

Next Subsection

1 Introduction

Salt marsh

Model

Introduction
Hydrodynamics
Morphodynamics
Vegetation

- 3 Graphics Processing Unit General information
- 4 Research Questions

Overview

Question 1

Question 2

Question 3

Optional

Saltmarsh

Figure: Intertidal zone.

Wanted

Figure: Model area.

Wanted

Figure: Computational domain.

Next Subsection

- 1 Introduction
- Model

Introduction

Hydrodynamics Morphodynamics Vegetation

- 3 Graphics Processing Unit General information
- 4 Research Questions

Overview

Question 1

Question 2

Question 3

Optional

Results

Results

Figure: Flow field.

Results

Figure: Flow field.

Figure: Salt marsh.

Overview

Figure: Model components.

Overview

Figure: Model components.

Next Subsection

- 2 Model

Hydrodynamics

Morphodynamics

Question 1

Question 2

Question 3

Figure: Sketch of the relevant variables.

Components current model

Shallow water equations

Components current model

- Shallow water equations
 - Bottom friction

Components current model

- Shallow water equations
 - Bottom friction
- Wetting-drying algorithm

$$\frac{\partial \mathbf{u}}{t} + \mathbf{u}(\nabla \cdot \mathbf{u}) + g\nabla h - A(\nabla \cdot \nabla \mathbf{u}) + S\mathbf{u} = 0$$
$$\frac{\partial a}{\partial t} + \nabla a\mathbf{u} = 0$$

$$\frac{\partial \mathbf{u}}{t} + \mathbf{u}(\nabla \cdot \mathbf{u}) + g\nabla h - A(\nabla \cdot \nabla \mathbf{u}) + S\mathbf{u} = 0$$
$$\frac{\partial a}{\partial t} + \nabla a\mathbf{u} = 0$$

$$\mathbf{u}=(u,\ v)^T$$

Assumed: horizontal distance much larger than vertical

$$\frac{\partial \mathbf{u}}{t} + \mathbf{u}(\nabla \cdot \mathbf{u}) + g\nabla h - A(\nabla \cdot \nabla \mathbf{u}) + S\mathbf{u} = 0$$
$$\frac{\partial a}{\partial t} + \nabla a\mathbf{u} = 0$$

$$\mathbf{u} = (u, v)^T$$

One layer

$$\frac{\partial \mathbf{u}}{t} + \mathbf{u}(\nabla \cdot \mathbf{u}) + g\nabla h - A(\nabla \cdot \nabla \mathbf{u}) + S\mathbf{u} = 0$$
$$\frac{\partial a}{\partial t} + \nabla a\mathbf{u} = 0$$

$$\mathbf{u} = (u, v)^T$$

- One layer
- No wind stress

$$\frac{\partial \mathbf{u}}{t} + \mathbf{u}(\nabla \cdot \mathbf{u}) + g\nabla h - A(\nabla \cdot \nabla \mathbf{u}) + S\mathbf{u} = 0$$
$$\frac{\partial a}{\partial t} + \nabla a\mathbf{u} = 0$$

$$\mathbf{u} = (u, v)^T$$

- One layer
- No wind stress
- No Coriolis forces

Simple thin film algorithm with loss of conservation

Fluid over the entire computational domain

$$a = \max(a, H_{crit})$$

Simple thin film algorithm with loss of conservation

Fluid over the entire computational domain

$$a = \max(a, H_{crit})$$

Figure: Thin film algorithm.

Simple thin film algorithm with loss of conservation

Fluid over the entire computational domain

$$a = \max(a, H_{crit})$$

Figure: Thin film algorithm.

 \rightarrow SWE can be applied to each grid point.

e Peeters (TU Delft) Salt marsh December 17, 2017

Bottom friction

Bottom friction

Bottom friction

$$\boldsymbol{\tau}_b = \rho \mathbf{g} \mathbf{u} \| \mathbf{u} \| \frac{1}{C^2}$$

in which C represents the Chézy coefficient.

Next Subsection

- 1 Introduction
- 2 Model

Introduction

Morphodynamics

Vegetation

- 3 Graphics Processing Unit General information
- 4 Research Questions

Overview

Question 1

Question 2

Question 3

Optional

Figure: Sediment transport.

Figure: Sediment transport.

Cohesive (mud) or non-cohesive (sand/bed load)

Figure: Sediment transport.

- Cohesive (mud) or non-cohesive (sand/bed load)
 - Cohesive sediments form larger particles

Components current model

Bed elevation

Components current model

- Bed elevation
 - Sedimentation
 - Erosion
 - Diffusion

Components current model

- Bed elevation
 - Sedimentation
 - Erosion
 - Diffusion

$$\frac{\partial S}{\partial t} = S_{in} a_{eff} - E \left(1 - p_E \frac{n_b}{K} \right) (u^2 + v^2) S + Dif(S, n_b).$$

Next Subsection

- 1 Introduction
- 2 Model

Introduction Hydrodynamics Morphodynamics

Vegetation

- 3 Graphics Processing Unit General information
- 4 Research Questions

Overview

Question 1

Question 2

Question 3

Optional

Vegetation model

Components current model

Plant density

Vegetation model

Components current model

- Plant density
 - Dispersal
 - Growth
 - Mortality

Vegetation model

Components current model

- Plant density
 - Dispersal
 - Growth
 - Mortality

$$\frac{\partial n_b}{\partial t} = D \left(\frac{\partial^2 n_b}{\partial x^2} + \frac{\partial^2 n_b}{\partial y^2} \right) + r \left(1 - \frac{n_b}{K} \right) n_b \left(\frac{K_p}{K_p + a} \right)$$
$$- E_p n_b \sqrt{u^2 + v^2}.$$

$$\boldsymbol{\tau}_b = \rho \mathbf{g} \mathbf{u} \| \mathbf{u} \| \frac{1}{C^2}$$

$$\boldsymbol{\tau}_b = \rho \mathbf{g} \mathbf{u} \| \mathbf{u} \| \frac{1}{C^2}$$

- Emergent vegetation
- Submergent vegetation

• Emergent vegetation

$$C_e = \sqrt{\frac{1}{\frac{1}{C_b^2} + \frac{C_D m D a}{2g}}}$$

• Emergent vegetation

$$C_e = \sqrt{\frac{1}{\frac{1}{C_b^2} + \frac{C_D m D a}{2g}}}$$

Figure: Rigid cylinder.

Figure: Four zones in the vertical profile for horizontal velocity.

Figure: Two zones in the vertical profile for horizontal velocity.

Submergent vegetation

$$C_s = \sqrt{rac{1}{rac{1}{C_b^2} + rac{CmDk}{2g}}} + \sqrt{rac{g}{K_0}} \ln\left(rac{a}{k}
ight)$$

Submergent vegetation

$$C_{s} = \sqrt{rac{1}{rac{1}{C_{b}^{2}} + rac{CmDk}{2g}}} + \sqrt{rac{g}{K_{0}}} \ln\left(rac{a}{k}
ight)$$

Current model: C_s

Next Subsection

- 1 Introduction
- Model

Introduction Hydrodynamics Morphodynamics Vegetation

- 3 Graphics Processing Unit General information
- 4 Research Questions

Overview

Question 1

Question 2

Question 3

Optional

Figure: Salt marsh.

A GPU

was designed to support computer graphics

A GPU

- was designed to support computer graphics
- consists of thousands of small, efficient cores, while a CPU consists only of a few cores

A GPU

- was designed to support computer graphics
- consists of thousands of small, efficient cores, while a CPU consists only of a few cores
- takes over tasks of the Central Processing Unit (CPU)

A GPU

- was designed to support computer graphics
- consists of thousands of small, efficient cores, while a CPU consists only of a few cores
- takes over tasks of the Central Processing Unit (CPU)
- is a Single Instruction Multiple Data (SIMD) processor

Need to take into account

Need to take into account

sending information between CPU and GPU is time-consuming

Need to take into account

- sending information between CPU and GPU is time-consuming
- limited memory is available on GPU

Next Subsection

- 1 Introduction
 - Salt marsl
- Model

Introduction
Hydrodynamics
Morphodynamics
Vegetation

- 3 Graphics Processing Unit General information
- 4 Research Questions

Overview

Question 1

Question 2

Question 3

Ontional

Research Questions

How can we improve the current salt marsh model in terms of

• the included processes?

Research Questions

How can we improve the current salt marsh model in terms of

- the included processes?
- the used grid, discretisation and solver?

Research Questions

How can we improve the current salt marsh model in terms of

- the included processes?
- the used grid, discretisation and solver?
- a multi-scale approach?

Next Subsection

- 1 Introduction
- Model

Introduction
Hydrodynamics
Morphodynamics
Vegetation

- 3 Graphics Processing Unit General information
- 4 Research Questions

Overview

Question 1

Question 2

Question 3

Optional

Current model

Input at whole domain

Current model

- Input at whole domain
- No ebb and flood

Current model

Idea

Input at whole domain

Tides

No ebb and flood

Current model

Idea

- Input at whole domain
- No ebb and flood

$$a(t) = M_S + A_S \sin\left(\frac{2\pi t}{T}\right)$$

Figure: Result.

Figure: Current situation.

Current model

 $S_{in}a_{eff}$

Current model

 $S_{in}a_{eff}$

 \rightarrow No small dikes next to tidal creeks

Current model

 $S_{in}a_{eff}$

 \rightarrow No small dikes next to tidal creeks

ldea

Other sedimentation formulation

Current model

 $S_{in}a_{eff}$

 \rightarrow No small dikes next to tidal creeks

Idea

Other sedimentation formulation

Use: transport equation

Research - Processes

Transport equation for mud

$$\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x} + v \frac{\partial c}{\partial y} - \frac{1}{a} \frac{\partial}{\partial x} \left(aD \frac{\partial c}{\partial x} \right) - \frac{1}{a} \frac{\partial}{\partial y} \left(aD \frac{\partial c}{\partial y} \right) - \frac{S}{a} = 0$$

Research - Processes

Transport equation for mud

$$\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x} + v \frac{\partial c}{\partial y} - \frac{1}{a} \frac{\partial}{\partial x} \left(aD \frac{\partial c}{\partial x} \right) - \frac{1}{a} \frac{\partial}{\partial y} \left(aD \frac{\partial c}{\partial y} \right) - \frac{5}{a} = 0$$

- Convection
- Diffusion
- Sources and sinks

Hydrodynamic model

Hydrodynamic model

Wind stress

Hydrodynamic model

Wind stress

$$\frac{\tau_s}{\rho_{\mathsf{air}}} = c_f W^2$$

Hydrodynamic model

Wind stress

$$\frac{\boldsymbol{\tau_s}}{\rho_{\mathsf{air}}} = c_f W^2$$

Morphodynamic model

Hydrodynamic model

Wind stress

$$\frac{\boldsymbol{\tau}_s}{\rho_{\mathsf{air}}} = c_f W^2$$

Morphodynamic model

Sediment mobility not dependent on algae?

Next Subsection

- 1 Introduction
- Model

Introduction
Hydrodynamics
Morphodynamics
Vegetation

- 3 Graphics Processing Unit General information
- 4 Research Questions

Overview

Question 1

Question 2

Question 3

Optional

Figure: \rightarrow , \uparrow : velocity components; \bullet : water depth and bottom elevation.

$$\frac{\partial a}{\partial t} + \frac{\partial}{\partial x}(au) + \frac{\partial}{\partial y}(av) = 0$$

$$\frac{\partial a}{\partial t} + \frac{\partial}{\partial x}(au) + \frac{\partial}{\partial y}(av) = 0$$

$$\frac{da_C}{dt} + \frac{a_E u_E - a_W u_W}{2\Delta x} + \frac{a_N v_N - a_S v_S}{2\Delta y} = 0$$

$$\frac{\partial a}{\partial t} + \frac{\partial}{\partial x}(au) + \frac{\partial}{\partial y}(av) = 0$$

$$\frac{da_C}{dt} + \frac{a_E u_E - a_W u_W}{2\Delta x} + \frac{a_N v_N - a_S v_S}{2\Delta y} = 0$$

Figure: Decoupling in continuity equation.

Advantages staggered grid

Avoid odd-even decoupling

Advantages staggered grid

- Avoid odd-even decoupling
- Smaller number of variables

Advantages staggered grid

- Avoid odd-even decoupling
- Smaller number of variables

Disadvantages

Boundary conditions could be hard

Research - Discretisation

Space discretisation

Research - Discretisation

- Space discretisation
 - Used: finite difference method

Research - Discretisation

- Space discretisation
 - · Used: finite difference method
 - Finite volume method

Next Subsection

- 1 Introduction
 - Salt ma
- Introduction
 - Hydrodynamics Morphodynamics Vegetation
- 3 Graphics Processing Unit
- 4 Research Questions

Overview

Question 1

Question 2

Question 3

Optional

Morphological acceleration factor

Morphological acceleration factor

$$\frac{\partial S}{\partial t} = f_{MOR} \left(\dots \right)$$

Morphological acceleration factor

$$\frac{\partial S}{\partial t} = f_{MOR} \left(\dots \right)$$

Simple: each iteration

Morphological acceleration factor

$$\frac{\partial S}{\partial t} = f_{MOR} \left(\dots \right)$$

- Simple: each iteration
- Complex: hydrodynamic simulation of period T
 → geomorphic simulation of period f_{MOR}T.

Morphological acceleration factor

$$\frac{\partial S}{\partial t} = f_{MOR} \left(\dots \right)$$

- Simple: each iteration
- Complex: hydrodynamic simulation of period T
 → geomorphic simulation of period f_{MOR}T.

Vegetation acceleration factor?

Next Subsection

- 1 Introduction
 - Salt marsh
- Model

Introduction
Hydrodynamics
Morphodynamics
Vegetation

- 3 Graphics Processing Unit
- 4 Research Questions

Overview

Question 1

Question 2

Question 3

Optional

Wetting-drying methods

Figure: Element removal algorithm.

Wetting-drying methods

Figure: Element removal algorithm.

Figure: Negative depth algorithm.

Morphodynamic model

Morphodynamic model

Threshold formulation for sedimentation and erosion?

Morphodynamic model

Threshold formulation for sedimentation and erosion?

$$Sr = w_s C_b \left(1 - rac{ au}{ au_{cr,d}}
ight) \quad ext{when } au < au_{cr,d}$$
 $Er = M \left(rac{ au}{ au_{cr,e}} - 1
ight) \quad ext{when } au > au_{cr,e}$

Optional - Integration

Time integration method

Optional - Integration

Time integration method

• Used: Euler forward

Optional - Integration

Time integration method

- Used: Euler forward
- Implicit

Optional - Multi-space-scale

Vegetation finer grid?

Optional - Multi-space-scale

Vegetation finer grid?

Figure: Coarse and fine grid.

Discussion

Test Problem

(a) Top view "Verdronken Land van Saeftinghe".

(b) Zoomed in on test area.

Figure: Test area.

Result

Figure: Result.

