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Summary

The subject of this thesis is the computation of bubbly flows. Bubbly flows
occur for example in chemical reactors, boiling, fuel injectors and coating. The
bubbles and the surrounding fluid are modeled directly without phase averaging.
This is the most fundamental approach to the mathematical modeling of two-
phase flows. Every bubble is modeled in great detail. Since the model is so
demanding, an efficient numerical approach has to be taken. This work aims
to develop an efficient, robust method for the direct numerical simulation of
two-phase flows.

We consider two incompressible fluids (e.g. air and water) that are separated
by an interface. The interface is a moving, internal boundary, where density
and viscosity change discontinuously and surface tension forces act. Since the
interface moves with the local velocity, the location of the interface is part of the
problem. This makes it a moving (internal) boundary problem. The fluids on
either side of the interface are, mathematically, coupled by interface conditions.

When the governing equations are discretized, the question arises how to
deal with this interface. Various methods have been put forward to treat mov-
ing boundary problems. The two methods that are of most interest are the
so-called Volume-of-Fluid method and the Level-Set method. With both meth-
ods, a coloring function is used to identify the individual phase. The interface
is implicitly defined, which allows arbitrarily shaped interfaces and topology
changes (break-up and merging). The interface is evolved by advecting the col-
oring function in the flow field as if it is a material property. Due to the specific
choice of the coloring function, the Level-Set method has some advantages over
the Volume-of-Fluid method and has been chosen as the basis of this work.
However, the Level-Set method does not conserve the mass of the individual
phase, which is considered the major drawback of the method. The Volume-of-
Fluid method on the other hand is rigorously mass conserving, but difficult to
implement. Therefore the coloring function of the Volume-of-Fluid method (the
Volume-of-Fluid function) is only used to conserve mass. This is achieved with-
out encountering the difficulties associated with the Volume-of-Fluid method.

The strategy of modeling bubbly flows is to compute the flow with a given
interface position and to subsequently evolve the interface in the given flow
field. The governing equations are discretized by a finite difference approach on
a Cartesian grid in a rectangular domain. The viscosity is regularized to de-
couple the interface conditions. For the interface forces the Continuous Surface
Force approach is adopted, where the interface forces are smeared out near the
interface. The Ghost-Fluid method for incompressible flows is used to compute
derivatives near the interface. The pressure correction method is used for the
temporal discretization of the flow equations.

The advection of the interface is the key part of this thesis, for which the
Level-Set approach is chosen. To ensure mass conservation, additional effort is
necessary and in this research the Volume-of-Fluid function is used to conserve
mass. Firstly, pure Level-Set advection is applied. Then, in order to conserve
mass, corrections to the Level-Set function are made by using a Volume-of-Fluid



function. For that purpose an explicit relation between the Level-Set function
and the Volume-of-Fluid function is derived. This relation is also used to advect
the Volume-of-Fluid function, which circumvents the difficult convection step of
the Volume-of-Fluid method. A simple iterative procedure is used to find the
corrections to the Level-Set function, such that mass is conserved. Operator
splitting is employed in the advection step and can, unfortunately, cause un-
physical values of the Volume-of Fluid function. This is addressed by means of
mass redistribution, where erroneous mass is transported towards the nearest
interface location.

Since interface forces and viscosity are regularized near the interface, the
Level-Set function is made a distance function every time-step by performing
a re-initialization procedure. The difficulty with re-initialization is that the
interface shifts during the process and hence (additional) mass errors are made.
The re-initialization procedure is modified to overcome this.

The curvature of the interface has to be computed for the modeling of surface
tension effects. This means that first and second order derivatives of the Level-
Set function need to be determined. Since local corrections to the Level-Set
function are made near the interface in order to conserve mass, problems arise
when these derivatives are computed. This results in parasitic currents. To
reduce these currents, the corrections to the Level-Set function are made smaller
by introducing a start criterion in the re-initialization procedure. Besides that,
the currents are reduced even further by smoothing of the computed curvature.

The behavior of the resulting mass-conserving Level-Set approach is investi-
gated by computing several standard advection test problems with a prescribed
velocity field. Results are compared with pure, high order Level-Set advection.
The method is applied to the complete set of equations by considering a falling
drop and a rising bubble in two and three dimensions, respectively. Merging of
rising bubbles is studied for two aligned and two misaligned bubbles. Compar-
ison with other numerical work and experimental data is made.

This thesis finishes with concluding remarks and recommendations for future
research.



Berekeningen van Stromingen met Bellen met een

Massa-Behoudende Level-Set Methode

Samenvatting

Het onderwerp van dit proefschrift is de berekening van stromingen met bellen.
Stromingen met bellen komen voor in bijvoorbeeld chemische reactors, koken,
brandstofinspuiting en coating. De bellen en omringende vloeistof worden direct
gemodeleerd zonder fase-middeling. Dit is de meest fundamentele aanpak om
tweefase stromingen wiskundig te beschrijven. Elke bel wordt in detail gemod-
eleerd. Omdat het model zo veeleisend is moet een efficiënte numerieke aanpak
genomen worden. Dit werk richt zich op de ontwikkeling van een efficiënte,
robuste methode voor de directe numerieke simulatie van tweefase stromingen.

We beschouwen twee incompressibele vloeistoffen (bijv. lucht en water) die
gescheiden worden door een interface. Het interface is een bewegende, inwendige
rand, waar dichtheid en viscositeit discontinu veranderen en oppervlaktespan-
nings krachten werken. Omdat het interface met de lokale snelheid meebeweegt,
is de positie van het interface een deel van het probleem. Dit maakt het tot
een bewegend (inwendige) rand probleem. De vloeistoffen aan elke kant van het
interface zijn, wiskundig gezien, gekoppeld door interface condities.

Wanneer de beschrijvende vergelijkingen gediscretiseerd worden, rijst de
vraag hoe met het interface omgaan moet worden. Er zijn verschillende metho-
den voor bewegende-rand problemen. De twee interessantste methoden zijn de
zogenaamde Volume-of-Fluid en Level-Set methode. Bij beide methoden wordt
een markeringsfunctie gebruikt om elke afzonderlijke fase aan te geven. Het
interface is impliciet gedefinieerd, wat willekeurig gevormde interfaces en veran-
deringen van topologie (uiteen breken en fuseren) toestaat. Het interface wordt
verplaats door de markeringsfunctie te advecteren in het stromingsveld alsof het
een materiaaleigenschap is. Door de specifieke keuze van de markeringsfunctie
heeft de Level-Set methode voordelen ten opzichte van de Volume-of-Fluid meth-
ode. Daarom is de Level-Set methode gekozen als basis voor dit werk. Echter, de
Level-Set methode behoudt niet de massa van elke afzonderlijke fase; dit wordt
gezien als het voornaamste nadeel van deze methode. Aan de andere kant is
de Volume-of-Fluid methode strikt massa-behoudend, maar moeilijk om te im-
plementeren. Daarom is de markeringsfunctie van de Volume-of-Fluid methode
(de Volume-of-Fluid functie) alleen gebruikt om massa te behouden. Dit is be-
werkstelligd onder vermijding van de moeilijkheden die verbonden zijn aan de
Volume-of-Fluid methode.

De strategie voor het modeleren van stromingen met bellen is om de stro-
ming te berekenen met een gegeven interface positie en vervolgens het interface
te verplaatsten in het gegeven stromingsveld. De beschrijvende vergelijkingen
worden gediscretiseerd met eindige differenties op een Cartesisch rooster in een
rechthoekig domein. De viscositeit is geregulariseerd om de interface condities
te ontkoppelen. Voor de interface krachten is de ‘Continuous Surface Force’ aan-



pak gebruikt, waarbij de interface krachten uitgesmeerd worden bij het interface.
De ‘Ghost-Fluid’ methode voor incompressibele stromingen wordt gebruikt om
afgeleiden van de druk bij het interface uit te rekenen. De ‘pressure correction’
methode wordt gebruikt bij de tijdsdiscretisatie van de stromingsvergelijkingen.

Het belangrijkste deel van deze dissertatie is de advectie van het interface,
waarvoor de Level-Set aanpak gekozen is. Er is extra inspanning nodig om
massa te behouden en in dit werk wordt daarvoor de Volume-of-Fluid functie
gebruikt. Eerst wordt een pure Level-Set advectie stap gedaan. Daarna worden
om massa te behouden correcties gemaakt op de Level-Set functie door gebruik
te maken van de Volume-of-Fluid function. Hiervoor wordt een expliciete relatie
afgeleid tussen de Level-Set functie en de Volume-of-Fluid functie. Deze relatie
wordt tevens gebruikt om de Volume-of-Fluid functie te advecteren, waarmee de
moeilijke advectie stap van de Volume-of-Fluid methode vermeden wordt. Een
simpele iteratie procedure wordt gebruikt om correcties op de Level-Set functie
te vinden, zodanig dat massa behouden blijft. In de advectie stap wordt de
operator gesplitst en dit kan, helaas, ongeldige waarden van de Volume-of-Fluid
veroorzaken. Dit wordt verholpen door massa redistributie, waarbij foutieve
massa getransporteerd wordt in de richting van het meest nabije interface.

Omdat de interface krachten en viscositeit geregulariseerd worden bij het
interface, wordt van de Level-Set functie voor elke tijdstap een afstandsfunctie
gemaakt door een rëıninitialisatie procedure uit te voeren. De moeilijkheid met
rëınitialisatie is dat het interface tijdens het proces verschuift, waardoor (extra)
massa verloren of gewonnen wordt. Om dit te verhelpen is de rëınitialisatie
procedure aangepast in Hoofdstuk 6.

De kromtestraal van het interface moet uitgerekend worden om effecten van
oppervlaktespanning te kunnen modeleren. Dit betekent dat eerste en tweede
afgeleiden van de Level-Set functie bepaald moeten worden. Omdat lokaal bij
het interface correcties op de Level-Set functies gemaakt worden om massa te
behouden, rijzen er problemen wanneer die afgeleiden berekend worden. Dit
resulteert in parasitaire stromingen. Om die stromingen te reduceren worden
de correcties op de Level-Set functie kleiner gemaakt door het introduceren van
een begin criterium in de rëınitialisatie procedure. Bovendien worden de para-
sitaire stromingen nog verder gereduceerd door het gladstrijken van de berek-
ende kromtestralen.

Het gedrag van de massa-behoudende Level-Set aanpak wordt gëıllustreerd
aan de hand van standaard advectie tests met een voorgeschreven snelheidsveld.
De resultaten worden vergeleken met pure, hogere orde Level-Set advectie. De
methode wordt toegepast op de volledige set vergelijkingen door te kijken naar
een vallende druppel en stijgende bel in twee en drie dimensies, respectievelijk.
Het samengaan van stijgende bellen wordt bestudeerd met twee uitgelijnde
bellen en twee niet-uitgelijnde bellen. Er wordt vergeleken met ander numeriek
werk en experimentele data.

Deze dissertatie eindigt met afsluitende opmerkingen en aanbevelingen voor
toekomstig onderzoek.
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Chapter 1

Introduction

Modeling of multi-phase flows is a major challenge for Computational Fluid
Dynamics (CFD). Multi-phase flows occur commonly in engineering fluid me-
chanics. Chemical reactors, boiling, fuel injectors and coating are a few exam-
ples from petrochemical industry. Naval engineering is another example, where
complex multi-phase flows have to be addressed, mostly in relation to the phe-
nomenon of cavitation.

It will be clear from the preceding examples that multi-phase flows cover
a wide range of application areas. Although mathematically equivalent, there
exist large differences in characteristic length, time and velocity scales. From
a modeling point of view it is important to firstly narrow down the region of
interest: in this thesis the modeling of small-scale two-phase flows, such as
falling water droplets in air and rising air bubbles in water, are considered.
This is relevant for e.g. bubble columns, that are often used as a mixing and
mass transfer device in chemical industry. To improve their design, a sound
knowledge of the dynamics of individual bubbles is necessary.

There exist a hierarchy of multi-phase flow models. The highest level is the
multi-fluid or two-fluid model. A continuum approach is taken based on the
concentrations of the phases within a control volume. The governing equations
are obtained by volume averaging. Small-scale information is lost and additional
modeling or ‘constitutive equations’ are needed for the closure of the model. The
constitutive equations are uncertain and form the weak point of the two-fluid
model. In principle an arbitrary number of bubbles or droplets can be modeled,
as long as the continuity hypothesis holds. This makes the two-fluid model
interesting for industrial applications.

A lower level approach is the ‘Discrete Bubble Model’ where a continuum
approach is used for one phase (e.g. water) and particles are used to model the
bubbles. Constitutive relations are needed that express the forces acting on the
bubbles. These forces are complex and the formulation is not well-established.
Since every individual droplet or bubble is tracked, the maximum number is
limited.

The lowest level approach is the direct description of the individual phases.

1
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Figure 1.1: Coalescence of two bubbles

No closure modeling is needed. Only a small number of bubbles can be modeled,
since each bubble is modeled in great detail. The direct description is therefore
not commonly used for industrial applications. It is used for the validation of
the closure relations of the higher-level models. On the other hand, such small
scales do not require any kind of turbulence modeling as the flow is laminar.
Since the model is so demanding, an efficient numerical approach has to be
taken. This work aims to develop an efficient, robust method for the direct
numerical simulation (DNS) of multi-phase flows.

The direct modeling of the two phases is as follows: there exist two incom-
pressible fluids (e.g. air and water) that are separated by an interface. The
interface is a moving, internal boundary, where density and viscosity change
discontinuously and surface tension forces act. Mathematically speaking, this
is expressed by interface conditions.

The dynamics of the flow are governed by buoyancy and surface tension
effects. The bubbles might collide and brake up. This means that the topology
of the interface is arbitrary. An example is shown in Fig. 1.1, where rising
bubbles collide. A numerical method has to be able to locate the interface,
advect it and apply the interface conditions. The focus of this research is on a
efficient, robust way to deal with the interface.

1.1 Outline

The mathematical model is described in Chapter 2. The governing equations
and interface conditions will be presented. The treatment of the interface dis-
continuities and surface tension forces is given and motivated.

In Chapter 3 a review of moving boundary methods that are available from
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literature is presented. This will mainly focus on the ‘Volume-of-Fluid’ method
and the ‘Level-Set’ method. These two methods are of most interest for this
research. A motivation for the Level-Set method as basis of this work will be
given. It will become clear that the major disadvantage of the Level-Set method
is that it does not conserve the mass of each individual phase.

The numerical approach is presented in Chapter 4. It deals with the dis-
cretization of the flow equations, application of the interface conditions and
time integration. The interface advection is discussed in Chapter 5. Firstly the
pure Level-Set advection is studied. Thereafter the ‘Mass Conserving Level-Set’
method is presented.

So-called re-initialization is commonly used in Level-Set methods. A simple
modification of the original procedure, such that it suits the ‘Mass Conserving
Level-Set’ method better, is discussed in Chapter 6. Incorporation of surface
tension is the subject of Chapter 7. The effect of the ‘Mass-Conserving Level-
Set’ method is investigated by considering the Laplace test-case.

Applications are shown in Chapter 8. Two- and three-dimensional test cases
are included. Advection tests are used to show the properties of the ‘Mass-
Conserving Level-Set’ approach. The method is applied to a falling droplet and
rising bubble in two and three dimensions. Merging of bubbles is illustrated by
considering two aligned and two misaligned rising bubbles.





Chapter 2

Mathematical Model

2.1 Introduction

In this research the modeling of two incompressible fluids that are separated
by an interface is considered. The flow is described by a velocity field u and
pressure p. Since the interface moves with the local velocity u, the location of
the interface is part of the problem. This makes it a moving (internal) boundary
problem.

The fluids on either side of the interface are, mathematically, coupled by
interface conditions. These interface conditions express continuity of velocity
and total stress. The fluids have different density ρ and viscosity µ, and surface
tension forces act at the interface. In other words, the material properties are
discontinuous. From a numerical point of view, an important simplification of
the interface conditions is achieved by regularizing the viscosity. Similarly, the
interface forces are mollified and effectively distributed to a bounded region
around the interface.

2.2 Governing equations

Consider two fluids labeled ‘0’ and ‘1’ in a domain Ω ∈ IR3 which are separated
by an interface S. Both fluids are assumed to be incompressible, i.e.:

∇ · u = 0, (2.1)

where u = (u, v, w)t is the velocity vector. The flow is governed by the incom-
pressible Navier-Stokes equations:

∂u
∂t
+ u · ∇u = −1

ρ
∇p+ 1

ρ
∇ · µ (∇u+∇ut

)
+ g, (2.2)

where ρ, p, µ and g are the density, pressure, viscosity and gravity vector
respectively. The density and viscosity are constant within each fluid. When a

5
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x y

χ
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0

Figure 2.1: Color function χ

color function χ is introduced as (see Fig. 2.1 for an example)

χ =
{
0, fluid ‘0’,
1, fluid ‘1’, (2.3)

then the density can be expressed as

ρ = ρ0 + (ρ1 − ρ0)χ (2.4)

and the viscosity as
µ = µ0 + (µ1 − µ0)χ. (2.5)

2.3 Surface tension

Cohesive forces act between the fluid molecules. The molecules at the interface
do not have the same type of neighboring molecules on all sides, which results
in surface tension. In this research surface tension is modeled on a macroscopic
level. Consider an interface element A as depicted in Fig. 2.2. It is assumed that
a constant surface tension σ acts in a direction tangential to A and perpendicular
to a tangent of ∂A. The force f acting on A is then

f =
∮
∂A

σt dl. (2.6)

The unit vector t can be written as

t = s× n, (2.7)
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∂A
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t

Figure 2.2: Surface tension acting on interface element A

where s is a unit vector tangential the the interface and n is a unit vector normal
to A. Substitution yields

f =
∮
∂A

σs × ndl. (2.8)

Application of the curl theorem results in

f =
∫
A

σ(n ×∇)× n dA. (2.9)

Assume that n is not only defined on the interface A but anywhere in IR3. Then
the following relation can be derived

(n ×∇)× n = ∇(1
2
‖n‖2)− n∇ · n. (2.10)

Substituting this in f and using ‖n‖ = 1 finally shows that

f = −
∫
A

σκn dA, (2.11)

where κ = ∇ · n is the mean curvature of the interface A. Obviously, surface
tension causes a force normal to the interface of magnitude σκ.

2.4 Interface boundary conditions

The interface boundary conditions express continuity of mass and momentum
at the interface (which can be found in any relevant textbook, but see e.g.
Tryggvason et al. [4] for a recent reference):

[u] = 0 (2.12)[
pn+ µ(∇u+∇ut) · n] = σκn (2.13)

where the brackets denote jumps across the interface, n is a normal vector at
the interface, σ is the surface tension coefficient and κ is the curvature of the
interface.



8 CHAPTER 2. MATHEMATICAL MODEL

2.5 Regularization of viscosity

The interface conditions (2.13) show that the jump conditions for pressure and
velocity are coupled. Furthermore, Li and Lai [5]) show that although the
velocity is continuous at the interface, the velocity gradients are not. If s is
a vector parallel to the interface, un = n · u is the interface normal velocity
component and us = s · u a velocity component parallel to the interface, then[

∂un
∂n

]
= 0,

[
∂un
∂s

]
= 0,

[
∂us
∂n

]
= −[µ]∂un

∂s
,

[
∂us
∂s

]
= 0.

(2.14)

But note that if the viscosity µ is continuous at the interface, Eqn. (2.14) shows
that the derivatives of the velocity components are continuous too. In that case
Eqn. (2.13) reduces to

[∇u] = 0, (2.15)
[p] = σκ. (2.16)

This means that, besides that the velocity gradients are continuous at the inter-
face, the jump conditions for pressure and velocity are decoupled, which are two
major advantages for the numerical treatment of the moving boundary problem.
Therefore the viscosity is made continuous by mollifying χ in expression (2.5),
see Fig. 2.3:

µ = µ0 + (µ1 − µ0)χα. (2.17)

2.6 Continuous Surface Force (CSF)

The surface tension force contributes to a pressure jump σκ at the interface,
as shown by Eqn. (2.16). This is numerically hard to treat, since the pressure
becomes discontinuous. Instead of exactly taking into account the pressure jump
at the interface due to the surface tension forces, the continuous surface force
(CSF, Brackbill et al. [6]) methodology is adopted.

Two different ways in approaching multi-phase flows can be distinguished.
The first considers each fluid or phase separately, having its own set of governing
equations. The different fluids or phases are coupled by interface conditions.
The other way is to look at the flow in whole and take into account the interface
surface forces and (discontinuously) varying material constants. This is called
the continuum approach. Eqn. (2.2) is then usually rewritten as:

∂u
∂t
+ u · ∇u = −1

ρ
∇p+ 1

ρ
∇ · µ (∇u+∇ut

)
+ g+

1
ρ
fs, (2.18)



2.6. CONTINUOUS SURFACE FORCE (CSF) 9

x y

1

0

α

χα

Figure 2.3: Regularized color function χα

where fs is the surface tension force that acts at the interface only. Eqn. (2.18)
now holds in the whole domain and the interface conditions follow from the
proper prescription of fs. It is shown by Brackbill et al. [6] that the surface
tension force can be expressed as:

fs =
ρ

1
2 (ρ0 + ρ1)

σκδ(d)n, (2.19)

where δ is the Dirac delta function, d measures the nearest distance to the in-
terface and n is the normal to the interface. The Dirac delta function illustrates
that the surface tension force is a singular volume force.

The surface tension force can be formally rewritten as:

fs =
ρ

1
2 (ρ0 + ρ1)

σκ lim
α→0

∇χα, (2.20)

where α is the (vanishing) transition width of the mollified color function χα.
The limit α → 0 illustrates that the surface tension force acts at the interface
only. With the CSF approach, the surface tension forces are smeared out around
the interface by keeping the transition width to some non-vanishing value, i.e.
α > 0:

fs =
ρ

1
2 (ρ0 + ρ1)

σκ∇χα. (2.21)

This is equivalent to regularizing the Dirac delta function in Eqn. (2.20) (see
Fig. 2.4):

fs =
ρ

1
2 (ρ0 + ρ1)

σκδα(d)n. (2.22)

The consequence is that the pressure jump is now smeared out over the transi-
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δα

d

Figure 2.4: Regularized Dirac delta function δα

tion region α. Since the pressure is forced to be continuous, the jump condition
for the pressure becomes

[p] = 0. (2.23)

The way the color function χ or the Dirac delta function δ are regularized varies
for the different moving boundary methods. This also holds for the curvature κ
and interface normal n.

2.7 Initial and Boundary conditions

In this work a rectangular domain is considered that is bounded by solid, rigid
walls. Therefore no-slip boundary conditions are used for the velocity vector u,
i.e.:

u = 0, at the wall (2.24)

and no boundary conditions have to be prescribed for the pressure p. Further-
more, the contact angle between the interface and the bounding wall has to be
prescribed. A proper description of this angle requires the physical modeling of
so-called wall adhesion (see e.g. Brackbill et al. [6]). It is not a material prop-
erty of the fluid, but depends on for example the wall roughness. It becomes
even more complicated when the interface is in motion. Since wall adhesion is
not the focus of this research, it is assumed that the interface is perpendicular
to the bounding walls.

The simulations presented in this work are started from rest with some
prescribed interface position. This means that the initial condition for the
velocity is u = 0. No initial conditions are required for the pressure p. Note
that the initial conditions are in agreement with the boundary conditions.



Chapter 3

Moving Boundary methods

3.1 Introduction

The mathematical model of the moving boundary problem has been presented
in the previous chapter. There exist a moving, internal boundary in the domain,
that is modeled as an interface. When the governing equations are discretized,
the question remains how to deal with this interface.

The moving boundary problem can be formulated in a Lagrangian way, Eule-
rian way or a combination of both. The Lagrangian and combined formulations
lead to moving, boundary conforming meshes. These are cumbersome for simu-
lating large numbers of arbitrarily shaped interfaces. This technique is therefore
not very suitable for the present work and will not be considered any further.

With an Eulerian formulation on the other hand (see Eqns. (2.1) and (2.2)),
the computations are performed on a fixed mesh. Within the fixed mesh, an
interface exists, where density and viscosity are discontinuous and surface ten-
sion forces act. Three fundamental issues are associated with the numerical
treatment of the interface (see Shyy et al. [7]):

1. the discrete representation,

2. the evolution in time,

3. the manner in which interface boundary conditions are imposed.

Various methods have been put forward to treat moving boundary problems. A
classification is presented in Table 3.1.

3.2 Capturing

With capturing methods the interface is seen as a contact discontinuity. The
interface is defined in the initial conditions only. It is captured afterwards
by techniques similar to shock-capturing methods for compressible flow. The

11
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1. capturing methods

2. tracking methods

(a) front tracking

i. hybrid front-tracking front-capturing

ii. immersed boundary

iii. cut-cell

(b) volume tracking

i. marker and cell (MAC)

ii. volume of fluid (VOF)

A. Hirt-Nichol’s VOF

B. simple line interface calculation (SLIC)

C. piecewise linear interface calculation (PLIC)

• Eulerian interface advection

• Lagrangian interface advection

D. Flux-Corrected Transport (FCT)

E. Constrained Interpolation Profile (CIP)

iii. Level-Set

iv. coupled Level-Set Volume-of-Fluid (CLSVOF)

Table 3.1: Classification of free-boundary methods
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biggest drawback is the so-called convective averaging: convective flux calcula-
tion requires an averaging of the flow properties of all fluid elements in a given
computational cell. This results in smoothing of variations and smearing of
discontinuities. It is not considered any further.

3.3 Front tracking

With tracking methods, additional effort is made to explicitly locate the inter-
face. The front-tracking method (Unverdi and Tryggvason [8], Tryggvason et al.
[4]) and the closely related immersed boundary method (Lai and Peskin [9]) use
a fixed mesh to solve the model equations, but use moving interface meshes to
explicitly track the interface. The interface conditions are satisfied by regular-
izing (smoothing) the interface discontinuities and interpolating interface forces
from the interface grid to the fixed grid. For this purpose, the interface forces
are transformed into volume forces and distributed over a zone with non-zero
width. This is sometimes referred to as the continuous surface force (CSF) ap-
proach (Brackbill et al. [6]). In the cut-cell approach (Udaykumar et al. [10],
Ye et al [11]) on the other hand, the interface conditions are satisfied without
smoothing of the interface.

3.4 Volume tracking

The interface grid will be difficult to evaluate when the interface has arbitrary
shape and topology. Therefore the volume tracking methodology is preferred
for the present research. Instead of tracking the interface, to every fluid a
color is uniquely assigned. The change of color implicitly defines the interface.
The advantage is that coalescence and changes in topology are automatically
accounted for.

In case of the Marker-and-Cell method (Harlow and Welch [12]), the fluids
are colored by marker particles. The particles are initially distributed in the
fluids and subsequently advected by the fluid flow in a Lagrangian way (see
Fig. 3.1):

dx(t)
dt

= u(x, t), (3.1)

where x is the position of a particle and u is the velocity vector inside the flow-
field. The method has been applied to free-surface flows in [12], where pressure
boundary conditions are specified at the free surface.

In the Volume-of-Fluid and Level-Set methods, a coloring function, say Φ is
used to identify the separate fluids. The function is (in principle) advected in
an Eulerian way:

∂Φ
∂t

+∇ · (Φu) = 0. (3.2)

With the Volume-of-Fluid method, the coloring function measures the fractional
volume of a certain fluid within a computational cell. It has a step-like behav-
ior. The major advantage of VOF methods is that the masses of each fluid
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(a) initial distribution (b) instantaneous distribution

Figure 3.1: Marker particles; Marker-and-Cell method

are conserved, provided the discretization is conservative. On the other hand,
the step-like behavior of the coloring function makes the advection elaborate.
Besides that, interface normals and curvature are not easily computed.

With the Level-Set method, the interface is defined by the zero-level set of a
coloring function. It is chosen such that it is smooth near the interface. Methods
available from hyperbolic conservation laws can be used to advect the interface.
When the coloring function is sufficiently smooth, the interface normal directions
and curvature can easily be computed. The major disadvantage is that it is not
rigorously mass-conserving. This means that additional effort is necessary to
conserve mass, or at least to improve mass conservation. The CLSVOF method
combines the Level-Set method with a Volume-of-Fluid method (Sussman and
Puckett [13, 14]) to improve mass conservation. The Hybrid Particle Level Set
Method ([15, 16]) uses additional marker particles.

3.4.1 Volume-of-Fluid method

We will give a brief description of the Volume-of-Fluid method. For more de-
tailed descriptions see references [17–33]. The Volume-of-Fluid method is a
volume-tracking method. The interface is implicitly defined by the Volume-of-
Fluid function Ψ. This function measures the fractional volume of a certain fluid
in a computational cell. The Volume-of-Fluid function has a step-like behavior:
it can be zero, one or somewhere in between if the computational cell contains
the interface. These cells are called mixed cells.

Following Hirt and Nichols [19], Popinet and Zaleski [21], Gueyffier et al.
[23] and Rider and Kothe [24], a characteristic function χ is introduced. It has
value 0 in fluid ‘0’ and 1 in fluid ‘1’. The Volume-of-Fluid function is therefore:

Ψ(xk) =
1

vol(Ωk)

∫
Ωk

χ dΩ, (3.3)

where Ωk is a computational cell and xk the corresponding node. To find an
evolution equation for Ψ, first consider a fluid particle that moves with the
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x

Ψ

0

1

Figure 3.2: One-dimensional example of fractional volume Ψ; loss of interface
definition after time step

flow-field:
dx(t)
dt

= u(x, t). (3.4)

Since the particle does not cross the interface, the value of χ of the particle
remains constant:

χ(x(t), t) = constant, (3.5)

from which follows
∂χ

∂t
+ u · ∇χ = 0. (3.6)

From Eqn. (3.3) follows:

dΨ(xk)
dt

=
1

vol(Ωk)

∫
Ωk

dχ
dt
dΩ = − 1

vol(Ωk)

∫
Ωk

u · ∇χ dΩ. (3.7)

If we use ∇ · u = 0:
dΨ(xk)
dt

= − 1
vol(Ωk)

∫
Ωk

∇ · (χu) dΩ = − 1
vol(Ωk)

∫
∂Ωk

χu · n dS. (3.8)

Mixed cells (0 < Ψ < 1) may only exist when the interface intersects the com-
putational cell (step-like behavior). In that sense the Volume-of-Fluid function
is not allowed to smear out, it has to remain sharp near the interface. This is
required to maintain a good interface representation (Rudman [25]). So special
care has to be taken when Eqn. (3.8) is discretized. As an example, Fig. 3.2 illus-
trates a careless application of a flux approximation scheme. Due to numerical
diffusion, there are multiple mixed cells and the interface becomes ill-defined.

Maintaining a sharp interface is basically achieved in two essentially different
ways. First of all, the fluxes in Eqn. (3.8) can be approximated by adopting
algebraic methods which preserve the discontinuity of Ψ. The Flux-Corrected-
Transport (FCT, Boris and Book [34], Zalesak [17], Rudman [25]) method serves
this goal. The Constrained Interpolation Profile (CIP, Yabe et al. [35]) method
can also be used as an algebraic advection procedure.
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Figure 3.3: Donating region (hatched) defined by instantaneous streamlines
(dashed) for right-hand-side face of a mixed cell

Alternatively, the fluxes can be approximated in a geometric way. Firstly,
the interface is reconstructed within a mixed cell from the distribution of Ψ, see
Fig. 3.3. This could then be seen as an approximation for χ in the mixed cell,
which has value 0 on one side of the interface and 1 on the other. The fluxes
are computed in a geometrical manner. Within a computational cell, a donating
region is defined, which is the part of the mixed cell containing fluid that will
be fluxed through a certain cell boundary (face) during a period of time (time
step), see Fig. 3.3. Assuming constant flow during a period of time ∆t (time
step), fluid enclosed by the limiting stream-lines will eventually flow through
the face. The intersection of the donating region with the interface divides the
total amount of fluxed fluid into a contribution from ‘fluid 0’ (χ = 0 ) and ‘fluid
1’ (χ = 1). Note that each part of the boundary of a computational cell (face)
has its own donating region.

The latter methods, based on a geometric flux computation, can be further
classified according to the interface approximation employed (see Table 3.1). In
case of ‘simple line interface calculation’ (SLIC, Noh and Woodward [18], ) and
‘Hirt-Nichol’s VOF’ method (Hirt and Nichols [19]), the interface is assumed
to be aligned to a coordinate direction. ‘Hirt-Nichol’s VOF’ also allows stair-
stepped interfaces within a mixed cell. For these two methods, the volume fluxes
can be expressed algebraically, without the need of interface reconstruction. In
case of ‘piecewise linear interface calculation’ methods (PLIC, see References
[22–26,29–33]), the interface inside a mixed cell is approximated by a line in
two dimensions or plane surface in three dimensions. Unlike Hirt-Nichol’s VOF
and SLIC, the interface can acquire any orientation in a mixed cell with PLIC.

The methodology of PLIC is indicated in Table 3.2. By estimation of a nor-
mal direction to the interface inside a computational cell (stage 1), the interface
can be reconstructed (stage 2). The volume fraction Ψ is updated by advecting
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Figure 3.4: Interface reconstruction; VOF/PLIC

1. normal estimation

2. interface reconstruction

3. advection of interface

• Eulerian
• Lagrangian

Table 3.2: Methodology of PLIC

the interface (stage 3). This is achieved in either an Eulerian or a Lagrangian
way. From the distribution of Ψ, a normal direction to the interface and the
fractional volume of fluid ‘0’ in a computational cell can be derived. At each
time step a planar surface is constructed having the same normal direction and
dividing the cell into two parts, so that it contains the proper amount of fluids
‘0’ and ‘1’. Having reconstructed the interface (stages 1 and 2 of Table 3.2), the
interface has to be advected in order to update the volume fraction Ψ. In case
of an Eulerian point of view, the fluxes of fluids ‘0’ (and ‘1’) over the boundaries
of a computational cell

1
vol(Ωk)

∫
∆t

∫
∂Ωk

χu · n dS dt

are calculated similar to the donor-acceptor method. This is typically achieved
in a geometrical manner (Rider and Kothe [24], Rudman [25], Harvie and
Fletcher [28, 29], Lafaurie et al. [20]). In case of Lagrangian interface advection,
the interface position is updated by moving its corners by an amount ‘velocity
times time step’ (Renardy et al. [22], Gueyffier [23]).

3.4.2 Level-Set method

An alternative to the Volume-of-Fluid methods is the Level-Set method (Chang
et al. [36], Sussman et al. [37], Iafrati et al. [38], Mulder et al. [39], Zhu and



18 CHAPTER 3. MOVING BOUNDARY METHODS

Sethian [40], Sethian [41, 42], Osher and Fedkiw [43], Sussman et al. [1, 44, 45],
Zheng and Zhang [46], Kaliakatsos and Tsangaris [47]). It is, like the Volume-
of-Fluid-method, a volume tracking method. In other words, the interface is
implicitly defined by a marker function. A marker function Φ is chosen such
that it changes sign at the interface. The interface is the zero level-set of Φ :

S(t) = {x|Φ(x, t) = 0}. (3.9)

When a superscript + or − corresponds to a positive or negative signed distance
Φ from the interface respectively, the density ρ can be expressed as:

ρ = ρ− +H(Φ)(ρ+ − ρ−), (3.10)

and similarly for the viscosity µ, where H(Φ) is the Heaviside step function.
The interface is evolved by advecting the Level-Set function in the flow field

as if it were a material property:

∂Φ
∂t

+ u · ∇Φ = 0. (3.11)

The Level-Set function Φ is typically a smooth function that, unlike the Volume-
of-Fluid method, allows the straightforward application of a difference scheme.
Due to the implicit definition of the interface, arbitrary topologies, merging and
break-up are automatically dealt with. Furthermore, it is easily generalized to
three dimensions.

Homogeneous Neumann boundary conditions are applied for the Level-Set
function at the solid walls. This means that the interface is assumed to be
perpendicular to the wall where the interface intersects with the bounding wall.
An appropriate initial choice for Φ is a distance function, which measures the
(signed) distance to the nearest interface surface. It is important to note that
the Level-Set function does not remain a distance function when it is advected
in the course of time.

The geometrical properties of the interface are easily determined from the
Level-Set function. The unit normal to an iso-contour of the level-set function
is given by:

n =
∇Φ
|∇Φ| (3.12)

The mean curvature κ is defined by

κ = ∇ · n = ∇ · ∇Φ
|∇Φ| . (3.13)

The major drawback of the Level-Set method is that although the Level-Set
function itself might be conserved, this does not imply that the area enclosed by
an interface is conserved. Fig. 3.5 shows a one-dimensional example. Interfaces
are prescribed at two different x-locations. Starting from a distance function,
time is advanced by one time step. Convective smoothing will essentially smooth
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Φ

x0

Figure 3.5: One-dimensional example of the level-set function Φ; mass errors
after time step

Figure 3.6: Adaptive grid refinement

function Φ. As seen in Fig. 3.5, this (once again, artificial) smoothing shifts the
interface and causes an enclosed region of fluid to loose mass.

Area preservation can be improved by higher order discretization. The Es-
sentially Non-oscillatory (ENO) scheme serves this goal (Shu and Osher [48],
Harten et al. [49, 50]). Time is evolved in [37] by adopting the second order
Adams-Bashforth method . Improvement is observed by employing the Runge-
Kutta scheme in [44], where third order Runge-Kutta is adopted in combination
with third order ENO.

Efficiency of the method can be improved by adopting the so-called Narrow
Band Level-Set method (Sethian [41, 42]). The computational effort is decreased
by performing the calculations only in a narrow band of the zero level-set.
Furthermore, the mesh can be adaptively refined locally near the interface (Haj-
Hariri and Shi [51], Sussman et al. [1], Strain [52]), see Fig. 3.6.

Reinitialization

If an initial signed distance function is advected through a non-uniform flow,
function Φ does not necessarily correspond to a distance function any longer. A
distance function satisfies

|∇Φ| = 1. (3.14)
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If, however, if it is required that the Level-Set function Φ remains a signed
normal distance function at all instances (for reasons given later), function Φ
can be reinitialized each time step. Sussman et al. [37] use a partial differential
equation to keep Φ a distance function:

∂Φ
∂t′ = sign(Φ0) (1− |∇Φ|) ,
Φ0 = Φ|t′=0 ,

(3.15)

where t′ is an artificial time. The sign function causes the zero level-set to be left
unchanged, so that reinitializing does not result in repositioning of the interface.

A numerical procedure for the reinitialization is given by Sethian in [41].
It is based on the (one-dimensional) equivalence with hyperbolic conservation
laws. The ENO scheme is used for higher order spacial discretization. For
the temporal discretization the Adams-Bashfort and Runge-Kutta methods are
applied in [44, 45].

According to Chang et al. [36] and Zheng and Zhang[46], the reinitialization
procedure causes a considerable amount of additional mass losses. Numerical
diffusion introduces a normal motion of the interface proportional to the inter-
face’s local curvature. Increasing the order of discretization reduces the area
errors. The reinitialization procedure has been modified by Chang et al. [36],
Zheng and Zhang [46], Sussman et al. [1, 44, 45] and Peng et al. [53] to improve
area preservation of re-initialization.

3.5 Combined methods

Various approaches exist that combine the methods discussed above and are
intended to overcome the specific problems associated with the separate meth-
ods. An indicator function is used by Shin et al. [54, 55] and De Sousa et al.
[2] to deal with topology changes with the front tracking method and improve
the computation of curvature of the interface. Ceniceros and Roma [56] use the
Level-Set methodology to solve the flow field, but use a front tracking technique
to advect the interface, without Level-Set advection and re-initialization.

Enright et al. [15, 16] improve the mass-conservation of the Level-Set method
by adding passively advected marker particles. These particles are used near
the interface. The Coupled Level-Set Volume-of-Fluid (CLSVOF) method of
Sussman and Puckett [13, 14]) is a coupling of the Level-Set method with the
Volume-of-Fluid PLIC method. Besides the advection of the Level-Set function
Φ also the Volume-of-Fluid function Ψ is advected. There is no straightforward
relationship between the Level-Set function and the Volume-of-Fluid function;
both advections are independent. After each update of Φ and Ψ, coupling of
both functions takes place. This coupling is not easily achieved. Since the
PLIC approach is employed, a drawback of this method might be that besides
mass-conservation, also the elaborateness of the VOF methods is imported. The
mass-conservation properties are shown to be comparable to VOF methods.



3.6. CONCLUSION 21

3.6 Conclusion

The two methods that are of most interest are the Volume-of-Fluid method and
the Level-Set method. The advantage of the Volume-of-Fluid method is that
it is rigorously mass conserving. On the other hand, much attention has to
be paid to the advection of a discontinuous marker function. For that various
procedures exist. The piecewise linear interface calculation is superior to the
others. However, the interface has to be reconstructed each time step, which
certainly is an elaborate task, especially in three-dimensional space.

Another drawback of the Volume-of-Fluid method is that due to the dis-
continuous nature of the marker function, the interface curvature is not easily
determined. The curvature is essential for modeling surface tension effects.
With the Level-Set method, on the other hand, the surface curvature is very
easily determined, since the Level-Set function is smooth near the interface.
However, it is not mass conserving. Also, advecting the interface is possible
by application of ‘of-the-shelf’ techniques for hyperbolic conservation laws. For
these reasons, the Level-Set method has been chosen as the basis of this work.
However, mass-conservation is not an intrinsic property and this is considered
the major drawback of the Level-Set method.

The focus of the present research is on a mass-conserving way to advect
the interface. Our work has a shared foundation with the CLSVOF method
(Sussman and Puckett [13, 14]) and to a lesser extent with the combined Level-
Set/particle method (Enright et al. [15, 16]) in the sense that it is based on
Level-Set and additional effort is made to conserve mass. The difference be-
tween our method and CLSVOF is that there is no combination of two existing
methods. The method takes full advantage from all additional information pro-
vided by the Level-Set function Φ, rather than coupling Level-Set with Volume-
of-Fluid/PLIC. In fact, the Volume-of-Fluid function Ψ is used only to conserve
mass, without applying the difficult convection step (namely interface recon-
struction) which makes VOF so elaborate.

An explicit relation between the Level-Set function Φ and Volume-of-Fluid
function Ψ is proposed, which is the basis of this work. This relation is obtained
by assuming piecewise linear interfaces within a computational cell, and can be
written as:

Ψ = f(Φ,∇Φ). (3.16)

This relationship makes advection of the Volume-of-Fluid function Ψ easy (i.e.
without interface reconstruction) and finding Φ from Ψ is straightforward. The
PLIC method is not used (unlike CLSVOF), yet mass is conserved in the same
manner. Note that the PLIC method (and consequently the CLSVOF method)
might not be easily extendible to 3D. Extension of our method to 3D is straight-
forward. Note also that with this approach, it is not necessary to smooth (or
regularize) Ψ, which is usually necessary in other methods.





Chapter 4

Numerical Approach

4.1 Introduction

The fluid flow is described by the continuity equation (see Eqn. (2.1)):

∇ · u = 0, (4.1)

and the Navier-Stokes equations (see Eqn. (2.18)):

∂u
∂t
+ u · ∇u = −1

ρ
∇p+ 1

ρ
∇ · µ (∇u+∇ut

)
+ g+

1
ρ
fs. (4.2)

The equations are solved on a Cartesian grid in a rectangular domain by the
pressure-correction method ([57]). The unknowns are stored in a Marker-and-
Cell (staggered) layout ([12]). For the interface representation the Level-Set
methodology is adopted. The interface conditions are satisfied by means of the
continuous surface force (CSF) methodology. The discontinuous density field is
dealt with similarly to the ghost fluid method for incompressible flow ([58]).

For the interface representation and advection the Level-Set approach is
used. The interface advection is decoupled from the flow-field computations.
That means that the flow equations (Eqns. (4.1) and (4.2)) are solved with a
given interface position. In this chapter the discretization of these flow equations
is considered. The advection of the interface is discussed in Chapter 5.

4.2 Regularization of viscosity

The viscosity is regularized as explained in Section 2.5. It is expressed as (see
Eqn. (2.17)):

µ = µ0 + (µ1 − µ0)χα, (4.3)

where µ0 is the viscosity of fluid ‘0’, µ1 is the viscosity of fluid ‘1’ and χα is the is
a mollified characteristic function. In the Level-Set approach, the characteristic

23
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function is a regularized Heaviside step function Hα of Φ, i.e.:

χα = Hα(Φ). (4.4)

Here Hα is chosen as (see e.g. Sussman et al. [37]):

Hα(Φ) =


0 Φ < −α,
1
2

(
1 + sin( xα

1
2π)
) |Φ| ≤ α,

1 Φ > α,
(4.5)

and α is a parameter proportional to the mesh width h. Following Sussman et
al. [37]) α is chosen as α = 3

2h. According to Chang et al. [36], the viscosity
is then smoothed over three mesh widths, provided |∇Φ| = 1. Note that only
the viscosity is smoothed, not the density ρ. Note also that when the density is
not regularized, mass is conserved when the volume of a certain fluid or phase
is conserved. In fact, our method conserves volumes by construction. Due to
the non-regularized density-field, mass is conserved too.

4.3 Continuous Surface Force

In Eqn. (4.2) the surface tension force 1
ρ fs appears. In Section 2.6 it is expressed

as (see Eqn. (2.22)):
1
ρ
fs =

1
1
2 (ρ0 + ρ1)

σκδα(d)n, (4.6)

where δα is a regularized Dirac delta function, d is the nearest distance to the
interface, ρ0 is the density of fluid ‘0’, ρ1 the density of fluid ‘1’, σ is the surface
tension coefficient and κ is the curvature of the interface. In the Level-Set
methodology, the normal n is given by Eqn. (3.12) and δα(d) = δα(Φ)|∇Φ|, see
Chang et al. [36]. The surface tension force is then:

fs =
ρ

1
2 (ρ0 + ρ1)

σκδα(Φ)∇Φ. (4.7)

The curvature of the interface is is given by Eqn. (3.13):

κ = ∇ · ∇Φ
|∇Φ| , (4.8)

which is approximated by central differences. The Dirac delta function is regu-
larized in the same manner as the Heaviside step function (Eqn. (4.5))

δα(Φ) =
{

1
2α

(
1 + cos(Φαπ)

) |Φ| ≤ α,
0 |Φ| > α.

(4.9)

Here α has the same value as in Eqn. (4.5), i.e. α = 3
2h. Note that the density

ρ is discontinuous. To guarantee a straightforward application of the pressure-
correction methodology it is necessary that 1

ρ fs is regular. This is achieved since
1
ρ fs is regularized and not fs.
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Figure 4.1: Grid layout in two dimensions

θh (1−θ)h
i−1 i+1i

fluid 0 fluid 1jump

Figure 4.2: Ghost Fluid method; real values (gray) and ghost values (white)

4.4 Spatial discretization

Finite differences are used for the spatial discretization of Eqns. (4.1) and (4.2).
The unknowns u, v, w and p are stored in a staggered way, as indicated in
Fig. 4.1 for two dimensions. Away from the interface, the discretization is
performed by straightforward central differencing. Velocities which have to be
stored and evaluated at different locations, are approximated by averaging (fol-
lowing Harlow and Welch [12]). Near the interface, the jump conditions have to
be taken into account in the discretization of the gradients. For that purpose
the Ghost-Fluid method (Liu et al. [59]) is applied.

With the Ghost Fluid Method, the fluid at one side of the interface is con-
tinuously extended towards the other side. These values are called ghost values,
Fig. 4.2. The ghost values are obtained by employing the previously mentioned
jump conditions. Consider flow quantity p (not necessarily the pressure). The
goal is to compute derivatives ∂p

∂x ,
∂p
∂y and

∂p
∂z . Quantity p has known jumps

[p], [β ∂p
∂x ], [β

∂p
∂y ] and [β

∂p
∂z ]. Appearing in these jumps is β, which is a material

constant ( 1ρ or µ or ν) and assumed to be constant within each separate fluid or
phase. Assume that jumps exist between i and i+ 1 and that i is within fluid
or phase 0 and, consequently, i + 1 is within fluid or phase 1. The jumps are
discretized as:

p1 − p0 = [p]
β1

∂p1
∂x − β0 ∂p0

∂x = [β ∂p
∂x ].

(4.10)

The interface values p0|I and p1|I are eliminated from the (approximated) jump
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conditions:
p1|I − p0|I = [p]

β1
pi+1−p1|I
(1−θ)h − β0

p0|I−pi

θh = [β ∂p
∂x ],

(4.11)

where θ is defined according to Fig. 4.2. This yields

p0|I = θβ1pi+1+(1−θ)β0pi−θβ1[p]−θ(1−θ)h[β ∂p
∂x ]

θβ1+(1−θ)β0

p1|I = θβ1pi+1+(1−θ)β0pi+(1−θ)β1[p]−θ(1−θ)h[β ∂p
∂x ]

θβ1+(1−θ)β0
.

(4.12)

By linear extrapolation, the ghost values can be found. However, this is shortcut
by finally expressing

β0
∂p0
∂x

∣∣∣∣
i+ 1

2

=
p0|i+1 − pi

h
=
p0|I − pi
θh

, (4.13)

which is

β0
∂p0
∂x

∣∣∣∣
i+ 1

2

= β̂
pi+1 − pi

h
− β̂ [p]

h
− β̂

β1
(1 − θ)[β ∂p

∂x ], (4.14)

where β̂ is the weighted harmonic average

β̂ =
β0β1

θβ1 + (1 − θ)β0 . (4.15)

After some bookkeeping, β ∂p
∂x is obtained as(

β
∂p

∂x

)
i+ 1

2

=

 β̂
(
pi+1−pi−[p]

∆x − 1−θ
βi+1

[β ∂p
∂x ]
)
, left,

β̂
(
pi+1−pi−[p]

∆x + θ
βi
[β ∂p

∂x ]
)
, right,

(4.16)

where by left and right the derivatives left and right from the interface are
meant. In this expression θ marks the interface position. In case of the Level-
Set methodology it is approximated by finding Φ = 0 from a linearization of Φ
between nodes i and i+ 1:

Φi + θ(Φi+1 − Φi) = 0. (4.17)

This results in
θ =

−Φi

Φi+1 − Φi
. (4.18)

Furthermore, β̂ is the weighted harmonic average of β

β̂ =
βi+1βi

βi+1θ + βi(1− θ) . (4.19)

Note that it is assumed, that the jump conditions can be computed at all loca-
tions i. If such a jump condition would depend on, for instance, the interface
curvature, the curvature needs to be evaluated at places away from the interface.
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Fortunately, the Level-Set methodology can serve this goal. The expressions for
the flux β ∂p

∂y and β
∂p
∂z are analogous. As a matter of fact, it is easily obtained

by switching the indices and replacing ∆x by ∆y and ∆z respectively.
Eqn. (4.16) is used for the discretization of the velocity gradient ∇u and the

pressure gradient ∇p. Due to the regularization of the viscosity, the velocity
vector and its gradients are continuous at the interface (see Eqns. (2.12) and
(2.15)). Therefore no special measures have to be taken for the discretization
of the terms ∇u near the interface:(

∂u

∂x

)
i+ 1

2

=
ui+1 − ui
∆x

. (4.20)

With this discretization of the first order derivative, second order derivatives
are constructed in the usual way, for example:(

∂2u

∂x2

)
i

=

(
∂u
∂x

)
i+ 1

2
− (∂u∂x)i− 1

2

∆x
. (4.21)

The pressure is continuous due to the application of the CSF method (see Eqn.
(2.23)). The pressure gradient ∇p on the other hand is not. But, following
Kang et al. [58], the jump of 1

ρ∇p is

[
1
ρ
∇p] = 0. (4.22)

The discretization of the pressure gradient is therefore:(
1
ρ

∂p

∂x

)
i+ 1

2

=
1

θρi + (1 − θ)ρi+1
pi+1 − pi
∆x

, (4.23)

and similar in the other coordinate directions.

4.5 Temporal discretization

The flow-field is computed with a given interface position and the interface is
advected with the new flow-field. Symbolically, if

∂u
∂t

= A(u,Φ),
∂Φ
∂t

= B(Φ,u),
(4.24)

then the decoupled temporal discretization is given by

un+1 − un

∆t
= A(un,un+1,Φn+ 1

2 ), (4.25)

Φn+ 3
2 − Φn+ 1

2

∆t
= B(Φn+ 1

2 ,Φn+ 3
2 ,un+1), (4.26)
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where A and B are the discrete counterparts of operators A and B respectively
and superscript n denotes time-level n. Note that the Level-Set function Φ is
staggered in time to make the decoupling formal second order accurate. How-
ever, the accuracy depends of course on the discretization of Eqns. (4.25) and
(4.26), which in this research is first order. Note also that due to the regu-
larization of viscosity and surface tension, higher order accuracy might not be
expected.

The interface advection (Eqn. (4.26)) is discussed in detail in Chapter 5. For
the time integration of the flow equations (Eqn. (4.25)) it is important to note
that the Level-Set function at time tn+

1
2 is used. This means that the viscosity

µ is defined at that time-instant:

µ = µ(Φn+ 1
2 ). (4.27)

The governing equations after spatial discretization are:(
∂u

∂x

)
h

+
(
∂v

∂y

)
h

+
(
∂w

∂z

)
h

= 0 (4.28)

and

duh
dt

= −uh
(
∂u

∂x

)
h

− vh
(
∂u

∂y

)
h

− wh
(
∂u

∂z

)
h

− 1
ρ

(
∂p

∂x

)
h

+

1
ρ

(
∂µ ∂u

∂x

∂x +
∂µ ∂u

∂y

∂y + ∂µ ∂u
∂z

∂z + ∂µ ∂u
∂x

∂x + ∂µ ∂v
∂x

∂y + ∂µ ∂w
∂x

∂z

)
h

+

gx + 1
ρ (fsx)h ,

(4.29)

where subscript h indicates the discrete approximation, gx is the component
of the gravity vector g in x-direction and fsx is the component of the surface
tension force fs in x-direction. For the temporal discretization the pressure-
correction method (see e.g. van Kan [57]) is employed. First a tentative velocity
u∗ is computed by the predictor (dropping the subscript h):

u∗ − un
∆t

= −un
(
∂u

∂x

)n
− vn

(
∂u

∂y

)n
− wn

(
∂u

∂z

)n
+

1
ρn+

1
2

(
∂µ∂u

∂x

∂x
+
∂µ∂u

∂y

∂y
+
∂µ∂u

∂z

∂z

)∗
+

1
ρn+

1
2

(
−
∂µ∂v

∂y

∂x
+
∂µ ∂v

∂x

∂y
− ∂µ

∂w
∂z

∂x
+
∂µ∂w

∂x

∂z

)n

,

(4.30)

where µ is evaluated at tn+
1
2 due to the staggering of the Level-Set function Φ,

i.e.:
µn = µ(Φn+ 1

2 ),
µ∗ = µ(Φn+ 1

2 ).
(4.31)

The equations for v and w are treated similarly. The stress tensor is split into
a part on time level ∗ (implicit) and n (explicit), due to the fact that u, v and
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w are solved sequentially. Note that all terms containing u in the diffusion part
of Eqn. (4.30) are implicit. In the stress tensor the continuity equation is used,
such that the explicit terms in the stress tensor vanish away from the interface,
where µ is constant.

The resulting system of equations is solved by an incomplete Cholesky pre-
conditioned Conjugate Gradient (ICCG) method.

The velocities at the new time instant n+1 are computed by:

un+1 − u∗

∆t
=
(
−1
ρ
Gp+

1
ρ
fs + g

)n+ 1
2

(4.32)

under the constraint of Eqn. (4.1). Note that the pressure gradient is evaluated
at tn+

1
2 . This gradient has a strong increase near the interface due to the

surface tension forces fs. In other words, the pressure gradient is balanced by
the surface tension force and the gravity vector. For that reason the term 1

ρ∇p
is always accompanied by the surface tension force fs and gravity vector g:

(
−1
ρ

∂p

∂x
+
1
ρ
fsx + gx

)n+ 1
2

.

The pressure gradient jump and the surface tension forces move with the inter-
face in time. When different time levels are used to evaluate pressure gradient
and surface tension force, the pressure gradient is not located at the same posi-
tion as the surface tension force. Furthermore, in Eqn. (4.32) G is the discrete
gradient operator, which comprises the Ghost-Fluid method as discussed in Sec-
tion 4.4 (see Eqn. (4.23)). This gives

un+1 = u∗ +∆t
(
−1
ρ
Gp+

1
ρ
fs + g

)n+ 1
2

(4.33)

and

Dun+1 = 0, (4.34)

where D represents the discretization of the divergence. Combining these ex-
pressions results in:

D
1

ρn+
1
2
Gpn+

1
2 = D

(
1
∆t

u∗ −
(
1
ρ
fs + g

)n+ 1
2
)
. (4.35)

The resulting system of equations is solved by an incomplete Cholesky precon-
ditioned Conjugate Gradient (ICCG) method. Iterative methods might suffer
from the discontinuous behavior of the coefficient 1

ρ that appears in the equa-
tions. However, the ICCG method is found to be extremely robust for the
applications considered in this work.
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Figure 4.3: Grid layout near the boundary in two dimensions

4.6 Initial and Boundary conditions

As discussed in Section 2.7, the fluid is assumed to be initially at rest, i.e.

u0 = 0. (4.36)

The Level-Set function Φn+ 1
2 at t

1
2 is obtained by employing a first order ap-

proximation of Eqn. (3.11):

Φ
1
2 = Φ0 − (u · ∇Φ)0 1

2
∆t = Φ0, (4.37)

where the initial condition for u (Eqn. (4.36)) is used.
Dirichlet boundary conditions are imposed for the velocity u. In Fig. 4.3 a

two-dimensional example of the left-hand side boundary is depicted. The index
for this boundary is i = 1

2 . Virtual values u 1
2 ,j,k

, v−1,j+ 1
2 ,k

and w−1,j,k+ 1
2
are

introduced near the boundary. The boundary conditions are then discretized
as:

u 1
2 ,j,k

= 0, (4.38)

v0,j+ 1
2 ,k
+ v1,j+ 1

2 ,k
= 0, (4.39)

w0,j,k+ 1
2
+ w1,j,k+ 1

2
= 0. (4.40)

The velocity derivatives near the boundary result in:(
∂u

∂x

)
1,j,k

=
u2,j,k
∆x

, (4.41)(
∂v

∂x

)
1,j+ 1

2 ,k

=
v2,j+ 1

2 ,k

∆x
, (4.42)(

∂v

∂x

)
1
2 ,j+

1
2 ,k

=
2v1,j+ 1

2 ,k

∆x
, (4.43)(

∂w

∂x

)
1,j,k+ 1

2

=
w2,j,k+ 1

2

∆x
, (4.44)(

∂w

∂x

)
1
2 ,j,k+

1
2

=
2w1,j,k+ 1

2

∆x
, (4.45)
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and similar for the other boundaries.
There are no boundary conditions required for the pressure p, since in Eqn.

(4.35) the velocity boundary conditions are included in the discrete divergence
operator D. More details can be found in Van Kan [57].

4.7 Time Step criteria

Following Kang et al. [58] and Sussman et al. [44], an adaptive time stepping
procedure is chosen by considering the time-step restrictions due to convection
and surface tension effects. Diffusion is accounted for implicitly, hence no time-
step restriction is encountered. The time-step restriction is:

∆t ≤ CFLmin(∆tc,∆ts), (4.46)

where, following Kang et al. [58] and Sussman et al. [44], CFL = 1
2 is used.

Here ∆tc is the restriction due to advection:

∆tc =
1

|u|max

∆x + |v|max

∆y + |w|max

∆z

(4.47)

∆ts is the restriction due to surface tension. The restriction due to surface
tension given by Kang et al. [58] is

∆ts =
1√

σ|κ|max

min(ρ0,ρ1)min(∆x,∆y)2

. (4.48)

Since the surface tension force is regularized, i.e. 1
ρσκ is replaced by

1
1
2 (ρ0+ρ1)

σκδ(Φ)h
and h = min(∆x,∆y,∆z), the restriction becomes

∆ts =
1√ |σκδ(Φ)|max

1
2 (ρ0+ρ1)min(∆x,∆y,∆y)

. (4.49)

4.8 Conclusion

The governing equations are discretized by a finite difference approach. The
viscosity is regularized to decouple the interface conditions. For the interface
forces the CSF approach is adopted. The Ghost-Fluid method for incompressible
flows is used to compute derivatives near the interface. The interface advection
is decoupled from the flow-field computations. The pressure correction method
is used for the temporal discretization.





Chapter 5

Interface advection

5.1 Introduction

The strategy of modeling bubbly flows is to compute the flow with a given
interface position and to subsequently evolve the interface in the given flow
field. The flow is expressed by velocity field u and the interface is implicitly
defined by Level-Set function Φ. If symbolically the governing equations are
written as (repeating Eqn. (4.24))

∂u
∂t

= A(u,Φ),
∂Φ
∂t

= B(Φ,u),
(5.1)

then the decoupled temporal discretization is given by Eqns. (4.25) and (4.26):

un+1 − un

∆t
= A(un,un+1,Φn+ 1

2 ), (5.2)

Φn+ 3
2 − Φn+ 1

2

∆t
= B(Φn+ 1

2 ,Φn+ 3
2 ,un+1), (5.3)

where A and B are the discrete counterparts of operators A and B respectively
and superscript n denotes time-level n. In the previous sections the manner by
which the flow is computed with a given interface position was described. Next
we consider the evolution of the interface with velocities evaluated at tn+1.

5.2 Level-Set advection

The interface, say S, is the zero level-set of Φ:

S(t) =
{
x ∈ IR3|Φ(x, t) = 0} . (5.4)

33
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The interface is evolved by advecting the Level-Set function in the flow field as
if it is a material property, according to Eqn. (3.11):

∂Φ
∂t

+ u · ∇Φ = 0. (5.5)

A homogeneous Neumann boundary condition for Φ is imposed at the bound-
aries. The accuracy of the approximation of Eqn. (3.11) determines the accu-
racy of the interface representation. This accuracy will also determine the mass
errors. The discretization of the gradient of Φ can be either first order upwind,
or second or third order ENO (Sussman et al. [37, 44], Chang et al. [36]). In
case of first-order spatial discretization, a forward Euler temporal discretization
is sufficient. In case of the higher order spatial discretization, a Runge-Kutta
scheme is applied (see e.g. Sussman et al. [45]) which has the same order as the
order of the spatial discretization of Eqn. (5.5).

Note that the increased order of accuracy of the Level-Set advection im-
proves mass conservation. The global accuracy of Φ however will still depend
on the accuracy of the velocity field, which is first order in this research. Higher
order accuracy might not be expected when viscosity and interface forces are
regularized.

5.3 Re-initialization

The surface tension forces and viscosity are regularized near the interface in
the interval −α ≤ Φ ≤ α, see Eqns. (4.5) and (4.9), where α is proportional
to the mesh width. The regularization width is therefore the distance between
the (Φ = −α) and (Φ = α) level-sets. It can be easily understood that when
|∇Φ| becomes too large, the regularization width becomes too small and when
|∇Φ| is too small, the regularization width will be too large. On the other
hand, if Φ is a distance function, which satisfies |∇Φ| = 1 (see Eqn. (3.14)),
the regularization width will be 2α. In other words, it is necessary to control
|∇Φ|. This can be achieved by using a signed distance function for Φ. But if
an initial signed distance function is advected through a non-uniform flow, it
does not necessarily correspond to a distance function any longer. Therefore,
re-initialization as described by Sussman et al. [37] and Chang et al. [36] is
applied. The Level-Set function Φ is re-initialized to make it a distance function
by solving until steady state for artificial time t′ (see Eqn. (3.15)):

∂Φ
∂t′

− sign(Φ0) (1− ‖∇Φ‖) = 0,
Φ|t′=0 = Φ0,

(5.6)

where the initial condition Φ0 results from the Level-Set advection, Eqn. (5.5).
A homogeneous Neumann boundary condition for Φ is used. The spatial dis-
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cretization of Eqn. (5.6) is (see e.g. Sethian [41]):

dΦi,j,k

dt′
=



1−

√√√√√√√√
max
(
d+x,L

2
, d−x,R

2
)
+

max
(
d+y,L

2
, d−y,R

2
)
+

max
(
d+z,L

2
, d−z,R

2
) Φ0 > 0

−1 +

√√√√√√√√
max
(
d−x,L

2
, d+x,R

2
)
+

max
(
d−y,L

2
, d+y,R

2
)
+

max
(
d−z,L

2
, d+z,R

2
) Φ0 < 0

0 Φ0 = 0,

(5.7)

where dx,L/R are the differences that are approximated by an ENO scheme

dx,L =
(
∂Φ
∂x

)
i,j,kL

,

dx,R =
(
∂Φ
∂x

)
i,j,kR

.
(5.8)

In this expression L and R indicate the starting point in the ENO scheme. For
example, a first-order approximation are the one-sided differentials:

dx,L = Φi,j,k−Φi−1,j,k

∆x ,

dx,R = Φi+1,j,k−Φi,j,k

∆x ,
(5.9)

and analogously for dy,L, dy,R, dz,L and dz,R. Furthermore, + is the positive
part and − the negative part:

d+ = max(d, 0)
d− = min(d, 0). (5.10)

Time integration is performed by means of a Runge-Kutta method that has
the same order as the error of the spatial discretization, which in turn matches
the order of the discretization error of the Level-Set advection equation, Eqn.
(5.5). For a stable time integration of Eqn. (5.6) a constraint is necessary on
∆t′. To find such a constraint Eqn. (5.6) is rewritten as

∂Φ
∂t′

+ q · ∇Φ = sign(Φ0), (5.11)

which is a convection equation for Φ with convection velocity q = (gx, gy, qz)t:

q = sign(Φ0)
∇Φ

‖∇Φ‖ . (5.12)

Using |qx| < 1, |qy| < 1 and |qz| < 1 in the CFL condition leads to the following
time-step:

∆t′ =
σreinit

1
∆x +

1
∆y +

1
∆z

, (5.13)



36 CHAPTER 5. INTERFACE ADVECTION

where σreinit ≤ 1 is the Courant number. In this research σreinit =
1
2 is used.

The difficulty with re-initialization is that the interface position is only de-
fined in the pseudo-initial condition Φ0. The consequence is that the interface
shifts during the pseudo-time stepping due to discretization errors and hence
mass is lost. The re-initialization procedure has therefore been modified as
discussed in Chapter 6.

5.4 Mass-Conserving Level-Set advection

For the reasons given in Chapter 3 this work is based on a Level-Set method. The
major disadvantage of the Level-Set method is that it is not mass-conserving.
Additional effort is necessary and in this research the Volume-of-Fluid function
Ψ is used. This is performed without applying the difficult convection step
(namely interface reconstruction) which makes VOF so elaborate.

Since density is piecewise constant, volume conservation yields mass con-
servation. The volume Vk of a certain fluid within a computational cell Ωk

is
Vk =

∫
Ωk

χ dΩ, (5.14)

where χ is a color function that is 1 in fluid ‘1’ and ’0’ elsewhere, see Eqn. (2.3)
and Fig. 2.1. This can be expressed in terms of the Level-Set function Φ as:

Vk =
∫
Ωk

H(Φ) dΩ, (5.15)

where H is the Heaviside step function. Although Φ might be conserved,i.e.∫
Ω

Φn+ 3
2 dΩ =

∫
Ω

Φn+ 1
2 dΩ, (5.16)

this does not imply that the sign of Φ (hence volume) is conserved:∫
Ω

H(Φn+ 3
2 ) dΩ �=

∫
Ω

H(Φn+ 1
2 ) dΩ, (5.17)

where Ω is the whole computational domain. Consequently volume, and hence
mass, are not conserved: ∑

k

V
n+ 3

2
k �=

∑
k

V
n+ 1

2
k , (5.18)

where the summation is over all computational cells k. The volume errors can
be made smaller by increasing the accuracy of the discretization. For this rea-
son higher-order ENO schemes and Runge-Kutta methods are often applied. In
this research we use first-order Level-Set advection and re-initialization. Low
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order advection and re-initialization ensure numerical smoothness of Φ. Fur-
thermore, when the flow-field is computed, higher order accuracy might not be
expected when the CSF method is applied and viscosity is regularized. In that
respect, higher order discretization of Eqn. (3.11) will only lead to improved
mass conservation for the pure Level-Set methods.

The Volume-of-Fluid method (see Section 3.4.1) on the other hand conserves
mass by construction. With Eqn. (3.3) it is clear that

Vk = Ψkvol(Ωk), (5.19)

where Ψ is the Volume-of-Fluid function that measures the fractional volume of
fluid ‘1’ within a computational cell. Rewriting Eqn. (3.8) as

d
dt
(vol(Ωk)Ψ(xk)) +

∫
∂Ωk

χu · n dS = 0 (5.20)

shows that volume, and hence mass, is conserved if Ψ is advected conservatively,
i.e. ∑

k

Ψn+ 3
2

k vol(Ωk) =
∑
k

Ψn+ 1
2

k vol(Ωk). (5.21)

In order to conserve mass with the Level-Set method, corrections to the
Level-Set function are made by considering the fractional volume Ψ of a certain
fluid within a computational cell. First the usual Level-Set advection is per-
formed: first-order advection and re-initialization as described above. Since the
obtained Level-Set function Φ∗ will certainly not conserve mass, corrections to
Φ∗ are made such that mass is conserved. This requires three steps:

1. the relative volume of a certain fluid in a computational cell (called ‘volume-
of-fluid’ function Ψ) is to be computed from the Level-Set function Φn+ 1

2 :
Ψn+ 1

2 = f(Φn+ 1
2 ,∇Φn+ 1

2 );

2. the volume-of-fluid function has to be advected conservatively during a
time step towards Ψn+ 3

2 ;

3. with this new volume-of-fluid function Ψn+ 3
2 , corrections to Φ∗ are sought

such that f(Φn+ 3
2 ,∇Φn+ 3

2 ) = Ψn+ 3
2 holds.

These three steps will now be described in more detail.

5.4.1 Step 1: Volume-of-Fluid function

In the computational domain two functions Φ : IR3 → IR and Ψ : IR3 →
IR are considered. These are the Level-Set function Φ(x) and the Volume-of-
Fluid function Ψ(xk) respectively, where x ∈ IR3 and k is the index of the
computational cell. The Volume-of-Fluid function Ψ in a computational cell Ωk

is defined by Eqn. (3.3), which is in terms of the Level-Set methodology:

Ψ(xk) =
1

vol(Ωk)

∫
Ωk

H(Φ) dΩ, (5.22)
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where H is the Heaviside step function and Ωk is a cube with sizes ∆x, ∆y and
∆z. Assume that xk corresponds to the center of the cube Ωk. The linearization
of Φ around xk is called ϕ:

ϕ(y; Φ,∇Φ,xk) = Φk + (∂Φ∂x ,
∂Φ
∂y ,

∂Φ
∂z )

t
k · (y − xk), (5.23)

where the derivatives are approximated by central differences. The linearization
of Φ can be used to approximate Ψ:

Ψ(xk) ≈ f(Φk,∇Φk). (5.24)

The goal is to find f . To ease the analysis considerably, map Ω onto a unit cube
with coordinates (ξ, η, ζ) ∈ (− 1

2 ,
1
2 )

3. The linearization can be written as

ϕ = Φk +Dξξ +Dηη +Dζζ, (5.25)

where the axes are chosen such that

Dξ ≥ Dη ≥ Dζ ≥ 0. (5.26)

This choice will limit the number of possible interface topologies in the cube.
As a result

Dξ = max(|∆x( ∂Φ∂x )k|, |∆y(∂Φ∂y )k|, |∆z(∂Φ∂z )k|),
Dζ = min(|∆x( ∂Φ∂x )k|, |∆y(∂Φ∂y )k|, |∆z(∂Φ∂z )k|),
Dη = |∆x( ∂Φ∂x )k|+ |∆y

(
∂Φ
∂y

)
k
|+ |∆z(∂Φ∂z )k| −Dξ −Dζ .

(5.27)

Since Φ is linearized, the zero level-set of Φ (the interface) is a plane.
The Volume-of-Fluid function will be derived geometrically by computing

the relative volume enclosed by the cut plane within Ωk. It is important to
take into account the topology of the cut plane. The topology of the cut plane
changes when it passes a corner of the cube, see Fig. 5.1. Due to symmetry, only
the cases Φk ≤ 0 will be considered here. Two cases are defined, see Fig. 5.1:

case I : Dξ ≤ Dη +Dζ

case II : Dξ > Dη +Dζ
(5.28)

Note that there are only two cases due to the choice of ξ, η and ζ. In Fig. 5.2
a geometrical representation is shown which can be used to compute f . This is
achieved by using the pyramids at corners A, B, etcetera. These have length,
width and height ΦA

Dξ
, ΦA

Dη
, ΦA

Dζ
respectively and similar for the other corners.

Here ΦA is the value ϕ(xA) at corner A, etcetera:

ΦA = Φk + 1
2Dξ + 1

2Dη + 1
2Dζ

ΦB = Φk + 1
2Dξ + 1

2Dη − 1
2Dζ

ΦC = Φk + 1
2Dξ − 1

2Dη + 1
2Dζ

ΦD = Φk − 1
2Dξ + 1

2Dη + 1
2Dζ

ΦE = Φk + 1
2Dξ − 1

2Dη − 1
2Dζ .

(5.29)
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Figure 5.1: Topologies of the cut plane for Φ ≤ 0
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Figure 5.2: Volumes for Φ ≤ 0
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Dξ= 1.25; Dη= 0.50; Dζ= 0.25 (case I)

Dξ= 0.80; Dη= 0.70; Dζ= 0.50 (case II)

Figure 5.3: Examples of Volume-of-Fluid function for the two cases

Function f then follows as:

f =
A

6DξDηDζ
Φ ≤ 0 (5.30)

and
f = 1− f(−Φ,∇Φ) Φ > 0, (5.31)

where
A = max(ΦA, 0)3 −max(ΦB , 0)3−

max(ΦC , 0)3 −max(ΦD, 0)3+
max(ΦE , 0)3.

(5.32)

Examples for the cases in (5.28) are shown in Fig. 5.3.
Numerical difficulties arise when the denominator vanishes in Eqn. (5.30).

Because of Eqn. (5.26), this occurs when
Dζ = 0, or
Dζ = 0 ∧Dη = 0, or
Dζ = 0 ∧Dη = 0 ∧Dξ = 0,

(5.33)

which are the two-, one- and zero-dimensional limits of the problem respec-
tively. These limits will be taken in that order. First note that because of
inequality (5.26)

−1
2
Dξ +

1
2
Dη ≤ 0, (5.34)



42 CHAPTER 5. INTERFACE ADVECTION

which yields

ΦD ≤ Φ+
1
2
Dζ . (5.35)

Since Φ ≤ 0, the following upper bound is found for ΦD

ΦD ≤ 1
2
Dζ , (5.36)

so that

lim
Dζ→0

max(ΦD, 0)3

Dζ
= 0. (5.37)

Furthermore, for |Φ + 1
2Dξ + 1

2Dη| > 1
2Dζ , ΦA and ΦB have the same sign, so

that

lim
Dζ→0

max(ΦA,0)3−max(ΦB ,0)3

Dζ
= 3max(Φ + 1

2Dξ + 1
2Dη, 0)2

= 3max(ΦA|Dζ=0
, 0)2.

(5.38)

Otherwise 0 ≤ ΦA ≤ Dζ and ΦB ≤ 0 so that

lim
Dζ→0

max(ΦA,0)3−max(ΦB ,0)3

Dζ
= 0. (5.39)

If |Φ+ 1
2Dξ − 1

2Dη| > 1
2Dζ , then ΦC and ΦE have the same sign so that

lim
Dζ→0

max(ΦC ,0)3−max(ΦE ,0)3

Dζ
= 3max(Φ + 1

2Dξ − 1
2Dη, 0)2

= 3max(ΦC |Dζ=0
, 0)2.

(5.40)

Otherwise 0 ≤ ΦC ≤ Dζ and ΦE ≤ 0 so that

lim
Dζ→0

max(ΦC ,0)3−max(ΦE ,0)3

Dζ
= 0. (5.41)

Combining these results, the two-dimensional limit follows as

lim
Dζ→0

f =
max(ΦA|Dζ=0

, 0)2 −max(ΦC |Dζ=0
, 0)2

2DξDη
Φ ≤ 0. (5.42)

An example is shown in Fig. 5.4(a). The one-dimensional limit follows in a
similar fashion from this equation:

lim
Dη→0

lim
Dζ→0

f =
max(ΦA|Dη=0,Dζ=0

, 0)

Dξ
Φ ≤ 0. (5.43)

An example is shown in Fig. 5.4(b). Finally

lim
Dξ→0

lim
Dη→0

lim
Dζ→0

f =


0 Φ < 0
1
2 Φ = 0
1 Φ > 0,

(5.44)

which is a step function.
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(a) Dξ = 0; Dη = 1.5; Dζ = 0.5
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(b) Dξ = 0; Dη = 0; Dζ = 2

Figure 5.4: Examples of the Volume-of-Fluid function
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5.4.2 Step 2: Volume-of-Fluid advection

The evolution of the Volume-of-Fluid function Ψ is given by Eqn. (3.8), which
in terms of the Level-Set methodology is:

dΨ(xk)
dt

+
1

vol(Ωk)

∫
∂Ωk

H(Φ)u · ndS = 0. (5.45)

The Volume-of-Fluid function after a time step is found by considering the flux
of fluid that flows through the boundaries of a computational cell during time-
step ∆t. Consider a face Γ of the control volume Ωk. The flux F through the
boundary Γ is

F =
∫
∆t

∫
∂Ωk

H(Φ(x, t+ τ)) u(x, t+ τ) · n dS dτ. (5.46)

This flux can be rewritten as

F =
∫
ΩD

H(Φ(x, t)) dΩ, (5.47)

where ΩD is the donating region of face Γ, which initially contains all fluid that
will flow through face Γ during time-step ∆t (see Fig. 5.5). Summation over all
boundary faces leads for computational cell (i, j, k) to:

Ψn+ 3
2

i,j,k = Ψ
n+ 1

2
i,j,k − 1

∆x∆y∆z
(
Fxi+ 1

2 ,j,k
− Fxi− 1

2 ,j,k
+

Fyi,j+ 1
2 ,k

− Fyi,j− 1
2 ,k
+

Fzi,j,k+ 1
2

− Fzi,j,k− 1
2

)
,

(5.48)

where the subscripts indicate the corresponding boundary face. Depending on
the sign of the velocity at the face, the donating region can either be on the left-
hand or at the right-hand side neighboring cell. Formally, the flux can therefore
be split into a contribution from both neighbors, called F+ and F− respectively
(see Fig. 5.5 for the two-dimensional case). Of course if F+

... �= 0 then F−
... = 0

and vice-versa. In this way the fluxes in x, y and z direction at a face can be
written as (omitting the subscripts):

Fx = F+
x + F−

x , Fy = F+
y + F−

y , Fz = F+
z + F−

z . (5.49)

Since the fluxes measure the fractional volume in the denoting region, Eqn.
(5.24) can be applied with some scaling of variables. For the fluxes in z direction
for example:

F+
z i,j,k+ 1

2
= ∆x∆y∆zν+ f

(
Φ̂L, (∂xΦL, ∂yΦL, ν

+∂zΦL)
t
)

F−
z i,j,k+ 1

2
= ∆x∆y∆zν− f

(
Φ̂R, (∂xΦR, ∂yΦR,−ν−∂zΦR)

t
)
.

(5.50)
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Figure 5.5: Donating regions for fluxes Fx and Fy. These are the shaded areas
that will flow through the boundaries during a time step. Doubly fluxed areas
exist near the corners of the cell.

where

ν+ = max(u,0)∆t
∆x , ν− = min(u,0)∆t

∆x , (5.51)

and

ΦL = Φi,j,k, ΦR = Φi,j,k+1,
∂xΦL = ∂Φ

∂x

∣∣
i,j,k

, ∂xΦR = ∂Φ
∂x

∣∣
i,j,k+1

,

∂yΦL = ∂Φ
∂y

∣∣∣
i,j,k

, ∂yΦR = ∂Φ
∂y

∣∣∣
i,j,k+1

,

∂zΦL = ∂Φ
∂z

∣∣
i,j,k

, ∂zΦR = ∂Φ
∂z

∣∣
i,j,k+1

.

(5.52)

and

Φ̂L = ΦL + 1
2 (1− ν+)∆z∂zΦL, Φ̂R = ΦR − 1

2 (1 + ν
−)∆z∂zΦR.

(5.53)
Time-step ∆t and velocity u are included in ν+ and ν−. This scaling of variables
makes the advection of Ψ rather straightforward, since an analytic expression
for the function f is given in Eqns. (5.30) and (5.31). The fluxes in the other
direction are obtained in the same way.

Fig. 5.5 illustrates that overlapping donating regions can exist in the corners
of the cell. Fluid in those overlapping regions is fluxed more than once through
different faces. This can be remedied by employing either a multidimensional
scheme or flux-splitting. For simplicity we have chosen the second approach.
The order of fluxing is: first in x-direction, then in y-direction and then in
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z-direction. The flux-splitting of Sussman and Puckett [13] is adopted:

Ψ(x)
i,j,k =

Ψ
n+1

2
i,j,k

− 1
∆x∆y∆z

„
Fx

n+ 1
2

i+ 1
2 ,j,k

−Fx
n+1

2
i− 1

2 ,j,k

«

1− ∆t
∆x (ui+ 1

2 ,j,k
−u

i− 1
2 ,j,k

)
,

Ψ(y)
i,j,k =

Ψ
(x)
i,j,k− 1

∆x∆y∆z

„
Fy

(x)

i,j+ 1
2 ,k

−Fy
(x)

i,j− 1
2 ,k

«

1− ∆t
∆y (vi,j+ 1

2 ,k
−v

i,j− 1
2 ,k

)
,

Ψ(z)
i,j,k =

Ψ
(y)
i,j,k− 1

∆x∆y∆z

„
Fz

(y)

i,j,k+ 1
2
−Fz

(y)

i,j,k− 1
2

«

1− ∆t
∆z (wi,j,k+1

2
−w

i,j,k− 1
2
)

,

Ψn+ 3
2

i,j,k = Ψ(z)
i,j,k −∆t

(
Ψ(x)
i,j,k

u
i+ 1

2 ,j,k
−u

i− 1
2 ,j,k

∆x +

Ψ(y)
i,j,k

v
i,j+ 1

2 ,k
−v

i,j− 1
2 ,k

∆y +

Ψ(z)
i,j,k

w
i,j,k+ 1

2
−w

i,j,k− 1
2

∆z

)
.

(5.54)

Due to the decoupling of interface advection and flow computation (see Eqn.
(5.3)), the velocities in Eqns. (5.51) and (5.54) are evaluated at tn+1. The fluxes
Fy

(x) are computed with a corrected Level-Set function Φ(x) : f(Φ(x),∇Φ(x)) =
Ψ(x) and similar for Fz(y). Note that any other flux (or operator)-splitting
technique could be adopted. Note also that due to the construction of Eqn.
(5.48) the quantity Ψ is conserved, which is necessary for mass conservation.

5.4.3 Step 3: Inverse function

The Volume-of-Fluid function Ψn+ 3
2 was computed in the previous step. The

Level-Set function after Level-Set advection as described in Section 5.2 is called
Φ∗. Note that Φ∗ will in general not conserve mass, i.e.

f(Φ∗
k,∇Φ∗

k) �= Ψn+ 1
2

k . (5.55)

In order to conserve mass within each computational cell, a correction ∆Φ to
Φ∗ is sought, such that mass is conserved within each computational cell:∣∣∣f(Φn+ 3

2
k ,∇Φn+ 3

2
k )− Ψn+ 3

2
k

∣∣∣ ≤ ε ∀k, (5.56)

where Φn+ 3
2 = Φ∗+∆Φ is the Level-Set function at the new time-level, f is the

Volume-of-Fluid function (step 1) and ε is some tolerance. It will be clear that
due to the behavior of Ψ no unique solution Φ exists. On the other hand, it
can be expected that the corrections ∆Φ are small, since the mass errors in Φ∗

are due to the truncation error of the discretization of Eqn. (3.11). Therefore
a simple iterative approach is taken, namely by means of Picard iterations.
Keeping the gradients of Φ fixed from the previous iteration, a new update for
Φ is found by computing

Φ(l+1)
k (x) =

{
g(Ψn+ 3

2
k ,∇Φ(l)

k ) |Ψ(l)
k −Ψn+ 3

2
k | > ε

Φ(l)
k |Ψ(l)

k −Ψn+ 3
2

k | ≤ ε
∀k, (5.57)
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where Ψ(l)
k = f(Φ(l)

k ,∇Φ(l)
k ), ε is a tolerance, typically ε = 10−8 and g is the

inverse function of f with respect to its first argument:

f(g(Ψ,∇Φ),∇Φ) = Ψ. (5.58)

The iterations are stopped if |Ψn+ 3
2

k −Ψ(l+1)
k | ≤ ε, ∀k.

An analytical expression for g in two dimensions is presented in [60]. How-
ever, expressing g analytically in three dimensions is a complicated task. Instead
Newton iterations are used to compute Φ(l+1)

k :

Φ(l+1),(m+1)
k = Φ(l+1),(m)

k +
Ψn+ 3

2
k − f(Φ(l),(m)

k ,∇Φ(l)
k )

∂f
∂Φ(Φ

(l),(m)
k ,∇Φ(l)

k )
. (5.59)

The derivative ∂f
∂Φ is computed analytically by straightforward differentiation.

The iterations are stopped if |Ψn+ 3
2

k − f(. . . )| ≤ ε. A graphical overview of the
method is given in Fig. 5.6.

5.4.4 Mass redistribution

For the advection of the Volume-of-Fluid function Ψ (step 2, Section 5.4.2)
operator splitting is applied. However, undershoots and/or overshoots can still
occur as reported by Sussman et al.[13]. This leads to unphysical values of Ψ,
namely < 0 and > 1. This is due to the non-vanishing source term in Eqn.
(5.54):

∆t

(
Ψ(x)
i,j,k

(
∂u

∂x

)
i,j,k

+Ψ(y)
i,j,k

(
∂v

∂y

)
i,j,k

+Ψ(z)
i,j,k

(
∂w

∂z

)
i,j,k

)
.

If the unphysical values are replaced by 0 or 1, mass errors arise which are in
general of the order 10−4 (Sussman and Puckett [13]). This is also observed
with the present method. Redistribution of Ψ avoids these mass errors. The
idea is to flux mass out of cells with Ψ > 1 and flux mass into cells with Ψ < 0.

Besides the unphysical values of Ψ, mass can also be distributed without the
presence of an interface. This is the case when the Volume-of-Fluid function
Ψ is between and not equal to 0 and 1, but no interface is present within
the corresponding computational cell. In that case a feature exists with a size
smaller than a computational cell. Although formally not a mass error, it is not
taken into account by the Ghost-Fluid method when the flow-field is computed,
and will be called ‘numerical vapor’. However, if numerical vapor would be
bluntly removed, it would cause mass errors.

There will not be any interface in a control volume Ωi,j,k around xi,j,k if no
interface is present between xi,j,k and xi±1,j,k and between xi,jk, and xi,j±1,k

and between xi,j,k and xi,j,k±1. No interface is present between two nodes if the
Level-Set function Φ does not change sign. Consequently, no interface will be
present in the control volume Ωi,j,k if Φi,j,kΦi±1,j,k > 0 and Φi,j,kΦi,j±1,k > 0
and Φi,j,kΦi,j,k±1 > 0.



48 CHAPTER 5. INTERFACE ADVECTION

Φ∗

Φn+3
2

flux z-direction

Φ(y)

f−1(Ψ)

Ψ(y)

flux y-direction

Φ(x)

f−1(Ψ)

flux x-direction

Ψn+1
2

Φn+1
2

Ψ(x)

Level-Set advection

re-initialization

f(Φ,∇Φ)

VOF advection

mass redistribution

Ψn+3
2

Section 5.4.4

f−1(Ψ)
Section 5.4.3

Eqn. (5.6)

Eqn. (5.5) Eqns. (5.30) and (5.31)

Eqn. (5.54)

Figure 5.6: MCLS method: interface advection; Φ: Level-Set function;
Ψ: Volume-of-Fluid function. The left-hand side branch corresponds to pure
Level-Set advection. The right-hand side branch represents the Volume-of-Fluid
advection.
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Summarizing, mass errors arise when

operator splitting: Ψi,j,k < 0 ∨ Ψi,j,k > 1
numerical vapor: Ψi,j,k ∈ (0, 1) ∧

Φi,j,kΦi+1,j,k > 0 ∧ Φi,j,kΦi−1,j,k > 0 ∧
Φi,j,kΦi,j+1,k > 0 ∧ Φi,j,kΦi,j−1,k > 0 ∧
Φi,j,kΦi,j,k+1 > 0 ∧ Φi,j,kΦi,j,k−1 > 0.

(5.60)

Assume that after the interface advection the Level-Set function Φ and the
Volume-of-Fluid function Ψ are known. The Volume-of-Fluid function is mass-
conserving, but contains unwanted values, i.e. Ψ < 0 and Ψ > 1 and ‘numerical
vapor’.

If Ψ contains unwanted values then modified functions Ψ̂ and Φ̂ are sought
such that:

• 0 < Ψ̂ < 0 only if an interface exists according to Φ̂,
• Ψ̂ conserves mass,

• Φ̂ is close to Φ in order not to destroy local accuracy.
The first constraint would suggest to just remove the unwanted values from

Ψ, i.e. set Ψ̂ to 0 or 1 if no interface is present and limit the function Ψ̂ to
0 ≤ Ψ̂ ≤ 1. However, this would violate the second constraint since mass errors
ε(x) arise:

ε = Ψ̂−Ψ. (5.61)

The total mass lost is then, of course,
∫
Ω

ε dΩ. The idea is now to first redistribute

ε to ε̂ conservatively and then to add it back to Ψ to obtain the redistributed
Ψ̂ (which automatically conserves mass):

Ψ̂ = Ψ + ε̂. (5.62)

The new Ψ̂ has to satisfy all three constraints.
From the foregoing constraints it follows that a procedure is needed to re-

distribute ε to ε̂, such that:

• Ψ̂ does not contain unwanted values according to Φ̂,

• the total amount of ε is conserved (in order to conserve mass),
• ‖Φ̂− Φ‖ is small, so that Φ̂ will be close to Φ.

The last remark would suggest to formulate a constrained minimization problem.
We choose not to proceed in this direction. Instead, ε will be redistributed in
the direction of the nearest interface, to keep the redistributing effect on Φ local
and thus minimizing ‖Φ̂− Φ‖.

Note that Ψ̂ and Φ̂ are coupled, which means that changing Ψ will cause
changes in Φ, complicating matters even further. A decoupled approach (by
means of Picard iterations) will therefore be chosen:
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1. keep Φ fixed, i.e. fix the interface position

2. redistribute Ψ to Ψ̂ by:

(a) define a vector field q which points towards the interface,

(b) with q, use a PDE to transport ε towards the interface,

3. with Ψ̂ compute Φ in the usual fashion by the ‘inverse function’ (see
previous section),

4. repeat the procedure (with the updated interface position) when still un-
wanted values of Ψ̂ according to Φ̂ exist.

2a velocity field q:

A velocity field q(x) is needed, which transports (‘fluxes’) the errors ε(x) towards
the interface. In other words, it has to point towards the interface. Such a
velocity field can be defined by taking q = (u, v, w)t:

ui+ 1
2
=


1, θi+ 1

2
< 1

2

0, θi+ 1
2
= 1

2

−1, θi+ 1
2
> 1

2 ,

(5.63)

where θi+ 1
2
is the relative distance of the interface between nodes i and i + 1,

measured from node i (see Eqn. (4.18)):

θi+ 1
2
=

−Φi

Φi+1 − Φi
. (5.64)

The magnitude of the components of q are 1 for reasons of computational effi-
ciency. After some mathematical manipulations, u is found as:

ui+ 1
2
= −sign(|Φi+1| − |Φi|). (5.65)

and similar in the other coordinate directions.
Problems arise when |Φi| ≈ |Φi+1|, since numerical errors in Φ will cause a

flip-flop effect. Therefore:

ui+ 1
2
= 0, ||Φi+1| − |Φi|| < tol max(|Φi+ 1

2
|, h), (5.66)

where Φi+ 1
2
is approximated by 1

2 (Φi + Φi+1), h is the mesh size and tol is a
tolerance, typically 0.1.

2b transport of ε:

With velocity field q(x), the errors are transported by (for some artificial time
τ):

∂ε

∂τ
+∇ · (qε) = 0, (5.67)
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until steady state ( ∂ε∂τ = 0). Eqn. (5.67) is discretized by an upwind approxima-
tion in the usual fashion. Instead of taking τ → ∞, which is rather impractical,
after each iteration of Eqn. (5.67) the number of cells (num) with |ε| > tol is
computed. The iterations are stopped if∥∥∥∥ ∂ε∂τ

∥∥∥∥
∞

≤ tol ∨ num = 0 ∨ iter > maxiter, (5.68)

where tol is a tolerance, typically 10−2, iter is the iteration-number and maxiter
is the maximum number of iterations. The following observations are made:

• the number of cells containing unwanted values of Ψ is small, typically
less than 10 for a 643 grid

• the number of iterations of Eqn. (5.67) is small, typically less than 5
• the number of Picard iterations is small, typically 1.

5.5 Conclusion

The interface representation and advection is based on the Level-Set methodol-
ogy. A Volume-of-Fluid function is used to conserve mass. An explicit relation-
ship exists between the Volume-of-Fluid function and the Level-Set function.
This relation makes the advection of the Volume-of-Fluid function straight-
forward. Operator splitting is used for the advection of the Volume-of-Fluid
function. Unphysical values of the Volume-of-Fluid function that are due to
operator splitting are addressed by mass redistribution, where erroneous mass
is transported towards the nearest interface location.





Chapter 6

Improved re-initialization

6.1 Introduction

Since the interface forces are regularized near the interface, it is necessary that
the Level-Set function is a distance function at all time instances. This ensures
that the regularization width has finite thickness at all time. This is achieved
by the re-initialization procedure of Sussman et al. [37]. The Level-Set function
Φ is re-initialized to make it a distance function by solving until steady state
for artificial time t′ (see Section 5.3 and Eqn. (5.6))

∂Φ
∂t′

= N(Φ,Φ0), (6.1)

with initial conditions
Φ(x, 0) = Φ0(x). (6.2)

Here Φ0 defines the interface position after the application of Eqn. (3.11). A
first-order temporal discretization of Eqn. (6.1) is:

Φk+1 − Φk

∆t′
= Nh(Φk,Φ0), (6.3)

where Nh is defined by Eqn. (5.7).
Due to re-initialization, the interface position can shift considerably (see

Van der Pijl et al. [60]: 2D advection tests). This is unwanted, since the
MCLS method is based on finding small corrections to Φ in order to conserve
mass. Especially small droplets or bubbles (of size about one mesh width) could
completely disappear due to re-initialization.

The effects of re-initialization is illustrated by considering a two-dimensional
square domain (x, y) ∈ [− 1

2 ,
1
2 ]
2 . There are two interfaces: a straight line at

x = − 1
4 and a circle with the origin at (x, y) = (0, 0) and a diameter of 4 mesh

widths. The Level-Set function is initialized such that it is a distance function
(see Fig. 6.2(a)). The corresponding Volume-of-Fluid function Ψ is depicted in
Fig. 6.2(b). The Level-Set function after re-initialization is shown in Fig. 6.2(c).

53
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−0.5 0 0.5
−0.5

0

0.5

x

y
Figure 6.1: Prescribed interfaces on a 20× 20 mesh

Although the initial Level-Set function is a distance function, large differences
exist between the initial and re-initialized Level-Set functions near the circular
interface. In fact, the circle has completely disappeared. Consequently, when
corrections are made to the Level-Set function in order to satisfy mass (pre-
scribed by the original Volume-of-Fluid function) the corrections are large (see
Fig. 6.2(d)). The resulting Level-Set function is highly non-smooth, which is an
unwanted effect in our approach.

6.2 Modified re-initialization

As the previous example has shown, situations exist where the re-initialization
procedure of Sussman et al. [37] does not satisfy the needs of the MCLS ap-
proach. Various improvements of the original re-initialization procedure exist,
often combined with higher order discretization. Since mass is conserved by
making corrections after re-initialization, it is not required that the interface
maintains the initial position exactly. Besides that, the initial data already re-
sembles a distance function. This leads to a simple modification of the original
procedure that satisfies the needs of the MCLS approach.

The difficulty with re-initialization is that although it is wanted that that
interface position remains intact, no (Φ = 0) boundary conditions are imposed
at the interface. The interface is only defined in the initial conditions. The
idea is now to leave the values of Φ near the interface (Φ = 0) unchanged if
−b ≤ Φ ≤ b, where b ≥ 0 is a prescribed band-width, proportional to the mesh
width. This is achieved by modification of Eqn. (6.3):

Φk+1 − Φk

∆t′
= Nh(Φk,Φ0)(1− q(Φ0)) +

Φ0 − Φk

∆t′
q(Φ0), (6.4)

where q is a function, which has value 1 near the interface and value 0 elsewhere.
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Figure 6.2: Effect of re-initialization on small features
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Figure 6.3: Effect of modified re-initialization on small entities

Note Eqn. (6.4) ensures that Φk+1 = Φ0 when q = 1 and effectively interface
conditions are applied. A logical choice for q would be

q(Φ) =
{
1 |Φ| ≤ b
0 |Φ| > b. (6.5)

Note that with this approach effectively boundary conditions are applied at the
(Φ0(x) = −b) and (Φ0(x) = b) contours respectively. The disadvantage of this
approach is that Φ can become non-smooth at |Φ| = b. Therefore, a smooth
function f is chosen which mimics the step-wise behavior:

q(Φ0) = exp(−(Φ
0

α
)2), (6.6)

where α =
√

2
3 (∆x

2 +∆y2 +∆z2) is a constant.
The effects of the modification of the re-initialization procedure on the previ-

ous described test-case is shown in Fig. 6.3. It can be seen that the re-initialized
Level-Set function resembles the initial Level-Set function. The same holds for
the corrected Level-Set function, which was the objective of the modification of
the re-initialization.

6.3 Stop criterion

The iterations of Eqn. (6.4) are stopped if∥∥∥∥Φk+1 − Φk

∆t′

∥∥∥∥
∞

≤ tol, (6.7)

where tol is a tolerance. Note that this quantity acts as the residual of

Nh(Φ,Φ0)(1 − f(Φ0)) +
Φ0 − Φ
∆t′

f(Φ0) = 0, (6.8)
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so { ‖Nh(Φ,Φ0)‖∞ ≤ tol, f(Φ0) = 0
‖Φ0 − Φ‖∞ ≤ tol ∆t′, f(Φ0) = 1. (6.9)

We use tol = 0.1 for our tolerance.

6.4 Conclusion

Re-initialization is used to make the Level-Set function a distance function.
However, the interface can shift considerably. This is due to the fact that the
interface is only prescribed in the initial conditions. A simple modification is
introduced that suits this research. It uses the fact that the initial condition is
already close to a distance function.





Chapter 7

Surface tension

7.1 Introduction

For the modeling of surface tension effects on the fluid motion, the CSF method
of Brackbill et al. [6] is adopted, see Section 2.6 and Section 4.3 for the numeri-
cal aspects. With this method the interface forces are transformed into volume
forces and added to the right-hand side of Eqn. (2.2). Due to their singular
behavior, these surface tension forces are regularized, such that they are dis-
tributed over a small region around the interface. According to Eqn. (4.6),
these forces are in case of the Level-Set methodology

1
ρ
fs =

1
1
2 (ρ0 + ρ1)

σκδα(Φ)∇Φ. (7.1)

where δα is a regularized Dirac delta function, d is the nearest distance to the
interface, ρ0 is the density of fluid ‘0’, ρ1 the density of fluid ‘1’, σ is the surface
tension coefficient and κ is the curvature of the interface.

7.2 Discretization of curvature

The curvature κ is defined by

κ = ∇ · ∇Φ
|∇Φ| . (7.2)

For the ease of implementation, this is rewritten as (see e.g. Brackbill et al. [6],
Rudman [26], Kang et al. [58]):

κ =
∇ · ∇Φ
|∇Φ| − ∇Φ · [(∇Φ · ∇)∇Φ]

|∇Φ|3 , (7.3)

which is a symbolic notation for:

κ =
∇ · ∇Φ
|∇Φ| − 1

|∇Φ|3
∑
i

∑
j

∂Φ
∂xi

∂Φ
∂xj

∂2Φ
∂xi∂xj

. (7.4)
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x

Φ

Figure 7.1: Local extremum of the Level-Set function Φ between two approach-
ing interfaces

The second order derivatives are discretized by straightforward central differ-
encing. The first order derivatives however need special care. It is immediately
visible that problems arise in Eqn. (7.4) when |∇Φ| vanishes. Such a situa-
tion occurs when the Level-Set function has a local extremum. This happens
when two interfaces are approaching each other, see Fig. 7.1 for an example.
To overcome this, instead of using central differences, the first order deriva-
tives are discretized by taking the maximum (in modulus) of the left-hand-side,
right-hand-side and central scheme. This is a first order approximation. It is
important when droplets or bubbles become small and when droplets or bubbles
merge. It also increases the smoothness of the curvature distribution.

7.3 Parasitic currents

The difficulty with the CSF method is that so-called parasitic currents can occur.
These are small unphysical currents that according to Lafaurie et al. [20] are due
to ‘slight unbalance of stresses at the sites in the interfacial region’. Parasitic
currents have been studied for a Volume-of-Fluid method by Scardovelli and
Zaleski in [27] and by Lafaurie et al. in [20]. Tryggvason et al. have analyzed
parasitic currents in [4] for a front-tracking method and Enright et al. in [16]
for a Level-Set method.

The parasitic currents are caused by the distribution of interface forces and
by inaccuracies in the computation of the curvature. In case of the Level-Set
methodology, the curvature κ is given by Eqn. (7.4). which is approximated
by central differences. Computing the curvature with pure Level-Set methods
faces no problems because of the smoothness of the Level-Set function. However,
with the MCLS method additional difficulties are encountered. With the MCLS
approach corrections to the Level-Set function are made locally near the interface
in order to conserve mass. This results in irregular data near the interface. From
Eqn. (7.4) follows that it will cause local errors in κ of the order ε

h2 , where ε
is the magnitude of the corrections and h is the mesh width. Although the
corrections are small in general, situations might occur where they are O (h)
locally. See Fig. 6.2(d) for an example with unmodified re-initialization. Note
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that in this case the errors are completely due to re-initialization, since no
advection is performed in this example. The consequences for the curvature are
rather dramatic in the sense that parasitic currents will grow when the mesh
is refined. The order of the errors in κ is 1

h . A study of these phenomena is
performed by Coyajee et al. in [61].

The Laplace test-case is frequently used to study the parasitic currents, see
e.g. Rudman [26], Lafaurie et al. [20], Tryggvason et al. [4]. A sphere with
radius 1

4m is placed in the center of a cubic domain with dimensions 1×1×1m.
The flow is initially at rest. Since the initial conditions satisfy the steady-state
problem, all velocities are parasitic currents. The following gravity and material
constants are used: g = 0 m

s2 , σ = 0.01
kg
s2 , ρ0 = 1

kg
m3 , ρ1

ρ0
= 1, µ0 = 0.1 kg

ms and
µ1
µ0
= 1. In Fig. 7.2 the time evolution of parasitic currents are shown for three

different grid sizes: 323, 643 and 963. The maximum values (in modulus) of the
parasitic currents grow in time and become larger for increasing mesh size. The
grid dependency is O ( 1h). The currents are shown in Fig. 7.3

Our aim is now to reduce the parasitic currents to a small value that is
negligible compared to the physical currents and does not increase when the
mesh is refined. This is achieved by:

• reduction of the magnitude of the corrections caused by re-initialization
• smoothing of the curvature

7.4 Re-initialization start criterion

The re-initialization procedure introduces errors in the Level-Set function Φ.
It is unwanted that these errors are larger than the changes per time-step due
to advection of Φ (by means of Eqn. (3.11)). The re-initialization procedure
should therefore only be carried out when necessary. The Level-Set function is
not re-initialized each time-step but only when the interface has traveled some
distance. This is measured by a time-step ∆treinit:

∆treinit =
σ

||u||∞
∆x + ||v||∞

∆y + ||w||∞
∆z

, (7.5)

where σ = 0.1 is chosen. Re-initialization is only performed if tn −∆treinit is
larger than or equal to the last re-initialization time. The effect of the time-step
criterion on the parasitic currents is shown in Fig. 7.4. The maximum modulus
of the parasitic currents converge to a constant value for all grids. The effect
on the 963 grid is most significant.

7.5 Effect of mass redistribution

The previous figures showed that the velocities (parasitic currents) are very
small for the Laplace test case. This means that the displacement of the interface
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(a) time evolution; The maximum modulus of the parasitic currents does
not converge to a constant value for all grids

1/h

|u
| m

ax

30 40 50 60 70 80 90 100
10-5

10-4

10-3

10-2

(b) grid dependency at t = 0.1

Figure 7.2: Parasitic currents for the Laplace test-case with three different grids
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Figure 7.3: Parasitic currents for the Laplace test-case in the symmetry plane;
963 grid
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(a) time evolution; The maximum modulus of the parasitic currents
converge to a constant value for all grids
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(b) grid dependency at t = 0.1; Note that the case without the start cri-
terion (‘std’) is also include in this figure; The parasitic currents decrease
due to the start criterion, most notably for the 963 grid

Figure 7.4: Parasitic currents for the Laplace test-case with three different grids;
start criterion in re-initialization
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xk−1 xk

Ωk

xk+1

Φ

x

Figure 7.5: One-dimensional example of a Level-Set function Φ that does not
change sign in Ωk (hence no interface); but the linearization of Φ around xk
does, hence 0 < Ψk < 1 and the classification ‘numerical vapor’.

is equally small. It can therefore be expected that the Level-Set function Φ∗

after pure Level-Set advection (Eqn. (5.5)) and without re-initialization does
not loose a significant amount of mass. At first sight, there would by no need for
any corrections on Φ∗ in order to conserve mass. However Fig. 7.4 shows that
the parasitic currents do not decrease when the grid is refined, which indicates
that still corrections are made that influence the computation of curvature by
means of Eqn. (7.4). Further inspection of the numerical output reveals that
the corrections are due to mass redistribution (see Section 5.4.4). This means
that ‘numerical vapor’ exists in the initial conditions according to the mass-
distribution criterion as specified by Eqn. (5.60). In other words, a situation
exists where the Level-Set function Φ in a grid point xi,j,k has the same sign
as Φ in its neighbors xi±1,j,k, xi,j±1,k and xi,j,k±1, but still an interface exists
in the computational cell Ωk according to the linearization of Φ around xk.
A one-dimensional example is shown in Fig. 7.5. The mass redistribution will
redistribute all mass in Ωi,j,k in the direction of the nearest interface and a
new Volume-of-Fluid function Ψ is obtained (see Section 5.4.4). With the new
Volume-of-Fluid function Ψ, corrections are made to the Level-Set function Φ
such that it satisfies f(Φ,∇Φ) = Ψ, as explained in Section 5.4.3.

Fig. 7.6 shows the parasitic currents without mass redistribution. No correc-
tions to Φ∗ are made and the pure Level-Set approach is obtained. The parasitic
currents are completely due to the regularization of the interface forces (CSF
approach, see Sections 2.6 end 4.3) and converge with O (h). This is the pure
Level-Set behavior and shows that the parasitic currents are due to mass redis-
tribution.

The Laplace test case is believed to be the worst-case scenario for the ‘Mass
Conserving Level-Set’ approach. On the one hand corrections are made due to
mass redistribution and the initial Level-Set function becomes perturbed. On
the other hand the interface does not move and the perturbations remain in-
tact since ∂Φ

∂t = −u · ∇Φ ≈ 0. This means that the perturbations will never
disappear. When the interface does move in practical applications, the pertur-
bations will (numerically) diffuse after the convection step (Eqn. (5.5)). It is
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then advantageous to compute the curvature before the corrections are made.
Once again, this makes no difference for the Laplace test case since the interface
is stationary.

7.6 Curvature smoothing

Volume-of-Fluid methods encounter similar, but more severe difficulties when
computing the curvature, since the Volume-of-Fluid function has a step-like
behavior. With these methods it is common fashion to effectively compute the
curvature based on a smoothed function, see e.g. Scardovelli and Zaleski [27] or
Rudman [26]. With front-tracking methods Sousa et al. [2] remove ‘undulations’
from the interface before computing the curvature. Doing so, they effectively
smooth the interface grid. Both approaches have been an inspiration for this
work.

The first step that comes to mind would be to smooth the Level-Set func-
tion before computing the curvature. However, a smooth distribution of the
curvature is sought, not of the Level-Set function itself. Therefore, it is chosen
to smooth the curvature instead. This should not be performed carelessly, since
some properties of the curvature should be maintained. These are:

1. the curvature is continuous and sufficiently smooth,

2. the curvature κ is the divergence of
∇Φ
|∇Φ| , so κ has to be modified conser-

vatively,

3. the curvature has to correspond to the interface at the interface (Φ = 0)
when the curvature is already sufficiently smooth.

To meet these demands, an approach based on a diffusion equation in pseudo-
time τ is chosen:

∂κ

∂τ
= ∇ · d∇κ. (7.6)

The first two requirements are satisfied if Eqn. (7.6) is used provided d is
smooth. Here d is a diffusion coefficient that ensures that the last demand is
also met. It is constructed in the following way:

d = 1− exp( −Φ2

∆x2 +∆y2 +∆z2
). (7.7)

Note that d is smooth. Since the diffusion coefficient is very small near the
interface, significant modifications to κ are only made when the derivatives ∇κ
are large and κ is left intact when it is smooth. An explicit Euler temporal
discretization is used. The maximum allowed pseudo-time step (for d ≤ 1) of
h2

6 is used. For the time-step of the explicit Euler method N
16 is used, where N

is the number of grid cells in one direction. Note that the number of iterations
is proportional to the mesh size.
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(a) time evolution; The maximum modulus of the parasitic currents
converge to a constant value for all grids
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(b) grid dependency at t = 0.1; Note that the two previous cases (‘std’
and ‘re-init start crit.’) are also included in this figure

Figure 7.6: Parasitic currents for the Laplace test-case with three different grids;
start criterion in re-initialization and no mass redistribution
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(a) time evolution; The maximum modulus of the parasitic currents
converge to a constant value for all grids
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(b) grid dependency at t = 0.1; Note that the two previous cases (‘std’
and ‘re-init start crit.’) are also included in this figure; The parasitic
currents decrease further due to smoothing of the curvature

Figure 7.7: Parasitic currents for the Laplace test-case with three different grids;
time-step criterion in re-initialization and smoothed curvature
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The results for the Laplace test-case are shown in Fig. 7.7. The maximum
value (in modulus) of the parasitic currents converges with O (h) as shown in
Fig. 7.7(a).

7.7 Conclusion

First and second order derivatives of the Level-Set function have to be computed
for the modeling of surface tension. Since local corrections to the Level-Set func-
tion are made near the interface in order to conserve mass, problems arise when
these derivatives are computed. This results in parasitic currents. To reduce
these currents, the corrections are made smaller by introducing a start crite-
rion for the re-initialization procedure. Besides that, the curvature is smoothed
based on a diffusion equation, which reduces the currents even further.





Chapter 8

Applications

8.1 Introduction

The behavior of the MCLS approach is shown by a couple of standard advection
tests, with a prescribed velocity field. Thereafter, the method is applied to the
complete set of equations by considering a falling drop and a rising bubble in
two and three dimensions, respectively. Merging of rising bubbles is studied for
two aligned and two misaligned bubbles.

8.2 Two-dimensional results

8.2.1 Linear advection

The first advection test is presented in Fig. 8.1. The velocity field is prescribed
by (u, v) = (0,−1). The dimensions of the computational domain are: Lx = 10
and Ly = 100. We use a 10x100-mesh. Initially a circle of radius R0 is placed
at x = Lx/2 and y = Ly−2R0. For the case of R0 = 4 (a circle with a diameter
of 8 mesh sizes), the relative mass is plotted in Fig. 8.2 as function of the
traversed distance of the circle. First-order, second-order and third-order pure
Level-Set simulations (with and without re-initialization) are compared with the
MCLS method. ENO discretization is adopted for the pure Level-Set method
(see aforementioned references). The order of re-initialization is in agreement
with the order of advection. The tolerance in the VOF advection is taken to
be: ε = 10−8. Globally speaking it can be said that mass is always lost for
the pure Level-Set advection. Mass losses are smaller for higher accuracy and
re-initialization causes much higher mass losses. The MCLS method conserves
mass up to the specified tolerance.
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R0

2R0

Lx

Ly u

Figure 8.1: Linear advection test. A disc of radius R0 is advected in a rectan-
gular domain of Lx by Ly. The center of the disc is initially placed at 2R0 from
the top of the domain. The advection velocity is u.

8.2.2 Zalesak’s rotating disc

The advection test of Zalesak ([17]) is often used to demonstrate the interface-
advection algorithm (see e.g. [24, 25, 29] for VOF methods and [13, 15, 44, 45] for
Level-Set methods). A slotted disc (Fig. 8.3) is rotated through one revolution
around the center of the computational domain. The velocity-field is prescribed
by: (u, v) = (−(y − 1

2Ly), x − 1
2Lx). The center of the slotted disc (x0, y0)

t

is located at (x0, y0) = (12Lx,
3
4Ly). The sizes are: Lx = Ly, R0 = 3

20Lx and
W = 1

3R0.
In Figs. 8.4 and 8.5 results are shown for various mesh sizes. As might be

expected, given the foregoing linear advection results, mass is still lost with the
high-order Level-Set method. For the MCLS method, mass is conserved up to
the specified tolerance ε, although mass is redistributed due to numerical diffu-
sion. Results of the MCLS method are comparable with VOF/PLIC methods
(see aforementioned references). Note that the Level-Set advection is first-order
in the case of the MCLS method.

The length l(S) of the interface S can be expressed as (see e.g. [36])

l(S) =
∫
S

dS =
∫
Ω

δ(Φ)|∇Φ| dΩ. (8.1)

This is approximated by using central differences and regularization of the Dirac



8.2. TWO-DIMENSIONAL RESULTS 73

10
1

10
2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

number of traversed mesh sizes

|r
el

at
iv

e 
m

as
s−

1|

1st order
1st order; re−init.
2nd order
2nd order; re−init.
3rd order
3rd order; re−init.
MCLS

Figure 8.2: Relative mass errors for the linear advection test; ε = 10−8 (every
10th iteration marked). Pure Level-Set advection with different discretization
orders are compared with MCLS.
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R0

W

W

Figure 8.3: Zalesak’s slotted disc advection test (to scale). The dimensions of
the slot are depicted in the graph.
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Figure 8.4: Results for Zalesak’s advection test; The shaded area indicates the
initial contour. The dashed lines indicate the interface after one revolution
with 3rd order pure Level-Set advection. The solid lines correspond to MCLS
advection. Four different mesh sizes have been employed.
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iteration marked). Pure Level-Set advection with third order discretization is
compared with MCLS for different mesh sizes.
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l(S)
l(S0) 50× 50 100× 100 150× 150 200× 200
initial 0.86094 0.98187 0.98804 0.99102

3rd order 0.49236 0.80940 0.91253 0.93318
MCLS 0.84106 0.95977 0.97020 0.97570

Table 8.1: Computed interface lengths after one revolution

delta function (see Eqn. (4.5)):

l(S) =
∫
Ω

δα(Φ)|∇Φ| dΩ, (8.2)

where

δα(x) =
{
0, |x| > α
1+cos(πx

α )

2α , |x| ≤ α. (8.3)

Note that due to Eqn. (4.5), the exact value of Φ has no meaning in the Level-
Set formulation; only its sign is relevant. The α in Eqn. (8.2) therefore equals
the α of Eqn. (4.5). The exact length of the interface is

l(S0) =
(
4 + 2π − 2 arctan(1

2
W

R0
)− W

R0

)
R0. (8.4)

In Table 8.1 the computed interface lengths after one revolution are compared
with the exact length. ‘Initial’ means at t = 0, when errors are made due to
the regularization of the delta function. Furthermore, ‘3rd order’ and ‘MCLS’
correspond to the interface lengths after one revolution.

Since Φ0 is a distance function, |Φ − Φ0| is a measure for the shift of the
interface after one revolution. A norm of the error e can be defined as

||e||2 =
(∫

S
|Φ−Φ0

Lx
|2 dS∫

S
dS

) 1
2

=

(∫
Ω
|Φ−Φ0

Lx
|2 δα(Φ)|∇Φ| dΩ∫

Ω
δα(Φ)|∇Φ| dΩ

) 1
2

, (8.5)

where Lx is used to non-dimensionalize Φ and Φ0 is the initial Level-Set function.
Results are presented in Fig. 8.6. In all cases the MCLS approach is superior to
the 3rd order ENO, pure Level-Set method.

8.2.3 Air/water flow

In [58] a two-dimensional rising air bubble in water is considered. The dimen-
sions and sizes are: Lx = 0.02 m, Ly = 3

2Lx, R0 = 1
6Lx, x0 = y0 =

1
2Lx. The

gravity and material constants are: g = 9.8 m
s2 , σ = 0.0728 kg

s2 , ρw = 103 kg
m3 ,

ρa = 1.226 kg
m3 , µw = 1.137 10−3 kg

ms and µa = 1.78 10−5 kg
ms , where subscripts

w and a indicate water and air respectively.
Results are shown in Fig. 8.7 for three different mesh sizes. We take ε = 10−8.

Relative mass losses are of the same order and in agreement with the advection
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Figure 8.6: Errors for Zalesak’s advection test. The left graph show the errors
of the Level-Set-function Φ near the interface after one revolution. The right
graph shows the errors in the computed interface length.

tests. Note that the number of grid cells is much smaller than in [58]. The results
are the same for t ≤ 0.025 for all mesh sizes. Thereafter small differences occur.
The results compare well with [58]. The MCLS method seems to result in a
more compact structure at the highly curved part of the interface at t = 0.05.
This is thought to be caused by the low resolution of the grids used here.

In Fig. 8.8 results are shown for a falling droplet. The conditions are the
same as for the rising bubble, except for the sign of Φ at t = 0 and y0 = Lx.
Note that we use homogeneous Neumann boundary conditions for the Level-Set
function Φ and Volume-of-Fluid function Ψ. Mass conservation properties are
the same as before. The results are the same until the droplet hits the bottom.
Thereafter differences occur. This is thought to be due to limited number of
grid cells available to capture the flow-phenomena near the wall. The results
compare well with [58]. Note that the results in [58] span t ≤ 0.05; no results
after collision are presented.

8.2.4 Computational Costs

The computational costs of the MCLS method are compared with purely third
order Level-Set advection in Table 8.2. The numbers correspond to CPU seconds
spent per time-step for the rising bubble test case on a 60×90 mesh. Note that
the Level-Set advection is first order accurate in case of MCLS. The interface
advection for MCLS becomes approximately twice as expensive. This makes the
total time-step approximately 10% more expensive. On the other hand, mass
is conserved up to the specified tolerance in case of MCLS, whereas mass is
lost/gained for the third order pure Level-Set advection (see Figs. 8.2 and 8.5
for the advection tests).
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t=0 t=0.01 t=0.025

t=0.05 t=0.075 t=0.1

Figure 8.7: Interface positions for the rising bubble. Three different mesh sizes
have been employed: −·− : 30×45; −− : 40×60; −− : 60×90 mesh. Snapshots
are presented with equidistant time-steps.
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t=0 t=0.02 t=0.04

t=0.05 t=0.06 t=0.065

Figure 8.8: Interface positions for the falling droplet; Three different mesh sizes
have been employed: −·− : 30×45; −− : 40×60; −− : 60×90 mesh. Snapshots
are presented with equidistant time-steps.
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MCLS 3rd order
Level-Set advection 0.03 0.07

re-initialization 0.02 0.07
VOF advection

flux x 0.04
correct 0.04
flux y 0.04
correct 0.05
redist 0.06
total 0.23

Total advection 0.28 0.14
Total time-step 1.50 1.35

Table 8.2: Computational costs measured in CPU seconds per time-step. MCLS
is compared with third order Level-Set advection for the rising bubble test case
on a 60× 90 mesh.

8.3 Three-dimensional results

8.3.1 Advection test

Consider a sphere which is placed in the center of a cube. The width of the cube
is twice the diameter of the sphere. There are 30 grid cells in x, y and z-direction.
Periodic boundary conditions are applied at the boundaries. The CFL number
is 0.35. Note that this CFL number is also used in the full model simulations.
The sphere is advected with uniform velocity field (u, v, w) = (2, 3,−1). Relative
mass errors are plotted in Fig. 8.9. The results are consistent with the two-
dimensional work presented in the previous section.

8.3.2 Rising air bubble in water without surface tension

The behavior of the MCLS approach is shown by a rising bubble in three di-
mensions. The gravity and material constants are:

g = 9.8
m

s2
, σ = 0.0728

kg

s2
,

ρw = 103
kg

m3
, ρa = 1.226

kg

m3
,

µw = 1.137× 10−3 kg

ms
, µa = 1.78× 10−5 kg

ms
,

where subscripts w and a indicate water and air respectively. The initial condi-
tions are presented in Fig. 8.10. An air bubble is initially at rest and aligned on
the center line of the computational domain. The dimensions of the domain are:
Lx = Ly = Lz = 0.01 m. The radius of the bubble is R = 0.00125 m. The dis-
tance from the center of the bubble to the floor of the domain is z0 = 0.0025 m.
A free surface is located at z1 = 0.0075 m. Results are shown in Figs. 8.11 and
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Figure 8.9: Relative mass errors for advected sphere; ε = 10−8
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Figure 8.10: Set-up of the rising-bubble test case

8.12. Two grid sizes are considered. These are 64 × 64 × 64 and 96 × 96 × 96
respectively. The snapshots are taken at equal time differences of 0.005 sec.
For ease of visualization, only y < 1

2 Ly is plotted. Also, the interface position
in the plane y = 1

2 Ly is plotted. It can be seen that the bubble deforms and
breaks up to form a bell- and ring-like structure, just before it breaks through
the free surface. In [1] similar simulations are made for a rising bubble with low
surface tension. Good resemblance is observed with these results (see Fig. 8.13)
and the snapshots presented in Fig. 8.14.

In Fig. 8.15 the rise speed wc of the droplet before collision with the free
surface is plotted as function of time t. For the rise speed wc the velocity of the
center of gravity of the bubble is taken:

wc =

∫
Ω

(1−H(Φ))w dΩ∫
Ω

(1−H(Φ)) dΩ , (8.6)

where H is the Heaviside step function and the integration is over Ω, which is
the part of the domain Ω that does not include the air above the free surface.
Note that by definition

Φ =
{
< 0, air,
> 0, water, (8.7)
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Figure 8.11: Rising bubble without surface tension; 643 grid
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Figure 8.12: Rising bubble without surface tension; 963 grid
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Figure 8.13: Rising bubble with low surface tension; courtesy of Sussman et al.
[1]
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(a) t = 0.9 × 10−2 s (b) t = 1 × 10−2 s

(c) t = 1.3 × 10−2 s (d) t = 1.5 × 10−2 s

Figure 8.14: Rising bubble without surface tension; 963 grid; zoomed in

so that 1−H(Φ) is 1 in air and 0 in water. Using the Volume-of-Fluid function
Eqn. (5.22) in computational cell Ωk

Ψk =
1

vol(Ωk)

∫
Ωk

H(Φ) dΩ, , (8.8)

wc is approximated as

wc =

∑
k

(1 −Ψk)wk∑
k

1−Ψk
, (8.9)

where the summation is over all computational cells in Ω. The rise speed is in
good agreement for both grids. The rise speed reaches a maximum just after the
bubble starts moving. A local maximum is reached again before impact with
the free surface at the top of the domain.

The shape of the bubble just before it breaks through the free surface is
depicted in Fig. 8.16. The bubble takes the form of a spherical cap with radius
Rs = 0.0018m. In [62] an expression for the rise speed of a spherical cap, based
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Figure 8.15: Rise speed of the bubble without surface tension; the dotted line
is the analytic rise speed of the spherical cap
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Figure 8.16: Bubble without surface tension just before it breaks through the
free surface; symmetry plane y = 1

2Ly; Rs is the radius of the spherical cap.
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Figure 8.17: Rising bubble with surface tension; 643 grid

on irrotational flow, is derived:

ws =
2
3

√
gRs = 0.0885m/s. (8.10)

This speed is indicated in Fig. 8.15. The numerical results compare well with
this speed until the bubble breaks through the free surface.

8.3.3 Rising air bubble in water with surface tension

In Figs. 8.17 and 8.18 results with surface tension are presented. The deforma-
tion of the bubbles is significantly reduced due to the surface tension effects. In
Fig. 8.19 the rise speed wc of the bubble with surface tension is plotted for both
grids. As a reference the rise speed of a bubble without surface tension (previ-
ous test case) is also included in this figure. The agreement between both grids
is good. When the bubble is just released, the acceleration of the bubble with
surface tension is lower than the bubble without surface tension. But instead
of reaching a maximum rise speed, the bubble with surface tension continuous
to accelerate further. Eventually higher speeds are reached for the bubble with
surface tension than without surface tension. A peak is observed just before
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Figure 8.18: Rising bubble with surface tension; 963 grid
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Figure 8.19: Rise speed of the bubble with surface tension; marks are at equally
spaced time intervals of 0.005 s.

collision with the free surface at the top of the domain. This indicates that the
bubble is sucked towards the free-surface before merging with it.

8.3.4 Falling water droplet in air without surface tension

In Fig. 8.20 the set up of a falling water droplet without surface tension is
shown. The gravity and material constants are the same as for the bubble. The
dimensions of the domain are also the same as for the rising-bubble test case.
The droplet is released at half the height of the domain, i.e. z0 = 0.005 m and
the free surface is initially located at 1/4th height: z1 = 0.0025 m. The radius
of the droplet is R = 0.00125 m. Results are shown in Figs. 8.21 and 8.22. The
snapshots are taken at intervals of 0.01 sec. The droplet accelerates after it is
released and hits the free surface. A jet appears after collision that reaches up
to the ceiling of the domain.

In Fig. 8.23 the fall speed wc of the droplet before impact with the free
surface is plotted as function of time t. For the fall speed wc the velocity of the
center of gravity of the droplet is taken, which is computed in a similar fashion
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Figure 8.20: Set-up of the falling-droplet without surface tension test case

as the rise speed of a bubble; Eqn. (8.9) becomes

wc =

∑
k

Ψkxk∑
k

Ψk
. (8.11)

Good agreement of the fall speed with the free-fall velocity wc = −gt is ob-
served.

8.3.5 Falling water droplet in air with surface tension

The release height of a droplet with surface tension is increased to z0 = 0.0075m.
The fall height of the droplet without surface tension is smaller because oth-
erwise the droplet becomes too deformed when it hits the free surface. The
deformation of the droplet with surface tension is much less and allows a higher
fall height. In Figs. 8.24 and 8.25 results are presented. The droplet indeed
does not change shape before it collides with the free surface. Although the
release height of the droplet is larger than without surface tension, the jet after
collision is considerably smaller. This is the effect of surface tension that tries
to minimize the interfacial area. In Fig. 8.26 the falling speed is compared with
the free fall velocity wc = −gt. The computed fall speeds for both grids are in
agreement and larger than the free-fall velocity. Since the droplet without sur-
face tension accelerated with dwc

dt = −g (see previous test case) the acceleration
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Figure 8.21: Falling droplet without surface tension; 643 grid
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Figure 8.22: Falling droplet without surface tension; 963 grid
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Figure 8.23: Fall speed of the droplet without surface tension compared with
the free-fall velocity
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Figure 8.24: Falling droplet with surface tension; 643 grid
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Figure 8.25: Falling droplet with surface tension; 963 grid
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Figure 8.26: Fall speed of the droplet with surface tension compared with the
free-fall velocity
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with surface tension is higher than without surface tension. This is believed to
be caused by the CSF approach (see Sections 2.6 end 4.3). The total force acting
on a bubble or droplet due to surface tension should vanish, since the surface
tension forces are internal forces and the interface is closed. However with the
CSF approach a non-conservative expression is obtained (see Eqns. (2.22) and
(4.6)). This means that numerically the forces do not necessarily add up to zero
any longer. Inspection of the numerical data shows that∑

k

1
ρ
fs ≈ −10−8. (8.12)

The acceleration of the center of gravity of the droplet will therefore be

gz +
1

4
3πR

3

∑
k

1
ρ
fs ≈ −11m/s2, (8.13)

where 4
3πR

3 is the volume of the droplet. Note that gz is the z-component of
the gravity vector �= (gx, gy, gz)t. This is in agreement with the results in
Fig. 8.26, where the droplet indeed accelerates with approximately −11 m/s2.

8.3.6 Comparison of rising bubble with experimental data

In [3] bubbly flows are simulated with a front tracking and a Volume-of-Fluid
method. The rise speed is compared with experimental observations. Assume
that ‘1’ corresponds to the heavier fluid outside the bubble and ‘0’ to the light
fluid inside the bubble. The flow is characterized by the following dimensionless
parameters:

Eö =
g(ρ1 − ρ0)(2R)2

σ

Mo =
gµ41(ρ1 − ρ0)

ρ21σ
3

.
(8.14)

where Eö is the Eötvos number and Mo is the Morton number. The final rise
speed wc is then measured in the Reynolds number Re:

Re =
ρlwc2R
µ1

. (8.15)

In [3] the following parameters are chosen:

Eö = 1.0
log(Mo) = −3.8. (8.16)

This corresponds to:

g = 9.8
m

s2
, σ = 0.0792

kg

s2
,

ρ0 = 1.293
kg

m3
, ρ1 = 262

kg

m3
,

µ0 = 1.71× 10−6 kg

ms
, µ1 = 5.50× 10−2 kg

ms
.
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Figure 8.27: Set-up of the rising bubble test case
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Figure 8.28: Rise speed of the bubble; Eö = 1.0; log(M) = −3.8

The bubble radius is R = 0.0013m. In this work, the dimensions of the domain
are: Lx = 0.01 m, Ly = Lx, Lz = 2Lx, see Fig. 8.27. The initial distance from
the bubble to the floor of the domain is: z0 = 2R. The grid size is 64×64×192.
The computed rise speed of the bubble wc is presented in Fig. 8.28. The rise
speeds converges monotonically to a constant value.

When the flow around the bubble is fully developed, the drag force Fd is
balanced by the buoyancy force, i.e.:

Fd =
4
3
πR3g(ρ1 − ρ0). (8.17)

Experimental data is usually fitted with the drag force drag coefficient cd

cd =
Fd

1
2ρ1w

2
cπR

2
. (8.18)

In [3] three different experimental correlations are used to compare with the
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Re
Gunsing [3] VOF 8.2
Gunsing [3] front tracking 6.4
experimental (I) Eqn. (8.19) 5.2
experimental (II) Eqn. (8.20) 5.3
experimental (III) Eqn. (8.21) 5.8
this work 4.6

Table 8.3: Reynolds numbers of the rising bubble compared with the numerical
results from Gunsing [3] and experimental data; Eö = 1.0; log(M) = −3.8

numerical results. These are:

(I) cd = 14.9Re−0.78, (8.19)

(II) cd =
3.05(783γ2+ 2142γ + 1080)

(60 + 29γ)(4 + 3γ)
Re−0.74, (8.20)

(III) cd = max(min(
A

Reb(1 + 0.15Re0.6882b )
,
3A
Reb

),
8
3

Eö
Eö + 4

), (8.21)

where γ = ρ0
ρ1
. For more detail on these experimental closures see [3]. The

resulting Reynolds numbers are shown in Table 8.3. There is agreement in
the order of magnitude of the rise speed. When compared to the experimental
data, the results of Gunsing shows Reynolds number that is about 40% larger
for the VOF method and 10% for the front tracking method. Our method
under-predicts the rise speed with about 10%.

8.3.7 Coalescence of two aligned rising bubbles

The coalescence of two rising bubbles is studied by De Sousa et al. in [2]. The
initial conditions are presented in Fig. 8.29. Two bubbles are initially at rest and
aligned on the center line of the computational domain. The dimensions of the
domain are: Lx = 0.01 m, Ly = 0.01 m, Lz = 0.02 m. The radii of the bubbles
are R = 0.0013 m. The distance from the bottom bubble to the floor of the
domain is: z0 = 0.0025m. The distance between the bubbles is ∆z = 0.0055m.
Note that this makes the gap between the bubbles ∆z − 2R = 0.0004 m (as
prescribed by De Sousa et al. [2]). The gravity and material constants are:

g = 9.8
m

s2
, σ = 5.8× 10−4 kg

s2
,

ρ0 = 440
kg

m3
, ρ1 = 880

kg

m3
,

µ0 = 0.00625
kg

ms
, µ1 = 0.00125

kg

ms
,

where subscripts 0 and 1 indicate the lighter and heavier fluid respectively. The
coalescence of two rising bubbles is illustrated in Fig. 8.30. Snapshots are taken
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Figure 8.29: Set-up of the two aligned rising-bubbles test case



8.3. THREE-DIMENSIONAL RESULTS 105

t = 0 s t = 0.02 s t = 0.04 s t = 0.06 s

t = 0.08 s t = 0.1 s t = 0.12 s t = 0.14 s

Figure 8.30: Coalescence of two aligned rising bubbles; 96× 96× 192 grid
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Figure 8.31: Coalescence of two aligned rising bubbles; courtesy of De Sousa et
al. [2]

at equally spaced time intervals of 0.02 s, starting from the initial condition.
Good qualitative agreement is found with the results presented by De Sousa et
al. [2] (see Fig. 8.31). The snapshots presented in [2] are taken at intervals of
0.03 s, which means that the bubbles rise speed in this research is approximately
35% larger than in [2]. Note that velocities predicted by our model have been
validated in the previous sections.

The vertical velocity of the center of gravity of the two bubbles is plotted in
Fig. 8.32. Note that this velocity is computed as explained in Section 8.3.2. The
rise speed increases to a maximum and converges to a smaller steady speed. In
Section 8.3.2 a rising bubble without surface tension was studied. The rise speed
reached a maximum just after the bubble was released. This also occurs here.
This might be explained by the fact that here the surface tension coefficient is
relatively small compared to the surface tension in the air-water test cases.

8.3.8 Coalescence of two misaligned rising bubbles

The bubbles are initially misaligned to study asymmetric merging, see Fig. 8.33.
The set-up is the same as for the aligned rising bubbles, except for a horizontal
distance ∆x between the bubbles. This distance is equal to the bubble radius,
i.e. ∆x = R. The results are plotted in Fig. 8.34. It can be seen that the
bottom bubble is deformed considerably and sucked upward towards the top
bubble. A thin tail is observed after merging. The tail becomes smaller, but
never completely disappears. These simulations are also performed by De Sousa
et al. [2], see Fig. 8.35. The qualitative agreement is good, albeit that the rise
speed is different. This was also the case for the aligned bubbles. Furthermore,
the tail after merging of the two bubbles suddenly disappears in [2], whereas
according to Fig. 8.34 the tail does not disappear. The tail remains but becomes
thinner as time passes. The interface does also seems to be more irregular in [2],
despite of the so-called ‘undulation removal procedure’ carried out by De Sousa
et al. [2] to smooth the interface. Note that in this work the interface is not
smoothed. Still a smooth interface is observed.

The vertical velocity of the center of gravity of the two bubbles is plotted
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Figure 8.32: Rise speed of the aligned bubbles; 96× 96× 192 grid
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Figure 8.33: Set-up of the two misaligned rising bubbles
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t = 0 s t = 0.02 s t = 0.04 s t = 0.06 s

t = 0.08 s t = 0.1 s t = 0.12 s t = 0.14 s

Figure 8.34: Coalescence of two misaligned rising bubbles; 96× 96× 192 grid
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Figure 8.35: Coalescence of two misaligned rising bubbles; courtesy of De Sousa
et al. [2]

in Fig. 8.36. As a reference, the rise speed of the aligned bubble test case is
also included in this figure. The behavior is the same as in the previous case.
The maximum rise speed reached is lower. The speed converges to the speed
of the misaligned bubbles. This is to be expected, as the shape of the merged,
aligned bubble becomes similar to the shape of the merged, misaligned bubble,
see Figs. 8.30 and 8.34. The location of the center of gravity in the x − z
symmetry plane is plotted in Fig. 8.37. This is computed in the same way as
the rise speed wc:

xc =

∑
k

(1−Ψk)xk∑
k

(1 −Ψk)
, (8.22)

where the summation is over all computational cells k. The figure shows that
the aligned bubbles move straight up. The misaligned bubbles deviate in the
direction of the top bubble at first, but eventually move straight up. The marks
are placed at equally spaced time intervals of 0.02 for comparison with Figs. 8.30
and 8.34. The rise speed is clearly at maximum halfway the domain, which was
also concluded from Fig. 8.36.
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Figure 8.36: Rise speed of the bubbles; 96× 96× 192 grid
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Figure 8.37: Location of the center of gravity (xc, zc) of the rising bubbles in
the x− z symmetry plane; marks are at equally spaced time intervals of 0.02 s;
96× 96× 192 grid
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Conclusions

The purpose of this work is to model bubbly flows. This has been achieved by
using the Level-Set approach. It appears that the Level-Set method does not
conserve the mass of each separate phase. Therefore a ‘Mass Conserving Level-
Set’ method was developed. It uses a so-called Volume of Fluid function to en-
hance mass conservation. The Volume-of-Fluid function measures the fractional
volume of fluid within a computational cell. A straightforward relationship was
found between the Volume-of-Fluid function and the Level-Set function, which
makes the method easy to implement and to generalize to three dimensions. In
that sense this work combines the appealing features of the Level-Set method
with the mass-conservation properties of Volume-of-Fluid methods.

The viscosity and surface tension are regularized in a small band around the
interface. The width of this band depends on the gradients of the Level-Set
function. Re-initialization of the Level-Set function is used to keep the Level-
Set function close to a distance function; the norm of the gradient of a distance
function is one. The re-initialization procedure, however, causes the interface
to shift. A simple modification is applied to the original procedure to remedy
this defect.

In the ‘Mass Conserving Level-Set’ approach, corrections are made to the
Level-Set function after each time step in order to conserve mass. The correc-
tions are made locally near the interface only. Under certain circumstances,
this might cause problems for the computation of the curvature, which depends
on first and second order derivatives of the Level-Set function. So-called para-
sitic currents can occur. Complicating matters, the corrections become larger
when re-initialization is performed, resulting in larger parasitic currents. This
is overcome by introducing a start criterion for re-initialization and by carefully
smoothing the curvature. It is shown that parasitic currents are dramatically
reduced due to these modifications.

The mass-conserving properties of the current approach were shown by ad-
vection tests in two and three dimensions. The applicability of the method was
illustrated by application to air-water flows. Both droplets and bubbles are
simulated with and without surface tension. Arbitrarily shaped interfaces were

113
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encountered when bubbles merge and droplets collide with free surfaces. The
results compare well with numerical results available from literature.

9.1 Recommendations for future research

The focus of this work has been on the numerics of modeling bubbly flows.
Although comparison is made with other numerical work, there is a need for
experimental validation.

The ‘Mass Conserving Level-Set’ method can now be used to study the
physics of bubbly flow. Some examples are the interaction between bubbles and
the effect of external flow on the shape and path of bubbles. Such fundamental
research might be used to validate higher-level two-fluid modeling of multi-
phase flow, as commonly used in industrial applications. This will require the
simulation of a larger number of droplets and bubbles.

In this work a limited number of drops and bubbles have been considered.
These computations were performed with grid sizes up to about 2 million points.
Simulations with a larger number of droplets or bubbles will need larger grid
sizes. To keep computing time within limits this will, in turn, require paral-
lelization of the computer code. This is believed to be a straightforward task,
except for the Krylov solver. Parallelization of the Krylov solver will need spe-
cial attention.
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