗
i j σ̃i j dΩ (2.27)

=1

2

∫
Ωp

(σ̃x y − σ̃y x )

(
∂ux

∂y
− ∂uy

∂x

)
+ (σ̃xz − σ̃zx )

(
∂ux

∂z
− ∂uz

∂x

)
+ (σ̃y z − σ̃z y )

(
∂uy

∂z
− ∂uz

∂y

)
dΩ (2.28)

+
∫
Ωp

[
u∗

x

(
∂σ̃xx

∂x
+ ∂σ̃x y

∂y
+ ∂σ̃xz

∂z

)
+u∗

y

(
∂σ̃y y

∂y
+ ∂σ̃y x

∂x
+ ∂σ̃y z

∂z

)
+u∗

z

(
∂σ̃zz

∂z
+ ∂σ̃zx

∂x
+ ∂σ̃z y

∂y

)]
dΩ. (2.29)

Since for i 6= j , we have that σ̃i j = σ̃ j i and σ̃w
i j = σ̃w

j i , the first integral of the last expression drops out, so we

are simply left with

∮
Sp

u∗
i σ̃i j n j dS −

∫
Ωp

ε
p∗
i j σ̃i j dΩ (2.30)

=
∫
Ωp

[
u∗

x

(
∂σ̃xx

∂x
+ ∂σ̃x y

∂y
+ ∂σ̃xz

∂z

)
+u∗

y

(
∂σ̃y y

∂y
+ ∂σ̃y x

∂x
+ ∂σ̃y z

∂z

)
+u∗

z

(
∂σ̃zz

∂z
+ ∂σ̃zx

∂x
+ ∂σ̃z y

∂y

)]
dΩ. (2.31)

The same thing can be done for the integrals for the virtual work performed on the pore water. The virtual
work of the inertial forces is given by:

δWin =
∫
Ωp

u∗
i

{
∂2ρp ui

∂t 2 + ∂

∂xi

(
1

2
ρp

(
∂ui

∂t

)2)}
dΩ+

∫
Ωw

v∗
i

{
∂2ρw vi

∂t 2 + ∂

∂xi

(
1

2
ρw

(
∂vi

∂t

)2)}
dΩ, (2.32)

also known as D’Alemberts principle. From the theory of virtual work it should hold that the total virtual work
of the impressed forces should equal the total virtual work of the inertial forces, i.e.

δWg +δWσ = δWin. (2.33)

In other words, it has to hold that

∫
Ωp

{
u∗

i

[
ρp gi +

∂σ̃i j

∂x j
− ∂2ρp ui

∂t 2 − ∂

∂xi

(
1

2
ρp

(
∂ui

∂t

)2)]}
dΩ (2.34)

+
∫
Ωw

{
v∗

i

[
ρw gi +

∂σ̃w
i j

∂x j
− ∂2ρw vi

∂t 2 − ∂

∂xi

(
1

2
ρw

(
∂vi

∂t

)2)]}
dΩ= 0. (2.35)
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An extension for unknown stress tensors σ̃i j and σ̃w
i j

In order to retrieve useful relations, an extension is needed for these stress tensors to an arbitrary domain Θ,
containing both soil particles and pore water. σ̃i j should be defined such that the total energy of σi j on an
arbitrary domainΘ is equivalent to the total energy of σ̃i j onΘp ⊂Θ, i.e.∫

Θp

1

2
ε

p∗
i j σ̃i j dΘ=

∫
Θ

1

2
ε

p∗
i j σi j dΘ. (2.36)

This makes sense because of the observation that σi j should theoretically only have a contribution on the
fraction of Θ containing soil particles. Note that even though that is Einstein notated, this holds element
wise, since the derivation should also hold in the one-dimensional case. In order to arrive at an extension
for σ̃i j , it makes sense to approximate the stress tensor with the use of averaging. Taking an infinitely small
elementΘwe use an averaging for the integrand 1

2ε
p∗
i j σi j :

1

2
ε

p∗
i j σi j ≈ 1

|Θ|
∫
Θ

1

2
ε

p∗
i j σi j dΘ. (2.37)

Using Requirement (2.36) gives

1

2
ε

p∗
i j σi j ≈ 1

|Θ|
∫
Θp

1

2
ε

p∗
i j σ̃i j dΘ. (2.38)

Since Θ (and hence Θp ) is an infinitely small domain, the assumption is made that the integrand 1
2ε

p∗
i j σ̃

p
i j is

constant on this small domain. This simplifies the integral to:

1

|Θ|
∫
Θp

1

2
ε

p∗
i j σ̃i j dΘ≈ |Θp |

|Θ|
1

2
ε

p∗
i j σ̃i j , (2.39)

= (1−p)|Θ|
|Θ|

1

2
ε

p∗
i j σ̃i j , (2.40)

= (1−p)
1

2
ε

p∗
i j σ̃i j . (2.41)

BecauseΘ is an arbitrary small region, it can be concluded that

σi j ≈ (1−p)σ̃i j , (2.42)

on the whole domain Ω, by combining Equations (2.38) and (2.39). The same thing can be done for σw
i j ,

resulting in the extension

σw
i j ≈ pσ̃w

i j , (2.43)

on the whole domainΩ. These extensions can be utilized to say something about the partial derivative of the
unknown stress tensors. Writing out this partial derivative gives

∂σ̃i j

∂x j
= ∂

∂x j

(
σi j

1−p

)
, (2.44)

=
(1−p)

∂σi j

∂x j
+ ∂p

∂x j
σi j

(1−p)2 , (2.45)

≈
(1−p)

∂σi j

∂x j

(1−p)2 , (2.46)

= 1

1−p

∂σi j

∂x j
, (2.47)

where the approximation is justified by the fact that the partial derivatives in space of the porosity are nearly

zero, while the porosity is somewhere around 0.4. A similar thing can be done for
∂σ̃w

i j

∂x j
. SinceΩp andΩw are
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mixed well, the integral over Ωp can be approximated by the integral over Ω multiplied by the factor (1−p).
The same thing can be done with the integral overΩw . Furthermore, since the velocities of the pore water are
negligible, the assumption can be made that σw

i i ≈ P . Note that this represents three elements (for i = 1,2,3)
of the stress tensor and not Einstein notation. In other words, Equation (2.32) can be written as:

(1−p)
∫
Ω

{
u∗

i

[
ρp gi +

∂σ̃
p
i j

∂x j
− ∂2ρp ui

∂t 2 − ∂

∂xi

(
1

2
ρp

(
∂ui

∂t

)2)]}
dΩ (2.48)

+p
∫
Ω

{
v∗

i

[
ρw gi +

∂σ̃w
i j

∂x j
− ∂2ρw vi

∂t 2 − ∂

∂xi

(
1

2
ρw

(
∂vi

∂t

)2)]}
dΩ= 0. (2.49)

Substituting the derived expansions of the stress tensors toΩ results in

∫
Ω

{
u∗

i

[
∂σi j

∂x j
+ (1−p)

(
ρp gi −

∂2ρp ui

∂t 2 − ∂

∂xi

(
1

2
ρp

(
∂ui

∂t

)2))]}
dΩ (2.50)

+
∫
Ω

{
v∗

i

[
∂σw

i j

∂x j
+p

(
ρw gi − ∂2ρw vi

∂t 2 − ∂

∂xi

(
1

2
ρw

(
∂vi

∂t

)2))]}
dΩ= 0. (2.51)

Since this expression has to hold for any virtual displacement u∗
i , v∗

i , it follows that

∂σi j

∂x j
+ (1−p)

(
ρp gi −

∂2ρp ui

∂t 2 − ∂

∂xi

(
1

2
ρp

(
∂ui

∂t

)2))
= 0, (2.52)

∂σw
i j

∂x j
+p

(
ρw gi − ∂2ρw vi

∂t 2 − ∂

∂xi

(
1

2
ρw

(
∂vi

∂t

)2))
= 0. (2.53)

If we consider the last term and assume that ρp is constant in space, we have that:

∂

∂xi

(
1

2
ρp

(
∂ui

∂t

)2)
=1

2
ρp

∂

∂xi

((
∂ui

∂t

)2)
, (2.54)

=ρp
∂ui

∂t

∂2ui

∂xi∂t
, (2.55)

=ρp
∂xi

∂t

∂2ui

∂xi∂t
, (2.56)

(2.57)

in which we see an advective acceleration term. Obviously the same thing can be done for ∂
∂xi

(
1
2ρw

(
∂vi
∂t

)2
)
.

Taking the curl in a three dimensional setting results in three non-trivial equations. However, only one of
these equations can be easily put in a useful partial differential equation. Moreover, analysis of the intersec-
tion of a flood embankment would already provide lots of insight, so for the moment there is little incentive
to implement a three dimensional model. This element of the curl only uses Equation (2.52) for i = 1 and
i = 3, given by

∂2ρp (1−p)ux

∂t 2 +ρp (1−p)

[
∂x

∂t

(
∂2ux

∂t∂x

)
+ ∂z

∂t

(
∂2ux

∂t∂z

)]
−ρp (1−p)gx (2.58)

−α
2

∂

∂z

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂

∂x

(
∂ux

∂x
+ ∂uz

∂z

)
− γw

Ks

∂p(vx −ux )

∂t
= 0, (2.59)

∂2ρp (1−p)uz

∂t 2 +ρp (1−p)

[
∂x

∂t

(
∂2uz

∂t∂x

)
+ ∂z

∂t

(
∂2uz

∂t∂z

)]
−ρp (1−p)gz (2.60)

+α
2

∂

∂x

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂

∂z

(
∂ux

∂x
+ ∂uz

∂z

)
− γw

Ks

∂p(vz −uz )

∂t
= 0. (2.61)
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Darcy term

Note that the Darcy term γw
Ks

∂p(vi−ui )
∂t appears as a result of taking the partial derivative of theµ

(
∂2vi
∂x j ∂t +

∂2v j

∂x j ∂t

)
-

term with i = 1 and j = 3. In order to understand this, we note that the pore water flows through small
’tubes’. The radii of these ’tubes’ are randomly distributed, according to Van Damme [16]. Even though for
a given radius the pore water velocity profile is known, the pore water velocity and hence the pore water
displacements have stochastic values, because of the randomness of the tube geometry. Hence, locally the
stochastic displacements are denoted by ũi and ṽi . If we observe one ’tube’ in the soil, the velocity of the pore
water ˙̃vx is parabolic, as can be seen in figure 2.1.

Figure 2.1: A horizontal ’tube’ in the soil matrix

The previously stress tensors are based on an infinitely small element and subsequently averaged such
that they hold for the whole soil matrix. The same thing will be done for the partial derivative of the stress
tensor. Taking the partial derivative to z results in

∂

∂t

(
∂2ṽx

∂z2 + ∂2ṽz

∂x∂z

)
≈C

d v̄x

d t
, (2.62)

since there is barely any perpendicular acceleration (it is assumed that the ’tube’ nearly has a constant width,
so there will hardly be any pore water moving inward) and since the second derivative of a parabolic profile
is a constant. In this expression C ∈ R and v̄x is the average pore water velocity in the tube, i.e. a resulting
pore water velocity of a random draw from the radius distribution. The soil contains a fraction p ’tubes’, that
all have a parabolic profile. This profile depends on the relative velocity with respect to the tube wall. To
extrapolate this local constant to an expression that is valid for the whole soil matrix, we return back to the
deterministic displacements. The constant is hence proportional to p(vx −ux ). Observe that this constant is
only constant in space (within one tube), not in time. Note that vx and ux can be seen as the expected value of
the horizontal velocities in a tube. The proportionality is made explicit by introducing a calibration constant

Ks , which explains the Darcy term γw
Ks

∂p(vx−ux )
∂t at the end of the expression. This calibration constant Ks has

the units
[ m

s

]
and equals the pressure gradient after multiplication by the specific density of the pore water.

Obviously the same analysis can be done for i = 3, j = 1. Hence the momentum balance equations for the soil
particles become

∂2ρw pvx

∂t 2 +ρw p

[
∂x

∂t

(
∂2vx

∂t∂x

)
+ ∂z

∂t

(
∂2vx

∂t∂z

)]
+ρw pgx + ∂P

∂x
+ γw

Ks

∂p(vx −ux )

∂t
=0, (2.63)

∂2ρw pvz

∂t 2 +ρw p

[
∂x

∂t

(
∂2vz

∂t∂x

)
+ ∂z

∂t

(
∂2vz

∂t∂z

)]
+ρw pgz + ∂P

∂z
+ γw

Ks

∂p(vz −uz )

∂t
=0. (2.64)

Similarly, the momentum balance equations for the pore water can be found. Note that the sign of the
Darcy term should change sign, since action equals minus reaction. Often the advective accelerations are
negligible compared with the contribution of the particle-particle and particle-water interaction. Hence the
momentum balance equations for both the soil particles and pore water are reduced to
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ρp (1−p)
∂2ux

∂t 2 −ρp (1−p)gx − α

2

∂

∂z

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂

∂x

(
∂ux

∂x
+ ∂uz

∂z

)
− γw

Ks

∂p(vx −ux )

∂t
= 0, (2.65)

ρp (1−p)
∂2uz

∂t 2 −ρp (1−p)gz + α

2

∂

∂x

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂

∂z

(
∂ux

∂x
+ ∂uz

∂z

)
− γw

Ks

∂p(vz −uz )

∂t
= 0, (2.66)

ρw p
∂2vx

∂t 2 +ρw pgx + ∂P

∂x
+ γw

Ks

∂p(vx −ux )

∂t
= 0, (2.67)

ρw p
∂2vz

∂t 2 +ρw pgz + ∂P

∂z
+ γw

Ks

∂p(vz −uz )

∂t
= 0. (2.68)

From now on, the analysis has only been made for a two-dimensional setting, which makes it a suitable
moment to introduce the domain of interest, which can be seen in figure 2.2. Note that Γ1 is boundary z =
−Z , Γ2 is boundary x = L, Γ3 is boundary z = 0 and Γ4 is boundary x = 0. From now on this will be used
interchangeably.

Γ1

Γ2

Γ3

Γ4 Ω

−Z

L
x

z

Figure 2.2: The domain of interestΩ.

2.6. Vorticity equation
Taking the curl of the momentum balance equations results in

∂

∂z

(
ρp (1−p)

∂2ux

∂t 2 −ρp (1−p)gx − α

2

∂

∂z

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂

∂x

(
∂ux

∂x
+ ∂uz

∂z

)
− γw

Ks

∂p(vx −ux )

∂t

)
(2.69)

− ∂

∂x

(
ρp (1−p)

∂2uz

∂t 2 −ρp (1−p)gz + α

2

∂

∂x

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂

∂z

(
∂ux

∂x
+ ∂uz

∂z

)
− γw

Ks

∂p(vz −uz )

∂t

)
= 0.

(2.70)

Working out the partial derivatives gives

ρp (1−p)
∂2

∂t 2

(
∂ux

∂z

)
− ∂

∂z

(
ρp (1−p)gx

)− α

2

∂2

∂z2

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂2

∂z∂x

(
∂ux

∂z
− ∂uz

∂x

)
− γw

Ks

∂2p(vx −ux )

∂z∂t
(2.71)

−ρp (1−p)
∂2

∂t 2

(
∂uz

∂x

)
+ ∂

∂x

(
ρp (1−p)gz

)− α

2

∂2

∂x2

(
∂ux

∂z
− ∂uz

∂x

)
+ (β+α)

∂2

∂x∂z

(
∂ux

∂z
− ∂uz

∂x

)
+ γw

Ks

∂2p(vz −uz )

∂x∂t
= 0.

(2.72)

Re-arranging the terms gives the equation

ρp (1−p)
∂2

∂t 2

(
∂ux

∂z
− ∂uz

∂x

)
− α

2

[
∂2

∂z2

(
∂ux

∂z
− ∂uz

∂x

)
+ ∂2

∂x2

(
∂ux

∂z
− ∂uz

∂x

)]
− γw p

Ks

(
∂

∂t

[
∂ux

∂z
− ∂uz

∂x

])
(2.73)

=γw p

Ks

(
∂

∂t

[
∂vx

∂z
− ∂vz

∂x

])
. (2.74)



2.7. Volumetric strain equation 15

When the vorticity of the water displacement vector is defined as

wv = ∂vx

∂z
− ∂vz

∂x
, (2.75)

and the vorticity for the soil matrix analogously, the constitutive equation for the vorticity can be written as

ρp (1−p)
∂2w

∂t 2 + γw p

Ks

∂w

∂t
− α

2

(
∂2w

∂x2 + ∂2w

∂z2

)
= γw p

Ks

∂wv

∂t
. (2.76)

Analogously a constitutive relation for wv can be found by taking the curl of the momentum balance Equa-
tions (2.67) and (2.68) of the pore water, given by:

∂ρw pwv

∂t 2 + γw p

Ks

∂wv

∂t
= γw p

Ks

∂w

∂t
. (2.77)

However, the momentum balance equation for soil states that ω=ωv , so the only thing that remains is

ρp (1−p)
∂2ω

∂t 2 − α

2
∆ω= 0. (2.78)

Now we have found a partial differential equation that describes the vorticity. In the next section, a partial
differential equation for the volumetric strain will be derived.

2.7. Volumetric strain equation
In vector notation, the momentum balance vector equation for the pore water is given by: ∂2ρp (1−p)ux

∂t 2 −ρp (1−p)gx − α
2
∂
∂z

(
∂ux
∂z − ∂uz

∂x

)
− (β+α) ∂

∂x

(
∂ux
∂x + ∂uz

∂z

)
− γw

Ks

∂p(vx−ux )
∂t

∂2ρp (1−p)uz

∂t 2 −ρp (1−p)gz + α
2
∂
∂x

(
∂ux
∂z − ∂uz

∂x

)
− (β+α) ∂

∂z

(
∂ux
∂x + ∂uz

∂z

)
− γw

Ks

∂p(vz−uz )
∂t

= 0. (2.79)

Firstly, we define specific displacements qx and qz as:

qx = p(vx −ux ), (2.80)

qz = p(vz −uz ). (2.81)

Note that the volumetric strain, by definition, is equal to the divergence of the displacement vector [12], so in
the two-dimensional case this becomes

εvol =
∂ux

∂x
+ ∂uz

∂z
. (2.82)

Taking the divergence on both sides of Equation (2.79) gives the following equality:

∂2

∂t 2

(
ρp (1−p)

∂ux

∂x

)
− α

2

∂2

∂x∂z

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂2εvol

∂x2 − γw

Ks

∂2qx

∂x∂t
(2.83)

+ ∂2

∂t 2

(
ρp (1−p)

∂uz

∂z

)
+ α

2

∂2

∂z∂x

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂2εvol

∂z2 − γw

Ks

∂2qz

∂z∂t
= 0, (2.84)

⇒ ∂2

∂t 2

(
ρp (1−p)εvol

)− (β+α)

(
∂2εvol

∂x2 + ∂2εvol

∂z2

)
− γw

Ks

∂

∂t

(
∂qx

∂x
+ ∂qz

∂z

)
= 0, (2.85)

⇒ρp (1−p)
∂2εvol

∂t 2 − (β+α)

(
∂2εvol

∂x2 + ∂2εvol

∂z2

)
− γw

Ks

∂

∂t

(
∂qx

∂x
+ ∂qz

∂z

)
= 0, (2.86)

where it is assumed that ux and uz are sufficiently smooth, which enables changing the order of differentia-
tion. Substituting mass balance Equation (2.10) results in

ρp (1−p)
∂2εvol

∂t 2 + γw

Ks

∂εvol

∂t
− (β+α)

(
∂2εvol

∂x2 + ∂2εvol

∂z2

)
= 0. (2.87)

This partial differential equation describes the course of the volumetric strain. Finally, a relation between the
volumetric strain and the water pressure will be derived.



16 2. Physical Model

2.8. Pressure equation
A relation for the pressure needs to be derived as well. In order to do this, the momentum balance equation
for the pore water will be used, given by[

ρw p ∂2vx
∂t 2 +ρw pgx + ∂P

∂x + γw
Ks

∂p(vx−ux )
∂t

ρw p ∂2vz
∂t 2 +ρw pgz + ∂P

∂z + γw
Ks

∂p(vz−uz )
∂t

]
= 0. (2.88)

Taking the divergence on both sides gives

∂

∂x

(
ρw p

∂2vx

∂t 2

)
+ ∂

∂x
ρw pgx + ∂2P

∂x2 + γw

Ks

∂

∂x

∂p(vx −ux )

∂t
+ ∂

∂z

(
ρw p

∂2vz

∂t 2

)
+ ∂

∂z
ρw pgz + ∂2P

∂z2 + γw

Ks

∂

∂z

∂p(vz −uz )

∂t
=0,

(2.89)

⇒ ρw
∂

∂x

(
∂2pvx

∂t 2

)
+ ∂2P

∂x2 + γw

Ks

∂

∂x

∂p(vx −ux )

∂t
+ρw

∂

∂z

(
∂2pvz

∂t 2

)
+ ∂2P

∂z2 + γw

Ks

∂

∂z

∂p(vz −uz )

∂t
=0,

(2.90)

⇒ ρw
∂

∂t

(
∂

∂x

∂pvx

∂t
+ ∂

∂z

∂pvz

∂t

)
+ ∂2P

∂x2 + ∂2P

∂z2 + γw

Ks

∂

∂x

∂p(vx −ux )

∂t
+ γw

Ks

∂

∂z

∂p(vz −uz )

∂t
=0,

(2.91)

⇒−ρw
∂2p

∂t 2 + ∂2P

∂x2 + ∂2P

∂z2 + γw

Ks

∂

∂x

∂p(vx −ux )

∂t
+ γw

Ks

∂

∂z

∂p(vz −uz )

∂t
=0,

(2.92)

⇒−ρw
∂

∂t

[
(1−p)

∂εvol

∂t

]
+ ∂2P

∂x2 + ∂2P

∂z2 + γw

Ks

∂

∂x

∂p(vx −ux )

∂t
+ γw

Ks

∂

∂z

∂p(vz −uz )

∂t
=0,

(2.93)

⇒−ρw (1−p)
∂2εvol

∂t 2 + ∂2P

∂x2 + ∂2P

∂z2 − γw

Ks

∂εvol

∂t
=0.

(2.94)

The mass balance equation implies that

∂p

∂t
= (1−p)

∂εvol

∂t
, (2.95)

with

∇· ∂pvi

∂t
=−∂p

∂t
. (2.96)

Equation (2.96) is used for Equality (2.92) and Equation (2.95) is used for Equality (2.93). For Equality (2.94) it
is used that, when the functions are sufficiently smooth, Equation (2.10) can be rewritten as:

∂

∂t

{[
∂p(vi −ui )

∂xi

]}
=− ∂

∂t

(
∂ui

∂xi

)
= ∂εvol

∂t
. (2.97)

So we end up with expression

− ∂2P

∂x2 − ∂2P

∂z2 =−γw

Ks

∂εvol

∂t
−ρw (1−p)

∂2εvol

∂t 2 . (2.98)

Hence, when the solution for εvol is known, the pressure P can easily be determined.

2.9. Relations for the displacement
Vorticity, volumetric strain and displacements can be related by working out

−∂w

∂z
− ∂εvol

∂x
=− ∂2ux

∂z2 + ∂2uz

∂z∂x
− ∂2ux

∂x2 − ∂2uz

∂x∂z
, (2.99)

=− ∂2ux

∂x2 − ∂2ux

∂z2 , (2.100)



2.10. Boundary conditions 17

where we have assumed sufficiently smoothness.
This can be done analogously for ∂w

∂x − εvol
∂z , assuming that ux is sufficiently smooth, which results in the

following set of equations: {
− ∂2ux

∂x2 − ∂2ux
∂z2 =− ∂w

∂z − ∂εvol
∂x ,

− ∂2uz
∂x2 − ∂2uz

∂z2 = ∂w
∂x − ∂εvol

∂z .
(2.101)

These relations are used as fourth and fifth equations of our system, since these expressions are more useful
than the definitions of ω and εvol, for reasons that will become clear in Section 3.1. Now there are five par-
tial differential equations that describe five parameters. The only thing that is left are stating the boundary
conditions and initial conditions.

2.10. Boundary conditions
At z = 0, i.e. at the top of the levee, the boundary conditions are only related with τxz = τzx , which are equal
due to the symmetry of the stress tensor, and σzz . Both of these functions are assumed to be known at z = 0
and represent the hydrodynamic loads, induced by the overtopping waves of interest. As we know, the total
stress component is determined by the water pressure and the effective stress, i.e. σzz = P +σ′

zz . Substituting
the expression for σ′

zz gives the boundary condition

σzz |z=0 = P |z=0 −βεvol|z=0 −α∂uz

∂z
|z=0. (2.102)

There is no Darcy friction term present on the surface of the domain [20]. Since the shear stress is a weighted
average of the shear stresses experienced between all soil particles in two directions, we have that

τxz |z=0 = τzx |z=0 = α

2

(
∂ux

∂z
+ ∂uz

∂x

)
|z=0, (2.103)

due to symmetry of the stress tensor. It can easily be checked that boundary condition can equivalently be
written as

τxz |z=0 = α

2
w |z=0 −α∂ux

∂z
|z=0. (2.104)

The momentum balance equation for the pore water in the vertical direction is given by:

∂2ρp (1−p)uz

∂t 2 + ∂2ρw pvz

∂t 2 + ∂τxz

∂x
=−∂σzz

∂z
. (2.105)

In the analytical approach by Van Damme and Den Ouden-van der Horst [15] the accelerations cannot be
ignored since this would violate the existence of an analytical solution. However, numerical analysis provides
more flexibility, so the accelerations will initially be neglected. This results in the simpler relation

∂τxz

∂x
=−∂σzz

∂z
. (2.106)

Since function τxz is known on the whole boundary z = 0, ∂τxz
∂x is also known on this boundary. Substituting

the expression for σzz yields another boundary condition:

∂P

∂z
|z=0 −β∂εvol

∂z
|z=0 −α∂

2uz

∂z2 |z=0 =−∂τxz

∂z
|z=0. (2.107)

On the sides of the levee, i.e. x = 0 and x = L, we impose the following boundary conditions:

ux = 0, (2.108)

∂uz

∂x
= 0, (2.109)

ω= 0, (2.110)

∂εvol

∂x
= 0, (2.111)

∂P

∂x
= 0. (2.112)
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Following the boundary conditions of Van Damme and Den Ouden-van der Horst [15], it is assumed that
the vertical displacement will smoothen out, which gives rise to the natural boundary conditions ∂uz

∂x |x=0 = 0

and ∂uz
∂x |x=L = 0. Since the displacements on the sides of the domain are negligible when L is sufficiently large,

it is imposed that ux |x=0 = 0 and ux |x=L = 0. Hence the volumetric strain does not have a gradient on these

boundaries, i.e. ∂εvol
∂x |x=0,L = 0. Since the displacements of the pore water are also negligible on x = 0 and

x = L, the water pressure does not have a gradient, i.e. ∂P
∂x |x=0,L = 0. Furthermore, the displacements flatten

out, thus ∂ux
∂z |x=0 = 0 and ∂ux

∂z |x=L = 0. Combined with the boundary conditions ∂uz
∂x |x=0,L = 0, this also yields

that ω|x=0,L = 0.
Following the boundary conditions for a porous seabed (Ye et. al [6]), the bottom of the levee, i.e. at

z =−Z , is both rigid and impermeable. As a consequence the soil should not be allowed to sink here, hence
the vertical displacement should be set to zero, i.e. uz = 0. The same argument is made for the pore water,
hence the displacement on z =−Z is vz = 0. As a consequence, there is no gradient of the water pressure at
z =−Z , i.e. ∂P

∂z = 0. To enforce that the effective stress gradient equals 0 as well, the shear stresses at z =−Z
have to be set to 0. Since the shear stresses can only be transferred by the soil particles, it is required that
∂ux
∂z = 0. Note that this boundary condition changes from the slightly stronger Dirichlet boundary condition

in the analytical approach by Van Damme and Den Ouden-van der Horst [15].

An implicit boundary condition

On z = 0, we can differentiate the first boundary condition to x, obtaining

− α

2

∂ω

∂x
− ∂2uz

∂x2 = ∂τxz

∂x
. (2.113)

Substituting this value in the third boundary condition and using the definition of εvol results in an equivalent
expression for the third boundary condition at z = 0, given by

− (α+β)
∂εvol

∂z
+ α

2

∂ω

∂x
+ ∂P

∂z
= 0. (2.114)

This means that only first order derivatives in space appear in the system, something that will prove to be
very useful later, since it enables the use of linear basis function in a finite element approach (linear basis
functions would vanish when taking a second order derivative in space). Furthermore, the new momentum
Equation (2.114) should, when acceleration terms are negligible, in theory be valid on the whole domain, so
on z = −Z as well. Since for z = −Z we already have that uz = 0 and hence ∂uz

∂x = 0, besides ∂ux
∂z = 0, it also

holds that ω= 0. This also implies that ∂ω
∂x = 0. Together with ∂P

∂z = 0, this means it also has to hold that

∂εvol

∂z
= 0, (2.115)

on Γ1. Now that we have taken a more thorough look at the boundary conditions, the initial conditions will
be analyzed.

2.11. Initial conditions
Since the partial differential equations of the model are of the second order in time, two initial conditions for
both the vorticity and volumetric strain are necessary. We make the assumption that at t = 0 no hydrody-
namic load is present on the soil. In other words, there will not be a shear stress on the surface, so the initial
vorticiy will be equal to zero as well, i.e. w |t=0 = 0. Furthermore, in order to create a second initial condition
to the vorticity, it is assumed that the first overtopping wave will only arrive after some time. Hence the vor-
ticity will initially not change over time, so it can be imposed that ∂w

∂t |t=0 = 0. Furthermore, it is assumed that
at t = 0 effective stresses are absent and as a consequence the volumetric strain will be zero, i.e. εvol = 0. Since

the water pressure P is also assumed to be zero at t = 0, it has to hold that ∂εvol
∂t |t=0 = 0. In summary, the initial

conditions are

w |t=0 = ∂w

∂t
|t=0 =0, (2.116)

εvol|t=0 = ∂εvol

∂t
|t=0 =0. (2.117)
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Implicit initial conditions

Apart from the initial conditions that are elaborated on, more initial conditions are needed for solving the
linear system that follows from a numerical scheme. Luckily, this is pretty straightforward. Note that, since
the overtopping waves are only arriving after some time, it holds that any order of time derivatives of εvol and
ω will be equal to zero. Applying this to the partial differential equations, evaluated in t = 0, results in

∆P = 0, (2.118)

∆ux = 0, (2.119)

∆uz = 0, (2.120)

with boundary conditions

on Γ1


∂P
∂z = 0,

uz = 0,
∂ux
∂z = 0,

(2.121)

on Γ2 and Γ4


∂P
∂x = 0,

ux = 0,
∂uz
∂x = 0,

(2.122)

on Γ3


∂P
∂z = 0,

α ∂ux
∂x +P = 0,

∂uz
∂x = 0.

(2.123)

(2.124)

Note that ∂uz
∂x = 0 implies a Dirichlet boundary condition on Γ3. By using separation of variables the homoge-

neous Poisson equation for ux can be found, which is the trivial solution. This is because of the homogeneous
Dirichlet boundary conditions on Γ2 and Γ4. This implies a homogeneous Dirichlet boundary condition for
P on Γ3. The two other decoupled Poisson equations both only have the trivial solution as well. As a conse-
quence

P = 0, (2.125)

ux = 0, (2.126)

uz = 0, (2.127)

on t = 0 for x ∈Ω. This is perfectly in line with our assumptions, since without overtopping waves no dynamic
pressure should be present in the levee and there will not be any displacements either. If t1 > 0 is defined as
the time where the first overtopping wave flows over the levee, the situation at t = 0 will initially remain the
same. Hence it also holds that:

∂P

∂t
= 0, (2.128)

∂ux

∂t
= 0, (2.129)

∂uz

∂t
= 0. (2.130)

This completes the derivation of the total system.

2.12. Complete system
In this chapter, a full derivation of the complete system that describes the physics in the levee is given. In
conclusion, the system can be written as
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for x ∈Ω



(1−p) ∂
2εvol
∂t 2 + γw

ρp Ks

∂εvol
∂t − 3β−2α

ρp

∂2εvol
∂x2 − 3β−2α

ρp

∂2εvol
∂z2 = 0,

ρp (1−p) ∂
2w
∂t 2 − α

2
∂2w
∂x2 − α

2
∂2w
∂z2 = 0,

ρw
∂2εvol
∂t 2 + γw

Ks

∂εvol
∂t − ∂2P

∂x2 − ∂2P
∂z2 = 0,

∂ω
∂z + ∂εvol

∂x − ∂2ux
∂x2 − ∂2ux

∂z2 = 0,

− ∂ω
∂x + ∂εvol

∂z − ∂2uz
∂x2 − ∂2uz

∂z2 = 0,

(2.131)

With the boundary conditions

for x = 0 and x = L:



ux = 0,
∂uz
∂x = 0,

w = 0,
∂εvol
∂x = 0,
∂P
∂x = 0.

(2.132)

For z = 0:


α
2ω−α ∂ux

∂z = τxz ,

−βεvol −α ∂uz
∂z +P =σzz ,

−(α+β) ∂εvol
∂z + α

2
∂ω
∂x + ∂P

∂z = 0.

(2.133)

For z =−Z :



uz = 0,
∂ux
∂z = 0,
∂P
∂z = 0,

ω = 0,
∂εvol
∂z = 0.

(2.134)

Finally, we have the initial conditions: 

ε̇vol|t=0 = εvol|t=0 = 0,

ω̇|t=0 =ω|t=0 = 0,

Ṗ |t=0 = P |t=0 = 0,

u̇x |t=0 = ux |t=0 = 0,

u̇z |t=0 = uz |t=0 = 0.

(2.135)

In the following section, a numerical approach will be extensively worked out in order to solve the system.



3
Numerical approach

In this section, a numerical method will be chosen to try and solve the system. Several options are available
and will now be discussed.

3.1. Different approaches
Since the system is extensive, several approaches are possible in order to make a numerical approximation.
A Finite Difference Method (something similar to Chorin’s projection method [2]) does not provide a frame-
work to take the boundary conditions implicitly into account. This means that the boundary conditions have
to be treated explicitly, by solving a system with constraints. The system given by Equations (2.131)-(2.135)
is almost fully decoupled by introducing the displacement relations instead of the definitions of εvol and ω

(there is only a one sided coupling instead of a two sided coupling for the last two partial differential equa-
tions of the system). A Finite Element Analysis can reduce the order of the partial differential equations and
enables treating the boundary conditions in a natural way, such that they become implicit in the weak for-
mulation of the system. A similar thing can be done with a Finite Volume Method, which have the benefit
of local conservation in grid cells; a Finite Elements Method on the other hand only has global conservation.
Moreover, a Finite Volume Method controls the local fluxes, such that unphysical oscillations will not appear.
A finite element approach on the other hand, enables improving the accuracy of the system quite easily, by
simply choosing basis functions of a higher order. Moreover, despite the system being described for a rect-
angular domain, it is very likely that other applications of the model might be connected to a more complex
domain. Finite Elements Methods are known to be very flexible when it comes to more difficult domains.
Using a finite elements approach hence makes the research more valuable for potential extensions in other
fields of research, i.e. more widely applicable. In conclusion a finite element method is used.

In this thesis, linear triangular elements will be used but an extension to quadrilateral- or other elements
is possible. Initially, the definitions of εvol and ω were used as the fourth- and fifth partial differential equa-
tion of the system. However the definitions for εvol and ω provide some difficulties, since the test functions
connected to ux and uz do not have boundary conditions that are able to get rid- or simplify the boundary
integrals in the final weak form. Furthermore it is not clear which equation should be multiplied with which
test function. On top of that, there are natural boundary conditions that cannot be incorporated in the weak
formulation. Whether or not this would result in the solution not converging is not known. Furthermore, an
attempt was made to substitute the definitions of εvol and ω into the system, resulting in a system consisting
of three partial differential equations with three unknown parameters. However, by doing this the boundary
conditions and partial differential equations become heavily coupled. Furthermore a lot of boundary condi-
tions cannot be incorporated into the weak formulation and would act as a constraint to the problem, so this
was not a suitable way to proceed. In conclusion, using the system given by Equations (2.131)-(2.135) is defi-
nitely the more natural choice, since all natural boundary conditions can be substituted into the weak form.
In this section, the weak formulation of the system and the resulting Galerkin equations will be derived in this
section. Finally, two suitable time integration methods will be treated, one explicit and one implicit. It is hard
to say whether the known stress functions (τxz (x,0),σzz (x,0)) are smooth enough, and hence whether an ex-
plicit method will show spurious oscillations. Because of this, both time stepping methods will be explained,
implemented and compared.

21
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3.2. Weak formulation
Every partial differential equation of Equation (2.131) will be multiplied by test functions ηεvol ,ηω,ηP ,ηux and
ηuz respectively and integrated over domainΩ. We will define the setΣη by all test function vectors that satisfy
the boundary conditions given by:

for x = 0 and x = L:

{
ηux = 0,

ηw = 0.
(3.1)

For z =−Z :

{
ηuz = 0,

ηω = 0.
(3.2)

Analogously, ΣΓ is defined as the set of all test function vectors that satisfy the boundary conditions (2.132),
(2.133) and (2.134). The requirements


ηεvol

ηω

ηP

ηux

ηuz

 ∈ H 5
Ση

(Ω), (3.3)

and 
εvol

ω

P
ux

uz

 ∈ H 5
ΣΓ

(Ω), (3.4)

are imposed, in order to derive a weak formulation. These sets are defined as:

H 5
Ση

(Ω) : =

η
εvol ,ηω,ηP ,ηux ,ηuz ∈ H 1(Ω)|


ηεvol

ηω

ηP

ηux

ηuz

 ∈Ση

 , (3.5)

H 5
ΣΓ

(Ω) : =

εvol,ω,P,ux ,uz ∈ H 1(Ω)|

εvol

ω

P
ux

uz

 ∈ΣΓ

 , (3.6)

where

H 1(Ω) :=
{

u ∈ L2(Ω)|
∫
Ω
‖∇u‖2dΩ<∞

}
, (3.7)

L2(Ω) :=
{

u :Ω−→R|
∫
Ω

u2dΩ<∞
}

. (3.8)

For the first partial differential equation, we have that:
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(1−p)
∫
Ω
ηεvol

∂2εvol

∂t 2
dΩ+ γw

ρp Ks

∫
Ω
ηεvol

∂εvol

∂t
dΩ+ 2α−3β

ρp

∫
Ω
ηεvol∆εvoldΩ= 0, (3.9)

⇒ (1−p)
∫
Ω
ηεvol

∂2εvol

∂t 2
dΩ+ γw

ρp Ks

∫
Ω
ηεvol

∂εvol

∂t
dΩ+ 2α−3β

ρp

(∫
Γ
ηεvol∇εvol ·ndΓ−

∫
Ω
∇ηεvol ·∇εvoldΩ

)
= 0,

(3.10)

⇒ (1−p)
∫
Ω
ηεvol

∂2εvol

∂t 2
dΩ+ γw

ρp Ks

∫
Ω
ηεvol

∂εvol

∂t
dΩ+ 2α−3β

ρp

(∫
Γ3
ηεvol∇εvol ·ndΓ−

∫
Ω
∇ηεvol ·∇εvoldΩ

)
= 0,

(3.11)

⇒ (1−p)
∫
Ω
ηεvol

∂2εvol

∂t 2
dΩ+ γw

ρp Ks

∫
Ω
ηεvol

∂εvol

∂t
dΩ+ 2α−3β

ρp

(∫
Γ3
ηεvol

(
α

2α+2β

∂ω

∂x
+ 1

α+β
∂P

∂z

)
dΓ−

∫
Ω
∇ηεvol ·∇εvoldΩ

)
= 0,

(3.12)

where for the second equality Theorem 1 of Appendix A is used and for the final equality the boundary con-
ditions and the expression for the normal vector are used.

Similarly, for the second partial differential equation, we have that

ρp (1−p)
∫
Ω
ηω

∂2w

∂t 2 dΩ− α

2

∫
Ω
ηω∆wdΩ= 0, (3.13)

⇒ ρp (1−p)
∫
Ω
ηω

∂2w

∂t 2 dΩ− α

2

(∫
Γ
ηω∇w ·ndΓ−

∫
Ω
∇ηω ·∇wdΩ

)
= 0, (3.14)

⇒ ρp (1−p)
∫
Ω
ηω

∂2w

∂t 2 dΩ− α

2

(∫
Γ3

ηω
∂w

∂z
dΓ−

∫
Ω
∇ηω ·∇wdΩ

)
= 0, (3.15)

since ηω = 0 for x = 0, x = L and z = −Z . Again, in a similar manner, it holds for the third partial differential
equation that

ρw

∫
Ω
ηP ∂

2ε

∂t 2 dΩ+ γw

Ks

∫
Ω
ηP ∂ε

∂t
dΩ−

∫
Ω
ηP∆PdΩ= 0, (3.16)

⇒ ρw

∫
Ω
ηP ∂

2ε

∂t 2 dΩ+ γw

Ks

∫
Ω
ηP ∂ε

∂t
dΩ−

(∫
Γ
ηP∇P ·ndΓ−

∫
Ω
∇ηP ·∇PdΩ

)
= 0, (3.17)

⇒ ρw

∫
Ω
ηP ∂

2ε

∂t 2 dΩ+ γw

Ks

∫
Ω
ηP ∂ε

∂t
dΩ−

∫
Γ3

ηP ∂P

∂z
dΓ+

∫
Ω
∇ηP ·∇PdΩ= 0. (3.18)

For the displacement relations we have that:

for x ∈Ω


∫
Ωη

ux

(
∂ω
∂z + ∂εvol

∂x

)
dΩ−∫

Ωη
ux∆ux dΩ = 0,∫

Ωη
uz

(
∂εvol
∂z − ∂ω

∂x

)
dΩ−∫

Ωη
uz∆uz dΩ = 0,

(3.19)

and after using Theorem 1 of Appendix A

for x ∈Ω


∫
Γη

ux

(
εvol

ω

)
·ndΓ−∫

Ω∇ηux ·
(
εvol

ω

)
dΩ−∫

Γη
ux ∂ux

∂n dΓ+∫
Ω∇ηux ·∇ux dΩ = 0,

∫
Γη

uz

(
−ω
εvol

)
·ndΓ−∫

Ω∇ηuz ·
(
−ω
εvol

)
dΩ−∫

Γη
uz ∂uz

∂n dΓ+∫
Ω∇ηuz ·∇uz dΩ = 0.

(3.20)

Since we have that ux = 0 on x = 0 and x = L, it also has to hold that ηux = 0 on these boundaries. Furthermore
∂ux
∂z = 0 for z =−Z . So the first equation of Equation (3.20) is equivalent to

−
∫
Γ1

ηuxωdΓ−
∫
Ω
∇ηux ·

(
εvol

ω

)
dΩ−

∫
Γ3

ηux
∂ux

∂z
dΓ+

∫
Ω
∇ηux ·∇ux dΩ= 0. (3.21)

Furthermore, it can be used that for z = 0 it holds that ∂ux
∂z = 1

2ω− 1
ατxz , which results in the following weak

form of the first equality of Equation (3.20):
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∫
Γ1

ηuxωdΓ+
∫
Ω
∇ηux ·

(
εvol

ω

)
dΩ+ 1

2

∫
Γ3

ηuxωdΓ−
∫
Ω
∇ηux ·∇ux dΩ= 1

α

∫
Γ3

ηuxτxz dΓ. (3.22)

For the second equality of Equation (3.20), we have that ∂uz
∂x = 0 and ω = 0 for x = 0 and x = L, uz = 0, so

ηuz = 0 for z =−Z and ∂uz
∂z = 1

α

(
P −βεvol −σ

)
for z = 0. The weak formulation becomes

(
β

α
−1

)∫
Γ3

ηuz εvoldΓ−
1

α

∫
Γ3

ηuz PdΓ+
∫
Ω
∇ηuz ·∇uz dΩ+

∫
Ω
∇ηuz ·

(−ω
εvol

)
dΩ=− 1

α

∫
Γ3

ηuzσzz dΓ. (3.23)

Hence the weak formulation of the system given by Equations (2.131)-(2.135) becomes:



(1−p)
∫
Ωη

εvol ∂
2εvol
∂t 2 dΩ+ γw

ρp Ks

∫
Ωη

εvol ∂εvol
∂t dΩ+ 2α−3β

ρp

(∫
Γ3
ηεvol

(
α

2α+2β
∂ω
∂x + 1

α+β
∂P
∂z

)
dΓ−∫

Ω∇ηεvol ·∇εvoldΩ
)

= 0,

ρp (1−p)
∫
Ωη

ω ∂2w
∂t 2 dΩ− α

2

(∫
Γ3
ηω ∂w

∂z dΓ−∫
Ω∇ηω ·∇wdΩ

)
= 0,

ρw
∫
Ωη

P ∂2ε
∂t 2 dΩ+ γw

Ks

∫
Ωη

P ∂ε
∂t dΩ−∫

Γ3
ηP ∂P

∂z dΓ+∫
Ω∇ηP ·∇PdΩ = 0,∫

Γ1
ηuxωdΓ+∫

Ω∇ηux ·
(
εvol

ω

)
dΩ+ 1

2

∫
Γ3
ηuxωdΓ−∫

Ω∇ηux ·∇ux dΩ = 1
α

∫
Γ3
ηux τxz dΓ,

(
β
α −1

)∫
Γ3
ηuz εvoldΓ− 1

α

∫
Γ3
ηuz PdΓ+∫

Ω∇ηuz ·∇uz dΩ+∫
Ω∇ηuz ·

(
−ω
εvol

)
dΩ =− 1

α

∫
Γ3
ηuzσzz dΓ.

(3.24)
This weak formulation will be used to derive the Galerkin equations.

3.3. Galerkin equations

Following Galerkin’s method, the parameters are approximated by a linear combination of a fixed set of basis functions,
where the coefficients of the linear combination are dependent on time.

εvol(x , t ) ≈ εn
vol(x , t ) =

n∑
j=1

a j (t )η j (x), (3.25)

w(x , t ) ≈ wn (x , t ) =
n∑

j=1
b j (t )η j (x), (3.26)

P (x , t ) ≈ P n (x , t ) =
n∑

j=1
c j (t )η j (x), (3.27)

ux (x , t ) ≈ un
x (x , t ) =

n∑
j=1

d j (t )η j (x), (3.28)

uz (x , t ) ≈ un
z (x , t ) =

n∑
j=1

e j (t )η j (x). (3.29)

Furthermore, every test function will be replaced by ηi (x) for some i ∈ {1, . . . ,n}. Plugging in the expressions (3.25) gives
us:
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n∑
j=1

{
(1−p)

d2a j

d t 2

∫
Ω
ηiη j dΩ+ γw

ρp Ks

d a j

d t

∫
Ω
ηiη j dΩ− 2α−3β

ρp
a j

∫
Ω
∇ηi ·∇η j dΩ+ α(2α−3β)

ρp (2α+2β)
b j

∫
Γ3
ηi
∂η j

∂x
dΓ+ 2α−3β

ρp (α+β)
c j

∫
Γ3
ηi
∂η j

∂z
dΓ

}
= 0,

(3.30)

n∑
j=1

{
ρp (1−p)

d2b j

d t 2

∫
Ω
ηiη j dΩ− α

2
b j

(∫
Γ3
ηi
∂η j

∂z
dΓ−

∫
Ω
∇ηi ·∇η j dΩ

)}
= 0,

(3.31)

n∑
j=1

{
ρw

d2a j

d t 2

∫
Ω
ηiη j dΩ+ γw

Ks

d a j

d t

∫
Ω
ηiη j dΩ+ c j

(∫
Ω
∇ηi ·∇η j dΩ−

∫
Γ3
ηi
∂η j

∂z
dΓ

)}
= 0,

(3.32)

n∑
j=1

{
a j

∫
Ω

∂ηi

∂x
η j dΩ+b j

(∫
Γ1
ηiη j dΓ+

∫
Ω

∂ηi

∂z
η j dΩ+ 1

2

∫
Γ3
ηiη j dΓ

)
−d j

∫
Ω
∇ηi ·∇η j dΩ

}
= 1

α

∫
Γ3
ηi τxz dΓ,

(3.33)

n∑
j=1

{
a j

((
β

α
−1

)∫
Γ3
ηiη j dΓ+

∫
Ω

∂ηi

∂z
η j dΩ

)
−b j

∫
Ω

∂ηi

∂x
η j dΩ− 1

α
c j

∫
Γ3
ηiη j dΓ+e j

∫
Ω
∇ηi ·∇η j dΩ

}
=− 1

α

∫
Γ3
ηiσzz dΓ,

(3.34)

for i ∈ {1, . . . ,n}. Instead of evaluating the integrals on the whole domain and boundaries, the domain will be
split up in ne triangular linear elements, i.e.

⋃ne
k=1Ωek =Ω, where |Ωek | is the area of linear triangular element

ek . The aim is to find a linear system

M ä(t )+W ȧ(t )+Sa(t ) = f , (3.35)

where

a(t ) =



a1(t )
...

an(t )
b1(t )

...
bn(t )
c1(t )

...
cn(t )
d1(t )

...
dn(t )
e1(t )

...
en(t )



. (3.36)

By introducing linear triangular elements, the matrix S can be defined by

Si j :=
ne∑

k=1
(Sek )i j +

∑
k∈ΛΓ1

(Sbek )i j +
∑

k∈ΛΓ2

(Sbek )i j +
∑

k∈ΛΓ3

(Sbek )i j +
∑

k∈ΛΓ4

(Sbek )i j , (3.37)

where ne is the number of internal elements, ΛΓ1 the set of boundary elements on boundary Γ1, ΛΓ2 the set
of boundary elements on boundary Γ2, ΛΓ3 the set of boundary elements on boundary Γ3 and ΛΓ4 the set
of boundary elements on boundary Γ4. In this expression Sek denotes an internal element matrix and Sbek

denotes a boundary element matrix. Matrices M and W and vector f are defined analogously. In order to
compute these element matrices, the basis functions have to be chosen.

Linear basis functions

Because in the Galerkin equations there are only first order derivatives present in space, the basis functions
can chosen to be linear per triangle, to keep the implementation simple. If we take a closer look to an arbitrary
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linear triangular element with vertices ((x1, z1), (x2, z2), (x3, z3)), every basis function can be written as:

ηi =ψi +θi x +ζi z, (3.38)

where ψi ,θi ,ζi ∈ R. According to Van Kan et al. [18] the coefficients can be determined for each i ∈ {1, . . . ,n}
and are given by

θ1 = 1

∆
(z2 − z3), θ2 = 1

∆
(z3 − z1), θ3 = 1

∆
(z1 − z2), (3.39)

ζ1 = 1

∆
(x3 −x2), ζ2 = 1

∆
(x1 −x3), ζ3 = 1

∆
(x2 −x1), (3.40)

ψi = 1−θi xi −ζi zi . (3.41)

∆ is the coefficient determinant defined by:

∆=
∣∣∣∣∣∣
1 x1 z1

1 x2 z2

1 x3 z3

∣∣∣∣∣∣ , (3.42)

= (x2 −x1)(z3 − z1)− (z2 − z1)(x3 −x1), (3.43)

with x1, x2, x3 the vertices of triangle ek . Van Kan et. al [18] show that this value |∆| equals twice the area of
triangle ek . For the computations of the element matrices and vectors, the Theorems 2 and 3 in Appendix A
will repeatedly be used.

Internal element matrices

For an internal element, i.e. k ∈ {1, . . . ,ne } with vertices xk1 , xk2 , xk3 we have that the internal element matrix
is given by:

Sek =


Sek

aa ∅ ∅ ∅ ∅
∅ Sek

bb ∅ ∅ ∅
∅ ∅ Sek

cc ∅ ∅
Sek

d a Sek
db ∅ Sek

dd ∅
Sek

eb Sek
eb ∅ ∅ Sek

ee

 , (3.44)

where the non-empty submatrices are given by:

(Sek
aa)i j =−2α−3β

ρp

∫
ek

∇ηi ·∇η j dΩ for (i , j ) ∈ {k1,k2,k3}2, (3.45)

(Sek
bb)i j = α

2

∫
ek

∇ηi ·∇η j dΩ for (i , j ) ∈ {k1,k2,k3}2, (3.46)

(Sek
cc )i j =

∫
ek

∇ηi ·∇η j dΩ for (i , j ) ∈ {k1,k2,k3}2, (3.47)

(Sek
d a)i j =

∫
ek

∂ηi

∂x
η j dΩ for (i , j ) ∈ {k1,k2,k3}2, (3.48)

(Sek
db)i j =

∫
ek

∂ηi

∂z
η j dΩ for (i , j ) ∈ {k1,k2,k3}2, (3.49)

(Sek
dd )i j =−

∫
ek

∇ηi ·∇η j dΩ for (i , j ) ∈ {k1,k2,k3}2, (3.50)

(Sek
ea)i j =

∫
ek

∂ηi

∂z
η j dΩ for (i , j ) ∈ {k1,k2,k3}2, (3.51)

(Sek
eb)i j =−

∫
ek

∂ηi

∂x
η j dΩ for (i , j ) ∈ {k1,k2,k3}2, (3.52)

(Sek
ee )i j =

∫
ek

∇ηi ·∇η j dΩ for (i , j ) ∈ {k1,k2,k3}2. (3.53)
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Computing these values with the use of Theorem 3 of Appendix A gives the expressions

(Sek
aa)i j =− (2α−3β)(θiθ j +ζiζ j )|∆ek |

2ρp
for (i , j ) ∈ {k1,k2,k3}2, (3.54)

(Sek
bb)i j =

α(θiθ j +ζiζ j )|∆ek |
4

for (i , j ) ∈ {k1,k2,k3}2, (3.55)

(Sek
cc )i j =

(θiθ j +ζiζ j )|∆ek |
2

for (i , j ) ∈ {k1,k2,k3}2, (3.56)

(Sek
d a)i j = θi

|∆ek |
6

for (i , j ) ∈ {k1,k2,k3}2, (3.57)

(Sek
db)i j = ζi

|∆ek |
6

for (i , j ) ∈ {k1,k2,k3}2, (3.58)

(Sek
dd )i j =− (θiθ j +ζiζ j )|∆ek |

2
for (i , j ) ∈ {k1,k2,k3}2, (3.59)

(Sek
ea)i j = ζi

|∆ek |
6

for (i , j ) ∈ {k1,k2,k3}2, (3.60)

(Sek
eb)i j =−θi

|∆ek |
6

for (i , j ) ∈ {k1,k2,k3}2, (3.61)

(Sek
ee )i j =

(θiθ j +ζiζ j )|∆ek |
2

for (i , j ) ∈ {k1,k2,k3}2. (3.62)

The element vector for an internal element equals zero. Now the boundary elements need to be evaluated.

Boundary element matrices

If we take xl1 and xl2 as the end points of an arbitrary boundary element on Γ1, i.e. bek with k ∈ ΛΓ1 the
boundary element matrix will be

Sbek =


Sbek

aa Sbek
ab Sbek

ac Sbek
ad Sbek

ae

Sbek
ba Sbek

bb Sbek
bc Sbek

bd Sbek
be

Sbek
ca Sbek

cb Sbek
cc Sbek

cd Sbek
ce

Sbek
d a Sbek

db Sbek
dc Sbek

dd Sbek
de

Sbek
ea Sbek

eb Sbek
ec Sbek

ed Sbek
ee

 , (3.63)

for k ∈ΛΓ1 , where the non-empty submatrix is given by:

(Sbek
db )i j =

∫
bek

ηiη j dΓ for (i , j ) ∈ {l1, l2}2. (3.64)

The integral can be computed with Theorem 2 of Appendix A, which results in

(Sbek
db )i j =

‖xl1 −xl2‖
6

(1+δi j ) for (i , j ) ∈ {l1, l2}2. (3.65)

There is no contribution for the boundary element vector. If we take xo1 and xo2 as the end points of an
arbitrary boundary element on Γ3, the boundary element matrix is given by expression (3.63) with k ∈ ΛΓ3 ,
with non-empty submatrices
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(Sbek
ab )i j = α(2α−3β)

ρp (2α+2β)

∫
bek

ηi
∂η j

∂x
dΓ for (i , j ) ∈ {o1,o2}2, (3.66)

(Sbek
ac )i j = 2α−3β

ρp (α+β)

∫
bek

ηi
∂η j

∂z
dΓ for i ∈ {o1,o2}, j ∈ {o1,o2,o3}, (3.67)

(Sbek
bb )i j =−α

2

∫
bek

ηi
∂η j

∂z
dΓ for i ∈ {o1,o2}, j ∈ {o1,o2,o3}, (3.68)

(Sbek
cc )i j =−

∫
bek

ηi
∂η j

∂z
dΓ for i ∈ {o1,o2}, j ∈ {o1,o2,o3}, (3.69)

(Sbek
db )i j = 1

2

∫
bek

ηiη j dΓ for (i , j ) ∈ {o1,o2}2, (3.70)

(Sbek
ea )i j =

(
β

α
−1

)∫
bek

ηiη j dΓ for (i , j ) ∈ {o1,o2}2, (3.71)

(Sbek
ec )i j =− 1

α

∫
bek

ηiη j dΓ for (i , j ) ∈ {o1,o2}2, (3.72)

Calculating these expressions with Theorem 2 of Appendix A gives

(Sbek
ab )i j = α(2α−3β)

ρp (2α+2β)

θ j ‖xo1 −xo2‖
2

for (i , j ) ∈ {o1,o2}2, (3.73)

(Sbek
ac )i j = 2α−3β

ρp (α+β)

ζ j ‖xo1 −xo2‖
2

for i ∈ {o1,o2}, j ∈ {o1,o2,o3}, (3.74)

(Sbek
bb )i j =−αζ j ‖xo1 −xo2‖

4
for i ∈ {o1,o2}, j ∈ {o1,o2,o3}, (3.75)

(Sbek
cc )i j =−ζ j ‖xo1 −xo2‖

2
for i ∈ {o1,o2}, j ∈ {o1,o2,o3}, (3.76)

(Sbek
db )i j =

‖xo1 −xo2‖
12

(1+δi j ) for (i , j ) ∈ {o1,o2}2, (3.77)

(Sbek
ea )i j =

(
β

α
−1

) ‖xo1 −xo2‖
6

(1+δi j ) for (i , j ) ∈ {o1,o2}2, (3.78)

(Sbek
ec )i j =−‖xo1 −xo2‖

6α
(1+δi j ) for (i , j ) ∈ {o1,o2}2. (3.79)

On Γ3 there is a contribution for the boundary element vector. The boundary element vector is given by:

f bek =


f bek

a

f bek
b

f bek
c

f bek
d

f bek
e

 , (3.80)

with k ∈ΛΓ3 . The non-empty vectors are given by:

( f bek
d )i = 1

α

∫
bek

ηiτxz dΓ for i ∈ {o1,o2}, (3.81)

( f bek
e )i =− 1

α

∫
bek

ηiσzz dΓ for i ∈ {o1,o2}. (3.82)

Application of the Newton-Cotes rule for integration gives the approximation:

( f bek
d )i =

‖xo1 −xo2‖
α

τxz (xi ) for i ∈ {o1,o2}, (3.83)

( f bek
e )i =−‖xo1 −xo2‖

α
σzz (xi ) for i ∈ {o1,o2}. (3.84)
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Mass matrix

For an arbitrary linear triangular internal element (with vertices xk1 , xk2 and xk3 ), the mass element matrix
M ek , connected to the second derivative in time, is given by:

M ek =


M ek

aa ∅ ∅ ∅ ∅
∅ M ek

bb ∅ ∅ ∅
M ek

ca ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅

 , (3.85)

with k = 1, . . . ,ne , where the non-empty submatrices are given by:

(M ek
aa)i j = (1−p)

∫
ek

ηiη j dΩ for (i , j ) ∈ {k1,k2,k3}2, (3.86)

(M ek
bb)i j = ρp (1−p)

∫
ek

ηiη j dΩ for (i , j ) ∈ {k1,k2,k3}2, (3.87)

(M ek
ca )i j = ρw

∫
ek

ηiη j dΩ for (i , j ) ∈ {k1,k2,k3}2, (3.88)

or computed (again with the use of Theorem 3 of Appendix A)

(M ek
aa)i j = (1−p)

|∆ek |
24

(1+δi j ) for (i , j ) ∈ {k1,k2,k3}2, (3.89)

(M ek
bb)i j = ρp (1−p)

|∆ek |
24

(1+δi j ) for (i , j ) ∈ {k1,k2,k3}2, (3.90)

(M ek
ca )i j = ρw

|∆ek |
24

(1+δi j ) for (i , j ) ∈ {k1,k2,k3}2. (3.91)

Damping matrix

Similarly, the damping matrix W ek , connected to the first derivative in time, is given by

W ek =


W ek

aa ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅

W ek
ca ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅

 , (3.92)

where the non-empty submatrices are given by:

(W ek
aa )i j = γw

ρp Ks

∫
ek

ηiη j dΩ for (i , j ) ∈ {k1,k2,k3}2, (3.93)

(W ek
ca )i j = γw

Ks

∫
ek

ηiη j dΩ for (i , j ) ∈ {k1,k2,k3}2, (3.94)

or computed, using Theorem 3 of Appendix A

(W ek
aa )i j = γw

ρp Ks

|∆ek |
24

(1+δi j ) for (i , j ) ∈ {k1,k2,k3}2, (3.95)

(W ek
ca )i j = γw

Ks

|∆ek |
24

(1+δi j ) for (i , j ) ∈ {k1,k2,k3}2. (3.96)

This concludes the expressions for matrices M ,W and S and vector f of linear System 3.35. Note that there is
not a unique way to construct this linear system. Another option is introducing new parameters, like

q p = ∂P

∂z
, (3.97)
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to get rid of the normal derivatives in the boundary integrals of weak formulation (3.30). This means that for
each additional parameter an extra weak formulation needs to be derived and implemented. By doing this,
the term ∂P

∂z will be approximated by a set of linear functions, instead of a constant. Since it is expected that
close to the boundaryΓ3 potential problems will occur, since this is the location where the waves flow over the
domain, introducing these additional parameters might prove to be a useful tool in case the just-described
system runs into problems, especially regarding continuity of the parameters close to boundary Γ3. In order
to solve this system, it needs to be manipulated a bit and time stepping methods need to be introduced.

3.4. Time stepping method

Defining the vector δ(t ) =
(

a(t )
ȧ(t )

)
enables writing the Equation (3.35) in a form with a reduced order in time,

namely as

M̃ δ̇= S̃δ+ f̃ , (3.98)

where

M̃ =
(

M ∅
∅ M

)
, (3.99)

S̃ =
(
∅ M
−S −W

)
, (3.100)

f̃ =
(

0
f

)
. (3.101)

Since every parameter is equal to zero on the whole domainΩ at t = 0, this means that we require the approx-
imations to be zero as well. If we take εn

vol(x ,0) for example, it has to hold that:

n∑
j=1

a j (0)η j (x) = 0, (3.102)

which can only be the case if a j (0) = 0 for all j ∈ {1, . . . ,n}. To prove this, simply evaluate the series in a
node of a linear triangular element, where all basis functions have to be zero, except one. This means that
the coefficient belonging to this basis function has to equal 0. Since the node was arbitrary, it holds for all
j ∈ {1, . . . ,n}. Using the same procedure, it holds that:

a j (0) = 0 ∀ j = 1, . . . ,n, (3.103)

d a j

d t
(0) = 0 ∀ j = 1, . . . ,n, (3.104)

b j (0) = 0 ∀ j = 1, . . . ,n, (3.105)

db j

d t
(0) = 0 ∀ j = 1, . . . ,n, (3.106)

c j (0) = 0 ∀ j = 1, . . . ,n, (3.107)

dc j

d t
(0) = 0 ∀ j = 1, . . . ,n, (3.108)

d j (0) = 0 ∀ j = 1, . . . ,n, (3.109)

dd j

d t
(0) = 0 ∀ j = 1, . . . ,n, (3.110)

e j (0) = 0 ∀ j = 1, . . . ,n, (3.111)

de j

d t
(0) = 0 ∀ j = 1, . . . ,n. (3.112)

As a consequence, the initial condition for the linear system (3.98) is

δ(0) = 0. (3.113)
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For the time integration, a time stepping method has to be chosen. When we define the mesh size as h =
maxk |Ωek |, where |Ωek | is the area of triangle ek , the CFL number can be defined as:

C F L = ∆t

h
. (3.114)

For explicit methods, there is a maximum value for C F L, since otherwise the method does not converge.
This maximum value will be found by looking at the eigenvalues of the system. In the next section two time
integration methods will be treated.

Singularity of matrix

Since the matrix M̃ is singular, the system needs to be manipulated first before applying a time stepping
method. As described by Van Ophem et al. [19] , matrix M̃ can be decomposed as

M̃ = X Y T . (3.115)

Assuming that S̃ is invertible and introducing the new state variable

ψ(t ) = Y Tδ(t ), (3.116)

results in the linear system

Ẽψ̇(t ) =ψ(t )+ g̃ , (3.117)

where 
Ẽ = Y T S̃−1X ,

g̃ = Y T S̃−1 f̃ ,

ψ(0) = 0.

(3.118)

Now that we have successfully removed the singular matrix M̃ , we can apply a time integration method.

Crank-Nicolson Method

The Crank-Nicolson Method is an implicit time integration scheme of second order. Applied to the system
given by Equations (3.117) and (3.118), it results in the linear equation(

Ẽ − 1

2
∆t I

)
ψn+1 =

(
Ẽ + 1

2
∆t I

)
ψn + 1

2
∆t

(
g̃ n+1 + g̃ n)

. (3.119)

Obviously this implicit time scheme is quite expensive to solve per time step. However, the Crank-Nicolson
Method is known to be unconditionally stable, so will theoretically converge for any ∆t > 0 [22]. However,
since the stresses resulting from overtopping waves are heavily fluctuating with time, it is likely that in order
to accurately capture the stresses, ∆t has to be chosen small anyways. This gives rise to the idea that an
explicit method can be used as well, to reduce the computational time per time step. A commonly used
second order explicit scheme is the Modified Euler Method.

Modified Euler Method

When the Modified Euler Method is applied to system given by Equations (3.117) and (3.118), the predictor
vector ψn+1∗ is implicitly given by:

Ẽψn+1
∗ = (Ẽ +∆t Ĩ )ψn + g̃ n , (3.120)

which enables computation of the value of ψn+1 by solving the system

Ẽψn+1 =
(
Ẽ + ∆t

2
I

)
ψn + ∆t

2
Iψn+1

∗ + ∆t

2

(
g̃ n + g̃ n+1) . (3.121)

Equation (3.121) is very easy to implement and will require little solving time. Both the Crank-Nicolson
Method and the Modified Euler Method will be implemented and compared.
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Spurious oscillations

It could happen that both time schemes show spurious oscillations as a result of non-smooth data or simply
the characteristics of the time stepping scheme, which means that the system should be solved with more ad-
vanced techniques. A possibility is to introduce a flux correction [7] or the method described by Mirbagheri et
al. [11]. These methods will be elaborated more thoroughly in case they prove to be necessary after obtaining
the first results.



4
Conclusion

The goal of this literature research has been to provide a mathematical framework that describes the physics
in a flood embankment in a two-dimensional setting. There are some status quo methods, based on a porous
seabed, that are currently being used to describe the dynamic pressure in levees. However, the current
method makes use of the questionable assumption that the pore water is considered to be compressible.
Furthermore it makes use of the assumption that the stresses resulting from waves are solely being absorbed
by the pore water. Physically it makes more sense that these stresses are endured by both the soil particles and
the pore water.In order to retrieve a more accurate model for the computation of the water pressure, these
assumptions are abandoned.

In Chapter 2 the new mathematical framework is derived by making several assumptions, such as incom-
pressibility of the pore water, fixed densities for the pore water and soil particles and neglecting the advective
acceleration of the soil particles and the acceleration of the pore water. Furthermore, in some cases, terms
are considered to be negligible because of the small order of magnitude they have. The trade off between the
absorption of the stresses between the soil particles and the pore water is enforced by putting the momentum
balance equation as a boundary condition on two boundaries.

In Chapter 3 a numerical method is chosen to make the system numerically solvable. The Finite Element
approach will be used to solve the system, since it is flexible when it comes to a changing domain and it pro-
vides a good framework to deal with the complicated boundary conditions. For the Finite Element approach,
a weak formulation is derived. By approximating the unknown parameters with a linear combination of basis
functions, the Galerkin equations are derived. These Galerkin equations can be solved using a time stepping
method. To keep the second order accuracy, two time stepping methods are proposed: one explicit and one
implicit. Both of these time stepping methods will be implemented.

In the remainder of this project the numerical system will be implemented and compared with an an-
alytical solution that is yet to be published by Myron van Damme. In case the numerical approach gives a
good estimate of the dynamic water pressure, several extensions can be made. One obvious extension could
be simply applying the same equations on a more complex domain, something that can be very helpful for
potential other applications. Another extension could be adding the advective acceleration into the numeri-
cal system. It is not unimaginable that this advective accelerations plays a big role, since there does not exist
an analytical solution of the model without it. Another extension could be making the porosity an unknown
parameter as well. Lastly, the model could always be extended to a three-dimensional setting.
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A
Theorems

The following theorem is a corollary of the Divergence theorem.

Theorem 1 Let F be a continuously differentiable vector field, g be a scalar function and Ω ⊂ R3 a volume in
three-dimensional space which is compact and has a piecewise smooth boundary S. Then it holds that:∫

Ω

[
F ·∇g + g (∇·F )

]
dΩ=

∮
S

g F ·ndS. (A.1)

The following theorems are by Holand et al. [5].

Theorem 2 Let e be the line segment between x1 and x2, let λ1 and λ2 be linear on e such that λi (x j ) = δi j ,
and let m1,m2 ∈ N0 = {1,2, . . .}. Then: ∫

e
λ

m1
1 λ

m2
2 dΓ= ‖x1 −x2‖m1!m2!

(1+m1 +m2)!
. (A.2)

Theorem 3 Suppose that e is a triangle with vertices x1, x2 and x3. Let λ1,λ2 and λ3 be linear functions on e
subject to λi (x j ) = δi j and let m1,m2,m3 ∈N. Then:∫

e
λ

m1
1 λ

m2
2 λ

m3
3 dΩ= |∆e |m1!m2!m3!

(2+m1 +m2 +m3)!
, (A.3)

with

|∆e | =
∣∣∣∣∣∣
1 x1 z1

1 x2 z2

1 x3 z3

∣∣∣∣∣∣= ‖(x2 −x1)× (x3 −x1)‖, (A.4)

the area of the parallelogram, which is twice the area of the triangle.
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