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Summary

Modeling bone regeneration around endosseous im-
plants

Pavel A. Prokharau

The present work is focused on mathematical modeling of bone regenera-
tion. Various aspects of modeling are considered. In Chapter 2, a classical
system of partial differential equations (PDE’s) is analyzed, which is con-
structed to simulate bone healing around endosseous implants. The present
system is of the diffusion-advection-reaction type and is typical for math-
ematical models for bone regeneration. The need of analyzing the PDE’s
follows from the appearance of the wave-like profiles, that are found in the
numerical solutions for the distribution of cells and of growth factors and,
consequently, of newly formed bone matrix. Such predictions of the model
contradict experimental observations. Hence it is critically important to
understand why these wave-like patterns appear and how the model may
be modified in order to provide biologically relevant solutions. The linear
stability analysis carried out around constant-state (i.e. homogeneous in
the physical space) solutions provides the answers to the stated questions.
Stability of the constant-state solutions is determined by the values of the
model parameters. Explicit relations determining the stability region for the
parameters are derived. It is concluded that if the model parameters have
the values outside of the stability region, then the constant-state solution is
unstable and the exact solution of the current system will not converge to
it. Hence formation of stable patterns is likely. The analytical results are
validated by finite element simulations.

Chapters 3 and 4 of the thesis are devoted to development of new ap-
proaches in modeling bone regeneration. In Chapter 3, the evolutionary
differentiation model is introduced, that allows to incorporate the history
into the differentiation of cells by defining an additional differentiation state
variable a ∈ [0, 1]. During bone regeneration, mesenchymal stem cells differ-
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vi Summary

entiate into other cell phenotypes. It is known from experiments [13, 60, 97]
that cells obtain new properties gradually during a finite period of time.
The differentiation state variable a allows to track a gradual evolution of
cell states. Cell differentiation is simulated by an advection term in the
governing equations, which is equivalent to modeling a certain velocity (dif-
ferentiation rate) in the differentiation state space. Each cell is capable of
changing its phenotype only after a finite (contrary to immediate) period
of time. With the immediate differentiation approach, which is commonly
used in classical models, it is only possible to consider just the initial and
final states of differentiating cells. Cell differentiation is then modeled as an
immediate change of the cell phenotype.

The advantage of the new evolutionary approach is that the differentia-
tion history is employed, i.e. the current state of cells depends on how the
cells evolved before. Therefore the new approach has a potential to describe
cell differentiation more accurately, provided the model parameters are cho-
sen correctly. The most important advantage related to the present approach
is the concept of the finite time of differentiation. In experiments, new bone
formation is observed within the healing site only after certain time after
the implant placement (at the end of the first week according to Berglundh
et al. [14] and Abrahamsson et al. [1]). With the evolutionary differentiation
approach it is possible to calibrate the time of initiation of bone formation
by setting the appropriate value for the differentiation rate ub of osteogenic
cells into osteoblasts. Initiation of new bone release is related to the time
of appearance of secretorily active osteoblasts within the peri-implant re-
gion. If the rate ub is equal, for example, to 1/4 days−1, then the minimal
time of differentiation of fully non-differentiated osteogenic cells (which are
recruited from the old bone surface) into osteoblasts is equal to four days.
For the classical immediate differentiation approach, differentiation always
starts immediately. Hence classical models usually predict formation of new
bone already during the first hours after the implant placement.

The present evolutionary approach is incorporated into another extended
innovative model described in Chapter 4. The model is developed for early
stages of peri-implant osseointegration. It is known from experiments that,
during endosseous healing, bone forms through a direct apposition on a pre-
existing solid surface [24]. Therewith the concept of the ossification front or
of the bone forming surface is considered. The bone forming surface is dealt
with directly in the present model, which is formulated as a moving boun-
dary problem. The ossification front is modeled by the moving boundary of
the computational domain containing the soft tissue. An explicit represen-
tation of the bone-forming surface is the main innovation of the proposed
model, which distinguishes the current formalism from the classical models
for peri-implant osseointegration. Due to the finite time of differentiation of
osteogenic cells, no osteoblasts appear in the soft tissue region during first
four days of simulation. New bone is not released and the initial geometry
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is not changed within this time period. Hence during the first four days the
sources of osteogenic cells and growth factors are modeled to be located at
the old bone surface and at the implant surface. Therefore, the evolution-
ary differentiation approach is an essential part of the present model. The
classical immediate differentiation formalism would lead to an immediate
movement of the ossification front and to not being able to define the initial
sources of cells and growth factors for the current moving boundary prob-
lem, since the old bone surface and the implant surface would not be the
boundary of the physical (i.e. soft tissue) domain.

The numerical method for the present mathematical model is described
in Chapter 5. The current problem has a number of characteristics which
make the algorithm elaborate and complex. The constructed numerical
method provides stable and non-negative solutions of the nonlinearly cou-
pled system of the time dependent taxis-diffusion-reaction equations. The
additional challenges, which are faced with at the stage of the construction of
the algorithm, consist in the need to discretize the model equations within
the irregular and time-evolving physical domain, and in the sensitivity of
the mathematical model with respect to negative solutions. The presently
proposed numerical approach is based on such methods as: the method of
lines, finite volume method, level set method and the embedded boundary
method. For coarse meshes, patterns are observed to develop. These pat-
terns should not be there and result from numerical errors. Since we observe
that convergence is only reached at high mesh resolutions, we think that fur-
ther research should point into the direction of adaptive mesh refinement,
improved time integration (operator splitting methods) and/or higher-order
methods, such as spectral or DG-methods (however the requirement of the
solution positivity is still essential for higher-order methods). The series of
numerical simulations demonstrate the ability of the present osseointegra-
tion model to predict various paths of new bone formation depending on the
chosen parameter values.





Samenvatting

Modelleren van botregeneratie rond enossale im-
plantaten

Pavel A. Prokharau

Het huidige werk is gericht op de wiskundige modellering van botregeneratie.
Een aantal aspecten van het modelleren worden beschouwd. In Hoofdstuk
2, wordt een klassiek stelsel partiële differentiaalvergelijkingen (pdv’s) ge-
analyseerd, dat ontwikkeld is voor de simulatie van botingroei in enossale
implantaten. Dit stelsel is van het diffusie-advectie-reactietype en is kenmer-
kend voor de wiskundige modellen voor botregeneratie. De noodzaak van de
analyse van pdv’s volgt uit het optreden van de golfachtige profielen die in
de numerieke oplossingen voor de distributie van cellen en groeifactoren en
derhalve voor nieuw gevormd bot matrix waargenomen worden. Dergelijke
voorspellingen van het model spreken experimentele waarnemingen tegen.
Daarom is het zeer belangrijk om te begrijpen, hoe deze golfachtige patronen
verschijnen en hoe het model moet worden gewijzigd om biologisch zinvolle
oplossingen te verkrijgen. De lineaire stabiliteitsanalyse die uitgevoerd rond
een constante oplossing (dat wil zeggen in de ruimte homogene evenwichts-
oplossingen) beantwoordt deze vraagstelling. Of de constante oplossingen
stabiel zijn, wordt bepaald door de waarden van de modelparameters. Expli-
ciete relaties, die het stabiliteitsgebied voor de parameters bepalen, worden
in dit proefschrift afgeleid. Er wordt geconcludeerd, dat als de waarden van
de modelparameters buiten het stabiliteitsgebied liggen, dat dan de constan-
te oplossing instabiel is en dat de exacte oplossing van het huidige systeem
niet convergeert. Hierdoor is de vorming van stabiele patronen zeer waar-
schijnlijk. De analytische resultaten zijn gevalideerd door middel van eindige
elementen simulaties.

Hoofdstukken 3 en 4 van het proefschrift gaan over de ontwikkeling van
nieuwe aanpakken in het modelleren van botregeneratie. In Hoofdstuk 3
is het evolutionaire differentiatie-model ingevoerd, waardoor het mogelijk

ix
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is om de voorgeschiedenis van de cellen mee te nemen door het definiëren
van een extra differentiatie-variabele a ∈ [0, 1]. Tijdens de regeneratie van
bot, differentiëren mesenchyme stamcellen naar andere cel fenotypes. Het is
bekend uit experimenten [13, 60, 97] dat de cellen nieuwe eigenschappen ge-
leidelijk in een eindige periode van tijd verkrijgen. De differentiatie-variabele
a maakt het mogelijk om een geleidelijke evolutie van de cel te volgen. Cel-
differentiatie wordt gesimuleerd door een advectie term in de beschrijvende
vergelijkingen die een zekere snelheid (differentiatie-snelheid) in de differen-
tiatie toestandsruimte modelleert. Elke cel is in staat zijn fenotype pas na
een eindig (in tegenstelling tot onmiddellijk) tijdsbestek te veranderen. Met
de aanpak waarin differentiatie onmiddellijk optreedt, die meestal in de klas-
sieke modellen gebruikt wordt, is het slechts mogelijk de initiële en finale
staat van differentiërende cellen te beschouwen. Celdifferentiatie wordt dan
gemodelleerd als een instantane wijziging van het fenotype van de cel.

Het voordeel van de nieuwe evolutionaire aanpak is dat de differentiatie
geschiedenis wordt gebruikt, dat wil zeggen de huidige stand van de cel-
len hangt af van hoe de cellen zich daarvoor ontwikkelden. Daarom biedt
de nieuwe aanpak een mogelijkheid om celdifferentiatie nauwkeuriger te be-
schrijven, op voorwaarde dat de model parameters correct gekozen worden.
De belangrijkste innovatie omtrent de huidige aanpak is het concept van
de eindige tijd van differentiatie. In experimenten wordt de vorming van
nieuw bot slechts na een bepaalde tijd na plaatsing van het implantaat in
de genezende regio waargenomen (aan het einde van de eerste week volgens
Berglundh et al. [14] en Abrahamsson et al. [1]). Met de geleidelijke dif-
ferentiatie aanpak is het mogelijk om de aanvangstijd van botvorming te
kalibreren door de juiste waarde voor de differentiatiesnelheid ub van oste-
ogene cellen in osteoblasten te kiezen. Initiatie van de aanmaak van nieuw
bot hangt af van het moment van ontstaan van botvormende osteoblasten
binnen het peri-implantaat gebied. Als de snelheid ub, bijvoorbeeld, gelijk
is aan 1/4 dagen−1, dan is de minimale tijd van differentiatie van volledig
niet-gedifferentieerde osteogene cellen (die worden gerekruteerd uit het oor-
spronkelijke botoppervlak) naar osteoblasten gelijk aan vier dagen. Voor
de klassieke instantane differentiatie aanpak is de minimale differentiatie
tijd altijd gelijk aan nul. Daardoor voorspellen klassieke modellen vaak de
vorming van bot al gedurende de eerste uren na de plaatsing van het im-
plantaat.

De huidige evolutionaire aanpak is opgenomen in een ander uitgebreid
innovatief model, dat in Hoofdstuk 4 beschreven is. Het model is ontwikkeld
voor de vroege stadia van peri-implantaat osseo-integratie. Het is bekend
uit experimenten dat tijdens de botgenezing bot vormt door middel van een
direct bijstelling op een reeds bestaande stevige ondergrond [24]. Daarmee
wordt het concept van ossificatiefront of botvormend oppervlak beschouwd.
Het botvormende oppervlak wordt direct meegenomen in dit model, dat
als een bewegend randwaardeprobleem geformuleerd wordt. Het ossifica-
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tiefront wordt gemodelleerd door de bewegende grens van het rekengebied
dat zacht weefsel bevat. Een expliciete representatie van het botvormen-
de oppervlak is de belangrijkste innovatie van het voorgestelde model en
hetgeen dat het huidige formalisme onderscheidt van de klassieke modellen
voor de peri-implantaat osseo-integratie. Door het eindige tijdsbestek van
differentiatie van osteogene cellen, verschijnen er geen osteoblasten in het
zachte weefselgebied gedurende de eerste vier dagen van simulatie. Nieuw
bot wordt niet aangemaakt en de begingeometrie niet veranderd tijdens
deze periode. Dus worden in de modellen tijdens de eerste vier dagen de
bronnen van osteogene cellen en groeifactoren aan het oude botoppervlak
en bij het implantaatoppervlak meegenomen. Daarom is de evolutionaire
differentiatie aanpak een essentieel onderdeel van het huidige model. Het
klassieke instantane differentiatie formalisme zou leiden tot onmiddellijke
beweging van het botvormende oppervlak en tot het niet kunnen definiëren
van aanvankelijke bronnen van cellen en groeifactoren voor het huidige bewe-
gend randwaardeprobleem, omdat het oorspronkelijke botoppervlak en het
implantaatoppervlak niet de grens van het fysische (dat wil zeggen zachte
weefsel) gebied zou zijn.

De numerieke methode voor het huidige wiskundige model wordt be-
schreven in Hoofdstuk 5. Het huidige probleem heeft een aantal kenmer-
ken waardoor het algoritme ingewikkeld en complex is. De geconstrueer-
de numerieke methode zorgt voor stabiele en niet-negatieve oplossingen
van het niet-lineair gekoppelde stelsel van tijdsafhankelijke taxis-diffusie-
reactievergelijkingen. De verdere uitdagingen die men in het stadium van
de constructie van het algoritme tegenkomt, bestaan uit de noodzaak om de
model vergelijkingen binnen het irreguliere en tijdsveranderlijke fysieke do-
mein te discretiseren en uit gevoeligheid van het wiskundige model ten aan-
zien van negatieve oplossingen. De huidige voorgestelde numerieke aanpak
is gebaseerd op methoden als: de Methode der Lijnen, de eindige- volumen-
methode, de Level-Set methode en de ingebedde-grensmethode (embedded
boundary method). Omdat we waargenomen hebben dat convergentie enkel
voor hoge gridresoluties bereikt wordt, denken we dat verder onderzoek zich
zou moeten richten op adaptieve maasverfijning, verbeterde tijdsintegratie
(operator-splitting) en/of hogere orde methoden, zoals spectrale of Disconti-
nue Galerkin methoden (echter de eis van positiviteit van de oplossing blijft
zeer belangrijk). De reeks van de numerieke simulaties tonen het vermogen
van het huidige osseo-integratie model om afhankelijk van de gekozen para-
meterwaarden verschillende paden van nieuw botvorming te voorspellen.
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CHAPTER 1

Introduction

1.1 Bone regeneration

One of the most remarkable properties of bone tissue is its regenerative
capacity. Bone regeneration is a complex biological process, which occurs
starting from the skeletal development and continuing in the form of bone
remodeling and in the form of response to bone injuries, throughout the
entire lifetime of organisms. In contrast to other tissues, damaged bone
regenerates without formation of a scar tissue. The newly formed bone is
usually remodeled to such a state, that its properties are almost indistin-
guishable from the properties of surrounding old bone, and a bone geometry
in the healing site is usually restored to its initial shape [26, 31].

Bone regeneration consists of a series of well-regulated biological pro-
cesses, taking places in a certain pathway. Several cell types are involved
in these processes. Activity of cells is regulated by biological, chemical and
mechanical environments around them. Fracture healing is one of the most
common cases of bone regeneration in a clinical setting. This process in-
cludes both mechanisms, in which new bone can form: intramembranous
ossification and endochondral ossification [87]. The following three main
stages of bone healing can be distinguished: the inflammatory phase, bone
repair and bone remodeling [42].

At the first stage, immidiately after the injury, blood, which leaks from
the damaged blood vessels, coagulates and a blood clot is formed in the
wound region. Platelets, which are found within the blood clot, become
activated and start to release growth factors, which regulate the processes
of bone healing. Since the blood vessels are ruptured, the supply of nutri-
ents and oxygen to osteocytes, which are the living cells, situated within the
bone matrix, ceases. The lack of nutrients and oxygen makes the cells die.

1



2 Chapter 1. Introduction

Necrotic processes initiate inflammation. Inflammatory cells (macrophages,
phagocytes, leukocytes) arrive in the wound site and remove a necrotic tis-
sue. After this process, fibroblasts, mesenchymal stem cells (MSC’s) and
endothelial cells, which originate from the periosteum (the vascularity-rich
external tissue layer of bone), from the marrow channel of the bone and from
the soft tissues, which surround the bone including the muscles, migrate into
the healing region [11]. One of the mechanisms regulating cellular processes
during bone healing, is the influence of growth factors, which are released
by activated platelets and by the aforementioned cells.

MSC’s differentiate into osteoblasts, chondrocytes and fibroblasts under
the influence of different stimuli, for example, growth factors and the local
mechanical environment in the tissue. Differentiated osteoblasts can synthe-
size new bone matrix directly on a pre-existing surface without the mediation
of the cartilage phase [87]. Such type of bone formation is called intramem-
branous ossification. In this case, the apposition of new bone matrix on a
solid surface takes place [24], and an ossification front or a bone-forming
surface is observed [1, 14]. Therefore, intramembranous ossification can be
described by a moving-boundary type of bone formation.

The second mode of bone formation is referred to as endochondral os-
sification. During fracture healing, this type of ossification occurs in the
middle of the fracture area, in which MSC’s differentiate into chondrocytes.
Chondrocytes proliferate and form cartilage tissue. Maturation of chondro-
cytes towards the hypertrophic chondrocytes is followed by the calcification
of cartilage. Chondrocytes undergo apoptosis and blood vessels grow into
the cavities, which were initially occupied by the chondrocytes. Osteopro-
genitor cells are delivered into the cavities through a vascular network, and
they differentiate into osteoblasts. The mineralized extracellular matrix of
the cartilage tissue serves as a scaffold, on which osteoblasts release new
bone [11].

Therefore during a reparation stage, new woven bone is synthesized
within the healing site. Right after the formation of new bone, a remodeling
phase begins. A patch of newly formed woven bone is remodeled into ma-
ture lamellar bone, through its resorption by osteoclasts and through new
bone synthesis by osteoblasts.

1.2 Study motivation

Despite regenerative properties of bone, there is a large number of related
clinical problems, which are not solved at the present time. One of them is an
impaired bone regeneration during fracture healing. For example, Einhorn
[30] refers to Praemer et al. [76], when he notes, that “the healing of 5 to
10 per cent of the estimated 5.6 million fractures occurring annually in the
United States is delayed or impaired”. Another representative number is
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given by Audigé et al. [10]. They have done an observational study of the
treatment of 416 patients with tibial shaft fractures, and reported 52 (13%)
cases of delayed healing or nonunion.

The natural regenerative capacity of bone tissue is not sufficient in cer-
tain situations, which appear in orthopaedic, oral and maxillofacial surgery,
such as skeletal reconstruction of large bone defects created by trauma, in-
fection, tumor resection and skeletal abnormalities, or cases in which bone
regeneration is compromised due to diseases, like osteoporosis or avascular
necrosis [26]. For example, 3.79 million osteoporosis fractures were estimated
in the European Union in 2000, and direct medical cost for their treatment
were around 32 billion euros [82].

Einhorn [30] and Dimitriou et al. [26] review temporary treatment meth-
ods, which are aimed at promoting natural bone regeneration in situations,
where this process is impaired or simply insufficient. Among the treatment
techniques, which are often applied in clinical practice, the authors mention
distraction osteogenesis and bone transport; bone-grafting methods, such as
autologous bone grafts, allografts, and bone-graft substitutes or growth fac-
tors; non-invasive methods of biophysical stimulation, such as low-intensity
pulsed ultrasound and pulsed electromagnetic fields; mechanical stimula-
tion. These methods can be used separately or in combinations. However,
the efficiency and the applicability of the considered techniques are still
limited.

In order to improve existing methods and to develop new approaches, a
better understanding of the processes, taking place during regeneration of
bone, is needed. A large number of experimental works is devoted to the
investigation of the influence of various factors on the course of bone healing.

In in-vivo experiments, the biological processes are observed in natu-
ral conditions. However, obtaining temporal and spatial experimental data
often becomes technically complicated. Contemporary non-invasive meth-
ods such as various imaging techniques can sufficiently enhance the acqui-
sition of the qualitative and quantitative information about the biology of
bone regeneration. Molecular imaging techniques, which are reviewed in
Mayer-Kuckuk and Boskey [64], can be used for real-time biology studies
of bone regeneration in living tissues. These techniques are classified into
three groups: nuclear imaging (among which are single photon computed
tomography (SPECT) and positron emission tomography (PET)), optical
imaging methods (in particular fluorescence reflectance imaging (FRI) and
bioluminescence imaging (BLI)) and magnetic resonance imaging (MRI).

An alternative to in-vivo experiments is in-vitro studies. In these studies,
it is possible to obtain a highly controllable and measurable environment, in
which biological processes are observed. The disadvantage of this approach
is that tissues and cells are separated from their natural environment. Some
special attention should be paid to make the experimental settings corre-
spond to natural conditions, in which bone regeneration takes place in real
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organisms.
As the examples of various directions of the experimental studies of bone

regeneration, the following references can be mentioned. Abrahamsson et al.
[1], Berglundh et al. [14] studied paths of bone formation around smooth
and micro-rough endosseous implants, which were installed into the dog
mandibles. A review of in-vivo experiments on the influence of mechanical
stimulation on bone healing is presented by Epari et al. [31]. The effect
of a different micro-structure of an endosseous implant and of a mechani-
cal stimulation on bone ingrowth into the implant within an experimental
chamber, which was installed into a rabbit tibia, was investigated by Duyck
et al. [28, 29], Vandamme et al. [92, 93, 94]. The experimental works, in
which the influence of growth factors on bone regeneration was studied, are
reviewed in Lind [61]. In-vitro studies, related to bone regeneration, can be
found, for example, in Gabbay et al. [33], Kasper et al. [54], Weinand et al.
[96]. The aforementioned list of references does not give a full picture of the
experimental studies in the considered field. This list should be considered
just as a short introduction into the topic.

Study of bone regeneration with use of in-vivo or in-vitro experiments
can be very expensive, time-demanding or even impossible from ethical point
of view. Qualitative and quantitative data, which are possible to obtain
from the experiments, are often limited. In this situation, a mathematical
model can deliver additional insight into various aspects of bone regenera-
tion. Mathematical models and numerical simulations are valuable tools for
representation and analysis of complex multi-scale biochemical and biome-
chanical processes. Simulations allow to investigate these cases, which are
prohibitively difficult or impossible to consider in experiments. This makes
mathematical modeling extremely valuable for, for example, the develop-
ment of new treatment techniques and strategies.

1.3 Review of mathematical models for bone re-
generation

Currently there is a large number of mathematical models, which were de-
veloped to study different aspects of bone regeneration. The models are
based on various concepts and approaches and they differ in the types of the
problems, for which they can be used. Therefore, several criteria can be em-
ployed for the classification of the models for bone regeneration. The models
can be related to various forms of bone regeneration, for example, models for
fracture healing, for bone regeneration around endosseous implants and/or
for distraction osteogenesis. Another way to classify the models, is to look at
the basic mathematical approaches used (continuous deterministic models
and fuzzy-logic models). Other characteristics, in which models differ from
each other, are, for example:
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• representation of biological tissues as linear elastic, visco-elastic or
poro-elastic (biphasic) media;

• choice of the mechanical stimulus (strain energy, hydrostatic stress,
deviatoric strain, fluid flow etc.);

• representation of the considered cellular processes (random diffusion,
chemotaxis and haptotaxis for cell migration, immediate and evolu-
tionary cell differentiation, etc.);

• phases of bone regeneration represented (reparation phase and/or re-
modeling phase).

The focus of this manuscript is on the processes taking place during the
reparation phase of bone regeneration. In this work, bone remodeling is
not considered in detail. Bone remodels constantly throughout the entire
life of an organism. The time scale of this process is much larger than
the time scale of the reparation processes [24]. For extended mathematical
models for bone remodeling see Doblaré and Garćıa-Aznar [27], Garćıa-
Aznar et al. [34], Pivonka et al. [75], Ryser et al. [85] and references therein.
Bone remodeling is out of the scope of the current work. Therefore, a
detailed review of the models, mainly developed for the reparation phase of
bone regeneration, is given in the remainder of this section.

Geris et al. [42] divide the models into three classes with respect to the
essential mechanisms regulating the bone regeneration process. They dis-
tinguish mechanoregulatory models, bioregulatory models and mechanobio-
regulatory models. Such a classification has the advantage, that it reflects
the chronological perspective of the mathematical modeling of bone regen-
eration. In mechanoregulatory models, the local mechanical environment
is considered as the only factor that influences the path of bone regener-
ation. On the contrary, in bioregulatory models only biochemical factors,
like the influence of growth factors on various cell processes, are considered.
Mechanobioregulatory models employ mechanical and biological effects si-
multaneously.

An extended review of mathematical models for bone regeneration is
presented in Geris et al. [42]. The authors track the history of the devel-
opment of several mathematical approaches to bone regeneration. Further,
they outline the connections between various theoretical works and they list
some references to the original model formulations and to the numerical
studies carried out to verify applicability and to evaluate and compare the
performance of various approaches.

First theoretical studies of bone regeneration were related to mechanore-
gulation of bone healing. Pauwels [72] defined a model for tissue differenti-
ation depending on local stresses and strains. Pauwels assumed, that devia-
toric strains promote formation of fibrous tissue and a hydrostatic pressure
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enhances formation of cartilage. Perren [73] and Perren & Cordey [74] pre-
sented the interfragmentary strain approach by defining the limiting (max-
imum) strains, which can be experienced by various tissues forming within
the fracture site without rupturing.

The aforementioned pioneering models were followed by two mechano-
regulatory models, developed by Carter et al. [17, 18] and by Claes and
Heigele [19]. In these models, biological tissues were considered as linear
elastic materials, and the formation of bone, cartilage, fibrous tissue and
fibrocartilage was related to a hydrostatic stress and to principal strains.
In the approach by Carter et al. [17, 18], the history of a cyclic mechanical
loading was considered. Another tissue differentiation model was proposed
by Prendergast et al. [77], who considered the biological tissues as poroelas-
tic materials and who related differentiation into bone, cartilage or fibrous
tissue to different levels of a fluid flow and of a distortional strain. Huiskes
et al. [47] estimated the numerical limits for qualitative relations, defined in
Prendergast et al. [77]. A fuzzy-logic theoretical model was constructed by
Ament and Hofer [4], in which the mechanical stimulus was evaluated by
means of a strain energy.

The considered mechanoregulatory models were used in numerical sim-
ulations, in which various situations of bone regeneration were considered.
The obtained results were usually compared to experiments. The mechano-
regulatory models were used in numerical studies of fracture healing [15, 36,
50, 51] , of bone regeneration near endosseous implants [8, 37, 38, 39] and
of distraction osteogenesis [49, 52, 68].

Purely mechanoregulatory models do not represent any biological pro-
cesses, which take place during bone regeneration. Hence, these models are
applicable to studies, where only mechanical loading conditions are investi-
gated.

Another class of formalisms is represented by the bioregulatory models,
which focus on representation of various biochemical and cell processes. In a
simple approach by Adam [2, 3], a critical size defect in fracture healing was
determined from the the solution of a partial differential equation (PDE)
defined for a growth factor concentration. More extended biological model
for fracture healing was constructed by Bailon-Plaza and van der Meulen
[11]. In this approach, a system of PDE’s was defined for seven variables:
densities of MSC’s, of osteoblasts, of chondrocytes, concentrations of chon-
drogenic and osteogenic growth factors, and densities of connective/cartilage
extracellular matrix and bone extracellular matrix. The authors represented
the processes of cell differentiation, proliferation, migration and death, syn-
thesis and resorption of tissues. Some conclusions about a regulatory role
of growth factors in bone healing were drawn from numerical simulations.

The model of Bailon-Plaza and van der Meulen [11] is rather popular
due to its generality. The derivation of several other bioregulatory models
is based on the approach due to Bailon-Plaza and van der Meulen [11].
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Geris et al. [40] extended the model of Bailon-Plaza and van der Meulen
[11] by considering angiogenesis, by separating fibrous tissue and cartilage
densities, and by defining additional chemotactic and haptotactic terms for
cell migration in the governing equations. This approach was applied to
model fracture healing, including issues of atrophic nonunions [41, 45].

Amor et al. [5, 6] adapted the model of Bailon-Plaza and van der Meulen
[11] for peri-implant osseointegration. They disregarded chondrogenic
growth factors, chondrocytes and cartilage, since the intermediate cartilagi-
nous phase was not observed experimentally in bone healing occurring near
implants [1, 14, 16, 21]. Chemotaxis of MSC’s was represented in equations
and a density of activated platelets was introduced as an additional model
variable.

A similar biological model was developed by Moreo et al. [67]. Though
the models of Amor et al. and Moreo et al. have several differences, a
general representation of the main biological and cellular processes is very
similar. The considered models allow to simulate bone regeneration around
implants with a different surface microstructure, which is represented im-
plicitly through the values of model parameters and through initial and
boundary conditions. A detailed comparison of the current two models is
given in Chapter 4, in which a new moving boundary bioregulatory model
for endosseous bone healing is derived.

In contrast to purely mechano- and bioregulatory models, more complex
mechanobioregulatory models allow to consider coupled effects of mecha-
noregulation and of biochemical factors on bone regeneration, in general.
Further, an influence of a mechanical environment on cellular and biochem-
ical processes can be studied.

This class of models is often derived from the bioregulatory and/or me-
chanoregulatory models, which were mentioned above. For example, a sim-
ple mechanobioregulatory model for normal fracture healing was developed
by Lacroix et al. [58] and by Lacroix and Prendergast [57]. This formalism
was derived from the mechanoregulatory model of Prendergast et al. [77]
and Huiskes et al. [47]. The authors made a first step to consider cellu-
lar processes together with mechanical factors by incorporating the random
walk of MSC’s in their model.

Bailon-Plaza and van der Meulen [12] introduced some mechanoregula-
tory relations into the coefficients of their previous model [11]. With a new
model, the authors predicted beneficial effects of moderate, early loading
and adverse effects of delayed or excessive loading on bone healing. Mecha-
noregulatory approaches by Claes and Heigele [19] and Ament and Hofer
[4] were used in a fuzzy logic model of Simon et al. [89] and Shefelbine
et al. [88], in which such processes as vascularization, tissue destruction,
intramembraneous and endochondral ossification, cartilage formation and
bone remodeling were represented by a set of fuzzy logic rules, defined for
the various states of a mechanical environment within the healing cite.
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Gómez-Benito et al. [46] and Garćıa-Aznar et al. [35] constructed a me-
chanobioregulatory model in terms of a system of PDE’s, defined for den-
sities of MSC’s, osteoblasts, fibroblasts and cartilage cells, and for volume
fractions of the debris tissue, granulation tissue, fibrous tissue, bone and car-
tilage. Migration, differentiation, proliferation and death of cells, synthesis
and damage of various tissues, and remodeling of bone were represented in
the model. These processes were assumed to depend on the second invariant
of the deviatoric strain tensor. The authors applied their model to study
the influence of the intrafragmentary movement on the callus growth during
fracture healing.

This approach was adapted by Reina-Romo et al. [83] to simulate distrac-
tion osteogenesis. One of the innovations introduced by Reina-Romo et al.
[83], is that cell differentiation was determined by a history of mechanical
loading. A concept of cell plasticity, which was presented in Röder [84], was
incorporated into the model through the introduction of a maturation level
of MSC’s.

The mechanoregulatory approach proposed by Prendergast et al. [77]
was used in the models of Andreykiv et al. [9] and Isaksson et al. [53],
which were developed for fracture healing. The biological processes, such as
migration, proliferation, differentiation and apoptosis of cells and production
and resorption of fibrous tissue, bone, and cartilage were assumed to be
related to the mechanical state of the tissues.

Geris et al. [43] extended their previous bioregulatory model [40], by
defining dependencies for model parameters on mechanical stimuli, which
were chosen according to Prendergast et al. [77]. This model was applied
to study impaired fracture healing. The authors checked predictions of the
model for various mechanoregulatory relations. They concluded that, if a
mechanical environment was assumed to influence angiogenesis alone, then
it was not possible to predict the formation of overload-induced nonunions.
However, if both angiogenesis and osteogenesis were assumed to be effected
by the mechanical loading, then the overload-induced nonunion formation
was successfully predicted.

The combined mechanobioregulatory models allow to consider test cases
of both mechanical and biological approaches in the treatment of bone de-
fects. For example, to investigate the effects of a mechanical stimulation and
of the addition of growth factors. By use of these models it is also possible
to check the hypotheses for the influence of mechanical factors on various
biological processes [42]. Mechanobioregulatory models are more general,
compared to mechanoregulatory and bioregulatory approaches, and at the
same time, they are more complicated, due to a larger number of assump-
tions, involved in their formulation. The necessary effort to validate a model
increases with the level of complexity of a model and the number of model
parameters therein. Therefore, it is not possible to choose the ’best’ model
or the ’best’ approach. The choice of a theoretical model should be deter-
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mined by the most important characteristics of the considered problem, i.e.
by a form of bone regeneration (for example, fracture healing or implant
osseointegration), by a subject of the research, by available experimental
data, etc.

The issue of a proper model verification is even more critical in the case
of a poor cooperation between experimental researchers and developers of
theoretical models. Contemporary mathematical approaches are developed
to accommodate the most important features in various applications of bone
regeneration, which are known from experiments. Theoretical models allow
to make some predictions, for example, about advanced treatment tech-
niques. As it is reported by Geris et al. [44], there are no experimental
studies on treatment strategies that were designed and optimized by us-
ing mathematical models. In other words, an advance in bone regeneration
research depends on the connection established between experiments and
theoretical modeling both on the stage of model construction and on the
stage of model verification. The models have to be validated against exper-
imental settings, that are different from the ones used on the stage of model
formulation [42].

Bone regeneration is a multiscale process. In recent theoretical models
a single time and space scale are considered. Cellular processes are repre-
sented on a tissue-level by means of a continuous approach. For example,
random walk of cells is represented by a diffusion term in the governing
equations. Development of multiscale models is another crucial issue of
bone regeneration research [42]. It is important to understand the mecha-
nisms, in which experimental and theoretical knowledge can be transferred
between the various levels. For instance, how to derive a proper represen-
tation of cell haptotaxis on tissue level from the knowledge of this process
at the cellular level. Mechanical stresses and strains, which are often con-
sidered as the main regulation factors, are represented in the recent models
on the tissue-level. In reality, tissue strains and stresses can differ from
mechanical stimulation, experienced by cells [98]. Therefore, an advanced
representation of the mechanical behavior of biological tissues, i.e. more
accurate models than linear elasticity or poroelasticity, and consideration
of mechanical stimuli on various levels (the tissue-level, the cellular level,
the intracellular level) is another possible direction for the future research
in modeling bone regeneration [42].

1.4 Structure and subjects of the thesis

As it follows from Section 1.3, a large number of various approaches was
developed in the field of mathematical modeling of bone regeneration. In
the present work, various mathematical and numerical methods are used
to study several areas of modeling bone regeneration. In Chapter 2, a
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stability analysis is performed to study some characteristics of the behav-
ior of diffusion-taxis systems that are considered in the most of the recent
(mechano)bioregulatory models. An advanced representation of gradually
evolving cell differentiation is presented in Chapter 3. This differentiation
approach is implemented into a new moving boundary model for intramem-
braneous ossification, which is described in Chapter 4. A numerical algo-
rithm for the solution of this model in two dimensional spatial domain is
defined in Chapter 5. Further in this section, the mentioned subjects of the
thesis are introduced in more detail.

In most of the considered models, a continuous approach is employed
and a governing system of PDE’s is defined for a number of unknowns,
which can represent cell densities, growth factor concentrations, tissue vol-
ume fractions, mechanical stimuli, etc. Cell migration (if it is considered
for a certain cell phenotype) is assumed to be caused by random walk of
cells, by chemotaxis and/or by haptotaxis. Random walk is represented by
parabolic diffusion terms, and the cell flux due to chemo- or haptotaxis is
represented by hyperbolic taxis terms. Other cellular processes, like prolif-
eration, differentiation and death are usually introduced by reaction terms.
The equations defined for the evolution of the growth factor concentrations
contain diffusion and reaction terms, which model, respectively, diffusion,
and production and decay. Synthesis and resorption of various tissues are
represented by reaction equations. Therefore, the systems of PDE’s that
constitute continuous models for the reparation phase of bone regeneration
are usually of taxis-diffusion-reaction type.

Remark 1.1. In this work, the term “advection-diffusion-reaction system”
is used to denote the equations, which contain taxis, diffusion and reaction
terms. This terminology is adopted from Hundsdorfer and Verwer [48],
which is a fundamental work about the numerical methods for the systems
of the considered type. In various systems, the advection terms represent
a flux of some quantity caused by an advection mechanism, i.e. the flux
driven, for example, by the fluid velocity. In the case of chemotaxis, the flux
of cells is driven by a growth factor gradient. Therefore, advection can be
related to a taxis mechanism in a certain way.

Some important characteristics of such systems, such as a stability of the
solution and a formation of ’wave-like’ profiles in the spatial distribution
of cell densities and growth factor concentrations, are studied in Chapter
2. Such wave-like profiles obtained in the solutions for bone regeneration
models are unphysical and contradict experimental observations. Therefore,
it is important to understand the reason of the appearance of these profiles.

Remark 1.2. ’Wave-like’ patterns are also observed in solutions of advection-
diffusion-reaction equations, defined in the models for bacteria colonies [66,
69, 91].

As a particular example, a bioregulatory model by Moreo et al. [67]
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is chosen, due to its sufficient simplicity and generality. First of all, the
considered model contains diffusion and advection (taxis) terms, which are
responsible for the appearance of a wave-like profile in the solution. Such
terms are also included in similar bioregulatory models, developed by [5, 11].
At the same time, the model of Moreo et al. [67] is simpler than another
bioregulatory approach proposed by Geris et al. [40], in which angiogenesis
was represented. Mechanobioregulatory models are not mentioned here,
since consideration of mechanical stimuli only complicate models and has
no added value for the present analysis.

Some conditions for the formation of wave-like profiles are determined
from a linear stability analysis. These conditions are expressed in terms of
several quantitative relations for the model parameters. The linear stability
analysis, which is described in Chapter 2, provides some insight into the
characteristic behavior of the bioregulatory models for bone regeneration,
in which a diffusion-taxis mechanism of cell migration is incorporated.

Another cellular process, which is of great importance for bone regener-
ation, is cell differentiation. In all continuous models, excluding the model
of Reina-Romo et al. [83], differentiation is represented by reactive terms,
which correspond to immediate switch of cell phenotype. Reina-Romo et al.
[83] considered the dependence of cell migration on the loading history by
introducing a maturation level of cells. The idea of a temporal transforma-
tion of cells into another phenotype is elaborated in Chapter 3, in which a
general mathematical formalism is developed for the evolutionary cell differ-
entiation. The considered approach can be applied to an arbitrary number of
cell types and to any set of factors influencing cell differentiation. The evo-
lutionary model allows to consider a cell differentiation path, determined
by a history of mechanical and/or biochemical stimulation. The present
approach results into a final time of differentiation, which can be impor-
tant in some applications. For instance, the boundary conditions for the
peri-implant osseointegration model, which is described in Chapter 4, can
be applied, only if the time of differentiation of MSC’s into osteoblasts is
final. An example of the application of the evolutionary approach for differ-
entiation of MSC’s regulated by the mechanical environment, is given by a
simple peri-implant osseointegration model described in Section 3.3. Numer-
ical simulations are carried out and results are compared with experimental
data in Section 3.4.

In Chapter 4, a new moving boundary model for bone healing around
endosseous implants is presented. The model is derived to accommodate the
fact, that synthesis of bone within a peri-implant region occurs in the form
of intramembraneous ossification [1, 14]. Davies [24] describes this process
as a direct apposition of new bone matrix on a pre-existing rigid surface.
The evolution of the bone forming surface (ossification front) is incorporated
in the model directly through a movement of the boundary of the soft tis-
sue region, which is considered as a physical domain, where various cellular
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and biochemical processes are considered. The present approach conceptu-
ally differs from the recent continuous models for endosseous bone healing
mentioned in Section 1.3, in which bone tissue is represented by its volume
fraction defined within the stationary physical domain. The moving boun-
dary model is formulated in terms of the system of time-dependent nonlinear
advection-diffusion-reaction equations, defined within the physical domain
that evolves in time. The numerical algorithm, used to solve this challenging
mathematical problem in two dimensional physical domain, is described in
Chapter 5. The solution procedure involves some methods, which are the
finite volume method, which is applied on an unstructured two dimensional
grid, the embedded boundary or Cartesian boundary method and the level
set method, which is used to track the movement of the boundary of the
irregular physical domain. In Chapter 6, final conclusions are drawn and
some directions for future research are given.



CHAPTER 2

Linear stability analysis

In this chapter the stability of the solution of a system of advection-diffusion
equations is studied. This class of equations is used in models for bone re-
generation. Diffusion and advection (taxis) terms in the equations for the
evolution of cell densities represent the fluxes due to random walk of cells
and due to chemo- and/or haptotaxis, respectively. A bioregulatory model
developed by Moreo et al. [67] is considered as a particular example of such
a system. For certain parameter values, the solution of the considered equa-
tions has a wave-like profile, which appears in the distribution of osteogenic
cells, osteoblasts, growth factor and bone matrix. This wave-like profile
contradicts experimental observations. The conditions, under which such
profile appears in the solution, are derived. Those conditions are deter-
mined in terms of model parameters, by means of a linear stability analysis,
carried out around one of the constant-state solutions of the simplified sys-
tem. The stability analysis was performed for a reduced system of PDE’s. It
is proved in this chapter, that the stability properties of constant solutions
for the reduced and original systems are equivalent. Conclusions, derived
from the linear stability analysis, are extended for the case of large perturba-
tions. Analytical results are validated with finite element simulations. The
simulations show, that the stability of a constant solution can determine
the behavior of the solution of the whole system, if certain initial conditions
are considered. If the constant solution is unstable, then the solution of the
system never converges to this constant solution. The material, presented
in the current chapter, was published in Prokharau and Vermolen [78].

13



14 Chapter 2. Linear stability analysis

2.1 Introduction

A stability analysis is performed for a biological model for peri-implant
osseointegration, which was proposed in Moreo et al. [67]. This model al-
lows to take into account an implant surface microtopography. The results
presented in Moreo et al. [67] were in agreement with experiments. The
authors reported, that model can predict contact and distance osteogenesis
modes of bone formation [24].

From the numerical simulations, which were performed for a different
geometry of the healing site, it was found that the system of equations,
proposed in Moreo et al. [67], is characterized by appearance of a wave-like
profile in the solution for a certain range of parameters. This profile was
initially recognized in the solution of the model equations for the 1D domain
of length 2.5mm (Figure 2.1b). This domain was chosen for the simulations
of bone formation near the cylindrical implant, located within the bone
chamber, used in the experiments by Duyck et al. [29], Vandamme et al.
[92, 93, 94]. The authors reported that in experiments, new bone was formed
at all distances from the host bone, and integration of bone and implant was
achieved. That wave-like profile has not been noticed by Moreo et al. [67],
since for the geometry used in his simulations, in which the distance from
host bone to implant was 0.6mm, only a part of ’wave’ is visible in the
solution (Figure 2.1a), and a wave-like profile is not distinguishable. For
larger domains, more ’waves’ appear in the solution. The solution for the
domain of length 5mm is shown in Figure 2.1c.
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Figure 2.1: Osteogenic cellm and growth factor 2 s2 distributions at different
time moments, obtained from the numerical solution of model equations,
defined in Moreo et al. [67], for 1D axisymmetric domain with length (a)
L = 0.6mm and (b) L = 5mm

The conditions, under which a wave-like profile appears, are studied in
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this chapter. Such a wave-like profile in the solution for cell densities and
growth factor concentrations is not realistic. In some cases it also leads to
a wave-like distribution of bone matrix inside the peri-implant region. This
distribution is in contradiction with experimental observations, from which
it follows, that bone forms by deposition on the preexisting bone matrix,
and no isolated bone regions appear [1, 14]. Thus, it is important to learn,
under which conditions the model shows this unphysical behavior.

The proposed approach is to study the linear stability of the constant so-
lutions of the system. As the full system of equations is large and extremely
complicated for analytic derivations, an equivalent simplified system with
similar properties will be defined.

The phenomenon of a wave-like profile in the solution can be related to
the appearance of bacterial patterns in a liquid medium, described mathe-
matically by similar systems of partial differential equations. The formation
of bacterial patterns is studied in Miyata and Sasaki [66], Myerscough and
Murray [69], Tyson et al. [91].

In Section 2.2 the system of equations proposed in Moreo et al. [67] is
reviewed. The linear stability analysis of the system is carried out in Section
2.3. In Section 2.4 analysis results are validated with a series of numerical
simulations. Finally, in Section 2.5 some conclusions are drawn.

2.2 Biological model

The original model proposed in Moreo et al. [67] consists of eight equations,
defined for eight variables, representing densities of platelets c, osteogenic
cells m, osteoblasts b, concentrations of two generic growth factor types s1
and s2, and volume fractions of fibrin network vfn, woven bone vw, and
lamellar bone vl. The above notations are introduced for non-dimensional
cell densities and growth factor concentrations, i.e. for those, related to some
characteristic values. If f̂ and fc are notations of a dimensional variable
and of its characteristic value, then a non-dimensional variable f is defined
as f = f̂/fc, f = c,m, b, s1, s2. The following characteristic values are
proposed: cc = 108 platelets/ml, mc = 106 cells/ml, bc = 106 cells/ml,
s1c = 100 ng/ml, s2c = 100 ng/ml. The model equations are:

∂c

∂t
= ∇ · [Dc∇c−Hcc∇p]−Acc, (2.1)

where Dm and Ac are the coefficients of random migration and death of
platelets. The term ∇ · [Hcc∇p] represents a “linear taxis”. It accounts for
the transport of platelets towards the gradient of the adsorbed proteins p,
which is a predefined function of the distance from the implant surface d.
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According to Moreo et al. [67], it is defined as

p(d) =

{
0.5(1− d

0.1), if 0 ≤ d < 0.1
0, if d ≥ 0.1

.

∂m

∂t
= ∇ · [Dm∇m−m(Bm1∇s1 +Bm2∇s2)]

+
(
αm0 +

αms1
βm + s1

+
αms2
βm + s2

)
m(1−m)− (αp0 +

αmbs1
βmb + s1

)m−Amm,

(2.2)

where the terms in the right-hand side represent random migration, chemo-
taxis, cell proliferation, differentiation into osteoblasts, and death respec-
tively;

∂b

∂t
= (αp0 +

αmbs1
βmb + s1

)m−Abb, (2.3)

where Ab is the rate of osteoblast death;

∂s1
∂t

= ∇ · [Ds1∇s1] +
( αc1p

βc1 + p
+

αc2s1
βc2 + s1

)
c−As1s1, (2.4)

where the terms in the right-hand side model random migration, growth
factor secretion and decay respectively;

∂s2
∂t

= ∇ · [Ds2∇s2] +
αm2s2
βm2 + s2

m+
αb2s2
βb2 + s2

b−As2s2, (2.5)

where the first term in the right-hand side determines random migration,
the second and the third ones – growth factor secretion, and the last one –
decay;

∂vfn
∂t

= − αws2
βw + s2

bvfn(1− vw), (2.6)

∂vw
∂t

=
αws2
βw + s2

bvfn(1− vw)− γvw(1− vl), (2.7)

∂vl
∂t

= γvw(1− vl), (2.8)

where terms containing coefficients αw, βw and γ model the substitution of
the fibrin network by woven bone and the remodeling of woven bone into
lamellar bone.

Moreo et al. [67] proposed the following initial and boundary conditions
for this equation set. Let Ω be a problem domain with the boundary ∂Ω,
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and ∂Ωb is a part of boundary, corresponding to bone surface, and ~n is an
outward unit normal. Then,{

c(~x, 0) = 0.25, m(~x, 0) = 0.001, b(~x, 0) = 0.001, s1(~x, 0) = 0.01,
s2(~x, 0) = 0.01, vfn(~x, 0) = 1, vw(~x, 0) = 0, vl(~x, 0) = 0,

(2.9)
where ~x ∈ Ω, and

(Dc∇c−Hcc∇p) · ~n = 0,
Ds1∇s1 · ~n = 0, Ds2∇s2 · ~n = 0,

~x ∈ ∂Ω, t ∈ (0,∞)

m = 0.2, ~x ∈ ∂Ωb, t ∈ (0, 14] [days]

(Dm∇m−m(Bm1∇s1
+Bm2∇s2)) · ~n = 0,

[
~x ∈ ∂Ω\∂Ωb, t ∈ (0, 14] [days],
~x ∈ ∂Ω, t ∈ (14,∞) [days].

(2.10)
According to Moreo et al. [67] the following parameters values are pro-

posed:

Dc = 1.365 · 10−2mm2/day, αm0 = 0.25 day−1, αb2 = 25 day−1,

Ac = 0.067 day−1, αm = 0.25 day−1, αm2 = 25 day−1,

Hc = 0.333mm4/(day ·mg), βmb = 0.1, βc1 = 0.1,

Dm = 0.133mm2/day, βm = 0.1, βc2 = 0.1,

Bm1 = 0.667mm2/day, Ab = 6.67 · 10−3 day−1, βm2 = 0.1,

Bm2 = 0.167mm2/day, As1 = 10 day−1, βb2 = 0.1,

Ds1 = 0.3mm2/day, As2 = 10 day−1, αw = 0.1 day−1,

Ds2 = 0.1mm2/day, αc1 = 66.7 day−1, βw = 0.1,

Am = 2 · 10−3 day−1, αc2 = 10 day−1 γ = 0.06 day−1.
(2.11)

Remark 2.1. Growth factor 1 s1 is assumed to stimulate the differentiation
of osteogenic cells into osteoblasts. In Moreo et al. [67] originally, the differ-
entiation term in equations (2.2) and (2.3) was given in the form αmbs1

βmb+s1
m.

In this paper, a more general representation for differentiation is proposed,
which is given by (αp0 + αmbs1

βmb+s1
)m. Parameter αp0 implies, that differenti-

ation can take place, if the growth factor 1 concentration s1 is zero. This
assumption is not in contradiction with experimental observations [25, 62],
and can be useful, in order to get a more realistic simulation results for
different problems. The profit of this representation for differentiation will
be demonstrated in Remark 2.3 in Section 2.3.1.

The general form of the differentiation term is reduced to its original
representation, proposed by Moreo et al. [67], if

αmb = 0.5 day−1, αp0 = 0 day−1. (2.12)
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The assumption, that differentiation also takes place without a presence of
growth factors, is represented by the following parameter values:

αmb =
2
3
· 0.5 day−1, αp0 =

1
3
· 0.5 day−1. (2.13)

In this study, both sets of parameter values in equations (2.12) and (2.13)
are considered.

2.3 Stability analysis

2.3.1 The simplified biological model

The present aim is to study the conditions, that give the appearance of a
wave-like profile. Simulations, performed for the full system, show that the
wave-like profile can appear in the solution for the densities of osteogenic
cells m and osteoblasts b, for the concentration s2 of growth factor 2, and
for the volume fractions of fibrin network vfn, woven bone vw and lamellar
bone vl, if the computational domain is sufficiently large. The equations for
the variables m, b and s2 (2.2), (2.5), (2.3) are coupled and can be solved,
after the solution for c and s1 is obtained from the equations (2.1) and (2.4).
The equations for variables vfn, vw and vl (2.6), (2.7), (2.8) contain only
reaction terms in their right-hand side. The wave-like profile in the solution
for these variables appears due to the wave-like profile in the solution for
osteoblasts and growth factor 2.

Therefore, the phenomenon of the wave-like profile in the solution for
variables m, b and s2 is studied. The solution for m, b and s2 is determined
by the system of equations (2.1)–(2.5).

It is assumed, that the profile appearance can be related to the stability
of the constant solutions of the system. Zero solutions c = 0, s1 = 0 are the
only constant solutions of system (2.1)– (2.5) for variables c and s1.
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Figure 2.2: Growth factor 1 s1 distribution at different time moments, ob-
tained from the numerical solution of the model equations (2.1)–(2.8), for
1D axisymmetric domain with length (a) L = 0.6mm, (b) L = 5mm
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The equations for platelets c and growth factor 1 s1 (2.1) and (2.4), can
be solved separately from the other equations. That means, that the evolu-
tion of the platelet density c(x, t) and growth factor 1 concentration s1(x, t)
does not depend on the evolution of other biological and chemical species
involved in the model. Equation (2.1) contains a term, corresponding to the
death of platelets, but it does not contain a term, corresponding to the pro-
duction of platelets. Therefore, the total amount of platelets decays to zero
with time. The production of growth factor 1 s1 is proportional to platelets
concentration, and thus the production of s1 also decays with time, while
death rate As1 is constant in time. It can be proved, that the integrals of
platelet density and growth factor 1 concentration over the problem domain
tend to zero with time, if zero flux on the boundaries is considered. If nega-
tive values in the solution for c(x, t) and s1(x, t) are avoided (otherwise the
solution becomes biologically irrelevant), then it follows, that these func-
tions tend to zero almost everywhere in the problem domain. Numerical
simulations confirm (Figure 2.2), that for a large time t the solution s1(x, t)
is very close to zero.

The stability analysis deals with the asymptotic behavior of the system,
that is with the behavior of the solution for long time periods. Therefore,
the simplified system is derived from equations (2.2), (2.5) and (2.3), and
from assumption s1(x, t) ≡ 0 in the following form:

∂m

∂t
= ∇·[Dm∇m−Bm2m∇s2)]+

(
αm0+

αms2
βm + s2

)
m(1−m)−(αp0+Am)m,

(2.14)

∂s2
∂t

= ∇ · [Ds2∇s2] +
αm2s2
βm2 + s2

(m+ b)−As2s2, (2.15)

∂b

∂t
= αp0m−Abb. (2.16)

Remark 2.2. In derivation of (2.15) it was assumed, that αb2 = αm2 and
βb2 = βm2. These simplifying assumptions are in line with the values for
αb2, αm2, βb2 and βm2, proposed by Moreo et al. [67], which were introduced
in (2.11).

Remark 2.3. As it was mentioned, the concentration of s1 becomes close to
zero after a certain period of time. Then, differentiation of osteogenic cells
into osteoblasts is roughly described by the term αp0m, as this is done in
equations (2.14), (2.16). This term turns to zero, if αp0 = 0, as was proposed
by Moreo et al. [67]. The solution of (2.16), defined as b(x, t) = b0(x)e−Abt,
converges to zero with time. From a biological point of view, this means,
that osteogenic cells stop to differentiate after a certain time period. There
is no source of newly formed osteoblasts, and their amount decreases to zero,
due to cell death.
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If αp0 6= 0, then differentiation takes place also when s1 is zero. This
allows to obtain the solution for osteoblasts, which does not converge to
zero, and hence, is more realistic from biological point of view. For this
reason, the parameter values in equation (2.12), as proposed by Moreo et al.
[67], and the alternative values in equation (2.13) are considered.

Moreo et al. [67] investigated the linear stability of the constant solu-
tions of the system, which is similar to system (2.14)–(2.16), against purely
temporal perturbations. In this paper, the system stability with respect to
arbitrary perturbations (including non-homogeneous perturbations) is stud-
ied.

Constant solutions z′ = (m′, s′, b′) of system (2.14)–(2.16) are derived
from the algebraic system:

(
αm0 +

αms
′
2

βm + s′2

)
m′(1−m′)− (αp0 +Am)m′ = 0,

αm2s
′
2

βm2 + s′2
(m′ + b′)−As2s

′
2 = 0,

αp0m
′ −Abb

′ = 0.

(2.17)

Two solutions of the above system have been denoted by Moreo et al. [67]
as:

• “Chronic non healing state”: zt = (0, 0, 0),

• “Low density state”: z0 = (m0, 0, b0),

where
m0 = 1− αp0 +Am

αm0
, b0 =

αp0
Ab

m0. (2.18)

From system (2.17), it follows, that root s′2 can not be equal to −βm < 0
or to −βm2 < 0. Vectors z− = (m−, s2−, b−) and z+ = (m+, s2+, b+) are
defined as

s2± =
−a1 ±

√
a2

1 − 4a2a0

2a2
, (2.19)

m± =
AbAs2(s2± + βm2)
αm2(Ab + αp0)

=
As2(s2± + βm2)

χ
, b± =

αp0
Ab

m±, (2.20)

where
a2 = As2

(
1 +

αm
αm0

)
,

a1 =
(

1 +
αm
αm0

)
(βm2As2 − χm0) +

αm
αm0

χ(m0 − 1) + βmAs2 ,

a0 = βm(βm2As2 − χm0),

(2.21)
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χ = αm2 (1 + αp0/Ab) , (2.22)

and m0 is defined in equation (2.18). They are the solutions of system
(2.17), if s2± /∈ {−βm;−βm2}. Therefore, depending on the values of model
parameters, system (2.17) can have two, three or four solutions.

Remark 2.4. From the derivation of the expression (2.19), which is not given
here, it follows, that at least one of the roots s2+ and s2− is equal to −βm, if
and only if As2(βm2−βm) = χ. And at least one of the roots s2+ and s2− is
equal to −βm2, if and only if (αm0−αp0−Am)(βm−βm2) = αmβm2. For the
chosen parameter values in equations (2.11), (2.12), (2.13), βm2 = βm > 0,
αm > 0, χ = αm2 (1 + αp0/Ab) > 0. Hence, s2± 6= −βm and s2± 6= −βm2 for
the considered parameter values, and system (2.14)–(2.16) has four constant
solutions zt, z0, z+ and z−.

It should be mentioned here, that for the existence of real s2± the nec-
essary condition is:

a2
1 − 4a2a0 ≥ 0. (2.23)

This necessary condition is written in terms of the model parameters as:

a2
1 − 4a2a0 =

(
χ

(
m0 +

αm
αm0

)
−As2

(
βm + βm2

(
1 +

αm
αm0

)))2

− 4As2βm

(
1 +

αm
αm0

)
(βm2As2 − χm0) =

(
χ

(
m0 +

αm
αm0

)
− ξ

)2

+ χ

(
m0 +

αm
αm0

)
η − η

(
βm2As2 + χ

αm
αm0

)
=
(
χ

(
m0 +

αm
αm0

))2

+ χ

(
m0 +

αm
αm0

)
(η − 2ξ) + ξ2 − η

(
βm2As2 + χ

αm
αm0

)
≥ 0, (2.24)

where

ξ = As2

(
βm + βm2

(
1 +

αm
αm0

))
, η = 4As2βm

(
1 +

αm
αm0

)
. (2.25)

From (2.24) it is derived, that (2.23) is equivalent to: χ
(
m0 + αm

αm0

)
≥ −As2βm αm

αm0
+
√
η αm
αm0

χ,

χ
(
m0 + αm

αm0

)
≤ −As2βm αm

αm0
−
√
η αm
αm0

χ.
(2.26)

The sign of s2± depends on the sign of coefficients a1 and a0 (coefficient
a2 is larger than zero, which follows from its definition). Both roots will be
positive if a1 < 0 and a0 > 0 and if inequality (2.23) holds.

For the parameter values in equations (2.11), (2.12) the constant solu-
tions have values: m0 ≈ 0.9920, b0 = 0; m− ≈ 0.0201, s2− ≈ −0.0498,
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b− = 0; m+ ≈ 0.9959, s2+ ≈ 2.3898, b+ = 0; and for parameter values
(2.11), (2.13): m0 ≈ 0.3253, b0 ≈ 8.1293; m− ≈ 0.0012, s2− ≈ −0.0245,
b− ≈ 0.0290; m+ ≈ 0.6623, s2+ ≈ 42.9271, b+ ≈ 16.5486.

Remark 2.5. For the chosen parameter sets (2.11), (2.12) and (2.11), (2.13),
growth factor 2 concentration s2− is negative, which is unphysical. It is
desirable to avoid such a negative concentration of growth factor 2 in the
solution of the problem (2.14)–(2.16). Calculations show, that for the cho-
sen parameter values there are two positive eigenvalues of the Jacobean of
the equation system, linearized for the case of small purely temporal per-
turbations near the constant solution z−. Hence, the constant solution z−
is unstable against temporal perturbations. It is possible to obtain non-
negative values in the numerical solution for s2, provided a sufficiently small
time step and mesh size are chosen and positive initial values for concentra-
tions of cells and growth factor are considered.

2.3.2 Non-homogeneous perturbations

In this section, the stability of constant-state solutions of system (2.14)–
(2.16) is analyzed. The present approach is valid for a domain in any coor-
dinate system, for which eigenfunctions of Laplace operator can be found.
In this paper, the examples of the eigenfunctions are given for domains in 1D
Cartesian coordinates and in 1D axisymmetric coordinates. The indepen-
dent space coordinate is denoted by x for both coordinate systems. Suppose
that non-homogeneous perturbations mp(x, t), s2p(x, t) and bp(x, t) are im-
posed on the constant solution (m′, s′2, b

′). Then the solution is given in the
form: 

m(x, t) = m′ + εmp(x, t),
s2(x, t) = s′2 + εs2p(x, t),
b(x, t) = b′ + εbp(x, t),

(2.27)

where |ε| � 1. Then, equations (2.27) are substituted into (2.14)–(2.16),
and linearized with respect to small ε:

∂mp

∂t
=Dm∇2mp −m′Bm2∇2s2p +

[(
αm0 +

αms
′
2

βm + s′2

)
(1− 2m′)

− (αp0 +Am)
]
mp +

αmβm
(βm + s′2)2

m′(1−m′)s2p,

∂s2p
∂t

=Ds2∇2s2p +
αm2s

′
2

βm2 + s′2
(mp + bp)

+
[ αm2βm2

(βm2 + s′2)2
(m′ + b′)−As2

]
s2p,

∂bp
∂t

=αp0mp −Abbp.

(2.28)
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Let us denote the problem domain as [x0, x0 + L]. Assume, that on the
boundaries the flux of cells and of growth factors is zero. Then, perturba-
tions are considered in the form:

mp(x, t) =Cm0 (t) +
∞∑
n=1

Cmn (t)φn(x),

s2p(x, t) =Cs20 (t) +
∞∑
n=1

Cs2n (t)φn(x),

bp(x, t) =Cb0(t) +
∞∑
n=1

Cbn(t)φn(x).

(2.29)

Functions Cm0 (t), Cs20 (t), Cb0(t) represent purely temporal perturbations.
Eigenfunctions φn(x) satisfy equation ∇2φn(x) = −k2

nφn(x) and considered
boundary conditions, i.e. zero flux on the boundaries: ∇φn(x0) = ∇φn(x0 +
L) = ~0.

If Cartesian coordinates are considered, then the function φn(x) is given
as φCn (x) = cos(kn(x− x0)), where kn = πn

L , n = 1, 2, . . . . In this case kn is
a wavenumber.

In the case of axisymmetric coordinates functions φn(x) have the form
φan(x) = Y ′

0(knx0)J0(knx) − J ′0(knx0)Y0(knx), where J0(knx) and Y0(knx)
are Bessel functions, kn = wn

x0+L and wn, n = 1, 2, . . . are positive real zeros
of the function Φ(w) = −Y ′

0(knx0)J1(w) + J ′0(knx0)Y1(w). Functions φan(x),
n = 1, 2, . . . are not periodic. They can be roughly described as “waves”
with variable in space wavelength and magnitude. For simplicity, kn will be
referred to as ’wavenumber’, also if it is introduced in functions φan(x).

Remark 2.6. Perturbation modes φn(x), n = 1, 2, . . . by their definition have
positive wavenumbers kn > 0. For the sake of generality, purely temporal
perturbations are considered as perturbations of mode n = 0 with zero
wavenumber k0 = 0 and φ0(x) ≡ 1.

Substitution of equations (2.29) into system (2.28) yields:

~C ′
n(t) = Akn

~Cn(t), n = 0, 1, . . . , (2.30)

where

~Cn(t) =

C
m
n (t)

Cs2n (t)

Cbn(t)

 , n = 0, 1, . . . , (2.31)

Akn =


Akn(1,1) Akn(1,2) 0
αm2s

′
2

βm2 + s′2
Akn(2,2)

αm2s
′
2

βm2 + s′2
αp0 0 −Ab

 , (2.32)
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where

Akn(1,1) =
(
αm0 +

αms
′
2

βm + s′2

)
(1− 2m′)− (αp0 +Am)− k2

nDm,

Akn(1,2) =
αmβm

(βm + s′2)2
m′(1−m′) + k2

nBm2m
′,

Akn(2,2) =
αm2βm2

(βm2 + s′2)2
(
1 +

αp0
Ab

)
m′ −As2 − k2

nDs2.

Then from (2.30):

~Cn(t) = eAkn t ~C0
n, n = 0, 1, . . . , (2.33)

where ~C0
n define the perturbations imposed on the constant solution of the

system initially at time t = 0: mp(x, 0)
s2p(x, 0)
bp(x, 0)

 =
∞∑
n=0

~C0
nφn(x).

Thus the solution of (2.28) is written as: mp(x, t)
s2p(x, t)
bp(x, t)

 =
∞∑
n=0

eAkn t ~C0
nφn(x). (2.34)

The magnitude of perturbations ‖~Cn(t)‖ = ‖eAkn t ~C0
n‖ of mode n, will

grow in time, if at least one of the eigenvalues of the matrix Akn is a positive
real number or a complex number with a positive real part. And ‖~Cn(t)‖ will
converge to zero, if all the eigenvalues of Akn are real negative, or complex
numbers with the real part less than zero. If the matrix Akn has precisely
one zero eigenvalue, and other eigenvalues are real negative or complex with
a negative real part, then small perturbations remain small for infinite time
period.

It is not complicated to find expressions for the eigenvalues of Akn ,
evaluated at the ‘chronic non healing state’ zt = (0, 0, 0) and ‘low density
state’ z0 = (m0, 0, b0). For the constant solution zt eigenvalues of Akn are:

λ1t(k2
n) = αm0m0 − k2

nDm > 0, if 0 ≤ k2
n <

αm0m0

Dm
,

λ2t(k2
n) = −As2 − k2

nDs2 < 0, λ3t(k2
n) = −Ab < 0.

(2.35)

Therefore, if m0 is positive, constant solution zt is unstable against purely
temporal perturbations and perturbations with a small wavenumber 0 <

kn <
√

αm0m0
Dm

. The first eigenvalue λ1t(k2
n) takes the largest positive value

for the wavenumber k0, i.e. for the purely temporal perturbation mode.
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Remark 2.7. For negative m0, ’chronic non-healing state’ zt will become
stable against perturbations with any wavenumber. Further the constant
solution z0 will contain an unphysical negative concentration for osteogenic
cells. Inequality m0 = 1 − αp0+Am

αm0
< 0 implies, that differentiation and

death of osteogenic cell dominate over their production. Therefore, this
situation is not relevant for the considered model of bone formation, and
further m0 > 0 is assumed a priori.

For the constant solution z0 = (m0, 0, b0) matrix Akn eigenvalues are:

λ10(k2
n) = −αm0m0 − k2

nDm < 0,

λ20(k2
n) =

αm2

βm2
m0(1 +

αp0
Ab

)−As2 − k2
nDs2, λ30(k2

n) = −Ab < 0.
(2.36)

If expression αm2
βm2

m0(1 + αp0

Ab
)−As2 takes a positive value, which is true for

the current parameter values in equations (2.11), (2.12) and (2.13), then the
constant solution z0 is unstable against perturbations with the wavenumbers
k2
n <

(
αm2
βm2

m0(1 + αp0

Ab
)−As2

)
/Ds2. The largest eigenvalue λ20 corresponds

to zero wavenumber k0, i.e. to the purely temporal mode of perturbation.
The eigenvalues of the matrix Akn defined at points z− and z+ can not

be found in such a trivial manner, as for the constant solutions zt and z0.
They are obtained from the characteristic equation, which is a non-trivial
cubic algebraic equation. Therefore, instead of analyzing the expressions for
the eigenvalues, which are extremely complicated in this case, a different
approach is proposed, which based on a reduction of the considered system
of equations to two equations with similar stability properties.

Remark 2.8. For the chosen parameter values, see expressions (2.11), (2.12)
and (2.11), (2.13), s2− is negative, hence the constant solution z− is biolog-
ically irrelevant in this case. Therefore, only the stability of the constant
solution z+ and not of z− is analyzed. The stability analysis, being intro-
duced for z+, is not valid for the constant solution z−, if it contains the
negative value of growth factor concentration. Calculations also show, that
for parameter values (2.11), (2.12) and (2.13), the constant solution z− is
unstable against at least purely temporal perturbations.

2.3.3 Stability of the system of two equations

To simplify the stability analysis, system (2.14)–(2.16) is reduced to a system
of two equations. For this reduced system the assumption

b(x, t) =
αp0
Ab

m(x, t) (2.37)
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is made, instead of equation (2.16). The system is defined as:

∂m

∂t
=∇ · [Dm∇m−Bm2m∇s2)]

+
(
αm0 +

αms2
βm + s2

)
m(1−m)− (αp0 +Am)m,

∂s2
∂t

=∇ · [Ds2∇s2] +
αm2s2
βm2 + s2

(1 +
αp0
Ab

)m−As2s2.

(2.38)

Substitution of (2.37) into equation (2.16), yields the condition ∂b
∂t = 0,

which is not true in general case. Therefore, system (2.14)–(2.16) and sys-
tem (2.38) are not equivalent, and their stability properties are different in
general. However, it will be shown in Section 2.3.4, that there is a certain
similarity (or correspondence) between the stability properties of the two
systems. This similarity is sufficient, to transfer important results, obtained
from the stability analysis for the system of two equations (2.38), onto the
system of three equations (2.14)–(2.16).

System (2.38) has constant solutions, that are analogous to those of sys-
tem (2.14)–(2.16). They are: z̃t = (0, 0), z̃0 = (m0, 0), z̃+ = (m+, s2+),
z̃− = (m−, s2−). Linearizing the system near the point (m′, s′2), with
m(x, t) = m′ + εmp(x, t) and s2(x, t) = s′2 + εs2p(x, t), yields:

∂mp

∂t
=Dm∇2mp −m′Bm2∇2s2p +

[(
αm0 +

αms
′
2

βm + s′2

)
(1− 2m′)

− (αp0 +Am)
]
mp +

αmβm
(βm + s′2)2

m′(1−m′)s2p,

∂s2p
∂t

=Ds2∇2s2p +
αm2s

′
2

βm2 + s′2
(1 +

αp0
Ab

)mp

+
[

αm2βm2

(βm2 + s′2)2
(1 +

αp0
Ab

)m′ −As2

]
s2p.

(2.39)

Considering solutions of the form
mp(x, t) =

∞∑
n=0

Cmn (t)φn(x),

s2p(x, t) =
∞∑
n=0

Cs2n (t)φn(x),

and substituting them into system (2.39), for each n = 0, 1, . . . we arrive at:
dCmn (t)
dt

dCs2n (t)
dt

 = Ãkn

[
Cmn (t)

Cs2n (t)

]
,
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where

Ãkn =

 Ãkn(1,1) Ãkn(1,2)

αm2s
′
2

βm2 + s′2

(
1 +

αp0
Ab

)
Ãkn(2,2)

 ,

Ãkn(1,1) =
(
αm0 +

αms
′
2

βm + s′2

)
(1− 2m′)− (αp0 +Am)− k2

nDm,

Ãkn(1,2) =
αmβm

(βm + s′2)2
m′(1−m′) + k2

nBm2m
′,

Ãkn(2,2) =
αm2βm2

(βm2 + s′2)2
(
1 +

αp0
Ab

)
m′ −As2 − k2

nDs2.

First the stability properties of system (2.39) are studied, and then it is
determined, how they are related to the stability properties of the system
of three equations (2.28). Since s2+ 6= −βm2, then from relation (2.20) it
follows that m+ 6= 0. Therefore, the matrix Ãkn evaluated in the point
(m+, s2+), can be simplified. From the first equation of system (2.17) it
follows: (

αm0 +
αms2+
βm + s2+

)
(1−m+)− (αp0 +Am) = 0. (2.40)

Then:

Ãkn(1,1)(m+, s2+) =
(
αm0 +

αms2+
βm + s2+

)
(1− 2m+)− (αp0 +Am)− k2

nDm

=2
((

αm0 +
αms2+
βm + s2+

)
(1−m+)− (αp0 +Am)

)
−
((

αm0 +
αms2+
βm + s2+

)
− (αp0 +Am)

)
− k2

nDm

=− αm0m0 −
αms2+
βm + s2+

− k2
nDm,

Ãkn(2,1)(m+, s2+) =
αm2s2+
βm2 + s2+

(1 +
αp0
Ab

) = χ
s2+

βm2 + s2+
,

where χ is defined in (2.22). From equation (2.20), it follows that

Ãkn(1,2)(m+, s2+) =
αmβm

(βm + s2+)2
m+(1−m+) + k2

nBm2m+

=
As2αmβm
χ(βm + s2+)

βm2 + s2+
βm + s2+

(1−m+) + k2
nBm2m+.

Everywhere in the calculations, presented in Moreo et al. [67] and in this
paper, the same values are used for the parameters βm and βm2. So both
notations βm and βm2 is used, though βm2 = βm is supposed below. Then

Ãkn(1,2)(m+, s2+) =
As2αmβm
χ(βm + s2+)

(1−m+) + k2
nBm2m+,
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Ãkn(2,2)(m+, s2+) =
αm2βm2

(βm2 + s2+)2
(1 +

αp0
Ab

)m+ −As2 − k2
nDs2

= As2(
βm2

βm2 + s2+
− 1)− k2

nDs2 = −As2
s2+

βm2 + s2+
− k2

nDs2.

Therefore,

Ãkn(m+, s2+)

=

(
−αm0m0 − αms2+

βm+s2+
− k2

nDm
As2αmβm

χ(βm+s2+)(1−m+) + k2
nBm2m+

χ s2+
βm2+s2+

−As2 s2+
βm2+s2+

− k2
nDs2

)
.

Then the characteristic equation for the matrix Ãkn , evaluated at point
(m+, s2+), is given by:

λ2(k2
n) + b(k2

n)λ(k2
n) + c(k2

n) = 0, (2.41)

where

b(k2
n) = −(Ãkn(1,1)(m+, s2+) + Ãkn(2,2)(m+, s2+))

= k2
nDm + αm0m0 +

αms2+
βm + s2+

+ k2
nDs2 +As2

s2+
βm2 + s2+

= k2
n(Dm +Ds2) + αm0m0 + (αm +As2)

s2+
βm + s2+

,

c(k2
n) =Ãkn(1,1)(m+, s2+)Ãkn(2,2)(m+, s2+)

− Ãkn(1,2)(m+, s2+)Ãkn(2,1)(m+, s2+)

=
(
k2
nDm + αm0m0 +

αms2+
βm + s2+

)(
k2
nDs2 +As2

s2+
βm2 + s2+

)
−
(
k2
nBm2m+ +

As2αmβm
χ(βm + s2+)

(1−m+)
)
χ

s2+
βm2 + s2+

.

From equation (2.41) the eigenvalues of Ãkn(m+, s2+) are determined
as:

λ1,2(k2
n) = −b(k

2
n)

2
± 1

2

√
b2(k2

n)− 4c(k2
n). (2.42)

It should be mentioned that{
s2+ > 0,
m0 > 0

⇒ b(k2
n) > 0. (2.43)

Thus, the following lemma can be formulated.
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Lemma 2.1. Suppose, that for the chosen parameter values, m0 defined in
(2.18) is positive, βm = βm2 and that there exists a real positive s2+ defined
in (2.19). Then the nature of eigenvalues of the matrix Ãkn(m+, s2+) is
determined by the sign of c(k2

n):

• if c(k2
n) < 0, then one of the eigenvalues is positive and the other is

negative,

• if c(k2
n) = 0, then the matrix Ãkn(m+, s2+) has one zero eigenvalue

and one negative.

• if c(k2
n) > 0 then both eigenvalues are either negative, or complex with

a negative real part.

The wavenumbers which lead to growing perturbations are determined
by inequality c(k2

n) < 0. c(k2
n) can be written in the form:

c(k2
n) = γ2k

4
n + γ1k

2
n + γ0, (2.44)

where

γ2 = DmDs2, (2.45)

γ1 = (DmAs2 +Ds2αm − χm+Bm2)
s2+

βm2 + s2+
+Ds2αm0m0, (2.46)

γ0 = As2
s2+

βm2 + s2+

(
αm0m0 + αm

s2+
βm + s2+

(2−m+) + αm(m+ − 1)
)
.

(2.47)

Lemma 2.2. Suppose, that for the chosen parameter values, m0 defined in
(2.18) is positive, and that βm2 = βm. Then if there exists a real positive
s2+ defined in (2.19), then γ0 defined in (2.47) is non-negative.

Proof. Since s2+ > 0, then it is necessary to prove, that

αm0m0 + αm
s2+

βm + s2+
(2−m+) + αm(m+ − 1) ≥ 0.

The previous inequality is simplified with use of equations(2.40) and (2.18):

αm0m0 + αm
s2+

βm + s2+
(2−m+) + αm(m+ − 1)

=
(
αm0m0 + αm

s2+
βm + s2+

(1−m+)− αm0m+

)
+ αm

s2+
βm + s2+

+ αm0m+ + αm(m+ − 1) = m+(αm0 + αm) + αm

(
s2+

βm + s2+
− 1
)
≥ 0.

That is equivalent to m+(αm0 + αm) ≥
(

αmβm

βm+s2+

)
. Considering (2.20), this

transforms to
(βm + s2+)2 ≥ αmβmχ

As2(αm0 + αm)
, (2.48)
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where χ is defined in (2.22). Next, it is proved, that inequality (2.48) holds.
From equation (2.19) and assumption βm2 = βm it follows, that

s2+ + βm =
−a1 +

√
a2

1 − 4a2a0

2a2
+ βm ≥ −

a1

2a2
+ βm

= −(αm0 + αm)(βmAs2 − χm0) + αmχ(m0 − 1) + αm0βmAs2
2As2(αm0 + αm)

+
2βmAs2(αm0 + αm)
2As2(αm0 + αm)

=
αmβmAs2 + χ(αm + αm0m0)

2As2(αm0 + αm)
, (2.49)

where a2, a1, a0 are defined in (2.21). Since χ = αm2 (1 + αp0/Ab) > 0 and
m0 is supposed to be positive, then from (2.26) it is derived that:

χ

(
m0 +

αm
αm0

)
≥ −As2βm

αm
αm0

+
√
η
αm
αm0

χ. (2.50)

where η is defined in (2.25). Thus from (2.49) and (2.50) it follows:

βm + s2+ ≥
αmβmAs2 + χ(αm + αm0m0)

2As2(αm0 + αm)

≥
αmβmAs2 − αmβmAs2 +

√
ηαmαm0χ

2As2(αm0 + αm)

=
√
ηαmαm0χ

2As2(αm0 + αm)
=

√
αmβmχ

As2(αm0 + αm)

Thus inequality (2.48) holds, and consequently γ0 ≥ 0.

Remark 2.9. From the proof of Lemma 2.2 it follows, that γ0 = 0, if and
only if a2

1 − 4a2a0 = 0 which is equivalent for m0 > 0 to

χ

(
m0 +

αm
αm0

)
= −As2βm

αm
αm0

+
√
η
αm
αm0

χ. (2.51)

where η is defined in (2.25). In this case two constant solutions z̃− and z̃+
coincide, since s2− = s2+ = − a1

2a0
.

It should be mentioned here, that under the assumptions of Lemma 2.2,
c(0) = γ0 ≥ 0. Then, Lemma 2.3 follows from Lemma 2.1.

Lemma 2.3. If, for the chosen parameter values, m0 defined in (2.18) is
positive, βm2 = βm and there exists a real positive s2+ defined in (2.19),
then for zero wavenumber k0, the matrix Ãkn(m+, s2+) has either one zero
eigenvalue and one negative, or two negative eigenvalues, or two complex
eigenvalues with a negative real part; and the constant solution (m+, s2+) of
system (2.38) is stable against the purely temporal perturbations.
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Since kn ∈ [0,∞), then c(k2
n) given in (2.44) can be considered as a

real function of a real non-negative argument. It is a quadratic polynomial.
The interval, where c(k2

n) < 0, is defined by the roots of the polynomial.
If this polynomial has no roots among non-negative real numbers, then for
∀kn ∈ [0,∞), c(k2

n) > 0, since γ2 defined (2.45) is positive. Thus, it is
necessary to find the conditions, for which the polynomial defined in (2.44)
has at least one non-negative real root. The general formula for the roots of
the polynomial is:

κ2
1,2 =

−γ1 ±
√
γ2

1 − 4γ2γ0

2γ2
. (2.52)

The discriminant of the polynomial is:

Dγ = γ2
1 − 4γ0γ2. (2.53)

Since γ2 > 0 and γ0 ≥ 0 under the conditions of Lemma 2.2, the polynomial
c(k2

n) has either two real roots of the same sign as −γ1, which are different
if Dγ > 0, and coincident if Dγ = 0; or two complex roots with real part
− γ1

2γ2
, if Dγ < 0.

Theorem 2.1. Suppose, that for the chosen parameter values m0 defined
in (2.18) is positive, βm = βm2 and there exists a real positive s2+ defined
in (2.19). Then if Dγ defined in (2.55) is positive, and γ1 defined in (2.54)
is negative, then ∃κ1, κ2 ∈ R defined by expression (2.52), such that 0 ≤
κ1 < κ2, and the constant solution solution z̃+ = (m+, s2+) of system (2.38)
is unstable with respect to the perturbations with the wavenumbers kn ∈
(κ1, κ2). Otherwise, the constant solution z̃+ is stable.

Proof. Let λ1(k2
n) and λ2(k2

n) be the eigenvalues of the matrix Ãkn(m+, s2+)
defined in (2.42) and c(k2

n) be defined in (2.44). Then:

1. If Dγ > 0, and

(a) if γ1 < 0, then ∃κ1, κ2 ∈ R defined from expression (2.52), such
that 0 ≤ κ1 < κ2 and:

• for kn ∈ (κ1, κ2): c(k2
n) < 0, hence λ1(k2

n) < 0 and
λ2(k2

n) > 0;
• for kn ∈ {κ1;κ2}: c(k2

n) = 0, and λ1(k2
n) < 0 and λ2(k2

n) = 0;
• for kn ∈ [0,∞)/[κ1, κ2]: c(k2

n) > 0, and λ1(k2
n), λ2(k2

n) are
either real and negative, or complex with a negative real part;

(b) if γ1 > 0, then:

i. if γ0 > 0, then for ∀kn ∈ [0,∞): c(k2
n) > 0 and λ1(k2

n), λ2(k2
n)

are either real and negative, or complex with a negative real
part;

ii. if γ0 = 0, then
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• for ∀kn ∈ (0,∞): c(k2
n) > 0 and λ1(k2

n), λ2(k2
n) are either

real and negative, or complex with a negative real part;

• c(0) = 0 and λ1(0) < 0 and λ2(0) = 0.

2. If Dγ = 0, and

(a) if γ1 ≤ 0, then ∃κ1 = κ2 =
√
− γ1

2γ2
≥ 0 , such that

• c(κ2
1) = 0, and λ1(κ2

1) < 0 and λ2(κ2
1) = 0;

• for kn ∈ [0,∞)/{κ2
1}: c(k2

n) > 0 and λ1(k2
n), λ2(k2

n) are either
real and negative, or complex with a negative real part;

(b) if γ1 > 0, then for ∀kn ∈ [0,∞): c(k2
n) > 0 and λ1(k2

n), λ2(k2
n) are

either real and negative, or complex with a negative real part.

3. If Dγ < 0, then for ∀kn ∈ [0,∞): c(k2
n) > 0 and λ1(k2

n), λ2(k2
n) are

either real and negative, or complex with a negative real part.

Therefore, if Dγ > 0, and γ1 < 0, then λ2(k2
n) > 0, if kn ∈ (κ1, κ2), and

the magnitude of the perturbation modes having wavenumbers kn ∈ (κ1, κ2)
grows monotonically after a certain period of time. Hence, the constant so-
lution z̃+ = (m+, s2+) is unstable with respect to these perturbation modes.

Otherwise, ∀kn ∈ [0,∞) the eigenvalues of the matrix Ãkn are either
real non-positive numbers (the matrix Ãkn can not have more than one
zero eigenvalue) or complex numbers with a negative real part. Hence,
initially small perturbations remain small during any period of time, or
even disappear when t → ∞, and the constant solution z̃+ is stable in this
case.

The parameters γ1 and Dγ , can be written in terms of the model param-
eters as

γ1 = (DmAs2 +Ds2αm − χm+Bm2)
s2+

βm2 + s2+
+Ds2αm0m0, (2.54)

Dγ =
(
(DmAs2 +Ds2αm − χm+Bm2)

s2+
βm2 + s2+

+Ds2αm0m0

)2

− 4DmDs2As2
s2+

βm2 + s2+

(
αm0m0 + αm

s2+
βm2 + s2+

(2−m+)

+ αm(m+ − 1)
)
.

(2.55)
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2.3.4 Correspondence between the systems of two and three
equations

Next, the relation between the eigenvalues of the matrices Ãkn(m+, s2+)
and Akn(m+, s2+, b+) is determined, and the similarity between the stabil-
ity properties of systems (2.14)–(2.16) and (2.38), with respect to pertur-
bations about the equilibria (m+, s2+, b+) and (m+, s2+), respectively, is
demonstrated. Let us define a matrix Mkn :

Mkn =
[

Akn(1,1) − λ Akn(1,2)

Akn(2,1) Akn(2,2) − λ

]
.

From the definition of Akn it follows, that Akn(2,3) = Akn(2,1). Then

Akn − λI3 =

 Akn(1,1) − λ Akn(1,2) 0
Akn(2,1) Akn(2,2) − λ Akn(2,1)

αp0 0 −Ab − λ



=


 Mkn


αp0 0

0

Akn(2,1)

−Ab − λ

 .
The determinant of this matrix is the characteristic polynomial of Akn :

det (Akn − λI3) =
(
−Ab − λ

)
det(Mkn) + αp0Akn(1,2)Akn(2,1). (2.56)

From the definition of the matrices Ãkn and Akn , it follows that

Ãkn(1,1) = Akn(1,1), Ãkn(1,2) = Akn(1,2),

Ãkn(2,1) =
(

1 +
αp0
Ab

)
Akn(2,1), Ãkn(2,2) = Akn(2,2).

Therefore, the determinant of the matrix Ãkn − λI2 and the characteristic
polynomial of the matrix Ãkn is

det
(
Ãkn − λI2

)
=det

 Akn(1,1) − λ Akn(1,2)

Akn(2,1) + αp0

Ab
Akn(2,1) Akn(2,2) − λ



=det(Mkn)− αp0
Ab

Akn(1,2)Akn(2,1).

(2.57)
From (2.56) and (2.57) it is derived that

det (Akn − λI3) =
(
−Ab − λ

)
det
(
Ãkn − λI2

)
− λ

αp0
Ab

Akn(1,2)Akn(2,1).

(2.58)
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Then, the characteristic polynomials of the matrices Akn and Ãkn , which
are evaluated at the constant solutions (m+, s2+, b+) and (m+, s2+), respec-
tively, are denoted by a cubic polynomial P3(λ) and a quadratic polynomial
P2(λ) with respect to λ:

P3(λ) = det(Akn(m+, s2+, b+)−λI3); P2(λ) = det(Ãkn(m+, s2+, b+)−λI2).

Equation (2.58) can be written as:

P3(λ) =
(
−Ab − λ

)
P2(λ)− C(k2

n)λ, (2.59)

where

C(k2
n) =

αp0
Ab

Akn(1,2)(m+, s2+, b+)Akn(2,1)(m+, s2+, b+)

=
αp0
Ab

αm2s2+
βm2 + s2+

(
αmβm

(βm + s2+)2
m+(1−m+) + k2

nBm2m+

)
.

(2.60)

If s2+ > 0, it follows from (2.20) that m+ > 0, and equation (2.40) yields:
m+ = 1− αp0+Am

αm0+
αms2+

βm+s2+

< 1. Thus,

s2+ > 0 ⇒ 0 < m+ < 1 ⇒ C(k2
n) > 0, ∀k2

n ∈ [0,∞). (2.61)

Lemma 2.4. Suppose, that for the chosen parameter values m0 defined in
(2.18) is positive, and that there exists a real positive s2+ defined in (2.19).
If the matrix Ãkn(m+, s2+) has one real negative eigenvalue λ̃1 < 0 and
one real positive eigenvalue λ̃2 > 0, then Akn(m+, s2+, b+) has one real
positive eigenvalue and either two real negative eigenvalues, or two complex
conjugated eigenvalues with a negative real part.

Proof. From the assumption of the lemma and from (2.61) it follows, that
C(k2

n) > 0. Let Ãkn(m+, s2+) have one real negative eigenvalue λ̃1 < 0 and
one real positive eigenvalue λ̃2 > 0. The characteristic polynomial can be
written as P2(λ) = (λ− λ̃1)(λ− λ̃2). Then from equation (2.59)

P3(λ) =
(
−Ab − λ

)
(λ− λ̃1)(λ− λ̃2)−C(k2

n)λ = −λ3 + (λ̃1 + λ̃2 −Ab)λ2

+ (−λ̃1λ̃2 +Ab(λ̃1 + λ̃2)− C(k2
n))λ−Abλ̃1λ̃2. (2.62)

From (2.62) it follows:

P3(0) = −λ̃1λ̃2Ab > 0 and P3(λ̃2) = −λ̃2C(k2
n) < 0. (2.63)

Since P3(λ) is continuous, it follows from relation (2.63), that the polynomial
P3(λ) has at least one real positive root λ1 on the interval (0, λ̃2).
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The other two eigenvalues λ2 and λ3 of Akn(m+, s2+, b+) can be real
(negative or positive) or complex conjugated numbers (as the coefficients of
the polynomial are real). Then,

P3(λ) = −λ3 + (λ1 + λ2 + λ3)λ2 − (λ1λ2 + λ1λ3 + λ2λ3)λ+ λ1λ2λ3,
(2.64)

since this polynomial has λ1, λ2, λ3 as its roots. As the coefficients at the
second degree of λ in the two expressions for P3(λ) from (2.62) and (2.64)
should be equal, it follows that λ2 + λ3 = λ̃1 + λ̃2 −Ab − λ1. From (2.42) it
is derived:

λ2 + λ3 = −b(k2
n)−Ab − λ1 < 0. (2.65)

The above inequality holds, since it was mentioned in (2.43), that b(k2
n) > 0,

if m0 > 0 and s+ > 0. Thus, if two other eigenvalues are real, then from
(2.65) it follows, that at least one of them is negative. Let us suppose λ2 < 0.
Then

lim
λ→−∞

P3(λ) = ∞,

and P3(0) = −λ̃1λ̃2Ab > 0. That means that on the interval (−∞, 0) the
polynomial P3(λ) does not change its sign, or changes it twice. Since P3(λ) is
continuous, it follows from λ2 < 0 that λ3 also is negative. In the case, when
λ2 and λ3 are complex conjugated, their real part is λre = (λ2 + λ3)/2 <
0.

Lemma 2.5. Suppose, that for the chosen parameter values there exists a
real positive s2+ defined in (2.19). If Ãkn(m+, s2+) has one zero eigenvalue
and one real negative eigenvalue, then Akn(m+, s2+, b+) has one zero eigen-
value and either two real negative eigenvalues, or two complex conjugated
eigenvalues with a negative real part.

Proof. From the assumption of the lemma and from (2.61) it follows, that
C(k2

n) > 0. Let Ãkn(m+, s2+) have one zero eigenvalue and one real negative
eigenvalue, λ̃1 < λ̃2 = 0. Then the characteristic polynomial P2(λ) has the
form P2(λ) = λ(λ− λ̃1). Then equation (2.59) implies

P3(λ) =
(
−Ab − λ

)
λ(λ− λ̃1)− C(k2

n)λ

= −λ(λ2 + (Ab − λ̃1)λ+ (C(k2
n)− λ̃1Ab)).

(2.66)

And eigenvalues of Akn(m+, s2+, b+) are following:

λ1 = 0, λ2,3 =
−Ab + λ̃1 ±

√
(Ab − λ̃1)2 − 4(C(k2

n)− λ̃1Ab)

2
. (2.67)

Since C(k2
n) − λ̃1Ab > 0 and Ab − λ̃1 > 0, then from (2.67) it follows, that

eigenvalues λ2,3 are either real and negative (possible coincident), or complex
with a negative real part.
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Lemma 2.6. Suppose, that for the chosen parameter values there exists a
real positive s2+ defined in (2.19). If Ãkn(m+, s2+) has two real negative
eigenvalues, then Akn(m+, s2+, b+) has either three real negative eigenval-
ues, or one real negative eigenvalue, and two complex eigenvalues with a
negative real part.

Proof. From the assumption of the lemma and from (2.61) it follows, that
C(k2

n) > 0. Let Ãkn(m+, s2+) have two real negative eigenvalues λ̃1 ≤
λ̃2 < 0. Then the characteristic polynomial P2(λ) has the form P2(λ) =
(λ− λ̃1)(λ− λ̃2). Then from equation (2.59)

P3(λ) =
(
−Ab − λ

)
(λ− λ̃1)(λ− λ̃2)−C(k2

n)λ = −λ3 + (λ̃1 + λ̃2 −Ab)λ2

+ (−λ̃1λ̃2 +Ab(λ̃1 + λ̃2)− C(k2
n))λ−Abλ̃1λ̃2. (2.68)

From (2.68) it follows:

P3(−Ab) = C(k2
n)Ab > 0 and P3(0) = −λ̃1λ̃2Ab < 0. (2.69)

Since P3(λ) is continuous, it follows from (2.69), that the polynomial P3(λ)
has at least one root on the interval (−Ab, 0). Thus it can be supposed, that
−Ab < λ1 < 0. From (2.68) it follows, that for λ ≥ 0 the polynomial P3(λ)
only takes values less than zero. That means, that P3(λ) has no non-negative
real roots P3(λ). Thus, if two other eigenvalues of Akn(m+, s2+, b+) are real,
they are also negative. Though it is possible, that the polynomial P3(λ) has
two complex conjugated roots. Let us denote them as λ2,3 = λre ± iλim.
Then:

P3(λ) =− (λ− λ1)(λ2 − 2λreλ+ λ2
re + λ2

im)

=− λ3 + (λ1 + 2λre)λ2 − (2λ1λre + λ2
re + λ2

im)λ+ λ1(λ2
re + λ2

im).
(2.70)

Since the coefficients at the second degree of λ in two expressions for P3(λ)
(2.68) and (2.70) should be equal, it is derived that 2λre = λ̃1 + λ̃2−Ab−λ1.
As λ̃1 ≤ λ̃2 < 0 and −Ab− λ1 < 0, then λre < 0. That is, if two eigenvalues
of Akn(m+, s2+, b+) are complex, then their real part is less than zero.

Lemma 2.7. Suppose, that for the chosen parameter values there exists a
real positive s2+ defined in (2.19). If Ãkn(m+, s2+) has two complex conju-
gated eigenvalues with a negative real part, then Akn(m+, s2+, b+) has either
three real negative eigenvalues, or one real negative eigenvalue, and two com-
plex eigenvalues with a negative real part.

Proof. From the assumption of the lemma and from (2.61) it follows, that
C(k2

n) > 0. Let Ãkn(m+, s2+) have the complex conjugated eigenvalues with
a negative real part: λ̃1,2 = λ̃re ± iλ̃im, λ̃re < 0. Then the characteristic
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polynomial P2(λ) takes positive values for ∀λ ∈ R and has the form P2(λ) =
(λ2 − 2λ̃reλ+ λ̃2

re + λ̃2
im). Then from equation (2.59), if follows

P3(λ) =
(
−Ab−λ

)
(λ2−2λ̃reλ+λ̃2

re+λ̃
2
im)−C(k2

n)λ = −λ3+(2λ̃re−Ab)λ2

+ (−λ̃2
re − λ̃2

im + 2Abλ̃re − C(k2
n))λ−Ab(λ̃2

re + λ̃2
im). (2.71)

Equation (2.71) yields

P3(−Ab) = C(k2
n)Ab > 0 and P3(0) = −Ab(λ̃2

re + λ̃2
im) < 0. (2.72)

Since P3(λ) is continuous, it follows from (2.72), that the polynomial P3(λ)
has at least one root on the interval (−Ab, 0). Thus it can be supposed, that
−Ab < λ1 < 0.

From (2.71) it follows, that for λ ≥ 0 the polynomial P3(λ) takes values
less than zero. That means, that P3(λ) has no non-negative real roots P3(λ).
Therefore, if the two other roots of P3(λ) are real, they are also negative.

Next, the possibility, that the polynomial P3(λ) has two complex con-
jugated roots, is considered. The roots are denoted as λ2,3 = λre ± iλim.
Then:

P3(λ) = −(λ− λ1)(λ2 − 2λreλ+ λ2
re + λ2

im)

= −λ3 + (λ1 + 2λre)λ2 − (2λ1λre + λ2
re + λ2

im)λ+ λ1(λ2
re + λ2

im).
(2.73)

Since the coefficients of λ2 in two expressions for P3(λ) (2.71) and (2.73)
should be equal, then 2λre = 2λ̃re−Ab− λ1. As λ̃re < 0 and −Ab− λ1 < 0,
it follows that λre < 0. That is, if two eigenvalues of Akn(m+, s2+, b+) are
complex, then their real part is less than zero.

2.3.5 Stability of the system of three equations

Lemma 2.8. Suppose, that for the chosen parameter values, m0 defined in
(2.18) is positive, βm = βm2 and there exists a real positive s2+ defined in
(2.19). Then the constant solution z+ = (m+, s2+, b+) of system (2.14)–
(2.16) is stable against purely temporal perturbations.

Proof. From Lemma 2.3, 2.5, 2.6 and 2.7, it follows, that for zero wavenum-
ber k0, the matrix Akn , evaluated at the constant solution z+, has either two
negative eigenvalues and one zero eigenvalue, or three real negative eigenval-
ues, or one real non-positive eigenvalue, and two complex eigenvalues with
a negative real part.

Theorem 2.2. Suppose, that for the chosen parameter values m0 defined in
(2.18) is positive, βm = βm2 and there exists a real positive s2+ defined in
(2.19). Then if Dγ defined in (2.55) is positive, and γ1 defined in (2.54) is
negative, then ∃κ1, κ2 ∈ R defined by expression (2.52), such that 0 ≤ κ1 <
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κ2, and the constant solution z+ of system (2.14)–(2.16) is unstable with
respect to the perturbations having wavenumbers kn ∈ (κ1, κ2). Otherwise,
the constant solution z+ is stable.

Proof. The theorem is proved, by analogy with the proof of Theorem 2.1.
In that proof all possible cases for the signs of the parameters Dγ and γ1 are
considered, and the relations between the eigenvalues of the matrix Ãkn and
the wavenumber kn are determined for each case. From these relations, and
from the relations between the eigenvalues of the matrices Ãkn and Akn ,
stated in Lemma 2.4–2.7, it is possible to determine the correspondence
between the eigenvalues of the matrix Akn and the wavenumber kn for the
sets of signs of the parameters Dγ and γ1.

Therefore, it is obtained, that if Dγ > 0, and γ1 < 0, then ∃κ1, κ2 ∈ R
defined by expression (2.52), such that 0 ≤ κ1 < κ2, and the magnitude of
the perturbation modes having wavenumbers kn ∈ (κ1, κ2) grow monoton-
ically after a certain period of time, since one of the eigenvalues of Akn is
positive. Hence, the constant solution z+ = (m+, s2+, b+) is unstable with
respect to these perturbation modes.

Otherwise, ∀kn ∈ [0,∞) the eigenvalues of the matrix Akn are either
real non-positive numbers (the matrix Akn can not have more than one
zero eigenvalue) or complex numbers with a negative real part. Hence,
initially small perturbations remain small during any period of time, or
even disappear when t → ∞, and the constant solution z+ is stable in this
case.

The conditions on the parameters, stated in Theorem 2.2, can be formu-
lated in a compact form:{

γ1 < 0,
Dγ = γ2

1 − 4γ0γ2 > 0
⇔ γ1 < −2

√
γ2γ0. (2.74)

From the proof of the theorem, it follows, that condition (2.74) is a necessary
condition for the instability of the solution z+, since it is equivalent to the
existence of the real positive numbers κ1 and κ2. The necessary and sufficient
condition holds, if there exist wavenumbers kn ∈ (κ1, κ2). From (2.52) it
follows, that the length of the interval (κ1, κ2) is equal to Dγ

DmDs2
. If Dγ is

small enough, then it is possible, that no wavenumber kn will lie inside the
interval (κ1, κ2), and perturbations will not grow. In this case, the necessary
condition for the instability holds, but the solution is stable.

The necessary instability condition (2.74), can be transformed into the
sufficient stability condition by the substitution of the sign in inequality
(2.74) by the opposite one:

γ1 ≥ −2
√
γ2γ0. (2.75)
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This condition is formulated in terms of model parameters and does not
depend on the problem statement. This means, that a general instruction
on the choice of the parameter values, which guaranties the stability of the
constant solution z+, can be formulated.

The necessary and sufficient stability condition is opposite to the the
necessary and sufficient instability condition, which depends on the the wa-
venumbers kn. The set of the wavenumbers kn contains infinite number
of elements, and is determined by the domain size, by the coordinate sys-
tem and by the boundary conditions. Therefore, it is not possible to state
the necessary and sufficient condition in terms of the model parameters for
the general case. For different boundary conditions, coordinate systems or
domain sizes, these conditions have to be reformulated.

2.3.6 Parameter choice and stability

In this subsection the choice of parameter values, providing stability of the
constant solution z+ = (m+, s2+, b+) of the system of three equations, is
discussed.

For the parameter values in equations (2.11), (2.12) and (2.13), the con-
stant solutions zt = (0, 0, 0), z0 = (m0, 0, b0) and z− = (m−, s2−, b−) are
unstable, and the solution will not converge to these constant solutions.
From a biological point of view, this is a favorable situation. Since, the
’non-healing state’ zt contains zero concentrations of osteogenic cells and
osteoblasts, the ’low density state’ z0 corresponds to much lower concentra-
tions of osteogenic cells and osteoblasts, compared to those for z+, and the
constant solution z− contains unphysical negative concentrations of cells.

For the chosen parameter value sets in equations (2.11), (2.12) and (2.11),
(2.13), the sufficient condition (2.75) for the stability of z+ does not hold.
It is necessary to change the values of parameters, to guaranty the stability
of the constant solution z+ in general. It is proposed here, to vary values
of parameters Bm2 and Dm. These two particular parameters are chosen,
since:

• their variation does not cause change of the values of the constant
solutions zt, z0, z− and z+ (see equations (2.18),(2.19), (2.20));

• from (2.35) and (2.36) it follows, that parameters Bm2 and Dm do
not influence the stability of the constant solutions zt and z0 against
purely temporal perturbations. The stability of the constant solu-
tion z− against purely temporal perturbations is determined from the
eigenvalues of the matrix Ak0(m−, s2−, b−), see equation (2.32). As
k0 = 0, this matrix does not depend on parameters Bm2 and Dm.
For the considered parameter values in equations (2.11), (2.12) and
(2.13), and for any Bm2 and Dm, z− is unstable against purely tem-
poral perturbations. Therefore, variation of Bm2 and Dm, can provide
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the stability of the constant solution z+, while the constant solutions
zt, z0 and z− remain unstable;

• calculations showed, that stability condition (2.75) is most sensitive
with respect to the parameters Bm2 and Dm. That is, the ratio of the
initial parameter value and the ultimate value of the parameter, which
satisfies condition (2.75), is much smaller for Bm2 and Dm, compared
to the rest of the model parameters.

The first quadrant of the plane (Dm, Bm2), which contains all possible
non-negative values Dm and Bm2, can be divided into three regions, with
respect to the stability of the solution z+:

region R1: sufficient stability condition (2.75) holds, solution z+ is
stable;

region R2: condition (2.75) does not hold, no wavenumbers kn lie in
the interval (κ1, κ2), solution z+ is stable;

region R3: condition (2.75) does not hold, some of the wavenumbers
kn lie in the interval (κ1, κ2), solution z+ is unstable.

Configuration of regions R2 and R3 depend on the specified boundary con-
ditions, on the coordinate system and on the domain length. In Figure 2.3
these regions were plotted for the case of zero flux of m and s2 on the bound-
aries, 1D Cartesian coordinates, and the domain with length 0.6mm. This
length is equal to the width of the domain, used in the numerical simulations
by Moreo et al. [67]. The values of the model parameters, given in (2.11),
(2.12) (Figure 2.3a), and in (2.11), (2.13) (Figure 2.3b), were chosen.
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Figure 2.3: Plot of the regions in the first quadrant of the plane (Dm, Bm2),
where the constant solution z+ is stable (R1, R2) and unstable (R3), for the
case of a zero flux of m and s2 on the boundaries, 1D Cartesian coordinates,
and the domain of the length 0.6mm. The rest of the model parameters are
initialized: (a) as in (2.11), (2.12), and (b) as in (2.11), (2.13).

With use of (2.45), (2.46) and (2.47), sufficient stability condition (2.75)
can be rewritten as follows:

Bm2 ≤
1

s2+ + βm2

(
Dm +G1 +

2
G0

√
DmDs2γ0

)
, (2.76)
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or in the form

Dm ≥0, if Bm2 ≤
G1

s2+ + βm2
,

Dm ≥Bm2(s2+ + βm2)−G1 + 2
γ0Ds2

G2
0

−2

√
γ0Ds2

G2
0

(
Bm2(s2+ + βm2)−G1 +

γ0Ds2

G2
0

)
, if Bm2 >

G1

s2+ + βm2
,

(2.77)
where G0 = As2s2+

s2++βm2
, G1 = Ds2

As2

(
αm + αm0m0

s2++βm2

s2+

)
, and γ0 is defined

in (2.47). Inequalities (2.76) and (2.77) determine the values of Bm2 and
Dm, which ensure the stability of the solution z+.

The following remark can be helpful for the solution of practical prob-
lems. Suppose, that initial values of model parameters do not satisfy suffi-
cient condition (2.75) for the stability of the solution z+. Then, it is possible
to guaranty the stability of z+ in general case (i.e. for any set of wavenum-
bers, which are determined by problem statement), by decreasing the value
of Bm2, or increasing Dm, until condition (2.76) or condition (2.77) is satis-
fied, respectively.

2.4 Numerical results

The predictions from the linear stability analysis are validated against a
sequence of numerical simulations. The sufficient stability condition is con-
sidered in the form of equation (2.76) and the parameter Bm2 is varied.

If the values of all parameters, except Bm2, are fixed, then the right part
of inequality (2.76) can be denoted as the ultimate value Blim

m2 , such that
for Bm2 ≤ Blim

m2 small perturbations near (m+, s2+, b+) are predicted not to
grow with time. For Bm2 > Blim

m2 small perturbations of mode φn(x) will
grow, if κ1 < kn < κ2. If Bm2 is close to ultimate value Blim

m2 , then the
interval (κ1, κ2) is small, and it can happen, that no wavenumber kn lies
inside this interval. In this case perturbations near the constant solution
will not grow, in spite of the fact, that sufficient stability condition (2.76)
does not hold.

For the cases when the model parameters are initialized as in (2.11),
(2.12) and (2.11), (2.13), the ultimate values are Blim

m2 ≈ 0.45716 · 0.167
mm2/day and Blim

m2 ≈ 0.02481 · 0.167mm2/day.
First, the parameter values (2.11), (2.12) are considered. If the problem

domain is a 1D interval x ∈ [1, 6] in Cartesian coordinates, and if a zero flux
of osteogenic cellsm and growth factor s2 is supposed, then the wavenumbers
are determined as kn = πn/5mm−1, n = 0, 1, 2, . . . . Then for Bm2 = 0.4572·
0.167mm2/day, which is larger than the ultimate value, still no wavenumber
lies between κ1 ≈ 4.2805mm−1 and κ2 ≈ 4.3838mm−1. Though, for Bm2 =
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0.4573 · 0.167mm2/day, the wavenumber k7 ≈ 4.3982mm−1 ∈ (κ1, κ2) =
(≈ 4.2322mm−1,≈ 4.4339mm−1). If the parameter values (2.11), (2.13) are
chosen, then for Bm2 = 0.0249 · 0.167mm2/day, the wavenumber

k6 ≈ 3.7699mm−1 ∈ (κ1, κ2) = (≈ 3.6417mm−1,≈ 4.324mm−1).
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Figure 2.4: Solution of equations (2.14)–(2.16) in Cartesian coordinates
at different time moments. Small random initial perturbations near the
constant solution (m+, s2+, b+) are considered. Zero fluxes of m, s2 on the
boundaries are taken as the boundary conditions. Parameter Bm2 takes
different values: Bm2 = k · 0.167 mm2/day, (a) k = 0.3, (b) k = 0.4572, (c)
k = 0.4573, (d) k = 1. The rest of parameters are initialized as in (2.11),
(2.12).

In Figure 2.4 the results of the numerical simulations are shown. The
solutions were obtained with use of the finite element method. Linear 1D
elements of size 0.02mm were used for the discretization in space. The im-
plicit backward Euler method, to prevent instabilities due to numerical time
integration, and adaptive time stepping were used for time integration. Zero
flux of m, s2 on the boundaries was specified as the boundary conditions.
To introduce the perturbations in the initial solution during simulations, the
corresponding constant solution value plus a small random number were as-
signed to every degree of freedom at time t = 0. From Figure 2.4 it follows,
that for the values of Bm2 less than the ultimate value, the numerical so-
lution tends to the constant solution (m+, s2+, b+) with time (Figure 2.4a).
And if the parameter Bm2 is larger than Blim

m2 and such, that ∃kn ∈ (κ1, κ2),
then there is no convergence to the constant solution, and a wave-like profile
occurs in the solution (Figure 2.4c, d). However, if Bm2 is larger than Blim

m2 ,
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but such that no wave number lies inside (κ1, κ2) yet, then the numerical so-
lution again converges to the constant solution (m+, s2+, b+) (Figure 2.4b).
Thus, the predictions of the linear stability analysis are fully confirmed by
the numerical simulations.

The linear stability analysis allows to assess the stability of the consid-
ered constant solution. From its stability it can be concluded, whether or
not small perturbations grow with time. The important conclusion can be
made, for cases in which perturbations are large: if the constant solution
is not stable, then the solution of the problem will never converge to that
constant solution. Hence, the introduced linear analysis provides important
results also for the case of large perturbations, since it allows to determine
the situation, in which the solution, which is constant in time and in space,
can never be reached. However, if the constant solution is stable, it is still
unknown, how large initial perturbations behave, whether they disappear or
prevail, or even grow.

In reality, the deviations from the constant solution are large. The initial
and boundary conditions, proposed by Moreo et al. [67] for the full system
(2.1)–(2.8), were given in Section 2.2. When adapted to the simplified system
of three equations, initial and boundary conditions (2.9), (2.10) are rewritten
as:

m(~x, 0) = 0.001, b(~x, 0) = 0.001, s2(~x, 0) = 0.01, ~x ∈ Ω. (2.78)


Ds1∇s1 · ~n = 0, Ds2∇s2 · ~n = 0, ~x ∈ ∂Ω, t ∈ (0,∞)

m = 0.2, ~x ∈ ∂Ωb, t ∈ (0, 14] [days]

(Dm∇m−mBm2∇s2) · ~n = 0,

[
~x ∈ ∂Ω\∂Ωb, t ∈ (0, 14] [days],
~x ∈ ∂Ω, t ∈ (14,∞) [days].

(2.79)
Initial conditions (2.78) are far from small perturbations near the constant
solution (m+, s2+, b+).

The simplified system (2.14)–(2.16), and the full system (2.1)–(2.8) were
solved numerically for initial and boundary conditions (2.9), (2.10) and
(2.78), (2.79) respectively, and for several sets of parameter values. Some
of the solutions for the full system (2.1)–(2.8) are plotted in Figure 2.5.
The numerical simulations show, that if the parameter values are such, that
the constant solution (m+, s2+, b+) is stable, then the numerical solutions
of both systems for the unknowns m(x, t), s2(x, t), b(x, t) converge to this
constant solution after a certain period of time (Figure 2.5a). Though, if
the constant solution (m+, s2+, b+) is not stable, then a wave-like profile
develops in the solution for osteogenic cells and growth factor 2 and for pa-
rameter values (2.11), (2.13) also in the solution for osteoblasts. For some
values of the parameter Bm2 the wave-like profile is steady (Figure 2.5b).
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Though, if Bm2 is much larger than the ultimate value, then the waves in
the numerical solution are not steady, but moving (Figure 2.5c, d). This is
in agreement with the stability analysis presented in Section 2.4.
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Figure 2.5: Solution of equations (2.1)–(2.8) in axisymmetric coordinates
at different time moments. Initial and boundary conditions are chosen in
the form (2.9), (2.10), according to Moreo et al. [67]. Parameter Bm2 takes
different values: Bm2 = k · 0.167 mm2/day, (a) k = 0.0248, (b) k = 0.0249,
(c) k = 0.04, (d) k = 0.2. The rest of parameters are initialized as in (2.11),
(2.13).

2.5 Conclusions

A simplified system of three equations is defined, which is characterized by
the appearance of a wave-like profile in the solution under the same con-
ditions, as for the solution of the full system of eight equations. For the
considered parameter values the simplified system has four constant solu-
tions. The sufficient stability condition for one of the constant solutions,
denoted as z+ = (m+, s2+, b+), is derived in terms of model parameters, by
means of the linear stability analysis. If all constant solutions are unstable,
then by changing the values of the model parameters Bm2 and Dm, it is
possible to make the solution z+ stable, while three other constant solutions
zt, z0 and z− remain unstable. The analytical predictions on the stability of
the constant solution z+ for various parameter sets are confirmed by numer-
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ical simulations, when starting from small perturbations near the constant
solution.

In real simulations for the peri-implant osseointegration, initial condi-
tions correspond to the large deviations from the constant solution. How-
ever, linear stability analysis provides important results also in this case.
It allows to avoid such values of model parameters, for which all constant
solutions are unstable, and consequently, can not be reached. Linear stabil-
ity analysis makes it possible to determine parameter values, for which the
solution of the problem will never converge to the solution, which is constant
in time and in space. This conclusion is confirmed by the numerical simula-
tions, which evidence, that a wave-like profile appears in the solution, if all
the constant solutions are unstable. The numerical simulations also show,
that if the solution z+ is stable and zt, z0, z− are unstable, then numerical
solutions for unknowns m(x, t), s2(x, t), b(x, t) of the full and the simplified
system converge to the constant solution (m+, s2+, b+) after a certain period
of time, when starting with initial conditions proposed in Moreo et al. [67].

Therefore, the numerical simulations demonstrate, that if the constant
solutions zt, z0, z− are unstable, then the stability of the constant solution
z+ can determine the behavior of the solution of the whole system. That
makes it possible to determine the values of model parameters, for which
biologically irrelevant solutions with a wave-like profile can be obtained.





CHAPTER 3

Evolutionary cell differentiation

In this chapter an approach is developed, which allows to introduce the
concept of cell plasticity into the models for tissue regeneration. Opposed
to most of the recent models for tissue regeneration, cell differentiation is
considered as a process, which evolves in time, and which is regulated by an
arbitrary number of parameters. In the current approach, cell differentiation
is modeled by means of a differentiation state variable. Cells are assumed
to differentiate into an arbitrary number of cell types. The differentiation
path is considered as reversible, unless differentiation has fully completed.

Cell differentiation is incorporated into the partial differential equations
(PDE’s), which model the tissue regeneration process, by means of an ad-
vection term in the differentiation state space. This allows to consider the
differentiation path of cells, which is not possible, if a reaction-like term is
used for differentiation.

The boundary conditions, which should be specified for the general
PDE’s, are derived from the flux of the fully non-differentiated cells, and
from the irreversibility of the fully completed differentiation.

An application of the proposed model for peri-implant osseointegration
is considered. Numerical results are compared with experimental data. Po-
tential lines of further development of the present approach are proposed.
The current evolutionary approach also is presented in Prokharau et al. [79].

3.1 Introduction

Cell differentiation, along with proliferation and migration, plays an im-
portant role at the early stages of the tissue regeneration process. A lot of
studies have been devoted to the phenomenon of bone regeneration recently.
In a number of studies various theoretical models were developed for frac-

47
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ture healing, peri-implant osseointegration and bone distraction (see Section
1.3). In these models cell differentiation is considered as a crucial process
in regulating the course of bone healing. In most of the mentioned works,
the differentiation process is introduced into the constitutive equations by
means of a logistic term. Such an approach corresponds to the situation,
when a particular cell changes its type immediately.

A more enhanced representation of cell differentiation is introduced in
the model by Reina-Romo et al. [83]. The differentiation process is assumed
to depend on the mechanical stimulus and time. The differentiation evo-
lution is introduced by means of maturation state mi of the cells, being
reversible if mi < 1. Full differentiation into another cell type corresponds
to the value mi = 1, and is assumed to be irreversible.

In the first part of this chapter the conceptual mathematical model for
the evolutionary cell differentiation is derived. The basic assumptions for
this model are in line with those, proposed in Reina-Romo et al. [83]. Due to
the generality of the current model, it can be adapted and used for various
applications.

The main idea, characterizing the current approach, is that in the course
of differentiation, a cell of a certain type gains the properties of another
cell type gradually. Therefore, differentiation is considered as a process,
which evolves in time, or in other words, the path of cell differentiation is
incorporated into the model. The particular trajectory of the path can be
determined by an arbitrary number of parameters, e.g. by biochemical and
mechanical factors, by the level of differentiation of the cell at the current
moment or by a random variable etc. The phenomenon, when cells change
their differentiation path, depending on some parameters, is known as cell
(or tissue) plasticity (see e.g. Röder [84]).

In Section 3.2, the differentiation of mesenchymal stem cells (MSC’s) into
osteoblasts, fibroblasts and chondrocytes is considered. Due to the generic
nature of the proposed approach, the present model can be modified for the
case of evolutionary differentiation of arbitrary cells into any number of cell
types.

In Section 3.3, an example of the application of the current approach is
given. A peri-implant osseointegration is modeled. The mechanical state
in the interface tissue is chosen to be the main factor, which influences the
mesenchymal stem cell (MSC) differentiation. The series of numerical simu-
lations are carried out for the constructed model. The numerical method is
described and simulations results are presented and discussed in Section 3.4.
Conclusions are drawn in Section 3.5.

The present study is inspired by the work of Röder [84], where the com-
plete differentiation of a stem cell is considered as attainment of a certain
value by some cell property a. The path of variation of property a is as-
sumed to depend on the changing growth environment, to which the cell
belongs.
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3.2 Differentiation model

In this section a new modeling approach for the differentiation of MSC’s is
developed. MSC’s are supposed to differentiate into osteoblasts, fibroblasts
and chondrocytes. The most important innovating assumption of the current
approach, is that cells are supposed to gain the properties of another cell
type gradually, in the course of time, until a complete differentiation of
MSC’s takes place. Therefore, a certain finite time of differentiation can be
related to each MSC. The variation of the differentiation time is represented
by means of the differentiation rate, which is assumed to depend on the
state of the environment, in which cells are situated. The proposed approach
allows to consider the differentiation of MSC’s as partially stochastic process.
However, for the numerical simulations, presented in this chapter, the MSC
differentiation process is modeled only in a deterministic way.

The model for cell differentiation is presented in two successive steps.
First, the current stage of differentiation of MSC’s into a certain cell type
i, where i ∈ {b, f, c}, is represented via a differentiation property ai. The
value b of the sub-index i corresponds to osteoblasts, f – to fibroblasts,
c – to chondrocytes. The variables ab, af , ac take values from 0 to 1.
The value 1 implies, that a MSC has completely differentiated into the
respective cell type, and the value 0 corresponds to the initial state of a
MSC, which has not yet started to differentiate. The region, in which the
variables ab, af , ac take their values, is referred to as the differentiation state
domain Ωa. The concept of differentiation properties ai is implemented in
the model, by considering the MSC density c as a function of location in
physical space ~x, of time t and of differentiation state coordinates ab, af , ac.
The process of differentiation corresponds to the variation of the value of the
differentiation property ai, and it can be considered as a movement of the
MSC within the region Ωa. This movement is determined by velocity u (the
underlined symbol denotes a vector in the differentiation state space), which
is assumed to depend on a number of parameters, being ψ1, . . . , ψp, p ∈ N,
and also on the differentiation state variables ai. Parameters ψ1, . . . , ψp
can be defined, for example, as mechanical stimuli, biochemical factors or
as a random variable, and they are functions of location in physical space
~x and time t. For conciseness, the set of parameters is denoted as vector
Ψ(~x, t) = (ψ1, . . . , ψp) ∈ Ωp ⊂ Rp, where p is the number of parameters.
Therefore, u = u(Ψ(~x, t), ab, af , ac).

If no additional conditions on variables ai, i ∈ {b, f, c} are applied, then
the differentiation state domain Ωa = [0, 1]3 is a unit cube. In general
case, when a cell is able to differentiate into n various types, Ωa is the
n-dimensional unit cube. For the considered model, the unknown function
c(~x, t, ab, af , ac) is defined within the domain Q = Ω×R+×Ωa, which is a 6-
dimensional region in the case of a two-dimensional domain Ω in the physical
space, and a 7-dimensional region, for a three-dimensional domain Ω. For
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the numerical simulations this can lead to extremely large computation time
and size of solution data.

In the second step, the current model is modified, so that it becomes more
useful for the practical applications. Certain constraints on variables ai are
imposed, which allow to reduce the dimensionality of the problem domain
by n−1, where n is the number of cell types, into which the considered cells
can differentiate (n = 3 for the particular model for MSC’s differentiation).
This restriction is formulated as follows.

Assumption 3.1. A cell cannot have characteristics of the differentiation
into several cell types simultaneously. In other words, each cell can have
only one non-zero differentiation property ai.

1 Ωa

af

0

1
ac

1 ab

Figure 3.1: Plot of the differentiation state domain Ωa, as defined in equa-
tion (3.1)

The differentiation state domain Ωa is then defined as:

Ωa = {(ab, 0, 0), (0, af , 0), (0, 0, ac) : ai ∈ [0, 1], i = b, f, c} . (3.1)

The region Ωa, given in (3.1), is depicted in Figure 3.1. This region can
be considered as a set of three one dimensional unit intervals situated on
the axes of Cartesian coordinates in a three-dimensional space, which have
one common point in the origin. The region Ωa lies in R3 and it has a zero
measure. In order to get a one-dimensional differentiation state domain, the
following technique is used. Instead of one unknown c, depending on three
differentiation state variables ai, i ∈ {b, f, c}, three unknowns ci, i ∈ {b, f, c},
depending on one differentiation state variable a are defined for the MSC
density. The correspondence between c and ci can be determined in the
following way:

cb(~x, t, a) = c(~x, t, a, 0, 0), cf (~x, t, a) = c(~x, t, 0, a, 0),

cc(~x, t, a) = c(~x, t, 0, 0, a), for a ∈ Ω1
a = [0, 1], ~x ∈ Ω, t > 0,

where the one-dimensional differentiation state domain is denoted as Ω1
a.

Unknowns ci(~x, t, a), i ∈ {b, c, f}, denote the density of the MSC’s at the
point ~x at the time moment t, differentiating into osteoblasts, fibroblasts or
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chondrocytes, respectively, at the differentiation level a. These unknowns
have the dimension of number of cells per unit volume, per unit of dif-
ferentiation level. The differentiation path is determined by functions ui,
which denote the velocity of cell “motion” in the differentiation state do-
main, or the rate, at which a cell changes the value of its differentiation
level a. In other words, if a fixed cell is considered, which differentiates
into the cell type i ∈ {b, f, c}, and if its differentiation level is denoted
as acell(t), then ui = dacell

dt . The velocities ui depend on the parameters
Ψ(~x, t) = (ψ1(~x, t), . . . , ψp(~x, t)) ∈ Rp, on the differentiation level a, and
on the specific phenotype i ∈ {b, f, c} the cell is differentiating to, i.e.
ui = ui(Ψ(~x, t), a).

The flux of MSC’s in the differentiation state domain is denoted as

qi(~x, t, a) = ui(Ψ(~x, t), a) ci(~x, t, a).

A positive value of the flux qi and of the velocity ui corresponds to the pos-
itive direction of axis a. From a biological point of view, a positive velocity
ui(~x, t, a), i ∈ {b, c, f} implies, that cells ci(~x, t, a) are gaining the proper-
ties of the phenotype i, and a negative rate ui(~x, t, a) means, that MSC’s
are losing the properties of the cell type i. The process of differentiation is
assumed to be reversible, except if the cell has achieved the maximum level
of differentiation a = 1, i.e. if the MSC has completely differentiated into
another cell type. In this case the differentiation is irreversible, since a fully
differentiated cell cannot become a MSC again [83]. Hence, the influx of
MSC’s at the boundary Γ1

a = {(~x, a) : ~x ∈ Ω, a = 1} should be zero. From
this it follows:

Proposition 3.1. If ui(Ψ(~x, t), 1) < 0, where ~x ∈ Ω, t > 0, i ∈ {b, f, c},
then

ci(~x, t, 1) = 0. (3.2)

Otherwise, reverse differentiation of cells of the type i ∈ {b, c, f} into
MSC’s would take place.

3.2.1 Flow of non-differentiated cells

The density of the fully non-differentiated MSC’s at the point (~x, t) is de-
termined by

∑
i ci(~x, t, 0). The “location” of the non-differentiated cells is

the part of the domain Ω× Ω1
a boundary, where a = 0:

Γ0
a = {(~x, a) : ~x ∈ Ω, a = 0}.

The magnitude of the flux ‖qi‖ = ‖uici‖, i ∈ {b, f, c} at Γ0
a denotes either

the inflow or the outflow of ci, depending on the sign of the velocity ui. A
positive velocity ui at Γ0

a, corresponds to the inflow of ci, and negative – to
the outflow.



52 Chapter 3. Evolutionary cell differentiation

Suppose, that at a certain location ~x0 and at the given time moment t0
the environment in the tissue is such, that non-differentiated MSC’s differ-
entiate into osteoblasts at a rate u1 > 0. Hence, ub(Ψ0, 0) = u1 > 0, where
Ψ0 = Ψ(~x0, t0). Fully non-differentiated MSC’s are not biologically distin-
guishable, though they can be related to different densities ci. This means,
that non-differentiated MSC’s, related to cf (~x0, t0, 0), also will differenti-
ate into osteoblasts with rate u1. They gain the properties of osteoblasts,
and consequently will become related to cb. This implies, that the outflow
of density cf , equal to u1cf , will take place at the point (~x0, t0, 0). Since
outflow at a = 0 corresponds to the negative differentiation rate, then

u1cf (~x0, t0, 0) = ‖qf (~x0, t0, 0)‖ = ‖uf (Ψ0, 0)cf (~x0, t0, 0)‖
= −uf (Ψ0, 0)cf (~x0, t0, 0).

Hence,
uf (Ψ0, 0) = −u1 = −ub(Ψ0, 0). (3.3)

By analogy, it is derived, that

uc(Ψ0, 0) = −ub(Ψ0, 0). (3.4)

From this example, it follows, that the negative differentiation rate ui(Ψ, 0),
i ∈ {b, f, c}, Ψ ∈ Ωp, corresponds to the situation, when non-differentiated
MSC’s are stimulated to differentiate into the cell type j, different from the
cell type i.

The path of cell differentiation is determined by the parameter vector
Ψ ∈ Ωp and the maturation level a. It is supposed, that each value of
Ψ ∈ Ωp corresponds to a certain state, for which non-differentiated MSC’s
differentiate into a particular cell type i ∈ {b, f, c} and do not differentiate
into any other cell type.

Remark 3.1. Randomness of the differentiation process, if needed, can be
taken into account by considering one or more random variables ψj , included
in the parameter set Ψ.

The situation, when the non-differentiated MSC’s do not differentiate at
all, is also allowed. From this, the following statement can be made.

Proposition 3.2. For any Ψ ∈ Ωp,

• there exists exactly one i ∈ {b, c, f}, such that ui(Ψ, 0) > 0, and
uj(Ψ, 0) = −ui(Ψ, 0) < 0 for j ∈ {b, c, f}, j 6= i; or

• ui(Ψ, 0) = 0 for all ∀i ∈ {b, f, c}.

Suppose that ub(Ψ(~x0, t0), 0) > 0, then the inflow of the density ci takes
place at the point (~x0, t0). From Proposition 3.2, it follows, that

uf (Ψ(~x0, t0), 0) = uc(Ψ(~x0, t0), 0) = −ub(Ψ(~x0, t0), 0) < 0.
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If there is no external source of MSC’s, then this inflow can be formed only
by the outflow of densities cf and cc. That means, that

‖qb(~x0, t0, 0)‖ = ‖qf (~x0, t0, 0)‖+ ‖qc(~x0, t0, 0)‖.

Hence,

‖ub(Ψ0, 0)cb(~x0, t0, 0)‖ = ub(Ψ0, 0)cb(~x0, t0, 0)
= ‖uf (Ψ0, 0)cf (~x0, t0, 0)‖+ ‖uc(Ψ0, 0)cc(~x0, t0, 0)‖
= −uf (Ψ0, 0)cf (~x0, t0, 0)− uc(Ψ0, 0)cc(~x0, t0, 0),

⇒ cb(~x0, t0, 0) = cf (~x0, t0, 0) + cc(~x0, t0, 0). (3.5)

In general case, if ui(Ψ(~x, t), 0) > 0 for a certain i ∈ {b, f, c}, then the
inflow of ci occurs at the point (~x, t, 0), which is supposed to be equal to
the total outflow of cj , j ∈ {b, c, f ; j 6= i}. Hence, the proposition can be
formulated.

Proposition 3.3. If ui(Ψ(~x, t), 0) > 0, where ~x ∈ Ω, t > 0, i ∈ {b, f, c},
then

ci(~x, t, 0) =
∑
j 6=i

cj(~x, t, 0). (3.6)

To motivate the use of the boundary and initial conditions for ci due to
the differentiation state dimension, the following simple partial differential
equation (PDE) is considered:

∂ci
∂t

+
∂ (uici)
∂a

= 0. (3.7)

The above equation describes the dynamics of the differentiation of MSC’s
at a certain point in the physical space. Here, motility and proliferation
of the cells are not considered. The equation illustrates, which boundary
conditions with respect to a should be specified, due to the presence of the
term ∂(uici)

∂a , which represents cell differentiation. Consider the case when
ui is constant. Then, the lines in the (a, t)-plane are considered, over which
ci is constant, that is

0 =
d

dt
ci(~x, t, a(t)) =

∂ci
∂t

+
∂ci
∂a

a′(t).

From equation (3.7) and from the assumption ui = const, it follows that
a′(t) = ui. Hence a(t) = ui(t− t0) + a0 is the equation of the characteristic
lines, over which ci(~x, t, a(t)) = const. Plots of the characteristics a(t) in
the plane (a, t) are shown in Figure 3.2. It follows, that the solution ci
at any point (t, a) ∈ [0,∞) × [0, 1] is determined by the initial condition
ci(0, a) = g0(a), and by the condition ci(t, 0) = gb0(t) on the boundary
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Figure 3.2: Projections of characteristics of the equation (3.7) on the plane
(a, t) for different signs of velocity ui = ui(Ψ, a)

(t, 0), if ui > 0 (Figure 3.2a), or by the condition ci(t, 1) = gb1(t) on the
boundary (t, 1), if ui < 0 (Figure 3.2b). In general case, i.e. if ui 6= const,
the condition will be required on the part of the boundary, where the influx
takes place, and no boundary condition should be specified on the outflow
boundary (see e.g. LeVeque [59]). Therefore, for the existence and the
uniqueness of the solution of (3.7):

1. initial conditions at t = 0 should be specified;

2. (a) if ui(Ψ, 0) > 0 (Figure 3.2a), then boundary conditions for ci,
defined in Proposition 3.3, are required on the boundary a = 0;

(b) if ui(Ψ, 0) ≤ 0 (Figure 3.2b), then no boundary conditions for ci
should be prescribed on the boundary a = 0;

3. (a) ui(Ψ, 1) < 0, then boundary conditions, defined in Proposition
3.1, are required on the boundary a = 1;

(b) if ui(Ψ, 1) ≥ 0, then no boundary conditions should be specified
on the boundary a = 1.

Therefore, in Propositions 3.1, 3.3, the boundary conditions are defined,
which are necessary for the existence and the uniqueness of the solution
of partial differential equations, which contain the advection term ∂(uici)

∂a ,
representing evolutionary cell differentiation. This differentiation term is
included in the equations to model the evolution of the MSC densities, that
are derived in Section 3.3.

3.3 Peri-implant osseointegration

3.3.1 Mathematical model

In Section 3.2, the generic mathematical representation of evolutionary cell
differentiation is described. Further, the validation of this approach is pre-
sented, and its advantages over the commonly used model for immediate cell
differentiation are highlighted.
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In order to look at the applicability of the current differentiation ap-
proach, it is incorporated in the simulations of bone regeneration during
peri-implant osseointegration. This specific example of an application is
chosen due to the following reasons:

1. In the current model, differentiation of MSC’s into osteoblasts and
fibroblasts is considered, which is determined by the level of the me-
chanical loading. Then, the ability of the model to represent evolu-
tionary differentiation into several cell types under the influence the
external factors can be demonstrated .

2. Furthermore, a number of experimental and numerical studies have
been devoted to the bone regeneration process. Hence, it will be pos-
sible to compare the results of simulations with the available data.

Further, the mathematical model for the peri-implant osseointegration
will be derived. Bone regeneration is represented in the model as a series of
biological events, such as:

• migration and proliferation of MSC’s,

• differentiation of MSC’s into osteoblasts and fibroblasts,

• migration and proliferation of fibroblasts,

• proliferation of osteoblasts,

• fibrin network substitution by woven bone, and fibrous tissue,

• woven bone remodeling into lamellar bone.

Three cell types are considered: MSC’s, osteoblasts and fibroblasts. The
density of MSC’s, differentiating into chondrocytes, and the density of chon-
drocytes are not included into the model, since formation of cartilage tissue is
not observed in the experiments for the peri-implant osseointegration within
the bone chamber [28, 29, 92, 93, 94].

MSC’s are introduced into the model by variables cf , cb, which denote
the densities of MSC’s per unit of volume and per unit of differentiation
level, normalized with respect to the limit density C of cells per unit volume.
The unknowns cf , cb have dimension (unit of differentiation level)−1. The
variables cf , cb are functions of the space coordinate ~x ∈ Ω, of time t ∈ R+

and of the differentiation level a ∈ [0, 1]. Non-dimensional model variables
b, f denote the densities of osteoblasts and fibroblasts per unit volume,
normalized with respect to the limit density C. Unknown variables vn, vw,
vl, vf denote the volume fractions of fibrin network, woven bone, lamellar
bone and fibrous tissue, respectively. They are functions of the physical
space coordinates and of time.
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It is assumed, that MSC’s tend to differentiate into cells of a certain
type, depending on the mechanical environment. Cells, originated from the
differentiated MSC’s, provide the substitution of a fibrin network by the
respective tissue type. Mechanoregulation of differentiation is introduced in
terms of the mechanical stimulus ψ. The stimulus ψ is evaluated, after the
mechanical environment in the interface tissue is determined. It is assumed
that the interface tissue is loaded at a low or moderate frequency and that
deformations appearing in the peri-implant region are small. Therefore fluid
motion is neglected, and the interface tissue is modeled as an isotropic linear
elastic medium. The elasticity properties of the medium are determined by
the mixture rule, using the volume fractions of various tissue types. The
mechanical stimulus ψ is assumed to be defined by the octahedral shear
strain γoct [50]:

ψ = γoct =
1
3

√
(ε1 − ε2)2 + (ε2 − ε3)2 + (ε1 − ε3)2. (3.8)

Assumption 3.2. It is assumed here, that within the regions with a low and
moderate level of mechanical stimulus, bone formation is promoted, whereas
high values of mechanical stimulus lead to the formation of fibrous tissue
[18, 19, 77].

The dynamics of the MSC densities ci, i ∈ {b, f} is described by the
equation:

∂ci
∂t

= ∇s · (Dc∇sci)−
∂

∂a
(uici) +Ac(1− ctot − f − b)ci,

i ∈ {b, f}, (3.9)

where ctot(~x, t) is the total density of MSC’s, normalized with respect to the
limit cell density C per unit volume, at the point (~x, t):

ctot(~x, t) =
∫ 1

0
(cb(~x, t, a) + cf (~x, t, a))da. (3.10)

The first term in the right-hand side of equation (3.9) represents random
walk of MSC’s in the physical space. The symbol ∇s denotes the nabla
operator in physical space, and the constant Dc is the mobility coefficient.
Proliferation of MSC’s is represented by the last term in the right-hand side
of equation (3.9). The constant Ac is the rate of proliferation. Proliferation
stops, if the normalized total cell density reaches its limit value, which is
equal to one.

The term − ∂
∂a (uici) in equation (3.9) corresponds to the change of MSC

density due to the flux uici in the differentiation state domain Ω1
a. The func-

tions ui = ui(ψ(~x, t), a) denote the differentiation rates. Mechanoregulation
of the cell and tissue processes is introduced in the current model through
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the functions ui. This is done, by assuming a certain relation between the
mechanical stimulus ψ and differentiation rates ui. A relation should be
chosen, such that the results, predicted by the model, are in agreement
with Assumption 3.2 concerning the mechanoregulation of tissue formation
within the peri-implant interface. The choice of the functions ui(ψ, a) will
be described in the Section 3.3.2.

Remark 3.2. In most of the recent models for bone regeneration, for exam-
ple in [6, 7, 11, 12, 35, 43, 46, 67], the process of differentiation of MSC’s is
introduced into the model equations by means of the reaction term, which
can be written in the general form as −αic. The variable c denotes the
density of MSC’s per unit volume, and αi is the rate of differentiation of
MSC’s into cell type i, which can depend on a number of variables, such as
chemical or mechanical stimuli. This representation implies, that the num-
ber of MSC’s, differentiating into cell type i within the volume V during
time period [t0, t0 + dt], is equal to

(∫
V αic(x, t0) dx

)
dt. The rate of differ-

entiation of MSC’s is determined by the total MSC density c at the current
time moment t0, and not by the path of differentiation of cells, opposed to
what is done in the current work. In the classical models, there is always a
nonzero portion of MSC’s that will differentiate, even in the case of MSC’s
that did not yet inherit any property of the phenotype they are differentiat-
ing to. Further, the entire differentiation is formally never completed within
a finite time frame. The present evolutionary approach corresponds to a
final, bounded, time of cell differentiation, and further if the MSC’s would
have no property of the phenotype they are differentiating to, then differen-
tiation is no longer immediate in the current approach. These are the main
distinctions of the current model from the mentioned models, which results
from the consideration of MSC differentiation as an evolutionary process
(see also the discussion in Section 3.5).

A zero density of MSC’s is assumed within the peri-implant interface at
time t = 0 [6]:

ci(~x, 0, a) = 0 ~x ∈ Ω, i ∈ {b, f}. (3.11)

Suppose, that ∂Ω is the boundary of Ω, ∂Ωb is the part of ∂Ω, corre-
sponding to the bone surface, and ~n is an outward unit normal of ∂Ω. It
is assumed, that there is a source of MSC’s, with the differentiation level
a ∈ [0, δ], on the bone surface ∂Ωb during the first two weeks [67]. This
source is introduced into the model by specifying the influx h(t, a) ≥ 0 of
the densities ci, i ∈ {f, b}, on ~x ∈ ∂Ωb, a ∈ [0, δ]. On the rest of the boun-
dary ~x ∈ ∂Ω, a ∈ [0, 1] a zero flux is assumed. Therefore, the boundary
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∑
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Figure 3.3: Boundary conditions for the case of a one dimensional physical
domain Ω. Additional source of MSC’s is shown at the bone surface

conditions for the MSC densities ci, i ∈ {b, f} are defined as:

ci(~x, t, 0) =
∑
j 6=i

cj(~x, t, 0), if ui(ψ(~x, t), 0) > 0, ~x ∈ Ω̄, t > 0,

ci(~x, t, 1) = 0, if ui(ψ(~x, t), 1) < 0, ~x ∈ Ω̄, t > 0,

−Dc∇sci · ~ns =

{
−h(t, a), ~x ∈ ∂Ωb,

0, ~x ∈ ∂Ω/∂Ωb,
t > 0, a ∈ [0, 1],

(3.12)

h(t, a) =

{
0.01 · 1

δ (1−
a
δ ), if t ∈ (0, 14), a ∈ [0, δ],

0, otherwise,

where ∇s(·) denotes the gradient in the physical space and h(t, a) corre-
sponds to the source of MSC’s on the bone surface. The parameter δ should
be related to the size of computational grid within the differentiation state
space. Therefore, in the current study, it is assumed, that δ = 0.1. In Figure
3.3, the boundary conditions, defined in equation (3.12), are depicted for the
case of the one dimensional physical domain Ω.

For conciseness, the fluxes of fully differentiated MSC’s are denoted via
functions

Qi(~x, t) = ui(ψ(~x, t), 1)ci(~x, t, 1), ~x ∈ Ω, t > 0, i ∈ {b, f}. (3.13)

They determine the increment of the density of osteoblasts and fibroblasts
per unit of time, caused by the differentiation of MSC’s. The equations for
the dynamics of osteoblasts and fibroblasts are given as:

∂b

∂t
= Qb +Ab(1− ctot − f − b)b, (3.14)

∂f

∂t
= ∇s · (Df∇sf) +Qf +Af (1− ctot − f − b)f, (3.15)
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where Df is the coefficient of the fibroblast motility in the physical space, Ab
and Af are the proliferation rates of osteoblasts and fibroblasts, respectively.

It is straightforward, that the sum of all considered tissue volume frac-
tions is equal to one. Hence, the volume fraction of the fibrin network is
determined by:

vn = 1− (vw + vl + vf ). (3.16)

The evolution of the volume fractions of woven bone vw, lamellar bone vl
and fibrous tissue vf is described by the equations:

∂vw
∂t

= αwbvn(1− vw)− γvw(1− vl), (3.17)

∂vl
∂t

= γvw(1− vl), (3.18)

∂vf
∂t

= αffvn(1− vf ), (3.19)

where terms, containing coefficients αw and αf , correspond to the substi-
tution of the fibrin network by woven bone and fibrous tissue, respectively.
The coefficient γ is the rate of the remodeling of woven bone into lamellar
bone.

The boundary and initial conditions for PDE (3.14), and the initial con-
ditions for ordinary differential equations (3.15), (3.17)–(3.19) are given by:

−Df∇sf · ~ns = 0, ~x ∈ ∂Ω, t > 0 (3.20){
b(~x, 0) = 0, f(~x, 0) = 0,
vw(~x, 0) = 0, vf (~x, 0) = 0, vl(~x, 0) = 0,

~x ∈ Ω. (3.21)

3.3.2 Differentiation rates and tissue formation

In this section the particular expressions for the differentiation rates ui,
i ∈ {b, f}, as a function of the mechanical stimulus ψ are defined in line
with Assumption 3.2 on mechanoregulation.

First, it is investigated, how the magnitudes of the differentiation rates
influence tissue formation, described by the proposed model. It is assumed,
that the differentiation rates ui, i ∈ {b, f}, do not depend on the level of
differentiation a. Hence,

ui = Ui(ψ), i ∈ {b, f}. (3.22)

The following assumption is derived from the hypotheses in Proposition 3.2:

Ub(ψ) = U(ψ) = −Uf (ψ), ψ ∈ [0,∞). (3.23)

A simplified problem is considered, that is derived from the full model
by assuming the mechanical stimulus ψ(~x, t) to be constant in the physical
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space Ω and in time. The problem is defined by equations (3.9), (3.14)–
(3.19) and by the initial and boundary conditions in equations (3.11), (3.12),
(3.21),(3.20). The functions Ub(ψ), U(ψ), Uf (ψ) can be considered as con-
stant parameters, denoted as Ub, U , Uf . From condition (3.23), it follows
that Ub = U = −Uf . The behavior of the solution of the simplified problem
with respect to the value of U is studied. The parameter U is assumed to
take a range of values {Umax−i∆U ; i = 0, 1, . . . , N, ∆U = 2Umax/N}. The
problem is solved numerically for each value of U . As a measure of forma-
tion of bone and of fibrous tissue, the average volume fraction of woven and
lamellar bone, vavgb , and the average volume fraction of fibrous tissue vavgf

in the bone-implant interface at the time moment t = 63 days is chosen,
respectively. Time t = 63 days is chosen according to the experiments by
Vandamme et al. [94]. A one dimensional axisymmetric physical domain
Ω = [1, 3.5] mm is considered, in order to reduce the calculation time. A
source of MSC’s is assumed at the point r = 3.5 mm. A uniform rectangular
grid of 40 by 40 control volumes is constructed within the domain Ω× [0, 1].
The governing equations are solved with the finite volume method and with
the explicit modified Euler time integration scheme. The considered param-
eter values are described in Section 3.4.1.

The relations between the average tissue volume fractions vavgb and vavgf ,
and the values of differentiation rates Ub and Uf are denoted as vavgb =
V u
b (Ub), v

avg
f = V u

f (Uf ). Their plots are given in Figure 3.4.
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Figure 3.4: Plot of the average volume fraction of (a) woven and lamellar
bone vavgb and (b) of fibrous tissue vavgf in the peri-implant interface at the
time moment t = 63 days against the value of differentiation rate (a) Ub and
(b) Uf , respectively
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MSC’s do not differentiate into osteoblasts, if ub < 0. Hence, for nega-
tive values of the parameter Ub, the osteoblast density b is zero, and from
equation (3.17) it follows, that no bone forms in the peri-implant interface
and vavgb = 0 (Figure 3.4a). According to the boundary condition, defined in
equation (3.12), any MSC originated from the old bone surface has a differ-
entiation level lower than δ = 0.1. Hence, some of the MSC’s will reach the
differentiation level a = 1 at time t = 63 days, and consequently differen-
tiate into osteoblasts completely, only if the differentiation rate Ub is larger
than Umin = 1−δ

63 ≈ 0.0143 days−1. For Ub ∈ [0, Umin] no osteoblasts and
no bone tissue will appear in the peri-implant region within 63 days. For the
values Ub > Umin, the amount of the bone, formed within the bone-implant
interface, grows with the increase of the parameter Ub up to a certain ex-
tremum point U extrb ≈ 0.24 days−1, which follows from Figure 3.4a. Further
increase of Ub leads to a bit smaller amount of bone in the interface.

The relation between the parameter Uf and the amount of fibrous tissue
vavgf is plotted in Figure 3.4b. For negative Uf and for Uf ∈ [0, Umin], no
fibroblasts appear within the peri-implant interface (f = 0), and no fibrous
tissue forms, i.e. vavgf = 0. The fibrous tissue volume fraction vavgf increases
with an increase of Uf on the interval Uf ∈ [Umin, U extrf ] and decreases for
Uf > U extrf , U extrf ≈ 0.1 days−1.

The decrease in volume fraction of bone and fibrous tissue, when the
differentiation rates exceed the limits U extrb and U extrf , respectively, can be
explained by a coupled effect of cell migration, proliferation and differentia-
tion. The inverse proportionality is more recognizable for the fibrous tissue
dependence on the differentiation rate Uf (Figure 3.4b). As it follows from
the values of the motility and proliferation coefficients Dc, Df , Ac and Af
(see Section 3.4.1), MSC’s migrate and proliferate within the healing site
faster than fibroblasts. On the one hand, for smaller differentiation rates
Uf , each cell remains a MSC for a longer time period. In this state, the
cell migrates towards the implant surface and proliferates faster, that if it
were a fibroblast. This can lead to a higher total density of MSC’s within
the peri-implant region for smaller Ub after some time. On the other hand,
if the supply of MSC’s is sufficient, then the larger the value of the differ-
entiation rate Uf , the more MSC’s differentiate into fibroblasts per unit of
time. For high rates Uf > U extrf , the first effect prevails. However, for slow
differentiation, Uf < U extrf , the second effect becomes more important.

Next, the following functions are defined: vavgi = V ψ
i (ψ), i ∈ {b, f},

where

V ψ
i (ψ) = V u

i (Ui(ψ)), ψ ∈ [0,∞). (3.24)

A certain expression for the function U : [0,∞) → U ⊂ R should be deter-
mined, such that Ub(ψ) = U(ψ) = −Uf (ψ), and such that the dependencies
vavgb = V ψ

b (ψ), vavgf = V ψ
f (ψ) will be in agreement with the Assumption 3.2
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about mechanoregulation of tissue formation. The following relation is pro-
posed (see Figure 3.5):

U(ψ) =



(Umaxb − U0
b ) sin

(
ψπ

2ψ1

)
+ U0

b , 0 ≤ ψ < ψ1,

(Umaxb − Umin) cos
(

(ψ − ψ1)π
2(ψ2 − ψ1 − δψ)

)
+ Umin,

ψ1 ≤ ψ < ψ2 − δψ,

Umin

δψ
(ψ2 − ψ), ψ2 − δψ ≤ ψ < ψ2 + δψ,

(Umin − Umaxf ) sin
(

(ψ − ψ2 − δψ)π
2(ψ3 − ψ2 − δψ)

)
− Umin,

ψ2 + δψ ≤ ψ < ψ3,

− Umaxf , ψ3 ≤ ψ.

(3.25)

From the plot of the function U(ψ) (Figure 3.5) and from equations (3.22)–
(3.23), (3.25), it follows, that the line of non-negative values of the me-
chanical stimulus ψ is divided into five characteristic intervals. On the first
interval [0, ψ1], the rate of MSC differentiation into osteoblasts increases
from the value U0

b , which corresponds to a zero mechanical stimulus, to the
value Umaxb . Abrahamsson et al. [1] and Berglundh et al. [14] observed for-
mation of bone within the peri-implant region at the end of the first week.
The value 0.2 days−1 is estimated for Umax, so that osteoblasts, releasing
bone matrix, will appear at the end of the first week. It is assumed, that
U0
b = 0.1 days−1. The threshold ψ1, corresponding to the maximal rate

of differentiation of MSC’s into osteoblast Umaxb , is assumed to be equal to
0.008. On the interval [ψ1, ψ2− δψ], the differentiation rate into osteoblasts
decreases monotonically to the value Umin, for which no osteoblasts will be
formed within 63 days. This time period is chosen for the numerical sim-
ulations, in line with Vandamme et al. [94]. The region [ψ2 − δ, ψ2 + δψ]
is a ’transition region’. The function U(ψ) changes its sign at the point
ψ = ψ2, and MSC’s stop differentiating into osteoblasts, and start differ-
entiating into fibroblasts for ψ > ψ2. In other words, within the transition
region, MSC’s change the ’direction’ of differentiation. The value of 0.05 is
estimated for the threshold ψ2 [50]. Note, that for ψ ∈ [ψ2 − δ, ψ2 + δψ],
Ub ≤ Umin, Uf ≤ Umin, no osteoblasts and fibroblasts, and hence, no bone
and fibrous tissue will appear after 63 days. This situation is biologically
irrelevant. Therefore, the size of the transition region is chosen to be very
small, and the following parameter value is used δψ = 10−4. The function
U(ψ) is very steep within the transition region, since it changes its value
from Umin to −Umin over a very small interval. For ψ ∈ [ψ2 + δψ, ψ3], the
rate of MSC differentiation into fibroblasts increases to its maximum value
Umaxf = 0.1 days−1, and then remains constant for ψ > ψ3. It is assumed,



3.3. Peri-implant osseointegration 63

that ψ3 = 0.07.
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Figure 3.5: Plot of the function U(ψ), related to the differentiation rate
magnitude, versus mechanical stimulus ψ, defined in equation (3.25)

Equation (3.24) yields, that V ψ′
b (ψ) = V u′

b (Ui(ψ))U ′
b(ψ). The derivative

V ψ′
b (ψ) has the same sign as the derivative U ′

b(ψ), if V u′
b (Ui(ψ)) > 0. From

Figure 3.5 it follows, that Ui(ψ) ∈ [Umin, Umaxb ], for ψ ∈ [0, ψ2 − δψ]. It is
mentioned in this Section 3.3.2, that the function vavgb = V u

b (U) increases
for U ∈ [Umin, U extrb ] (see Figure 3.4a). The value for Umaxb was defined
earlier, which was smaller than U extrb . Hence, [Umin, Umaxb ] ⊂ [Umin, U extrb ],
and V u′

b (Ui(ψ)) > 0 for ψ ∈ [0, ψ2 − δψ]. This means, that the function V ψ
b

behaves similarly to the function Ub(ψ) on interval ψ ∈ [0, ψ2 − δψ]: V ψ
b

increases on ψ = [0, ψ1], has its maximum at ψ = ψ1, and monotonically
decreases to zero on the interval ψ ∈ [ψ1, ψ2 − δψ]. For ψ > ψ2 − δψ,
Ub(ψ) < Umin. As it is mentioned earlier, no osteoblasts will be formed till
day 63 for such values of the differentiation rate Ub. Consequently, for these
values of ψ, V ψ

b (ψ) = V u
b (Ub(ψ)) = 0.

Let us consider the behavior of the function vavgf = V ψ
f (ψ). For ψ ∈

[0, ψ2 + δψ], Uf (ψ) = −U(ψ) < Umin (see Figure 3.5). Hence, no fibroblasts
will appear at day 63, and V ψ

f (ψ) = V u
f (Uf (ψ)) = 0. From equation (3.24) it

is derived, that the derivative V ψ′
f (ψ) is equal to

V u′
f (Uf (ψ))U ′

f (ψ). On the interval ψ ∈ [ψ2 + δψ,∞) the function Uf (ψ) =
−U(ψ) takes values, which lie inside the interval

[Umin, Umaxf ] ⊂ [Umin, U extrf ].

For such values of Uf (ψ), the derivative V u′
f (Uf (ψ)) is positive, which follows

from Figure 3.4b. Consequently, the function V ψ′
f (ψ) behaves similarly to

the function Uf (ψ) = −U(ψ) for ψ > ψ2 + δψ. It increases on the interval
ψ ∈ [ψ2 + δψ, ψ3), and stays constant for ψ ≥ ψ3.
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The functions vavgb = V ψ
b (ψ) and vavgf = V ψ

f (ψ) can be derived from
the dependencies vavgb = V u

b (u), vavgf = V u
f (u), obtained from numerical

solutions, and from the function U(ψ), defined in equation (3.25). These
functions are plotted in Figure 3.6. These plots are in line with the expec-
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f (ψ) versus
the mechanical stimulus ψ for time t = 14 days and t = 63 days. The
functions are derived from the functions V u

b (u), V u
f (u), and U(ψ), which

were obtained earlier

tations. For the values of the mechanical stimulus ψ, lying in the interval
[0, ψ2), bone formation takes place, and for ψ ∈ (ψ2,∞), fibrous tissue forms.
The largest amount of bone is expected for ψ = ψ1. The promoting role
of mechanical stimulation of the level ψ1, if compared with no loading con-
ditions ψ = 0, is more recognizable at early periods of bone regeneration.
It is shown in Figure 3.6, that the amount of bone, corresponding to the
stimulus value ψ1 is by ≈ 50% larger than for a zero mechanical stimulus at
time t = 14 days.

3.4 Numerical simulations

A series of numerical simulations is carried out for the developed mechano-
biological model. The chosen configuration of the bone-implant interface
and the mechanical loading scheme correspond to those from the experi-
ments by [94]. In the experiments, a perforated chamber is installed into
the bone. The cylindrical implant is situated in the middle of the chamber.
The perforations in the chamber allowed blood inflow and tissue growth
from the surrounding area into the cavity of the chamber. The mechanical
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Figure 3.7: The axisymmetric physical domain Ω, and the boundary condi-
tions for the displacements ur and uz, which determine the distribution of
the mechanical stimulus within Ω

loading is applied by means of the axial movement of the implant inside the
chamber.

This experimental study is chosen for the verification of the current
mathematical model, due to the well controlled mechanical environment,
achieved within the chamber. This is important for the present approach,
since the field of the mechanical stimulus within the bone-implant interface
is calculated, since it determines cell differentiation.

3.4.1 Model parameters and numerical method

The axisymmetric physical domain Ω, used for the present simulations, is
sketched in Figure 3.7. The computational model is defined by the elas-
tostatic equations in Navier-Cauchy’s formulation and by equations (3.9),
(3.14)–(3.19). Boundary conditions for the mechanical part of the model are
shown in Figure 3.7. Constant vertical displacements of the magnitude ud
are specified on the surface, attached to the implant. Initial conditions for
the cell densities and the tissue fractions are defined in (3.11), (3.21), and
the boundary conditions are taken from (3.12) and (3.20). The following
values for model parameters are chosen (according to aMoreo et al. [67] and
bAndreykiv [7]):

Dc = 0.133
1
day

a, Df = 0.5
1
day

b, Ac = 0.5
1
day

a, Ab = 0.5
1
day

b,

Af = 0.1
1
day

b, αw = 0.1
1
day

a, γ = 0.06
1
day

a, αf = 0.06
1
day

b.

For the limit cell density C the value of 106cells/mm3 is chosen [11]. The
procedure of obtaining the numerical solution is outlined in Figure 3.8.
Mechanical properties of the interface tissue are determined by the mixture
rule, according to the distribution of the various tissue fractions at time t0.
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Figure 3.8: Outline of the method of the numerical solution

Elastic properties for the considered tissue types are given in Table 3.1 [39].
The mechanical stimulus field is found from the solution of the elastostatic

Table 3.1: Elasticity properties for the considered tissue types [39]
Fibrin
network

Woven
bone

Lamellar
bone

Fibrous
tissue

Young’s modulus (MPa) 0.2 1000 6000 1
Poisson’s ratio 0.17 0.3 0.3 0.17

equations for the updated properties. Then, the solution for the biological
part of the model is obtained. After time period ∆T , the mechanical prop-
erties are updated again. The cycle repeats, until t0 = T . For the current
simulations ∆T = 1 day and T = 63 days.

The linear elasticity equations are solved by use of the finite element
method. The equations for the evolution of MSC and fibroblasts densities
contain advection terms. The finite volume method with the Koren flux lim-
iter is used to discretize the partial differential equations (3.9) and (3.15) in
the physical space and in the differentiation state domain [48]. This method
provides a converging non-oscillating non-negative numerical solution. The
positiveness of the numerical approximation for the cell densities is critical
for the present model. Negative densities could lead to negative tissue frac-
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tions and, consequently, to negative mechanical properties and, finally, to
the non-convergence of the solution. The Koren limiter for the flux at the
cell interfaces is equivalent to the third-order upwind-biased discretization
scheme for smooth solutions. Time integration is performed with use of the
second order modified Euler’s method.

The physical domain Ω is meshed with rectangular cells (i.e. finite el-
ements or control volumes), with edge lengths dx = 0.125 mm and dy =
0.25 mm. Twenty layers of the corresponding cuboid cells, with edge da =
0.05 along the a axis, constitute the grid in the domain Ω × [0, 1]. Axial
symmetry of the physical domain Ω is considered. The configuration of the
region Ω is sketched in Figure 3.7. The discretized ordinary differential equa-
tions are integrated by means of the second-order explicit modified Euler’s
method.

3.4.2 Numerical results

The numerical simulations are carried out for different loading regimes,
which are applied by specifying constant vertical displacements ud on the
implant surface (see Figure 3.7). Four levels of the displacements are con-
sidered: ud = 0 mm, ud = 0.03 mm, ud = 0.09 mm and ud = 0.24 mm.
The spatial distribution of new bone matrix differs for the four considered
cases, as it follows from Figure 3.9.

First, the numerical solutions for the displacements ud = 0 mm and
ud = 0.03 mm are considered. Due to the chosen relations for the differen-
tiation rates of MSC’s, no displacements imply a zero mechanical stimulus
and a uniform value 0.1 day−1 of the differentiation rate ub within the en-
tire bone-implant interface. The tissue deformations, corresponding to the
displacements of the implant with magnitude 0.03 mm, are small enough
throughout the whole simulation period, so that the differentiation rate ub
is always positive (see Figure 3.10). This means, that in the considered
cases, all MSC’s differentiate only into osteoblasts. Hence, no fibrous tis-
sue is formed in the peri-implant interface for the implant displacements
ud = 0 mm and ud = 0.03 mm. In the present model it is assumed,
that a low level mechanical loading enhances differentiation into osteoblasts.
Therefore the differentiation rate ub for the case ud = 0.03 mm is in general
higher than in the case ud = 0 mm, when ub = 0.1 day−1 (Figure 3.10).
This leads to an earlier appearance of osteoblasts within the bone-implant
interface for the displacements of the magnitude 0.03 mm. Hence, bone
formation starts earlier in the case ud = 0.03 mm compared with no loading
conditions (see Figure 3.9). Another difference between the two considered
levels of the loading, is the spatial distribution of new bone matrix. For the
zero implant displacement case, the volume fraction of bone is larger near
the implant surface than near the old bone surface for t ≥ 12 days, and the
bone volume fraction is larger near the old bone surface for the displace-
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ments ud = 0.03 mm for t ≥ 7 days. The different spatial distribution of
bone results from the respective behavior of cells.

At the first place, it should be mentioned, that the MSC’s originating
from the bone surface initially have a differentiation level close to zero. These
cells start to differentiate into osteoblasts and, simultaneously, migrate to-
wards the implant. The migration of MSC’s takes place due to the higher
MSC density at the bone surface at a low maturation level, which is pro-
vided by the inflow of MSC’s, specified at this boundary (see Figure 3.11).
While MSC’s approach the implant surface, their maturation level increases.
Hence, the average maturation level aavg of the MSC’s is higher near the
implant surface, than near the old bone surface (Figure 3.12). Due to a
lower total cell density at the implant interface, MSC’s proliferate faster in
this region, since the proliferation rate is assumed to be equal to Ac(1−ctot).
The maturation level of daughter cells is assumed to be equal to the matu-
ration level of their mother cell. Therefore, it is possible, that at some time
moment a number of MSC’s with a high maturation level becomes larger
near the implant surface than near the old bone surface. This results in
a higher density of osteoblasts and in a faster formation of bone near the
implant. Such a behavior is predicted for the case ud = 0 mm.

As it was mentioned earlier, the differentiation rate ub is higher for the
displacements ud = 0.03 mm, compared with no mechanical loading con-
ditions. Therefore, MSC’s undergo fewer divisions till the moment, when
osteoblasts appear within the healing site and active bone formation starts.
Despite the fact, that the average maturation level aavg is lower at the old
bone surface (Figure 3.12), the total number of MSC’s with high matura-
tion level will be larger, due to a much larger total density of MSC’s in
the considered region compared with the area close to the implant surface
(Figure 3.11). The effect of the MSC source at the old bone surface prevails
over the effect of a higher proliferation rate near the implant surface. As a
result, the volume fraction of bone is higher near the old bone in the case
ud = 0.03 mm.

In a similar way, the bone volume fraction is larger near the old bone
surface for the implant displacements of the magnitude 0.09 mm. However,
in this case a delayed bone formation on the implant surface is predicted.
As it follows from Figure 3.9, new bone matrix starts to form approximately
at day 5 predominantly in the region adjacent to the old bone surface. The
effective tissue stiffness increases significantly in this region. The gradient of
the tissue stiffness leads to the localization of deformations near the implant
surface. Thereby, high values of the mechanical stimulus appear near the
implant surface at day 6 (Figure 3.13). These values correspond to nega-
tive values of the differentiation rate ub. This means that MSC’s start to
differentiate into fibroblasts, i.e. uf > 0. The number of osteoblasts grows
slowly, compared with the neighboring region, where ub > 0 and a large
source of osteoblasts is provided by differentiating MSC’s. This leads to a



70 Chapter 3. Evolutionary cell differentiation

 

 
2
4
6
8

x 10
−3

 

 0.12

0.14

0.16

0.18

 

 
2
4
6
8
10
12

x 10
−3

 

 0.12

0.14

0.16

0.18

 

 
2
4
6
8
10

x 10
−3

 

 
0.12
0.14
0.16
0.18

st
im

ul
us

u b

T= 6 days T= 8 days T=32 days T=63 days

 

 
2
4
6
8
10

x 10
−3

 

 
0.12
0.14
0.16
0.18

Figure 3.10: Plots of the mechanical stimulus and of the differentiation rate
ub in the peri-implant interface at different time moments for the implant
displacements of the magnitude ud equal to 0.03 mm

 

 
0.05
0.1
0.15
0.2
0.25

 

 

0.2

0.4

0.6  

 

0.2

0.3

0.4
 

 
0.05

0.1

0.15

 

 
0.05
0.1
0.15
0.2
0.25

 

 
0.05
0.1
0.15
0.2

 

 
0.02

0.06

0.1

0.14

 u
d =

 0
 m

m
 u

d =
 0

.0
3 

m
m

T= 6 days T= 9 days T=12 days T=15 days

 

 

0.02

0.04

0.06

Figure 3.11: Plots of the total density of MSC’s, which is calculated as∫ 1
0 (cb + cf )da, in the peri-implant interface at different time moments for

the implant displacements of the magnitude ud equal to 0 mm and 0.03 mm



3.4. Numerical simulations 71

 

 
0.4

0.45

0.5
 

 
0.65

0.7

0.75
 

 0.7

0.75

0.8

0.85
 

 0.65
0.7
0.75
0.8
0.85

 

 
0.6

0.7

0.8
 

 0.6

0.7

0.8

 

 

0.6

0.7

0.8

 u
d =

 0
 m

m
 u

d =
 0

.0
3 

m
m

T= 6 days T= 9 days T=12 days T=15 days

 

 
0.6

0.7

0.8

Figure 3.12: Plots of the average maturation level aavg of MSC’s, which is

calculated as aavg =
(∫ 1

0 cf (−a) da+
∫ 1
0 cb a da

)
/
∫ 1
0 (cb + cf ) da, in the

peri-implant interface at different time moments for the implant displace-
ments of the magnitude ud equal to 0 mm and 0.03 mm

 

 

0.01

0.02

0.03

 

 0.12

0.14

0.16

0.18

 

 

0.02

0.04

0.06

 

 −0.1

0

0.1

 

 
0.01
0.02
0.03
0.04
0.05

 

 
0
0.05
0.1
0.15

st
im

ul
us

u b

T= 5 days T= 6 days T=21 days T=22 days

 

 

0.02

0.04

 

 
0.05

0.1

0.15

Figure 3.13: Plots of the mechanical stimulus and of the differentiation rate
ub in the peri-implant interface at different time moments for the implant
displacements of the magnitude ud equal to 0.09 mm



72 Chapter 3. Evolutionary cell differentiation

narrow zone next to the implant surface with a lower volume fraction of
bone, which is well recognizable in Figure 3.9.

The zone, where uf > 0, which is equivalent to ub < 0, and where
MSC’s differentiate into fibroblasts, is narrow. Due to random walk of cells,
this region is densely populated by the MSC’s with a high level of differ-
entiation into osteoblasts, which migrate from the neighboring part of the
peri-implant interface, where ub > 0 (see Figure 3.14). MSC’s, which differ-
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)
/
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peri-implant interface at different time moments for the implant displace-
ments of the magnitude ud equal to 0.09 mm

entiate into fibroblasts within this narrow zone, migrate in their turn into
the neighboring region, and the direction of their differentiation is reversed
to osteoblasts again. Active cell diffusion and a limited time period (ap-
proximately 16 days), when uf > 0 at the implant surface, lead to that no
fibroblasts are derived from MSC’s near the implant surface and no fibrous
tissue is formed for the displacements of the magnitude ud = 0.09 mm.

Large implant displacements of the magnitude ud = 0.24 mm lead to
high values of the mechanical stimulus near the implant surface, which cor-
respond to a positive differentiation rate uf (Figure 3.15). The region, where
uf > 0 is larger compared with the analogous region, which appears for
0.09 mm displacements. A larger size of the region leads to smaller values
of the gradient of the density of MSC’s differentiating into fibroblasts. Hence
fewer MSC’s migrate away from this region and more MSC’s differentiate
continuously into fibroblasts. As a result, a non-zero density of fibroblasts
is predicted in the middle of the implant interface at day 15 (Figure 3.15).
Therefore, fibrous tissue is produced by fibroblasts and no bone formation is
predicted near the implant surface for the displacements ud = 0.24 mm. In
the rest of the peri-implant interface the volume fraction of bone is close to
one at day 63 (Figure 3.9). It should be noted, that the calculated density of
fibroblasts is much lower than the density of osteoblasts. From Figure 3.16a
it follows that the average density of osteoblasts is equal to 0.82 mm−3 at
day 63. While the maximal density of fibroblasts is 0.024 mm−3 at the same
time moment (Figure 3.15). The density f is low, since the region, where
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ub > 0, occupies the most part of the peri-implant interface. It is even more
important, that ub > 0 near the old bone surface, where the total density
of MSC’s is the highest, due to the cell influx from the boundary surface
during the first two weeks. This leads to a high proportion of MSC’s differ-
entiating into osteoblasts even in the regions, where uf > 0 (Figure 3.14),
and few MSC’s differentiate into fibroblasts completely, as it is explained in
the previous paragraph.

Therewith, the evolution of the average density of osteoblasts and of the
bone volume fraction is shown in Figure 3.16. The average number of osteo-
blasts is maximal for the displacements ud = 0.03 mm and ud = 0.09 mm
(Figure 3.16a), due to high differentiation rates of MSC’s into osteoblasts
within the entire bone-implant interface, excluding a very small area near
the implant surface for ud = 0.09 mm (see Figures 3.10 and 3.13). Hence,
the average volume fractions of the bone tissue for this loading regimes are
highest among the considered implant displacements (Figure 3.16b). At the
end of the simulation period, the average amount of new bone tissue is com-
parable for the displacements ud = 0 mm, ud = 0.03 mm and ud = 0.09 mm,
and it is larger than for the large displacement conditions ud = 0.24 mm
(Figure 3.16b).
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Figure 3.16: Plots of the average density of osteoblasts bavg (a) and of the
average volume fraction of woven and lamellar bone vavgw + vavgl (b) against
time. Averaging is introduced with respect to a spatial distribution

Vandamme et al. [94] determined the area fraction of bone tissue, aver-
aged over the transverse sections, made at the level of the perforation in the
bone chamber, after 9 weeks from the beginning of the experiments. In the
experiments, where the implant was not loaded, they obtained the bone area
fraction (BAF) of 0.6403± 0.2381 (mean value ± standard deviation). For
the displacements of the implant of the magnitude 0.03 mm and 0.09 mm,
the measured values of BAF were 0.7509±0.2149 and 0.7347±0.2229, respec-
tively. From the statistical analysis, Vandamme et al. [94] derived, that the
bone area fraction was significantly higher for 0.09 mm implant displace-
ment compared with no displacement, and a significantly higher fraction
of bone trabeculae was found for 0.03 and 0.09 mm implant displacement
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compared with the unloaded situation.
The calculated values of the bone volume fraction are higher than the

values obtained in the experiments. The numerical simulations yield, that
the average values of the volume fraction of woven and lamellar bone in the
region of peri-implant interface, located at the level of the perforation, i.e.
for r ∈ [1, 3.5], z ∈ [1.5, 6] (see Figure 3.7), are equal to 0.961, 0.968 and
0.967, for the implant displacements of the magnitude 0 mm, 0.03 mm and
0.09 mm, respectively. From Figure 3.17 it follows, that the average volume
fraction of bone is lower for the displacements ud = 0 mm compared with
the displacements ud = 0.03 mm and ud = 0.09 mm. This difference is the
largest at the initial period of bone formation (3-4 weeks). Therefore, the
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Figure 3.17: Plots of the average volume fraction of woven and lamellar
bone vavgw + vavgl in the region of peri-implant interface, located at the level
of the perforation, against time

numerical and experimental results are in partial agreement qualitatively
for the considered levels of the implant displacements. The displacements
equal to 0.24 mm lead to the appearance of fibrous tissue. This is in line
with Assumption 3.2 concerning the mechanoregulation of tissue regenera-
tion. A weak quantitative correspondence of the model predictions to the
experiments can be explained by the fact, that the current model is con-
structed in a rather simple form, since the main interest in this chapter, is
the representation of cell differentiation as a gradually evolving process, al-
though several over biological processes like proliferation, motility and bone
formation are modeled using classical formalisms.

3.5 Discussion and conclusions

In this chapter a model for peri-implant osseointegration is proposed, in
which MSC differentiation is considered as an evolutionary process that is



76 Chapter 3. Evolutionary cell differentiation

influenced by the mechanical state in the region of tissue formation. The
main distinction of the current model for peri-implant osseointegration is in
the description of the differentiation of cells. MSC’s are distinguished with
respect to their differentiation state. The differentiation state is evaluated
through the variable a, which takes a value from zero to one. In the common
approach, used in the most of the recent models for bone regeneration, the
differentiation level of MSC’s is not considered and cell differentiation is in-
troduced into the constitutive equations by means of the reaction term. This
can be interpreted, that only one state of the MSC’s is considered. Therefore,
the evolutionary differentiation approach can be considered as continuous,
and the common immediate differentiation approach, as discrete. The con-
tinuous approach is likely to describe the process of cell differentiation more
accurately, than the discrete model. It assigns a finite time of differentia-
tion to each cell, which is in line with experimental observations [13, 60, 97],
where cells gradually obtain the new properties in the course of time. The
history of cell differentiation is incorporated, so that the current state of
cells depends on how the cells evolved before. In the discrete approach the
differentiation history or path cannot be modeled (see Remark 3.2).

Reina-Romo et al. [83] applied the concept of cell plasticity in the model
for the bone distraction. However, in this chapter a generic mathematical
model is defined, which allows to consider cell differentiation, as a process
that evolves in time. The current approach can be extended to an arbitrary
number of parameters, which determine the differentiation rates of MSC’s,
and to an arbitrary number of cell types, into which MSC’s differentiate.
The mathematical model for evolutionary cell differentiation is presented
by means of a set of partial differential equations, boundary and initial
conditions. The MSC differentiation is introduced into the model by adding
one extra dimension to the problem domain. The differentiation rates are
considered as functions of a number of parameters. A specific representation
of the differentiation of fully non-differentiated MSC’s poses some conditions
on the differentiation rates.

Unfortunately, an example of an application, that is useful to directly val-
idate the present model for the evolution of the differentiation level of cells,
was not found. Instead, the present differentiation approach is incorporated
into a model for peri-implant osseointegration. This model allows to demon-
strate the main characteristics of the evolutionary approach. The history of
MSC differentiation into two cell types is included in the model, and it is
determined by the mechanical environment within the tissue. The present
application example also shows, how the current differentiation approach
can be used to represent cell differentiation, coupled with cell migration and
proliferation, in one model.

It is assumed, that a low and moderate level of mechanical loading pro-
motes bone formation, whereas a high level of loading leads to the appear-
ance of the fibrous tissue within the bone-implant interface. On the basis
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of these assumptions and on the basis of the numerical assessment for the
1D test problem, certain expressions for the differentiation rates of MSC’s
are specified (see equations (3.22)– (3.23), (3.25)). The essential feature of
these relations, is that the differentiation rates ub and uf do not exceed
certain thresholds U extrb and U extrf , which are determined in 1D simulations.
This condition ensures, that the amount of a certain tissue type increases
with the increment of the rate of differentiation of MSC’s into a respective
cell type. The simulations of peri-implant osseointegration within the bone
chamber are carried out for four levels of loading.

The obtained results are in a partial correspondence with the experi-
mental measurements, presented in Vandamme et al. [94]. Different paths
of bone formation are obtained for different levels of displacements. For no
loading conditions, new bone matrix is formed faster at the implant sur-
face, while for the displacements of the magnitude 0.03 mm, 0.09 mm and
0.24 mm bone is released faster at the old bone surface. These two modes
of bone formation are usually referred to as contact and distance osteogen-
esis. Moreo et al. [67] and Amor et al. [6] use their models for peri-implant
osseointegration to study the situations, when contact and distance osteo-
genesis occur. They related the two different paths of bone regeneration to
a micro-roughness of the implant surface. This assumption is in line with
the experiments of Abrahamsson et al. [1]. The implant micro-roughness
is represented into the models implicitly by means of various growth factor
sources at the implant surface, that correspond to the growth factor release
by activated platelets.

The predictions of the present model about different osseointegration
modes follow from a coupled effect of MSC differentiation, migration and
proliferation. The present model should be extended, in order to represent
the conditions providing contact and distance osteogenesis in a more strict
and clear way. This can be done, by adding a growth factor concentration
variable into the model. A more complex model is not considered in the
present chapter, since the focus of the current study is on evolutionary cell
differentiation approach. The current peri-implant osseointegration model
is used, to check the performance of the evolutionary approach as a part of
a more general bone regeneration model.

As another potential direction of the model improvement, a variation
of the mechanoregulatory relations for the differentiation rates, and a mod-
ification of the mechanical stimulus can be considered. For example, dy-
namical mechanical loading may be considered, and the tissue within the
peri-implant interface may be introduced as a poro-elastic media. Another
option, is to consider differentiation of cells as a partly stochastic process,
for example, by introducing a random variable into the relations for the dif-
ferentiation rate. In this chapter the evolution of the differentiation process
is introduced. Considering cell proliferation as an evolutionary process, can
also be a following step in improving the given model.
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One feature of the evolutionary differentiation approach, which can be
used to enhance the accuracy of the future models for bone regeneration, is
the finite time of cell differentiation. In reality, new bone appears in the peri-
implant interface after some time from the implant placement. For example,
in the experiments of Berglundh et al. [14] and Abrahamsson et al. [1], bone
matrix started forming on the pre-existing surfaces at the end of the first
week. This fact can be modeled with use of the evolutionary differentiation
approach. Due to a finite time of differentiation, osteoblasts, which release
bone matrix, can be assumed to appear after some time from the implant
placement. This issue cannot be modeled with the immediate differentiation
approach, since for this approach, bone would appear immediately.

The present differentiation representation is incorporated into a moving
boundary model, which is described in Chapter 4. For that model it is
essential, that the time of differentiation of MSC’s into osteoblasts is finite.
This condition is satisfied by the present evolutionary approach.



CHAPTER 4

Moving boundary model for
endosseous healing

In this section, a model for the early stages of peri-implant bone regeneration
is developed. This model is able to capture some important characteristics
of endosseous healing, which are not incorporated in the existing models. It
is a well known fact, that during peri-implant osseointegration, bone forms
only by apposition on a pre-existing rigid surface, which initially consists of
the implant surface and the old bone surface. In order to track the move-
ment of the front of the newly formed bone, a moving boundary problem
is formulated. Another important feature of the current model, is that cell
differentiation is considered as a gradual process, evolving in time and being
influenced by the presence of growth factors. Hence the evolution of cell
differentiation level is captured in the present approach.

Some of the model parameters are taken from the literature and the rest
of them is estimated from numerical simulations. The numerical algorithm,
developed for the solution of the model equations within a two dimensional
physical domain, is described in Chapter 5. This algorithm allows to solve
the model equations within an irregular domain, which evolves in time. In
the current chapter, only some general features of the numerical method are
outlined. A large number of numerical simulations is introduced, in order
to estimate the values of the model parameters. Results of the numerical
solutions are compared with experiments.

4.1 Introduction

Bone regeneration around implants and the ways of improving early me-
chanical stability of the implants have been investigated by many researchers

79
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recently. A number of experimental in-vivo and in-vitro studies are available
in the literature [1, 14, 65, 80, 92, 93, 94]. The peri-implant endosseous heal-
ing consists of the cascade of biological processes, which take place within
the healing site after the implant placement [24, 63]. In Davies [24], the
four stages of implant osseointegration are distinguished. At the first stage,
haemostasis, right after the placement of the implant into the bone, the
wound site is filled with blood and a blood clot forms. At this stage blood
platelets attach to the implant surface, and after being activated they start
to release cytokines and growth factors. The second stage, referred as osteo-
conduction, involves recruitment and migration of differentiating osteogenic
cells to the implant surface. At the third stage, named de novo bone for-
mation, osteogenic cells differentiate into osteoblasts, which start to release
bone matrix at the implant surface. This bone formation occurs in the form
of intramembranous ossification. New bone matrix is released by osteo-
blasts, attached to a rigid surface [1, 14, 65]. In other words, peri-implant
ossification occurs through a direct apposition of new bone matrix on the
pre-existing surface [24]. Hence the concept of the newly formed bone front
or surface can be used. Due to the synthesis of bone, the bone front moves
into the region of the non-ossified tissue. In the case of successful osseoin-
tegration, a direct structural and functional fixation of the implant within
the new bone matrix is established.

Two modes of the bone front movement, called distance and contact
osteogenesis, can be distinguished. For the first mode, bone forms initially
at the old bone surface, and the bone front moves towards the implant
surface. The contact osteogenesis corresponds to the situation, when new
bone matrix is released by osteoblasts at the implant surface itself, and the
front of newly formed bone moves from the implant towards the old bone
surface. In this case, the implant surface turns to be in a direct contact with
newly formed woven bone. Bone synthesis, taking place both at the old bone
surface and at the implant surface, leads to a faster biological anchorage of
the implant, compared to distance osteogenesis mode [1, 32]. Therefore,
contact osteogenesis provides better mechanical stability of the implant at
the early stages than distance osteogenesis.

The osteoconduction phase is critical for the contact osteogenesis mode.
Synthesis of bone at the implant surface is possible, only if enough differ-
entiating osteogenic cells are present near the implant, i.e. it is necessary,
that osteogenic cells migrate constantly from the old bone surface towards
the implant through the fibrin network, formed in the blood clot.

Therefore, the first three stages of osseointegration result in the forma-
tion of woven bone, which provide the biological fixation of the implant.
The fourth stage in peri-implant osseointegration is remodeling of the wo-
ven bone into mature bone. The process of remodeling is slow, compared
to the processes, involved in the first three stages. In the present work,
the second (osteoconduction) and third (de novo bone formation) stages of
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osseointegration are considered. Bone remodeling, which follows after the
woven bone formation, is not considered in the current model. According
to Davies [24], osteoconduction and de novo bone formation are the crucial
stages of osseointegration, since exactly at these phases, the implant is an-
chored within the wound site by the newly formed bone matrix. Without
such biological anchorage, successful osseointegration is impossible.

The structure of this chapter is as follows. A brief review of several
recent mathematical models for the peri-implant osseointegration is given in
Section 4.2.

The new model for the early stages of peri-implant bone regeneration is
developed in Section 4.3. The main innovation of this model is the moving
boundary approach, used to represent the movement of the bone-forming
surface. It is derived to accommodate the aforementioned fact that bone only
forms by apposition on the pre-existing rigid surface [24]. The peri-implant
region is divided into two domains: the first domain is occupied by the soft
tissue, and the second domain is filled with the new bone. The evolution of
the osteogenic cell density and of the growth factor concentration within the
first domain is modeled with partial differential equations. The number of
mature osteogenic cells and the concentration of growth factor at the bone-
forming surface, which is the boundary of the soft tissue domain, determines
the rate of new bone matrix release, and consequently the velocity of the
bone-forming surface. Within the region, filled with new bone, the process
of bone remodeling takes place, which is not considered in this work. Cell
differentiation is considered as a gradual process, which depends on the
growth factors concentration. The approach, derived in Chapter 3, is used
to model the evolution of the cell differentiation level.

Some basic features of the 2D numerical algorithm are outlined in Sec-
tion 4.4.1. A model validation procedure and initialization of the parame-
ters are described in Section 4.4.2. In Section 4.4.3, a sensitivity analysis
based on the results of numerical simulations for various model parameters
is presented. The main results of the numerical simulations are discussed in
Section 4.5. Conclusions are drawn in Section 4.6.

4.2 Recent mathematical models

Mathematical modeling is a useful tool for the investigation of peri-implant
osseointegration. It allows to study the role of various processes, which take
place during bone regeneration under the influence of numerous external
and internal factors. Mathematical models for bone regeneration around
endosseous oral implants were developed by Amor et al. [5, 6], Moreo et al.
[67]. Moreo et al. [67] reported that their model is able to predict different
modes of bone regeneration (i.e. contact and distance osteogenesis), depend-
ing on the degree of adhesion and activation of the blood platelets at the
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implant surface, which is related to the implant surface micro-structure.

Amor et al. [5] used the model by Bailon-Plaza and van der Meulen [11],
initially created for bone fracture healing, and adapted it to model peri-
implant osseointegration. An enhanced model was presented in [6], where
the implant surface micro-structure is taken into account, which determines
the mode of osteogenesis (distance or contact).

In the models by Amor et al. [6] and Moreo et al. [67], the platelet den-
sity, osteogenic cell and osteoblast densities, soft (fibrous) tissue and bone
tissue volume fractions, and growth factor concentration are considered as
unknown functions in space-time coordinates. Moreo et al. [67] defined two
generic types of growth factors. The growth factors, related to the first
type, are released by activated platelets (e.g. platelet-derived growth fac-
tor (PDGF), transforming growth factor beta (TGF-β), etc.). The growth
factors, related to the second generic type, are released by osteogenic cells
and osteoblasts (bone morphogenetic proteins (BMPs), TGF-β, etc.). Both
growth factor types cause chemotaxis of osteogenic cells and promote pro-
liferation of osteogenic cells, while the first one enables differentiation into
osteoblasts, and the second one enables bone formation.

Amor et al. [6] consider both mentioned growth factor types through
one unknown variable. In this model, growth factors cause chemotaxis of
osteogenic cells. Osteoblast differentiation is assumed to take place only
under the presence of growth factors.

Moreo et al. [67] distinguish woven and lamellar bone, while Amor et al.
[6] consider just one variable for the bone tissue volume fraction. The model
parameters, boundary and initial conditions, proposed for both models differ
and some of them – even considerably. Nevertheless, these two models have
much in common. In particular, they were constructed to study different
paths of bone regeneration around endosseous implants, depending on the
implant surface micro-structure. The models are capable to predict contact
and distance osteogenesis mode. The switch mechanism between these two
modes is introduced in the models by means of the activated platelet den-
sity. The adhesion of platelets is assumed to depend on the implant surface
roughness. Platelets produce growth factors, and growth factor concentra-
tion determines osteoblast differentiation and bone tissue synthesis. Bone
matrix release is proportional to the osteoblast density and ceases, if the
volume fraction of bone tissue exceeds one. It follows that bone is synthe-
sized by osteoblasts wherever these cells are found. It is also confirmed by
the simulation results, that were reported in Amor et al. [6] and Moreo et al.
[67], that bone forms throughout the whole interface region simultaneously.
However, it is released faster in the vicinity of old bone and implant surface,
under certain conditions.
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4.3 Moving boundary model

The ideas and approaches, proposed by Moreo et al. [67] and Amor et al.
[6], are used partially as the basis, on which the present model is built.
The principal innovations are introduced in the current model, which allow
to reflect some important characteristics of peri-implant osseointegration.
These characteristics are taken from three basic principles, formulated by
Davies [24], which are literally quoted.

Hypothesis 4.1. Principles for endosseous healing

1. “bone matrix is synthesized by only one cell: the osteoblast”, and “the
osteoblast is irrevocably attached to the bone-forming surface”;

2. bone can only be deposited by laying down matrix on a pre-
existing solid surface. . . . the osteoblast is incapable of mi-
gration away from the bone surface, and the only method by
which this surface can receive further additions (beyond the
synthetic capacity of a single osteoblast) is by the recruitment
of more osteogenic cells to the surface, which then differen-
tiate into secretorily active osteoblasts;

3. bone matrix mineralizes and has no inherent capacity to
“grow” . . . .Thus, once bone formation has been initiated,
the matrix and the cells that have synthesized that matrix
have almost no ability to govern the ongoing pattern of bone
growth on the implant surface.

In line with the above hypotheses, the following variables for the new
model are defined: the densities of immature and mature osteogenic cells (ci
and cm, respectively), and the concentration of growth factor g.

4.3.1 Mature and immature cells

The concepts of immature and mature osteogenic cells are critical for the
present model. First, it should be noted, that according to the stated princi-
ples for endosseous healing, the main characteristics of osteoblasts are that
they are attached to the bone-forming surface and that they release bone
matrix. Terms ’immature’ and ’mature osteogenic cells’ are used to intro-
duce the differentiation of osteogenic cells in the model. Mature cells are
these cells, which have reached such a level of maturation (differentiation
threshold), that they are able to attach to the rigid surface and initiate
bone matrix synthesis. In other words they are able to become osteoblasts.
Mature osteogenic cells are mobile, until they become osteoblasts.

Immature cells have to undergo the differentiation path for some time,
until they reach the differentiation threshold, and only after that they will
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be able to become osteoblasts. The osteogenic cell differentiation is intro-
duced in the model in the way it was proposed in Chapter 3. Immature
osteogenic cells are distinguished according to their maturation level a (or
’differentiation level’), which ranges from 0 to 1, and which is considered
as an additional independent coordinate in the problem domain. While an
immature cell is differentiating into an osteoblast, its maturation level in-
creases. If it reaches value 1, it is assumed that the cell has reached the
differentiation threshold, and it becomes a mature osteogenic cell. This
cell does not lose its mobility, as long as it has not become an osteoblast.
Therewith, immature cell density ci is defined as a number of cells per unit
volume, per maturation level unit.

4.3.2 Modeling approach

Let the problem domain Ω be an approximation (e.g. in 1D, 2D or 3D) of the
real geometry of a bone-implant interface. It is assumed that initially the
whole peri-implant region is filled with soft connective tissue (fibrin network
of blood clot). The domain boundary ∂Ω is composed of the implant surface
∂Ωi and the old bone surface ∂Ωb, i.e. ∂Ω = ∂Ωi∪∂Ωb. The initial density of
osteogenic cells, and the initial growth factor concentration are equal to zero.
A source of immature osteogenic cells and growth factors is assumed at the
old bone surface ∂Ωb (Figure 4.1). At the implant surface ∂Ωi, a source of

t = 0 t > 0

∂Ωi ∂Ωi Ωs ∂Ωb

Ωb Γ(t)

∂ΩbΩs = Ω

Figure 4.1: Sketch of the problem domain Ω. The old bone and implant
surfaces are denoted by ∂Ωb and ∂Ωi respectively. Subdomains Ωb and
Ωs correspond to regions within the healing site, filled with newly formed
bone and soft tissue, respectively. They are separated by the bone-forming
surface, denoted by Γ(t). At t = 0, soft tissue occupies the whole peri-
implant space Ωs = Ω, and the bone-forming surface is composed of the
implant interface and the old bone surface, i.e. Γ(0) = ∂Ωi ∪ ∂Ωb

growth factor is considered, which corresponds to the release of growth factor
by activated platelets, that are attached to the implant surface. Osteogenic
cells, originating from the old bone surface, migrate into the peri-implant
region, and differentiate into osteoblasts under the influence of growth factor.
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Assume that at a certain time moment, there is a number of mature
osteogenic cells within the healing site. Further, let some of them be sit-
uated at the rigid surface, which initially consists of the implant and old
bone surface. It is assumed that these cells attach to the rigid surface and
start releasing bone matrix. These cell functions are characteristic for osteo-
blasts. Hence it is assumed that mature osteogenic cells, situated near the
rigid surface, immediately become osteoblasts. Due to bone production by
the osteoblasts, the front of newly formed bone starts moving. This front
forms the surface, onto which other mature cells can attach and synthe-
size bone matrix consequently, providing further bone front movement. The
mobile bone-forming surface is the boundary between the soft tissue within
the healing site and newly formed bone. In other words, the bone-forming
interface, denoted as

Γ(t) ⊂ Ω, t ≥ 0, and Γ(0) = ∂Ω,

divides the computational domain Ω into two regions Ωb and Ωs, which are
filled with bone tissue and soft tissue, respectively. Within region Ωb, bone
remodeling starts. This is a long term process, and the present model is
developed for the second and third stages of bone regeneration. As it was
mentioned before, bone remodeling is not considered in the current model.
Therefore, no processes, which take place within subdomain Ωb, are modeled.
Though, it should be noted, that osteoblasts, trapped into the bone, become
osteocytes.

According to the third principle for endosseous healing, the formation
of new bone tissue within the peri-implant interface is governed by the pro-
cesses, taking place within the region Ωs. The following processes are con-
sidered in the present model:

1. osteogenic cell migration, caused by random walk and chemotaxis,
directed towards the gradient of growth factor concentration;

2. osteogenic cell proliferation and differentiation;

3. growth factor diffusion and decay;

4. growth factor release by osteogenic cells and activated platelets.

The mathematical model consists of a set of partial differential equations
(PDE’s), boundary and initial conditions. The equations are specified for
the unknown real-valued functions ci(~x, a, t), cm(~x, t) and g(~x, t), defined
for ~x ∈ Ωs, a ∈ [0, 1], t ≥ 0, where ~x is the coordinate vector in physical
space, a is the maturation level of the immature osteogenic cells, i.e. a is the
coordinate in maturation or differentiation state domain, and t is time. The
functions ci, cm and g represent densities of immature and mature osteogenic
cells, and concentration of growth factor, respectively.
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The evolution of unknown variables is determined by the following PDE’s

∂ci
∂t

= −∇s · (−Dc∇sci + χ(g, ctot) ci∇sg)︸ ︷︷ ︸
Migration

− ∂

∂a
(ub(g)ci)︸ ︷︷ ︸

Differentiation

+Ac(g)ci (1− ctot)︸ ︷︷ ︸
Proliferation

, (4.1)

∂cm
∂t

= −∇s · (−Dc∇scm + χ(g, ctot) cm∇sg)

+ ub(g)ci(~x, 1, t) +Ac(g)cm (1− ctot) , (4.2)

∂g

∂t
= ∇s · (Dg∇sg)︸ ︷︷ ︸

Diffusion

+Ec(g)
(
cm +

∫ 1

0
γ(a)ci da

)
︸ ︷︷ ︸

Production

− dgg︸︷︷︸
Degradation

, (4.3)

where ctot =
∫ 1
0 cida+ cm is the total density of osteogenic cells per unit of

volume. Equation (4.1) is defined for (~x, a, t) ∈ Ωs×[0, 1]×R+, and equations
(4.2), (4.3) for (~x, t) ∈ Ωs×R+. Operator ∇s is the nabla operator, defined
in physical space, e.g. in 3D physical space

∇s =
(

∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
.

The parameter Dc is the diffusion coefficient of osteogenic cells. The terms
χ(g, ctot)ci∇s g and χ(g, ctot)cm∇s g in equations (4.1) and (4.2) represent
cell migration due to chemotaxis, where the coefficient χ(g, ctot) depends on
the growth factor concentration and on the total density of osteogenic cells
in the current location. Cell proliferation is introduced by the terms, that
contain coefficient Ac(g), which depends on growth factor concentration. It
is assumed that a parent cell and the daughter cells, into which it divides,
have the same level of maturation. The second term in the right-hand side
of equation (4.1) represents the increase of maturation level of immature
cells, due to cell differentiation (see also Chapter 3 for the derivation of this
term). The parameter ub(g) is the differentiation rate (or maturation rate),
and it depends on growth factor concentration. It can also be considered
as the velocity of cell “motion” in the differentiation state domain. The
term ub(g)ci(~x, 1, t) in equation (4.2) corresponds to the increase of a num-
ber of the mature cells due to the differentiation of the immature cells. The
terms in the right-hand side of equation (4.3) (in order from left to right)
represent growth factor diffusion with constant coefficient Dg; growth fac-
tor production by cells with coefficient Ec(g), depending on growth factor
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concentration; and growth factor decay, respectively. It was assumed that
growth factor is released by mature and immature osteogenic cells [25], and
that its production depends on the maturation level of immature cells. The
last mentioned assumption is introduced by the function γ(a) under the
integral sign.

The size and geometry of the subdomains change due to new bone forma-
tion. This process is introduced in the model by specifying the magnitude
of the normal velocity vn of the moving bone-forming surface Γ(t). That is,
the variable vn denotes the normal component of the velocity of the points
of the moving boundary, and is equal to the scalar product of the velocity
vector and outward (with respect to domain Ωs) unit normal of the boun-
dary surface. The magnitude of the front normal velocity vn is related to
the amount of new bone matrix, produced locally per time unit. As it was
mentioned, the new bone matrix is produced only by osteoblasts.

osteoblasts

osteocyte

(b)(a)

new
bone matrix

soft tissuesoft tissue

Γ(t)

dl

dnb

Γ(t)
dnc

dl

Γ(t+ dt)

Figure 4.2: Sketch of the bone release by osteoblasts. First, mature os-
teogenic cells, situated within the distance dnc from the boundary surface
Γ(t), attach to it and become osteoblasts (a). After that, osteoblasts release
new bone matrix. Osteoblasts are trapped by the released bone matrix and
become osteocytes (b). The width of the layer of new bone matrix, released
in time dt, is denoted as dnb

Let us consider a small segment of the boundary surface Γ(t) of length
dl (Figure 4.2a). Assume that mature osteogenic cells, situated within the
distance dnc from the boundary surface, attach to it and start to release bone
matrix. In other words, these osteogenic cells become osteoblasts. A volume
of bone matrix, produced by one osteoblast per unit of time, is denoted by
parameter Vb. Then units of Vb is volume units

day·cell . The number of osteoblasts,
attached to the boundary segment dl is equal to Nb = cm dl dnc. These cells
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will produce the bone matrix of the volume dV = Vb Nb dt in time period dt.
Since the new bone matrix is released, the bone-forming surface will change
its location from Γ(t) to Γ(t + dt) (Figure 4.2b). The volume dV of new
bone, laid down on the boundary segment dl, corresponds to the shift of
the boundary element dl by distance dnb = dV

dl in normal direction, in time
period dt. The normal velocity vn is equal to the local shift of boundary in
normal direction per unit of time. Hence

vn = −dnb
dt

= − dV

dl dt
= −Vb cm dl dnc dt

dl dt
= −Vb dnc cm.

The minus sign appears, since the velocity vn is considered along the outer
normal, with respect to the region of soft tissue Ωs, and quantity dnb is the
shift along the inner normal. A new parameter Pb = Vb dnc is defined, and
the following relation for the normal velocity of the boundary is obtained:

vn( ~X, t) = −Pb cm( ~X, t), ~X ∈ Γ(t), t > 0, (4.4)

where constant parameter Pb denotes the rate of the production of bone
matrix by one osteoblast per unit of time, times the width of the layer of
osteogenic cells, attached to the bone-forming surface. The parameter Pb
has the units [volume units]

day·cell mm. The expression (4.4) for the normal velocity
of the moving boundary has been derived, in which the normal velocity is
assumed to be proportional to the local density of the mature osteogenic
cells.

Remark 4.1. The value of the parameter Pb will be estimated, based on the
results of numerical simulations and on educated guesses. Parameters Vb
and dnc were used to explain the physical meaning of the parameter Pb and
in the derivation of the relation (4.4) for velocity vn. Further, parameters
Vb and dnc will not be used.

Remark 4.2. For convenience and computational efficiency, the considered
cell densities and growth factor concentration are nondimensionalized with
respect to a saturated cell density of 106 cells

ml , and typical growth factor
concentration of 100ngml [11]. That is, variables ci, cm and g are dimensionless
quantities. Consequently, the units of parameter Pb should be redefined as
mm
day (see equation (4.4)).

The initial position of the boundary is defined as:

Γ(0) = ∂Ωb ∪ ∂Ωi. (4.5)

The movement of the boundary is determined by its normal velocity, the
expression for which is given in equation (4.4).

Remark 4.3. The term ’moving boundary problem’ is used for the formu-
lated equations, which constitute the present model. It is different from the
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classical Stefan problem. The term ’moving boundary problem’ is applied,
since the partial differential equations within the evolving domain, which
changes in time, are solved. The temporal evolution of the domain has to
be determined as a part of the solution. Time-dependent problems of such
type are called moving boundary problems (see for example the introduction
to the monograph by Crank [22]).

The movement of the domain boundary, which corresponds to the ossifi-
cation front, is given by equation (4.4). It is not derived from the principle
of conservation of some quantity, as it is done in classical Stefan problems.
Indeed, the ossification front moves due to the physical phenomenon, reg-
ulated by the osteogenic cells, in which these cells are located on the bone
surface and deposit new bone matrix. Therefore, the domain boundary is
gradually evolving due to the action of the cells. Some of these cells remain
on the bone surface, whereas others are buried by the matrix as it is shown in
Figure 4.2. Therefore, to describe accurately this phenomenon the temporal
evolution of the bone surface is modeled. That is why it was assumed that
the normal boundary velocity is proportional to the local concentration of
mature osteogenic cells. The boundary motion is effected only by the local
cell density at the boundary itself. Mature osteogenic cells do not release
any bone matrix away from a rigid surface, and consequently, they do not
have any influence on the movement of ossification front.

The idea of the limit concentration at the moving interface, which is often
used in classical Stefan problems, is not applicable in the present model,
since even a low concentration of cells will provide some slow advance of the
ossification front.

As it was mentioned, the initial cell densities and growth factor concen-
tration are assumed to be zero:

ci(~x, a, 0) = 0, cm(~x, 0) = 0, g(~x, 0) = 0, ~x ∈ Ω, a ∈ [0, 1]. (4.6)

The boundary conditions are derived from the following assumptions. The
source of immature cells and of growth factor are considered at the old bone
surface ∂Ωb from t = 0 until time tcbone and tgbone, respectively. The time
period tgbone is set to 4 days [6]. The other time parameter tcbone is esti-
mated from numerical simulations, based on sensitivity analysis, presented
in Appendix A.1. The value tcbone = 1 day is chosen. For t > tcbone and
t > tgbone, no source of osteogenic cells and of growth factor at the old bone
boundary is assumed. As it was mentioned, during haemostasis phase, blood
platelets attach to the implant surface, and after being activated, they start
to release growth factors. This release of growth factor by activated plate-
lets is represented in the current model by means of a boundary condition.
The influx of growth factor is defined as a time-dependent function gimpl(t).
This function is supposed to decay exponentially [6]. Since it is assumed to
decrease rapidly, the influx is set to zero for max(tcbone, tgbone) = 4 days.
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In the current model, the movement of the domain boundary is supposed
to start after a certain time period, larger than max(tcbone, tgbone) = 4 days.
Due to the boundary movement, a special treatment of the fluxes of the
model variables is necessary. Mature osteogenic cells, adjacent to the bone-
forming surface, are assumed to become osteoblast. Hence according to the
principles for endosseous healing, they become immobile and are trapped by
the newly formed bone. On the contrary, immature cells and growth factor
are assumed to be pushed out by the moving surface, in a piston-like way
(they are assumed not to be able to penetrate into the bone). According to
these assumptions, the conditions for the fluxes of the model variables are
set at the domain boundary. The derivation of the particular expressions is
given in Appendix A.2.

Thereby, the boundary conditions are defined as follows:{
(−Dc∇sci + χ(g, ctot)ci∇sg) ( ~X, a, t) · ~n( ~X, t) = 0, ~X ∈ ∂Ωi,

(−Dc∇sci + χ(g, ctot)ci∇sg) ( ~X, a, t) · ~n( ~X, t) = −cbone(a), ~X ∈ ∂Ωb,
(4.7)

for a ∈ [0, 1], t ≤ tcbone;

(−Dc∇sci + χ(g, ctot)ci∇sg) ( ~X, a, t) · ~n( ~X, t) = ci( ~X, a, t) vn( ~X, t), (4.8)

for a ∈ [0, 1], ~X ∈ Γ(t), t > tcbone;

(−Dc∇scm + χ(g, ctot)cm∇sg) ( ~X, t) · ~n( ~X, t) = 0, (4.9)

for ~X ∈ Γ(t), t > 0;

−Dg∇sg( ~X, t) · ~n( ~X, t) = −gimpl(t), (4.10)

for ~X ∈ ∂Ωi, t ≤ max(tcbone, tgbone);

−Dg∇sg( ~X, t) · ~n( ~X, t) = −gbone, ~X ∈ ∂Ωb, t ≤ tgbone; (4.11)

−Dg∇sg( ~X, t) · ~n( ~X, t) = g( ~X, t) vn( ~X, t), ~X ∈ Γ(t), t > tgbone. (4.12)

In the above formulas, ~n( ~X, t) is the unit outward normal of boundary Γ(t)
of subdomain Ωs. The constant parameter gbone and function cbone(a), re-
spectively, represent the source of growth factor and of immature osteogenic
cells at differentiation level a, both found at the old bone surface.

Let us denote the total influx of immature cells by parameter Cbone, i.e.

Cbone =
∫ 1

0
cbone(a) da. (4.13)

It is assumed first that the cells, which are recruited from the old bone
surface, are completely non-differentiated (have maturation level equal to
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zero). Then function cbone(a) should be defined through the Dirac delta
function δ(a), i.e

cbone(a) = Cbone δ(a), a ∈ [0, 1].

The present mathematical model is constructed mainly to be used for the
numerical simulations of the osseointegration process. Then it can be useful
to smooth the Dirac delta function, so that the boundary condition (4.7) can
be incorporated into the numerical scheme exactly. Therefore, let us consider
some small parameter δa. Then the source of cells can be represented by
smoothed function

cbone =

{
Cbone · 2

δa
(1− a

δa
), a ∈ [0, δa],

0, a ∈ [δa, 1].
(4.14)

This function satisfies condition (4.13). The parameter δa corresponds to the
range of maturation level of cells, that are recruited from the surrounding
bone tissue, and is introduced in the model, in order to make it more suitable
for the numerical simulations.

External sources of osteogenic cells and of growth factor are introduced
through boundary conditions (4.7), (4.10) and (4.11), which are defined at
surfaces ∂Ωi, ∂Ωb for time less than tcbone, tgbone and max(tcbone, tgbone),
respectively. That means, that the implant surface ∂Ωi and the old bone
surface ∂Ωb should be a part of the boundary Γ(t) of the physical domain
Ωs for t ≤ max(tcbone, tgbone). Otherwise, conditions (4.7), (4.10) and (4.11)
make no sense. A new parameter is introduced:

t0 = max(tcbone, tgbone).

In order to obtain initiation of bone formation only after time t0, we want our
solution to satisfy the following relation for the movement of the interface

vn( ~X, t) = 0, ~X ∈ Γ(t), t ≤ t0 = max(tcbone, tgbone). (4.15)

The above equation is not imposed explicitly in the current simulations,
however, the biological parameters are chosen in such a way, that equation
(4.15) is satisfied a posteriori. From equations (4.5) and (4.15) it follows
that Γ(t) = ∂Ωi ∪ ∂Ωb, for t ≤ t0, i.e. the subdomain Ωs will keep its initial
geometry and occupy the whole peri-implant region at least until time t0.

For the selected parameter values, time t0 is equal to 4 days. Condition
(4.15) means that bone does not start forming earlier than t0 days. Value
t0 = 4 days is in line with experiments [1], in which newly formed bone was
observed only at the end of the first week. Condition (4.15) is accomplished
by an appropriate choice of the model parameters. In particular, an upper
limit ulimb for the differentiation rate ub is defined, i.e.

ub ≤ ulimb . (4.16)
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From condition (4.16), and since the initial density of immature and mature
cells is zero, and since the maturation level of immature osteogenic cells,
which originate from the source at the old bone surface, is not larger than
δa (see equations (4.7) and (4.14)), it follows that no mature cells will derive
from immature cells, at least until time

tlim =
1− δa

ulimb
. (4.17)

That is
cm(~x, t) = 0, ~x ∈ Ω̄s, t ≤ tlim. (4.18)

If the following relation holds:

ulimb <
1− δa
t0

(4.19)

then for time tlim, defined in equation (4.17), it holds tlim = 1−δa
ulim

b

> t0, and

from equations (4.18) and (4.4) it follows that vn( ~X, t) = 0, for ~X ∈ Γ(t),
t ≤ t0 < tlim, and condition (4.15) holds.

Remark 4.4. Note that two types of boundary conditions have been defined.
Boundary condition (4.4) determines the evolution of the domain boundary
in time. Another set of boundary conditions, given by equations (4.7)–(4.12),
is necessary for the uniqueness of the solution of governing equations (4.1)–
(4.3), defined within the soft tissue region Ωs. Hence all the requirements
for well-posedness (in terms of existence and uniqueness) of the moving
boundary problem are fulfilled.

4.4 Model validation

In this section, the present model is validated against experiments. Ap-
proximate solutions are obtained from numerical simulations. The values of
the model parameters are taken from the literature and are estimated from
numerical simulations. A parametric study is carried out, and some conclu-
sions about the influence of various parameters on the model predictions are
drawn.

4.4.1 Numerical simulations

Numerical simulations are performed for a 2D axisymmetric physical do-
main. A 1D physical domain makes calculations much faster and much
simpler. However, some important solution characteristics can not be rep-
resented in 1D simulations. For example, bone front propagation from the
corners, formed by the implant body and by the thread, has a large influ-
ence on the final state of osseointegration and can only be modeled for a 2D
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geometry of the physical domain. To have a full picture of the model char-
acteristics it is necessary to perform a parametric study for a 2D physical
domain, despite it leads to a large computation time and to a complicated
numerical algorithm. The solution of non-linearly coupled PDE’s within an
irregular 2D physical domain, which evolves in time, is a rather challenging
task. A derivation of the numerical approach designed for the solution of the
present problem is a separate subject of the research. Therefore, Chapter 5
as a whole is devoted to its description. At this moment it is only mentioned,
that the governing advection-diffusion-reaction equations are solved with the
use of the finite volume method. The embedded boundary method is used
to capture an irregular geometry of a 2D physical domain and the level set
method is applied to track the evolution of the physical domain. The explicit
modified Euler method is used for time integration. More details about the
solution technique are given in the Chapter 5.

An approximate geometry of the initial healing site, formed by the thread
of the implant and by the old bone surface, is determined from the image
of the endosseous implant given in Berglundh et al. [14] (Figure 4.3). The
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Figure 4.3: Initial geometry of the healing site, bounded by the thread of
the implant from the left and the old bone surface from the right

sizes of the initial uniform rectangular control volumes along r−, z− and
a− axes are chosen to be equal to hr = 0.0045 mm, hz = 0.005 mm and
ha = 0.05, respectively.

4.4.2 Model parameters

The model parameters as such, and their magnitudes, determine the be-
havior of the model. The values of the parameters, which provide physical
solutions, are found in this section. It is necessary to specify certain criteria
to assess biologically relevant solutions. A focus of the numerical studies pre-
sented by Amor et al. [6] and Moreo et al. [67] is on the distance and contact
osteogenesis modes, which are predicted by their osseointegration models for
micro-rough and smooth implants, respectively. Therefore, a path of bone
formation predicted by the present model for the implant surfaces with var-
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ious magnitudes of the micro-roughness is the main criterion applied for
the choice of the model parameters. In the experiments by Abrahamsson
et al. [1], contact osteogenesis was observed near a rough implant surface,
and distance osteogenesis occurred near smooth implants. The possibility to
quantify the micro-roughness of the implant surface is incorporated into the
present model implicitly through the boundary conditions for the growth
factor concentration. The influx of growth factors at the implant surface
corresponds to the release by activated platelets. It is known from exper-
iments [56, 71] that the rate of adhesion of platelets, their activation and
release of growth factors are higher near a micro-rough implant surface than
near smooth surfaces. Two types of implants are considered in the present
model: a micro-rough ’Sand-Blasted, Large Grit, Acid-Etched’ (SLA) im-
plant and a smooth ’turned’ implant. A high value and a low value of the
growth factor source are considered at the surfaces of a SLA implant and of
a ’turned’ implant, respectively. The micro-roughness of the implant is rep-
resented by the parameter Epl, which is proportional to the influx of growth
factors at the implant surface.

A large number of numerical simulations is introduced in order to deter-
mine relevant values of the model parameters. Due to a large number of the
parameters a random selection of the parameters requires an enormous num-
ber of simulations. Therefore, random search is not efficient in the current
case. The following approach is used to choose the values of the parameters.
At the first step, the ability of the model to predict distance osteogenesis for
smooth implants is tested. As a first approximation, the influx of growth
factors at the smooth implant surface is assumed to be very small and is set
to zero: Epl = 0. The rest of the model parameters is estimated, such that
a bone-forming front moves from the old bone surface towards the implant
(distance osteogenesis mode).

Bone formation near the two different implant types is modeled by vary-
ing the value of Epl, whereas all other model parameters are kept unchanged.
Hence at the second stage, the value of Epl corresponding to a micro-rough
SLA implant surface is chosen, such that new bone starts forming directly
at the implant surface (contact osteogenesis). If it is not possible to find
such a value of Epl, then the parameters, which were estimated at the first
step, should be readjusted, until contact osteogenesis is implemented into
the model as well as distance osteogenesis.

Finally, a limit value Elimpl for the source of growth factor Epl near the
surface of the smooth turned implant is found, such that distance osteoge-
nesis mode is predicted for Epl ≤ Elimpl .

The expressions for the model parameters are given in Table 4.1. The
values for the constant parameters of the model equations and of the boun-
dary conditions are specified in Table 4.2. In the right column of the table,
the references are noted, from which the values of the constant model pa-
rameters are taken. No reference is given next to the parameters, which are
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Table 4.1: Expressions for the dependent model parameters

Dependent parameter expression Description

χ(g, ctot) =
χ0g

K2
ch + g2

(1− ctot), if ctot < 1

0, if ctot ≥ 1

Osteogenic cell chemotaxis

Ac(g) = Ac0

(
1 +

g

Kp + g

)
Osteogenic cell proliferation

ub(g) = ulimb
g2

K2
u + g2 Osteogenic cell differentiation

Ec(g) =
Ec0 g

Kg + g

γ(a) = aλc

Growth factor release by os-
teogenic cells

gimpl(t) = Eple
−λplt Growth factor release by acti-

vated platelets



96 Chapter 4. Moving boundary model for endosseous healing

estimated from numerical simulations or based on educated guesses.
Further, an initialization of each model parameter is described in de-

tail. In order to justify the choice of values for the parameters, which are
estimated from simulations, and in order to demonstrate, how various pa-
rameters influence the model behavior, a sensitivity analysis is performed.
The main results of the sensitivity analysis are presented in Section 4.4.3.

Remark 4.5. The model variables ci, cm and g are nondimensionalized (see
Remark 4.2). This fact is taken into consideration, when the parameters of
the model are defined. Appropriate scaling of parameter values is applied
and suitable units of the parameters are chosen.

The chemotaxis coefficient χ(g, ctot) is defined as in [6] times the term
(1− ctot), if the total cell density is less than saturation limit 1. Otherwise,
chemotaxis is switched to zero. This switch prevents, that cells migrate
towards regions, where the cell density has reached its saturation value. In
the regions, where the saturation limit has been exceeded, no chemotaxis
takes place, and cell migration is determined by cell diffusion. The value for
the constant parameter Kch is also taken from [6].

The values of the chemotaxis coefficient χ0 and of the cell diffusivity
coefficient Dc are estimated from numerical simulations. See Section 4.4.3
for a discussion on the choice of these parameters.

The expression for the proliferation coefficient Ac(g), and the values of
the parameters Ac0 and Kp are taken from Moreo et al. [67].

It is reported in Linkhart et al. [62] and Dimitriou et al. [25] that growth
factors enhance differentiation into osteoblasts. Therefore, it is assumed that
the differentiation rate ub(g) depends on the growth factor concentration.
For the proposed relation, ub(g) ≈ 0, if g � Ku, and it increases to the limit
value ulimb , if the growth factor concentration g grows. The choices of values
for the parameters ulimb and Ku are discussed in Section 4.4.3.

The expression for the growth factor release parameter Ec(g) and the val-
ues of the parameters Ec0 and Kg are taken from [6]. It is assumed according
to Dimitriou et al. [25], that growth factors are released by immature and
mature cells. Furthermore, it seems to be necessary to introduce the depen-
dence of growth factor release on the level of maturation through the power
function γ(a). The exponent of this function is denoted by the parameter
λc ≥ 0. Various authors use different assumptions for growth factor release
in their models. For example, Moreo et al. [67] define the same production
rate for osteogenic cells (immature cells) and osteoblasts (mature cells). For
the present approach, this assumption is equivalent to a zero value of the
parameter λc. On the other hand, Amor et al. [6] assume that growth factor
is produced only by osteoblasts. Then an option λc → +∞ will represent
this situation in the present model. The choice of the value of exponent λc
is discussed in Section 4.4.3.

As in [6], it is assumed that the number of platelets at the implant
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Table 4.2: Values of the model parameters, and boundary condition param-
eters

Constant parameter values Description Ref.
Dc = 0.0998 mm2/day Osteogenic cell diffusion coefficient
χ0 = 0.324 mm2/day Osteogenic cell chemotaxis coeffi-

cient
Kch = 0.01 Growth factor concentration, related

to osteogenic cell chemotaxis coeffi-
cient

[6]

Ac0 = 0.25 day−1 Half of the maximal proliferation co-
efficient

[67]

Kp = 0.1 Growth factor concentration, related
to osteogenic cell proliferation coef-
ficient

[67]

ulimb = 0.2 day−1 Maximum cell differentiation rate
Ku = 0.01 Growth factor concentration, related

to cell differentiation rate
Dg = 0.045 mm2/day Growth factor diffusion coefficient [6]

dg = 100 day−1 Growth factor decay rate [6]
Ec0 = 570 day−1 Growth factor production rate by os-

teogenic cells
[6]

Kg = 1 Growth factor concentration, related
to growth factor production rate

[6]

λc = 2 Parameter, related to growth factor
production rate by immature cells

gbone = 0.6 mm/day Influx of growth factors at the old
bone surface

Cbone = 0.07 mm/day Influx of cells at the old bone surface
δa = 0.1 Maximum maturation level of cells,

recruited from the old bone surface
Influx of growth factors, released by
activated platelets

Epl ≤ Elimpl = 0.32 mm/day – at the turned implant surface
Epl = 204.8 mm/day – at the SLA implant surface

λpl = 1 day−1 Platelets degradation rate coefficient [6]
Pb = 0.01 mm/day Bone-forming surface velocity coeffi-

cient
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surface decays exponentially with rate λpl = 1 day−1, which gives a half
time of ln 2 days. Hence the release of growth factors decreases in the same
way. The production rate Epl at t = 0 is estimated in Section 4.4.3.

The value for the growth factor decay rate dg is defined as in Amor et al.
[6].

The maximum maturation level δa = 0.1 of cells, recruited from the old
bone surface, is chosen to be of order of the length of the grid spacing in the
a-coordinate, used in the simulations.

The value of the parameter Dg is taken from Amor et al. [6]. The
dependence of the solution on the value of Dg is discussed in Section 4.4.3.

4.4.3 Sensitivity analysis

As it is outlined in Section 4.4.2, at the first step of an estimation of the
parameter values, a zero influx of growth factors is assumed at the implant
surface, i.e. Epl = 0. The values of the parameters are chosen, such that
distance osteogenesis is predicted, i.e. a bone-forming front moves from the
old bone surface towards the implant.

Remark 4.6. The numerical solutions presented in this section are obtained
for a fine mesh resolution. The sizes of the initial uniform rectangular control
volumes along r−, z− and a− axes are equal, respectively, to hr = 0.0045
mm, hz = 0.005 mm and ha = 0.05, respectively.

The numerical solution of the model equations, which is obtained for the
parameter values in Tables 4.1 and 4.2 and for Epl = 0, is plotted in Figure
4.4. Distance osteogenesis is predicted by simulations, if a considerable
amount of growth factors is only observed in the regions, situated close to
the bone-forming surface. Suppose, that bone starts forming at the old
bone surface and not at the implant surface. If the growth factors are able
to spread far from the bone-forming surface, then they can reach the implant
surface after a certain time. The growth factors cause cell differentiation and
cell migration towards the implant due to chemotaxis. Mature osteogenic
cells appear and bone formation is initiated near the implant. Hence distance
osteogenesis cannot be modeled, unless the growth factor concentration is
always low in the regions, which are not adjacent to the new bone surface.

Since the sources of cells and of growth factors are considered only on
the old bone surface, a layer with a high cell density and a high growth
factor concentration is formed near the old bone. The thickness of this layer
depends on random walk and chemotaxis of the cells. Increasing the value of
the cell diffusion coefficient Dc and/or decreasing the chemotaxis coefficient
χ0 lead to a faster spreading of cells towards the implant. The cells release
growth factors and the width of the layer with a high cell density and a high
growth factor concentration increases.

Remark 4.7. Further, the region of the soft tissue domain with a high cell
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Figure 4.4: Plots of the mature cell density cm, of the total cell density ctot
and of the growth factor concentration g at the time moments t = 7, 15, 24
and 28 days for the parameter values given in Tables 4.1 and 4.2 and for
Epl = 0. The bone-forming surface moves from the old bone surface towards
the implant (distance osteogenesis)
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density and a high growth factor concentration are referred to as “high
density- high concentration layer”. Such a region is usually adjacent to the
boundary of the domain. The thickness and the length of the layer can
be considered. The length of the layer corresponds to the length of the
ossification front.

The value 0.75 · 0.133 = 0.0998 mm2/day is assigned to the diffusion
coefficient Dc in Table 4.2, whereas 0.133 mm2/day is the value for the cell
diffusion coefficient defined in Moreo et al. [67]. The value 0.133 mm2/day
yields a large width of the high density- high concentration layer, adjacent
to the bone-forming surface, and mature osteogenic cells appear near the
implant body, i.e. at the middle of the implant surface, at day 21 (Figure
4.5).

A similar effect is reached, if the reference value of the chemotaxis
coefficient χ0 is divided by two, i.e. if χ0 = 0.5 · 0.324 mm2/days =
0.162 mm2/days. In this case, bone starts forming at the implant surface
at time t = 15 days (Figure 4.6).

The growth factor diffusion coefficient Dg effects the width of the high
density- high concentration layer to a smaller extent. Increasing the value
of Dg by two times yields the appearance of mature osteogenic cells in the
middle of the implant surface at day 24 (Figure 4.7).

Decrease of the diffusion Dg to the value 0.0225 mm2/days does not
change the path of bone formation significantly.

Decrease of the value of the cell diffusion coefficient Dc to 0.5 · 0.133 =
0.0665 mm2/days, or increase of the reference value of the chemotaxis coef-
ficient χ0 by two times yield smaller length and width of the high density-
high concentration layer compared with the solution for the reference val-
ues Dc and χ0 (see Figures 4.4, 4.8 and 4.9). For the decreased Dc and
increased χ0, bone forms only from the old bone surface and the length of
the ossification front decreases significantly at the end of the second week.

As it is mentioned in Section 4.3.2, the value of the maximum cell dif-
ferentiation rate ulimb should be less than 1−δa

4 days−1 = 0.225 days−1.
Abrahamsson et al. [1] observed, that bone formation started at the end
of the first week. Hence the differentiation rate should be larger than
1−δa

7 days−1 ≈ 0.1285 days−1. The estimated value of 0.2 days−1 is as-
signed to ulimb . Simulations provide similar results for the rates 0.2 days−1

and 0.224 days−1. The smaller values 0.18 and 0.15 days−1 of ulimb yield a
delay of cell differentiation and, hence, of bone formation. A delay of bone
formation is clearly observed in the numerical solutions. For example, the
mature cell density is maximal near the old bone surface and it reaches the
value 0.6 at the time moments 7.9, 6.7 and 6 days for the values 0.15, 0.18
and 0.2 days−1 of ulimb , respectively, as it is illustrated in Figure 4.10.

The parameter Ku influences the cell differentiation in the regions with
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Figure 4.5: Plots of the mature cell density cm, of the total cell density ctot
and of the growth factor concentration g at the time moments t = 7, 15 and
21 days for the parameter values given in Tables 4.1 and 4.2 and for Epl = 0
and Dc = 0.133 mm2/days. New bone matrix starts forming at the implant
body surface at time 21 days
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Figure 4.6: Plots of the mature cell density cm, of the total cell density ctot
and of the growth factor concentration g at the time moments t = 7 and 15
days for the parameter values given in Tables 4.1 and 4.2 and for Epl = 0
and χ0 = 0.162 mm2/days. New bone matrix starts forming at the implant
body surface at time 15 days
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Figure 4.7: Plots of the mature cell density cm, of the total cell density ctot
and of the growth factor concentration g at the time moments t = 7, 15 and
24 days for the parameter values given in Tables 4.1 and 4.2 and for Epl = 0
and Dg = 0.09 mm2/days. Mature osteogenic cells appear in the middle of
the implant surface at time t = 24 days

a low concentration of growth factors, since the differentiation rate ub is de-
fined as ulimb

g2

K2
u+g2

in Table 4.1. Small values of Ku yield a large differentia-
tion rate of cells even in the regions, where the growth factor concentration
g is considerably low. If Ku is large, then active cell differentiation occurs
only in the regions, where g is high. Sensitivity analysis shows, that the
numerical solutions are similar for the reference value 0.01 of Ku, defined
in Table 4.2, and for the small value 0.001. Increasing Ku to the value 0.1
yields that no mature cells appear within the peri-implant region and no
bone forms, due to deficiency of cell differentiation.

It follows from simulations that the values 1, 2 and 3 of the parameter λc
provide similar numerical solutions. The value 2 is chosen as the reference
value in Table 4.2.

The values of the parameters gbone and Cbone are chosen in such a way,
that bone formation is initiated at the old bone surface at the end of the
first week. Numerical simulations provide similar solutions for the reference
value 0.6 mm/days of gbone and for values twice as small and twice as large.
Multiplication of the chosen value 0.07 mm/days of Cbone by two leads to
a large width of the layer with a high concentration of growth factors and
a high density of cells at the bone-forming surface. Hence a larger influx of
cells at the old bone surface leads to appearance of mature osteogenic cells



4.4. Model validation 103

t=
15

 d
ay

s

1.4 1.8
0

0.5

c
m

 

 

0.2
0.4
0.6
0.8

1.4 1.8
0

0.5

c
tot

 

 

0.2
0.4
0.6
0.8

1.4 1.8
0

0.5

g

 

 

1
2.5
4

t=
24

 d
ay

s

1.4 1.8
0

0.5

 

 

0.2
0.4
0.6
0.8

1.4 1.8
0

0.5

 

 

0.2
0.4
0.6
0.8

1.4 1.8
0

0.5

 

 

1

2.5

4

t=
28

 d
ay

s

1.4 1.8
0

0.5

 

 

0.2
0.4
0.6
0.8

1.4 1.8
0

0.5

 

 

0.2
0.4
0.6
0.8

1.4 1.8
0

0.5

 

 

1

2.5

4

Figure 4.8: Plots of the mature cell density cm, of the total cell density
ctot and of the growth factor concentration g at the time moments 15, 24
and 28 days for the parameter values given in Tables 4.1 and 4.2 and for
Epl = 0 and Dc = 0.5 · 0.133 = 0.0665 mm2/days. The region, in which
mature osteogenic cells are present is much smaller, compared to the case
Dc = 0.75 · 0.133 mm2/days, illustrated in Figure 4.4
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Figure 4.9: Plots of the mature cell density cm, of the total cell density
ctot and of the growth factor concentration g at the time moments t = 6,
7, 9, 15, 24 and 28 days for the parameter values given in Tables 4.1 and
4.2 and for Epl = 0 and χ0 = 0.648 mm2/days. The region, in which
mature osteogenic cells are present is much smaller, compared to the case
χ0 = 0.324 mm2/days, illustrated in Figure 4.4
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delay of cell differentiation and of bone formation, which are well observed
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Figure 4.11: Plots of the mature cell density cm, of the total cell density
ctot and of the growth factor concentration g at the time moments t = 6, 9
and 28 days for the parameter values given in Tables 4.1 and 4.2 and for
Epl = 0 and Cbone = 0.035 mm/days. The bone-forming surface moves from
the corners formed by the implant thread and by the old bone surface
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at the implant body surface at day 18. Hence distance osteogenesis is not
predicted for a large value of Cbone.

Division of the reference value of Cbone by two yields that the ossification
front advances from the corners formed by the implant thread and by the old
bone surface (Figure 4.11). A similar path of bone formation is illustrated
in Figure A.1 in Appendix A.1. The solutions plotted in the last figure are
obtained for a small time span of the influx of osteogenic cells at the old bone
surface tcbone = 0.5 days. Therefore, the current path of bone formation is
related to a weak source of osteogenic cells at the old bone surface.

The value of the bone-forming surface velocity coefficient, Pb, is esti-
mated in such a way that the amount of newly formed bone within the
peri-implant region after four weeks of simulation is line with the experi-
mental data of [1].

Up to this point a zero source of growth factors at the implant surface was
assumed. This assumption is used in the numerical simulations, which are
carried out to estimate all necessary parameter values, except the value of the
parameter Epl corresponding to a micro-rough SLA implant. For the SLA
implant, a value for Epl is chosen, such that bone formation is observed at
the entire implant surface (contact osteogenesis) at the end of the first week.
Depending on the value of Epl, different paths are predicted by simulations,
which are illustrated in Figures 4.12–4.15. In the case Epl = 3.2 mm/days
bone formation proceeds from the old bone surface and from the corners,
formed by the implant body and by the thread (Figure 4.12).

The values 4 · 3.2 mm/days and 16 · 3.2 mm/days of Epl yield the oc-
currence of bone formation at the lateral sides, i.e. at the thread surface
(Figures 4.13 and 4.14).

For the reference value 64∗3.2 = 204.8 mm/days of Epl in Table 4.2, the
bone-forming surface starts moving from the entire implant surface including
the thread. The high density- high concentration layer is moving to the left
the first ten days and becomes aligned with the implant body surface at
time 11 days (Figure 4.15).

The limit value Elimpl is chosen is such a way, that for all Epl ≤ Elimpl
distance osteogenesis is predicted by the model. The value 0.32 mm/days
of the parameter Elimpl is determined from the simulations.

Therewith, more than half of the model parameters are estimated nu-
merically. The rest of the parameters is taken from previous models, in
which some of the parameters are also estimated. The choice of the pa-
rameter values is made in such a way, that the model solution is in line
with the experimental studies mentioned in this work. There is no exper-
imental evidence that the estimated parameter values correspond to their
actual values. The biological relevance of the proposed model parameters
and, probably, more accurate parameter values, should be determined from
further experimental studies.
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Figure 4.12: Plots of the mature cell density cm, of the total cell density
ctot and of the growth factor concentration g at the time moments t = 7, 15
and 28 days for the parameter values given in Tables 4.1 and 4.2 and for
Epl = 3.2 mm/days. Bone formation occurs at the old bone surface and in
the corners, formed by the implant body and by the thread
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Figure 4.13: Plots of the mature cell density cm, of the total cell density
ctot and of the growth factor concentration g at the time moments t = 7, 15
and 28 days for the parameter values given in Tables 4.1 and 4.2 and for
Epl = 4 · 3.2 mm/days. Bone forms at the thread surface
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Figure 4.14: Plots of the mature cell density cm, of the total cell density ctot
and of the growth factor concentration g at the time moments t = 7, 19, 22
and 28 days for the parameter values given in Tables 4.1 and 4.2 and for
Epl = 16 · 3.2 mm/days. Bone forms at the thread surface

4.4.3.1 Numerical solutions for various mesh resolution

The results of numerical simulations presented in Section 4.4.3 are obtained
for a fine mesh resolution. The sizes of the initial uniform rectangular control
volumes along r−, z− and a− axes are equal, respectively, to hr = 0.0045
mm, hz = 0.005 mm and ha = 0.05, respectively. For conciseness, the
present mesh grid is denoted by Ωh, where the subindex h refers to the
chosen spatial resolution.

Some interesting features about convergence of the numerical solutions
against the spatial resolution of the control volume grid are observed dur-
ing simulations. Decrease of the mesh resolution within the physical space
(r, z) can yield completely different path of bone formation predicted by the
numerical solutions.

Consider the initial mesh Ω2h with the following sizes of control volumes:
hr = 0.009 mm, hz = 0.01 mm and ha = 0.05; and the mesh Ω4h, such that
hr = 0.018 mm, hz = 0.02 mm and ha = 0.05.

The numerical solutions for the parameter values in Tables 4.1 and 4.2
and for Epl = 0 and χ0 = 0.648 mm2/days, which are obtained on the
meshes Ω2h and Ω4h, are shown in Figures 4.16 and 4.17, respectively. The
layer of high cell densities and of a high growth factor concentration near
the old bone surface takes a wave-like appearance at the end of the first
week. The wave length is approximately equal to 0.35 mm and 0.7 mm



4.4. Model validation 109

t=
7 

da
ys

1.4 1.8
0

0.5

c
m

 

 

0.2
0.4
0.6
0.8

1.4 1.8
0

0.5

c
tot

 

 

0.2
0.4
0.6
0.8

1.4 1.8
0

0.5

g

 

 

1
2.5
4

t=
11

 d
ay

s

1.4 1.8
0

0.5

 

 

0.2
0.4
0.6
0.8

1.4 1.8
0

0.5

 

 

0.2
0.4
0.6
0.8

1.4 1.8
0

0.5

 

 

1

2.5

4

t=
28

 d
ay

s

1.5 1.8
0

0.5

 

 

0.2
0.4
0.6
0.8

1.5 1.8
0

0.5

 

 

0.2
0.4
0.6
0.8

1.5 1.8
0

0.5

 

 

1

2.5

4

t=
36

 d
ay

s

1.5 1.8
0

0.5

 

 

0.2
0.4
0.6
0.8

1.5 1.8
0

0.5

 

 

0.2
0.4
0.6
0.8

1.5 1.8
0

0.5

 

 

1

2.5

4

t=
42

 d
ay

s

1.5 1.8
0

0.5

 

 

0.2
0.4
0.6
0.8

1.5 1.8
0

0.5

 

 

0.2
0.4
0.6
0.8

1.5 1.8
0

0.5

 

 

0.5
1
1.5
2
2.5

t=
63

 d
ay

s

1.5 1.8
0

0.5

 

 

0.08

0.085

1.5 1.8
0

0.5

 

 

0.08

0.085

1.5 1.8
0

0.5

 

 

2
4
6

x 10
−83

Figure 4.15: Plots of the mature cell density cm, of the total cell density ctot
and of the growth factor concentration g at the time moments t = 7, 11, 28,
36, 42 and 63 days for the parameter values given in Tables 4.1 and 4.2 and
for Epl = 64 · 3.2 mm/days. The high density- high concentration layer is
moving to the left during the first ten days and becomes aligned with the
implant body surface at time 11 days
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Figure 4.16: Plots of the mature cell density cm, of the total cell density
ctot and of the growth factor concentration g at the time moments t = 6,
7, 9, 15, 24 and 28 days for the parameter values given in Tables 4.1 and
4.2 and for Epl = 0 and χ0 = 0.648 mm2/days. The numerical solution is
obtained on the mesh Ω2h with the cell sizes hr = 0.009 mm, hz = 0.01 mm
and ha = 0.05 along r−, z− and a− axes, respectively
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Figure 4.17: Plots of the mature cell density cm, of the total cell density
ctot and of the growth factor concentration g at the time moments t = 6,
7, 9, 15, 24 and 28 days for the parameter values given in Tables 4.1 and
4.2 and for Epl = 0 and χ0 = 0.648 mm2/days. The numerical solution is
obtained on the mesh Ω4h with the cell sizes hr = 0.018 mm, hz = 0.02 mm
and ha = 0.05 along r−, z− and a− axes, respectively
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for the meshes Ω2h and Ω4h, respectively. After that, the layer splits in its
middle and shrinks towards the corners formed by the old bone surface and
the implant thread. Consequently, the bone forming front moves from the
corners to the center of the healing site. Such a path of the ossification front
is completely different from the path predicted by simulations for the fine
mesh Ωh shown in Figure 4.9.

Formation of the wave-like high density - high concentration layer near
the old bone surface and its splitting are also observed for some other param-
eter values and coarse meshes. Consider the values of the model parameters
given in Tables 4.1 and 4.2 and the boundary condition Epl = 0. The nu-
merical solution obtained on the mesh Ω4h is plotted in Figure 4.18. The
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Figure 4.18: Plots of the mature cell density cm, of the total cell density ctot
and of the growth factor concentration g at the time moments t = 7, 15, 24
and 28 days for the parameter values given in Tables 4.1 and 4.2 and for
Epl = 0. The numerical solution is obtained on the mesh Ω4h with the cell
sizes hr = 0.018 mm, hz = 0.02 mm and ha = 0.05 along r−, z− and a−
axes, respectively

wave-like layer forms at the old bone surface at the end of the first week. At
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the end of the second week the layer splits and bone is predicted to form in
the corners, which are formed by the old bone surface and by the implant
thread, and then at the lateral surfaces, i.e. near the surface of the implant
thread. The ossification path is different from the path obtained in the solu-
tion for the fine mesh Ωh (see Figure 4.4). For the present parameter values,
the solution for the mesh Ω2h is close to the solution on the mesh Ωh.

Therefore, it can be concluded that insufficient mesh resolution can give
large errors in the numerical solutions. It is important to assess the conver-
gence of the numerical solution against the mesh resolution. Therefore, a
simplified problem is defined in order to study the convergence. The simpli-
fied problem is derived from the original model by setting the velocity of the
boundary of the physical domain to zero. Considering a constant physical
domain makes the comparison of numerical solutions more straightforward,
compared to the situation when the solutions, which are obtained on the
evolving in time domains, should be compared. In order to reduce com-
putation time, the physical domain is simplified to the rectangular region
Ω̄ = {(r, z) ∈ [1.41, 1.85] mm × [0, 0.35] mm}. The part of the domain
boundary (r, z) ∈ {1.85}× [0, 0.35] is assumed to correspond to the old bone
surface. The rest of the domain boundary is the implant surface.

It was found from the numerical simulations, that the appearance of
a wave-like high density- high concentration layer is most sensitive with
respect to the mesh resolution is the x-direction. Further in this subsection,
the solutions of simplified problem are compared for meshes with various
hr sizes. The initial meshes Ω̄4h, Ω̄2h, Ω̄h and Ω̄h/2 constructed within the
simplified physical domain Ω̄ have the respective values 0.02 mm, 0.01 mm,
0.005 mm and 0.0025 mm of the linear size hr. The lengths of the control
volumes along the z- and a axes are kept constant for the present meshes,
such that hz = 0.0175 mm and ha = 0.025.

Consider the numerical solution of the simplified problem for the param-
eter values in Tables 4.1 and 4.2, for Epl = 0 and for Pb = 0. The appearance
of wave patterns is studied. The patterns develop from initial perturbations
or inhomogeneity of the solution in the z− direction. For the full problem,
perturbations appear due to irregular geometry of the physical domain Ωs.
In the simplified problem, an inhomogeneity in the z− direction is imposed
through perturbations of the boundary conditions at the old bone surface.
The perturbations c̃bone and g̃bone are added to the original influx of cells
cbone(a) and of growth factors gbone, which are defined in Section 4.3.2 and
in Table 4.2. Two modes of perturbations are considered. In the first case,

c̃bone = 0.1 · cbone(a) sin
( πz

0.8

)
, g̃bone = 0.1 · gbone sin

( πz
0.8

)
. (4.20)

For the second type of perturbations, a random value of the magnitude from
0 to 0.1 · cbone(a) and from 0 to 0.1 · gbone, respectively, is assigned to c̃bone
and g̃bone at each boundary edge of control volumes, which coincides with
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the old bone surface.
Numerical solutions obtained for the mesh Ω̄4h predict formation of a

high density-high concentration layer, which increases in width from the
bottom to the top for the both types of perturbations (Figure 4.19). The
left boundary of the considered layer has the form of a half wave with the
wave-length approximately 0.7 mm. The wave mode is the same for the
random perturbations and for the ’sine’ perturbations. Therefore, it can be
concluded that the form of the initial perturbations does not directly deter-
mine the mode of the current pattern in the high density - high concentration
layer.

Increase of the mesh resolution in the x-direction yields uniform width
of the considered layer near the old bone surface. The distribution of the
growth factor concentration at time 9 days obtained for the meshes Ω̄2h, Ω̄h,
Ω̄h/2 and for the perturbations defined in equation (4.20) is shown in Figure
4.20. The layers of high cell densities have the same width as the layers of
a high growth factor concentration plotted in Figure 4.20.

For a twice as large value of the chemotaxis parameter χ0, i.e. for χ0 =
0.648 mm2/days, the boundary layer with nonuniform width is obtained at
day 7 for the meshes Ω̄4h and Ω̄2h, if the perturbations defined in equation
(4.20) are added to the boundary conditions. The meshes Ω̄h and Ω̄h/2 with
a finer resolution provide uniform solutions along the z− axis (see Figure
4.21).

Therefore, at this point the following conclusions can be made:
Clause 1. If the parameter values in Tables 4.1 and 4.2 and Epl = 0 are
considered, then

• The solution of the full problem is characterized by the appearance
of the wave-like high density- high concentration layer with the wave
length ≈ 0.7 mm at the end of the first week, if the size of control
volumes hr in r-direction is equal to 0.018 mm (Figure 4.18). If the
mesh resolution in the physical space is increased two times, then the
high density- high concentration layer has almost a uniform length at
day 7 (Figure 4.4).

• The high density- high concentration layer in the solution of the per-
turbed simplified problem has a wave-like profile with wave length
≈ 0.7 mm, if hr = 0.02 mm at day 9 (Figure 4.19). The considered
layer is uniform for the mesh with the resolution increased two, four
and eight times (Figure 4.20).

Clause 2. If the chemotaxis coefficient is increased two times, i.e. χ0 =
0.648 mm2/days, then

• The wave-like layer at the old bone surface appears in the solution
of the full problem at the end of the first week for the meshes Ω4h
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Figure 4.19: Plots of the mature cell density cm, of the total cell density
ctot and of the growth factor concentration g for the parameter values given
in Tables 4.1 and 4.2 and for Epl = 0, Pb = 0 and for the two modes of
perturbations: random perturbations (upper row) and ’sine’ perturbations
defined in equation (4.20) (lower row). The solutions are plotted at time
t = 13 days for random perturbations and at time t = 9 days for the ’sine’
perturbations. The numerical solution is obtained on the mesh Ω̄4h
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Figure 4.20: Plots of the growth factor concentration g at the time moment
t = 9 days for the parameter values given in Tables 4.1 and 4.2, for Epl = 0,
Pb = 0 and for the ’sine’ perturbations defined in (4.20). The numerical
solution is obtained on the meshes Ω̄2h, Ω̄h, Ω̄h/2
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Figure 4.21: Plots of the growth factor concentration g at the time moment
t = 7 days for the parameter values given in Tables 4.1 and 4.2 and for
Epl = 0, Pb = 0, χ0 = 0.648 mm2/days and for the ’sine’ perturbations
defined in (4.20). The numerical solution is obtained on the meshes Ω̄4h,
Ω̄2h, Ω̄h, Ω̄h/2
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(hr = 0.018 mm) and Ω2h (hr = 0.009 mm). The wave length of the
left boundary of the layer is ≈ 0.35 mm for Ω4h and ≈ 0.7 mm for
Ω2h. The layer is uniform along the z-axis in the solution for the mesh
Ωh with the size hr = 0.0045 mm.

• The wave-like layer at the old bone surface appears in the solution of
the perturbed simplified problem at day 7 for the meshes Ω̄4h (hr =
0.02 mm) and Ω̄2h (hr = 0.01 mm). The wave length of the left
boundary of the layer is≈ 0.35mm for Ω̄4h and≈ 0.7mm for Ω̄2h. The
layer is uniform along the z-axis in the solution for the meshes Ω̄h and
Ω̄h/2 with the sizes hr = 0.05 mm and hr = 0.025 mm, respectively.

Clause 3. From Clauses 1 and 2 it follows that the parameter values and
the mesh resolution in the x-direction, for which the present phenomenon
is observed in the solutions of the full and the perturbed simplified models,
perfectly correspond to each other. The wave characteristics of the left
boundary of the high density- high concentration layer in the solution of the
full problem are fully reflected by the solutions for the perturbed simplified
model. Hence the perturbed simplified problem, which is derived in this
section, is suitable to study the phenomenon of the appearance of a wave-
like high density- high concentration layer near the old bone surface.

Clause 4. Formation of the high density- high concentration layer with
a nonuniform width is likely to be related to large errors in the numerical
solutions obtained for a coarse mesh. Meshes with a fine enough resolution
provide solutions with a uniform distribution of the cells densities and of
the growth factor concentration along the old bone surface. The order of
convergence of numerical solutions is studied in Section 4.4.3.2.

Clause 5. Values of model parameters influence the appearance of a wave-
like high density- high concentration layer. Such a layer is observed, for
example, in the numerical simulation for a large value of the chemotaxis
parameter χ0 for the mesh Ω2h. For a twice as small parameter χ0, the
non-uniform layer forms in the solution on the coarser mesh Ω4h but not on
Ω2h.

Clause 6. A wave-like pattern formation and splitting of the high density-
high concentration layer is observed in the solutions plotted in Figures 4.11
and A.1, which are obtained on the finest mesh that can be afforded for sim-
ulations at the present moment. The parameter values are defined in Tables
4.1 and 4.2 and the parameters Cbone and tcbone are decreased two times,
respectively. Therefore, it is not clear, whether such a solution behavior is
characteristic for the exact solution, or whether the numerical solution does
not converge to the exact solution for the chosen mesh resolution.
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4.4.3.2 Convergence against the mesh resolution

The numerical errors and the order of convergence are estimated by com-
paring the numerical solutions obtained for various meshes. Convergence is
considered against the mesh resolution in each of the r-, z- and a-directions
separately. In the series of simulations, the mesh resolution in one direc-
tion is varied, and the resolution in the other two dimensions is the same.
The simulations considered in this section are performed for the parameter
values defined in Tables 4.1 and 4.2 and for Epl = 0 and Pb = 0.

The order of convergence with respect to the mesh resolution in the
z-direction is obtained in the following way. Three meshes with various
numbers nz of control volumes along the z-axis are considered. The sizes of
control volumes along the r- and a-axes are fixed and are equal to 0.0025
mm and 0.025, respectively. The sizes hr and ha are chosen to be as small as
possible, in order to make the error due to discretization in the r- and a- axes
comparatively small. On the other hand, the considered sizes should provide
a reasonable computation time. The considered three meshes, referred to as
Ω̄nz=10, Ω̄nz=20 and Ω̄nz=40, have 10, 20 and 40 control volumes along the
z-axis, respectively. The length of the physical domain Ω̄ in the z-direction
is 0.7 mm. Hence, the present meshes are characterized by the respective
sizes hz = 0.035 mm, hz = 0.0175 mm and hz = 0.00875 mm.

Remark 4.8. The positivity and stability requirements impose severe restric-
tions on the time step size. Therefore, the time steps used for the simulations
presented in this section are very small. Comparison of the numerical so-
lution obtained for various time steps sizes shows, that the numerical error
due to time integration is several orders smaller that the errors due to spa-
tial discretization. Therefore the time integration errors are not considered
below in the text.

The numerical solutions obtained on the meshes Ω̄nz=10, Ω̄nz=20 and
Ω̄nz=40 are compared in the following way. The solution defined on a finer
mesh is projected onto the coarser mesh. The numerical solutions for the
total cell density, for the mature cell density and for the growth factor con-
centration are denoted, respectively, by ~Cnz=20

tot (t), ~Cnz=20
m (t) and ~Gnz=20(t),

where the superscript nz = 20 refers to the resolution of the mesh, on which
the present solution is defined, i.e. of the mesh Ω̄nz=20 for the present no-
tations. The solution on the mesh Ω̄nz=20 can easily be projected onto the
coarser mesh Ω̄nz=10. Each control volume of Ω̄nz=10 contains exactly two
control volumes of the mesh Ω̄nz=20. Hence the projected average value of
some unknown (a cell density or the growth factor concentration) within a
control volume of the mesh Ω̄nz=10 is equal to the mean value of the (av-
erage) values of this unknown within two corresponding control volumes of
the mesh Ω̄nz=20. The solution ~Unz=40(t), U ∈ { ~Cm, ~Ctot, ~G}, is projected
onto Ω̄nz=10 in a similar way. The projected solutions are denoted, respec-
tively, by Lnz=10

nz=20U
nz=20(t) and Lnz=10

nz=40U
nz=40(t), U ∈ {~Cm, ~Ctot, ~G}, where
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Figure 4.22: Plots of the estimated order of convergence with respect to
the mesh resolution the z-direction against time, which is derived from the
solutions obtained on the meshes Ω̄nz=10, Ω̄nz=20 and Ω̄nz=40. Three types
of vector norms are considered: L1, L2 and L∞.
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Figure 4.23: Plots of the order of relative errors between the numerical
solutions obtained on the meshes Ω̄nz=10 and Ω̄nz=20 (blue curve) and Ω̄nz=20

and Ω̄nz=40 (green curve). Three types of vector norms are considered: L1,
L2 and L∞.
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Lnz=10
nz=N is the projection operator from the mesh Ω̄nz=N , N = {20, 40}, onto

the mesh Ω̄nz=10. Note that Lnz=10
nz=10U

nz=10(t) = Unz=10(t). The conver-
gence order is estimated by comparing the solutions for three consecutive
mesh resolutions. For example, the convergence order, which is determined
for the total cell density ctot from the numerical solutions on the meshes
Ω̄nz=10, Ω̄nz=20 and Ω̄nz=40, is calculated as

p = log2

‖Lnz=10
nz=10C

nz=10
tot − Lnz=10

nz=20C
nz=20
tot ‖

‖Lnz=10
nz=20C

nz=20
tot − Lnz=10

nz=40C
nz=40
tot ‖

(4.21)

Derivation of equation (4.21) is based on the Richardson extrapolation and
on the assumption that the numerical error obtained on the mesh with a
cell size h is equal to Chp (see, for example, Vuik et al. [95]).

The order of convergence, which is calculated in different vector norms,
is shown in Figure 4.22. From Figure 4.22, it follows that the estimated
convergence order is close to two most of the time. However the order can
decrease to values less than one at certain time moments. The most likely
reason for such a fluctuation of the estimated convergence order is that the
mesh sizes hr and ha along r- and a-axes are not sufficiently small. The
error from the discretization in the r- and a-direction is combined with the
error of discretization in the z-direction. This issue leads to jumps of the
estimated order of convergence shown in Figure 4.22.

The difference between the numerical solutions, obtained on the con-
sidered consecutive meshes, can be used to assess the order of the total
numerical error related to the current mesh resolution in the z-direction.
The logarithm of the relative error between the numerical solutions, that is
calculated in different vector norms, is plotted in Figure 4.23. In most of
the plots in Figure 4.23, the relative errors are not larger than 10−4. The
maximum relative errors after time t = 5 days appear in the solution for cm
and ctot and they are smaller than 10−3.5.

By analogy, the convergence of the numerical algorithm in the other two
spatial directions is derived. The convergence against hr is estimated from
the numerical solutions obtained on the following meshes. The linear sizes
hz and ha are equal to 0.035 mm and 1/160, respectively. Three values of
the size hr: 0.01 mm, 0.005 mm and 0.0025 mm are used for the meshes
Ω̄nr=44, Ω̄nr=88 and Ω̄nr=176.

The convergence of the algorithm in the a-direction is derived for the
meshes Ω̄na=40, Ω̄na=80 and Ω̄na=160, which have, respectively, 40, 80 and
160 elements along the a-axis. The sizes hr and hz are equal to 0.0025 mm
and 0.035 mm, respectively.

The estimated order of convergence against the grid sizes hr and ha is
plotted in Figures 4.24 and 4.25, respectively. The corresponding relative
errors are shown in Figures 4.26 and 4.27.

The order of convergence in the r-direction is estimated between the
values 2.2 and 2.6 after t = 6 days. It is larger than the actual order of
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Figure 4.24: Plots of the estimated order of convergence with respect to
the mesh resolution the r-direction against time, which is derived from the
solutions obtained on the meshes Ω̄nr=44, Ω̄nr=88 and Ω̄nr=176. Three types
of vector norms are considered: L1, L2 and L∞.
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Figure 4.25: Plots of the estimated order of convergence with respect to
the mesh resolution the a-direction against time, which is derived from the
solutions obtained on the meshes Ω̄na=40, Ω̄na=80 and Ω̄na=160. Three types
of vector norms are considered: L1, L2 and L∞.
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Figure 4.26: Plots of the order of relative errors between the numerical
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and Ω̄nr=176 (green curve). Three types of vector norms are considered: L1,
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the accuracy of the numerical scheme, used for the spatial discretization
of the model equations (4.1)–(4.3), which is equal to two on the uniform
rectangular grid. The errors related to the variation of the mesh resolution
in the r-direction (Figure 4.26) are much larger than those related to the
sizes hz and ha (after time t = 7 days) plotted in Figures 4.23 and 4.27.
The former errors prevail in the numerical solution for t > 7 days and
have the most influence on the estimated convergence order. Due to a large
computation time, it is not possible to estimate the convergence order for
finer meshes with simultaneous refinement in all directions.

The convergence of the algorithm against the resolution in the a-direction
is very poor (Figure 4.24). The first possible reason for this, is that a larger
number of elements should be considered in the a-direction, in order to
obtain better convergence estimates. The second potential reason, is that
the errors due to discretization in r- and z- direction have a considerable
influence on the behavior of the solution. Such a possibility follows from
the order of the relative errors, plotted in Figures 4.23, 4.26 and 4.27. The
estimated errors related to the discretization along the r-axis are comparable
with the errors related to the discretization along the a-axis during the first
week of simulation. The former errors become much larger than the latter
ones for t > 7 days. Further increase of the mesh resolution is likely to
yield a larger order of convergence of the numerical solution, which would
approach the order of accuracy of the spatial discretization. However, it is
not possible to get a solution for finer meshes due to limited computational
resources.

Remark 4.9. It follows from the performed numerical simulations that the
appearance of the wave-like patters of the high density- high concentration
layer is influenced in general by the mesh size hr. The slow convergence
against the mesh resolution in the a-direction is not likely to influence such
critical solution characteristics as the earlier mentioned wave-like patterns
and splitting of the high density- high concentration layer.

An important conclusion, which should be drawn from the results of sim-
ulations, is that one should be very careful with choosing a mesh resolution
when using the present numerical approach for the considered model. In
some situations, it is not possible to assess the robustness of the solution
based only on speculative conclusions about the biological relevance of the
simulation results.

An analysis of the solution convergence against the mesh element size can
reveal the hidden nature of large errors. Furthermore, a stability analysis
of the mathematical model, as well as for the semi-discrete equations is of
relevance.
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Figure 4.27: Plots of the order of relative errors between the numerical
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and Ω̄na=160 (green curve). Three types of vector norms are considered: L1,
L2 and L∞.



124 Chapter 4. Moving boundary model for endosseous healing

4.5 Results and discussion

We consider the solutions obtained for the reference values of the model
parameters given in Tables 4.1 and 4.2 in more detail. Two types of implants
are considered. The limit value Elimpl = 0.32 mm/days is assigned to the
parameter Epl in simulations for a turned implant.
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Figure 4.28: Evolution of the soft tissue region, due to formation of new
bone near a micro-rough SLA implant and near a smooth turned implant.
The contours correspond to the boundary of the soft tissue region, which
shrinks, at time 0, 7, 14, 21, 28, 35, 49 and 63 days

Remark 4.10. It should be emphasized that the implant surface micro-
structure is not considered explicitly. The difference between turned and
rough implants is modeled implicitly, by means of various values for the
growth factor source at the implant surface. This feature is dealt with in a
similar way in the recent models by Amor et al. [6] and Moreo et al. [67].

The evolution of the soft tissue region Ωs for a smooth turned implant
and a micro-rough SLA implant is shown in Figure 4.28. The contours rep-
resent the boundary of the soft tissue domain at time 0, 7, 14, 21, 28, 35,
49 and 63 days. The soft tissue region shrinks in both cases. However, the
bone-forming surface moves in two different ways for a turned and SLA im-
plant, respectively. The ossification front starts to move from the implant
surface if the micro-rough implant is considered, whereas it moves from the
old bone surface till day 26 in the case of the smooth turned implant. In
other words, contact and distance osteogenesis are predicted for the rough
and smooth implants, respectively. Contact osteogenesis leads to a slightly
faster formation of new bone matrix, compared with distance osteogenesis.
In Figure 4.29, the areas of newly formed bone for both implant types are
plotted against time. The area of the healing site Ω is represented by the
dotted line and the areas of newly formed bone near the SLA and turned
implants are shown by the solid and dashed lines, respectively. From Fig-
ure 4.29, it follows that approximately a half of the entire healing site is
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Figure 4.29: The area of newly formed bone against time for contact and
distance osteogenesis, which are observed near the SLA and turned implants,
respectively. The area of the healing site Ω is represented by the dotted line

filled by new bone matrix at the end of the fourth week near the rough
implant and near the smooth implant. In the case of the SLA implant, the
layer of a high concentration of growth factors and a high density of mature
osteogenic cells, which is adjacent to the ossification front, reaches the old
bone surface at day 25 (see Figures 4.15 and 4.28). Hence bone formation is
initiated at the old bone surface at day 25 and the length of the bone form-
ing surface increases rapidly. This issue leads to the increase of the amount
of new bone released per unit of time, which is reflected by the increase of
the slope of the solid line in Figure 4.29 at time t = 25 days. An analogous
effect is observed for the turned implant at the day 27. The layer of a high
cell density and of a high growth factor concentration reaches the implant
body surface at this time (Figure 4.31). Hence bone starts forming at the
implant surface and the rate of new bone formation increases rapidly.

The SLA implant is predicted to be in a direct contact with a newly
formed bone at the end of the first week (Figure 4.28). It may be assumed
that a direct bone-to-implant contact may provide an earlier and better
anchorage of implants [1, 24, 32]. Almost the entire peri-implant region is
predicted to be filled with new bone matrix after nine weeks of simulation
for the both implant types.

Two different modes of bone formation are observed, because of two
different sources of growth factors near the implant surfaces. Due to a strong
source on the micro-rough SLA implant, a high concentration of growth
factors near the implant surface (see the lower left plot in Figure 4.30) leads
to active migration of osteogenic cells from the old bone surface to the
implant, and, consequently, to active differentiation of immature cells into
mature osteogenic cells near the implant, which release new bone matrix (see
the upper left plot in Figure 4.30). Cells at a high maturation level release
growth factors, hence the concentration of growth factors is maintained at a
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high level near the micro-rough implant surface during the first four weeks
(see Figure 4.15).

1.4 1.8
0

0.5

 

 

0.05
0.1
0.15
0.2

1.4 1.8
0

0.5

 

 

1

2

3

1.4 1.8
0

0.5

 

 

0.02

0.06

0.1

0.14

1.4 1.8
0

0.5

 

 

1

2

3

SLA Turned

g
c m

Time 5 days

Figure 4.30: Distribution of the mature cell density cm and of the growth
factor concentration g in the soft tissue region at time 5 days near SLA
and turned implants. High concentration of growth factors leads to differ-
entiation of immature osteogenic cells into mature cells at the SLA implant
surface. No growth factors and no mature cells are found near the turned
implant

In experiments of Berglundh et al. [14] and Abrahamsson et al. [1], new
bone formation was observed both on the SLA implant surface and on the
old bone surface. However, the ossification front is predicted to move only
from the SLA implant surface in the current simulations. The model param-
eter values providing a better correspondence of the model predictions with
experimental results are not found. Adaptation of the treatment of diffusion
and chemotaxis of the cells in the model, by introducing various functional
dependencies of the corresponding coefficients on the cell densities and/or
the growth factor concentration, is a potential direction of the improvement
of the present model.

A weak source of growth factors is considered at the smooth implant sur-
face, and the concentration of growth factors is very low in this region during
the first days in the simulation (see the lower right plot in Figure 4.30). Due
to a low growth factor concentration, cells are not attracted to the implant
surface by a chemotaxis mechanism. The cells are concentrated at the old
bone surface, due to a much larger source of growth factors in this area. A
low concentration of growth factors yields a slow cell differentiation at the
implant surface (see the dependence of the differentiation rate ub on g in
Table 4.1). Cells with low maturation level release growth factors at a low
rate (see equation (5.3) and the expression for γ(a) in Table 4.1). Due to
the aforementioned factors and due to a high decay rate dg, the concentra-
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Figure 4.31: Plots of the mature cell density cm, of the total cell density ctot
and of the growth factor concentration g at the time moments t = 15, 26, 28,
38, 42 and 63 days for the parameter values given in Tables 4.1 and 4.2 and
for Epl = 0.1 · 3.2 mm/days, i.e. a turned implant considered. No growth
factors and no mature cells are found near the turned implant till day 26.
Hence distance osteogenesis is predicted by the numerical simulations
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tion of growth factors and the density of mature osteogenic cells are close
to zero near the implant surface till day 26. As a result, no bone forms at
the surface of the smooth implant during this period (Figure 4.31).

4.6 Conclusions

A general mathematical model for peri-implant bone regeneration is formu-
lated, which is able to capture some important features, that are observed
in reality. The model is defined for the immature and mature osteogenic
cell densities and for the growth factor concentration. Cell differentiation is
considered as an evolutionary process, regulated by the presence of growth
factors. Immature cells are distinguished with respect to the differentiation
level, which is represented by the additional independent variable a, defined
in the maturation space [0, 1]. Consequently, the differentiation path of
individual cells can be considered.

During peri-implant osseointegration, new bone is produced by osteo-
blasts, attached to a rigid surface [1, 14, 65]. Bone formation takes place
only through a direct apposition of new bone matrix on a pre-existing rigid
surface [24]. That is, endosseous bone healing occurs in the form of in-
tramembranous ossification, which can be considered as a moving boundary-
type of bone formation. This effect is directly incorporated into the model,
by the use of the concept of a bone-forming surface, which is defined as a
moving boundary of a temporarily evolving computational domain. This is
the main innovation of the current model, that distinguishes the current for-
malism from the recent models for the peri-implant bone regeneration. Cell
processes, like migration, differentiation and proliferation, are considered
within the region, filled with soft tissue and bounded by the bone-forming
surface. Osteoblasts are represented by the mature cells, which are situ-
ated at the bone-forming surface. Bone formation is introduced through the
movement of the boundary of the computational domain. Since bone is re-
leased by osteoblasts and boundary movement corresponds to the formation
of new bone matrix, the velocity of the boundary movement is assumed to
be proportional to the local osteoblast density. The model is composed of
a system of partial differential equations, defined within the domain with a
moving boundary, along with the set of initial and boundary conditions.

In experiments of Abrahamsson et al. [1], contact and distance osteogene-
sis are observed for micro-rough SLA implants and smooth turned implants,
respectively. It is assumed that this switch in osseointegration mode is
caused by different rates of growth factor release by activated platelets near
the implant surfaces with different micro-structure [56, 71]. In the present
model, the release of growth factor at the implant surface is represented by
means of boundary conditions.

A number of the 2D simulations have been carried out. Two modes of
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bone formation are predicted for the smooth and micro-rough implants. The
micro-structure of the implant surface is modeled implicitly, by changing
the source of growth factors at the implant surface. Contact and distance
osteogenesis are modeled near the micro-rough SLA implant and the smooth
turned implant, respectively. Two dimensional simulations allow to model
various paths of the ossification front corresponding to different sources of
growth factors at the implant surface.





CHAPTER 5

Numerical algorithm

5.1 Introduction

In this chapter, a numerical approach for the solution of the time-dependent
advection-diffusion-reaction equations is described. The equations are de-
fined for a model of bone healing near endosseous implants in Chapter 4.
The model is constructed to simulate early stages of bone regeneration.
The equations model migration of osteogenic cells from the old bone sur-
face to the implant surface, cell differentiation and proliferation. These
processes are assumed to be regulated by growth factors. Diffusion, decay
and release of growth factors by osteogenic cells are also taken into account.
The unknowns in the model are the densities of immature and mature os-
teogenic cells and the concentration of growth factors. New bone is formed
through apposition on a pre-existing surface [24]. The advance of the os-
sification front, which was observed in experiments by Abrahamsson et al.
[1], Berglundh et al. [14], Meyer et al. [65], is modeled by the movement of
the boundary of the physical domain.

A robust method is constructed, which allows to get a numerical solution
in case, when the physical domain is defined in 2D axisymmetric coordinates.
First, an appropriate discretization in physical space, maturation space and
time should be chosen, such that a stable nonnegative solution of the nonlin-
ear advection-diffusion-reaction equations will be obtained. The movement
of the domain boundary, determined from the internal solution, is tracked
with use of the level set method. The embedded boundary method and
some auxiliary interpolation techniques are elaborated in order to adapt the
finite volume discretization, which is in general defined on the structured
rectangular grid, to the evolving irregular physical domain.

Therefore, in Section 5.2, a short description of the model for peri-
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implant osseointegration is given. The numerical algorithm, developed for
the two dimensional physical domain is described in Section 5.3. The im-
portance of positivity of the numerical solution is outlined in Section 5.3.1.
In Section 5.3.2 the construction of the computational mesh within the ir-
regular physical domain is presented. The level set function is used to track
the temporal changes of the domain. The level set equation and the so-
lution method are presented in Section 5.3.3. The equations for averaged
quantities, derived from the initial governing equations, are constructed in
Section 5.3.4. The discretization of the advection-diffusion terms is consid-
ered in Section 5.3.5, which demands the solution of the Riemann problem,
defined for the system of hyperbolic equations. The Riemann solution is
developed in Section 5.3.6. The approximation of the reaction terms, the
boundary conditions and the time integration of the discretized ordinary
differential equations are discussed in Sections 5.3.7, 5.3.8 and 5.3.9, respec-
tively. Final conclusions are drawn in Section 5.4.

5.2 Mathematical model

For convenience, the model equations from Chapter 4 are summarized in this
section. The model for bone regeneration, consists of three partial differ-
ential equations (PDE’s), defined for the densities of immature and mature
osteogenic cells, denoted as ci and cm, and for the concentration of growth
factors g. The peri-implant interface Ω is divided into two subdomains
Ωs and Ωb, which are occupied by soft connective tissue (fibrin network of
blood clot) and new bone respectively. Osteogenic cells and growth factors
are found within the soft tissue region. The boundary between subdomains
Ωs and Ωb is the bone-forming surface. This interface moves in time and is
denoted as Γ(t).

The evolution of the unknown variables is determined by the following
PDE’s

∂ci
∂t

= −∇s · (−Dc∇sci + χ(g, ctot) ci∇sg)

− ∂

∂a
(ub(g)ci) +Ac(g)ci (1− ctot) , (5.1)

∂cm
∂t

= −∇s · (−Dc∇scm + χ(g, ctot) cm∇sg)

+ ub(g)ci(~x, 1, t) +Ac(g)cm (1− ctot) , (5.2)

∂g

∂t
= ∇s · (Dg∇sg) + Ec(g)

(
cm +

∫ 1

0
γ(a)ci da

)
− dgg, (5.3)
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where ctot =
∫ 1
0 cida + cm is the total density of osteogenic cells per unit

of volume. Equation (5.1) is defined for (~x, a, t) ∈ Ωs × [0, 1] × R+, and
equations (5.2), (5.3) – for (~x, t) ∈ Ωs × R+. Operator ∇s is the nabla
operator, defined in physical space, e.g. in cylindrical coordinates

∇s = ~er
∂

∂r
+ ~eθ

∂

∂θ
+ ~ez

∂

∂z
.

The movement of the boundary Γ(t) of the physical domain Ωs is de-
termined by the following expressions for its initial location Γ(0) and the
normal velocity vn:{

Γ(0) = ∂Ωb ∪ ∂Ωi,

vn( ~X, t) = −Pb cm( ~X, t), ~X ∈ Γ(t), t > 0.
(5.4)

The initial cell densities and growth factor concentration are assumed to
be zero:

ci(~x, a, 0) = 0, cm(~x, 0) = 0, g(~x, 0) = 0, ~x ∈ Ωs, a ∈ [0, 1]. (5.5)

The natural boundary conditions are imposed, by equating the sources hi,
hm and hg to the normal fluxes of the variables ci, cm and g:

(−Dc∇sci + χ(g, ctot)ci∇sg) ( ~X, a, t) · ~n( ~X, t) = hi( ~X, a, t), (5.6)

(−Dc∇scm + χ(g, ctot)cm∇sg) ( ~X, t) · ~n( ~X, t) = hm( ~X, t), (5.7)

−Dg∇sg( ~X, t) · ~n( ~X, t) = hg( ~X, t), (5.8)

for ~X ∈ Γ(t), a ∈ [0, 1], t > 0 and

hi( ~X, a, t) =


0, a ∈ [0, 1], ~X ∈ ∂Ωi, t ≤ tc,

−cbone · 2
δa

(1− a
δa

), a ∈ [0, δa], ~X ∈ ∂Ωb, t ≤ tc,

0, a ∈ [δa, 1], ~X ∈ ∂Ωb, t ≤ tc,

ci( ~X, a, t) vn( ~X, t), a ∈ [0, 1], ~X ∈ Γ(t), t > tc,

(5.9)

hm( ~X, t) = 0, ~X ∈ Γ(t), t > 0 (5.10)

hg( ~X, t) =


− gimpl(t), ~X ∈ ∂Ωi, t ≤ tg,

− gbone, ~X ∈ ∂Ωb, t ≤ tg,

g( ~X, t) vn( ~X, t), ~X ∈ Γ(t), t > tg.

(5.11)

In the above formulas, vn( ~X, t) is the normal velocity of the boundary Γ(t)
of subdomain Ωs. The differentiation rate is assumed to be nonnegative.
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Therefore, the following natural boundary condition is specified at the inflow
boundary, in order to provide uniqueness of the solution:

ub(g( ~X, t)) ci( ~X, a, t) = 0, ~X ∈ Ωs, a = 0, t > 0. (5.12)

The expressions and the values for the model parameters are defined in
Tables 4.1 and 4.2.

5.3 Numerical method

In this section a numerical method is described for a solution of the govern-
ing equations of the present osseointegration model in a 2D axisymmetric
physical domain.

Consider the physical domain Ωs, defined in the 2D axisymmetric coor-
dinates (r, z). For the current problem statement, the physical domain is of
irregular shape, and it evolves in time. In this case, the conventional finite
volume discretization of the governing equations on the structured rectan-
gular grid cannot be used in a straight-forward way. Therefore, irregular
cells are used, in order to capture the irregular geometry. Further, the level
set method is applied to track the evolution of the problem domain.

The method of lines forms the basis of the present numerical approach.
First, the governing equations are discretized in the physical domain Ωs and
in the differentiation state domain [0, 1], but not yet in time. The system of
the PDE’s is reduced to a system of ordinary differential equations (ODE’s).
Subsequently, a time integration technique is applied to solve the ODE’s.
Remark 5.1. The governing equations (5.1)–(5.3) are solved within the soft
tissue region Ωs. No unknowns are defined in the subdomain Ωb, and this
region is never considered during the solution procedure. Therefore, for
convenience, the terms ’physical domain’ and ’computational domain’ are
used with respect to the soft tissue region Ωs further in the text.

5.3.1 Positivity of the solution

The initial densities of cells and the initial growth factor concentration are
zero (see equation (5.5)). The outflow of ci, cm and g at the boundaries given
by the fluxes hi, hm and hg in equations (5.9)–(5.11) is nonpositive, if ci, cm
and g are nonnegative. Hence the boundary conditions model the influx of
cells and of growth factors and they do not lead to negative solutions. Then
it can be shown that the governing equations (5.1)–(5.3) have a nonnegative
solution for the present initial and boundary conditions. Equation (5.1) can
be rewritten in the following form:

∂ci
∂t

= Dc∇2
sci − χ(g, ctot) ∇sg · ∇sci − ub(g)

∂ci
∂a

− ci ∇s · (χ(g, ctot) ∇sg) +Ac(g)ci (1− ctot) , (5.13)
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The first term in the right-hand side is a diffusion term, the second and the
third terms model advection in the physical space and in the maturation
space with the velocities χ(g, ctot) ∇sg and ub(g), respectively. The last two
terms in the right-hand side are the reaction terms, which become equal to
zero, if ci = 0. Therefore, neither of the terms in the right-hand side of
equation (5.13) can lead to a sign-change over time and hence there is no
appearance of negative values in the solution for ci, if ci > 0 on Ωs at a
certain time. The same conclusions can be drawn for equations (5.2), (5.3)
providing a nonnegative solution for cm and g for the present initial and
boundary conditions.

Therewith, the exact solution of the considered problem should be non-
negative. However, it is quite common in practice, that numerical simu-
lations give approximate solutions with negative values, even if an exact
solution is known to be positive. This issue does not have any critical mean-
ing, as long as numerical solutions converge to the exact solution.

A numerical algorithm described in this chapter provides nonnegative
solutions for the present model. The requirement on the positivity of ap-
proximate solutions is essential in the current case due to the following
reasons:

• Small negative values appearing in the numerical solutions may grow in
magnitude fast due to nonlinearity of the fluxes of cells. The taxis term
is divided into advection and reaction terms in equation (5.13). The re-
action term (the fourth term in the right-hand side of equation (5.13))
is responsible for potential growth of negative values. More insight
into the behavior of the system with nonlinear fluxes can be provided
by considering a Riemann problem and by splitting the solution into
a set of waves. The Riemann solution is described in Section 5.3.6. In
Section 5.3.6.4, it is shown that nonclassical delta shock waves may
form in the Riemann solution, if negative cell densities appear in the
numerical solution at some time moment. Due to cell diffusion, delta
shock waves are smoothed and look like peaks and troughs growing in
magnitude. Large negative values in the approximate solution indicate
that convergence to a nonnegative exact solution is not achieved.

• Furthermore, negative cell densities do not make any biological sense.

• According to the present model a negative local density of osteoblasts
leads to a reverse movement of the bone-forming front, i.e. to bone
resorption. That is another unphysical consequence of negative ap-
proximate solutions of the model.

Therefore, a numerical algorithm should provide nonnegative values for the
cell densities in order to ensure a convergence and biological relevance of the
numerical solution.
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5.3.2 Definitions of cells and vertices in the grid

The physical domain Ωs is defined in the 2D axisymmetric coordinate system
(r, z). Let us consider some rectangular region [R0, R1] × [Z0, Z1], which
contains region Ωs. Within this rectangular region, the uniform rectangular
Nr×Nz grid is constructed. The grid contains the set W of rectangular cells
(or control volumes) Wj,k ∈ W , (j, k) ∈ Ic = {1, 2, .., Nr} × {1, 2, .., Nz},
and the set Ψh of cell vertices vj+ 1

2
,k+ 1

2
∈ Ψh, (j, k) ∈ Iv = {0, 1, .., Nr} ×

{0, 1, .., Nz}. The control volumes and the vertices are defined as Wj,k =
[rj− 1

2
, rj+ 1

2
]× [zk− 1

2
, zk+ 1

2
], (j, k) ∈ Ic and vj+ 1

2
,k+ 1

2
= (rj+ 1

2
, zk+ 1

2
), (j, k) ∈

Iv, where rj+ 1
2

= R0 + jhr, zk+ 1
2

= Z0 + khz. Cell sizes along axes r
and z are equal to hr = (R1 − R0)/Nr and hz = (Z1 − Z0)/Nz. The
vertices from set Ψh are the nodes of the rectangular volumes from set
W . Edges εj+ 1

2
,k, (j, k) ∈ Ic = {0, 1, .., Nr} × {1, 2, .., Nz} are defined as

the line segments with end-points vj+ 1
2
,k− 1

2
and vj+ 1

2
,k+ 1

2
, and edges εj,k+ 1

2
,

(j, k) ∈ {1, 2, .., Nr} × {0, 1, .., Nz} are the line segments with end-points
vj− 1

2
,k+ 1

2
and vj+ 1

2
,k+ 1

2
.

In order to capture the irregular geometry of the problem domain, the
Cartesian boundary, or the embedded boundary approach is used (see for
example Colella et al. [20], Quirk [81]). The physical domain Ωs is super-
imposed on the Cartesian grid W , and the rectangular cells Wj,k ∈ W are
divided into three types, depending on their location with respect to region
Ωs. The cells, which lie entirely within and outside region Ωs, are called
inner cells and outer cells, respectively. The cells, intersected by the boun-
dary of region Ωs, are defined as cut cells. For each cell, which is either an
inner cell or a cut cell, the corresponding ’active’ cell is constructed, within
which the model equations are discretized. The indexes of active cells are
the indexes of all inner and cut cells, and they are denoted as

Ia = {(j, k) ∈ Ic, such that µ(Wj,k ∩ Ωs) 6= 0},

where µ(W ) is the measure of a set W in the corresponding space, i.e. µ(W )
denotes the volume, the area or the length of W , if the set W is defined in
3D, 2D or 1D space, respectively. The active cells are constructed in the
following way:

Vj,k = Wj,k ∩ Ωs, (j, k) ∈ Ia, (5.14)

and the set of the active cells is defined as

V = {Vj,k, (j, k) ∈ Ia}.

The edges of active cells, which lie on the grid lines, are defined as ej,k+ 1
2

=
εj,k+ 1

2
∩ Ωs, and ej+ 1

2
,k = εj+ 1

2
,k ∩ Ωs.

The differentiation state space [0, 1] is divided into intervals [al− 1
2
, al+ 1

2
],

l = 1, 2, ..., Na, where al+ 1
2

= lha, l = 0, 1, ..., Na and ha = 1/Na. The three-
dimensional active cells are defined as V 3

j,k,l = Vj,k × [al− 1
2
, al+ 1

2
], (j, k) ∈
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Ia, l = 1, 2, ..., Na. Hence cell Vi,k is the orthogonal projection of cell
V 3
i,k,l onto the plane (r, z). The set of the three-dimensional active cells is

denoted by V 3 = {V 3
j,k,l, (j, k, l) ∈ I 3

a }, where I 3
a = {(j, k, l), s.t. (j, k) ∈

Ia, l = 1, 2, ..., Na}. The faces of active cells V 3
j,k,l, which correspond to the

edges ej,k+ 1
2

and ej+ 1
2
,k, are defined as e3

j,k+ 1
2
,l

= ej,k+ 1
2
× [al− 1

2
, al+ 1

2
] and

e3
j+ 1

2
,k,l

= ej+ 1
2
,k × [al− 1

2
, al+ 1

2
].

5.3.2.1 Domain evolution

For the present model, the evolution of the problem domain should be de-
termined, according to relation (5.4). The level set method is used for this
purpose, since it is very effective for those problems, where the temporal
evolution of complex geometries should be determined, including changes in
topology. Another advantage of the method, is that it can be applied on a
fixed Cartesian grid [86], and that there is no need to update the mesh every
time step. Further, it can be adapted for the embedded boundary method,
which is used for the construction of irregular active cells near the boundary
of the physical domain.

The boundary Γ(t) of the domain Ωs is found as the zero level of the
level set function ϕ(~x, t) : [R0, R1] × [Z0, Z1] → R, which is approximated
in the nodes of the Cartesian grid Ψh. Within region Ωs, the function ϕ is
negative, and in Ωb ϕ > 0.

The equation for ϕ is given in Section 5.3.3. Next, it is considered how
the grid of the active cells is reconstructed, if the values of the level set
function are known.

5.3.2.2 Treatment and reconstruction of active cells

The current geometry of the physical domain Ωs is determined by the values
of the level set function at the grid vertices. Assume that the level set
function is approximated by the values ϕj+ 1

2
,k+ 1

2
at vertices vj+ 1

2
,k+ 1

2
∈ Ψh

at some time moment tn. A vertex vj+ 1
2
,k+ 1

2
∈ Ψh is referred to as an inner,

outer or boundary vertex, if the level set function is negative, positive or is
zero at this vertex, respectively.

A rectangular cell Wj,k ∈ W is assumed to be an inner cell, if all its
vertices are either inner or boundary vertices. A cell Wj,k ∈ W is an outer
cell, if all its vertices are either outer or boundary vertices, and at least one
of them is an outer vertex. If a cell contains at least one outer vertex and
at least one inner vertex, then it is a cut cell (Figure 5.1).

New boundary vertices are positioned on the edges of the cut cells, across
which the level set function ϕ changes its sign. It is assumed, that the vari-
able ϕ can be approximated by a linear function along a cell edge. From this
assumption, the intersection of the cell edge with the zero level of function
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inner

cells

outer cells

cut cells

physical
domain Ωs

Figure 5.1: Sketch of the grid of the control volumes. Cell types are deter-
mined by the signs of the level set function ϕ at the cell vertices. At the
vertices, denoted by the white circles with ’-’ sign, by the black circles and
by the white circles, the function ϕ is negative, positive and equal to zero,
respectively. Inner cells are the black squares within domain Ωs, cut cells
are the light gray squares, and outer cells are the white squares.

ϕ can be found. The new boundary vertices are defined at the intersection
points. For the cut cell, shown in Figure 5.2, the level set function changes
its sign across each cell edge. Hence four boundary vertices are added on
the edges of the cell.

Each cut cell Wj,k ∈ W corresponds to the active cell Vj,k ∈ V , which
is defined as the intersection of cell Wj,k ∈ W with region Ωs. The active
cell Vj,k is constructed as follows. Let us consider the new boundary points,
defined at the intersection of the zero level of the function ϕ and the edges
of the cut cell Wj,k (vertices E, F , G, H in Figure 5.2), and the vertices
of the cut cell Wj,k, at which the function ϕ is nonpositive (vertices B
and D). These vertices lie on the boundary of the active cell Vj,k. The
boundary of the cut cell Wj,k is followed, for example, in a counterclockwise
direction, and the considered points are connected by line segments in the
corresponding order (vertices E, B, G, H, D, F in Figure 5.2). The active
cell Vj,k is defined as the area enclosed by the aforementioned line segments.
The vertices, where the level set function is positive, are located outside the
domain Ωs. Hence they will lie outside the active cell Vj,k.

The computational domain, which represents the physical domain Ωs, is
determined by the set of all active cells. Several limitations are introduced
during the reconstruction of active cells. For example, 1) new boundary
vertices are found by means of linear interpolation of the level set function
along cell edges, and 2) line segments are used to connect adjacent vertices of
the active cell boundary. Thereby, the initial uniform Cartesian grid should
be fine enough, so that the geometry of the domain Ωs can be represented
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cell

active
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cut

cell

D

A

D C

E

F G

B

HC

function ϕ
zero level of

Figure 5.2: Construction of the active cell EBGHDF , corresponding to the
rectangular cut cell ABCD. At the vertices, denoted by the white circles
with ’-’ sign and by the black circles, the level set function ϕ is negative
and positive, respectively. New boundary vertices E, F , G, H are the
approximated intersection points of the cell edges with the zero level of
function ϕ. The boundary of the cut cell ABCD is followed, for example,
in a counterclockwise direction, and the new boundary E, F , G, H and the
vertices B and D, where function ϕ is nonpositive, are connected by line
segments in the corresponding order. The active cell EBGHDF is defined
as the area enclosed by the aforementioned line segments.

correctly. It can be noted, for example, that any active cell, defined by us,
will always be a simply-connected region. If the projection of the domain Ωs

on some rectangular cell is a multiply connected region, then the Cartesian
grid should be refined, in order to provide a reasonable approximation of
the problem domain by the set of active cells.

The vertices of active cells are either boundary or inner vertices. Then
the edges of active cells are classified as follows. The edges, whose end-points
are the boundary vertices, are assumed to coincide with the boundary of the
physical domain Ωs. Such edges are referred to as boundary edges. The rest
of the edges has at least one inner vertex and lies within the computational
domain. Hence these edges are called inner edges.

It should be noted here, that all inner edges are aligned with the coor-
dinate axes r, z, and lie on the lines of the Cartesian grid. The cell edges,
which are defined if the Cartesian control volumes are cut by the boundary
of the physical domain Ωs, and which may not lie on the lines of the Carte-
sian grid, will always correspond to the boundary of region Ωs. These edges
are considered as boundary edges.

5.3.3 Level set equation

The evolution of the level set function ϕ is determined by

∂ϕ

∂t
+ ve|∇ϕ| = 0, (5.15)

where ve is equal to the normal velocity vn, defined in equation (5.4), on the
boundary Γ(t), i.e.

ve = vn, for ~X ∈ Γ(t). (5.16)
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Out of the boundary Γ(t), the value of the velocity ve is obtained through
a continuous extension. The velocity ve is extrapolated in such a way, that

∇ve · ∇ϕ = 0, ~x ∈ [R0, R1]× [Z0, Z1]. (5.17)

In this case, the surface, which represents the distribution of the level set
function, is not distorted with time, and |∇ϕ(t)| = 1 for t ≥ 0. This fact is
important for the accuracy of the numerical solution of equation (5.15) [86].

In the current simulations the field of velocity ve is constructed as fol-
lows. First, the values of the velocity ve are found at the boundary vertices.
According to equation (5.4), these values depend on the density of mature
osteogenic cells cm, which is found from the solution of system (5.1)–(5.3).
The governing system (5.1)–(5.3) is solved with use of the finite volume
method. Hence the internal solution for cm is obtained in terms of the ap-
proximated average values Cj,km within control volumes Vj,k, (j, k) ∈ Ia. Cell
averages Cj,km can be considered, as the approximated (with second order ac-
curacy) values of function cm in the centers of the control volumes Vj,k. The
value cbm of the cell density at the boundary vertex is approximated by the
average cell densities in the control volumes, adjacent to the current vertex:

cbm =
∑

(j,k)∈~Iadj

wj,kC
j,k
m ,

where ~Iadj are the indexes of the active cells, adjacent to the considered
boundary vertex. An inverse distance weighting method is used for the
interpolation. Weights wj,k depend on the distances dj,k from the centers of
the adjacent cells to the current boundary vertex in the following way:

wj,k =
1
dj,k∑

(l,m)∈~Iadj

1
dl,m

.

Given the values of the velocity ve at the boundary vertices, the boundary
value problem (5.16), (5.17) is solved. The Eikonal equation (5.17) is solved
with use of the fast marching method [86].

5.3.4 PDE discretization in space

The governing equations (5.1)–(5.3) are discretized in space by means of the
finite volume method. After the discretization, a system of ODE’s is derived
for the vectors of the average values in the control volumes of the unknown
functions ci, cm and g.

The considered physical domain corresponds to the approximated ge-
ometry of the soft tissue region within the peri-implant interface, which
is defined in the 2D axisymmetric coordinates. Consequently, the opera-
tor ’∇s · (·)’, which appears in the governing equations (5.1)–(5.3), is the
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divergence operator in the 2D axisymmetric coordinates. In Section 5.3.2
the construction of the grid of the active control volumes Vj,k ∈ V is de-
scribed within the 2D axisymmetric physical domain. For convenience, in
the presentation of the discretization procedure, the current grid of the finite
volumes will be considered, as it were defined in the 2D Cartesian coordi-
nates. For example, the calculation of the volumes of the computational
cells and the lengths of the cell edges becomes much simpler in Cartesian
coordinates. The axial symmetry of the bone-implant interface is taken into
account through the changes, introduced in the governing equations. The
axisymmetric spatial operators are expressed through the Cartesian oper-
ators plus some additional terms. Therefore, two different operator forms
of the governing equations will be considered: one for the axisymmetric co-
ordinate system and one for the Cartesian coordinate system, so that the
solution, obtained in the 2D Cartesian coordinates satisfies the equations,
which are defined for the 2D axisymmetric coordinates.

In the 2D axisymmetric coordinates the divergence operator ’∇s · (·)’ is
given by

∇s · ~u = ur,r + uz,z +
ur
r
,

and it is equal to the divergence operator in the 2D Cartesian coordinates
(r, z), plus term ur

r . Therefore, the governing equations (5.1)-(5.3), which
were defined initially in the 2D axisymmetric coordinates, will have the
following form in the 2D Cartesian coordinates:

∂ci
∂t

= −∇C
s ·Fc(ci, ctot, g)−

∂

∂a
(ub(g)ci)

+Ac(g)ci (1− ctot)−
F r
c (ci, ctot, g)

r
, (5.18)

∂cm
∂t

= −∇C
s ·Fc(cm, ctot, g) + ub(g)ci(~x, 1, t)

+Ac(g)cm (1− ctot)−
F r
c (cm, ctot, g)

r
, (5.19)

∂g

∂t
= ∇C

s · (Dg∇sg) + Ec(g)
(
cm +

∫ 1

0
γ(a)ci da

)
− dgg +

Dg

r

∂g

∂r
, (5.20)

where the operator ’∇C
s · (·)’ is the divergence operator, defined in the 2D

Cartesian coordinates. The gradient operator ∇s(·) is the same for the
2D axisymmetric and 2D Cartesian coordinates. Therefore, the gradient
notation ∇s(·) is kept for the both coordinate systems. The cell flux is
defined as:

Fc(cj , ctot, g) =

[
F r
c (cj , ctot, g)

F z
c (cj , ctot, g)

]
= −Dc∇scj + χ(g, ctot) cj∇sg, (5.21)
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where j = i,m.

The average values of variables ci, cm and g are defined as follows:

c̄j,k,li =
1

µ(V 3
j,k,l)

∫
V 3

j,k,l

cidv, (5.22)

c̄j,km =
1

µ(Vj,k)

∫
Vj,k

cmdv, (5.23)

ḡj,k =
1

µ(Vj,k)

∫
Vj,k

gdv, (5.24)

where (j, k) ∈ Ia, l = 1, 2, .., Na. In formulas (5.22)–(5.24) and further in
the text, the integration is performed over the cells V 3

j,k,l and Vj,k, considered
in the 3D Cartesian space (r, z, a) and in the 2D Cartesian space (r, z),
respectively.

Let us denote by u some abstract unknown function, defined in space
and in time. The time derivative of the average value ū of function u in
some volume V , which evolves in time, is determined by equation:

dū

dt
=

d

dt

∫
V u dv

µ(V )
=

1
µ(V )

(
d
∫
V u dv

dt
− ū

dµ(V )
dt

)
. (5.25)

The Leibniz integral rule is given by:

d

dt

∫
V
u dv =

∫
V

∂u

∂t
dv +

∫
∂V
u vn ds. (5.26)

The volumetric measure µ(V ) can be determined from the equation µ(V ) =∫
v dv. Substitution of this relation and of formula (5.26) into equation (5.25)

yields:

dū

dt
=

1
µ(V )

(∫
V

∂u

∂t
dv +

∫
∂V

(u− ū)vn ds
)
. (5.27)

Equation (5.27) is used to derive the equations for the evolution of the av-
erages of the cell densities and of the growth factor concentration. The
variables ci, cm and g replace u into equation (5.27), and volume V is re-
placed with volumes V 3

j,k,l and Vj,k, (j, k) ∈ Ia, l = 1, Na. The terms for ci,
cm and g, corresponding to the first term in the brackets in equation (5.27),
are replaced with the relations, which are obtained from integration of the
right-hand sides of PDE’s (5.18)-(5.20) over cells V 3

j,k,l and Vj,k. Finally, the
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following equations are obtained:

dc̄j,k,li

dt
=

1
µ(V 3

j,k,l)

(
−
∫
∂V 3I

j,k,l

Fc(ci, ctot, g) · ~n ds3

−
∫
Vj,k

ub(g)
(
ci(~ξ, al+ 1

2
, t)− ci(~ξ, al− 1

2
, t)
)
dv2

+
∫
V 3

j,k,l

Ac(g)ci(1− ctot)−
F r
c (ci, ctot, g)

r
dv3

+
∫
∂V 3B

j,k,l

(ci − c̄j,k,li )vn − hi ds3

)
(5.28)

dc̄j,km
dt

=
1

µ(Vj,k)

(
−
∫
∂V I

j,k

Fc(cm, ctot, g) · ~n ds2

+
∫
Vj,k

ub(g)ci(~ξ, 1, t) dv2

+
∫
Vj,k

Ac(g)cm(1− ctot)−
F r
c (cm, ctot, g)

r
dv2

+
∫
∂V B

j,k

(cm − c̄j,km )vn − hm ds2

)
(5.29)

dḡj,k

dt
=

1
µ(Vj,k)

(∫
∂V I

j,k

Dg∇sg · ~n ds2

+
∫
Vj,k

Ec(g)
(
cm +

∫ 1

0
γ(a)ci da

)
− dgg +

Dg

r

∂g

∂r
dv2

+
∫
∂V B

j,k

(g − ḡj,k)vn − hg ds2

)
(5.30)

The inner and boundary edges of cells Vj,k are denoted as ∂V I
j,k and ∂V B

j,k,
respectively. The corresponding faces of the 3D cells Vj,k,l are defined as

∂V 3J
j,k,l = ∂V J

j,k × [al− 1
2
, al+ 1

2
], J = I,B. (5.31)

Control volumes, which are situated in the middle of the computational do-
main Ωs, do not have boundary edges. For these cells, the last terms in the
RHS’s of equations (5.28)–(5.30) are equal to zero. The vector ~n represents
the outward unit normal at the edges (faces) of the control volumes. The
variables dv3, ds3, dv2 and ds2, respectively, represent the differential ele-
ments of volumes V 3

j,k,l, of surfaces ∂V 3I
j,k,l and ∂V 3B

j,k,l, of surfaces Vj,k, and
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of line segments ∂V I
j,k and ∂V B

j,k. Further, vn is the normal velocity of the
boundary edges or faces, which is defined in equation (5.4).

Further, the system of ODE’s with respect to the average values of the
cell densities and the growth factor concentration is derived, which approx-
imates the exact equations (5.28)-(5.30). Let us denote the approximate
average values of the unknown densities and concentration by the respec-
tive capital letters: Cj,k,li , Cj,km and Gj,k. The vectors of the unknown
averages are denoted as ~Ci = {C~i3i ;~i3 ∈ I 3

a }, ~Cm = {C~im;~i ∈ Ia} and
~G = {G~i;~i ∈ Ia}. The system of the approximated ODE’s is written in the
following general form:

dC
~i3
i

dt
= HMI

i (~Ci, ~Cm, ~G,~i3) +HD
i (~Ci, ~G,~i3)

+HR
i (~Ci, ~Cm, ~G,~i3) +HMB

i (~Ci, ~Cm, ~G,~i3), (5.32)

dC
~i
m

dt
= HMI

m (~Ci, ~Cm, ~G,~i) +HD
m(~Ci, ~G,~i)

+HR
m(~Ci, ~Cm, ~G,~i) +HMB

m (~Ci, ~Cm, ~G,~i), (5.33)

dG
~i

dt
= HMI

g (~Ci, ~Cm, ~G,~i) +HR
g (~Ci, ~Cm, ~G,~i) +HMB

g (~Ci, ~Cm, ~G,~i). (5.34)

The terms in the right-hand sides of equations (5.32)-(5.34) are the ap-
proximations of the respective terms in the right-hand sides of equations
(5.28)-(5.30).

As it was mentioned before, the current numerical approach is based on
the method of lines (MOL). The main feature of this method, which is often
referred to as the ”semi-discrete scheme“, is that the spatial discretization is
separated from the discretization in time. This allows to apply the principle
of superposition to the discretization of the reaction, diffusion and advection
terms in the governing equations. In other words, each term can be approx-
imated independently of the others. Therefore, the complicated system of
equations can be decomposed into a set of problems, that are easier to solve.

The semi-discrete schemes for the scalar time-dependent advection-diffu-
sion-reaction equations are described in a very clear and detailed way in the
book of Hundsdorfer and Verwer [48]. The authors put stress on equations
with linear flux functions, and nonlinear conservation laws are not studied
in detail in this work. The hyperbolic systems of nonlinear equations are
considered thoroughly in the work of LeVeque [59], where the author de-
scribes the fully discrete Direct Space-Time schemes for various types of the
hyperbolic partial differential equations. The current numerical algorithm is
constructed in the framework of the principles and ideas, presented in these
two works.
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5.3.5 Advection-diffusion discretization

Let us consider the advection and diffusion terms in equations (5.18)–(5.20).
The corresponding terms in the averaged equations (5.28)–(5.30) are given
by the integrals of the fluxes of the unknown variables ci, cm and g over
the inner faces ∂V 3I

j,k,l and Vj,k × {al+ 1
2
} and the inner edges ∂V I

j,k. The

considered integrals are approximated by the functions HMI
i , HD

i , HMI
m and

HMI
g from equations (5.32)–(5.34).

The integrals are approximated by the value of the integrand in the cen-
ters of the corresponding face or edge times its area or length, respectively.
Therefore, the approximate values of the unknown functions ci, cm, g and
of their normal derivatives should be derived at the centers of interfaces of
control volumes from the averages of the cell densities ~Ci, ~Cm and of the
growth factor concentration ~G.

5.3.5.1 Linear flux due to cell differentiation

The general procedure of the discretization of hyperbolic equations in space
with semi-discrete schemes involves two stages. First, piece-wise polynomial
approximations of the unknown functions are reconstructed from their aver-
age values. The reconstructed piece-wise polynomial functions usually have
jumps at the interfaces of the computational cells. This means, that there
are two states (values) of each reconstructed function at each inner interface
of the control volumes. The reconstruction technique should be total varia-
tion diminishing (TVD), in order to provide the numerical solution without
spurious oscillations, which can also lead to negative values of the unknown
variables.

At the second stage, the reconstructed unknown functions are used to
determine the values of the fluxes at the interfaces of the control volumes.
In order to obtain a stable numerical approximation, the Riemann problem
has to be solved exactly, or with use of some approximate solver in the case
of large complex systems of equations.

In the discretization of the multidimensional hyperbolic equations on
regular Cartesian grids, the dimensions of the physical space can be split.
That means, that the techniques, used to solve one-dimensional problems,
can be applied for the spatial discretization in each individual coordinate
direction. Such a splitting can be applied due to the possibility of the
superposition of spatial discretizations, when the method of lines is used
[48].

The current finite volume grid contains irregular active cells near the
boundary of the physical domain Ωs. This irregularity requires a special
solution reconstruction technique within the irregular cells and cells adjacent
to them. This technique will be introduced in Section 5.3.5.2.

Let us first consider the flux of immature cells due to differentiation. This



146 Chapter 5. Numerical algorithm

flux should be approximated on the faces ( ~X, a) ∈ Vj,k × {al− 1
2
}, ( ~X, a) ∈

Vj,k × {al+ 1
2
} of cells V 3

j,k,l, (j, k, l) ∈ I 3
a . The flux vector is parallel to the

a-axis. The finite volume grid is uniform along the a coordinate axis. Hence
the method of the reconstruction of the solution on a 1D uniform grid can
be applied. The integral over the face of the control volume is approximated
by the values of the integrated functions in the center of the face. Hence it
is not necessary to reconstruct the numerical solution for density ci within
the whole cell. It is sufficient to approximate its value in the center of the
considered cell interfaces.

In order to justify the 1D reconstruction, applied in the considered situ-
ation, function c̃j,ki (a, t) is defined, which depends only on a coordinate and
time, and which is equal to the average value of the function ci over the
transverse sections {(~ξ, a), s.t. ~ξ ∈ Vj,k, a = const} of the cells V 3

j,k,l, i.e.

c̃j,ki (a, t) =
1

µ(Vj,k)

∫∫
Vj,k

ci(r, z, a, t)dr dz.

Sections a = al+ 1
2

and a = al− 1
2

coincide with the faces of cell V 3
j,k,l. The

average values can be considered as the second order approximations of the
function values in the face centers. Hence the “one-dimensional” function
c̃j,ki (a, t) can be reconstructed, in order to determine the approximate states
of the immature cell density at the centers of the considered cell faces.

Note, that
1
ha

∫ a
l+1

2

a
l− 1

2

c̃j,ki da =
1

ha µ(Vj,k)

∫ a
l+1

2

a
l− 1

2

∫∫
Vj,k

ci dr dz da = c̄j,k,li .

That is, the average value of the function c̃j,ki over the interval [al− 1
2
, al+ 1

2
] is

equal to the cell average of function ci over cell V 3
j,k,l. Hence the piece-wise

polynomial approximation of c̃j,ki is reconstructed from its average values on
the 1D uniform grid [al− 1

2
, al+ 1

2
], l = 1, .., Na, given by ~Ci.

The value of the function ub(g) on the midpoint of the considered cell
faces is approximated by value ub(Gj,k).

The Riemann solution is straightforward in the considered case, since
the flux is linear and it only depends on the unknown ci. The value of
the coefficient ub(g) does not vary along a-axis, and it can be considered as
constant, when the flux is evaluated on faces Vj,k × {al+ 1

2
}. It is assumed

in the current model, that the differentiation rate ub is nonnegative (see
Tables 4.1, 4.2). Hence the left state of c̃j,ki is chosen at each interface, i.e.
the value of the reconstructed function c̃j,ki (a, t) for a→ al+ 1

2
− 0.

Therefore, the terms, which represent the flux of immature cells due to
differentiation, are approximated as follows:

HD
i (~Ci, ~G, (j, k, l)) = − 1

ha
ub(Gj,k)

(
C
j,k,l+ 1

2
i − C

j,k,l− 1
2

i

)
, (5.35)
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where the states C
j,k,l+ 1

2
i , l = 2, ..., Na are determined as

C
j,k,l+ 1

2
i = Cj,k.li + ψ

(
Cj,k,li − Cj,k,l−1

i

Cj,k,l+1
i − Cj,k,li

)(
Cj,k,l+1
i − Cj,k,li

)
, (5.36)

for l = 1, .., Na. Function ψ(θ) is a ”limiter function“. It is responsible for
the TVD property of the reconstruction method. The choice of the limiter
function determines the order of the reconstruction of the unknown function
from its average values. If ψ ≡ 0, then the order of approximation of C

j,k,l+ 1
2

i

is one. By choosing the Koren limiter for a uniform grid,

ψ(θ) = max
(

0,min
(

1
3

+
1
6
θ, θ, 1

))
, (5.37)

a higher order approximation is obtained [48]. In fact, the Koren limiter
provides a third order of accuracy in the regions, where the function is
smooth and where it does not have any extremes. Otherwise, a first order
accuracy is achieved. However, since the surface integrals are evaluated at
the center points, and the values at the surface centers are approximated
with the average values, the order of accuracy cannot be larger than two.

Boundary condition (5.12) is used to define the flux at faces Vj,k × {0}.
Then

HD
i (~Ci, ~Cm, ~G, (j, k, 1)) = − 1

ha
ub(Gj,k)C

j,k, 3
2

i .

In order, to find the values C
j,k, 3

2
i and C

j,k,Na+ 1
2

i , the ’ghost cells’ are defined,
such that

Cj,k,0i = Cj,k,1i , Cj,k,Na+1
i = Cj,k,Na

i , (j, k) ∈ Ia.

Constant extrapolation at the boundaries a = 0 and a = 1 is chosen, since
it provides nonnegative solutions. Furthermore, it leads to the first order

accuracy in the approximations of the states C
j,k, 3

2
i and C

j,k,Na+ 1
2

i .
The function HD

m in equation (5.29) approximates the inflow of mature
cells due to differentiation of immature cells. The cell density conservation
is maintained, if this inflow is equal to the flux of the density ci through
interface ( ~X, a) ∈ Vj,k × {aNa+ 1

2
}. That is,

HD
m(~Ci, ~Cm, ~G, (j, k)) = ub(Gj,k)C

j,k,Na+ 1
2

i , (5.38)

where the average cell density C
j,k,Na+ 1

2
i is obtained from equations (5.36)–

(5.37).
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5.3.5.2 Fluxes due to cell migration

In order to approximate the terms, which correspond to the fluxes of the cell
densities due to migration, the values of the immature and mature cell den-
sities, the values of the growth factor concentration and the normal deriva-
tives of the cell densities and of the growth factor concentration have to
be determined at the centers of the inner edges and faces of the control
volumes. The method, used to determine the values of the growth factor
concentration and the normal derivatives of the model variables is defined in
Section 5.3.5.3. The approach, used to find the left and right states (values)
of the cell densities at the centers of the inner edges and faces, is described
in this section.

Consider first the density of mature osteogenic cells, defined within the
two dimensional physical domain. In analogy to Section 5.3.5.1, function
c̃km(r, t) can be defined as the average value of the cell density cm over the
sections S(r, k) = {(r, z), s.t. (r, z) ∈ Vj,k, (j, k) ∈ Ia}, where r and k
are considered as fixed parameters, which characterize each section S(r, k).
Therefore,

c̃km(r, t) =
1

µ(S(r, k))

∫
S(r,k)

cm(r, z, t) dz. (5.39)

If cell Vj,k is a regular rectangular cell, then the average of c̃km is given by

1
hr

∫ r
j+1

2

r
j− 1

2

c̃km dr =
1
hr

∫ r
j+1

2

r
j− 1

2

1
µ(S(r, k))

∫
S(r,k)

cm dz dr

=
1

hrµ(S(r, k))

∫
Vj,k

cmdv =
1

µ(Vj,k)

∫
Vj,k

cmdv = c̄j,km . (5.40)

This means, that the averages of the functions c̃m and cm on regular rect-
angular cells are equal.

Remark 5.2. Note, that equation (5.40) is valid, if and only if µ(S(r, k)) =
const for r ∈ [rj− 1

2
, rj+ 1

2
].

Let us consider an inner edge ej+ 1
2
,k. Assume that this edge is located far

away from the boundary of the physical domain, and that there exist active
inner (i.e. regular rectangular) cells Vj−1,k, Vj,k, Vj,k+1. Then the function
c̃m has average values c̄j−1,k

m , c̄j,km , c̄j+1,k
m on uniform intervals [rn− 1

2
, rn+ 1

2
],

n ∈ {j− 1, j, j+1}, and the conventional one-dimensional TVD reconstruc-
tion can be applied, so that the left state at the center of the edge ej+ 1

2
,k is

given by:

C
j+ 1

2
,k

m (L) = Cj,km + ψ

(
Cj,km − Cj−1,k

m

Cj+1,k
m − Cj,km

)(
Cj+1,k
m − Cj,km

)
, (5.41)
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where the function ψ is a Koren limiter again, defined in equation (5.37). If
cell Vj+2,k is also a regular inner cell, then the right state is determined as:

C
j+ 1

2
,k

m (R) = Cj+1,k
m + ψ

(
Cj+2,k
m − Cj+1,k

m

Cj+1,k
m − Cj,km

)(
Cj,km − Cj+1,k

m

)
. (5.42)

The situation is more complicated, if some of the cells in the three-cell
stencil, which is used to approximate the left state or the right state at
the edge center, are irregular or do not exist at all (Figure 5.3). Consider,
for example, the situation shown in Figure 5.3a. Assume that there exists

(b)

(a)

rj+ 1
2
rj+ 3

2
rj− 1

2

zk+ 1
2

zk− 1
2

Vj+1,kVj,k

ej+ 1
2 ,k

Vj−1,k Vj+1,kVj,k

zk− 1
2

rj+ 1
2
rj+ 3

2
rj− 1

2

zk+ 1
2

rj− 3
2

ej+ 1
2 ,k

Figure 5.3: Situations, when the conventional one-dimensional reconstruc-
tion for the uniform grid cannot be applied to approximate the solution at
the edge ej+ 1

2
,k. Active cells are plotted in gray color.

an irregular active cell Vj−1,k, which has a common inner edge ej− 1
2
,k with

the cell Vj,k. On irregular cells, the length of the section µ(S(r, k)) may
not be constant, hence, according to Remark 5.2, equality (5.40) does not
hold in general. The value of c̃m at point rj+ 1

2
is found with an approach,

which is similar to the 1D reconstruction on a cell-centered nonuniform grid,
defined in Hundsdorfer and Verwer [48]. First c̃m is approximated with a
quadratic polynomial, and then a limiter is applied, in order to get a TVD
reconstruction, which prevent spurious oscillations in the numerical solution.
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Note, that

Cj,km ≈ c̄j,km =
1

µ(Vj,k)

∫ r
j+1

2

r
j− 1

2

∫
S(r,k)

cm dz dr

=
1

µ(Vj,k)

∫ r
j+1

2

r
j− 1

2

µ(S(r, k))c̃km dr

=
1

µ(Vj,k)

∫ r
j+1

2

r
j− 1

2

c̃km

∫
S(r,k)

dz dr =
1

µ(Vj,k)

∫
Vj,k

c̃km dv. (5.43)

Let a0, a1, a2 be the coefficients of the quadratic polynomial, which is used
to approximate c̃km:

c̃km ≈ a0 + a1r + a2r
2.

From integration of this polynomial over the cells Vn,k, n ∈ {j − 1, j, j + 1}
and from equation (5.43), three linear equations are derived, which can be
used to determine the coefficients ai, i ∈ {0, 1, 2}:

a0 + a1r
n,k
c + a2I

n,k
zz = Cn,km , n ∈ {j − 1, j, j + 1}, (5.44)

where rn,kc is the r coordinate of the center of cell Vn,k, and In,kzz is the
second moment of area of cell Vn,k about z-axis, i.e. In,kzz = 1

µ(Vn,k)

∫
Vn,k

r2dv.
The determinant of the matrix of system (5.44) is not equal to zero (see
B.1), hence coefficients ai, can always be uniquely expressed in terms of the
geometric characteristics rn,kc , In,kzz of the control volumes, and approximate
average values Cn,km . Evaluating the quadratic polynomial at point rj+ 1

2
for

the values of coefficients a0, a1 and a2, obtained from the solution of the
linear system (5.44), the following expression is obtained:

c̃km(rj+ 1
2
, t) ≈ Cj,km

+ ψr0

(
Cj,km − Cj−1,k

m

Cj+1,k
m − Cj,km

, rj+ 1
2
, j − 1, j, j + 1, k

)(
Cj+1,k
m − Cj,km

)
, (5.45)

where

ψr0(θ, re, j1, j2, j3, k) =
(
(rj1,kc − rj2,kc )re + (Ij2,kzz − Ij1,kzz )r2e

+Ij1,kzz rj2,kc − Ij2,kzz rj1,kc + θ
(
(rj3,kc − rj2,kc )re

+(Ij2,kzz − Ij3,kzz )r2e + Ij3,kzz rj2,kc − Ij2,kzz rj3,kc

))
/
(
(Ij2,kzz − Ij1,kzz )(rj3,kc − rj2,kc ) + (Ij3,kzz − Ij2,kzz )(rj1,kc − rj2,kc )

)
. (5.46)

The quadratic approximation, given by formula (5.45), provides a third order
of accuracy for smooth solutions. Since a TVD approximation is needed,
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the function ψr0 has to be limited in the regions, where c̃m changes rapidly.
A limiter function is given by:

ψrirr(θ, ·, ·, ·, ·, ·) = max(0,min(ψr0(θ, ·, ·, ·, ·, ·), θ, 1)),

so that 0 < ψrirr < 1, and 0 < 1
θψ

r
irr(θ, ·, ·, ·, ·, ·) < 1. This means, that the

limiter ψrirr provides a TVD reconstruction of the solution [48]. Note, that
the limiter function ψrirr, which is defined for irregular cells, is equivalent to
the Koren limiter function (5.37), if the geometric characteristics rj,kc , Ij,kzz
of uniform regular rectangular cells are substituted into expression (5.46).
Therefore, for the present case, the left state of the mature cell density cm
at the edge ej+ 1

2
,k is approximated as

C
j+ 1

2
,k

m(L) = Cj,km

+ ψrirr

(
Cj,km − Cj−1,k

m

Cj+1,k
m − Cj,km

, rj+ 1
2
, j − 1, j, j + 1, k

)(
Cj+1,k
m − Cj,km

)
. (5.47)

By analogy, the right state is determined as

C
j+ 1

2
,k

m (R) = Cj+1,k
m

+ ψrirr

(
Cj+2,k
m − Cj+1,k

m

Cj+1,k
m − Cj,km

, rj+ 1
2
, j + 2, j + 1, j, k

)(
Cj,km − Cj+1,k

m

)
. (5.48)

If the inner edge ej+ 1
2
,k is very close to the boundary, then, for exam-

ple, the active cell Vj−1,k and/or the active cell Vj+2,k may not exist (Fig-
ure 5.3b). In this case, the first order piece-wise constant reconstruction of
the solution for the density cm is used and its left and/or right states are
defined as:

C
j+ 1

2
,k

m(L) = Cj,km , C
j+ 1

2
,k

m(R) = Cj+1,k
m . (5.49)

This is equivalent to the constant extrapolation for the ’ghost’ cells, outlined
in Section 5.3.5.1.

Each inner edge ej+ 1
2
,k corresponds to na inner faces e3

j+ 1
2
,k,l

, l = 1, ..., na.
The derivation of the formulas for the left and right values of the density
ci at the centers of these inner faces is very similar to the derivation of the
formulas for the states Cj,km(L), C

j,k
m(R). The only difference is that integration

in the a-direction from al− 1
2

to al+ 1
2

is performed additionally. Due to a
homogeneity of the mesh in the a-direction, this integration does not lead
to any modifications in the derived formulas. Six different situations of the
mutual location of regular and irregular active cells and inner edge ej,k are
represented by the formulas (5.41), (5.42), (5.47), (5.48) and (5.49). For
each situation, the following equations for the values of the immature cell
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density in the centers of faces e3
j+ 1

2
,k,l

, l = 1, ..., na are given, respectively,
by:

C
j+ 1

2
,k,l

i (L) = Cj,k,li + ψ

(
Cj,k,li − Cj−1,k,l

i

Cj+1,k,l
i − Cj,k,li

)(
Cj+1,k,l
i − Cj,k,li

)
, (5.50)

C
j+ 1

2
,k,l

i (R) = Cj+1,k,l
i + ψ

(
Cj+2,k,l
i − Cj+1,k,l

i

Cj+1,k,l
i − Cj,k,li

)(
Cj,k,li − Cj+1,k,l

i

)
, (5.51)

C
j+ 1

2
,k,l

i(L) = Cj,k,li

+ ψrirr

(
Cj,k,li − Cj−1,k,l

i

Cj+1,k,l
i − Cj,k,li

, rj+ 1
2
, j − 1, j, j + 1, k

)(
Cj+1,k,l
i − Cj,k,li

)
,

(5.52)

C
j+ 1

2
,k,l

i (R) = Cj+1,k,l
i

+ ψrirr

(
Cj+2,k,l
i − Cj+1,k,l

i

Cj+1,k,l
i − Cj,k,li

, rj+ 1
2
, j + 2, j + 1, j, k

)(
Cj,k,li − Cj+1,k,l

i

)
,

(5.53)

C
j+ 1

2
,k,l

i(L) = Cj,k,li , C
j+ 1

2
,k,l

i(R) = Cj+1,k,l
i . (5.54)

The values of cm and ci at the horizontal inner cells edges ej,k+ 1
2

and
faces e3

j,k+ 1
2
,l

are determined with use of limiters ψ and ψzirr in the same way
as for the vertical edges and faces. The only difference is that the cells Vj,n,
V 3
j,n,l, n ∈ {k − 1, k, k + 1, k + 2}, are considered instead of the cells Vm,k,
V 3
m,k,l, m ∈ {j − 1, j, j + 1, j + 2} in the stencil, used in the computation of

the states of the variables. Further, the limiter ψzirr is used instead of the
limiter ψrirr, which is defined as follows:

ψzirr(θ, ·, ·, ·, ·, ·) = max(0,min(ψz0(θ, ·, ·, ·, ·, ·), θ, 1)),

ψz0(θ, ze, k1, k2, k3, j) =
(
(zj,k1c − zj,k2c )ze + (Ij,k2rr − Ij,k1rr )z2

e

+Ij,k1rr zj,k2c − Ij,k2rr zj,k1c + θ
(
(zj,k3c − zj,k2c )ze

+(Ij,k2rr − Ij,k3rr )z2
e + Ij,k3rr zj,k2c − Ij,k2rr zj,k3c

))
/
(
(Ij,k2rr − Ij,k1rr )(zj,k3c − zj,k2c ) + (Ij,k3rr − Ij,k2rr )(zj,k1c − zj,k2c )

)
,
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where zj,kc is the z coordinate of the center of the cell Vj,k, and Ij,krr is
the second moment of area of the cell Vj,k about the r-axis, i.e. Ij,krr =

1
µ(Vj,k)

∫
Vj,k

z2dv. The left and right states of the unknown variables are, in
fact, the lower and upper states, respectively.

5.3.5.3 Gradient approximation at cell edges

In this section, the approach is described to approximate the normal deriva-
tives of the densities of immature and mature cells and of the growth factor
concentration and the value of the growth factor concentration in the centers
of the inner edges and faces of the control volumes.

First, the expressions for the normal derivative and the value of the
growth factor concentration g at the centers of the inner edges are derived.
Consider a vertical inner edge ej+ 1

2
,k. The normal derivative is equal to

partial derivative ∂g
∂r . Since the edge is inner, the cells Vj,k, Vj+1,k, which

are adjacent to it, are active cells. If these cells are regular rectangular
cells, then their centers and the center of the edge ej+ 1

2
,k have the same

z-coordinate, equal to
(
zk− 1

2
+ zk+ 1

2

)
/2, which is denoted as z

j+ 1
2
,k

e . The
edge center lies at the middle of the line segment, which connects the cell
centers. From a Taylor series expansion, it follows that

∂g

∂r
(rj+ 1

2
, z
j+ 1

2
,k

e ) =
g(rj+1,k

c , zj+1,k
c )− g(rj,kc , zj,kc )

rj+1,k
c − rj,kc

+O(h2
r),

and

g(rj+ 1
2
, z
j+ 1

2
,k

e ) =
g(rj+1,k

c , zj+1,k
c ) + g(rj,kc , zj,kc )

2
+O(h2

r).

Hence the approximate normal derivative ∂g
∂r

j+ 1
2
,k

and the state Gj+
1
2
,k of

the function g at the center of the edge ej+ 1
2
,k are determined as

∂G

∂r

j+ 1
2
,k

=
Gj+1,k −Gj,k

rj+1,k
c − rj,kc

, (5.55)

Gj+
1
2
,k =

Gj+1,k +Gj,k

2
. (5.56)

The equation for the evolution of the growth factor concentration is a
diffusion-reaction equation. The flux function for the growth factor con-
centration only depends on the normal derivative of the growth factor con-
centration. Equation (5.56) is not a TVD approximation, in contrast to the
reconstruction of the cell densities at the inner edges and faces. However,
due to the presence of the purely diffusive flux of the growth factor concen-
tration, the TVD property is not needed for the considered approximation.
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The value of the growth factor concentration on the inner edges is considered
as fixed during the solution of the Riemann problem for the fluxes of the cell
densities, which is presented in Section 5.3.6. Despite the reconstruction of
the solution for function g does not contain a TVD property, this will not
lead to the appearance of spurious oscillations in the numerical solution.

The right-hand side of equation (5.55) approximates the directional de-
rivative along the vector, which connects the centers of the cells Vj,k, Vj+1,k.
If this vector is parallel to the r-axis, then this directional derivative coin-
cides with the normal derivative at the inner edge. If the considered vector
is not parallel to the r-axis, then the directional derivative along one more
vector, is needed, which is not parallel to the first one, in order to obtain
at least a first order of accuracy for the normal derivative at the considered
edge. To accomplish this, a third point is defined, on which the value of the
function is known. The third point is chosen among the centers of the active
cells, adjacent to the end-points of the edge ej+ 1

2
,k, excluding the cells Vj,k,

Vj+1,k. There can be from four to one such cells. This statement follows
from the definition of inner edges and active cells in Section 5.3.2.2 (see a
detailed proof in B.2). If there are some adjacent active cells besides cells
Vj,k, Vj+1,k, then such a cell is chosen, that the perimeter of the triangle
with vertices at the centers of the considered cell and cells Vj,k, Vj+1,k is
the smallest among all adjacent cells. Suppose, that the third point is cho-
sen. The general formula for the average value of the gradient over some
arbitrary volume V is defined as

1
µ(V )

∫
V
∇g dv =

1
µ(V )

∫
S
g~n ds,

where S is the boundary surface of the volume V with the outer unit normal
~n. This formula is applied for the triangle with the vertices at the centers
of the three chosen cells. If the cell averages of the function g within the
three chosen cells are denoted by G1, G2, G3 , and the r- and z- coordinates
of the cell centers are denoted by r1, r2, r3, z1, z2 and z3, then the normal

derivative ∂g
∂r (rj+ 1

2
, z
j+ 1

2
,k

e ) is approximated as:

∂G

∂r

j+ 1
2
,k

=
(G1 +G2)(z2 − z1) + (G2 +G3)(z3 − z2) + (G3 +G1)(z1 − z3)

(r2 − r1)(z3 − z1)− (z2 − z1)(r3 − r1)
. (5.57)
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The partial derivative with respect to z coordinate is determined as follows

∂G

∂z

j+ 1
2
,k

= −(G1 +G2)(r2 − r1) + (G2 +G3)(r3 − r2) + (G3 +G1)(r1 − r3)
(r2 − r1)(z3 − z1)− (z2 − z1)(r3 − r1)

.

(5.58)

Then the value of the growth factor concentration g in the center of edge
ej+ 1

2
,k is determined from linear interpolation:

Gj+
1
2
,k = G1 +

∂G

∂r

j+ 1
2
,k

(r
j+ 1

2
,k

e − r1) +
∂G

∂z

j+ 1
2
,k

(z
j+ 1

2
,k

e − z1), (5.59)

where (r
j+ 1

2
,k

e , z
j+ 1

2
,k

e ) are the coordinates of the center of edge ej+ 1
2
,k.

If a horizontal edge ej,k+ 1
2

is adjacent to regular rectangular cells Vj,k,
Vj,k+1, then the following formulas are used:

∂G

∂z

j,k+ 1
2

=
Gj,k+1 −Gj,k

zj,k+1
c − zj,kc

, Gj,k+
1
2 =

Gj,k+1 +Gj,k

2
. (5.60)

If at least one of the cells Vj,k, Vj,k+1 is irregular, then the third adjacent
cell is chosen in the way, as it is done for the vertical edges. The partial

derivatives ∂G
∂r

j,k+ 1
2 , ∂G

∂z

j,k+ 1
2 are approximated with the right-hand sides

of equations (5.57), (5.58), in which variables G1, G2, G3, r1, r2, r3, z1,
z2 and z3 are defined in the same way. The value of g at the edge center

(r
j,k+ 1

2
e , z

j,k+ 1
2

e ) is determined as

Gj,k+
1
2 = G1 +

∂G

∂r

j,k+ 1
2

(r
j,k+ 1

2
e − r1) +

∂G

∂z

j,k+ 1
2

(z
j,k+ 1

2
e − z1), (5.61)

The derivation of the normal derivatives of the immature and mature
cell densities is analogous to the approach for the derivatives of the growth
factor concentration. If a horizontal edge ej,k+ 1

2
and faces e3

j,k+ 1
2
,l

or a

vertical edge ej+ 1
2
,k and corresponding faces e3

j+ 1
2
,k,l

, l = 1, 2, ..., Na, are
adjacent to regular rectangular cells, then the following formulas are used,
respectively:

∂Ci
∂z

j,k+ 1
2
,l

=
Cj,k+1,l
i − Cj,k,li

zj,k+1
c − zj,kc

,
∂Cm
∂z

j,k+ 1
2

=
Cj,k+1
m − Cj,ki

zj,k+1
c − zj,kc

, (5.62)

∂Ci
∂r

j+ 1
2
,k,l

=
Cj+1,k,l
i − Cj,k,li

rj+1,k
c − rj,kc

,
∂Cm
∂r

j+ 1
2
,k

=
Cj+1,k
m − Cj,ki

rj+1,k
c − rj,kc

, (5.63)



156 Chapter 5. Numerical algorithm

If at least one of the cells adjacent to the considered edge is irregu-
lar, then the third adjacent cell is chosen in the way, as it was described
above. If the cell averages of the functions ci and cm within the chosen
cells are denoted by C1,l

i , C2,l
i , C3,l

i , and C1
m, C2

m, C3
m, respectively, and

the r- and z- coordinates of the cell centers are denoted by r1, r2, r3,
z1, z2 and z3, respectively, then the linear approximations of the normal

derivatives ∂ci
∂r (rj+ 1

2
, z
j+ 1

2
,k

e , al), ∂cm
∂r (rj+ 1

2
, z
j+ 1

2
,k

e ), ∂ci
∂z (r

j,k+ 1
2

e , zk+ 1
2
, al) and

∂cm
∂z (r

j,k+ 1
2

e , zk+ 1
2
) are given by:

∂Ĉi
∂r

j+ 1
2
,k,l

=
(
(C1,l

i + C2,l
i )(z2 − z1) + (C2,l

i + C3,l
i )(z3 − z2)

+ (C3,l
i + C1,l

i )(z1 − z3)
)
/
(
(r2 − r1)(z3 − z1)− (z2 − z1)(r3 − r1)

)
,

(5.64)

∂Ĉm
∂r

j+ 1
2
,k

=
(
(C1

m + C2
m)(z2 − z1) + (C2

m + C3
m)(z3 − z2)

+ (C3
m + C1

m)(z1 − z3)
)
/
(
(r2 − r1)(z3 − z1)− (z2 − z1)(r3 − r1)

)
, (5.65)

∂Ĉi
∂z

j,k+ 1
2
,l

= −
(
(C1,l

i + C2,l
i )(r2 − r1) + (C2,l

i + C3,l
i )(r3 − r2)

+ (C3,l
i + C1,l

i )(r1 − r3)
)
/
(
(r2 − r1)(z3 − z1)− (z2 − z1)(r3 − r1)

)
,

(5.66)

∂Ĉm
∂z

j,k+ 1
2

= −
(
(C1

m + C2
m)(r2 − r1) + (C2

m + C3
m)(r3 − r2)

+ (C3
m + C1

m)(r1 − r3)
)
/
(
(r2 − r1)(z3 − z1)− (z2 − z1)(r3 − r1)

)
. (5.67)

The linear approximations of the normal derivatives on the unstructured
mesh may yield negative values in the numerical solutions for the cell den-
sities in the regions, where the cell densities have values close to zero and
where the gradients of the densities are high. As it is mentioned in Sec-
tion 5.3.1, the current model is very sensitive with respect to negative values
of the cell densities. Hence the present numerical approach should provide
nonnegative approximate solutions for the densities. Therefore, the linear
approximations in equations (5.64)–(5.67) should be limited in the following
way:

∂Ci
∂r

j+ 1
2
,k,l

= max

min

∂Ĉi
∂r

j+ 1
2
,k,l

,
Cj+1,k,l
i

rj+1,k,l
c − rj,k,lc

 ,−
Cj,k,li

rj+1,k,l
c − rj,k,lc

 ,

(5.68)
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∂Cm
∂r

j+ 1
2
,k

= max

min

∂Ĉm
∂r

j+ 1
2
,k

,
Cj+1,k
m

rj+1,k
c − rj,kc

 ,− Cj,km

rj+1,k
c − rj,kc

 ,

(5.69)

∂Ci
∂z

j,k+ 1
2
,l

= max

min

∂Ĉi
∂z

j,k+ 1
2
,l

,
Cj,k+1,l
i

zj,k+1,l
c − zj,k,lc

 ,−
Cj,k,li

zj,k+1,l
c − zj,k,lc

 ,

(5.70)

∂Cm
∂z

j,k+ 1
2

= max

min

∂Ĉm
∂z

j,k+ 1
2

,
Cj,k+1
m

zj,k+1
c − zj,kc

 ,− Cj,km

zj,k+1
c − zj,kc

 .

(5.71)
The limiting procedure introduced above is equivalent to the assumption,
that the outflow of the cell density caused by random walk and taking place
through the boundaries of control volumes is bounded from above. If the out-
flow is bounded by some limit value, an appropriate time step size providing
nonnegative numerical solutions can be chosen as described in Section 5.3.9.
The upper boundary for the outflow of the cell density per unit length is
determined in a straightforward way for a uniform rectangular mesh. The
outflow caused by random walk is equal to Dc

C−Cadj

h , where C is the average
density over the considered control volume, Cadj is the average density in
the adjacent control volume and h is the linear mesh size. Then the outflow
is less than or equal to Dc

C
h if the solution is nonnegative. The limiting

formulas (5.68) – (5.71) provide the values of the outflow of the cell densi-
ties on the unstructured mesh, which are bounded from above by some limit
value related to the average cell densities within the considered control vol-
umes. The limit value is determined in an analogous way as the value Dc

C
h

for a uniform mesh. The linear gradient approximation given by formulas
(5.64)–(5.67) for the unstructured mesh can yield a nonzero outflow from
the control volumes with zero average cell densities. In this case, negative
values of the cell densities can appear in the numerical solution at any time
step. Therefore, the limiting of the linear flux approximation is crucial for
the positivity of the numerical solution.

The first stage of the derivation of the fluxes at the inner edges and
faces, which are represented by the terms HMI

i , HMI
m and HMI

g in equations
(5.32)–(5.34), is outlined in Sections 5.3.5.2 and 5.3.5.3. At this stage, the
two states of the cell densities, the values of the growth factor concentration
and the normal derivatives of the cell densities and of the growth factor
concentration at the centers of the inner edges and faces are derived. These
quantities are used for the initialization of the Riemann problem at each
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inner edge or face. As it was mentioned earlier, the Riemann problem is
solved at the second stage, in order to provide a stable discretization of
the advection-diffusion terms. Therefore, the exact Riemann solution for
the considered flux functions is obtained in Section 5.3.6. This Riemann
solution provides the fluxes at the inner edges and faces.

5.3.6 Nonlinear system of conservation laws

At the first stage of the approximation of the fluxes of the cell densities at
the inner edges e~j and faces e3~j3 , the left and right states of the cell densities

C
~j
m(L), C

~j3

i(L), C
~j
m(R), C

~j3

i(R), the values of normal derivatives ∂Ci
∂x

~j3
, ∂Cm

∂x

~j
and

∂G
∂x

~j
and the values of the growth factor concentration G

~j were determined
at the centers of the considered edges and faces. The vectors ~j and ~j3 are
the indices of the considered inner edge and of the corresponding inner faces,
respectively. The variable x is used to denote the independent coordinate r
or z, which corresponds to the normal direction at the considered edge or
face. For the horizontal edges and faces, x = z is used, and for the vertical
edges and faces, x = r is employed.

At the second stage of the approximation, a one-dimensional Riemann
problem is solved. The problem is defined by one-dimensional equations,
which are derived from the governing equations (5.18)–(5.19). The solution
of the Riemann problem for the system of hyperbolic PDE’s provides a stable
discretization of the initial governing system. The diffusive parabolic terms
−Dc

∂2ci
∂x2 , −Dc

∂2cm
∂x2 and the reactive terms from equations (5.18)–(5.19) do

not contribute to a wave-like behavior of the solution. Such a behavior is the
main characteristic of the hyperbolic equations. Therefore, these terms are
skipped in the present analysis. The flux of cells is considered only in the
normal direction with respect to the considered inner edges or faces. The
following equations are obtained:

∂ci
∂t

+
∂

∂x

(
χ(g, ctot) ci

∂g

∂x

)
= 0, (5.72)

∂cm
∂t

+
∂

∂x

(
χ(g, ctot) cm

∂g

∂x

)
= 0, (5.73)

Recall that the total osteogenic cell density is defined as ctot =
∫ 1
0 ci da+

cm. If equation (5.72) is integrated over the interval a ∈ [0, 1], and equation
(5.73) is added to it, then the equation for the total cell density is obtained:

∂ctot
∂t

+
∂

∂x

(
χ(g, ctot) ctot

∂g

∂x

)
= 0. (5.74)

Instead of obtaining a Riemann solution for system (5.72), (5.73), which
is defined for the unknowns ci, cm, two systems can be considered. The
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present systems consist of either equations (5.74), (5.72) or equations (5.74),
(5.73), which are defined with respect to the unknown variables ctot, ci
and ctot, cm, respectively. The new systems are more convenient to solve
and to analyse than the initial system (5.72), (5.73). A solution for the
unknown ctot is easily obtained from equation (5.74), which is a nonlinear
scalar conservation law similar to Burger’s equation for ctot ∈ [0, 1]. The
solution procedure for the two new systems (5.74), (5.72) and (5.74), (5.73)
is the same. Equation (5.72) becomes identical to equation (5.73), if the
variable cm is substituted in place of the variable ci.

Therefore, a Riemann problem is solved for system (5.74), (5.73), with
the initial conditions:

ctot =

{
cLtot, x < 0,
cRtot, x > 0,

cm =

{
cLm, x < 0,
cRm, x > 0,

(5.75)

where cLtot, c
L
m and cRtot, c

R
m are the left and right states of the variables

at the considered inner edge. The normal derivatives of the growth factor
concentration and the value of the growth factor concentration in equations
(5.73), (5.74), are assumed to be constant and equal to their values at the
inner edge, which are denoted as ∂g

∂x

↓
and g↓, respectively. If, for example,

a vertical inner edge ej+ 1
2
,k is considered, then

cLtot = ha

Na∑
l=1

C
j+ 1

2
,k,l

i(L) + C
j+ 1

2
,k

m(L) ,

cRtot = ha

Na∑
l=1

C
j+ 1

2
,k,l

i(R) + C
j+ 1

2
,k

m(R) ,

cLm = C
j+ 1

2
,k

m(L) , c
R
m = C

j+ 1
2
,k

m(R) ,

∂g

∂x

↓
=
∂G

∂r

j+ 1
2
,k

, g↓ = Gj+
1
2
,k.

The variables C
j+ 1

2
,k,l

i(L) , C
j+ 1

2
,k,l

i(R) , C
j+ 1

2
,k

m(L) , C
j+ 1

2
,k

m(R) , ∂G∂r
j+ 1

2
,k

, Gj+
1
2
,k, which are

used in the current formulas, are defined in Sections 5.3.5.2, 5.3.5.3. System
(5.74), (5.73) can be rewritten in the form:

∂~q

∂t
+

∂

∂x
~f (~q) = ~0, (5.76)

where

~q =

[
q1

q2

]
=

[
ctot

cm

]
,

~f(~q) =

[
f1(q1)

f2(q1, q2)

]
=

χ(g↓, q1) q1
∂g

∂x

↓

χ(g↓, q1) q2
∂g

∂x

↓

 .
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Let us assume first, that ctot ∈ (0, 1]. This assumption is taken into account
from here up to Section 5.3.6.1 inclusive. The situation ctot ∈ [0,∞) is
considered in Sections 5.3.6.2–5.3.6.4.

The Jacobian of the flux function ~f(~q) is equal to

J =

[
χ↓(1− 2q1) 0

− χ↓q2 χ↓(1− q1)

]
,

where χ↓ = χ0 g↓

K2
ch+g↓2

∂g
∂x

↓
. Its eigenvalues and the corresponding eigenvectors

are
λ1 = χ↓(1− 2q1), λ2 = χ↓(1− q1), (5.77)

~r1 =

[
q1

q2

]
, ~r2 =

[
0
1

]
.

The Hugoniot-locus and the integral curve [59] for the waves from the
first family coincide. These curves are the straight lines

q2
q1

= const. (5.78)

The Hugoniot locus is the location of all states ~q∗, which can be connected
to some fixed state ~q by a shock wave from the corresponding wave family.
It is determined from equation

~f(~q∗)− ~f(~q) = s(~q∗ − ~q), (5.79)

where s is an arbitrary scalar value, denoting the shock wave speed. For
two states ~q and ~q∗, which lie on the line (5.78), the following relation holds

f(~q∗)− f(~q) =

 χ↓ (q∗1(1− q∗1)− q1(1− q1))

χ↓
q2
q1

(q∗1(1− q∗1)− q1(1− q1))


= χ↓ (1− q∗1 − q1)

[
q∗1 − q1

q∗2 − q2

]
.

Hence the speed of the shock waves from the first family is equal to

s = χ↓ (1− q∗1 − q1) . (5.80)

The integral curve is the location of all states, which can be connected with
a given state by a rarefaction wave. It is defined as a curve, which is tangent
to the eigenvector from the corresponding family at each point. In equation
(5.78), the integral curves are defined as contours of the function ξ(~q) = q2

q1
.

Since the gradient of ξ is orthogonal to eigenvector ~r1, equation (5.78) is the
correct definition for the corresponding integral curves.
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Hence the mature cell density can be considered as the total density
times a weight function wm:

cm = ctotwm.

Then equation (5.78) is equivalent to wm = const. This means, that waves
from the first family connect the states of the variables with a constant
weight. The density of mature cells changes along lines (5.78), for example
from state cm to c∗m, only as a result of variation of the total cell density
from ctot to c∗tot. The weight fraction remains constant, that is cm = wmctot
and c∗m = wmc

∗
tot. In Figure 5.4, the lines of the first family are plotted as

the radial lines.

q1 = ctot

q2 = cm

~q∗

~qL

~r2

~r1

~qR

cLtot

q2
q1

= wR
m

q2
q1

= wL
m

cRtot

Figure 5.4: Hugoniot loci and integral curves for system (5.74), (5.73), which
are represented by the straight dashed lines

For the second wave family, referred to as the 2-waves, it can be derived
that

∇λ2 · ~r2 = (λ2)′q1 · 0 + 0 · 1 = 0.

This means that the characteristics from the second family have a constant
slope λ2 along a simple wave from this family, and this field is linearly
degenerate [59]. The 2-waves are the contact waves, i.e. they do not show
any nonlinear behavior (formation of shocks and rarefaction waves). The
Hugoniot loci for the contact waves are defined as straight lines, which are
parallel to the corresponding eigenvector (in the current case to vector ~r2).
The equation for these lines is

q1 = const.

The two states, connected by a 2-wave have the same total cell density
ctot = c∗tot. The density of mature cells varies due to a variation of their
weight fraction, i.e. cm = wmctot and c∗m = w∗mctot.

The first field is genuinely nonlinear, if

∇λ1 · ~r1 = −2χ↓q1 6= 0.
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The genuine nonlinearity implies, that the waves in the considered family
propagate as shock waves or as rarefaction waves. If χ↓ = 0, then the flux of
cells due to chemotaxis is zero. In this trivial situation, a Riemann solution is
not needed, since the hyperbolic terms in the governing equations are equal
to zero. Further, it is assumed, that χ↓ 6= 0. Note, that from assumptions
ctot ∈ (0, 1] and χ↓ 6= 0 it follows, that the 1-wave, associated with the
eigenvector ~r1, is genuinely nonlinear.

5.3.6.1 The strictly hyperbolic case

From equation (5.77), it follows that the eigenvalues λ1 and λ2 are equal, if
and only if q1 = 0. Hence the eigenvalues λ1 and λ2 are distinct and system
(5.74), (5.73) is strictly hyperbolic, if ctot ∈ (0, 1]. For a general strictly
hyperbolic system, if the left and right states ~qL and ~qR are situated suffi-
ciently close to each other in the phase plane, then they can be connected
by the intersecting Hugoniot loci and integral curves, as it is shown in Fig-
ure 5.4 for the present system of two equations. In this case, the Riemann
solution consists of classical nonlinear and/or linear waves. The qualitative
structure of the solution is determined in a simple way, which is described,
for example, in LeVeque [59].

However, if ~qL and ~qR are located far away from each other, then they
may not be connected by intersecting Hugoniot loci and integral curves. In
this case, a Riemann solution cannot be represented as a set of classical
nonlinear and/or linear waves. Instead of classical shock waves, which are
also referred to as Lax shocks, nonclassical delta shocks or singular shocks
can form [see, for example, 23, 90]. Delta shocks waves are characterized
by appearance of singularities in the solutions, which are expressed through
the Dirac delta function. Classical Lax shocks are always intersected by
the characteristics from other wave families. This feature distinguishes Lax
shocks from nonclassical shocks. For a particular system of two nonlinear
hyperbolic equations, which was considered in Tan et al. [90], the character-
istics of the second family go into the 1-delta shock from the left and from
the right. A situation, when system (5.74), (5.73) is weakly hyperbolic and
when delta shock waves appear in the Riemann solution, is considered in
Section 5.3.6.4.

Under the current assumption ctot ∈ (0, 1], Hugoniot loci and integral
curves of the first family always intersect any integral curve from the second
family. Hence any two states ~qL and ~qR, such that cLtot ∈ (0, 1] and cRtot ∈
(0, 1], can be connected by Hugoniot loci and integral curves in the phase
plane (Figure 5.4). A Riemann solution is composed of a 1-shock or a 1-
rarefaction wave and a 2-contact wave. It is easy to demonstrate, that the
1-shock wave is a Lax shock.

A nonlinear wave in the solution of scalar equation (5.74) for the total
cell density ctot coincides with a 1-wave in the Riemann solution of system
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(5.74), (5.73). Therefore, the shock wave of the first family (if it appears)
splits the x− t plane in two parts, so that the total cell density is equal to
cLtot and to cRtot to the left and to the right from the shock wave, respectively.
The shock wave speed s is equal to χ↓(1− cLtot − cRtot). The 2-characteristics
have the slopes λ2(cLtot) = χ↓cLm(1− cLtot) and λ2(cRtot) = χ↓cRm(1− cRtot) to the
left and to the right from the shock, respectively. Hence

(λ2(cLtot)− s)(λ2(cRtot)− s) = χ↓
2
cLtotc

R
tot > 0. (5.81)

Inequality (5.81) implies, that the 2-characteristics always enter the 1-shock
from one side and leave the shock from the other side, that is they intersect
the shock. Hence the 1-shock wave is a Lax shock, if ctot ∈ (0, 1] and χ↓ 6= 0.
The number of characteristics, which impinge on a 1-shock will be equal to
three: two characteristics of the first family from the left and from the right
of the shock and one set of 2-characteristics at some side from the shock.

Assume that
λ1 > λ2. (5.82)

Consider a 1-shock wave, which has a speed s. It follows from the entropy
condition [59], that λ1(cRtot) < s. Hence λ2(cRtot) < λ1(cRtot) < s. Inequality
(5.81) yields that λ2(cLtot) < s. Therefore, 2-characteristics intersect a 1-
shock wave from right to left. It follows from condition (5.82) that the 2-
characteristics intersect a 1-rarefaction wave from right to left (Figure 5.5).
Hence the 2-contact wave always lies to the left from the nonlinear shock
or rarefaction wave from the first family, if inequality (5.82) holds. The
intermediate state ~q∗ lies between the first and second waves (Figure 5.5c, d).
The left state ~qL = [cLtot, w

L
mc

L
tot]

T is connected to ~q∗ by the 2-wave. Hence
the state ~q∗ should lie on the same integral curve from the second family
with the state ~qL. By analogy, the state ~q∗ lies on the 1-integral curve
(or 1-Hugoniot locus, since they coincide), which passes through the right
state ~qR = [cRtot, w

R
mc

R
tot]

T . In the phase plane, shown in Figure 5.4, such
a structure of the solution looks like a thick poly-line, which connects the
states ~qL, ~q∗ and ~qR. It follows, that q∗1 = cLtot and q∗2 = wRmc

L
tot. Our aim

is to determine the value of the flux function f2(~q) = χ↓(1 − q1)q2 at the
edge between two control volumes. The flux function is evaluated for the
state ~q↓ = [q↓1, q

↓
2]
T on the considered edge, which is found from the solution

of the Riemann problem. The values q↓1, q
↓
2 can be determined from the

characteristic portrait of the solution in the x − t plane, which is shown in
Figure 5.5. For the considered Riemann problem, the location of the edge
between the control volumes corresponds to the ray x

t = 0 for t > 0 in the
x− t plane.

Remark 5.3. If rays x
t = const are mentioned further in the text, it is implied

that t > 0.
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Figure 5.5: Solution structure in the x − t plane for a strictly hyperbolic
system. The thick lines denote the edges of the 1-rarefaction wave or the
1-shock wave and the thick dashed lines denote the 2-contact wave. The thin
lines are the characteristics of the first (a), (c) and second families (b),(d).
The 2-contact wave lies to the left from the nonlinear 1-wave, since it is
assumed that λ2 < λ1 everywhere
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For the present system it is possible to derive simple general formulas,
which provide the values of ctot and cm at x

t = 0. The discontinuities of
the variables ctot and wm are considered separately, since they are carried
by two separate waves. The 1-wave carries the discontinuity in ctot. The
state c↓tot at the ray x

t = 0, corresponding to the considered inner edge, can
be determined from the Riemann solution for the scalar nonlinear equation
(5.74) [59]:

c↓tot =


arg min

cLtot≤ctot≤cRtot

f1(ctot), if cLtot ≤ cRtot,

arg max
cRtot≤ctot≤cLtot

f1(ctot), if cRtot ≤ cLtot.
(5.83)

The 2-contact wave carries the discontinuity in the weight fraction wm. For
the considered case λ1 > λ2, the speed of this wave is equal to λ2(cLtot). Then
the state w↓m at the ray x

t = 0 is equal to wLm or to wRm, if the eigenvalue
λ2(cLtot) is positive or negative, respectively. If the 2-wave speed is zero,
i.e. λ2(cLtot) = 0, then according to the current assumption, the 1-wave will
lie to the right from the 2-wave and, hence, from the ray x

t = 0. This
means, that c↓tot = cLtot, and that the 2-wave speed coincides with eigenvalue
λ2(c

↓
tot). Note, that f2(ctot, cm) = cmλ2(ctot) = wmctotλ2(ctot). Hence if

the second eigenvalue λ2(cLtot) is zero, then irrespectively of the states wLm
or wRm assigned to w↓m, the flux function on the inner edge will be zero:
f2(c

↓
tot, w

↓
mc

↓
tot) = f2(cLtot, w

↓
mcLtot) = w↓mcLtotλ2(cLtot) = 0.

Further, the following general formula for the state w↓m will be used:

w↓m =

{
wLm, if λ2(c

↓
tot) ≥ 0,

wRm, if λ2(c
↓
tot) < 0.

(5.84)

To justify equation (5.84) for the case λ1 > λ2, it should be shown that
the eigenvalues λ2(cLtot) and λ2(c

↓
tot) have the same sign or are equal to zero

simultaneously. For conciseness, the following notations are introduced

λLi = λi(cLtot), λRi = λi(cRtot), λ↓i = λi(c
↓
tot), i = 1, 2.

Suppose that a 1-shock wave has a speed s > 0 and lies to the right from
the ray x

t = 0. Then c↓tot = cLtot and λL2 = λ↓2.
Assume that the 1-shock has a speed s ≤ 0. Condition (5.82) yields that

2-characteristics intersect the 1-shock wave from right to left. This means
that λL2 < s ≤ 0 and λR2 < s ≤ 0. The eigenvalue λ2 is negative everywhere.
Hence λL2 < 0 and λ↓2 < 0, irrespectively of the states cLtot or cRtot assigned to
c↓tot.

It should be mentioned that a zero shock speed s = 0 leads to an ambi-
guity in the definition of c↓tot. The total cell density is discontinuous at the
ray x

t = 0. Formula (5.83) provides two values cLtot and cRtot for c↓tot, since

f1(cLtot) = f1(cRtot). (5.85)
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Note that

f2(ctot, cm) = χ↓
cm
ctot

ctot(1− ctot) = χ↓wmctot(1− ctot) = wmf1(ctot).

The value of the flux f↓2 is defined uniquely in this case, since the weight
fraction wm does not change through the 1-shock wave and since equality
(5.85) holds.

For a 1-rarefaction wave, it follows from the entropy condition that λL1 <
λR1 . If λL1 > 0, then the rarefaction fan lies to the right from the ray x

t = 0,
and cLtot = c↓tot. Consequently, λL2 = λ↓2.

If λR1 ≤ 0, then c↓tot = cRtot. Further, λL2 < λL1 < λR1 ≤ 0, and λ↓2 = λR2 <
λR1 ≤ 0.

Consider the case of a transonic rarefaction: λL1 < 0 < λR1 . In the
rarefaction fan, there exists a characteristic line with slope λ1 = 0, which
coincides with the ray x

t = 0. Hence the state c↓tot is the value of the total
cell density along the characteristic λ1 = 0. That means that λ↓1 = 0 (and
also that c↓tot = 0.5). Then λ↓2 < λ↓1 = 0, and λL2 < λL1 < 0.

It was proved that λL2 and λ↓2 have the same sign or are equal to zero
simultaneously, if λ1 > λ2. Alternatively, if λ1 < λ2, then a 2-wave will be
faster than a 1-wave. Hence the speed of the contact wave, which carries the
discontinuity in the weight fraction wm is equal to λR2 . By analogy, it can
be proved that the eigenvalues λR2 and λ↓2 have the same sign or are equal
to zero simultaneously, if λ1 < λ2. This proof will justify formula (5.84).

5.3.6.2 Nonconvex flux function

In a more general case ctot ∈ (0,∞), the solution structure becomes more
complicated. The flux of the total cell density

f1(ctot) =

{
χ↓ctot(1− ctot), ctot ≤ 1,
0, ctot > 1,

(5.86)

is not a convex or a concave function in this case. The Riemann solution of
the scalar equation (5.74) for the total cell concentration Riemann problem
has the form of the compound wave, i.e. the wave, which is composed of a
number of shocks, rarefactions and/or traveling waves. The structure of the
solution is determined from the boundary of the convex hull, constructed
for the given flux function [59]. If the left and right states in the Riemann
problem are such that cLtot < cRtot, then the convex hull is constructed for the
set {(x, y) : cLtot ≤ x ≤ cRtot, y ≥ f1(x)}, and if cLtot > cRtot, then the convex
hull is constructed for the set {(x, y) : cRtot ≤ x ≤ cLtot, y ≤ f1(x)}.
Remark 5.4. The flux of the mature cell density is defined as:

f2(ctot, cm) =

{
χ↓cm(1− ctot), ctot ≤ 1,
0, ctot > 1.

(5.87)
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Let us consider the case cLtot < cRtot. Suppose, that cRtot > 1. Otherwise,
due to the monotonicity of the entropy solution of the Riemann problem,
the solution will be in the interval (0, 1], and this situation was considered
before. If cLtot ≥ 1, then the Riemann solution will be constant in time, since
f1 ≡ 0 everywhere. That is the jump between cLtot and cRtot will not move.

Therefore, it is supposed that 0 < cLtot < 1 < cRtot. Then the convex
hulls can have three possible configurations, which are shown in Figure 5.6.
For the situation illustrated in Figure 5.6a, the compound wave consists of
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Figure 5.6: Three possible configurations of the convex hull, if cLtot < 1 < cRtot.
The convex hull is constructed for the set {(x, y) : cLtot ≤ x ≤ cRtot, y ≥ f1(x)}.
It is denoted by the filled area, with the boundary shown in the solid line.

the rarefaction wave, which connects the left state cLtot to an intermediate
state c∗tot, and of the shock wave, connecting the states c∗tot and cRtot. The
intermediate state is determined from the condition

f1(c∗tot)
′ =

f1(cRtot)− f1(c∗tot)
cRtot − c∗tot

. (5.88)

The convex hull boundaries, which are shown in Figures 5.6b, c, correspond
to the single shock wave between states cLtot and cRtot and to the compound
wave, which consists of the shock and the linear contact wave, respectively.

The state c↓tot on the inner edge of the control volumes can be found
from the general formula (5.83), which is also applicable for the case of a
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nonconvex flux function [59]. Subsequently, it is proved that equation (5.84)
for the weight fraction w↓m is correct in the current case.

Consider a single shock wave between the states 0 < cLtot < 1 < cRtot
(Figure 5.6b), which appears if χ↓ < 0. Then the shock speed is given by:

s =
f1(cRtot)− f1(cLtot)

cRtot − cLtot
= −χ↓ c

L
tot(1− cLtot)
cRtot − cLtot

> 0,

and

λL2 − s = χ↓
cRtot(1− cLtot)
cRtot − cLtot

< 0, λR2 − s = χ↓
cLtot(1− cLtot)
cRtot − cLtot

< 0. (5.89)

It follows from condition (5.89) that the characteristics of the 2-nd family
intersect the 1-shock from right to left. Hence the 2-wave speed is equal to
λ2(cLtot) = χ↓(1 − cLtot) < 0 and lies to the left of the ray x

t = 0. It follows
that w↓m = wRm. Since the shock speed is positive, the 1-shock lies to the
right of the ray x

t = 0, and c↓tot = cLtot. Therefore, formula (5.84) provides
the correct value of w↓m, since λ2(c

↓
tot) = λ2(cLtot).

Consider the compound wave, which consists of the rarefaction and shock
waves (Figure 5.6a). This wave corresponds to the situation, when cLtot < cRtot
and χ↓ < 0. Therefore, λ2−λ1 = χ↓ctot < 0 for ctot ∈ (0, 1]. The rarefaction
wave connects the states cLtot and c∗tot, which lie in the interval (0, 1]. Hence
the 2-characteristics intersect the 1-rarefaction wave from right to left. The
characteristic portrait of the present Riemann solution is shown in Figure
5.7. The shock wave front coincides with the right edge of the rarefaction
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Figure 5.7: Characteristics of the first family and of the second family in the
x−t plane are shown in thin unbroken lines in plots (a) and (b), respectively.
The wedges of the rarefaction fan are shown in solid dashed lines. The 2-
contact wave front is denoted by a solid unbroken line. The 1-shock wave
coincides with the right edge of 1-rarefaction wave. The 2-wave front lies to
the left from the compound 1-wave

fan (see equation (5.88)). Then the 2-characteristics also intersect the shock
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wave between the states c∗tot and cRtot from right to left, since

λ2(c∗tot)− s = χ↓
cRtot(1− c∗tot)
cRtot − c∗tot

< 0, λR2 − s = χ↓
c∗tot(1− c∗tot)
cRtot − c∗tot

< 0.

This means that the 2-contact wave lies to the left of the compound 1-
wave. The speed of the 2-wave is equal to λL2 . To justify formula (5.84)
for the present case, it is necessary to show, that the eigenvalues λL2 and λ↓2
have the same sign or are equal to zero simultaneously. This is proved as
follows. Since χ↓ < 0, the right edge of the rarefaction fan has the slope
λ1(c∗tot) = s = χ↓(1− c∗tot − cRtot) > 0. If λL1 > 0, then c↓tot = cLtot. If λL1 ≤ 0,
then λ↓1 = 0 and c↓tot = 0.5. Further, λ↓2 < λ↓1 = 0 and λL2 < λL1 ≤ 0.
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Figure 5.8: The solution to the Riemann problem, which consists of the
shock wave (dashed line) and the stationary wave (thick solid line), includes
three states: cLtot, c

∗
tot = 1 and cRtot > 1. The 1- and 2-characteristics are

shown in thin solid lines in plots (a) and (b), respectively. The derivative
of the flux function f1(ctot) is discontinuous at the point ctot = 1. As a
result, the 1-characteristic lines are not defined in the wedge between the
shock wave front and the contact wave front. The 2-characteristics intersect
the 1-shock wave. The 2-contact wave is stationary and coincides with the
stationary 1-contact wave

The third situation appears, if the compound wave consists of the shock
wave between the states cLtot and c∗tot = 1 and of the linear contact wave,
which connects the states c∗tot = 1 and cRtot > 1 (Figure 5.6c). The present
type of the 1-wave appears for 0 < cLtot < 1 < cRtot, if χ > 0. The linear wave
is stationary, since λ1 = f ′1 = 0 for ctot ∈ (1, cRtot), where f1(ctot) is given in
equation (5.86). The derivative of the flux function f1(ctot) is discontinuous
at the point ctot = 1. Consequently, the 1-characteristic lines are not defined
in the wedge between the fronts of the 1-shock wave and of the 1-contact
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wave. The solution of the Riemann problem in the x − t plane for the
considered case is plotted in Figure 5.8. The 2-characteristics intersect the
1-shock wave, since s = χ↓(1 − cLtot − c∗tot) < 0, λL2 = χ↓(1 − cLtot) > 0 and
λL2 (c∗tot) = 0. The discontinuity of the weight fraction wm propagates along
the ray x

t = 0. The general formula (5.83) for the total cell density at the
inner edge of the control volumes provides multiple solutions ctot ∈ [1, cRtot],
which corresponds to the stationary discontinuity between states c∗tot = 1
and cRtot > 1 in the solution for the total cell density at the inner edge (see
Figure 5.8). This does not give us any problem, since the flux of mature
cells is approximated, and f2(cm, ctot) = 0 for ctot ∈ [1, cRtot].

The situation when cLtot > cRtot is symmetrical to the case cLtot < cRtot. Con-
clusions, which can be made in this case, are analogous to the conclusions,
which were stated for the case cLtot < cRtot.

5.3.6.3 Nonstrictly hyperbolic system

It was assumed in Section 5.3.6.2, that ctot ∈ (0,∞). For ctot ∈ (1,∞) the
Jacobian is a zero matrix and the eigenvalues λ1 and λ2 are both equal to
zero. Hence the considered system is not strictly hyperbolic for ctot ∈ (1,∞).
The zero eigenvalues have a two dimensional eigenspace. Therefore, the alge-
braic multiplicity of the eigenvalues is equal to their geometric multiplicity.
Systems with this property are referred to as nonstrictly hyperbolic systems.
At the points of the phase plane, where the system becomes nonstrictly hy-
perbolic, there exists an infinite number of eigendirections. The Riemann
solution for the nonstrictly hyperbolic system may be more complicated,
compared to a strictly hyperbolic case [59]. For ctot ∈ (1,∞) the first and
second fields are linearly degenerate. The waves in these fields are stationary
contact waves. That is, the 1-wave and the 2-wave coincide in the regions,
where ctot ∈ (1,∞). This leads to the structure of the Riemann solution as
described in Section 5.3.6.2.

Another point of the phase plane, where system (5.73)–(5.74) is non-
strictly hyperbolic, is (ctot, cm) = (0, 0). The eigenvalues λ1 and λ2 are
equal to χ↓ and have a two dimensional eigenspace. An infinite number of
the integral curves of the first family passes through the point (0, 0), and
any state (ctot, cm) ∈ (0,∞) × R can be connected to the state (0, 0) by a
1-wave. Assume that the left state ~qL is [0, 0]T . Depending on the sign of
χ↓ and on the value of cRtot, the 1-wave, which connects ~qL and ~qR can have
four configurations shown in Figure 5.9. Formula (5.83), which determines
the value of ctot at the ray x

t = 0, is valid in all considered cases, since this
identity is derived for a scalar equation (5.74).

The 1-wave is a rarefaction wave if χ↓ < 0 and cRtot ≤ 1 (Figure 5.9a). It
is shown in Section 5.3.6, that the weight fraction is constant along a 1-wave
in the region ctot ≤ 1. Hence the value of c↓m is determined by the expression
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Figure 5.9: The structure of the 1-wave in the case 0 = cLtot < cRtot, which
is determined from the convex hull reconstruction. The convex hull is con-
structed for the set {(x, y) : cLtot ≤ x ≤ cRtot, y ≥ f1(x)}. It is denoted by the
filled area, with the boundary shown by the solid line.
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c↓m = c↓tot
cRm
cRtot

. (5.90)

If χ↓ < 0 and cRtot > 1, then the 1-wave consist of a rarefaction wave and a
shock, which connect the states ~q∗ and ~qR (Figure 5.9b). From the Rankine-
Hugoniot condition

~f(~qR)− ~f(~q∗) = s(~qR − ~q∗),

it is derived, that c∗m
c∗tot

= cRm
cRtot

. Therefore, the weight fraction is constant

through a shock and rarefaction part of the compound 1-wave, and c↓m is
determined by equation (5.90). The 1-wave is a pure shock, if χ↓ > 0 and
cRtot ≤ 1 (Figure 5.9c). Then ~q = ~qL = [0, 0]T to the left of the shock front
and ~q = ~qR to the right of the shock. If χ↓ > 0 and cRtot > 1, then the
1-wave is a compound wave, consisting of a stationary non-moving shock
and a stationary contact wave (Figure 5.9d). In this case, ~q = ~qL = [0, 0]T

for x
t < 0 and ~q = ~qR for x

t > 0. At the ray x
t = 0, the total cell density is

discontinuous. The flux function f2 is equal to zero, if it is evaluated at the
both sides of the discontinuity. Formula (5.83) provides multiple values for
c↓tot: ctot ∈ {0} ∪ [1, cRtot). Any of these values provide a zero flux f2, if c↓m is
bounded. Therefore, equations (5.83) and (5.90) give a correct value of the
flux f2 at the inner edge.

The 1-wave structure is analogous in the symmetric case cLtot > cRtot = 0,
cRm = 0 for the opposite signs of χ↓. The state ctot is determined from
expression (5.83), and c↓m is given by:

c↓m = c↓tot
cLm
cLtot

. (5.91)

5.3.6.4 Weakly hyperbolic system

According to Section 5.3.1, the present numerical algorithm should provide
nonnegative solutions for the cells densities. In this case, the total cell den-
sity ctot is equal to zero, if and only if ci = 0 and cm = 0. The definition
of the states c↓tot and c↓m given in Sections 5.3.6.1–5.3.6.3 is sufficient to de-
termine the flux f2 at the cell boundaries if a numerical solution for the cell
densities is nonnegative. Nonnegativity of the solution is crucially impor-
tant for the current model, since negative values of the cell densities may
grow in magnitude, leading to divergence of the numerical solution. This
phenomenon is discussed further in this section.

Assume that the cell densities can take negative values. In this case, a
zero total cell density does not imply zero densities of immature and mature
osteogenic cells. Therefore, the states ctot = 0 and cm 6= 0 can be considered.
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At these states, the eigenvalues λ1 and λ2 are equal to χ↓ and have just
one eigenvector [0, 1]T . Therefore, the algebraic multiplicity is larger than
geometric multiplicity. The Jacobian matrix is defective and the system is
weakly hyperbolic. One of the characteristics of a weakly hyperbolic system,
is that the Riemann solution may not be represented as a set of classical
rarefaction, shock and/or contact waves. In some situations nonclassical
shock waves, which are referred to as delta shock waves or singular shocks,
can appear in the solution.

The delta shocks can arise in various hyperbolic systems under certain
initial and boundary conditions. These waves contain singularities, which
can be expressed by the Dirac delta function. If delta shocks appear, the so-
lutions of the hyperbolic systems are defined in a generalized form. Various
authors [23, 55, 59, 70, 90] propose multiple approaches to construct gener-
alized solutions for different hyperbolic systems. Most often the generalized
solution is derived as a limit of some set of regularized viscous solutions.

For the present hyperbolic system, a delta shock wave appears, for exam-
ple, if χ↓ > 0 and cLtot = 0, cLm 6= 0 and cRtot > 0. To understand the nature
of this delta shock wave, let us consider a Riemann problem for cLtot = ε,
cLm 6= 0, 0 < cRtot ≤ 1. Let us look at the solution behavior for ε → 0. The
solution consists of a shock wave, connecting the state ~qL to an interme-
diate state ~q∗ = [cRtot, c

R
tot

cLm
ε ]T . The contact wave connecting the states ~q∗

and ~qR lies to the right of the shock wave and propagates along the ray
x
t = χ↓(1− cRtot) (Figure 5.10). The shock speed is equal to χ↓(1− cRtot − ε).
Therefore, if ε → +0, then the shock wave approaches the contact wave,
and the density c∗m between these waves tends to infinity.

Therefore, the 1-characteristics impinge on the delta shock from the left
and from the right. The 2-characteristics impinge on the delta shock from
the left and are parallel to it from the right. According to [23], the Riemann
solution for cm for the present case is defined in the distributional form:

cm = cLm + (cRm − cLm)H(x− st) + χ↓t
(
cRtotc

L
m − cLtotc

R
m

)
δ(x− st),

whereH(·) is the Heaviside step function, δ(·) is the Dirac delta function and
s is the shock speed, which is equal to χ↓(1− cLtot− cRtot). If χ↓ > 0, cLtot = 0,
cLm < 0 and 0 < cRtot < 1, then the mature cell density tends to minus infinity
on the ray x

t = χ↓(1− cRtot). Due to a random walk of cells, represented by
the diffusive terms in the governing equations, the singularity of the delta
shock is smoothed in the solution of the full system. A negative density
grows in magnitude in time. This issue can be demonstrated explicitly for
the following simplified problem.
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Figure 5.10: The solution to the Riemann problem, which consists of the 1-
shock wave (dashed line) and the 2-contact wave (thick solid line), includes
the left state cLtot = ε, cLm 6= 0, the right state cRtot > 0 and cRm and the
intermediate state c∗tot = cRtot, c

∗
m = cRtot

cLm
ε . The 1- and 2-characteristics

are shown in thin solid lines in plots (a) and (b), respectively. The 2-
characteristics intersect the 1-shock wave. The difference between the speeds
of the 1-shock and the 2-contact wave is equal to χ↓ε
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Large negative solutions Consider the following simplified equations
describing the migration of cells in the 1D physical space x ∈ R:

∂ctot
∂t

+
∂

∂x

(
−Dc

∂ctot
∂x

+
χ0 g

↓

K2
ch + g↓2

∂g

∂x
(1− ctot)ctot

)
= 0 (5.92)

∂cm
∂t

+
∂

∂x

(
−Dc

∂cm
∂x

+
χ0 g

↓

K2
ch + g↓2

∂g

∂x
(1− ctot)cm

)
= 0 (5.93)

Assume that χ0 g↓

K2
ch+g↓2

∂g
∂x ≡ const = χ̂ > 0. The function

ĉtot(x) =
1

exp{− χ̂
Dc
x}+ 1

is the stationary solution of equation (5.92), such that ĉtot → 0 if x→ −∞,
ĉtot → 1 if x→∞ and ĉtot(0) = 1

2 . The derivative of the stationary solution
is given by

dĉtot
dx

=
χ̂

Dc
ĉtot(1− ĉtot).

If ĉtot is substituted into equation (5.93), then the equation for the mature
cell density becomes the linear diffusion-advection-reaction equation:

∂cm
∂t

+ χ̂(1− ĉtot)
∂cm
∂x

= Dc
∂2cm
∂x2

+
χ̂2

Dc
ĉtot(1− ĉtot)cm, (5.94)

which can be easily solved numerically. Suppose that chemotaxis prevails
over random walk of cells, that is χ̂

Dc
>> 1. The stationary solution ĉtot for

the case χ̂
Dc

= 30 is plotted in Figure 5.11a. The derivative dĉtot
dx is large

near x = 0 and its maximal value is dĉtot
dx (0) = χ̂

4Dc
. Hence the reaction term

in the right-hand side of equation (5.94) is large near x = 0, and negative
values of cm grow in magnitude in this region, since ĉtot ∈ (0, 1) and in
particular for ĉtot = 1

2 . In Figure 5.11b, the numerical solution of equation
(5.93) is plotted for different time moments. The solution is obtained for
the spatial domain x ∈ [−1, 1] and for the following initial and boundary
conditions: cm(x, 0) = ĉtot(x)/2 − 0.1, cm(−1, 0) = ĉtot(−1)/2 − 0.1 and
cm(1, 0) = ĉtot(1)/2 − 0.1. The minimal value of cm grows in magnitude
from −0.1 at t = 0 to −0.56 at t = 1. The point of minimum lies to the
right from x = 0 due to the advection term in the left-hand side of equation
(5.94).

Therefore, this example shows how small negative values of the cell den-
sity can grow significantly in magnitude in time, due to a nonlinearity of the
flux function. Hence negative values of the cell densities should be avoided
during simulations at all times in order to get a convergence of the numerical
solution.
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Figure 5.11: (a) Plot of the stationary solution ĉtot of equation (5.92) for
the case χ̂

Dc
= 30; (b) Plots of the solution cm of equation (5.94) for the

time moments 0, 0.5 and 1 days. Negative values of cm grow in magnitude
in time near the point x = 0, where the derivative of ĉtot is large

5.3.6.5 Summary

To summarize, the fluxes due to cell migration are approximated as follows.
First, the left and right states of the immature and mature cell densities
are found at the inner edges of the 2D control volumes and at the faces of
the 3D control volumes, corresponding to these edges, as it is described in
Section 5.3.5.2. The left and right states of the total cell concentration are
obtained by adding the total density of immature cells and the density of
mature osteogenic cells. The considered states of the immature, mature and
total cell densities are denoted as cLi,l, c

R
i,l, c

L
m, cRm, cLtot and cRtot, respectively.

The index l ranges from 1 to Na. It is used to denote the states of the imma-
ture cell density at Na inner faces of the 3D control volumes, corresponding
to each inner edge of the 2D control volumes.

The normal derivatives of the immature and mature cell densities and
the normal derivative and the value of the growth factor concentration at
the inner edges and at the corresponding inner faces are determined in Sec-

tion 5.3.5.3. These quantities are denoted as ∂ci,l
∂x

↓
,∂cm∂x

↓
, ∂g∂x

↓
and g↓, respec-

tively.

Then the variables c↓tot, c
↓
m, c↓i,l are defined from the Riemann solution,
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which is determined by formula (5.83) and by equations:

c↓m =



c↓totw
↓
m, if cLtot 6= 0, cRtot 6= 0,

c↓tot
cRm
cRtot

, if cLtot = 0, cRtot 6= 0,

c↓tot
cLm
cLtot

, if cLtot 6= 0, cRtot = 0,

0, if cLtot = 0, cRtot = 0,

c↓i,l =



c↓totw
↓
i,l, if cLtot 6= 0, cRtot 6= 0,

c↓tot
cRi,l

cRtot
, if cLtot = 0, cRtot 6= 0,

c↓tot
cLi,l

cLtot
, if cLtot 6= 0, cRtot = 0,

0, if cLtot = 0, cRtot = 0.

The weight fraction w↓m is given by equation (5.84), and wi,l is defined in a
similar way:

w↓i,l =

{
wLi,l, if λ2(c

↓
tot) ≥ 0,

wRi,l, if λ2(c
↓
tot) ≤ 0,

where the left and right states of the weight fractions are determined in the
following way:

wSm =
cSm
cStot

, wSi,l =
cSi,l

cStot
, S ∈ {L,R}.

The functions f1 and λ2, which are included in the mentioned equations,
are defined in equations (5.86) and (5.95):

λ2(ctot) =

{
χ↓(1− ctot), ctot < 1,
0, ctot ≥ 1,

(5.95)

where χ↓ = χ0g↓

K2
ch+g↓2

∂g
∂x

↓
.

Finally the flux of mature osteogenic cells at the inner edge, and the
flux of immature cells at the corresponding inner faces are approximated as
follows:

F ↓
m = −Dc

∂cm
∂x

↓
+ f2(c

↓
tot, c

↓
m), F ↓

i,l = −Dc
∂ci,l
∂x

↓
+ f2(c

↓
tot, c

↓
i,l),

where the flux function f2(·, ·) is given by equation (5.87).
The present formulas are valid only if solutions for the cell densities

are nonnegative. For negative cell densities, singular delta shock waves
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can appear in the solution to the Riemann problem, from which the given
relations are derived. One of the situations, when delta shocks form, is
described in Section 5.3.6.4. Although the equations describe some of the
qualitative nature of the solutions, the present formulas are not justified and
hence they may give wrong approximation of the fluxes, if negative values
of the cell densities are admitted.

5.3.7 Treatment of the reaction term

The reaction terms in equations (5.28)–(5.30) are approximated by functions
HR
i , HR

m and HR
g , respectively. The integrals over the control volumes V 3

j,k,l

and Vj,k are substituted by the values of the integrated functions at the
centers of the control volumes. The fluxes of the cell densities ci and cm
and of the growth factor concentration g depend on the gradients of these
functions, which are approximated at the inner edges and faces of the control
volumes. Hence the values of the r-components of the fluxes at the centers
of control volumes are obtained through the interpolation of the normal
flux values, determined at the centers of the inner edges of the 2D control
volumes Vj,k, {j, k} ∈ Ia, which are parallel to the z-axis, and at the centers
of the corresponding faces of the 3D control volumes V 3

j,k,l, {j, k} ∈ I 3
a . The

considered normal fluxes were approximated using the principles outlined in
Sections 5.3.5 and 5.3.6.

The following interpolation technique is applied. Each regular rectan-
gular cell Vj,k has two vertical, i.e. parallel to the z-axis, edges ej− 1

2
,k and

ej+ 1
2
,k. The center of the cell Vj,k lies in the middle of the line segment,

which connects the centers of the considered edges. Hence the approximate
values F j,k,li , F j,km , F j,kg of the r-components of the fluxes corresponding to
the variables ci, cm and g in the centers of cells V 3

j,k,l and Vj,k are defined
as:

F j,k,li =
F
j− 1

2
,k,l

i + F
j+ 1

2
,k,l

i

2
,

F j,kp =
F
j− 1

2
,k

i + F
j+ 1

2
,k

i

2
, p ∈ {m, g},

(5.96)

where F
j− 1

2
,k,l

i , F
j− 1

2
,k

m , F
j− 1

2
,k

g and F
j+ 1

2
,k,l

i , F
j+ 1

2
,k

m , F
j+ 1

2
,k

g are the normal
fluxes of variables ci, cm and g at the corresponding vertical faces and edges
of control volumes V 3

j,k,l and Vj,k.
An irregular cell Vj,k can have either one or two vertical edges. If the

cell Vj,k has one vertical inner edge, for example edge ej− 1
2
,k, then the flux

at the cell center is determined through the following extension:

F j,k,li = F
j− 1

2
,k,l

i ,

F j,kp = F
j− 1

2
,k

i , p ∈ {m, g},
(5.97)
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If there are two inner vertical edges ej− 1
2
,k and ej+ 1

2
,k, adjacent to the active

irregular cell Vj,k, then the inverse distance weighting interpolation is used:

F j,k,li = wj,k1 F
j− 1

2
,k,l

i + wj,k2 F
j+ 1

2
,k,l

i ,

F j,kp = wj,k1 F
j− 1

2
,k

p + wj,k2 F
j+ 1

2
,k

p , p ∈ {m, g},
(5.98)

wj,k1 =
dj,k2

dj,k1 + dj,k2

, wj,k2 =
dj,k1

dj,k1 + dj,k2

,

where dj,k1 and dj,k2 are the distances from the center of cell Vj,k to its vertical
inner edges ej− 1

2
,k and ej+ 1

2
,k, respectively.

Therefore, the following expressions for the reaction terms are defined:

HR
i (~Ci, ~Cm, ~G, (j, k, l)) = Ac(Gj,k)C

j,k,l
i (1− Cj,ktot )−

F j,k,li

rj,kc
, (5.99)

HR
m(~Ci, ~Cm, ~G, (j, k)) = Ac(Gj,k)Cj,km (1− Cj,ktot )−

F j,km

rj,kc
, (5.100)

HR
g (~Ci, ~Cm, ~G, (j, k)) = Ec(Gj,k)

(
Cj,km + ha

Na∑
l=1

al− 1
2

+ al+ 1
2

2
Cj,k,li

)
− F j,kg

rj,kc
,

(5.101)
where Ac(g) and Ec(g) are defined in Table 4.1, and the averages of the total
cell concentration are determined as follows

Cj,ktot = Cj,km + ha

Na∑
l=1

Cj,k,li , (j, k) ∈ Ia.

5.3.8 Boundary conditions

The fluxes of the immature and mature cell densities ci and cm and of the
growth factor concentration g at the boundary Γ(t) of the physical domain
Ωs and at the corresponding boundary Γ3(t) = Γ× [0, 1] of the 3D domain,
which includes the maturation space, are represented by the integrals over
interfaces ∂V 3B

j,k,l and ∂V B
j,k in equations (5.28)–(5.30). The integrals are

approximated by functions HMb
i , HMb

m and HMb
g in equations (5.32)–(5.34)

through the values of the integrands at the centers of the boundary faces
and edges. Each boundary face and edge is adjacent to exactly one active
control volume, otherwise they will lie between active control volumes and,
hence, they will not lie on the boundary of the physical domain. The values
of the unknown cell densities and of the growth factor concentration are
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approximated at the centers of the boundary edges and faces by their average
values in the adjacent control volumes. The velocity at the center of the
boundary edge and at the centers of all corresponding 2D faces is defined
as the mean value of the normal velocities at the vertices of the considered
edge, which were determined in Section 5.3.3.

5.3.9 Time integration

Ordinary differential equations (5.32)–(5.34) are integrated with the use of
the explicit modified Euler method (also called explicit trapezoidal rule). It
is a two stage method. The grid of control volumes is updated at each stage.

Since an explicit time integration is used for the advection-diffusion-
reaction equations, the time step size should be chosen correctly. Due to
the presence of the parabolic diffusion terms, severe restrictions on the time
step size should be set, in order to provide a stable numerical scheme. The
reason, why an implicit time integration method is not used, is that implicit
methods are not efficient for the solution of the equations of the considered
hyperbolic type, if no dominance of the diffusion terms is observed, and if
a positivity of the solution should be kept. An explicit time integration
is usually more efficient than implicit methods, if a nonnegative numerical
solution of hyperbolic equations has to be obtained. Another advantage of
the explicit scheme, is that it is much more convenient for the implementa-
tion into the computer code and for its verification, especially if nonlinearly
coupled equations defined within the evolving in time physical domain are
considered.

Let us first estimate the order of the time step size, determined by the
stability restrictions. Such an estimate can be derived for the linear 1D
advection-diffusion equation

∂u

∂t
+ a

∂u

∂x
= d

∂2u

∂x2

with constant coefficients d, a, in the following way. The eigenvalues of
the matrix obtained from the discretization of the advection-diffusion terms
times the time step should lie within the stability region of the considered
time integration scheme. If the modified Euler method for the time dis-
cretization, the third order upwind biased discretization for the advection
term, and the second order central scheme for the diffusion term are consid-
ered, then the following restrictions are obtained for the time step τ

ν =
τ |a|
h

< 0.874, µ =
τd

h2
< 0.209, (5.102)

where h is the size of uniform 1D control volumes. The given conditions are
sufficient, but not necessary. That is, the time step size is underestimated
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by inequalities (5.102). The preliminary estimates for the considered non-
linear multidimensional problem are obtained, if the diffusion coefficient of
osteogenic cells Dc is substituted for the parameter d, and the parameter a
is replaced with the derivative of the total cell flux, caused by chemotaxis,
with respect to the total cell density, which can be estimated in the following
way:

| (χ(ctot, g)ctot∇sg)
′
ctot

| =
∣∣∣∣χ0(1− 2ctot)g∇sg

K2
ch + g2

∣∣∣∣ ∼ χ0

h
.

Then inequalities (5.102) yield:

τ < 0.874
h2

χ0
, τ < 0.209

h2

Dc
, (5.103)

where h is the characteristic linear size of the mesh.
Another restriction on the time step size is applied in order to keep

nonnegativeness of the numerical solution. If regular rectangular 2D con-
trol volumes in the center of the physical domain are considered, then the
following constraint on the time step size can be derived:

τ <
h

4 (Dc/h+ χ0/h)
. (5.104)

Stability and positivity restrictions for the time step size, which follows
from the equation for the growth factor evolution, can be reduced to the
inequality:

τ ≤ 1
4
h2

Dg
. (5.105)

The reaction terms from the governing equations are neglected in deriva-
tion of time step restrictions. This simplification is justified by the fact, that
for the characteristic mesh size h, which is used in the numerical simulations,
the magnitude of the corresponding discretized terms is much smaller than
the magnitude of the discretized advection-reaction terms, which are pro-
portional to 1/h2.

Inequalities (5.102), (5.104) and (5.105) can be reduced to the following
condition:

τ < h2 min
{

1
4 (Dc + χ0)

,
0.209
Dc

,
1

4Dg

}
. (5.106)

Due to the movement of the domain boundary, the control volumes,
located at the boundary, contract in time. Hence at some time moment,
very small control volumes can appear in the mesh, with the characteristic
linear size h → 0, which yields, that τ → 0. In order to prevent this, small
control volumes are united with the adjacent control volumes and combined
control volumes are constructed, so that an acceptable time step τ can be
used.
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The combined control volumes are constructed in the following way. The
characteristic linear size of an irregular computational cell is defined as the
minimal ratio of its volume to the length of the inner edges. The approx-
imations HMI

i , HMI
m , HMI

g of the advection-diffusion terms are inversely
proportional to this characteristic linear size. If the considered ratio be-
comes too small, then very small time step should be chosen in order to
provide stability and positivity of the numerical solution. Hence the consid-
ered linear size of the irregular cell is used to determine, whether the cell
should be united with its neighbors.

Let us consider some irregular active control volume Vj,k at the boundary
of the physical domain. It is united with some of its neighbors, if the minimal
ratio of its volume to the length of its inner edges is smaller than limit hirr.
If the neighbor, with which the considered control volume is united, is part of
another combined cell, then that combined cell is included in the combined
control volume, which is constructed around cell Vj,k (see Figure 5.12).

Figure 5.12: Sketch of the combined cells, which are constructed near the
boundary of the physical domain. Each combined cell consists of several
active control volumes, which are shown in one color

The value of the limit hirr is chosen to be equal to 0.4h, where h is the
minimal linear size of the regular rectangular control volumes in the middle
of the computational domain. From constraint (5.106), it follows that the
time step should be proportional to the square of the linear size of the mesh.
Due to the presence of small irregular cells near the boundary of the physical
domain, the following time step size

τ = hirrhτc min
{

1
4 (Dc + χ0)

,
0.209
Dc

,
1

4Dg

}
(5.107)

is chosen, where τc is some constant parameter. For the parameter values
defined in Table 4.2, we obtain:

min
{

1
4 (Dc + χ0)

,
0.209
Dc

,
1

4Dg

}
= 0.590

[
days

mm2

]
.

For the current problem statement, the numerical simulations, carried out
for the parameter value τc = 0.9 and for the different mesh resolutions,
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provided nonnegative solutions for the cell densities and the growth factor
concentration, in which no spurious oscillations were recognized. The nu-
merical solutions, obtained for the parameters τc = 1 and τc = 0.5, were
close to each other. Hence we assumed, that the chosen time-step size is
small enough for stability and positiveness of the numerical solution.

5.4 Discussion and conclusions

The aim of the current work is to develop the algorithm, which allows to
obtain the numerical solution in a two dimensional physical domain for the
peri-implant osseointegration model, defined in Chapter 4. The considered
model is formulated in terms of three coupled nonlinear time-dependent
advection-diffusion-reaction equations, which are defined within the evolving
in time domain.

The method of lines is used as a basis of the current numerical approach.
The discretizations in time and space are separated. This allows to apply
superposition in the discretization of the advection, diffusion and reaction
terms. Since a moving boundary problem is considered, the efficiency of
the method, which is used to construct the computational mesh, is of great
importance. In order to avoid a complete remeshing at every time step,
the embedded boundary method is applied on the initial regular rectangular
grid. This means, that only the control volumes, adjacent to the boundary of
the domain, change their shape. The evolution of the domain is tracked with
the level set method, which is easily implemented on the initial rectangular
grid. The irregular geometry of the physical domain is determined from the
values of the level set function at the nodes of the rectangular grid. The
computational mesh consists of the regular rectangular control volumes in
the middle and of the irregular computational cells near the boundary of
the domain.

Special attention should be paid to the discretization of the hyperbolic
terms from the governing partial differential equations. The finite volume
method is known to be efficient for this type of problems. With this method,
a Riemann problem should be solved at the inner edges of the control vol-
umes. The Riemann problem is defined for the nonstrictly hyperbolic system
of equations without genuine nonlinearity, which is analogous to nonconvex
flux functions in scalar hyperbolic equations [59]. In this chapter, the exact
Riemann solution is defined in the simple form.

For the discretization of the advection-diffusion terms, the values of the
gradients of the total cell density and of the growth factor concentration
should be approximated at the inner edges of the control volumes. Since
the control volumes, which are located near the boundary of the domain,
can be of an irregular shape, the approach for the gradient approximation
on the irregular grid is constructed.
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The explicit trapezoidal method is used for the time integration of the
ordinary differential equations, which are obtained after the discretization
of the PDE’s in the physical and maturation spaces. The explicit method is
chosen, since the positivity of the solution is very important for the current
model. First of all, negative densities and concentration do not make any
sense from biological point of view. Second, it is shown that negative values
of the cell densities can grow in magnitude due to nonlinearity of the flux
functions. Hence even small negative values of the cell densities can cause
bad convergence of an approximate solution to the exact solution. Another
advantage of the explicit methods, is that they are easy to implement and
that they are more convenient on the stage of the verification of the solution
of the complex numerical model. A disadvantage of the explicit methods is
that we have to use very small time steps, in order to obtain positive and
stable numerical solutions. This leads to large computation times, especially
when a fine mesh in the physical domain is considered.

A weak point of the current algorithm is the large computation time,
needed to obtain the numerical solution, when a fine mesh resolution is
used. In future, the development of an efficient time integration method,
which will reduce the time of computations, could improve the approach,
proposed in the present work. An operator splitting method can be useful
in this case as discussed in Section 6.2.



CHAPTER 6

Conclusions and outlook

6.1 Conclusions

Extended and deep knowledge of the main processes occurring in a real
system, which can be obtained, for example, from experiments and observa-
tions, are of great importance on the stage of construction of a theoretical
model for the considered system. It is also critically important to know
the characteristics of the developed mathematical model in order to jus-
tify that the initial assumptions incorporated in the model are represented
by the current mathematical formalism in a correct way. It can happen
that solutions of the mathematical model have some features, which were
not expected initially. Such a situation is considered in Chapter 2. It is
found that biologically irrelevant wave-like patterns appear in the solution
for a continuous bone regeneration model. A stability analysis allows to
determine the relation between the parameter values and a characteristic
behavior of the solution. It is demonstrated by combining analytical and
numerical approaches that for a certain range of the parameter values the
solution for the cell densities and the growth factor concentration converges
to unphysical wave-like profiles. However, if the parameter values are within
a stability region, then biologically irrelevant characteristics of the solution
disappear, and a final homogeneous distribution of cells and growth factors
is predicted.

Modeling can be considered as a representation of complex phenomena
in a rather simple form by taking certain assumptions and focusing on those
aspects, that are supposed to have the most significant impact on a process
that is considered. Therefore, the main processes occurring in bone regen-
eration are modeled by a number of various mathematical formalisms. Dif-
ferent theoretical approaches yield different results and allow to study bone

185
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regeneration from various perspectives. In Chapters 3 and 4, the models
for cell differentiation and bone formation, which are conceptually different
from classical approaches, are proposed. Several new features of bone regen-
eration are represented with these approaches, which cannot be simulated
with the already existing models.

The evolutionary differentiation model described in Chapter 3 allows
to incorporate a history of cell differentiation, so that the current state of
cells depends on how the cells evolved before. In contrast to an immediate
differentiation formalism, which is commonly used in classical models, the
new approach assigns a finite, bounded, time of differentiation to each cell.
The finite time of differentiation corresponds to a gradual gaining of new
properties by cells in the course of time, which is in line with experimental
observations. Another advantage of the evolutionary differentiation model,
is that bone formation within the peri-implant region can be predicted to
start only after some time from the implant placement, as it happens in
reality.

Due to its advanced characteristics, the evolutionary approach is an es-
sential part of a moving boundary problem for endosseous bone healing,
which is presented in Chapter 4. A moving boundary-type of bone formation
around endosseous implants, which is well observed in experiments, is di-
rectly incorporated into the present model. The ossification front is modeled
by the moving boundary of the computational domain, which corresponds
to a soft tissue region. An explicit representation of the bone-forming sur-
face is the main innovation of the proposed model, which distinguishes the
current formalism from the recent models for peri-implant osseointegration.

The robust numerical algorithm for the solution of a complex mathemat-
ical problem is developed and presented in Chapter 5. The main challenges
were to capture the irregular and time-evolving geometry of the problem
domain, and to construct a stable and positivity preserving discretization
of the nonlinearly coupled system of time dependent taxis-diffusion-reaction
equations for this domain. Such approaches based on the method of lines,
the finite volume method, the level set method and the embedded boundary
method are incorporated in the present elaborate numerical algorithm.

6.2 Recommendations

A general comment, which concerns most of the recent models of bone re-
generation and, in particular, the two models presented in this work, is that
further model validation is necessary in order to assess an applicability and
a robustness of the proposed theoretical approaches. This can be done by
comparing observation data obtained for various experimental settings with
the corresponding simulation results performed for the current continuous
models.
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For a validation of the evolutionary differentiation approach, the present
approach is incorporated into a mechanoregulatory model. Mechanoregula-
tory expressions for differentiation rates are derived from numerical simula-
tions and based on the educated guesses. In order to verify and to evaluate
the expressions for the differentiation rates directly, corresponding experi-
mental studies should be done. One of the potential research directions, re-
lated to the present study, is an experimental and theoretical investigation of
how cells gain properties of some phenotype in time under influence of vari-
ous factors (for example, mechanical loading or an influence of growth factors
and other chemicals). The mechanoregulatory model, which is described in
Chapter 3, is derived in a rather simple form, since it is used mainly to
check the performance of the evolutionary differentiation approach. There-
fore, there is a lot of space for further improvement of the model. For
example, an additional unknown for the growth factor concentration can be
incorporated into the formalism, in order to consider bioregulatory effects
occurring during bone regeneration. A mechanical stimulus can be adapted
to a dynamical loading of the healing tissue, which then can be modeled as a
poro-elastic medium. Considering cell differentiation as a partly stochastic
process can be a following step in extending the present model. Based on
the model for cell differentiation, a similar evolutionary approach for cell
proliferation is another potential line of the research.

The aforementioned directions for future research can be also considered
for the improvement of the moving boundary model presented in Chapter
4. A further justification and adjustment of the model parameters and
formalisms, which are used to model cellular and biochemical processes,
can be made by comparing paths of the ossification front during endosseous
bone healing for various experimental settings. Making a diffusion coefficient
dependent on the local cell density and on the growth factor concentration
and analogous modification of the rest of the parameters can deliver new
interesting results, which were not observed at the present moment. A
disadvantage of all these extensions is the increase of the model complexity
and of the number of parameters that are barely known, or very hard to
determine or to estimate.

The numerical algorithm, developed for the solution of the moving boun-
dary problem is based on an explicit time integration scheme, which yields
an enormous calculation time, especially if the control volumes used for
the spatial discretization are small. In this situation, an operator splitting
method can be useful. Applying an implicit time integration for diffusion
and reaction terms and an explicit integration scheme for hyperbolic taxis
and differentiation terms will allow the use of larger time steps, such that the
stability of the numerical solution will be maintained. However, an implicit
integration can violate a positivity of the solution, which is critical for the
considered problem. Therefore, further research on the efficient and robust
time integration method for the present continuous model is needed.
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An interesting behavior of the numerical solutions was obtained on the
meshes with various resolution in Chapter 4. The high density- high con-
centration layer, which was located at the old bone surface, had a wave-like
pattern on coarse meshes. The aforementioned pattern disappeared with
the increase of the mesh resolution. The issue of the pattern appearance in
the numerical solution, which is dependent on the sizes of the mesh elements
and on the model parameters, can be a subject of a theoretical research. An
elaborated stability analysis may unravel the reasons of such a behavior of
the solution and provide some guidelines on the choice of mesh resolution
and of the parameter values.

The current numerical scheme operates on a uniform initial rectangular
mesh. It was concluded in Chapter 4, that it is necessary to use very fine
meshes within the physical domain in order to get convergent numerical
solutions. Small element sizes lead to a large number of time steps, to ab-
normal amount of the required memory and hence to a huge CPU time. In
fact, an enhanced mesh resolution is only necessary in the regions, where the
gradients of the cell densities and/or of the growth factor concentration are
high. Therefore, small mesh elements are only needed within a small part of
the physical domain: at the boundary between the high density - high con-
centration layer located near the ossification front and the rest of the physi-
cal domain, where the cell densities and the growth factor concentration are
close to zero. In such a situation, adaptive mesh refinement can significantly
reduce the computational time and required computer resources. Therewith,
an incorporation of the adaptive mesh refinement technique into the present
numerical algorithm is a potential direction for the following studies. We
also think that spectral or discontinuous Galerkin methods may be worth
investigating with respect to accuracy issues. We remark that the use of
limiters will probably still be necessary in order to grant positivity of the
numerical solution.
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Notes to the moving boundary
model for endosseous healing

A.1 Cell source at the old bone surface

The parameter tcbone denotes the time period, during which the influx of
immature non-differentiated cells takes place near the old bone. In Abra-
hamsson et al. [1] new bone formation is recognized at the end of the first
week after the implant placement. Therefore, the value tcbone = 1 day is
estimated from numerical simulations, so that new bone formation is ob-
served at the old bone surface at time t = 7 days, if no growth factor source
is considered at the smooth implant surface.

Decrease of tcbone to value 0.5 days, leads to the issue, that fewer cells are
recruited from the old bone surface. Bone formation starts in the corners,
formed by the old bone surface and by the tread of the implant. No bone
forms in the middle of the old bone surface (Figure A.1).

On the other hand, for the value 2 days of the parameter tcbone, new
bone does not form. This happens, due to the extensive source of non-
differentiated cells at the old bone surface. The differentiating osteogenic
cells are squeezed from the old bone surface by non-differentiated cells. Cells
with low level of differentiation release little growth factor (see equation
(4.3)). A low concentration of growth factor near the old bone surface leads
to a slow cell differentiation in this region (see the expression for ub(g) in
Table 4.1). Therefore, the density of mature osteogenic cells is zero, and
no new bone forms near the old bone surface within the considered time
frame.
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Figure A.1: Plots of the mature cell density cm, of the total cell density
ctot and of the growth factor concentration g at the time moments t = 7, 9
and 28 days for the parameter values given in Tables 4.1 and 4.2 and for
tcbone = 0.5 days. The bone-forming surface moves from the the corners,
formed by the old bone surface and by the tread of the implant

A.2 Fluxes at the moving boundary

Next, the flux of some quantity is considered, which can be, for example,
cell density, which is denoted as c, near the moving boundary. Cellular
processes, like differentiation and proliferation, are disregarded. Let the
density be defined within some region Ωc(t), which evolves in time and has
the moving boundary ∂Ωc(t). The movement of the domain boundary is
determined by the velocity field ~v( ~X, t), ~X ∈ ∂Ωc(t), t > 0. Since the
flux of cell density is studied, assume, that the evolution of the density is
determined only by cell migration. Then, the cell dynamics can be described
by the conservation law:

∂c

∂t
(~x, t) +∇ · ~F (c, ~x, t) = 0, ~x ∈ Ωc, t > 0, (A.1)

where F (c, ~x, t) is the flux density vector field. From application of the
Leibniz integral rule to equation (A.1) and from the divergence theorem, it
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follows:

d

dt

∫
Ωc

c dV =
∫

Ωc

∂c

∂t
dV +

∫
∂Ωc(t)

c ~v · ~n dS = −
∫

Ωc

∇ · ~F dV

+
∫
∂Ωc(t)

c ~v · ~n dS = −
∫
∂Ωc(t)

~F · ~n dS +
∫
∂Ωc(t)

c ~v · ~n dS. (A.2)

Let us denote the projection of the velocity ~v on the normal ~n as

vn( ~X, t) = ~v( ~X, t) · ~n( ~X, t),

where ~X ∈ ∂Ωc(t), t > 0 and ~n is the outward unit normal to the surface
∂Ωs.

Assume first, that cells are pushed by the moving boundary in a piston-
like way. In this case, the total number of cells within the domain will not
change, i.e.

d

dt

∫
Ωc(t)

c dV = 0. (A.3)

The velocity of cells at the moving boundary ∂Ωs, projected on the normal
to the boundary, will be equal to the normal velocity of the boundary vn.
Hence, the flux through the surface element ~n dS will be equal to the local
cell density times the velocity in direction ~n times the area of the surface
dS:

~F (c, ~X, t) · ~n( ~X, t) dS = c( ~X, t) vn( ~X, t)dS,

or
~F (c, ~X, t) · ~n( ~X, t) = c( ~X, t) vn( ~X, t), (A.4)

where ~X ∈ ∂Ωc(t), t > 0, ~n is the outward unit normal to the surface ∂Ωc(t).
Equation (A.4) is the natural boundary condition for the cell density under
interfacial movement. Further, from the equations (A.2) and (A.4) it follows,
that the condition (A.3) is satisfied.

Suppose now, that the cells, adjacent to the boundary, attach to it and
become immobile. They do not move together with boundary, but they
are trapped by it. Hence, it is assumed, that they do not change their
position, i.e. their velocity and, consequently, their flux, with respect to the
coordinates of the physical space, become equal to zero, after the cells are
attached to the domain boundary:

~F (c,X, t) = ~0, ~X ∈ ∂Ωc(t), t > 0. (A.5)

If the cells are trapped by the moving boundary, then the total cell number
within the domain Ωs will decrease. This fact can be derived from equa-
tions (A.2), (A.5) and from equation (4.4), where the normal velocity vn is
defined as non-positive variable, i.e.

~v · ~n = vn ≤ 0,
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where ~n is the outward normal. This means, that the boundary moves
inwards the domain (domain shrinks). Consequently,

d

dt

∫
Ωc

c dV =
∫
∂Ωc(t)

c ~v · ~n dS ≤ 0. (A.6)

Neumann boundary conditions are formulated for the flux through the
boundary surface. Thus, condition (A.5) should be rewritten in the form:

~F (c,X, t) · ~n(X, t) = 0, ~X ∈ ∂Ωc(t), t > 0, (A.7)

where ~n is the outward unit normal to the surface ∂Ωc(t).
The boundary conditions, formulated in Section 4.3.2, are derived from

the equations (A.4) and (A.7) and from the assumptions, made in Sec-
tion 4.3.2. The flux density field ~F is substituted by expressions

(−Dc∇scj + χ(g, ctot)cj∇sg) , j = i,m,

for immature and mature cell densities, and by the expression −Dg∇sg, for
growth factor concentration, respectively.

Relation (A.7), used as a boundary condition for the mature cell density,
is derived from a rather rough assumption, that these cells do not change
their position in physical space, after they attach to the moving boundary. In
reality, some osteoblasts move simultaneously with the bone-forming surface,
and a part of them becomes completely surrounded by the new bone matrix
[63]. The mechanism of movement of the osteoblasts, which attach to the
solid surface and which release new bone matrix, seems to be complicated
and not well studied in the literature. In future, the present model can be
improved by a more accurate representation of the relative movement of the
mature osteogenic cells and the bone-forming surface.
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Notes to the numerical algorithm

B.1 Determinant of the linear system

Linear equations (5.44) can be written in the matrix form:

A ~a = ~C,

where

A =

 1 rj−1,k
c Ij−1,k

zz

1 rj,kc Ij,kzz

1 rj+1,k
c Ij+1,k

zz

 .
The determinant of matrix A is equal to:

det(A) = (Ij,kzz − Ij−1,k
zz )(rj+1,k

c − rj,kc )

+ (Ij+1,k
zz − Ij,kzz )(rj−1,k

c − rj,kc ). (B.1)

In this appendix, it is proved that det(A) 6= 0.
Let us define a new coordinate system (r′, z′), such that r′ = r − r0 and

z′ = z − z0, where r0, z0 are some real numbers. The r′-coordinate of the
center of any area V is equal to

r′c = rc − r0, (B.2)

where rc is the r-coordinate of the center in the old coordinates. The second
moment of the area is modified in the new coordinate system in the following
way

I ′zz =
1

µ(V )

∫
V
r′2dv =

1
µ(V )

∫
V

(r − r0)2dv = Izz − 2r0rc + r20, (B.3)

where Izz is the corresponding moment in the old coordinates.
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Remark B.1. Since the second moment of area is non-negative, then I ′zz ≥ 0
for any real r0. If it is assumed, that r0 = rc, then from equation (B.3) it
follows, that

Izz = I ′zz + r2c ≥ r2c ,

i.e. the second moment of area is greater or equal to the square of the
corresponding coordinate of its center.

From relations (B.2), (B.3), it follows that the determinant of the matrix
A is invariant with respect to the parallel shift of the coordinate system.
Hence, without loss of generality, it can be assumed, that the coordinate
origin is situated in the middle of the line segment, which connects the
centers of cells Vj−1,k and Vj+1,k, i.e. rj−1,k

c +rj+1,k
c

2 = 0 or −rj−1,k
c = rj+1,k

c =
R > 0. Further, the following parameters are introduced:

rm,kmax = max
(r,z)∈Vm,k

r, rm,kmin = min
(r,z)∈Vm,k

r, rm,k|max| = max
(r,z)∈Vm,k

|r|,

m ∈ {j − 1, j, j + 1}. (B.4)

From Figure 5.3a it follows, that

−R = rj−1,k
c < rj,kmin < rj,kc < rj,kmax < rj+1,k

c = R, (B.5)

hence rj,k|max| < R. Then,

Ij,kzz =
1

µ(Vj,k)

∫
Vj,k

r2dv ≤ (rj,k|max|)
2 < R2.

From Remark B.1 it follows, that

Im,kzz ≥ (rm,kc )2 = R2 > Ij,kzz , m ∈ {j − 1, j + 1}. (B.6)

Inequalities (B.5) and (B.6) yield, that the determinant of matrix A is less
than zero. Hence, there exists a unique solution for linear system (5.44).

B.2 Number of adjacent cells

Consider for example an inner vertical edge ej+ 1
2
,k, which lies within the

physical domain Ωs. Hence, rectangular cells of the initial meshWj,k, Wj+1,k

lie within the domain, at least partially. Then, there exist active cells Vm,k =
Wm,k ∩ Ωs, m ∈ {j, j + 1}. Further, all possible situations of the location
of the vertices of the inner edge ej+ 1

2
,k with respect to domain Ωs will be

determined, and the number Nc of active cells, exclusive cells Vj,k, Vj+1,k,
adjacent to these vertices will be found in each case. The vertices of edge
ej+ 1

2
,k can have at most 4 adjacent active cells, exclusive cells Vj,k, Vj+1,k



B.2. Number of adjacent cells 195

(see for example Figure B.1a), hence Nc ≤ 4. It will be proved, that this
number is also greater than zero.

Case 1a. Assume, that one of the vertices of the edge ej+ 1
2
,k, for exam-

ple vertex vj+ 1
2
,k− 1

2
, is inner, i.e. the level set function is negative at this

vertex. Then, besides cells Vj,k, Vj+1,k, there exist two active cells Vj,k−1,
Vj+1,k−1, adjacent to vertex vj+ 1

2
,k− 1

2
. If vertex vj+ 1

2
,k+ 1

2
is also an inner

vertex, then there exist two active adjacent cells Vj,k+1, Vj+1,k+1, and Nc = 4
(Figure B.1a).
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Figure B.1: Possible locations of the inner edge ej+ 1
2
,k and of the adjacent

cells Vj,k, Vj+1,k with respect to the physical domain Ωs

Case 1b. In case, when vertex vj+ 1
2
,k+ 1

2
is a boundary vertex, then, be-

sides cells Vj,k, Vj+1,k, there may exist from zero to two active cells, adjacent
to this vertex (see for example Figures B.1b–d). The number Nc ranges from
two to four.

Case 1c. If vertex vj+ 1
2
,k+ 1

2
is an outer vertex, then the additional boun-

dary vertex is defined between vertices vj+ 1
2
,k+ 1

2
and vj+ 1

2
,k− 1

2
. This new

vertex is the second vertex of the inner edge ej+ 1
2
,k. Only cells Vj,k, Vj+1,k

are adjacent to the new boundary vertex (Figure B.1e). Hence, Nc = 2.
Case 2. Suppose, that vertex vj+ 1

2
,k− 1

2
is outer. Since, edge ej+ 1

2
,k is

inner, then vertex vj+ 1
2
,k+ 1

2
has to be an inner vertex. This situation is

symmetrical to Case 1c.
Case 3a. Assume, that vertex vj+ 1

2
,k− 1

2
is a boundary vertex. Then

vertex vj+ 1
2
,k+ 1

2
cannot be an outer vertex, since the considered edge ej+ 1

2
,k

is inner. If vertex vj+ 1
2
,k+ 1

2
is an inner vertex, then the conclusions from
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Case 1b are valid.
Case 3b. Suppose, that vertex vj+ 1

2
,k+ 1

2
is also a boundary vertex. Let us

now consider vertices vj− 1
2
,k+ 1

2
and vj+ 3

2
,k+ 1

2
. If they are boundary vertices,

then vertices vj− 1
2
,k− 1

2
and vj+ 3

2
,k− 1

2
cannot be outer vertices. Otherwise,

cells Wj,k, Wj+1,k would be outer cells, and there would not exist active
cells Vj,k, Vj+1,k. This contradicts to the initial assumption. Hence, the
considered cells Vj,k, Vj+1,k are regular rectangular cells (Figure B.1f). In
this situation, the normal derivatives and the value of the growth factor
concentration are obtained with formulas (5.55), (5.56). Further, it is not
necessary to define one more adjacent cell to approximate the gradients of
the unknown functions.

Case 3c. Assume, that at least one of the vertices vj− 1
2
,k+ 1

2
and vj+ 3

2
,k+ 1

2
,

is not a boundary vertex. If, for example, vertex vj− 1
2
,k+ 1

2
is inner (Fig-

ure B.1g), then cell Vj,k+1 will be an active cell. Hence, Nc ≥ 1.
Case 3d. If, for example, vertex vj+ 3

2
,k+ 1

2
is outer (Figure B.1g), then

vertex vj+ 3
2
,k− 1

2
should be an inner vertex. Otherwise, there would not exist

active cell Vj+1,k. It follows then, that cell Vj+1,k−1 is active, and Nc ≥ 1.
Therefore, it has been proved for all possible situations, when at least

one of cells Vj,k, Vj+1,k is irregular, that 1 ≤ NC ≤ 4. The proof for the
horizontal inner edges is analogous.
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[10] L. Audigé, D. Griffin, M. Bhandari, J. Kellam, and Rüedi T. P. Path
analysis of factors for delayed healing and nonunion in 416 operatively
treated tibial shaft fractures. Clin. Orthop Relat Res., 438:221 – 232,
2005.

[11] A. Bailon-Plaza and M. C. H. van der Meulen. A mathematical frame-
work to study the effects of growth factor influences on fracture healing.
J. Theor. Biol., 212:191 – 209, 2001.

[12] A. Bailon-Plaza and M. C. H. van der Meulen. Beneficial effects of
moderate, early loading and adverse effects of delayed or excessive
loading on bone healing. J. Biomech., 36:1069 – 1077, 2003. doi:
0.1016/S0021-9290(03)00117-9.

[13] G. R. Beck, B. Zerler, and E. Moran. Gene array analysis of osteoblast
differentiation. Cell Growth Differ., 12:61 – 83, 2001.

[14] T. Berglundh, I. Abrahamsson, N. P. Lang, and J. Lindhe. De novo
alveolar bone formation adjacent to endosseous implants. Clin Oral
Implants Res., 14(3):251 – 262, 2003.

[15] P. R. Blenman, D. R. Carter, and G. S. Beaupré. Role of mechanical
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