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Saltmarsh

Figure: Intertidal zone.
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Wanted

Figure: Model area.
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Wanted

Figure: Computational domain.
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Results

Figure: Flow field.

Figure: Salt marsh.
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Overview

Figure: Model components.
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Hydrodynamic model

Figure: Sketch of the relevant variables.

Lotte Peeters (TU Delft) Salt marsh December 17, 2017 12 / 54



Hydrodynamic model

Components current model

• Shallow water equations

• Bottom friction

• Wetting-drying algorithm
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Shallow water equations

Assumed: horizontal distance much larger than vertical

∂u

t
+ u(∇ · u) + g∇h − A(∇ · ∇u) + Su = 0

∂a

∂t
+∇au = 0

u = (u, v)T

• One layer

• No wind stress

• No Coriolis forces
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Wetting drying algorithm

Simple thin film algorithm with loss of conservation

Fluid over the entire computational domain

a = max(a,Hcrit)

Figure: Thin film algorithm.

→ SWE can be applied to each grid point.
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Bottom friction

Bottom friction

τττb = ρgu‖u‖ 1

C 2

in which C represents the Chézy coefficient.
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Morphodynamic model

Figure: Sediment transport.

• Cohesive (mud) or non-cohesive (sand/bed load)
• Cohesive sediments form larger particles
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Morphodynamic model

Components current model

• Bed elevation

• Sedimentation
• Erosion
• Diffusion

∂S

∂t
= Sinaeff − E

(
1− pE

nb

K

)
(u2 + v2)S + Dif (S , nb).
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Vegetation model

Components current model

• Plant density

• Dispersal
• Growth
• Mortality

∂nb

∂t
= D

(
∂2nb

∂x2
+
∂2nb

∂y2

)
+ r

(
1− nb

K

)
nb

(
Kp

Kp + a

)

− Epnb

√
u2 + v2.
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Friction coefficients

τττb = ρgu‖u‖ 1

C 2

• Emergent vegetation

• Submergent vegetation
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Friction coefficients
• Emergent vegetation

Ce =

√√√√ 1
1

C2
b

+ CD mDa
2g

Figure: Rigid cylinder.
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Friction coefficients

Figure: Four zones in the vertical profile for horizontal velocity.
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Friction coefficients

Figure: Two zones in the vertical profile for horizontal velocity.
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Friction coefficients

• Submergent vegetation

Cs =

√
1

1
C2

b
+ CmDk

2g

+

√
g

K0
ln
( a
k

)

Current model: Cs
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Graphics processing unit

Figure: Salt marsh.
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Graphics processing unit

A GPU

• was designed to support computer graphics

• consists of thousands of small, efficient cores, while a CPU
consists only of a few cores

• takes over tasks of the Central Processing Unit (CPU)

• is a Single Instruction Multiple Data (SIMD) processor
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Graphics processing unit

Need to take into account

• sending information between CPU and GPU is time-consuming

• limited memory is available on GPU
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Research Questions

How can we improve the current salt marsh model in terms of

• the included processes?

• the used grid, discretisation and solver?

• a multi-scale approach?
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Research - Processes

Current model

• Input at whole domain

• No ebb and flood

Idea

Tides

a(t) = MS + AS sin

(
2πt

T

)
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Research - Processes

Figure: Result.
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Research - Processes

Figure: Current situation.

Figure: Wanted situation.
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Research - Processes

Figure: Current situation. Figure: Wanted situation.
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Research - Processes

Current model

Sinaeff

→ No small dikes
next to tidal creeks

Idea

Other sedimentation formulation

Use: transport equation
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Research - Processes

Transport equation for mud

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
− 1

a

∂

∂x

(
aD

∂c

∂x

)
− 1

a

∂

∂y

(
aD

∂c

∂y

)
− S

a
= 0

• Convection

• Diffusion

• Sources and sinks
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Optional - Processes

Hydrodynamic model

• Wind stress
τττ s

ρair
= cf W

2

Morphodynamic model

• Sediment mobility not dependent on algae?
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Research - Grid

(a) Collocated grid (b) Staggered grid

Figure: →, ↑: velocity components; •: water depth and bottom elevation.
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Research - Grid

∂a

∂t
+

∂

∂x
(au) +

∂

∂y
(av) = 0

daC

dt
+

aEuE − aW uW

2∆x
+

aNvN − aSvS

2∆y
= 0

Figure: Decoupling in continuity equation.
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Research - Grid

Advantages staggered grid

• Avoid odd-even decoupling

• Smaller number of variables

Disadvantages

• Boundary conditions could be hard
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Research - Discretisation

• Space discretisation

• Used: finite difference method
• Finite volume method
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Research - Multi-time-scale

• Morphological acceleration factor

∂S

∂t
= fMOR (. . . . . . )

• Simple: each iteration

• Complex: hydrodynamic simulation of period T
→ geomorphic simulation of period fMORT .

• Vegetation acceleration factor?
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Optional - Processes
Wetting-drying methods

Figure: Element removal algorithm.

Figure: Negative depth algorithm.
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Optional - Processes

Morphodynamic model

• Threshold formulation for sedimentation and erosion?

Sr = wsCb

(
1− τ

τcr ,d

)
when τ < τcr ,d

Er = M

(
τ

τcr ,e
− 1

)
when τ > τcr ,e
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Optional - Integration

Time integration method

• Used: Euler forward

• Implicit
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Optional - Multi-space-scale

• Vegetation finer grid?

Figure: Coarse and fine grid.
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Discussion
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Test Problem

(a) Top view ”Verdronken Land van
Saeftinghe”.

(b) Zoomed in on test
area.

Figure: Test area.
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Result

Figure: Result.
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