

Mathias Mul May 9, 2014

TATA STEEL

Outline

1 Introduction

Microstructure
The moving boundary problem

2 Literature

Methods Cellular automaton Problems

- Model and Implementation Model outline Implementation
- 4 Results

Convergence of CA to Murray-Landis method Improving interface stability Grid Refinement Analysis

1 Introduction

Microstructure

The moving boundary problem

2 Literature

Methods Cellular automaton Problems

Model and Implementation

Model outline Implementation

4 Results

Convergence of CA to Murray-Landis method Improving interface stability Grid Refinement Analysis

Steel microstructure

Microstructure determines mechanical properties of steel.

Ferrite/Pearlite microstructure

Iron atom lattices

Ferrite nucleation and growth (by Richard Huizenga, TU Delft Materials Science and Engineering)

Cooling down steel

High temperature: austenite Low temperature: ferrite

1 Introduction

Microstructure

The moving boundary problem

2 Literature

Methods Cellular automaton

Model and Implementation
 Model outline

Implementation

4 Results

Convergence of CA to Murray-Landis method Improving interface stability Grid Refinement Analysis

Moving boundary problem

The problem of the moving interface S can be stated as

$$\begin{cases} v_n &= M\Delta G(x_s^\gamma) & \text{the normal velocity of } S \\ \frac{\partial x}{\partial t} &= \nabla (D(x)\nabla x) & \text{in } \Omega^\gamma, \qquad t>0 \\ \frac{\partial x}{\partial n} &= 0 & \text{on } \partial \Omega \\ \frac{\partial x}{\partial n} &= -(x_s^\gamma - x^\alpha)v_n & \text{on } S \end{cases}$$

1 Introduction

Microstructure

2 Literature

Methods

Cellular automaton

Problems

Model and Implementation

Model outline Implementation

4 Results

Convergence of CA to Murray-Landis method Improving interface stability Grid Refinement Analysis

Methods for moving boundaries

- (a) Level Set Method
- (b) Phase Field Method
- (c) Cellular Automaton

Methods for moving boundaries

- (a) Level Set Method
- (b) Phase Field Method
- (c) Cellular Automaton

1 Introduction

Microstructure

The moving boundary problem

2 Literature

Methods

Cellular automaton

Problems

Model and Implementation

Model outline Implementation

4 Results

Convergence of CA to Murray-Landis method Improving interface stability Grid Refinement Analysis

Cellular Automaton

Model built of cells with properties

- * state
- ★ neighbourhood
- * transformation rule

example:

1 Introduction

Microstructure

The moving boundary problem

2 Literature

Methods

Problems

3 Model and Implementation

Implementation

4 Results

Convergence of CA to Murray-Landis method Improving interface stability Grid Refinement Analysis

1-dim CA in comparison to Murray-Landis

CA: Interface S always lies on pre-set points

ML: Interface S may freely move

Unstable interfaces

Reasons: Absence of surface tension in model, discretized spatial grid

1 Introduction

Microstructure

The moving boundary problem

2 Literature

Methods

Cellular automaton

Problems

3 Model and Implementation

Model outline

Implementation

4 Results

Convergence of CA to Murray-Landis method Improving interface stability

Model outline

- Compute carbon concentration at interface cells
- 2 Compute growth velocity of interface cells
- 3 Compute growth length of interface cells
- 4 Transform cells according to a transformation rule
- 6 Redistribute excess carbon from newly transformed cells
- 6 Solve a time step of carbon diffusion in austenite

1 Introduction

Microstructure

The moving boundary problem

2 Literature

Methods

Problems

Problems

Model and Implementation

Model outline

Implementation

4 Results

Convergence of CA to Murray-Landis method Improving interface stability Grid Refinement Analysis

Growth dynamics

For every interface cell i we define:

Growth length $\ell_i \geq 0$ Growth velocity $v_i \geq 0$ Inward growth $\lambda_i \geq 0$

The velocity v is calculated according to the classical equation

$$v = M \underbrace{\Delta G(x^{\mathsf{interface}}, T)}_{\mathsf{driving force}}, \qquad \mathsf{where} \quad \Delta G: \mathbb{R}^2 \to \mathbb{R},$$

and M the interface mobility.

$$\lambda_i = \sum_{j \in \mathcal{M}_i} w_{ji} \ell_j$$

$$w_{ji} = \left\{ egin{array}{ll} 1 & ext{cells } i ext{ and } j ext{ are direct neighbours} \ rac{1}{\sqrt{2}} & ext{cells } i ext{ and } j ext{ are diagonal neighbours} \end{array}
ight.,$$

Growth dynamics(2)

Forward Euler: $\ell_i^{k+1} = \ell_i^k + v_i^k$ Transformation rule: $\ell > \Delta z$

Transformation rule: $\lambda(\ell) > \theta(\Delta z)$

Carbon diffusion

Find $x(t_0 + \Delta t)$ on Ω^{γ} such that

$$\begin{cases} \frac{\partial x}{\partial t} &=& \nabla (D(x)\nabla x) \quad \text{in } \Omega^{\gamma}, \qquad t_0 \leq t \leq t_0 + \Delta t \\ \frac{\partial x}{\partial n} &=& 0 \quad & \text{on } \partial \Omega^{\gamma} \\ x(t_0) &=& x_{t_0} \quad & \text{on } \partial \Omega^{\gamma} \end{cases}$$

- Implicit Euler
- 2 Finite Differences
- Conjugate Gradient

Interface carbon smoothing

Why? As an attempt to reduce instability. How? In two steps. example

Introduction

Microstructure

The moving boundary problem

2 Literature

Methods

Cellular automaton

Problems

Model and Implementation

Model outline

4 Results

Convergence of CA to Murray-Landis method

Improving interface stability Grid Refinement Analysis

Comparison: CA to Murray-Landis

$$\Delta z
ightarrow 0, \qquad \Delta t = 0.9 rac{\Delta z}{v_{\sf max}}$$

Introduction

Microstructure

The moving boundary problem

2 Literature

Methods

Cellular automaton

Problems

Model and Implementation

Model outline

4 Results

Convergence of CA to Murray-Landis method

Improving interface stability

Grid Refinement Analysis

Inward growth results

Carbon smoothing results

Combined results: Inward growth & Carbon smoothing

Introduction

Microstructure

The moving boundary problem

2 Literature

Methods

Cellular automaton

Problems

Model and Implementation

Model outline

4 Results

Convergence of CA to Murray-Landis method Improving interface stability

Grid Refinement Analysis

Results on grid analysis

Conclusions and Research Questions

- ★ Inward growth seems to reduce dendritic growth and results in a circular shape
- ★ Carbon smoothing also reduces dendritic growth, smoothing area can be scaled up
 - ? Is it possible to incorporate surface tension in the model to avoid dendritic grain growth without paying for heavy computational costs?
 - ? Are the new approaches enough for the current application?

