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Summary

In multiphase flow multiple phases, e.g. gasses, liquids and solids, occur
simultaneously in the same flow domain, where they influence each other’s
dynamics. Many industries, e.g. oil and gas recovery, (nuclear) power gen-
eration, production of foods and chemicals rely on stable and predictable
liquid-gas multiphase flows for safe transport and processing. Nowadays,
cost-effective system design and operation rely indispensably on (flow) sim-
ulation technology.

When only two different fluids are present in the same domain that do
not mix, and the flow speed in either is much smaller than the local speed of
sound, such a multiphase flow is classified as immiscible incompressible two-
phase flow. An important property of this type of flow is that the density
is constant along streamlines and only attains two values: the density of
either of the two constituent phases.

Modeling the dynamics of two incompressible immiscible fluids is far
more challenging than modeling single phase flow because of the conflicting
demands imposed by very strict mass conservation and accurately predict-
ing the position of the interface between the phases, for which the smooth-
ness and sharpness have to be preserved. The latter is especially important
if the interface curvature and normal vector are required to model surface
tension. Furthermore, the solution needs to comply with the jump condi-
tions that hold at the interface.

For Cartesian flow domains it is relatively straightforward to formu-
late a finite volume discretisation of the flow equations that is discretely
conserving mass and momentum. However, when the flow domain has a
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more intricate geometry, this becomes very challenging. Development of
numerical methods for solving the equations that describe the dynamics of
incompressible immiscible two-phase flow on generic domains are the very
active field of research. In this thesis, three such methods will be compared
for their accuracy, their ability to conserve mass and their efficiency:

• The (classic) Level-Set method,

• A newly developed extension of the Mass Conserving Level Set method,
for discretisation on unstructured meshes consisting of triangular con-
trol volumes.

• The modified Level-Set method.

In this comparison, the evolution of the interface is compared when advected
by an imposed two-dimensional velocity field. The interaction between the
interface evolution and the flow, as occurs in a complete model for two-phase
flow is not taken into account, to eliminate the influence of the specific model
chosen for this interaction.

In the Level-Set method, the interface is defined as the zero Level-Set
of a signed-distance function and has notoriously poor mass conservation.
Therefore, the evolution of the interface is described by a linear advection
equation for the Level-Set field. The discontinuous Galerkin method can be
used to discretise this type of hyperbolic partial differential equation effi-
ciently and with a high order of accuracy on unstructured simplex meshes.
Numerical experiments show that mass-conservation improves upon hp-
refinement, but is not comparable to what can be achieved using Volume of
Fluid method on Cartesian meshes. This ’classic’ Level-Set method defines
a baseline method that is used as starting point and reference for further
development.

In the Mass-Conserving Level-Set method, that has originally been de-
veloped for discretisation on structured Cartesian meshes, the interface
between both phases is described by a hybrid formulation that involves
both the Level-Set field and the Volume of Fluid field that are congruent at
all times. During the advection of the Level-Set field the Volume of Fluid
field is used to impose a mass-conserving correction on the former field.
Simultaneously, the Level-Set field is used to formulate the fluxes for the
Volume of Fluid advection equation more efficiently than would be possible
in the absence of this information. This synergy and the fact that explicit
relations can be derived to convert Volume of Fluid to Level-Set and vice
versa make the method both very efficient and strictly mass conserving. In
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this thesis, the extension of this method to a discretisation on an unstruc-
tured mesh of triangular control volumes is derived. Numerical experiments
support the claim of exact mass conservation of the method.

An Arbitrary Eulerian-Lagrangian ’clipping’ algorithm is used for the
advection of the Volume of Fluid field in the proposed extension of the
Mass-Conserving Level-Set method that is exactly mass-conserving for lin-
ear velocity fields, but makes the complete algorithm quite computationally
intensive. It is investigated how the accuracy and ability to conserve mass
of the modified Level-Set method compare to the corresponding properties
of the Mass-Conserving Level-Set method. The latter can be used as a
stand-alone algorithm or as part of the Mass-Conserving Level-Set method
to replace the computationally intensive Volume of Fluid advection.

In the modified Level-Set method, that is often claimed to be more ac-
curately mass-conserving than the classic Level-Set method, the interface is
defined as the Level-Set of a smooth indicator function that is an approxim-
ation of the indicator function used in the Volume of Fluid method. Just as
for the classic Level-Set method the evolution of the interface is described
by a linear advection equation. To circumvent oscillations in the indicator
function in the vicinity of the interface, a limiter is added to the discontinu-
ous Galerkin discretisation. By augmenting the imposed velocity field with
an artificial compressive velocity field the interface remains sharply defined.

A number of test cases show that mass-conservation of the modified
Level-Set method is not significantly superior to the classic Level-Set method
in strict sense. The application of the limiter does not seem to affect the
accuracy of the solution.

Of all three methods, the newly developed Mass-Conserving Level-Set
method is only one that is mass conserving up to machine precision, but
also the most computationally intensive of the three. For those applications
where strict mass conservation is of less importance the modified Level-
Set presents an economical alternative to the Mass-Conserving Level-Set
method.





Samenvatting

Een meerfasestroming onderscheidt zich van een enkelfasestroming doordat
meerdere fasen, bijvoorbeeld gassen, vloeistoffen en vaste stoffen, tegelij-
kertijd door hetzelfde systeem stromen en elkaars dynamica bëınvloeden.
In heel veel industriële processen spelen zulke stromingen een belangrijke
rol. Bij de winning van olie en gas, het opwekken van energie in een kern-
reactor en in de chemische en voedingsmiddelenindustrie is het van het
grootste belang dat de installaties op zo’n manier worden gedimensioneerd
dat gegarandeerd kan worden dat de verschillende fasen tegelijkertijd op een
efficiënte, milieuvriendelijke, kosteneffectieve en vooral veilige manier door
de reactor, de koelinstallatie of het pijpleidingsysteem kunnen stromen.

Als slechts twee fluida in het systeem voorkomen die niet mengbaar zijn
en stromen met een snelheid die veel kleiner is dan de lokale geluidssnel-
heid wordt de meerfasestroming geclassificeerd als incompressible immisci-
ble two-phase flow. Een belangrijke eigenschap van dit type stroming is dat
de dichtheid constant is langs stroomlijnen en slechts twee waarden aan kan
nemen: de dichtheid van de ene of van de andere fase.

Het onderwerp van dit proefschrift is de ontwikkeling van een numerieke
methode voor het efficiënt berekenen van nauwkeurige benaderingen van op-
lossingen van de stromingsvergelijkingen die dit type stroming beschrijven.
Terwijl numerieke methoden voor het simuleren van enkelfasestromingen
grotendeels uitgekristalliseerd zijn geldt dit niet voor methoden voor de si-
mulatie van meerfasestromingen. Dit is een gevolg van de conflicterende
eisen die in dit geval aan de oplossing worden gesteld en het discontinue
karakter van de oplossing zelf. Aan de ene kant moeten de stromings-
variabelen voldoen aan de sprongrelaties die gelden op het scheidingsvlak
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tussen beide fasen, terwijl aan de andere kant de oplossing in de buurt van
het scheidingsvlak voldoende glad moet zijn om daaruit de richting van de
normaalvector en de kromming van het scheidingsvlak te bepalen in het bij-
zonder als ook oppervlaktespanning moet worden gemodelleerd. Daarnaast
wordt grote waarde gehecht aan (bijna) volmaakt behoud van massa.

In die gevallen waar het stromingsdomein Cartesisch is, is het relatief
eenvoudig de stromingsvergelijkingen te discretiseren met een Eindige Volu-
memethode die exact massa- en impulsbehoudend is. Heeft het stromings-
domein een ingewikkelde vorm dan is dit veel moeilijker te realiseren. De
ontwikkeling van numerieke methoden om de vergelijkingen die meerfase-
stromingen beschrijven te discretiseren op een generiek domein zijn nog
volop in ontwikkeling. In dit proefschrift worden drie zulke methoden ver-
geleken op basis van hun nauwkeurigheid, massabehoud en efficiëntie.

• De (klassieke) Level-Setmethode,

• Een nieuw ontwikkelde uitbreiding van de Mass Conserving Level-
Setmethode naar een discretisatie op basis van driehoekige controle-
volumes.

• De modified Level-Set methode.

In de vergelijking wordt gekeken naar de advectie van het scheidingsvlak
tussen beide fasen in een twee-dimensionaal, opgelegd stromingsveld. Hier-
bij wordt de wederzijdese bëınvloeding van de stroming en het model voor
het scheidingsvlak, zoals die in een volledig model voor een tweefase stro-
ming optreedt, buiten beschouwing gelaten om de invloed van de specifieke
discretisatie van deze koppeling te elimineren

Omdat bij de Level-Setmethode het scheidingsvlak wordt beschreven
door de Level-Set van een signed-distancefunctie wordt de evolutie van het
scheidingsvlak beschreven door een lineaire advectievergelijking voor het
Level-Setveld. Deze methode wordt gekenmerkt door zijn slechte massabe-
houd. Door gebruik te maken van een nodal-based discontinuous Galerkin-
methode kan deze vergelijking eenvoudig en efficient met een hoge orde van
nauwkeurigheid worden gediscretiseerd op ongestructureerde roosters be-
staande uit driehoekige controlevolumes. Uit numerieke experimenten komt
naar voren dat de mate waarin de methode massabehoudend is weliswaar
toeneemt met hp-verfijning, maar dat het massabehoud niet vergelijkbaar
is met dat van moderne methoden voor Cartesische roosters op basis van
de Volume of Fluidmethode. Deze methode is het uitgangspunt voor de
ontwikkeling van de Mass Conserving Level-Setmethode.
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In de Mass Conserving Level-Setmethode, die oorspronkelijk ontwikkeld
is voor een discretisatie op een gestructureerd rooster van Cartesische con-
trolevolumes, wordt het scheidingsvlak tussen de beide fasen op een hybride
manier beschreven door zowel een Level-Set- als een Volume of Fluidveld
die beide in overeenstemming zijn. Bij de advectie van het Level-Setveld
wordt het Volume of Fluidveld gebruikt om op het eerstgenoemde veld een
massabehoudende correctie toe te passen. Tegelijkertijd maakt het Level-
Setveld het mogelijk om het Volume of Fluidveld op een efficiëntere manier
te advecteren dan in een standaard Volume of Fluidmethode. Deze syner-
gie, gecombineerd met expliciete relaties waarmee beide velden naar elkaar
kunnen worden geconverteerd, maakt de methode efficiënt en massabehou-
dend. In dit proefschrift wordt de extensie van deze methode naar een
discretisatie op basis van driehoekige controlevolumes beschreven. Nume-
rieke experimenten ondersteunen dat de methode exact massabehoudend
is.

Bij de advectiestap van het Volume of Fluidveld in de uitbreiding van
de Mass Conserving Level-Setmethode wordt gebruik gemaakt van een Ar-
bitrary Eulerian Lagrangian clipping-algoritme, dat weliswaar strict mas-
sabehoudend is voor lineaire snelheidsvelden, maar relatief rekenintensief.
Tenslotte is onderzocht hoe de nauwkeurigheid en het massbehoud van de
modified Level-Setmethode zich verhouden tot die van de Mass Conserving
Level-Setmethode. De modified Level-Set kan als opzichzelfstaande me-
thode of als onderdeel van de Mass Conserving Level-Setmethode kunnen
worden gebruikt.

In de modified Level-Setmethode, waarvan wordt beweerd dat deze veel
beter massabehoudend is dan de klassieke Level-Setmethode, wordt het
scheidingsvlak beschreven door een Level-Set van een gladde indicatorfunc-
tie die een benadering is van de indicatorfunctie die wordt gebruikt in de
Volume of Fluidmethode. Ook bij de modified Level-Setmethode wordt de
evolutie van het scheidingsvlak beschreven door een lineaire advectieverge-
lijking. Om te voorkomen dat de numerieke oplossing oscillaties vertoont
in de directe omgeving van het scheidingsvlak wordt een limiter toegevoegd
aan de discontinuous Galerkindiscretisatie. Door ook een artificieel com-
pressief snelheidsveld toe te voegen wordt voorkomen dat door het toepas-
sen van de limiter het scheidingsvlak zijn scherpte verliest.

In verschillende testgevallen komt naar voren dat het massabehoud van
de modified Level-Setmethode maar weinig beter is dan van de klassieke
Level-Setmethode en dat het toepassen van de limiter geen gevolgen heeft
voor de nauwkeurigheid van de oplossing.

Van de drie methoden is de Mass Conserving Level-Setmethode de enige
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die exact massbehoudend is, maar ook de meest rekenintensieve. Voor die
toepassingen waar massbehoud tot machinenauwkeurigheid niet relevant is
vormt de modified Level-Setmethode een goedkoper alternatief.
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CHAPTER 1

Introduction

In two-phase flow, two media with possibly very different properties and in
different phases are present in a single domain. This type of flow plays a
very important role in many industrial applications, ranging from petroleum
industry, chemical reactors, and the medical sciences.

The dynamics of two-phase flow can be very complex because of the
fact that due to the movement of the interface between the two media
the material properties strongly change in space and time. Furthermore, in
many cases the interface is not just advected by the local flow, but a possible
imbalance of inter molecular forces (surface tension) at the interface between
the two media leads to local acceleration of the flow.

Based on the phases of the two media, two-phase flow can be categor-
ised as: Liquid-Gas, Liquid-Liquid, Gas-Solid and Liquid-Solid. In all of
these, sharp changes in material properties and the dynamics of the inter-
face play an important role. Of these four, the Liquid-Gas and Gas-Solid
flows present the larger challenges, because of the difference in (material)
properties of both phases, e.g. density and viscosity. To illustrate how di-
verse the nature of two-phase flow can be, an example of each type of flow
will be discussed briefly in the context of petroleum and process engineer-
ing: a bubble column reactor, a fluidized bed reactor, a stirred tank reactor
and an oil/gas pipeline, as shown in Fig. 1.1, taken from [1–4]

• Fluidized bed In the case a chemical reaction between two gasses

1
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relies on the presence of a solid catalyst, it it of cardinal importance for
the efficiency of the reactor to disperse this catalyst as homogeneously
as possible in the reactor vessel. A common approach is to form solid,
nearly spherical particles from the catalyst and blow the gas-mixture
through the reactor vessel. For a sufficiently large flow rate, the gas-
solid mixture behaves like a fluid. This type of reactor is referred to
as a fluidized bed.

• Stirred tank reactor When a chemical reaction involves two li-
quids, use can be made of a stirred tank reactor. Optimization of this
two-phase liquid-liquid flow aims at homogeneous mixing of the two
constituents.

• Bubble column reactor Reactions between liquids and gasses, e.g.
in oxidation processes and many bio-reactions, take place very ef-
ficiently in a bubble column reactor. Proper engineering of the gas
injection in this gas-liquid flow guarantees finely dispersed gas bubbles
with the correct rise speed to complete the reaction.

• Oil/gas pipeline From the production well to the processing plant,
natural gas and crude oil are transported simultaneously through a
single pipeline. When the gas and liquid flow rates are relatively
small, gravity will separate the two phases into a stratified flow. For
larger flow rates instabilities can grow on the oil/gas interface that
ultimately lead to the formation of slugs. These are large chunks of
the liquid phase, separated by gas bubbles. The mechanical impact of
slugs on delicate monitoring equipment can have catastrophic effects
and this type of gas-liquid flow has to be avoided. On the other hand
two-phase flow can be utilized to greatly reduce the required pumping
power for heavy crude oil, using a special way of water-injection where
a thin film of water is formed surrounding a core of crude oil.

1.0.1 Modeling immiscible, incompressible two-phase flow

The research in this thesis is focused on the modeling of immiscible, incom-
pressible gas-liquid and liquid-liquid two-phase flow: the two phases in the
domain are separated by a well-defined interface and both phases move at
speeds that are far smaller than the local speed of sound. The fact that the
location of the interface is part of the solution, and the fact that at this
interface a number of jump conditions have to be imposed on the solution
makes two-phase flow considerably more hard to simulate than single-phase
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(a) Fluidized bed (b) Stirred tank reactor

(c) Bubble column reactor (d) Oil/gas pipeline

Figure 1.1: Examples of two-phase flow

flow. Where for single phase flow the ’standard’ order of convergence for
industrial flow algorithms gradually moves from second to fourth order, this
is not likely to happen for multiphase flow algorithms shortly. Currently
experts predict still several decades of development are required to bring
multiphase flow models to the technology readiness level of single phase flow
solvers. The main difficulty lies in handling the near discontinuous change
in the fluid properties across the interface and modeling the effect of surface
tension that requires accurate evaluation of the local interface curvature.
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1.0.2 Interface capturing and interface tracking methods

Many methods have been designed to simulate two-phase flow. The large
majority of these are derived from one of the following archetypes of meth-
ods:

• The Marker Particle method [45],

• The Volume of Fluid method (VOF) [24],

• The Level-Set method (LS) [40],

• The Modified Level-Set method [41],

• The Front-Tracking method [50],

Each of these methods has pros and cons. Some methods are easy to imple-
ment, but do not conserve mass while others are mass conserving but have
high computational complexity and this complexity further increases if the
mesh is unstructured.

The Marker Particle method is one of the earliest methods for the sim-
ulation of the multiphase flow. It is based on a Lagrangian approach. In
this method the initial interface is represented by a set of massless particles
that are subsequently tracked while they are advected by the local velo-
city. This method is not computationally efficient, because of the need to
track all individual particles and the need for regular particle distribution
to avoid particle clusters and voids. This method alone is not a popular
choice any more, however, combined with other approaches it may be ad-
vantageous [45]. The front-tracking method is another Lagrangian method.
Instead of tracking fluid particles, the actual interface is tracked. Naturally
the interface is a lower dimensional manifold, requiring an order of mag-
nitude less particles to be represented. However, different from the Marker
Particle method, the particles representing the interface are now connec-
ted. Generally this connectivity is fixed and only the geometry and not the
connectivity of the interface can change.

If a continuous representation of the interface is required with the ability
to deform without any geometrical restrictions, two methods qualify for
representing the interface location: The Volume of Fluid method (VOF)
and the Level-Set method. In the former, a color function is used to identify
the presence of either fluid. This color function has a value 1 in one fluid
and 0 in the other fluid in order to distinguish between the two. In the VOF
method the cell averaged value of the color function is used to represent the
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quantity of either fluid present in a cell. This cell averaged value of the color
function lies by definition in the interval [0, 1] and is known as the Volume
of Fluid or the void-fraction. A cell which is completely filled with the fluid
of interest has volume of fluid fraction value 1 and in the cell which is empty
i.e. not containing fluid of interest volume of fluid fraction defined to be 0.
The interface location is only approximately defined: it will intersect those
cells that have intermediate value of the volume of fluid fraction between
0 and 1, but its exact location is unknown. In each time step the position
of the interface is reconstructed within each cell that is intersected by the
interface, under the assumption that the interface is either aligned with the
Cartesian coordinate directions or locally planar, before it is advanced in
time in a Lagrangian manner.

In the Level-Set method the interface position is indicated by the zero
Level-Set of a signed distance function. The Level-Set field is advected
in time to get the position of the interface. As the Level-Set function is
continuous and very smooth in the vicinity of the interface geometric char-
acteristics, like gradient and curvature are easy to obtain. No techniques
exist to directly and exactly enforce the signed distance property on the
Level-Set field during the advection step. This property has to be reestab-
lished a-posteriori in a process called reinitialization.

The VOF method is very accurately mass-conserving, but the inter-
face reconstruction, and the approximation of the local curvature of the
interface to define surface tension effects are computationally intensive and
involved. On the other hand, the Level-Set approach provides an exact (up
to discretization order) representation of the interface and straightforward
evaluation of the local properties of the interface, but it is by definition
not mass conserving: Exact conservation of the Level-Set function does not
imply conservation of mass. The modified Level-Set method [41] is a relat-
ively new approach in which a Level-Set function is chosen that resembles
the color function of the Volume-of-Fluid method. By replacing the signed-
distance function by a mollified Heaviside function, mass conservation is
greatly improved, but the large gradient of the modified Level-Set field at
the interface makes it harder to accurately compute the unit normal vector
and the curvature and to avoid oscillations in the solution, while keeping
the interface sharp.

In recent years an interest has developed in coupled VOF/LS meth-
ods that combine the accurate mass conservation properties of the VOF
method with the advantage of an exact representation of the interface by the
level set method. For Example, the Combined Level Set Volume Of Fluid
(CLSVOF) method of Sussman et al [48, 49, 56] and the Mass-Conserving
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Level-Set (MCLS) method of Van der Pijl et al [53] for Cartesian grids.
Although both examples seem to be very similar, the major difference is
that the CLSVOF method basically combines the work involved in both
the VOF and LS method, while the MCLS method avoids the computa-
tionally intensive interface reconstruction step of the VOF method. This is
accomplished by the use of a volume of fluid function that directly relates
the VOF color function to the LS function and its gradient, without the
need for an explicit reconstruction step.

1.1 Simulation of two-phase flows in geometrically
complex domains

While simulating two-phase flow in simple Cartesian domains is challen-
ging, applying the same models in geometrically intricate domains presents
a real challenge. However, because in many industrial applications such do-
mains are more the rule than the exception, there is a strong drive for the
development of such methods. To achieve optimal flexibility in discretizing
the flow equations in more intricate domains and resolve boundary layers
efficiently and accurately state-of-the-art flow simulation algorithms rely
on a discretisation of the domain in an unstructured set of non overlapping
control-volumes of mixed type: hexahedrons, tetrahedrons, pyramids and
prisms or even more generically general convex polyhedra. A general convex
polyhedron is any oriented domain with bounded volume that is defined by
a set of intersecting planes.

Contrary to the VOF method, the LS and modified-LS methods model
equations are relatively straightforward to discretize on tetrahedral cells.
Using high order discontinuous Galerkin discretisation of the LS-equation
mass loss can be significantly reduced with respect to second order meth-
ods. Even so the mass conservation is still not comparable with that of
VOF methods that can can conserve mass nearly to machine precision.
Extensions of the classic Piecewise Linear Interface Construction (PLIC)
VOF method for tetrahedral control volumes currently available are very
rare. They are not very attractive because they rely on very complicated
geometric reconstructions to position the interface and evaluate the fluxes,
that impair their robustness. Furthermore, they are costly to apply.

In this thesis different approaches to simulating immiscible two-phase
flow in geometrically complex domain are proposed: The LS-method, the
modified LS-method and the extension of the MCLS method of Van der
Pijl [53] . The accuracy of the solution, the mass loss and the work involved
in obtaining the solution are analyzed and compared.
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1.2 Outline of the thesis

In this thesis an extension is presented of the MCLS for a discretisation
on a set of unstructured triangular and tetrahedral control volumes as a
step-up towards the extension towards discretisation on general polygonal
and polyhedral control volumes.

The key components of the MCLS will be shown to be:

• a discretisation of the linear transport equation for the LS field.

• a discretisation of the transport equation for the color function of the
VOF method.

• an algorithm for the back-and-forth conversion of the LS field to the
VOF field, that does not involve an explicit reconstruction of the
interface.

Furthermore, the performance of this extension is compared to two other
methods that are applicable for discretisation on triangular control volumes:
the standard and the modified Level Set method.

The outline of this thesis is as follows:

In the second chapter of the thesis a higher-order discontinuous Galerkin
discretisation of the LS field is proposed. This discretisation is used in the
stand-alone Level-Set method and as part of the extension of the Level-Set
method. The chapter ends with an evaluation of the performance of the
stand-alone LS method for three test cases.

Before presenting its extension, a concise review of the MCLS for struc-
tured Cartesian control volumes is given in the third chapter. It is essential
to have a clear understanding of the MCLS to appreciate the details of the
extension to triangular control volumes.

The extension of the MCLS method towards unstructured triangular
grid is presented in the fourth chapter. First the derivation of the conver-
sion function and its inverse are presented for a triangular element that is
intersected by the interface. Next the convection algorithm for the color
function is presented, formulated as an evolution equation for the VOF
field. Finally, the same test cases as presented in the second chapter are
repeated with the extension of the MCLS.

In the fifth chapter is discussed how the MCLS algorithm can be exten-
ded from two to three dimensions. The conversion function for tetrahedral
control volumes is presented together with its inverse. On top of that an
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extension of the two-dimensional algorithm is presented to handle general
polygonal control volumes, that is based on a division of the computational
cells in triangular subcells.

Because of its relative simplicity and strict mass conservation properties
the modified LS method presents a viable alternative to the MCLS. In
the before-last chapter a discretisation based on a limited discontinuous
Galerkin scheme is presented and the merits of including a compressive
velocity field to enhance interface resolution are investigated.

The thesis concludes with a comparison of the performance of the three
proposed methods in the last chapter, followed by conclusions and recom-
mendations how to further improve the MCLS method.



CHAPTER 2

The Level-Set based interface capturing method

2.1 Introduction

In this chapter an interface capturing model based on the solution of the
LS equation is presented. The foundations of the LS model are discussed
and a linear scalar transport equation for the LS field is derived. The latter
equation is formulated in weak form and discretized in space using a dis-
continuous Galerkin method on rectilinear triangular control volumes and
a high order explicit Runge-Kutta method in time. Finally the algorithm
is applied for a range of test cases, to set a benchmark for the solutions of
the extension of the MCLS method and the modified-LS method that will
be presented in subsequent chapters of this thesis.

2.2 The Level-Set method

The LS method is a general approach to model interface evolution problems
in a very broad context ranging from solid and fluid mechanics to digital
image processing. The method has been introduced by Sethian and Osher
[29,40] in 1988, and is still actively developed. Because of its simplicity and
robustness, the method is very popular and is included in many commercial

9
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simulation suites, e.g. COMSOL and OpenFOAM1.

2.3 The Level-Set method for modeling two-phase
flow

The flow domain Ω is a simply connected subset of R2 with boundary ∂Ω.
The (nonstationary) interface between the two phases is a curve, paramet-
rized as X(s, t), s ∈ [0, L(t)], where L(t) is its arc length. This curve is
defined as an isoline of a C2 function l(x, t) : Ω → R. Choosing l(x, t) as
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Figure 2.1: The level-set field and the corresponding zero-level contour of
the interface.

the signed distance to the interface is one of the common choices, but not a
prerequisite for the LS method. The former choice defines the interface as
the zero-level contour of the signed distance function Φ(x, t). The region
S = {x ∈ Ω|(x, t) > 0} is the domain of interest, occupied by the fluid of
interest. In modeling two-phase flow, strict mass conservation is regarded
as very important, as even more important than the accuracy of the LS field
and the exact position and shape of the interface. Because the density is
constant in either phase, the area enclosed by the interface is proportional
to the ’mass’ of the domain of interest. The mass M(t) is defined as:

M(t) =

∫
Ω
H(Φ(x, t))dx = |S|, (2.1)

1 Although the OpenFOAM documentation calls the implemented approach to two-
phase flow a VoF method, it actually is a (modified) LS method.
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where H(x) is the Heaviside function.

Due to this implicit definition of the interface, complex topology changes,
for example merging of multiple or breaking up of a single interface are ac-
commodated for. If the interface is a smooth curve, the smoothness of the
LS function in the vicinity of the zero contour-line allows for a straightfor-
ward computation of geometrical quantities of the interface by evaluating
derivatives of Φ(x, t) at the interface:

n̂α(x, t) =
Φ,α(x, t)√

Φ,α(x, t)Φ,α(x, t)
, x ∈X(t), κ(x, t) = n̂α,α(x, t), x ∈X(t).

(2.2)
where, n̂α is the unit normal vector (pointing outward from the domain of
interest) and κ the curvature of a contour line of Φ(x, t) = 0. Because the
interface is by definition a contour line of the LS function, the following
equation holds at the interface:

d

dt
Φ(x, t) = 0⇒ ∂Φ(x)

∂t
+ uαΦ(x),α = 0,x ∈X(t), (2.3)

where uα is the velocity of the interface. Continuity conditions for mass
and momentum dictate the velocity field is continuous across the interface
and therefore uniquely defined at the interface. The interface is advected
by the local flow.

In the LS method equation (2.3) is postulated to hold for all x ∈ Ω, but
other choices are possible, as long as they are consistent with (2.3) and lead
to a function that is at least C2 continuous in the vicinity of the interface
to allow computation of the curvature. Following Osher [22,40] the velocity
uα(x),x ∈ Ω \ X(t) can be chosen such that |∇Φ(x)| remains as close
as possible to unity, i.e. the LS function retains its property of being a
(signed) distance function while being advected. Alternatively, the signed-
distance property has to be re-established explicitly by a process called
reinitialization. For an overview of different reinitialization strategies and
their merits, the reader is referred to [22,35,40,55].

Reinitialization or retaining the signed-distance property in a more gen-
eral sense is important when the interface model is coupled to the flow
equations. Regularization filters for the viscosity and the commonly used
Continuous Surface Model of Brackbill [9] for surface tension both use with
the LS field to determine the distance from a grid point to the interface.
However, because the coupling to the flow equations will not be considered
in this research, reinitialization algorithms will not be considered.

For a solenodial velocity field uα the extension of (2.3) is given by

∂Φ(x)

∂t
+ (uαΦ(x)),α = 0, x ∈ Ω. (2.4)
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This equation shows that the LS function is conserved. However, there is
no reason why a conservative redistribution of the LS function maintains
the area enclosed by the zero contour line, i.e. the interface. This is one
of the drawbacks associated with the LS method. Numerical experiments
indicate that to some extent this can be remedied by using higher order ap-
proximations of the spatial differential operator, e.g. using ENO or WENO
schemes in the context of a finite volume discretisation [26, 57], combined
with higher order time-integration methods or by applying adaptive grid
refinement near the interface. Such a high order solution of the LS field
is already required if the interface curvature is to be extracted from this
field. In [Ref] it is shown the LS solution has to be discretized with fourth
order accuracy, if the interface curvature is to be recovered with second
order accuracy. Although the latter is easily achieved on Cartesian meshes,
this is not the case for unstructured grids of triangular or tetrahedral con-
trol volumes, because it is not straightforward to combine information from
neighboring control volumes to obtain an approximation of the fluxes of
sufficient accuracy.

An approximation to the solution of (nearly) arbitrary order of accuracy
can be obtained using the discontinuous Galerkin finite element method.
The key property of this discretisation is the fact it is a completely local
discretisation method, and the only information that has to be exchanged
between neighboring control volumes is the solution at the inter-element
interfaces. This makes the discretisation method straightforward to apply
on unstructured triangular meshes as opposed to higher order finite volume
discretisation methods.

2.4 Discontinuous Galerkin discretisation of the
Level-Set equation

The discontinuous Galerkin discretisation combines the advantages of finite
volume and finite element discretisation techniques. The solution is expan-
ded in a polynomial basis in each element. On each interface between two
elements the flux is uniquely defined (obviously, to have conservation) but
the solution is not. This implies the interface is only piecewise (element-
wise) continuous together with the curvature and the interface normal vec-
tor. Because the coupling of the interface model to the flow equations is
outside the scope of this thesis, the challenges presented by the handling
of the piecewise continuous curvature will not be considered and are left
for future research. The proposed discretisation for the LS equation closely
follows the algorithm described in [19,20,23,34].
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2.4.1 Spatial discretization of the Level-Set equation

The computational domain Ω will be subdivided into a set of NT rectilinear
triangular control volumes Ωk. This process is called tesselation. Using tri-
angular control volumes is not a prerequisite for the discontinuous Galerkin
method. However, if such control volumes are chosen the tesselation can be
performed automatically for domains with nearly arbitrary geometry and
with minimal user input.

Xv1
k

Xv2
k

Xv3
k

y

x

Xk

Figure 2.2: Control volume (Ωk).

Lagrange polynomials Li(x) of degree N are used as basis functions to
expand the solution in each element as:

φhk(x, t) = Σ
np

i=1φi(t)Li(x), x ∈ Ωk, (2.5)

where np is the total number of nodal points in each individual element. An
optimal approximation of the solution to (2.4) can be found by imposing
that upon substitution of (2.5) the residual is orthogonal to the polynomial
space spanned by this expansion of the solution. This leads to:∫

Ωk

(
∂φhk(x, t)

∂t
+∇ · (u(x, t)φh(x, t)))Li(x)dΩ = 0, 1 ≤ i ≤ np. (2.6)

The weak form of (2.4) can be obtained by applying integration by parts
using Gauss divergence theorem:∫

Ωk

∂φhk(x, t)

∂t
Li(x)−∇Li(x)·(u(x, t)φhk(x, t))dΩ = −

∮
∂Ωk

n·(uφhk)∗Li(x)dΩ,

(2.7)
where n̂ is the outward pointing normal and (uφhk)∗ is the numerical flux,
used to impose boundary conditions on the boundary of each element. Ap-
plication of integration by parts once again leads to the strong 2 formulation

2 Note this is a nonstandard use of the term strong formulation, that is used in the
context of discontinuous Galerkin finite element methods.
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of the weak form:∫
Ωk

(
∂φhk(x, t)

∂t
+∇ · (uφhk(x, t))

)
Li(x)dΩ =

∮
∂Ωk

n·(uφhk−(uφhk)∗)Li(x)dΩ.

(2.8)
For the discretisation of (2.4) the latter form is used, but either (2.8) or
(2.7) can be used as a starting point. Instead of expanding the numerical
solution in a set of polynomial basis functions, the solution can be represen-
ted, directly in the value of the solution at the collocation points or nodes.
Both formulations are equivalent (related by a bijective mapping by means
of a Vandermonde matrix) and choosing either approach is a matter of pref-
erence. In this case the latter approach is chosen, i.e. a nodal discontinuous
formulation is used.

One important parameter in the definition of a discontinuous Galerkin
method is the choice of the numerical flux function. For the scalar trans-
port equation (2.4) there are only few options to consider. In [20] a central
approximation and a Lax-Friedrichs approximation are assessed. Numerical
experiments show that oscillations will occur when a central flux approxim-
ation is used, so the use of this approximation is discarded in this research.
The Lax-Friedrichs flux formulation for the approximation of the numerical
flux leads to the expected monotonic solution. This formulation uses a com-
bination of a central approximation with a correction based on the jump in
the convected quantity at the face weighted by a parameter that depends
on the magnitude of the velocity in the computational domain, given as:

(uφh)∗ =
1

2

(
(uφh)− + (uφh)+

)
− c

2

(
φ+
h − φ

−
h

)
, (2.9)

where the + sign is used to represent the flux and the solution at the edge of
the element under consideration and the − sign is used to represents the flux
and the solution at the edge of the neighboring element. The parameter c is
used to weigh the jump across the edge in the formulation of the flux. This
parameter is taken equal to the infinity norm of the velocity in the domain.
Naturally, the fluxes at the edges that coincide with ∂Ω are determined by
the boundary conditions.

With the numerical flux approximation defined in Equation (2.8 ) can
now be cast in a linear system of equations. Imposing orthogonality for all
individual basis functions leads to a system of np linear equations for the
solution at the np nodal points:

Mk ∂Φ

∂t
+ Sk · (uΦ) = F k (n · (uΦ− (uΦ)∗)) , (2.10)
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where Φ =
{
φ1(t), φ2(t), ...., φnp(t)

}
and u =

{
u1(t),u2(t), .,unp(t)

}
are

the vectors of nodal values of φhk(x, t) and u(x, t) in element Ωk at time t
respectively, Mk is the mass matrix, Sk is the stiffness matrix, and F k is
the boundary operator of the element. The latter are defined as:

Mk
ij =

∫
Ωk

Lj(x)Li(x)dΩ, Skij =

∫
Ωk

∇Lj(x)Li(x)dΩ,

F kij =

∮
∂Ωk

Lj(x)Li(x)∂Ω.

Equation (2.10) is formulated for each element, but cannot be solved without
considering the solution in the neighboring elements, because of the coup-
ling by the fluxes at the common boundary defined through the boundary
operator F k. All systems of dimension np × np can be assembled into one
linear system of ordinary differential equations that can be symbolically
represented as:

A
dΦ(t)

dt
+BΦ(t) = g(t), (2.11)

where Φ =
{
φ1(t), φ2(t), ...., φnp∗NT

(t)
}

and g(t) represents the contribu-
tions of inhomogeneous boundary conditions. The approach to reduce a
partial differential equation to a system of ordinary differential equations is
commonly referred to as the method-of-lines, in contrast to methods that
simultaneously discretize in space and time. It is important to mentioned
that in our research we have focused more towards making the level-set field
mass-conservative and we have adopted standard discretization practices for
the hyperbolic equation using DG method. Therefore, no new strategies for
the solution of the pure LS equation is given. Therefore, for further details
regarding the discretization of the pure LS equation based on DG method,
see [13,16,20,23,34].

2.4.2 Temporal Discretisation

To advance (2.11) in time an explicit Runge-Kutta method is used. Con-
trary to a finite volume discretisation, the fact that the mass matrix is
nondiagonal requires that even for an explicit time-stepping method a lin-
ear system has to be solved in each time step. In the current project a direct
solver has been used, because only problems with a very limited number of
degrees of freedom are considered. For larger problems the specific proper-
ties of the matrix A in (2.11) can be exploited to formulate a very efficient
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iterative solution method [6, 7].

Φ(t)

dt
= A−1

(
g(t)−BΦ(t)

)
≡ Lh(Φ, t). (2.12)

The utilized Runge-Kutta method is a five-stage method with fourth order
accuracy, proposed in [10, 59]. This type of method is known as a Low
Storage Explicit Runge-Kutta (LSERK). One important property is the fact
that each stage can be computed from the previous stage only, requiring
only storage for a single stage vector. The range of the stability region is
comparable to other fourth order methods [20]. The algorithm is given by:

p0 = Φ(tn)

i ∈ [1, ..., 5] :

{
k(i) = aik

(i−1) + ∆tLh(pi−1, t+ ci∆t),

pi = pi−1 + bik
(i),

Φ(tn+1) = p5,

(2.13)

where pi, i = 1..5 are the stage vectors, and the coefficients ai, bi and
ci are given in Table 2.1.

i ai bi ci

1 0
1432997174477

9575080441755
0

2 − 567301805773

1357537059087

5161836677717

13612068292357

1432997174477

9575080441755

3 −2404267990393

2016746695238

1720146321549

2090206949498

2526269341429

6820363962896

4 −3550918686646

2091501179385

3134564353537

4481467310338

2006345519317

3224310063776

5 −1275806237668

842570457699

2277821191437

14882151754819

2802321613138

2924317926251

Table 2.1: Coefficients of Low-Storage five-stage fourth-order ERK method.
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2.5 Test Cases

The key characteristics of the method that need to be assessed are the mass
conservation property and the accuracy of the LS field. To accomplish this,
three test cases are selected based on the properties of the imposed velocity
field; constant, linear or nonlinear functions of the spatial coordinates. In-
cluding time-dependence of the velocity field is not necessary to assess the
accuracy of the discretisation. The test cases chosen are:

• (Solid body) translation of a circular interface with a constant velocity
field,

• (solid body) rotation of a circular interface,

• the reversed vortex test case [34, 56,60].

In all cases the problem is nondimensionalized by introducing a reference
length and reference velocity L = 1 m and T = 1 s, respectively.

The expansion of the solution can be done for polynomial basis functions
of a user defined degree, without any difficulty. However, the number of
nodal points increases with the degree of the basis functions and hence the
number of degrees of freedom of the problem

In chapter 4 the extension of the MCLS to a discretisation on a set
of unstructured triangular control volumes is presented. The discontinu-
ous Galerkin discretisation of the LS equation is an integral part of this
algorithm. However, in that application the basis functions are chosen as
polynomials of degree one, in accordance with the assumption of a piece-
wise linear interface. For this reason, results are shown for an expansion
in polynomials of order one for all test cases for three different mesh sizes.
These results will be used to assess the improvement in the solution that can
be accomplished by imposing the mass conserving correction of the MCLS
on a pure LS solution. This is also the reason for choosing separate test
cases with a linear and a nonlinear velocity field. For the proposed discret-
isation of the LS field the behavior of the solution will not be influenced
by nonlinearity of the velocity field. However, for the MCLS method the
nonlinearity does make a difference and it is worthwhile to consider these
cases separately.

To determine the effect of the degree of the polynomial basis on the
mass conservation properties of an uncorrected LS solution the mass loss
is computed for three mesh sizes and using a degree one, two and three
polynomial expansion for the reversed vortex test case. The mass M can
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be computed up to machine precision when degree one polynomials are used,
by a geometrical reconstruction of the domain of interest. However, for the
degree two and three polynomials it is approximated by a geometrically
computed area (mass) enclosed by the fluid of interest. The details of the
geometrical method is given in appendix A.

2.5.1 Linear translation of a circular interface

In this test case a circular fluid region of radius R = 0.15 is considered in
a domain ΩD = [0, 1]× [0, 1]. Initially, the centre of the circle is located at
xc(0) = (0.5, 0.2)T . The initial condition for the LS field is defined as:

φ(x, 0) = |x− xc(0)| −R. (2.14)

The circular fluid region is advected with a constant velocity field u =
(0, 0.1)T using a time step ∆t = 0.01. The final time is T = 5. Because
the velocity field is solenoidal, mass should be conserved up to machine
precision. During the advection the mass is computed at every time step
(M(t)) and compared with its initial value (M(0)). At the final time the
LS field is compared with the exact LS, as shown in Figure 2.4 for three
different mesh sizes. The exact LS field at the final time is given by:

φ(x, 5) = |x− xc(T )| −R, xc(T ) = (0.5, 0.7)T . (2.15)

Figure 2.4 presents the ratio of M(t)/M(0) for three different mesh sizes.

Circular fluid translation, time=0.
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Circular fluid translation, time=T.
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Figure 2.3: The interface φ(x, t) = 0 for the linear translation test case at
time levels t = 0 (left) and t = T (right).

The graph shows mass is subsequently gained and lost during the advection.



2.5. Test Cases 19

0 1 2 3 4 5
0.999

0.9995

1

1.0005

1.001

1.0015

1.002

1.0025

1.003

1.0035

1.004

Time.

 M
a

s
s
 r

a
ti
o

.

Mass ratio, circular fluid translation, n=1.

 

 

K=754

0 1 2 3 4 5
0.999

0.9995

1

1.0005

1.001

1.0015

Time.

 M
a

s
s
 r

a
ti
o

.

Mass ratio, circular fluid translation, n=1.

 

 

K=1700

0 1 2 3 4 5

0.9997

0.9998

0.9998

0.9999

0.9999

1

1

Time.

 M
a

s
s
 r

a
ti
o

.

Mass ratio, circular fluid translation, n=1.

 

 

K=3572

Figure 2.4: Evolution of M(t)/M(0) for the translation of a LS represent-
ation of a circular interface.

In Table 2.2 the average mass error |M(t)−M(0)| and the L2 error in the
solution at the final time ‖φ(x, T ) − φhk(x, T )‖L2 are presented for three
different mesh sizes, together with the order of convergence estimate of the
latter quantity. The results show the expected order of convergence for a

No. of elements (K) |M(t)−M(0)| ‖φ(x, T )− φh(x, T )‖L2 Order

754 9.6836e-05 1.0052e-03 —

1700 3.1375e-05 5.0686e-04 1.981

3572 7.8133e-06 2.4369e-04 2.079

Table 2.2: Average mass error and L2 error of the LS field for the translation
of a circular interface.

discontinuous Galerkin solution using an expansion of the solution in linear
polynomials on a general unstructured mesh. However, the loss of mass is
quite severe and would be unacceptable for long time simulations.

2.5.2 Rotation of a circular interface

The second test case is related to the rotation of circular region in a domain
ΩD = [0, 1] × [0, 1]. Initially, the centre of the circle is located at xc(0) =
(0.5, 0.75)T . The initial condition for the LS field is defined as:

φ(x, 0) = |x− xc(0)| −R. (2.16)

The circular fluid region is advected with a linear velocity field u = (x1 −
0.5,−x2 +0.5)T using a time step ∆t = 0.01. The final time is T = 2π. This
initial setup is shown in Figure 2.5 . Because the velocity field is solenoidal,
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mass should be conserved up to machine precision and the velocity field
will return the interface to its initial position at t = T . Hence, φ(x, T ) =
φ(x, 0) as shown in Figure 2.5. In Figure 2.6 the ratio of M(t)/M(0) is

Circular fluid rotation test case, t=0.
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Circular fluid rotation test case, t=1/4 T.
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Circular fluid rotation test case, t=3/4 T.
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Circular fluid rotation test case, t=T.
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Figure 2.5: The interface φ(x, t) = 0 for the rotation test case at time levels
t = 0, t = 1

4T, t = 3
4T and t = T .

shown for three different mesh sizes. The graph shows mass is subsequently
gained and lost during the rotation. In Table 2.3 the average mass error
|M(t)−M(0)| and the L2 error in the solution at the final time‖φ(x, T )−
φh(x, T )‖L2 are presented for three different mesh sizes, together with the
order of convergence estimate of the latter quantity.

2.5.3 The reversed vortex test case

The reversed vortex or single reversed vortex test case is one of the more
challenging tests for models of multiphase flow. The reason for this is the
severe stretching and deformation of the convected interface caused by the
nonlinear velocity field during the advection which makes accurate mass
conservation challenging.
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Figure 2.6: Evolution of M(t)/M(0) for the rotation of a LS representation
of a circular interface.

No. of elements (K) |M(t)−M(0)| ‖φ(x, T )− φh(x, T )‖L2 Order

754 1.0089e-04 6.9105e-04 —

1700 3.6787e-04 4.7271e-04 1.4612

3572 1.4564e-05 1.3806e-04 3.4237

Table 2.3: Average mass error and L2 error of the LS field for the rotation
of a circular interface.

Domain Ω and initial condition are identical as for the linear translation
test case. This circular region is advected with a divergence free nonlinear
velocity field given by:

u = cos(πt/T )(sin2(2πx1) sin(2πx2),− sin2(2πx2) sin(2πx2))T . (2.17)

The Leveque cosine will cause the velocity field to reverse direction at time
t = T/2. This implies the interface will return to its original position at
time T. In this test case T = 2 is used. The initial setup is shown in Figure
2.7. Like in the other test cases the mass (area) enclosed by the interface
is the quantity of interest. This is computed after every time step and
compared with the initial quantity to give the amount of mass loss or gain
during advection. Also, at the final time the corrected LS field is compared
with the initial condition as the circular interface should return to its initial
position and shape at time t = T .

In Figure 2.7 the interface is shown at different time levels for three
different mesh sizes.
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Reversed vortex test case, t=0.
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Reversed vortex test case, t=1/4 T.
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Reversed vortex test case, t=1/2 T.
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Reversed vortex test case, t=3/4 T.
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Reversed vortex test case, t=T.
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Figure 2.7: The interface φ(x, t) = 0 for the reversed vortex test case at
time levels t = 0, t = 1

4T, t = 1
2T, t = 3

4T and t = T .
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In Figure 2.8 the ratio of M(t)/M(0) is shown for three different mesh
sizes. The behavior is very similar to what is observed in the simple linear
translation and rotation test cases.
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Figure 2.8: Evolution of M(t)/M(0) for the reversed vortex test case using
a LS representation of a circular interface.

In Table 2.4 the average mass error |M(t)−M(0)| and the L2 error of
the LS field at the final time ‖φ(x, T )−φh(x, T )‖L2 are presented for three
different mesh sizes.

No. of elements (K) |M(t)−M(0)| ‖φ(x, T )− φh(x, T )‖L2 Order

754 4.09071e-03 1.26493e-03 —

1700 1.76298e-03 4.88629e-04 2.5887

3572 7.85191e-04 1.98911e-04 2.4565

Table 2.4: Average mass error and L2 error of the LS field for the reversed
vortex test case.
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2.6 The influence of the degree of the polynomial
representation on mass conservation

Naturally, the accuracy of the solution will improve upon refinement of the
mesh and raising the degree of the polynomial expansion. The results of
the three test cases show the order of convergence corresponds to the theor-
etical order of convergence on general unstructured grids. To what extend
the degree of the polynomial expansion influences the mass conservation
properties is not obvious and will be assessed experimentally. For polyno-
mial expansions of degree larger than one it becomes non-trivial to assess
the order of convergence of the LS solution in the vicinity of the interface.
The L2 error in the field will be dominated by the error in the vicinity of
the apex of the LS field, where the gradient is not defined. Therefore, only
the mass error will be compared. Table 2.5 shows the averaged mass error
|M(t)−M(0)| for the reversed vortex test case for a polynomial expansion
using degree 2, at three different mesh sizes. In Figure 2.9 mass ratio is
presented for the same both degree throughout the evolution of the inter-
face. The strong fluctuations in M(t) show there is no (clear) convergence
in M(t) upon raising the degree of the polynomial expansion or on reduction
of the mesh width.

Characteristic mesh width h |M(t)−M(0)|
3.64e-02 9.37467e-05

2.43e-02 4.15348e-05

1.67e-02 1.97897e-05

Table 2.5: Mass error for expansion in degree n=2 polynomial for the re-
versed vortex test case.
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Figure 2.9: Evolution of M(t)/M(0) for the reversed vortex test case using
polynomial expansion of degree n=2.

2.7 Conclusions

A baseline method for the interface capturing has been presented based on
a LS representation of the interface. The method is applicable on general
unstructured triangular meshes. Numerical experiments confirm that the
approximation of the LS field converges with the expected order. How-
ever, the solution does not conserve mass accurately. The area enclosed by
the interface fluctuates strongly and this does not appear upon grid refine-
ment or upon raising the degree of the polynomial expansion. The method
discussed in this chapter acts as a baseline for the improvements that are
proposed in later chapters: imposing a mass-conserving correction to the
interface or switching to a different formulation of the function φ(x, t).





CHAPTER 3

An overview of the LS and VoF hybrid methods

3.1 Introduction

It is highlighted in the last chapter that apart from the geometrical flexibil-
ity provided by the LS for the multiphase flow simulation, mass-conservation
can not be achieved from the pure LS field. Which is one of the key prob-
lems associated with the LS method. To mitigate this problem as men-
tioned earlier different solution procedures has been developed and are still
developing. One of the popular choices is hybrid method, in which the LS
method is combined with another simultaneously advected quantity that
used is to make the LS field mass conserving while keeping geometric flex-
ibility provided by the pure LS field. The solution procedure varies from
the coupling of LS field with particle approach [17] to LS coupling with VoF
field [49]. In general, the coupling is performed to correct the LS field such
that it corresponds to the correct quantity of fluid of interest. Usually, this
is achieved by using a PLIC method in which the interface is represented by
a line segment and then it is adjusted in a control volume such the it cor-
responds to the exact quantity of the fluid of interest. This correction can
be an iterative based or direct i.e. that is without involving any iterative
process [43]. It is worthwhile to have an overview of the existing hybrid LS
and VoF method for multiphase flow simulation in order to have a better
understanding of the proposed method of this research.

27
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3.2 Hybrid Methods

There exists a number of hybrid methods based on the application under
consideration. In the following, we have selected those methods that provide
the guideline to develop another hybrid method.

3.2.1 CLSVOF method

The Coupled Level-Set Volume of Fluid (CLSVOF) method is proposed by
Sussman and Puckett [48,49], in 2000. In this method, the interface is con-
structed using the LS field while mass is conserved by using simultaneously
advected volume of fluid, VoF PLIC method. PLIC is the extended version
of SLIC method in which the interface is assumed to be inclined with co-
ordinates axes in a control volume, which is not a right assumption. In PLIC
method, the interface is represented by a line segment and can be oriented
in any direction. The area enclosed in it represents the quantity of the fluid
of interest. In CLSVOF method, there exists no straightforward relation
between the LS field and the VoF field [52, 53]. The coupling between the
LS and VoF field is done using a PLIC approach which not trivial and leads
to an iterative process and also the coupling becomes cumbersome when
the grid is an unstructured Cartesian grid. It is also reported that mass
conservation of the CLSVOF method is comparable to VoF method [49,52].
In spite, these limitations this method provides a solid guideline towards
the coupling of the LS field and the VoF field.

3.2.2 Hybrid particle LS method

A hybrid particle Level-Set method is proposed by Enright et al. [17], in
2002. In this method, the mass conservation property of the LS field can
be enhanced by passively advected particles of suitable radii with flow field.
These particles are placed near the interface and their region of placement
is marked by the sign of the LS field. This idea makes this method differ-
ent from the traditional marker and particles approach in which particles
are placed in a whole domain [21,45]. The passively advected particles are
used to reconstructed the interface in the region of sharp stretching and
tearing of the interface. This approach seems suitable but the Lagrangian
nature of the approach makes the algorithm computationally involved, as
these particles need tracking. These particles are used to track both the
characteristics of the flow and also to reconstruct the interface in the re-
gions where the LS method alone failed to accurately conserve mass. In
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this approach due to the passive nature of the particles they are allowed
to overlap with each other, this makes algorithm computationally involve
towards interface reconstruction for the mass conservation.

3.2.3 MCLS method

The Mass-Conserving Level-Set (MCLS) method is presented by Pijl et.
al [52, 53], in 2005. This method is based on the coupling between LS and
VoF field by simultaneously advecting the LS and the VoF field. In this
approach, the VoF field is only used for the mass conservation correction
to the LS field and it is not involved in the interface reconstruction apart
from their counter methods [48, 49]. To achieve this goal i.e. to apply
conservation without interface reconstruction of the interface from VoF field
an explicit relation between LS and VoF field is obtained in the form of
an analytic function based on the assumption that the interface can be
represented by a piecewise line segment, which is very common practice
in coupled methods. This analytic function is called the volume of fluid
function. This idea is the key ingredient of the MCLS method. This method
is extendable to 3D. However, there is a limitation to this method as it is
designed for Cartesian grids, so complicated geometries can not be handled
at this moment. The rectification of this issue in the MCLS method is one
of the important research questions that has been answered in this thesis.

3.2.4 VOSET method

A coupled Volume of Fluid and Level-Set method (VOSET) of Sun and
Tao [46] is presented in 2010. This method works in different approach as
compared to above mentioned hybrid methods. In this method, the LS field
is reconstructed from the VoF field. This methodology is contrary to the
existing LS and VoF coupled methods. It is important to incorporate this
methodology as well for a fair comparison. As the LS field is reconstructed
from the VoF field the only quantity that is advected with the flow field is
the VoF field. This is an important difference with existing hybrid method,
as this certainly computationally favourable. However, like VoF PLIC the
interface needs to be reconstructed and then using contour 0.5 value of the
VoF fraction as reference interface the LS field is reconstructed by the geo-
metrical iterative process in which distances are computed from the nearest
points in order to get continues definition of the LS field. In general, this
method seems simple as only one quantity needs to be advected. However,
the interface reconstruction needs to be done twice once for the VoF field
and then from VoF field to LS field needs to be reconstructed.
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3.3 Conclusions

In this chapter, a broader overview of the existing hybrid methods that
form the foundation to develop other methods for the simulation of multi-
phase flow. These methods have their pros and cons. For example CLSVOF
method seems plausible but the interface reconstruction based on the PLIC
approach makes that method computationally involved and also the ex-
tension to 3D is not so trivial. The flux approximation by using the flux
splitting approach makes this method not suitable for non-Cartesian grids.
In other words, to make this method robust extra information along with
the interface reconstruction needs to be done. In the hybrid particle method
tracking mass-less particle and the reconstructing the interface to make sure
the LS is mass conserving is also computational involve and it increases
more with 3D mesh and unstructured non-Cartesian grids. However, this
method is suitable for the flow that involves large sharing and deformations.
The VOSET method seems plausible as far as number quantity needs to be
advected, However, the interface reconstruction twice made in cumbersome
for 3D unstructured meshes as well and also the definition of VoF interface
by a 0.5 contours of the VoF field is arbitrary.

If we analysis the MCLS method this method seems plausible in all
respect as the LS and the VoF field is needed to be advected independently,
this step is similar to CLSVOF method, however, no need to reconstruct
the interface, this makes MCLS method suitable for 3D control volumes,
but it is designed for Cartesian grid only. Keeping our objective in mind
that is we need to formulate numerical methods for the multi-phase flow
simulation in geometrically complicated domains, we have decided to choose
the MCLS method as a guide to developed method. In order to achieve this
goal, we have developed VoF function and inverse function for unstructured
2D triangular and 3D tetrahedron grids. These are the key components of
this thesis.
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MCLS method for unstructured triangular meshes

4.1 Introduction

In this chapter 1 proposed Mass-Conserving Level-Set method is presented
for the 2D unstructured triangular grid.

4.2 Modeling the evolution of the interface

The MCLS algorithm is used to model the dynamics of two-phase immiscible
incompressible flow. It uses an ’hybrid’ description of the distribution of
the two-phases, Phase0 and Phase1, using both the LS and the VoF field.

4.2.1 The Level-Set field

The interface between the two phases X(t) is defined as an isoline of a C2

function l(x, t) : Ω → R, where Ω ⊂ R2, and simply connected. Choosing
l(x, t) as the signed distance to the interface is one of the common choices.

1This chapter is based on the article:
F. Raees, D.R. van der Heul and C. Vuik, A mass-conserving level-set method for sim-
ulation of multiphase flow in geometrically complicated domains, International Journal
for Numerical Methods in Fluids, 2015.
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Consequently, this choice defines the interface as the zero-level contour of
the signed distance function Φ(x, t). A signed distance function is a natural
choice because it allows for accurate computation of the interface curvature
and normal vector. However, Olssson et al. propose a LS function that
resembles a mollified Heaviside function to improve the mass conservation
properties [14, 36, 38]. In the MCLS the LS function is chosen as a signed
distance function Φ(x, t). If Φ(x, t) < 0, Phase0 is present, while Phase1 is
present when Φ(x, t) > 0. Due to this implicit definition of the interface,
complex topology changes, for example merging of multiple or breaking
up of a single interface are accommodated for. The smoothness of the LS
function in the vicinity of the zero contour-line allows for a straightfor-
ward computation of geometrical quantities of the interface by evaluating
derivatives of Φ(x, t) at the interface:

n̂α(x, t) =
Φ,α(x, t)√

Φ,α(x, t)Φ,α(x, t)
, x ∈X(t), κ(x, t) = n̂α,α(x, t), x ∈X(t),

(4.1)
where n̂α is the unit normal vector and κ the curvature of a contour line of
Φ(x, t) = 0.

4.2.2 Volume of Fluid field

The distribution of the fluids is represented by a C−1 color function c(x, t) :
R→ {0, 1}: If c(x, t) = 0, Phase0 is present, while Phase1 is present when
c(x, t) = 1. Based on the color function c(x, t) we can define the Volume of
Fluid grid function Ψk : G→ [0, 1] as:

Ψk(t) =
1

|Ωk|

∫
Ωk

c(x, t)dΩ, (4.2)

where G is the set of all centers of the control volumes Ωk and |Ωk| their
area. The fact that c(x, t) is C−1 continuous and Ψk(t) only discretely
defined, makes the computation of the interface curvature challenging and
computationally intensive.

4.2.3 Hybrid formulation of the MCLS method

In the hybrid formulation the flow is described by both a LS and a VoF
field that are in agreement in each cell in the following way:

Ψk(t) =
1

|Ωk|

∫
Ωk

H(Φ(x, t))dΩ, (4.3)
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where H(q) is the Heaviside function. This means that the LS field has
the mass-conserving properties of the VoF field, while at the same time the
interface location is exactly defined by the LS field.

4.3 Overview of the MCLS algorithm

In this section an overview of the MCLS method is presented. The proposed
algorithm relies on the key idea that a mass-conserving correction can be
imposed on the LS field that is based on a simultaneously advected VoF
field. The algorithm is visualised in Figure 4.1. Advancing the interface
with the MCLS over a single time step consists of the following substeps,
assuming the LS Φn and VoF field Ψn are known:

• The LS field and the VoF field are advected simultaneously. After
this advection step, the two fields do not correspond to each other,
i.e. the fields do not comply with 4.3.

• The advected LS field Φ∗ is used to compute a corresponding VoF
field Ψ∗ by means of the VoF function.

• The difference between the advected VoF field Ψn+1 and the VoF field
Ψ∗ is determined.

• In an element, for which the difference is smaller than the prescribed
tolerance no correction to the LS field is required. If the difference
exceeds the prescribed tolerance, a correction is imposed to the LS
field by means of the inverse VoF function to make the LS field mass
conserving up to a user specified tolerance.

• At time tn+1 a mass-conserving LS field Φn+1 has been obtained along
with the VoF field Ψn+1.

In the following sections each of the components that are required for the
proposed extension of the MCLS algorithm for an unstructured triangular
grid are presented. These are: the LS field and VoF field advection al-
gorithms described in Sections 4.5 and refelvof, respectively, and the VoF
function (Section 4.4) and its inverse (Section 4.7).
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Level-Set Φn Volume fraction Ψn

Level-Set advection VoF advection

VoF fraction Ψn+1Level-Set Φ∗

Volume of Fluid func-
tion Ψ∗ = f(Φ∗k,∇Φ∗k)

Check error
|Ψ∗ −Ψn+1|

Corrected Level-Set
Φn+1
k = g(Ψn+1,∇Φ∗k)

No
correction

Level-
Set Φn+1

small

large

Figure 4.1: The MCLS algorithm is presented in a flow chart to show the
transfer of information between the different components involved in ad-
vancing a single time step.

4.4 Efficient computation of the Volume of Fluid
field from the LS field and vice versa

Consider the LS field Φ(x, t) : Ω → R and the VoF field Ψk : G → [0, 1].
Consider element Ωk, with vertices Xv1

k ,Xv2
k and Xv3

k , ordered in counter
clock wise direction (Figure 4.2(a)). The centroid of the element is Xk. If
we choose c(x, t) = H(Φ(x, t)) the VoF function in this element is given
by 4.3. However, in a mixed cell, i.e. a cell intersected by the interface, the
VoF representation based on 4.3 is not computationally efficient. Therefore,
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Xv1
k

Xv2
k

Xv3
k

y

x

Xk

(a) Control volume (Ωk).

Xv1
k

Xv2
k

Xv3
k

X
′

(b) Barycentric coordinates.

Figure 4.2: Control volume (Ωk), cell centroid (Xk) and arbitrary point
(X
′
).

4.3 is approximated by a VoF function f :

Ψk(t) =
1

|Ωk|

∫
Ωk

H(φk(x, t) + C1h
2)dΩ = (4.4)

1

|Ωk|

∫
Ωk

H(φk(x, t))dΩ + C2h
2 = f(Φk,∇Φk) + C3h

2, Ci ∈ R,

where φk(x, t) is the linearization of the LS function (Φ(x, t), x ∈ Ωk),
around the cell centroid Xk, defined as:

φk(x, t) = Φk(t) + Φ,α (xα − (Xk)α) , (4.5)

and where Xk is the coordinate vector of the cell centroid, h =
√
|Ωk|,

Φk(t) = Φ(Xk, t) and Φ,α is the gradient of LS at cell centroid Φ,α =
∇Φ(Xk). Now, the goal is to find the function Ψ(Xk) = f(Φk,∇Φk), such
that it provides the VoF field in terms of the LS field.

4.4.1 Converting the LS field to the Volume of Fluid field

In order to express the VoF field in the LS field, the triangular control
volumes are first mapped from Cartesian space to logical space using a
barycentric coordinate transformation.

Barycentric transformation

Consider a triangular element Ωk, as shown in Figure 4.2(b). This ele-
ment can be divided into three triangles by assuming an arbitrary point
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X
′ ∈ Ωk. This subdivision provides three triangles with areas NXv1

k X
′
Xv3
k ,

NXv1
k X

v2
k X

′
and NXv2

k X
v3
k X

′
, respectively.

Barycentric coordinates ξβ based on these areas, can be defined as;

ξ1 =
NXv1

k X
′
Xv3
k

|Ωk|
, ξ2 =

NXv1
k X

v2
k X

′

|Ωk|
, ξ3 =

NXv2
k X

v3
k X

′

|Ωk|
. (4.6)

These barycentric coordinates define the following coordinate transforma-
tion on Ωk:

xα = (Xvβ
k )αξβ. (4.7)

Naturally, for x ∈ Ωk the barycentric coordinates ξα ∈ [0, 1].

Using the fact that ξ1 + ξ2 + ξ3 = 1, the dependency on one of the
barycentric coordinates can be eliminated. For the moment we will not
decide on which of the coordinates is selected to be eliminated. Above
transformation for the possible choices for the elimination of the dependency
of either of the barycentric coordinates can be written as x = TCi, Where
T ∈ R2×3 defined as:

T =
[
Xv1
k Xv2

k Xv3
k

]
,

and vector Ci represents the ith column of C ∈ R3×3, defined as:

C =

 1− ξ2 − ξ3 ξ1 ξ1

ξ2 1− ξ1 − ξ3 ξ2

ξ3 ξ3 1− ξ1 − ξ2

 ,
where i is the index of the vertex of the triangular element. This information
is necessary for the mapping of a specific vertex to the origin in logical space.

4.4.2 The Volume of Fluid function

Our aim is to use a geometric construction to find the function Ψk =
f(Φk,∇Φk). Contour lines of the linearized LS function φk(x) are straight
line segments. The contour line φk(x) = 0 divides Ωk in two pieces. From
4.3 and 4.4 it follows that f(φk,∇φk) is the relative area of the polygon P
bounded by the edges of the triangle and the line segment φk = 0:

P = {x ∈ Ωk|φ(x) ≤ 0} (4.8)

The polygon can be triangular, quadrilateral or even reduced to a single
point, depending on the intersection of the interface with Ωk. Efficient
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evaluation of the function f(Φk,∇Φk) requires a formulation that considers
all possible situations as conveniently as possible.

For nonzero |P | only two configurations are possible for the intersection
of the interface with Ωk. These possibilities are defined as:

• Case-1: Φ(Xv3
k ) < 0 for a single vertex. In this case P is a triangular

as shown in Figure 4.3.

• Case-2: In this case P is quadrilateral, which means two vertices are
in the fluid of interest i.e. Φ(Xv3

k ) < 0 and Φ(Xv2
k ) < 0. This is

shown in Figure 4.5.

However, it is sufficient to only consider Case-1, because in Case-2, we can
use that Ψk = f(Φk,∇Φk) = 1 − f(−Φk,−∇Φk). This means the relative
area of the quadrilateral can be obtained by subtracting the relative area of
the complementary part of the triangle. It is important to point out that
this is not the only option to handle Case-2. It is indeed possible to define
a single VoF function that can handle both cases.

Case-1: triangular domain of interest

Firstly we consider Case-1. The vertex Xv3
k is selected to be mapped to

the origin, as is shown in Figure 4.3. The linear transformation x(ξ) is

Xv1
k

Xv2
k

Xv3
k

Xv31
k Xv32

k

y

x

ξB

ξA

O
ξE

ξF

ξ1

ξ2

Figure 4.3: Case-1: Triangular domain of interest, where the vertex Xv3
k is

mapped to the origin.

bijective for a non degenerate triangle Ωk: a triangle for which no vertices
coincide and/or edges are aligned. Define the (nonsingular) Jacobian of this
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mapping as J = ∂x
∂ξ . The linearized LS function φ̃(ξ) can now be formulated

in logical space as:

φ̃(ξ, t) = Φ(x(ξk), t) +
∂Φ

∂ξ

∣∣∣∣
(ξ,t)=(ξk,t)

(ξ − ξk) ,
∂Φ

∂ξ
= J∇Φ, (4.9)

where ξk = ξ(Xk). Consider Figure 4.3, that shows the interface is in-

tersecting the edges Xv3
k X

v1
k and Xv2

k X
v3
k at the points Xv31

k and Xv32
k ,

respectively. The vertex Xv3
k , that is common to the two edges intersected

by the interface, is mapped to the origin while the other two vertices are
mapped to points on the axes in logical space. It is important to note that
vertices Xv1

k and Xv2
k can be mapped to any of the vertices in logical space,

except for the origin. The other two vertices in logical space are located
at (1, 0)T and (0, 1)T . Furthermore, the interface is represented by a line
segment Xv31

k Xv32
k . Our target is to compute the area of the sub triangle

NXv31
k Xv3

k X
v32
k with the help of the linearized LS field derived in Equation

4.9.

Let us assume that the vertices Xv1
k and Xv2

k are mapped to ξ = (1, 0)T

and ξ = (0, 1)T respectively, in logical space. Therefore, points Xv31
k

and Xv32
k are mapped to ξE = (ξE1 , 0)T and ξF = (0, ξF2 )T , respectively.

This is shown in Figure 4.3. In order to compute the area of the region
Xv31
k Xv3

k X
v32
k , the images of the points E and F are needed. In the next

subsection expressions are derived for ξE and ξF .

Coordinates of the point ξE

The logical space coordinates of the cell centroid ξk are by virtue of the

barycentric coordinate transformation always given by ξk =

(
1

3
,
1

3

)T
. This

means 4.9 can be written as (dropping the explicit dependence on t):

φ̃(ξ) = Φk +
∂Φ

∂ξ1

(
ξ1 −

1

3

)
+
∂Φ

∂ξ2

(
ξ2 −

1

3

)
. (4.10)

Substitution of ξE in 4.10 leads to:

φ̃(ξE) = Φk +
∂Φ

∂ξ1

(
ξE1 −

1

3

)
− ∂Φ

∂ξ2

(
1

3

)
= 0. (4.11)

The right-hand side of 4.11 is zero, because the interface passes through the
point ξE . Evaluation of 4.10 in ξ(Xv3

k ) = 0 gives:

φ̃(0) = Φk −
∂Φ

∂ξ1

(
1

3

)
− ∂Φ

∂ξ2

(
1

3

)
. (4.12)
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where φ̃(0) is the value of the linearized LS field at the origin in logical
space. Solving 4.11 and 4.12 to find ξE1 leads to:

ξE1 =

∣∣∣∣∣− φ̃(0)

Dξ1

∣∣∣∣∣ , (4.13)

where Dξ1 =
∂Φ

∂ξ1
. Therefore, the logical space coordinates of the point E

are given by ξE =

(
φ̃(0)

Dξ1

, 0

)
.

Using a similar procedure in the ξ2 direction the coordinates of the point

ξF in logical space can be found as ξF =

(
0,
φ̃(0)

Dξ2

)
and Dξ2 =

∂Φ

∂ξ2
.

Evaluation of the VoF from the LS function

Now, we can compute the area enclosed by the points 0, ξE and ξF in
logical space. The area of the enclosed region is denoted by Aξ and is given
by:

Aξ =
(φ̃(0))2

2Dξ1Dξ2

. (4.14)

Equation 4.14 represents the area of the region enclosed by line segments
that connect 0, ξE and ξF in logical space. The product of Aξ and the
Jacobian of the transformation J is equal to the area enclosed by the points
Xv31
k Xv3

k X
v32
k in physical space.

The area of the image of Ωk in logical space, Atotal
ξ , is 1

2 . The VoF in
both physical and logical space can be defined as,

Ψ(xk) =
Aξ

Atotal
ξ

=
(φ̃(0))2

Dξ1Dξ2

. (4.15)

This is the VoF function that returns the VoF value in each triangular
element when the value of the linearized LS field is known at the cell center.
However, 4.15 is only valid when the domain of interest is triangular. This
means it is not valid when the interface intersects or passes above ξA. The
domain of 4.15 can be derived by considering the limit case of the interface
intersecting ξA. The linearized LS at the origin is given by:

φ̃(0) = Φk −
Dξ1

3
−
Dξ2

3
. (4.16)
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This can be written as:

φ̃(0) = Φk −
Dξ1

3
+

2Dξ2

3
−Dξ2 ⇔

φ̃(0) = φ̃(ξF )−Dξ2 .

Under the assumption that the interface is passing through the vertex ξA,
φ̃(ξF ) = 0 by definition and

φ̃(0) = −Dξ2 . (4.17)

This means that for all the values of φ̃(0) ≥ −Dξ2 4.15 holds. Furthermore,
the assumptions on the mapping to logical space require φ̃(0) ≥ 0 and

Ψ(xk) =
(φ̃(0))2

Dξ1Dξ2

, −Dξ2 ≤ φ̃(0) ≤ 0. (4.18)

The range of the VoF function can now be defined and the complete defin-
ition of the VoF function for Case-1 is given as:

Ψ : [−Dξ2 , 0]× R2 → [0,
Dξ2

Dξ1

], Ψ(φ̃(0),Dξ) =
(φ̃(0))2

Dξ1Dξ2

. (4.19)

Note that the definition of the mapping implies Dξ1Dξ2 ≥ 0.

If the interface passes through one of the vertices, 4.15 is valid. This
is illustrated in Figure 4.4 where the interface is passing through vertex
Xv1
k . In this case vertex Xv3

k is selected to be mapped to the origin and
vertex Xv1

k is mapped to the ξ2 axis, as it has the lower magnitude of the
LS field of the two other vertices i.e. Φ(Xv1

k ) = 0. If the interface is exactly

Xv1
k

Xv2
k

Xv3
k

y

x

ξB

ξA

O
ξE

ξ1

ξ2

Figure 4.4: Interface passing through vertex (Xv1
k ).

aligned with one of the edges of the triangular element Ψk is either 0 or 1,
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depending on the fluid of interest. In this case there is no need to use 4.19.
The definition of the mapping excludes the possibility that the interface is
aligned with one of the coordinate axes in logical space for Case-1. However,
for Case-2 it is possible that the interface ends up aligned with one of the
axes in the logical space.

Case-2: quadrilateral domain of interest

Xv1
k

Xv2
k

Xv3
k

y

x

ξB

ξA

O
ξE

ξI

ξF

ξ1

ξ2

Figure 4.5: Case-2: Mapping of two nodes a side.

An example of Case-2 is presented in Figure 4.5, where vertices Φ(Xv3
k ) <

0 and Φ(Xv2
k ) < 0 are now both located in the domain of interest. We as-

sume vertex Xv2
k has a lower magnitude of the LS as compared to vertex

Xv3
k . Therefore, vertex Xv2

k is mapped to the ξ2 axis and Xv3
k to the ori-

gin in logical space. The fluid of interest is enclosed by the quadrilateral
0, ξE , ξI , ξA (Figure 4.5). The vertex ξF is located outside the mapped
region and intersects the ξ2 axis, provided that the interface is not parallel
to one of the edges of the triangle. This will only occur, when the interface
is exactly equidistant from the vertices Xv3

k and Xv2
k . This case will be

discussed separately in Section 4.4.2.

We can now use 4.14 to compute the area of the triangular region en-
closed by vertices 0, ξE , ξI , ξF and ξA. Let us call this area Atri.. To find
the area of the quadrilateral region Aξ the area of the triangular region
defined by the vertices ξF , ξI , ξA, which we will refer to as Aex., needs to
be subtracted from the area Atri.:

Aξ =
(φ̃(0))2

2Dξ1Dξ2

−Aex.. (4.20)
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In order to compute Aex., the coordinates of the point ξI are required.
This point is the intersection of the interface and the edge of the triangle
opposing the origin of the reference triangle. At ξI , we have Φ(ξI) = 0.
The linearized LS at this point is defined as:

φ(ξI) = Φk +Dξ1

(
ξI1 −

1

3

)
+Dξ2

(
ξI2 −

1

3

)
= 0. (4.21)

At the edge ξAξB, we have ξI2 = 1− ξI1 , using this relation in 4.21 leads to:

ξI1 = −
(φ̃(0) +Dξ2)

Dξ1 −Dξ2

, ξI2 =
(φ̃(0) +Dξ1)

Dξ1 −Dξ2

, (4.22)

where φ̃(0) = Φk −
Dξ1

3
−
Dξ2

3
. The coordinates of the other two points

that define the quadrilateral area are ξF = ξF (0,
−φ̃(0)

Dξ2

) and ξA = ξA(0, 1).

Define the following vectors:
−−−→
ξF ξA and

−−−→
ξF ξI :

−−−→
ξF ξA =

(
0, 1 +

φ̃(0)

Dξ2

)T
, (4.23)

−−−→
ξF ξI =

(
−

(φ̃(0) +Dξ2)

Dξ1 −Dξ2

,
(φ̃(0) +Dξ1)

Dξ1 −Dξ2

+
φ̃(0)

Dξ2

)T
.

Then the excess area Aex. is defined as;

Aex. =
|[
−−−→
ξF ξA ×

−−−→
ξF ξI ]|

2
=

(φ̃(0) +Dξ2)2

2Dξ2(Dξ1 −Dξ2)
. (4.24)

Substitution of 4.24 in 4.20 leads to:

Aξ =
(φ̃(0))2

2Dξ1Dξ2

−
(φ̃(0) +Dξ2)2

2Dξ2(Dξ1 −Dξ2)
. (4.25)

The VoF function for Case-2 is now given by:

Ψk =
(φ̃(0))2

Dξ1Dξ2

−
(φ̃(0) +Dξ2)2

Dξ2(Dξ1 −Dξ2)
. (4.26)

Note that (Dξ1 − Dξ2) cannot be zero, because this will only occur when

the interface is parallel to the edge ξAξB. The domain of the VoF function
4.26 needs to be defined such that the range of the function is a subset of
the unit interval. In order to derive an upper bound, consider Figure 4.5
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. Because of the definition of the mapping |φ̃(ξA)| < |φ̃(ξB)|. Therefore,
the interface will pass outside the element when φ̃(0) > −Dξ1 . The value
of φ̃(0) = −Dξ1 corresponds to Ψk = 1. Therefore, the domain of the VoF
function 4.26 is equal to the interval [−Dξ1 ,−Dξ2 ] and

Ψk =
(φ̃(0))2

Dξ1Dξ2

−
(φ̃(0) +Dξ2)2

Dξ2(Dξ1 −Dξ2)
∀ −Dξ1 ≤ φ̃(0) ≤ −Dξ2 . (4.27)

Given the domain of the VoF function, its range can be derived. The
complete definition of the VoF function for a quadrilateral domain of interest
is given as:

Ψ : [−Dξ1 ,−Dξ2 ]× R2 →
[
Dξ2

Dξ1

, 1

]
, (4.28)

Ψ(φ̃(0),Dξ) =
(φ̃(0))2

Dξ1Dξ2

−
(φ̃(0) +Dξ2)2

Dξ2(Dξ1 −Dξ2)
.

When the interface is parallel to one of the edges

Equation 4.28 is derived for the case when the interface is not parallel to the
edge OξA. The latter occurs when the interface is equidistant from both
vertices O and ξA. In this case the extra area would become unbounded,
so equation 4.26 can not be used. In this situation the domain of interest
is a trapezoid as shown in Figure 4.6 and its area can be computed easily
as:

Aξ =
−φ̃(0)(φ̃(0) + 2Dξ1)

2
, (4.29)

and the VoF for this case is given as:

Ψk = −φ̃(0)(φ̃(0) + 2Dξ1) (4.30)

4.4.3 Combining the VoF functions for Case-1 and Case-2

The union of the domains of the two VoF functions for Case-1 and Case-2
together covers the set [−Dξ1 , 0] of possible values of φ̃(0), under the as-
sumption that the control volume of interest is intersected by the interface.
Both VoF functions have a quadratic dependence on φ̃(0) and are C1 con-
tinuous at the common point φ̃(0) = −Dξ2 . This is shown in Figure 4.7.
The range of the VoF function should be [0, 1].
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Figure 4.6: Mapping of the interface parallel to one of its edge.
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Figure 4.7: VoF function for both Case-1 and Case-2.

In order to select correct branch of the two VoF functions, we define a
switching parameter Sp(φ̃(0)) as:

Sp(φ̃(0)) =

{
0 : φ̃(0) ≥ −Dξ2

1 : φ̃(0) < −Dξ2

. (4.31)

Using 4.31, 4.19 and 4.28 can be combined to a single VoF function as:

Ψ : [−Dξ1 , 0]× R2 → [0, 1] , (4.32)

Ψ(φ̃(0),Dξ) =
(φ̃(0))2

Dξ1Dξ2

− Sp(φ̃(0))
(φ̃(0) +Dξ2)2

Dξ2(Dξ1 −Dξ2)
.

Let us further define two coefficients:

c1 =
1

Dξ1Dξ2

, c2 =
−Sp(φ̃(0))

Dξ2(Dξ1 −Dξ2)
. (4.33)
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Figure 4.8: Combination of two cases.

Using 4.33 and 4.32 a uniformly valid expression for Ψk can be formulated
as:

Ψk = (c1 + c2)(φ̃(0))2 + 2c2Dξ2(φ̃(0)) + c2D
2
ξ2 ∀ −Dξ1 ≤ φ̃(0) ≤ 0.

(4.34)

It is important to note that 4.34 also holds for the case when the interface
is aligned with or parallel to the edge OξA i.e. Dξ2 = 0. In Case-1,

i.e. Sp(φ̃(0)) = 0, the interface can be aligned with edge OξA and in this
situation the VoF is either 0 or 1. In Case-2, i.e. Sp(φ̃(0)) = 1, the interface

can be parallel to the edge OξA. but the behavior of the coefficients c1 + c2

and Dξ2c2 in the polynomial is not singular when Dξ2 = 0.

The VoF function 4.34 is expressed in the value of the linearized LS field
at the origin in logical space and the partial derivatives of the LS function
with respect to the logical space coordinates. However, we have defined the
VoF function 4.4 in terms of the cell centroid value and gradient of the LS.
To formulate the VoF function explicitly in the latter form 4.16 is used in
4.34 to find the following expression for f(Φk,∇Φk):

Ψk = f(Φk,∇Φk) = [
−2Dξ1 +Dξ2

3
,
Dξ1 +Dξ2

3
]→ [0, 1], (4.35)

f(Φk,∇Φk) = (c1 + c2)Φ2
k +

(
(c1 + c2)D2

ξ1
+ (2c1 − 4c2)Dξ1Dξ2 + (c1 + 4c2)D2

ξ2

9

)
Φk

−
2 ((c1 + c2)Dξ1 + (c1 − 2c2)Dξ2)

3
, [Dξ1 Dξ2 ]T = J∇Φk.
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4.5 Advection of the LS field

Because the interface is by definition a contour line of the LS function, the
following equation holds at the interface:

d

dt
Φ(x, t) = 0⇒ ∂Φ(x, t)

∂t
+ uα(x, t)Φ(x, t),α = 0, x ∈X(t), t > 0.

(4.36)

In the MCLS method equation 4.36 is postulated to hold for all x ∈ Ω, but
other choices are possible, as long as they are consistent with 4.36 and lead
to a function that is at least C2 continuous in the vicinity of the interface to
allow computation of the curvature. For a solenodial velocity field uα(x, t)
the extension of (4.36) is given by (omitting the explicit dependence of x
ant t of uα(x, t)):

∂Φ(x, t)

∂t
+ (uαΦ(x, t)),α = 0, x ∈ Ω, t > 0. (4.37)

This equation shows that the LS function is conserved. However, a con-
servative redistribution of the LS function can lead to a change in the area
enclosed by the interface. This is one of the drawbacks associated with
the LS method. To some extent this can be remedied by using higher or-
der approximations of the convection operator, e.g. using ENO or WENO
schemes in the context of a finite volume discretisation [26, 57], combined
with higher order time-integration methods or by applying adaptive grid
refinement near the interface. However, all the remedies are not computa-
tionally efficient when 4.37 is discretised on an unstructured set of triangular
control volumes. In the current paper a higher-order discontinuous Galerkin
(DG) finite element method is used for the discretization of 4.37. This ap-
proach leads to a high order of accuracy boundary conforming discretisation
for domains with arbitrary geometrical complexity. For integration in time
a low storage Runge-Kutta method is used. A brief description of the spa-
tial and temporal discretization of 4.37 is presented, based on [19,20,23,34].
The computational domain Ω is discretized into K non-overlapping, straight
sided triangular elements Ωk. Lagrange polynomials Li(x) of degree N are
used as basis functions to expand the solution in element Ωk as:

Φh
k(x, t) = Σm

i=1φ
k
i (t)Li(x), x ∈ Ωk, t > 0, (4.38)

where m is the total number of nodal points in an element. In the DG
frame work, the residual is made orthogonal to the polynomial space in Ωk,
by requiring (omitting the explicit dependence of x ant t of Φh

k(x, t))∫
Ωk

(
∂Φh

k

∂t
+ (uαΦh

k),α)Li(x)dΩ = 0, i = 1 . . .m. (4.39)
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The weak form of Equation 4.37 can be obtained by applying integration
by parts:∫

Ωk

∂Φh
k

∂t
Li(x)− Li,α(x)uαΦh

kdΩ = −
∮
∂Ωk

(n̂αuαΦh)∗Li(x)dΩ, i = 1 . . .m,

(4.40)
where n̂α is the outward pointing unit normal and (uαΦh)∗ is the numerical
flux, used to impose boundary conditions on each element. Integrating by
parts once again leads to the strong formulation of the DG method:∫

Ωk

(
∂Φh

∂t
+ (uαΦh),α

)
Li(x)dΩ =

∮
∂Ωk

nα(uαΦh−(uαΦh)∗)Li(x)dΩ, i = 1 . . .m.

(4.41)
In the MCLS 4.41 is combined with the Lax-Friedrichs approximation of
the numerical flux [23]. The system ( 4.41) is formulated for all control
volumes Ωk, k = 1 . . .K. All equations are coupled through the numerical
flux function and advanced simultaneously.

4.6 Advection of the Volume of Fluid field

The MCLS algorithm uses a simultaneously advanced VoF field to impose a
correction on the LS field, to make the latter mass conserving. An evolution
equation for the VoF field is derived by taken the derivative of 4.3, with
respect to time:

dΨk(t)

dt
=

d

dt

1

|Ωk|

∫
Ωk

H(Φ(x, t))dΩ, (4.42)

Because H(Φ(x, t)) is a material property and assuming a solenoidal velo-
city field uα(x, t), the right-hand side of 4.42 can be formulated as (dropping
the explicit dependences on x and t);

1

|Ωk|

∫
Ωk

dH(Φ)

dt
dΩ = − 1

|Ωk|

∫
Ωk

H,α(Φ)uαdΩ = − 1

|Ωk|

∫
∂Ωk

H(Φ)uαn̂αdS,

(4.43)
where, n̂α is the normal vector on the boundary of the element. Therefore,
the evolution of the VoF field is governed by:

dΨk

dt
= − 1

|Ωk|

∫
∂Ωk

H(Φ)uαn̂αdS (4.44)

The fact that H(Φ) is C−1 continuous on ∂Ω makes accurate discretisation
of 4.44 very challenging. The application of ’standard’ schemes developed
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for scalar hyperbolic equations leads either to strong oscillations in the
solution or unacceptable smearing of the interface, jeopardizing mass con-
servation.

For Cartesian control volumes, accurate and efficient discretisation schemes
have been developed that utilize directional splitting, e.g. the scheme
presented in [49] and its strictly mass conserving adaptation [58]. Apart
from the latter scheme, strict mass conservation can only be achieved with
very intricate unsplit schemes. Also the method proposed by Jofre, Lluıs
& et. al. [8, 12,27,28] can be suitable choice for the VoF advection but the
interface reconstruction based on the VoF field is computationally involved.

In this paper we propose to use a different approach for the advec-
tion of the VoF field. This approach is also used in [60] and is known as
Eulerian-Lagrangian VoF evolution. The algorithm consists of three steps:
Lagrangian advection of the color function, interface reconstruction, and
remapping.

In the first step each mesh element is considered as a material element
and advected in a Lagrangian frame of reference. During this process the
color function (a material property) is passively advected with the flow in
each element. Because the velocity field is solenodial each element retains its
VoF value while being deformed and rotated. Furthermore, if a divergence
free linear velocity field is assumed this ensures a straight sided triangle
remains a straight sided triangle, irrespective of how the relative position
of the vertices changes (excluding folding). The assumption of a piecewise
linear velocity distribution is consistent with the linear approximation of
the interface.

The approach is based on using two grids. The first one is a (fixed)
Eulerian grid and the second one a Lagrangian grid that consists of the same
elements whose vertices have been translated. As the mesh elements are
advected such that their area remains the same, this advection is consistent
with Equation 4.43, i.e. the advection is mass conserving.

The coordinates of the vertices of the Lagrangian grid are obtained by
using a second order Runge-Kutta (RK) scheme, defined as,

X
v n+ 1

2
kL

= Xv
kE

+
∆t

2
u(Xv

kE
, tn), (4.45)

Xn+1
kL

= Xv
kE

+ ∆tu(X
n+ 1

2
kL

, tn+ 1
2 ), (4.46)

where, k = 1....., Nv and Nv is the total number of vertices. The Xv n+1
kL

represent the vertices of the Lagrangian mesh, Xv
kE

the vertices of the Eu-
lerian mesh. Because of the assumptions on the velocity field, the advection
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Figure 4.9: Advection, remapping and distribution of the content of a con-
trol volume that is not intersected by the interface.

defines an element-wise linear map from the Eulerian to the Lagrangian
grid. The interface position in each element is defined by this mapping
and does not need to be reconstructed. Once the interface position at the
Lagrangian mesh is known, the color function can be mapped from the Lag-
rangian mesh back to the Eulerian mesh by means of a geometric process
known as polygon-polygon clipping as described in [5, 60,63].

In order to explain the clipping procedure, the elements of the Eulerian
mesh are divided into two groups. We will refer to the cells that are com-
pletely filled with Phase0 as fully filled cells. Those elements that contain
both Phase0 and Phase1 will be referred to as mixed cells. In Figure 4.9 and
4.10 both cases are presented. A fully filled element is advected, as shown
in Figure 4.9, using Equations 4.45 and 4.46. This determines the position
of the Lagrangian element corresponding to this Eulerian element. Now the
fluid contained in this element needs to be distributed among the elements
of the Eulerian grid. We refer to this process by remapping. Remapping
of a fully filled cell on the Lagrangian grid is carried out by first locating
the set of elements on the Eulerian grid that have a non-empty intersection
with the Lagrangian element. Each of these intersections are polygonal
regions defined by the coordinates of the intersections of the edges of the
Lagrangian element with the Eulerian mesh.

A similar procedure is adopted for a mixed cell, as shown in Figure
4.10. In this case the intersection of that part of the Lagrangian cell that
is occupied by Phase0 with the elements of the Eulerian mesh has to be
determined. Each of these intersections are polygonal regions defined by
the coordinates of the intersections of the edges of the Lagrangian element
and the interface with the Eulerian mesh.

The area of the clipped region is computed by means of the following
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Figure 4.10: Advection, remapping and distribution of the content of a
control volume that is intersected by the interface.

relation for the area of a closed polygon in 2D [18,47]:

Area =
1

2
|
n−1∑
i=0

(xi1x
i+1
2 − xi+1

1 xi2) |, (4.47)

where i is the index for all the nodes and the first and last node coincide.
In the current research, use is made of the MATLABTM Mapping Toolbox
to perform the polygon-polygon clipping. However, many different polygon
clipping algorithms are available from image processing, for example the
Sutherland-Hodgeman algorithm and the Weiler-Atherton algorithm [11,
44].

4.6.1 Mass conserving advection of the Volume of Fluid field
for nonlinear velocity field

The Eulerian-Lagrangian VoF advection method is accurately mass con-
serving when the velocity field is linear. In the case of a nonlinear velocity
field maintaining this accuracy presents a challenge. This is the result of
the assumption that the triangular elements remain straight sided triangles
after advection. In reality the nonlinear velocity field will deform the edges
of the triangular element and representing it as a straight sided triangle
causes a loss or gain of mass (area) at the Lagrangian mesh. This de-
formation is shown in Figure 4.11. In the proposed algorithm exact mass
conservation is reestablished using a method similar to the one proposed in
[4.37]. To prevent mass loss or gain due to the nonlinear velocity field an
intermediate step is introduced that is applied to the solution on the Lag-
rangian mesh before applying the clipping and redistribution algorithm. In
this step the total mass (area) at the Lagrangian mesh will be enforced
to be equal to the total mass at the Eulerian mesh at previous time level
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Figure 4.11: Straight-sided triangles remain straight-sided after being ad-
vected by a linear velocity field (left). When advected by a nonlinear velo-
city field this property is lost (right).

tn. This is done by adjusting the volume fraction in all mixed cells such
that the total mass error is compensated for. The complete procedure is
explained in the following sections.

Mass error adjustment: Fully filled cells

Consider the fully filled kth element of the Eulerian grid at time tn. It has
a volume fraction ΨE

k = 1 and area | ΩE
k |. Where superscript E refers to

the Eulerian grid. The mass (ME
k ) enclosed by this element is equal to:

ME
k = ΨE

k | ΩE
k | . (4.48)

Now, this element is advected with a nonlinear velocity field which results
in a deformed triangle so the area enclosed by the element is not the same
as on the Eulerian grid i.e. a mass error has incurred. However, during
advection the fully filled cell should remain fully filled so it has volume
fraction ΨL

k = 1 and the area | ΩL
k |. Where superscript L represents the

Lagrangian grid. The mass (ML
k ) enclosed by the Lagrangian element is;

ML
k = ΨL

k | ΩL
k | . (4.49)

The mass lost or gained by the element due to the deformation caused by
the nonlinear velocity field is

M err.
k = ME

k −ML
k . (4.50)
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Where, M err.
k is the mass error of the kth fully filled cell. If there are Nf

fully filled elements that are advected, using a nonlinear velocity field, then
the total mass error (TM err.) caused by the fully filled cells can be defined
as

TM err. =

Nf∑
i=1

(
ME
i −ML

i

)
. (4.51)

The total mass error computed in Equation 4.51 is distributed evenly among
the mixed cells. If there are Nm mixed cells then the average mass error
(Mavg) can be defined as:

Mavg. =

Nf∑
i=1

(
ME
i −ML

i

Nm

)
. (4.52)

This average mass error is added to each of the mixed cells to ensure global
mass conservation.

Mass error adjustment: Partially filled cells

In case of a partially filled or mixed cell a different procedure is adop-
ted. The interface position is adjusted in each mixed control volume in the
Lagrangian grid such that the mass contained within is equal to the mass
contained within the corresponding control volume on the Eulerian grid plus
the average mass error that follows from 4.52. Both the position and the
orientation of the interface have to be determined. The orientation of the
interface can be determined from the LS field, but this approach would re-
quire the interpolation of the LS field from the Eulerian to the Lagrangian
grid at time tn+1. This idea is not computationally efficient, for details
see [60]. To mitigate this problem a different procedure is used, which is
based on the assumption that the interface can be reconstructed on the
Lagrangian element by advecting the two points that represent the inter-
face in the corresponding Eulerian element. Naturally, this puts a threshold
on the size of the time step that can be taken. However, the idea is compu-
tationally efficient and also in line with the idea of distributing the average
mass error to the mixed cells. The details of the interface adjustment for
the control volumes in the Lagrangian mesh are presented in the following
subsection.

Interface adjustment for partially filled cells

Consider a partially filled cell at the Eulerian grid at time tn, as shown in
Figure 4.12(a). The vertices of the element are Xv1

E , Xv2
E and Xv3

E . The
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Figure 4.12: The position of the interface in a mixed cell in the Lagrangian
mesh is based on the advection of the extremities of the interface in the
corresponding mixed cell in the Eulerian mesh.

interface is represented by a linear polynomial i.e. a line segment defined
by its end points Xv31

E and Xv32
E . Also, the area of the triangle formed by

Xv3
E , Xv31

E and Xv32
E represents the exact amount of fluid of interest in this

element. The location of the points Xv31
E and Xv32

E is obtained by using
the LS information of the element. Assume vertex Xv3

E is in the negative
LS region, then Xv1

E and Xv2
E are in the positive region and the interface

normal points towards the positive LS region. Using the linear interpolation
parameters βi for i = 1, 2 the intersection of the interface with the edges
Xv3
E X

v1
E and Xv3

E X
v2
E can be found in the following way:

βi =
−Φ(Xv3

E )

Φ(Xv3
E )− Φ(Xvi

E )
, (4.53)

where Φ(Xv1
E ), Φ(Xv2

E ) and Φ(Xv3
E ) are the LS values at the vertices Xv1

E ,
Xv2
E and Xv3

E , respectively. Using the parameters βi the interface end
points Xv31

E and Xv32
E can be computed as:

X
v3(i)
E = βiX

v(i)
E + (1− βi)Xv3

E i = 1, 2. (4.54)

Once the extremities of the interface are known they are advected along
with the vertices of the element, using Equation 4.45 and 4.46. This defines
the corresponding Lagrangian element as shown in Figure 4.12(b). The
corresponding vertices on the Lagrangian elements are Xv1

L , Xv2
L and Xv3

L

and the interface extremities are Xv31
L and Xv32

L , respectively.

The end points of the interface are not necessarily located on the edges.
This is because the triangle has deformed. In order to avoid overlapping
with neighboring elements. The interface end points are projected on the
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Figure 4.13: For a nonlinear velocity field, the advected extremities of the
interface are first projected on the edges of the Lagrangian control volume,
before the appropriate interface position can be determined.

edges of the element. This is done by computing the intersection of the

edges Xv3
L X

v1
L and Xv3

L X
v2
L with the interface. This defines points Xv31

′

L

and Xv32
′

L , as shown in Figure 4.13(a). The interface orientation is still the
same, the only difference is that it is mapped to the edges of the Lagrangian
element. Clearly, the interface can be reconstructed in a straightforward
way on the Lagrangian mesh without the need for information of the LS
field.

After the interface reconstruction step, the goal is to achieve exact mass
conservation i.e. the interface has to be shifted from its current position
to make sure the mass within the Lagrangian control volume corresponds
to the mass in the corresponding Eulerian control volume plus the average
mass error defined by 4.52.

Assume the area of the Eulerian element is AE = NXv3
E X

v31
E Xv32

E and

the area of the Lagrangian element is AL = NXv3
L X

v31
′

L Xv32
′

L . Now the

goal is to find the points on the edges Xv3
L X

v1
L and Xv3

L X
v2
L , such that

the area enclosed by these points and the vertex Xv3
L is equal to AE plus

Mavg.. This is achieved by computing the following ratio,

θ =

√
AE +Mavg.

AL
. (4.55)

Using, the value θ points on the edges can be computed as follows,

X
v3(i)

′′

L = θX
v3(i)

′

L + (1− θ)Xv3
L , (4.56)
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where, the points X
v3(i)

′′

L , for i = 1, 2, correspond to the edges Xv3
L X

v1
L

and Xv3
L X

v2
L , respectively, as shown in Figure 4.13(b). This makes sure

the area is identical to the area of the Eulerian cell. This holds for the case
where the fluid of interest is within a triangular regionXv3

L X
v31

′

L Xv32
′

L . For

the region enclosed by the points Xv1
L X

v2
L X

v32
′

L Xv31
′

L , a slightly different
procedure is adopted. Here, it is important to note that as the triangles
are allowed to deform during advection, the total area of the Lagrangian
element is not equal to the total area of the corresponding Eulerian ele-
ment. Therefore, using equation 4.55, to conserve the area of the region

by subtracting the area enclosed in Xv1
L X

v2
L X

v32
′

L Xv31
′

L from AE will not

conserve the region Xv1
L X

v2
L X

v32
′

L Xv31
′

L on the Lagrangian mesh. In or-
der to circumvent this problem equation 4.55 is modified. Figure 4.13 is
used again to explain the procedure, as all other steps except the use of
equation 4.55 are the same. Consider a fluid of interest enclosed in the
region AE = �Xv1

E X
v2
E X

v32
E Xv31

E at the Eulerian mesh. After advection
and projecting the interface points at the edges of the Lagrangian cell the

corresponding Lagrangian element is AL = �Xv1
L X

v2
L X

v32
′

L Xv31
′

L and the
total area of the Lagrangian element is ALT = NXv1

L X
v2
L X

v3
L . Using this

information the modified form of equation 4.55 is obtained as;

θ =

√
ALT − (AE +Mavg.)

ALT −AL
. (4.57)

Similarly, points X
v3(i)

′′

L for i = 1, 2, on the edges are computed, using 4.56
. This will ensure the mass (area) of the cell corresponds to the mass of the
Eulerian cell. Once mass conservation is achieved at the Lagrangian mesh,
the clipping procedure is applied to map the VoF to the Eulerian mesh for
time tn+1.

4.7 Inverse function for the Level-Set correction

To make the LS mass-conserving a correction is applied based on the ad-
vected VoF field. In this approach the advected LS field Φ∗k is used to
compute a tentative VoF field Ψ∗ = f(Φ∗k,∇Φ∗k) in every mixed cell, using
the VoF function 4.32. The tentative VoF field is compared locally with the
Eulerian-Lagrangian advected VoF field Ψn+1

k . If the difference is within a
given tolerance then there is no need to correct the LS in that particular
cell, as it is already mass-conserving, i.e. the LS field complies with 4.3,
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and Φn+1
k = Φ∗k. However, if this difference exceeds the prescribed toler-

ance, a correction is required. In order to perform the correction the inverse
of f(Φk,∇Φk) is required. This function is referred to as the inverse VoF
function g(Ψk,∇Φk). This function is derived from 4.32.

Assume the value of the VoF field for Ωk is given by:

Ψn+1
k = f(Φn+1

k ,∇Φn+1
k ), (4.58)

for yet unknown Φn+1
k . Because the mass conserving corrections that need

to be imposed in the MCLS are very small, the orientation of the interface
is assumed to remain unchanged. Therefore, we can replace 4.58 by,

Ψn+1
k = f(Φn+1

k ,∇Φ∗k). (4.59)

This means that in the conversion the height of the interface is adjusted
without changing its orientation. For a triangular (or more generally a
convex) element there is a unique value of Φn+1

k that fulfills 4.59 for Ψk ∈
[0, 1]. Therefore, the inverse of f(Φk,∇Φk) with respect to its first argument
can be defined as

Φk = g(Ψk,∇Φk). (4.60)

In order to obtain a uniformly valid inverse function, a switching parameter
similar to 4.31 can be defined as:

S
′
p(Ψ

)
k =


1 : Ψk ≥

Dξ2

Dξ1

0 : Ψk <
Dξ2

Dξ1

. (4.61)

A critical value of the VoF is Ψk =
Dξ2

Dξ1

, because for this value the interface

is passing through the vertex ξA, see Figure 4.8. Using 4.61, 4.27 can be
written as:

Ψk =
(φ̃(0))2

Dξ1Dξ2

− S′p(Ψk)
(φ̃(0) +Dξ2)2

Dξ2(Dξ1 −Dξ2)
. (4.62)

Define the coefficients c
′
1,2 as:

c
′
1 =

1

Dξ1Dξ2

, c
′
2 =

−S′p(Ψk)

Dξ2(Dξ1 −Dξ2)
. (4.63)

Now φ̃(0) is the unique root of the following quadratic equation:

(c
′
1 + c

′
2)(φ̃n+1(0))2 + 2c

′
2Dξ2(φ̃n+1(0)) + c

′
2D

2
ξ2 −Ψk = 0, (4.64)

∀ Ψk ∈ [0, 1].
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within the interval [−Dξ1 , 0]. This unique root is given by:

φ̃(0) = −(2c
′
2Dξ2)−

√
(2c
′
2Dξ2)2 − 4(c

′
1 + c

′
2)(c

′
2D

2
ξ2
−Ψk)

2(c
′
1 + c

′
2)

. (4.65)

The inverse function g(Φk,∇Φk) can now be defined as:

Φk = g(Ψk,∇Φk) : [0, 1]→
[
−2Dξ1 +Dξ2

3
,
Dξ1 +Dξ2

3

]
, (4.66)

g(Ψk,∇Φk) = −(2c
′
2Dξ2)−

√
(2c
′
2Dξ2)2 − 4(c

′
1 + c

′
2)(c

′
2D

2
ξ2
−Ψk)

2(c
′
1 + c

′
2)

) +
Dξ1 +Dξ2

3
.

Where, [Dξ1 Dξ2 ]T = J∇Φk. The conversion of LS to VoF depends on
the value and gradient of the LS at the center of the control volume. Key
difference between the original MCLS, and the proposed algorithm is that
in the latter, the discretisation of the LS field with a discontinuous Galer-
kin method leads to a local, element-wise definition of the LS field. This
means that the LS field can be corrected locally, contrary to the original
MCLS algorithm where an iterative procedure is used to have both Φn+1

k

and ∇Φn+1
k comply with 4.58. This is a major improvement with respect to

efficiency and robustness in comparison with the original MCLS algorithm.

4.8 Computational cost of the mass-conserving cor-
rection

Accurately mass-conserving advection of the VoF field on a discretisation
of general unstructured control volumes is very challenging but necessary
in many but certainly not all applications. Incorporating this correction
makes the algorithm significantly more costly than a ’pure’ LS approach,
but comparable in cost to algorithms that are based on an explicit recon-
struction of the interface. The Eulerian-Lagrangian approach of advection
and the required ’clipping’ algorithm are computationally intensive. How-
ever, these ’clipping’ type of algorithms are used extensively in computer
graphics and under continuous development. Furthermore, they are highly
parallelizable and readily portable to GPU architectures. Alternative al-
gorithms, for example based on the use of compressive schemes used for
modified LS formulations are currently investigated. The use of a discon-
tinuous Galerkin discretisation and the resulting locality of the mass con-
serving correction lead to a significant gain in efficiency with respect to the
original formulation of the MCLS method.
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4.9 Test Cases

The key characteristics of the method that need to be validated are the mass
conservation property and the accuracy of the LS field. Therefore, three
test cases are selected based on different velocity fields; constant, linear and
nonlinear. The test cases chosen are the translation of a circular interface
with a constant velocity, the rotation of a circular interface around the
center of the domain with linear velocity and the very popular single reverse
vortex test case [49, 60]. These test cases are sufficient to demonstrate
both the mass conservation properties and accuracy of the method. Apart
from these test cases, the accuracy of the conversion between the LS field
and the VoF field is considered separately using the VoF function and its
inverse. Also the initial mass error that is incurred due to the piecewise
linear representation of the interface is analysed. This test case is referred
to as interface back and forth reconstruction. We define the mass error EnM
and the discrete L2 error in the LS field EΨ(tn) as

EnM = Mn −Mexact(t
n),Mn =

K∑
k=1

Ψn
k |Ωk|, (4.67)

EΦ(tn) =

√∑K
k=1

(
Φn
K − Φ(Xk, tn)exact

)2
K

,

where Mexact(t
n) and Φ(Xk, t

n)exact are the exact area contained within
the interface and the exact LS field, respectively. The order of EΦ(tn) is
estimated through Richardson extrapolation, on a sequence of unstructured
meshes. We expect to find second order convergence of both EΦ(tn) and
EnM , because of the use of linear basis functions for the LS field and the
use of the linearized LS field in the conversion to VoF. The VoF advection
scheme is mass conserving to machine precision, so apart from an initializ-
ation error, the mass loss should be virtually negligible over the duration of
the simulations. We will only focus on the spatial accuracy of the discretisa-
tion. In each test case all quantities are made dimensionless by introducing
reference length and time scales equal to 1 m and 1 s, respectively.

4.9.1 Conversion between level-set and volume of fluid rep-
resentation

This test case is considered to demonstrate the accuracy of the conversion
of the LS field to the VoF field and vice versa using 4.35 and its inverse
4.66: the VoF field is converted to the LS field using Equation 4.64, without
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Characteristic meshwidth h Mn |EM | Order

3.64e-02 1.2456e-01 1.10008e-03 —

2.43e-02 1.2515e-01 5.0951e-04 2.16

1.67e-02 1.2540e-01 2.5679e-04 1.98

1.02e-02 1.2556e-01 9.4813e-05 2.71

Table 4.1: Accuracy analysis of the interface back-and-forth conversion test
case. Initialization with the exact level-set field introduces a mass error
that converges with second order accuracy.

involving any advection of the interface. Naturally, inter-conversion of the
LS field and the VoF field without loss of mass is a prerequisite for the
algorithm to achieve (nearly) exact mass conservation. This test shows
that the error induced by the inter-conversion is negligible. A circular fluid
region is considered with radius 0.2 in a domain of size ΩD = [0, 1]× [0, 1].
The initial condition for the LS field is given as:

Φ(x, 0) = 1
25 − (x1 − 1

2)2 − (x2 − 1
2)2, x ∈ ΩD. (4.68)

The corresponding VoF field is given by:

Ψ(x, 0) =

{
1, (x1 − 1

2)2 + (x2 − 1
2)2 − 1

25 < 0,
0, (x1 − 1

2)2 + (x2 − 1
2)2 − 1

25 > 0.
, x ∈ ΩD. (4.69)

Furthermore, if we consider Phase1 to be the fluid of interest, the total area
of the domain of interest is Mexact = π

25 . The interface is represented by
the zero-contour of the LS field and the interface normal points outwards
from the negative LS region. Firstly, the LS field is converted into the VoF
field using 4.32. Secondly, the obtained VoF field is converted back to the
LS field using 4.66. After that the difference between the LS field before
and after the conversion is evaluated for all mixed cells. We found that the
LS field remains unchanged upto machine precision.

In the MCLS the interface is approximated by a set of line segments,
because of the fact that the conversion between LS and VoF is based on
the linearized LS field. Depending on the procedure for the initialization,
this approximation will incur an error in the mass(area) when the LS field
is initialized exactly, or an error in the LS field when the VoF field is ini-
tialized exactly. We consider 4.68 as initial condition for the LS field. In
Table 4.1 EM is presented for four different characteristic mesh widths
h =

√
Σ|Ωk|/N . Clearly, EM = O(h2), and the initial error strongly dom-

inates the error incurred by the back-and-forth conversion. Alternatively,
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the LS field can be initialized by conversion of the exact VoF field 4.69. This
approach will incur an error in the LS field as shown in Figure 4.14, where
the zero level countour of the LS field initialized with 4.68 is compared
with the LS field converted from 4.69. Because the conversion between
the two fields is based on the linearized LS field, the conversion induces
a small movement of the interface, which can be shown to decrease with
second order upon grid refinement. Clearly, to achieve nearly exact mass
conservation, it is essential to initialize the LS field by converting the initial
condition for the VoF field.

Initial Level−Set and VoF initialized Level−Set contour.
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Figure 4.14: Initialization with the exact volume-of-fluid field leads to a
slightly different initial position of the interface but eliminates the mass
error incurred by initialization with the exact level-set field.

4.9.2 Translation of circular region

In this test case the translation of a circular interface of radius 0.15 is
considered in a domain of size ΩD = [0, 1] × [0, 1]. Initially, the interface
φ(x, 0) = 0 is centered at (0.5, 0.2)T . The LS and VoF fields are advected
with a constant velocity field u(x) = (0, 0.1)T for 0 < t ≤ T = 5. The
exact LS field at the final time is a circular region with unchanged radius
but centered at (0.5, 0.7)T . In Table 4.2 the average mass error EnM and
the error of the LS field EΦ(T ) are presented for three different mesh sizes.
The results indicate that the solution of the LS field converges with second
order accuracy.
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Characteristic meshwidth h EnM EΦ(T ) Order of EΨ(T )

3.64e-02 2.6835E-15 8.0531E-04 —

2.43e-02 2.2830E-15 5.1876E-04 1.55

1.67e-02 8.2976E-16 2.3053E-04 2.25

Table 4.2: Average mass error EnM and error in the level-set field EΦ(T ) for
the translation of a circular interface.

4.9.3 Rotation of circular region around the center of the
domain

The third test case concerns the rotation of an initially circular interface.
Consider a circular region of radius 0.15 in a domain of size ΩD = [0, 1] ×
[0, 1]. Initially, the interface φ(x, 0) = 0 is centered around (0.5, 0.75)T .
The LS and VoF fields are advected with a divergence free linear velocity
field u(x) defined as:

u(x) = (x1 − 0.5,−x2 + 0.5)T , x ∈ ΩD. (4.70)

for 0 < t ≤ T = 2π. At t = T the LS field is compared with the initial LS
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Figure 4.15: Time history of mass error for the circular fluid rotation case.

field as the interface should return to its initial position after one complete
revolution.

Figure 4.15 shows the time history of the mass error during one full
rotation for three different mesh sizes. In Table 4.3 the average mass error
EnM and the error of the LS field EΦ(T ) are presented. The solution of the
LS field converges with second order accuracy.
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Characteristic mesh width h EnM EΨ(T ) Order of EΨ(T )

3.64e-02 1.6199E-14 6.6142E-03 —

2.43e-02 4.2944E-16 2.2104E-03 2.99

1.67e-02 1.7417E-15 1.2526E-03 1.77

Table 4.3: Average mass error EnM and error in the level-set field EΦ(T ) for
the rotation of a circular interface.

4.9.4 The reverse vortex test case

The reverse vortex or single reverse vortex test case is one of the more
challenging tests for models for immiscible two-phase flow. The reason
for this is the severe stretching and deformation of the convected interface
caused by the nonlinear velocity field during the advection which makes
accurate mass conservation challenging.

Consider an initially circular fluid region of radius 0.15 in a domain of
size ΩD = [0, 1] × [0, 1]. Initially, the center of the fluid is at (0.5, 0.75).
This circular region is advected with a divergence free nonlinear velocity
field u(x, t) defined as:

u(x, t) = (sin2(πx1) sin(2πx2),− sin2(πx2) sin(2πx1))T cos(πtT ), (4.71)

x ∈ ΩD, 0 ≤ t ≤ T.

This definition of the velocity field implies that the interface should return
to its original position at time t = T , which is also the final time. The value
of T is set to 2.

The evolution of the interface is shown in Figure 4.17 for three differ-
ent mesh widths, together with the exact initial and final position of the
interface.

Figure 4.16 shows the time history of the mass error during one full
rotation for three different mesh sizes. In Table 4.4 the average mass error
EnM and the error of the LS field EΦ(T ) are presented. The solution of the
LS field converges with second order accuracy, while even for this nonlinear,
velocity field mass is conserved (nearly) exactly.
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Figure 4.16: Time history of mass error for the reverse vortex test case.

Characteristic mesh width h EnM EΨ(T ) Order of EΨ(T )

3.64e-02 1.48167E-14 5.6716E-3 —

2.43e-02 3.3508E-16 1.8284E-3 3.101

1.67e-02 4.7809E-16 1.0951E-3 1.669

Table 4.4: Average mass error EnM and error in the level-set field EΦ(T ) for
the reverse vortex test case.

4.10 Conclusions

We have developed a (nearly) exactly mass-conserving method for the simu-
lation of immiscible incompressible two phase flow in geometrically intricate
two-dimensional domains. The method developed is the extension of the
MCLS method towards unstructured triangular grids. The VoF function
and the inverse function derived for a triangular mesh are very simple, ro-
bust and efficient to evaluate. Due to the use of a discontinuous Galerkin
discretisation method for the LS field, the mass-conserving correction can
be applied locally in each element. This approach is significantly more
efficient and robust than the original MCLS formulation. Numerical exper-
iments indicate the LS field converges with second order accuracy in space
and mass is conserved up to machine precision.
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Reverse vortex test case, time=0.
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Figure 4.17: The evolution of the interface position for the reverse vortex
test case.



CHAPTER 5

Extension to tetrahedron control volumes

5.1 Introduction

In Chapter 4, we have presented the proposed Mass-Conserving Level-Set
method along with numerical results based on 2D triangular mesh. Based
on these results it is worthwhile to developed all the ingredients of the
proposed method for 3D tetrahedral control volumes. This will pave the way
to demonstrate the capabilities of the proposed method for more complex
domains. In the light of the objective in this chapter, we have presented a
3D Volume of Fluid function and its inverse function is presented.

5.2 Volume of Fluid function in 3D

Our approach is to use a geometric construction to find the function Ψ(Xk) =
f(φk,∇φk) that can link VoF to the LS field by an analytic function. The
interface LS function φk is segment of plane. Therefore, f(φk,∇φk) is the
relative volume of the polygon bounded by the faces of the tetrahedral and
the plane φk = 0. The polygon can be either tetrahedral or quadrilateral or
even reduced to a single point, depending on the intersection of the inter-
face plane with the tetrahedron, Ωk. An efficient evaluation of the function
f(φk,∇φk) requires a formulation that considers all possible situations as
uniformly as possible.

65
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Figure 5.1: Tetrahedron control volume.

Such a formulation is realized when the common vertex of those edges
that are intersected by the interface plane is mapped to the origin. This is
shown in Fig. 5.1.

This case is considered in Fig. 5.1, Xv4
k is this vertex, because it is a

common vertex of the edgesXv1
k X

v4
k ,Xv2

k X
v4
k andXv3

k X
v4
k , as these edges

intersect the interface at points Xv14
k , Xv24

k and Xv34
k , respectively. The

barycentric coordinate transformation for the above mapping, assuming
Xv4
k is the common vertex, can be written as:

x(ξ) = (Xv1
k −Xv4

k )ξ1 + (Xv2
k −Xv4

k )ξ2 + (Xv3
k −Xv4

k )ξ3 +Xv4
k . (5.1)

The linear transformation x(ξ) is bijective for a non-degenerate tetrahedron
Ωk: a tetrahedron for which no vertices coincide and/or faces are aligned.
Define the (non singular) Jacobian of this mapping as J = ∂x

∂ξ . The linear

LS function φ̃(ξ) can now be formulated as:

φ̃(ξ) = Φ(x(ξk)) +
∂Φ

∂ξ

∣∣∣∣
ξ=ξk

(ξ − ξk) ,
∂Φ

∂ξ
= J∇Φ, (5.2)

where ξk = ξ(Xk). Consider Fig. 5.1, the common vertex Xv4
k is mapped

to the origin and the other three vertices are mapped to points on the axes
on logical space. It is important to note that vertices Xv1

k , Xv2
k and Xv3

k

can be mapped to any of the vertices in logical space, except the origin.
The other three vertices in logical space are located at (1, 0, 0), (0, 1, 0) and
(0, 0, 1). Furthermore, the interface is represented by a plane formed by the
points Xv14

k ,Xv24
k and Xv34

k . Our target is to compute the volume of the
sub tetrahedron NXv14

k Xv24
k Xv34

k Xv4
k with the help of the linear form of

the LS field derived in Equation 5.2.
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Let us assume that the vertices Xv1
k , Xv2

k and Xv3
k are mapped to

ξB = (1, 0, 0), ξA = (0, 1, 0) and ξC = (0, 0, 1) respectively, in a logical
space. Therefore, points X14

k , X24
k , X34

k are mapped to ξE = (ξE1 , 0, 0),
ξF = (0, ξF2 , 0) and ξG = (0, 0, ξG3 ), respectively. This is shown in Fig. 5.1.
In order to compute the volume of the regionXv14

k Xv24
k Xv34

k Xv4
k , the points

ξE , ξF and ξG should be known.

5.2.1 Coordinates of the point ξE

The logical space coordinates of the cell centroid ξk are by virtue of the

barycentric coordinate transformation always given by ξk =

(
1

4
,
1

4
,
1

4

)T
.

This means 5.2 can be written as;

φ̃(ξ) = Φk +
∂Φ

∂ξ1

(
ξ1 −

1

4

)
+
∂Φ

∂ξ2

(
ξ2 −

1

4

)
+
∂Φ

∂ξ3

(
ξ3 −

1

4

)
. (5.3)

Substitution of ξE in 5.3 leads to:

φ̃(ξE) = Φk +
∂Φ

∂ξ1

(
ξE1 −

1

4

)
−
(

1

4

)
∂Φ

∂ξ2
−
(

1

4

)
∂Φ

∂ξ3
= 0. (5.4)

The right-hand side of 5.4 is zero, because the interface passes through the
point ξE . Evaluation of 5.3 in ξ(Xv4

k ) = 0 gives:

φ̃(0) = Φk −
(

1

4

)
∂Φ

∂ξ1
−
(

1

4

)
∂Φ

∂ξ2
−
(

1

4

)
∂Φ

∂ξ3
. (5.5)

Solving 5.4 and 5.5 to find ξE1 leads to:

ξE1 =

∣∣∣∣∣− φ̃(0)

Dξ1

∣∣∣∣∣ , (5.6)

where, Dξ1 =
∂Φ

∂ξ1
. Therefore, the coordinates of the point ξE =

(
φ(0)

Dξ1

, 0, 0

)
.

5.2.2 Coordinates of the points ξF and ξG

Based on the computation for the point ξE , a similar computation can
be done to the other two edges for the points ξF and ξG, which leads to

ξF =

(
0,
φ(0)

Dξ2

, 0

)
and ξG =

(
0, 0,

φ(0)

Dξ3

)
, respectively.
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5.2.3 Evaluation of the VoF from the LS function

We can compute the volume enclosed by the points 0, ξE , ξF and ξG in
logical space. The volume of the enclosed region is denoted by Aξ and is
given by:

Aξ =
(φ̃(0))3

6Dξ1Dξ2Dξ3

(5.7)

Equation 5.7 presents the volume of the region enclosed by interface in
logical space. The product of Aξ and the Jacobian of the transformation J
is equal to the volume enclosed by the points X14

k X24
k X34

k X
v4
k in physical

space.

The volume of the image of Ωk in logical space, is 1
6 . Let us call it

Atotal
ξ =

1

6
. The VoF fraction in both physical and logical domain can be

defined as,

Ψ(xk) ≈ f(φk,∇φk) =
Aξ

Atotal
ξ

=
(φ(0))3

Dξ1Dξ2Dξ3

. (5.8)

This is the volume of fluid fraction formula, based on the LS function and
its gradient.

It is important to note by the choice of mapping Dξ1 ,Dξ2 and Dξ3 cannot
be zero. It is possible that the interface is aligned in a computational domain
such that it intersect the control volume such that two of its vertices are
on one side of the fluid i.e. they have the same sign of the LS value. This
situation is shown in the 5.2. In this case a slightly different approach is
used to compute teh VoF function and its inverse. This is explained in the
following section.

5.2.4 Case: When two vertices are aside

Consider the interface orientation shown in the Figure 5.2. Let us assume
that the vertices Xv4

k and Xv2
k are in the fluid of interest and the other

vertices Xv1
k and Xv3

k are in the other fluid. In this situation, we define a
convention that out of the two vertices Xv4

k and Xv2
k anyone can be mapped

to origin provided that it has larger magnitude of the LS and the other one
which small magnitude of the LS will be mapped in the ξ2 direction. This
convention is only for the simplification and to reduce the other possibilities
of the mapping. A similar procedure is used for mapping as done above i.e.
for the case where the interface cuts the tetrahedron, such that one vertex
is a side and teh rest of three are at the other side. However, the interface
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intersect the edge in the ξ2 direction, outside the tetrahedron defined in
logical mapping. This shown in Figure 5.2. It is quite clear that the volume

Xv1
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Xv3
k

Xv4
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Xv21
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(a) Control volume (Ωk).
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(b) Barycentric coordinates.

Figure 5.2: Case: where two vertices are aside.

of interest is enclosed by the vertices in logical space, O,E, F,G, ξ(Xv2
k ), X1

I

and X2
I . The points X1

I and X2
I are the intersection of the interface with

the edges formed by ξ(Xv2
k )ξ(Xv1

k ) and ξ(Xv2
k )ξ(Xv3

k ), respectively.

Firstly, the coordinates of the points X1
I and X2

I are required. To com-
pute these coordinates consider the intersection of the interface with the
edges.

5.2.5 For point X1
I

The linear LS field in the logical space is given as follow,

φ̃(ξ) = Φk +
∂Φ

∂ξ1

(
ξ1 −

1

4

)
+
∂Φ

∂ξ2

(
ξ2 −

1

4

)
+
∂Φ

∂ξ3

(
ξ3 −

1

4

)
. (5.9)

The point X1
I lies in the ξ2ξ3−plane. Therefore, ξ1 = 0 and ξ2 + ξ3 = 1 at

the edge. The coordinates of the point X1
I (0, ξ

′
2, ξ

′
3) and using interface has

value zero at the point X1
I , Equation 5.9 gives,

Φk +
∂Φ

∂ξ1

(
−1

4

)
+
∂Φ

∂ξ2

(
ξ
′
2 −

1

4

)
+
∂Φ

∂ξ3

(
ξ
′
3 −

1

4

)
= 0. (5.10)

Also, we have ξ
′
2 + ξ

′
3 = 1 solving these two equation will leads the values

of ξ
′
2 and ξ

′
3 as follows,

ξ
′
2 =

φ̃(0) +Dξ2

Dξ3 −Dξ2

, (5.11)
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ξ
′
3 = −

(
φ̃(0) +Dξ2

)
Dξ3 −Dξ2

, (5.12)

where, Dξ2 =
∂Φ

∂ξ2
, Dξ3 =

∂Φ

∂ξ3
and

φ̃(0) = Φk −
(

1

4

)
∂Φ

∂ξ1
−
(

1

4

)
∂Φ

∂ξ2
−
(

1

4

)
∂Φ

∂ξ3
. (5.13)

This defines the coordinates of point X1
I .

5.2.6 For point X2
I

A similar procedure is adopted for the point X2
I . The point X2

I lies in the
ξ2ξ1−plane. Therefore, ξ3 = 0 and ξ2 +ξ1 = 1 at the edge. The coordinates
of the point X2

I (ξ
′
1, ξ

′
2, 0) and using the fact that interface has value zero at

the point X2
I , Equation 5.9 gives.

Φk +
∂Φ

∂ξ1

(
ξ
′
1 −

1

4

)
+
∂Φ

∂ξ2

(
ξ
′
2 −

1

4

)
+
∂Φ

∂ξ3

(
−1

4

)
= 0. (5.14)

Also, we have ξ
′
2 + ξ

′
1 = 1 solving these two equation leads to the values of

ξ
′
2 and ξ

′
1 as follows,

ξ
′
2 =

φ̃(0) +Dξ2

Dξ1 −Dξ2

, (5.15)

ξ
′
1 = −

(
φ̃(0) +Dξ2

)
Dξ1 −Dξ2

, (5.16)

where, Dξ1 =
∂Φ

∂ξ1
, Dξ2 =

∂Φ

∂ξ2
and

φ̃(0) = Φk −
(

1

4

)
∂Φ

∂ξ1
−
(

1

4

)
∂Φ

∂ξ2
−
(

1

4

)
∂Φ

∂ξ3
. (5.17)

This defines the coordinates of point X2
I . The points X1

I and X2
I are used

to compute the extra volume, explained in the next section.
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5.2.7 Extra volume

The VoF fraction given by the VoF function derived in equation 5.7 gives
the volume enclosed by the interface and the tetrahedron and also the extra
volume defined by the tetrahedron ξF , ξ(Xv2

k ), ξ(X1
I ) and ξ(X2

I ). Let us call
the extra volume V extra

k . In order to get correct volume enclosed by the
interface in a cell, the volume V extra

k should be subtracted from the volume
obtained by VoF function. This can be noted as follows,

Vk =
(φ̃(0))3

6Dξ1Dξ2Dξ3

− V extra
k . (5.18)

Now, V extra
k is needed to be determined and this can be computed by us-

ing the coordinates of the points ξF , ξ(Xv2
k ), ξ(X1

I ), all of these points are
known and a simple needs to determine defined by these points. This is
leads to,

V extra
k =

∣∣∣∣∣ (φ̃(0) +Dξ2)3

6Dξ2(Dξ3 −Dξ2)(Dξ1 −Dξ2)

∣∣∣∣∣ . (5.19)

So, the volume fraction can be defined as,

Ψk =
(φ̃(0))3

Dξ1Dξ2Dξ3

−
(φ̃(0) +Dξ2)3

(Dξ1 −Dξ2)Dξ2(Dξ3 −Dξ2)
, (5.20)

where, φ̃(0) is the value of the LS at the origin in logical space and defined
as;

φ̃(0) = Φk −
(
Dξ1 +Dξ2 +Dξ3

4

)
. (5.21)

The volume fraction equation can be further simplified to a simple cubic
polynomial equation for φ̃(0). To do this let us define two coefficients,

A =
1

Dξ1Dξ2Dξ3

and B =
1

(Dξ1 −Dξ2)Dξ2(Dξ3 −Dξ2)
. This will give us

volume fraction function in the simplest form as,

Ψk = aφ̃(0)3 + bφ̃(0)2 + cφ̃(0) + d, (5.22)

where, the coefficients are a = A − B, b = −3BDξ2 , c = −3BD2
ξ2

and

d = −BD2
ξ2

. This cubic polynomial representation of the VoF fraction is
very convenient in use and it is also used to derived the inverse function,
explained in the next section.
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5.3 Inverse function in 3D

In this section derivation of the inverse function is presented Φk = g(Ψk,∆Φk).
This function is used to correct the LS field based on the given VoF fraction.
This VoF fraction is obtained by advecting the VoF field parallel to the LS
field. In other words the inverse function is the analytic way to coupled
the LS field and the VoF field. The main objective of this coupling is to
find the cell centroid value of the LS Φc

k that corresponds to the given VoF
fraction Ψc

k.

Consider Equation 5.22 and assume that the interface is corrected in
the direction of the normal to the interface. Therefore, we keep Dn+1

ξ1
, Dn+1

ξ2

and Dn+1
ξ3

as they are at time tn+1. Therefore, the inverse function can be
defined as,

aφ̃(0)3 + bφ̃(0)2 + cφ̃(0) + d−Ψc
k = 0. (5.23)

Above equation does not define the inverse function completely. First the
value of φ̃(0) is computed for the given Ψc

k by solving cubic equation 5.23.
Then the cell centroid value of the LS can be obtained as,

Φc
k = φ̃(0) +

(
Dn+1
ξ1

+Dn+1
ξ2

+Dn+1
ξ3

4

)
. (5.24)

This will give a corrected value of the LS field at the cell centroid.
Here, corrected value of the LS field means that centroid value of the LS
now corresponds to the advected VoF fraction. This whole step is simple
and straight-forward, except that how to solve equation 5.23. There are
two choices either solve it with cubic root finding analytic method or solve
it numerically, like Newtons-Raphson iterative method for the non-linear
equations. We have selected the iterative method to demonstrate the work-
ing of the inverse function, however, any analytic method for finding cubic
roots of the polynomial is applicable. In an iterative method initial guess is
important and we have observed that, if we select the starting value equal
to the lineraized value at the origin based on the non-corrected LS field
and applying Newtons-Raphson method it appears to always converge to
the correct root value, which makes sure that the interface remains within
the element and also corresponds to the correct VoF fraction. Let us as-
sume that the starting value is φ(1), then the Newton-Raphson algorithm
is presented as follows,
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Algorithm 1 The inverse function solution, using the Newton-Raphson
method

Require: φ(1), a, b, c, d, tol, ε
while ε ≥ tol do

φ(i+1) = φ(i) − a(φ(i))3 + b(φ(i))2 + cφ(i) + d

3a(φ(i))2 + 2bφ(i) + c

ε = |φ(i+1) − φ(i)|
φ(i+1) = φ(i)

end while

This has completed our discussion and overview of the MCLS method
with respect to the tetrahedron control volumes. In the next section we
have only presented the result to demonstrate the working of VoF function
and the inverse function for the tetrahedron control volumes.

5.4 Test Case: The 3D back and forth interface
reconstruction

To demonstrate the accuracy of the conversion of the LS field to the VoF
field and then the VoF field back to the LS field using the inverse function.
We have designed a test case in which in first step we convert the LS field
into the VoF field, using VoF function, equation 5.22 and in the second step,
the converted VoF field is again converted back to the LS set field, using the
inverse function 5.23. This is a basic step of the MCLS method to obtained
the mass conservative LS field. However, in practice the VoF field in second
step is obtained by advecting VoF filed along the LS field. In this test case
no advection of the interface is involved. Naturally, inter-conversion of the
LS field and the VoF field without loss of mass is a prerequisite for the
algorithm to achieve (nearly) exact mass conservation. This test shows
that the absolute error (Err.) induced by the inter-conversion is nearly
zero. Steps involved in this test can expressed by the following equations,

Φk → f(Φk,∇Φk)︸ ︷︷ ︸
Step-1: VOF function

→ Ψk → g(Ψk,∇Φk)︸ ︷︷ ︸
Step-2: Inverse function

→ Φk, (5.25)

Err. = |Φk − Φk| ≈ 0.

In the light of the above test case, let us consider the interface topology
of the shape Zalesak’s slotted sphere. The interface is centered at xc =
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(0.5, 0.5, 0.5) of the unit cube, i.e. ΩD = [0, 1]× [0, 1]× [0, 1]. The LS field
is given as Φk, now we have applied the first step-1 and after that step-2.

It is observed that the error between the LS field before and after con-
version is zero upto machine precision. In Figure 5.3 the interface contour
is plotted after correction. It is observed that the developed VoF function
and the inverse function work efficiently and induced no error upto machine
precision. This test suggests that apart from the error induced due to the
interface advection with the flow field, there is no error due to inter conver-
sion of the LS field. This test is sufficient to conclude that the developed
VoF function and the inverse function are conservative, once applied with
a complete advection scheme for a 3D tetrahedron.
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Figure 5.3: The interface zero-contour after correction for the Zalesak’s
slotted sphere.

5.5 Conclusions

In this chapter the 3D extension of the MCLS method is presented. The
developed VoF function and the inverse for the tetrahedron control volumes
are mass conservative. The mass-conservation correction to the LS field is
very trivial and easy to implement. This seems promising for the complete
algorithm once coupled with the advection of the LS field and the VoF field.



CHAPTER 6

The Modified Level-Set method

6.1 Introduction

In the last two chapters the extension of the MCLS for Cartesian control
volumes to triangular and tetrahedral control volumes has been presented.
The hybrid formulation based on a congruent LS and VoF field combines the
advantages of the LS formulation with accurate mass conservation. How-
ever, the Eulerian-Lagrangian approach to advect the VoF field is quite
involved and will be even more so when applied in three spatial dimensions.

For those cases for which the requirements of very strict mass conserva-
tion can be relaxed an alternative approach has become very popular: The
modified Level-Set method introduced in the milestone paper by Olsson and
Kreis [15,37,39].

The concept is based on the use of a level-set function that is C∞ con-
tinuous but closely resembles the color function [add reference to equation
where this is defined]. For any continuous function φ(x, t) the ’mass’ M in
the domain is defined as the area of the region enclosed by the φ(x, t) = 0
LS:

M(t) =

∫
Ω
H(φ(x, t))dΩ. (6.1)

Therefore, if the field φ(x, t) is conservatively advanced in time this does
not guarantee conservation of mass unless either:

75



76 Chapter 6. The Modified Level-Set method

• Mass conservation is explicitly enforced after each advance in time.
(e.g. as in the MCLS algorithm),

• ‖φ(x, t)−H(φ(x, t))‖ < ε.

It is the latter approach that is followed in the modified LS method. The
’true’ color function is replaced by a mollified color function φm(x, t), where
the change of φm(x, t) from the one to the other value of the color function
takes place over a nonzero but small distance. How exactly this change oc-
curs is arbitrary, but smoothness of the transition will improve the accuracy
of the interface location and efficiency of the interface capturing model.

Clearly, the closer the modified LS function resembles the true color
function, the more accurately mass is conserved. However, simultaneously,
accurate discretisation of the conservation equation for such a rapidly chan-
ging and highly nonlinear function becomes more and more challenging.

The ability to easily accomodate changes in the topology of the interface
necessary to model coalesence and break-up is shared by the LS and the
modified LS. Also the evolution of both is described by the same simple
linear advection equation, which results in an efficient and robust algorithm.
The discretisation of this advection equation is not complicated by the use
of an unstructured tesselation of triangular or tetrahedral control volumes,
instead of a set of Cartesian control volumes. Curvature and interface
normal vector can be reconstructed from the modified LS field in exactly
the same way as for the LS field.

Up till recently, the finite volume methods and standard limited convec-
tion schemes were used to discretise the modified LS equation. In [41] the
use of the discontinuous Galerkin method was introduced in this context.
The aim of this research is to investigate the potential of the modified LS
method in terms of accuracy of the interface location and mass conservation
when state-of-the-art spatial discretisation techniques are used. Addition-
ally, an artificial compressive velocity field is introduced to improve the
interface sharpness when it is aligned with the flow direction. This tech-
nique is used in some finite volume schemes [51], but is now introduced in
the context of a discontinuous Galerkin discretisation of the modified LS
equation. To circumvent the occurence of oscillations in the modified LS
field in the vicinity of the interface first and second order formulations of the
limiter proposed by Kuzmin et al. [31, 32] are used. The application of the
limiter succesfully suppresses any oscillations, but also leads to smearing
out of the interface. The latter can now be corrected by the introduction
of the artificial compressive velocity field. The key characteristics of the
proposed algorithm can be summarized as:
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• The modified LS field is approximated by either a first or second
degree piecewise polynomial function on a set of non overlapping tri-
angular control volumes.

• To avoid oscillations in the solution of the LS field near the interface
due to the nearly discontinuous behaviour a limiter is applied after
the advection of the field.

• To retain an interface with nearly constant thickness an artificial com-
pressive velocity field is introduced next to the physical velocity field.

In the following Sections these characteristics will be discussed in more
detail. Finally, computational results obtained with the proposed modified
LS algorithm are presented for the test cases discussed in Chapter 2 and
Chapter 4. The proposed algorithm will be assessed on the accuracy of it’s
solutions, it’s mass conservation properties and it’s ability to maintain an
interface region of constant width.

6.2 The Modified Level-Set method

The main idea of the modified Level-Set method is to define an LS func-
tion that mimicks the VoF field as close as is practically possible from a
computational point of view, to improve the mass conservation property of
the former method. A commonly made choice for the modified LS function
is a scaled and translated tangent hyperbolic function of the (signed) dis-
tance to the interface. Note that this definition of the modified LS function
only explicitly appears in the initial condition of the initial boundary value
problem for the modified LS function. This initialization is demonstrated
for a one-dimensional example.

Assume that the LS field is defined by the signed distance function
φ(x, t). The interface is the zero LS of φ(x, t), i.e. the interface I(x, t) is
defined as

I(x, t) = {x ε Ω | φ(x, t) = 0}. (6.2)

To improve the mass conservation property of the LS advection algorithm,
the following modified LS field φεm(x, t) is defined:

φεm(x, t) = F εm(φ(x, t)), (6.3)

where

F εm(φ(x, t)) =
1

2

(
tanh

(
φ(x, t)

2ε

)
+ 1

)
. (6.4)
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where ε is a parameter that controls the width of the interface region GI .
The definition of the interface in terms of the modified LS field φεm(x, t) is
now given by

I(x, t) = {x ε Ω | φεm(x, t) = 1
2}, (6.5)

but it seems to be more appropriate to define an interface region GI as:

GI = {x ∈ R2| δ < φ(x, t) < 1− δ }, 0 < δ < 1
2 . (6.6)

where δ � 1. The interface width w(t) is defined in the following way:

x+(xs, w
+) = xs(t) +∇φεm(xs, t)w

+

x−(xs, w
−) = xs(t)−∇φεm(xs, t)w

−

∣∣∣∣ xs(t) ∈ I(t). (6.7)

w(t) = max
w+,w−>0 ; x+,x−∈GI(t)

(|x+ − x−|) (6.8)

It is most important to formulate the algorithm in a way w(t) does not
grow over time, because this would prohibit the use of the method for the
computation of stationary solutions to the two-phase flow model.

The parameter ε has dimension length and has to be related to a char-
acteristic length scale of the numerical method at hand. In many two-phase
flow models the interface width is related to a representative mesh width
h, e.g. in the Continuous Surface Force model of Brackbill [9]. Here h is
defined as h = max( d

√
|Ωk|), with d the dimension of the problem and |Ωk|

is the area of the kth control volume. Smaller values of ε bring the modified
LS field closer to the VoF field, but these also increase the norm of the
gradient of the modified LS field in the vicinity of the interface. The need
for an interface region with minimal width to minimize changes in mass has
to be balanced with the difficulties presented to the spatial discretisation
method by the large gradient of the modified LS field.

It is interesting to consider the influence of ε on the width of the interface
region (6.6). First of all the interface region has to be defined in terms of the
parameter 0 < δ < 1

2 . The influence of the value of δ on the interface width
for a fixed value of the dimensionless parameter ε/h is shown in Figure 6.1.
Clearly, the interface width vanishes independently of the parameter ε for
δ = 1

2 . For a given value of ε/h the interface width increases with decreasing
δ, and becomes infinitely large when δ approaches zero.

Next, the value of the dimensionless parameter ε/h is considered in
Figure 6.2 and Figure 6.3, for a fixed value of δ. For a given value of δ
the interface width scales linearly with ε/h. The value of δ is small but
arbitrary, and the value is only set to be able to visualize the interface
width in terms of the definition (6.7).
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Figure 6.1: The influence of the parameter δ on the width of the interface
for a fixed value of the parameter ε/h.

In the Continuous Surface Force model for surface tension, the interface
region has a width of 3h, where h is a representative mesh width. For a one
dimensional case the relation between the parameters δ, ε and |GI | can be
easily determined as:

w = 4ε arctanh(1− 2δ). (6.9)

Similar to (6.1) the mass contained in control volume Ωk is defined as [42]:

Mk(t) =

∫
Ω
H(φεm(x, t)− 1

2)dΩ. (6.10)

Conservation of
∑
Mk(t) will result in exact mass conservation, i.e. the

radius of a circular interface would remain constant while the interface
is advected, but would lead back to a discretisation of a VoF type field.
Alternatively, define the quantity M ε

k(t) as:

M ε
k(t) =

∫
Ωk

φεm(x, t) dΩ. (6.11)

The field φεm(x, t) approaches H(φεm(x, t)− 1
2) in the limit of vanishing ε so

an equivalent definition of Mk(t) is given by:

Mk(t) = lim
ε→0

∫
Ωk

φεm(x, t) dΩ. (6.12)

If the algorithm ensures 0 < w(t) < C, with C = O(ε) then mass loss
|M(0)−M(t)| = O(ε) for the continuous model. Clearly, for nonzero ε the
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Figure 6.2: The dimensionless width of the interface w/h for a fixed defin-
ition of the interface and different values of the dimensionless parameter
ε/h. The vertical lines indicate the coordinate value xmin,max/h where
|φεm(xmin,max)− (φm)min,max | < δ.

method can guarantee mass conservation only in the sense |Mε(0)−Mε(t)| =
0, but will conserve mass in the sense |M(0)−M(t)| = O(ε) much more ac-
curately than the LS method. The introduction of the compressive velocity
field will ensure this. The discretization of the conservation equation for the
modified LS field is done in a way that differs only in one aspect from the
discretisation of the LS field described in Chapter 2. The main difference
between the signed-distance function LS field and the modified LS field is
that the latter is a highly nonlinear function of the signed distance from the
interface, while the former is a linear function of that same distance. The
highly nonlinear, near discontinuous behavior near the interface will res-
ult in oscillations in this region when high-order spatial discretisations are
applied. Naturally, these oscillations are unwanted, but more importantly
any modified LS value outside the interval [0, 1] is nonphysical. Further-
more, it will become impossible to accurately approximate the interface
curvature from an oscillatory modified LS field. To suppress the oscilla-
tions the vertex based limiter proposed by [32] will be utilized. The limiter
is very succesful in removing the oscillations but the resulting additional
numerical viscosity leads to an increase of the interface width. In the fi-
nite volume discretisation of the modified LS equation proposed by [51],
the evolution of the modified LS field is split into two separate steps: First
the interface, implicitly defined by the modified LS field, is advanced. Next
an interface compression step is applied that theoretically leaves the inter-
face position unchanged. In later approaches both are combined in a single
step by introducing an artificial compressive velocity field, that is directed
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Figure 6.3: LS, Modified LS for different ε and VoF

orthogonal to and towards the interface location. Combining both steps
improves efficiency, but defining an artificial compressive velocity field that
is independent of the problem to be solved and the time step size presents
to be a challenge.

The influence of the limiter and the compressive velocity field are studied
for a one-dimensional problem. First a baseline solution without limiting is
presented. Next the particulars of the limiter are presented, followed by the
limited solution of the one dimensional problem. Finally, the compressive
velocity field is introduced and shown to have a significant influence on the
interface width.

A base line solution can be defined by applying the discontinuous Galer-
kin discretisation to the conservation equation of the modified LS field
without limiting for the one-dimensional problem defined in Chapter 2 of
the LS field discretisation. Significant oscillations occur in the direct vicin-
ity of the interface both up- and downstream Fig. 6.5.

6.3 A vertex-based limiter for the modified level-
set function

To suppress the oscillations in the solution the vertex-based limiter proposed
by Kuzmin [32] is applied. The limiter is an extension of the Barth-Jasper
limiter [25, 32] with enhanced accuracy and especially developed to be ap-
plied to a solution of a discontinuous Galerkin discretisation. The limiter
is guaranteed to bound the solution, but not necessarily within the interval
[0, 1]. However, if the initial condition is within this interval, so will be the
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solution at later times. The vertex-limiter can be formulated for applica-
tion to a polynomial expansion of the solution of arbitrary order. For the
modified LS the first or second degree formulation will be utilized. The
coefficients in the limiter for an expansion of the solution of degree p are
recursively defined in terms of the coefficients of the limiter for a degree
p−1 expansion. It is important to stress that the vertex-based limiter is to
the best of the author’s knowledge the only limiter that can be applied to
a discontinous Galerkin discretisation on a set of unstructured triangular
control volumes and can be extended to be used to limit a discrete solution
of arbitrary polynomial order. However, other limiters do exist for applic-
ation in the context of a discontinous Galerkin discretisation, but only for
one-dimensional problems or multi-dimensional problems utilizing (block)
structured meshes [30, 31, 33, 62]. No theoretical results for the expected
order of convergence of the limited solution are presented in [32].

6.3.1 Limiter for linear polynomial expansion of the modi-
fied level-set field

Xv1
k Xv2

k

Xv3
k

y

x

Xc

Figure 6.4: Control volume Ωk and it’s neighbouring elements (dashed
edges) that contribute to the limited solution.

Consider the piecewise linear discontinuous Galerkin approximation of
the modified LS field on a tessellation of the domain Ω ⊂ R2 consisting
of the set WΩ of nonoverlapping triangular control volumes Ωk, k = 1..N ,
as shown in Fig. 6.4. The value of the solution at the cell centroid Xc

k

is denoted by φck . Note that the solution at the vertices is not uniquely
defined, because the discrete solution is discontinuous across the boundary
of the elements. For each vertex Xl a set Nb(Xl) of triangular elements can
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be defined, for which Xl is a common vertex:

Nb(Xl) =
{
j ∈ N :

{
Xv1
j ,X

v2
j ,X

v3
j

}
∩ {Xl} 6= ∅

}
. (6.13)

Unique values φkmax and φkmin can be defined as:

φkmax = max
j∈Nb(Xk)

φcj , φkmin = min
j∈Nb(Xk)

φcj . (6.14)

Also define a mapping Mk, {1, 2, 3} → N that maps the local labels of the
three vertices to the global labels of the vertices in the tesselation in the
following way:

Xvi
k = XMk(i), i = 1, 2, 3. (6.15)

The first order Taylor expansion of the modified LS field with respect to
the cell centroid and with controlled gradient is defined as (dropping the ε
superscript to improve readability):

φhk(x) = φck + αk ∇φ|Xc
k

(x−Xc
k) , 0 6 αk 6 1, (6.16)

where αk is an (elementwise defined) parameter to restrict the value of the
gradient to limit the flux. For the vertex based limiter it’s value is defined
as:

αk = min
i∈{1,2,3}


min

{
φMk(i) max − φck

φi − φck
, 1

}
if φi − φck > 0,

1 if φi − φck = 0,

min

{
φMk(i) min − φck

φi − φck
, 1

}
if φci − φck < 0.

Here, φi is the unconstrained solution in element Ωk at vertex Xvi
k , defined

as:

φi = φck + ∇φ|Xc
k

(Xvi
k −Xc). (6.17)

This generic formulation of the vertex-based limiter guarantees no new local
extrema will occur in the solution for t > 0. Therefore, in this case it ensures
the modified LS field will remain contained within the interval [0, 1].

6.3.2 Limiter for degree two polynomial expansion of the
level-set field

More challenging is to guarantee the modified LS field remains contained
within the interval [0, 1], when a higher order discontinous Galerkin dis-
cretisation is applied to the conservation equation for the modified LS field.
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The formulation of the vertex based limiter for a linear approximation of
the solution presented in the previous section can be extended to be applied
to an approximation of arbitrary order [30,31].

This solution can be expanded in a Taylor polynomial of degree two
with respect to the cell center Xc

k of Ωk as,

φh = φc + ∇φ|Xc
k

(x−Xc
k) + (x−Xc

k)
T H(φ)|Xc

k
(x−Xc

k) , (6.18)

H(φ) = 1
2

(
φ,11 φ,12

φ,21 φ,22

)
.

Introducing volume averaged quantities, (6.18) can be transformed to [32]:

φh = φc + ∇φ|Xc
k

(x−Xc
k) + (x−Xc

k)
T H(φ)|Xc

k
(x−Xc

k)− H(φ)|Xc
k

: Ik,

(6.19)

Ik = 1
2

(
I11 I12

I21 I22

)
.

The volume average φc and tensor Ik are defined as:

φc =
1

|Ωk|

∫
Ωk

φhdΩ, I11 =
1

|Ωk|

∫
Ωk

(x1 − xc1)2 dΩ, (6.20)

I22 =
1

|Ωk|

∫
Ωk

(x2 − xc2)2 dΩ, I12 = I21 =
1

|Ωk|

∫
Ωk

(x1 − xc1) (x2 − xc2) dΩ.

(6.21)

I11, I22 and I12 are the second area moments of the control volume with
respect to the center of the element. These can be pre-computed for the
complete mesh in advance of the solution of the time-stepping sequence.
Both formulations (6.18) and (6.19) are equivalent approximations of the
solution, i.e. they have the same order of accuracy (add additional discus-
sion of the alternative formulation based on averaging). Now both the first
and second degree contributions are limited by a factor 0 ≤ α(β) ≤ 1:

φh = φc + α
(1)
k (x−Xc

k)
T H(φ)|Xc

k
(x−Xc

k)− α
(2)
k H(φ)|Xc

k
: Ik. (6.22)

The factor α
(2)
k defined as

α
(2)
k = min{α(2)

k x1
, α

(2)
k x2
}, (6.23)

where α
(2)
k x1

and α
(2)
k x2

are used to limit corrections to the individual com-
ponents of the gradient vector:

φ
(2)
,1 = φ,1|Xc

k
+ α

(2)
k x1

{
φ,11|Xc

k
(x1 − (Xc

k)1) + φ,12|Xc
k

(x2 − (Xc
k)2)

}
,

(6.24)



6.4. Compressive velocity formulation 85

φ
(2)
,2 = φ,2|Xc

k
+ α

(2)
k x2

{
φ,21|Xc

k
(x1 − (Xc

k)1) + φ,22|Xc
k

(x2 − (Xc
k)2)

}
.

(6.25)

The coefficients α
(2)
k are computed using the vertex-based limiter, described

in the previous section but based on a linear reconstruction of the first

derivatives in the vertices. The procedure for evaluation of α
(1)
k starts with

the procedure followed in the linear case, but is followed by a comparison

between α
(1)
k and α

(2)
k , that resets α

(1)
k as:

α
(1)
k := max(α

(1)
k , α

(2)
k ). (6.26)

Once the coefficients α
(β)
k are known the limited solution can be con-

structed in each element prior to advancing to the next time step. A more
detailed description of the limiting process is presented in [30,31,33,54,62].

6.4 Compressive velocity formulation

In order to keep the width of the interface region constant the use of a
compressive, artificial, velocity field is proposed. The limiter will suppress
oscillations in the modified LS field in the vicinity of the interface but this
will simultaneously cause the width of the interface region to grow. The
compressive velocity field will reduce the latter effect.

Although, this is a commonly applied augmentation of a finite volume
discretisation of the modified LS equation, it has not been introduced in
the context of a discontinous Galerkin discretisation, but for finite volume
discretisation it has been reported to improve the resolution of the inter-
face. Additionally, in the implementation presented in [51], the compressive
velocity field is scaled in a (weakly) problem specific way.

The equation that describes the evolution of the modified LS field is
given by:

∂φm(x)

∂t
+ ((uα(x) + ucα(φm(x)))),α = 0, x ∈ Ω. (6.27)

where ucα denotes the artificial compressive velocity field defined as:

ucα(φm(x)) = Kcφm(x)(0.5− φm(x))(1− φm(x))
φm,α(x)

|∇φm(x)|
. (6.28)

The formulation of the compressive velocity field is chosen to accomplish
the following:
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• The compressive velocity is only nonzero in the direct vicinity an on
both sides of the interface.

• The inclusion of the compressive velocity field is chosen such that an
additional artificial viscosity εa ≤ 0 is added of the form:

εa = −Kcφm(x)(0.5− φm(x))(1− φm(x))
1

|∇φm(x)|
. (6.29)

• The compressive velocity field is directed orthogonal to the interface,
and towards the interface. The sign of the compressive velocity field
is different on both sides of the interface, to apply compression and
leave the interface location unaffected.

The coefficient Kc has the dimension of m/s and to have the appropriate
scaling behaviour should be related to the appropriate problem length and
time scale.

Clearly, (6.27) is a nonlinear equation. However, evaluation of the com-
pressive velocity field at the previous time step restores linearity for the
discretized equation. It is very important that the compressive velocity field
is evaluated at the edges of the control volumes, to ensure conservation of
the modified LS field. The fact that the compressive velocity field is not
solenoidal is of no concern for the conservation properties of the equation.
The choice of the appropriate value of Kc is experimentally determined.

6.5 Test Cases

The key characteristics of the modified LS method that need to be assessed
are the mass conservation property, the accuracy of the modified LS field
and the thickness of the interface. To accomplish this, three test cases are
selected based on the properties of the imposed velocity field: constant,
linear or nonlinear. The test cases chosen are:

• Translation of the interface in ΩD ⊂ R,

• Solid body rotation of a circular interface in ΩD ⊂ R2,

• The reversed vortex test case [34,56,60].

In all cases the problem is nondimensionalized by introducing a reference
length and reference time scale L = 1 m and T = 1 s, respectively.
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The expansion of the solution can be done for polynomial basis functions
of a user defined degree, without any difficulty. However, the number of
nodal points increases with the degree of the basis functions and hence the
number of degrees of freedom of the problem. Because the vertex-based
limiter discussed in Section 6.3 is derived for an expansion in linear and
quadratic basis functions, only those bases will be used in the experiments.
However, the frame work of the vertex based limiter permits to extend it
to any arbitray order polynomial.

6.5.1 Translation of the interface in one spatial dimension

In the first test case the modified LS field is a scaled and mollified rectan-
gular function, that is translated without any deformation. The LS field is
initialized in domain ΩD = [0, 2] as:

φ(x, 0) = |x− xc(0)| −R, (6.30)

where xc(0) = 1
2 andR = 1

5 . A uniform mesh of size h = 2/K is used, where
K is the number of control volumes. The interface thickness parameter is
set as ε = 3

10h. The initial modified LS field can be given as:

φm(x, 0) =
1

2

(
tanh

(
φ(x, 0)

2ε

)
+ 1

)
. (6.31)

The velocity u1 = 1 and the final time for the solution is set to T = 1. This
means the solution for the LS field at the final time T is given as:

φ(x, T ) = |x− xc(T )| −R, (6.32)

where xc(T ) = 1.5. The corresponding modified LS field at the final time
is given by:

φεm(x, T ) =
1

2

(
tanh

(
φ(x, T )

2ε

)
+ 1

)
. (6.33)
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Figure 6.5: Translation of a circular region in ΩD ⊂ R. The solution is
shown at the initial and final time. Clockwise from the top left corner:
Exact solution, numerical solution without application of a limiter, numer-
ical solution based on the application of the vertex-based limiter, numerical
solution based on the application of the vertex-based limiter and a com-
pressive velocity field.

Three different approaches are compared for this one-dimensional test
case:

• discretisation using either linear or quadratic expansion of the modi-
fied LS field, without application of the vertex-based limiter,

• discretisation using either linear or quadratic expansion of the modi-
fied LS field, with application of the vertex-based limiter,

• discretisation using either linear or quadratic expansion of the mod-
ified LS field, with application of the vertex-based limiter and incor-
poration of a compressive velocity field.
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In Figure 6.5 and Tables 6.1, 6.2, 6.3 and 6.4 the results of the dif-
ferent approaches are shown. Clearly, without application of the limiter
the solution shows unacceptable oscillations near the interface location.
The limiter succesfully suppresses these oscillations and from the results
in Tables 2.3, 6.2, 6.3 and 6.4 the application of the limiter has no signi-
ficant influence on the asymptotic order of convergence. Kuzmin [32] does
not present an assessment of the influence of the accuracy of the vertex-
based limiter, but the observed behavior is in line with the results presented
in [30,31]. Inclusion of a small compressive velocity improves the resolution
of the interface and again has no significant influence on the asymptotic
rate of convergence. Addtional experiments show the order of convergence
is affected to some extend by the choice of ε/h. When this parameter is
chosen too small, the asymptotic order of convergence is reduced. The
mass conservation properties can be assessed using either the ’strict’ re-
quirement based on the difference |M(t)−M(0)| or the ’loose’ requirement
|M(t)ε−M(0)ε|. Results for the ’loose’ requirement are not shown because
these are near machine precision in all experiments. The average ’strict’
mass error is shown in Tables 2.3, 6.3 and converges, although not mono-
tonically, upon grid refinement. Figure shows how the error |M(t)−M(0)|
evolves over time for the mesh with h = 2/256. The maximum error in the
mass does not grow significantly over time, but is significantly larger than
for the MCLS. For those applications where the requirements on mass con-
servation can be relaxed the modified LS method can be a viable alternative
for the costly ALE VoF advection algorithm proposed in the MCLS.

h
N=1

‖error‖L2 Order |M(T )−M(0)|
2/32 5.473e-02 — 8.042e-03

2/64 2.276e-02 1.265 4.365e-04

2/128 9.768e-03 1.220 2.236e-04

2/256 2.122e-03 2.202 1.270e-05

2/512 3.309e-04 2.681 5.231e-06

Table 6.1: Convection of the interface in one spatial dimension, mass error
(|M(T ) −M(0)|), L2-error of the modified LS field and estimated conver-
gence rate without compressive velocity field (Kc = 0) for expansion in
linear polynomial basis N = 1.

The chosen values for the compressive velocity field and the interface
thickness parameter ε/h of this one-dimensional test case are used for all
two-dimensional test cases.
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h
N=2

‖error‖L2 Order |M(T )−M(0)|
2/32 1.223e-02 — 2.332e-02

2/64 3.612e-03 1.760 3.493e-03

2/128 3.058e-04 3.562 4.816e-03

2/256 1.882e-05 4.02 7.907e-04

2/512 1.923e-06 3.291 1.174e-03

Table 6.2: Convection of the interface in one spatial dimension, mass error
(|M(T ) −M(0)|), L2-error of the modified LS field and estimated conver-
gence rate without compressive velocity field (Kc = 0) for expansion in
quadratic polynomial basis N = 2.

h
N=1

‖error‖L2 Order |M(T )−M(0)|
2/32 5.473e-02 — 8.041e-03

2/64 2.279e-02 1.264 4.334e-04

2/128 9.771e-03 1.221 2.273e-04

2/256 2.120e-03 2.204 1.685e-05

2/512 3.284e-04 2.690 4.338e-07

Table 6.3: Convection of the interface in one spatial dimension, mass error
(|M(T )−M(0)| ), L2-error and estimated convergence rate of the modified
LS field with compressive velocity field (Kc = 1e−5) for expansion in linear
polynomial basis N = 1.

h
N=2

‖error‖L2 Order |M(T )−M(0)|
2/32 1.223e-02 — 2.332e-02

2/64 3.611e-03 1.760 3.491e-03

2/128 3.034e-04 3.572 4.818e-03

2/256 1.831e-05 4.050 7.933e-04

2/512 6.654e-06 1.460 1.171e-03

Table 6.4: Convection of the interface in one spatial dimension, mass error
(|M(T )−M(0)| ), L2-error and estimated convergence rate of the modified
LS field with compressive velocity field (Kc = 1e − 5) for expansion in
quadratic polynomial basis N = 2.
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6.5.2 Rotation of a circular interface in two spatial dimen-
sions

The second test case is related to the rotation of circular interface in a
domain ΩD = [0, 1] × [0, 1]. Initially, the centre of the circle is located at
xc(0) = (1

2 ,
3
4)T . The initial condition for the LS field is defined as:

φ(x, 0) = |x− xc(0)| −R, (6.34)

where R = 5
20 . The corresponding intial modified LS field is given as,

φεm(x, 0) =
1

2

(
tanh

(
φl(x, 0)

2ε

)
+ 1

)
. (6.35)

The circular interface is advected with a linear velocity field u = (x1 −
1
2 ,−x2 + 1

2)T using a time step ∆t = 1
100 . The final time is T = 2π. This

initial setup is shown in Figure 6.6. Because the velocity field is solenoidal,
mass should be conserved up to machine precision and the velocity field
will return the interface to its initial position at t = T . Hence, φεm(x, T ) =
φεm(x, 0) as shown in Figure 6.6.
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Rotation of a circular interface, t=0.
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Figure 6.6: The interface φεm(x, t) = 0.5 for the rotation test case at time
levels t = 0, t = 1

4T, t = 3
4T and t = T .

In Figure 6.7 the mass ratio M ε(t)/M ε(0) is shown for three different
mesh sizes, for degree n = 1 and n = 2. The graph shows mass is con-
served during the rotation up to machine precision in the ’loose’ sense. It is
not straightforward to assess the mass conservation properties in the two-
dimensional case in the ’strict’ sense. Assessment of the mass-conservation
properties in the ’strict’ sense is necessary but left for future work.
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Figure 6.7: Evolution of M ε(t)/M ε(0) for the rotation of the MLS repres-
entation of a circular interface.

In Table 6.5 the average mass change |M ε(t)−M ε(0)| and the L2 error
in the solution at the final time ‖φεm(x, T )− φεm(x, T )‖L2 are presented for
three different mesh sizes, together with the order of convergence estimate
of the latter quantity. M ε(t) is not constant due to a nonzero mass flux
through the boundary.

K
N=1 N=2

Avg.Mass Error Order Avg.Mass Error Order

754 1.286472e-04 1.2554e-02 — 7.209225e-04 1.4617e-03 —

1700 1.286473e-04 6.2274e-03 1.729 7.209225e-04 6.6431e-04 1.945

3572 1.286477e-04 2.3077e-03 2.701 7.209225e-04 3.5112e-04 1.735

Table 6.5: Average mass error and L2 error of the MLS field for the rotation
of circular test case.

6.5.3 The reversed vortex test case

The reversed vortex or single reversed vortex test case is one of the more
challenging tests for models of two-phase immiscible flow. The reason for
this is the severe stretching and deformation of the convected interface
caused by the nonlinear velocity field during the advection which makes
accurate mass conservation challenging.

Domain Ω and initial condition are identical as for the linear translation
test case. The circular region is advected with a divergence free nonlinear
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velocity field given by:

u = cos(πt/T )(sin2(2πx1) sin(2πx2),− sin2(2πx2) sin(2πx2))T . (6.36)

The cos(πt/T ) will cause the velocity field to reverse direction at time t =
T/2. This implies the interface will return to its original position at time
t = T . In this test case T = 2 is used. The initial setup is shown in Figure
6.8. Like in the other test cases the mass (area) enclosed by the interface
is the quantity of interest. This is computed after every time step and
compared with the initial quantity to give the amount of mass loss or gain
during advection. Also, at the final time the corrected LS field is compared
with the initial condition as the circular interface should return to its initial
position and shape at time t = T .

In Figure 6.8 the interface is shown at different time levels for three
different mesh sizes.
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Reversed vortex test case, t=0.
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Reversed vortex test case, t=(3/4) T.
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Figure 6.8: The interface φm(x, t) = 0 for the reversed vortex test case at
time levels t = 0, t = 1

4T, t = 1
2T, t = 3
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In Table 6.6 the mass error |M ε(T )−M ε(0)| and the L2 error of the
modified LS field at the final time ‖φm(x, T ) − φhm(x, T )‖L2 are presented
for three different mesh sizes. The asymptotic order of convergence is close
to the theoretical value that can be expected on a general unstructured
triangular mesh.

K
N=1 N=2

Avg.Mass Error Order Avg.Mass Error Order

754 1.004e-16 2.284e-02 — 3.743e-19 3.440e-03 —

1700 4.889e-17 1.166e-02 1.657 9.865e-17 1.622e-03 1.826

3572 1.009e-16 6.862e-03 1.444 3.122e-17 8.279e-04 1.842

Table 6.6: Final mass error and L2 error of the MLS field for the reversed
vortex test case.

6.6 Conclusions

The modified LS method is designed to combine the mass-conserving prop-
erties of the VoF method with the efficieny and simplicity of a LS method.
Oscillations in the modified LS field that are occur in the vicinity of the in-
terface when the rapidly changing modified LS field is projected on a higher
order polynomial basis are effectively suppressed by the vertex-based lim-
iter of Kuzmin [32]. With the introduction of an additional nonphysical
compressive velocity field, the interface width can be diminished without
affecting the asymptotic convergence rate of the discretisation. Despite the
sharpness of the interface, one dimensional numerical experiments indicate
the current realization of the modified LS method can not match the mass
conservation properties of the MCLS method. If the mass conservation re-
quirements can be relaxed, the method can be used as an alternative for
the costly VoF advection scheme that is used in the MCLS method.



CHAPTER 7

Comparision of the LS, MCLS and MLS method

7.1 Introduction

So far three different methods to simulate immcisible two-phase flows have
been presented, namely the Level-Set method (LS), Mass-Conserving Level-
set method (MCLS) and the modified Level-Set method (MLS). Each method
has been discussed individually so far and the following key observations
have been made:

• The computational cost of the LS method is the lower of the three,
but the method does not conserve mass accurately.

• The proposed MCLS method is exactly mass-conserving but it is com-
putationally intensive as a result of the Eulerian-Lagrangian volume
of fluid advection.

• The MLS method is more computationally intensive than the LS
method, due to the incorporation of a limiter, but less than the MCLS.

The convergence rate of the solutions obtained with the MLS method de-
pend on the values of the interface width parameter and the magnitude of
the compressive velocity. This means the MLS model depends on problem
specific parameters, contrary to the LS and MCLS method.
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Based on these observations, the LS method is discarded as a viable
alternative of the MCLS but the MLS requires further assessment. The
interest in the MLS method is dual:

• As a stand-alone method that can challenge the MCLS method, be-
cause of the relatively low computational cost of the former.

• As a replacement of the computationally intensive VoF advection
module of the MCLS.

Therefore, we decided to dedicate one more chapter for further compar-
ison using slightly more difficult test cases, in which the interface repres-
entation is more challenging. These test cases consist of;

• Advection of a bubble with a lens shaped cross section.

• Zalesak’s rotating disc.

Although the LS method is not considered a viable alternative to the
MCLS, results for the former method are also included to put the results
of the MLS and MCLS in perspective. Both testcases will be computed on
a sequence of three meshes to determine the order of convergence of the
solution and the convergence rate of the mass error if this is more than
machine precision.

7.1.1 Advection of a bubble with a lens shaped cross section

A very commonly studied test case for models for immiscible, incompressible
two-phase flow is the rise of an initially circular bubble. Depending on the
material properties of the liquid phase and the density ratio between both
phases, the bubble will change shape during its ascend to finally reach its
terminal spatial form. Accurate prediction of the rise speed is particularly
challenging when the terminal shape is lens-like with a very strong variation
of the interface curvature: very low curvature near the symmetry line of the
bubble and very high curvature near the extremities of the bubble, corres-
ponding to the skirt of the bubble in the three dimensional case. Because
the coupling between a flow solver and the interface model is outside the
scope of this thesis, a model problem is studied where an interface, that
closely resembles the shape of a skirted bubble is convected with a constant
velocity.
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This solution is obtained in a domain Ω = [0, 1] × [0, 1]. The initial
condition for the LS field is defined as:

φl(x, 0) = max(φ1(x, 0),−φ2(x, 0)), (7.1)

where φ1(x, 0) and φ2(x, 0) are defined as:

φ1(x, 0) = |x− xc1(0)| −R, (7.2)

φ2(x, 0) = |x− xc2(0)| −R. (7.3)

Here, xc1(0) = (0.5, 0.2)T , xc2(0) = (0.5, 0.35)T and R = 0.15. The lens
shaped interface is advected with a constant velocity field u = (0, 1

10)T .
The final time is T = 3. This initial condition for the LS field is shown in
Figure 7.1.
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Figure 7.1: Initial position of the bubble with a lens shaped interface.

At the final time i.e. T = 3, the final position is explicitly computed to
compare the advected LS field and modified field. It is defined as;

φl(x, T ) = max(φ1(x, T ),−φ2(x, T )), (7.4)

where the LS fields for the two intersecting circular interfaces φ1(x, T ) and
φ2(x, T ) are defined as:

φ1(x, T ) = |x− xc1(T )| −R, (7.5)

φ2(x, T ) = |x− xc2(T )| −R, (7.6)
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where xci (T ) = xci (0) + Tu. The LS field is converted to the corresponding
MLS field as:

φm(x, t) =
1

2

(
tanh

(
φl(x, t)

2ε

)
+ 1

)
. (7.7)

where the interface thickness parameter is chosen as ε = 0.4 max(
√
|Ωk).

The LS field is expanded in a polynomial basis of degree one for the MCLS
method and of degree one and two for the LS and MLS method. In Fig-
ure 7.2 the mass ratio is shown for three different mesh sizes for the LS,
MCLS and MLS method.

In Figure 7.3 the final position of the interface is presented for three
different mesh sizes for the LS, MCLS and MLS. The mass error in the
solution of the MCLS is close to machine precision. For the LS and MLS
the mass error can only be determined in the ’strict’ sense of (reference to
strict mass conservation equation in chapter on MLS) for an expansion of
the solution in polynomials of degree one, because in that case the interface
is a line segment.

Both the MLS and MCLS have a tendency to round off the extremities of
the bubble, but show superior mass conservation properties. The interface
approximation of the MCLS on the coarser mesh is not comparable to the
approximations with the other two methods.

0 0.5 1 1.5 2 2.5 3
0.97

0.98

0.99

1

1.01

1.02

1.03

Time.

 M
a
s
s
 r

a
ti
o
.

 

 

K=344

K=1376

K=5504

0 0.5 1 1.5 2 2.5 3
0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

Time.

 M
a
s
s
 r

a
ti
o
.

 

 

K=344

K=1376

K=5504

Figure 7.2: Evolution of the mass ratio for the lens shaped interface of LS
and MLS for n = 1.

In Tables 7.1, 7.2 and 7.3 the average mass errorMaverage = |M(t)−M(0)|
and the L2 error in the solution at the final time ‖error‖L2 = ‖φ(x, T ) −
φh(x, T )‖L2 are presented for three different mesh sizes, together with the
estimated order of convergence for the bubble shaped interface. In all ex-
periments the LS and the MLS are conserved to machine precision, but as
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stated earlier, conservation of these quantities does not imply mass conser-
vation.

K
MCLS
n=1

M.avg. ‖error‖L2 Order

344 9.5104e-16 1.0835e-02 —

1376 3.0591e-17 3.2529e-03 1.7359

5504 2.2902e-16 1.1668e-03 1.4791

Table 7.1: Averaged mass error and L2-norm error for the MCLS field for
n = 1.

K
LS

n=1 n=2
M.avg. ‖error‖L2 Order M.avg. ‖error‖L2 Order

344 1.6086e-04 8.7099e-03 — — 2.3531e-03 —

1376 4.0969e-04 3.2191e-03 1.4359 — 6.3009e-04 1.9009

5504 3.7851e-05 1.1554e-03 1.4782 — 2.6139e-04 1.2693

Table 7.2: Averaged mass error and L2-norm error for the LS field for n = 1
and n = 2.

K
MLS

n=1 n=2
M.avg. ‖error‖L2 Order M.avg ‖error‖L2 Order

344 7.1425e-04 1.8541e-02 — — 5.0323e-03 —

1376 2.3264e-04 6.7263e-03 1.4625 — 1.4751e-03 1.7703

5504 5.8344e-05 2.7912e-03 1.2681 — 5.7920e-04 1.3486

Table 7.3: Averaged mass error and L2-norm error for the MLS field for
n = 1 and n = 2.

The orders of convergence for the LS and MLS method are close to the
expected theoretical order of convergence on a general unstructured grid,
e.g. the solution obtained with the LS converges with order close to (n+ 1

2).

The order of convergence of the MCLS method is also as expected. This
means the convergence rate is not significantly influenced by the fact that
the extremities of the interface are clipped off to some extend. The average
mass errors in the solutions obtained with the MLS method are comparable
to those obtained with the LS method. This means that from this point
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of view the MLS offers no significant advantage over the LS method: the
additional complexity of handling a highly nonlinear function to describe
the interface does not pay off.

7.1.2 Zalesak’s rotating disc

In this second test case, commonly referred to as the Zalesak’s rotating
disc [61], the same domain is considered as in the previous test case. The
initial condition for the LS field is defined as:

φl(x, 0) = max(φ1(x, 0),−φ2(x, 0)), (7.8)

where, φ1(x, 0) and φ2(x, 0) are defined as follow,

φ1(x, 0) = |x− xc(0)| −R. (7.9)

φ2(x, 0) = max(|(x1 − xc1(0))| − w, |x2 − xc2(0) + 2w| − l). (7.10)

Zalesak’s rotating disc is a challenging test case because the interface is
only C0 continuous and has both convex and concave regions. Numerical
methods are assessed on their ability to preserve the sharp corners of the
interface. In [52] the Cartesian MCLS is used to compute solutions to this
test case on grids with (50 × 50), (100 × 100), (150 × 150) and (200 × 200)
control volumes. For a resolution of (100× 100) the shape of the interface
is qualitatively correct.

Here, xc(0) = (1
2 ,

3
4)T and R = 3

20 . It is clear that φ2(x, 0) is a rect-

angular region of width w =
R

6
and length l = R. The slotted disc is

rotated around the centre of the domain by a (linear) velocity field, defined
as u = (−x2 + 1

2 , x1− 1
2). The velocity field is divergence free and has non-

zero magnitude at the boundary of the domain. One full rotation around
the centre of the domain is considered. Therefore, the final time is T = 2π.
The initial setup is shown in Figure 7.4.
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Figure 7.4: Initial position of the interface in Zalesak’s rotating disc.

At the end of the rotation, i.e. at the final time, the position of the
interface should coincide with the initial position. The accuracy of the
method is assessed by comparison of the advected field at the final time.
For the MLS method, the initial LS field is first converted to using (7.7).

In Table 7.4 the average mass errorMaverage = |M(t)−M(0)| and the L2

error in the solution at the final time ‖error‖L2 = ‖φ(x, T ) − φh(x, T )‖L2

are presented for three different mesh sizes, together with the estimated
order of convergence of the LS field. For an expansion in linear polynomials
the mass can be exactly computed based on the position of the (linear)
interface. For the n = 2 case, this computation is not straightforward,
although theoretically possible. Because of its large complexity, analysis of
the mass conservation properties of degree two representation of the LS and
MLS field is left for future research and only results for n = 1 are presented.

LS MCLS MLS
M. Avg. ‖error‖L2 Order M. Avg. ‖error‖L2 Order M. Avg. ‖error‖L2 Order

2984 1.8490e-03 8.8117e-03 — 5.4416e-16 8.9715e-03 — 2.9987e-04 2.6429e-02 —

11936 2.8268e-04 3.4650e-03 1.3465 6.4045e-16 3.4613e-03 1.3740 3.4767e-4 8.0843e-03 1.7089

47744 1.0029e-04 1.4077e-03 1.2995 2.6886e-15 1.4109e-03 1.2947 6.4457e-5 2.8736e-03 1.4925

Table 7.4: Zalesak’s slotted disc test, average mass error and L2-norm error
for the LS, MCLS and MLS field for n = 1.
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Figure 7.8: Evolution of the mass ratio M(t)/M(0) for Zalesak’s rotating
disc test, for the LS (left) and MLS (right) field for n = 1.

The accuracy of the solutions of LS, MCLS and MLS is comparable.The
orders of convergence for the LS and MLS method are close to the expected
theoretical order of convergence on a general unstructured grid, e.g. the
solution obtained with the LS converges with order close to (n + 1

2). The
mass conserving correction seems to negatively impact the smoothness of
the interface, but not the accuracy. Comparing the solution of the extension
of the MCLS algorithm with the results for the original algorithm presented
in [52] the accuracy of comparable, or even better. This can be attributed
to the use of a piecewise constant approximation of the LS field in the
original MCLS method, as opposed to the piecewise linear approximation
in the proposed algorithm. The use of the MLS offers no advantage over
the LS method.

7.2 Conclusions

More challenging test cases show the MLS method is not superior to the LS
method with respect to mass conservation, when a more strict definition of
mass conservation is imposed. The error in the mass conservation in both
methods will reduce with refinement of the mesh, but is not comparable to
the MCLS. Imposing the mass conserving correction to the LS field neg-
atively impacts on the smoothness of the interface. The accuracy of the
solution obtained with the MCLS method is comparable to the accuracy
of the solutions obtained with either the LS and MLS method, but with
superior mass conservation.
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Figure 7.3: The lens shaped interface at the final time t = T , for the LS
and MLS for n = 1 (left) and n = 2 (right) and the MCLS for n = 1.
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Figure 7.5: Zalesak’s slotted disc at t = T , for the LS field, using n = 1.
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Figure 7.6: Zalesak’s slotted disc at t = T , for the MCLS field, using n = 1.
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Figure 7.7: Zalesak’s slotted disc at t = T , for the MLS field, using n = 1.



CHAPTER 8

Conclusions and Future Prospects

8.1 Conclusions

The two-dimensional Mass Conserving Level-Set Method, a hybrid Level-
Set Volume-of-Fluid method, that combines the advantages of the latter two
approaches without combining their computational cost can be extended
from a discretisation using structured Cartesian control volumes to general,
unstructured control volumes.

In the original method, both the equations for the Level-Set field and
the Volume-of-Fluid field were advanced in time, followed by the impos-
ition of a mass-conserving correction on the Level-Set field based on the
Volume-of-Fluid field. Contrary to what is done in the original method, the
correction can be applied locally in each control volume, without consider-
ing the Level Set field in neighbouring control volumes. This new approach
makes the new algorithm much more computationally efficient than the
old one. Application of a local correction is possible because the Level-Set
field is expanded in a set of piecewise linear polynomials, in such a way
the discretised field is discontinuous at the interfaces between the control
volumes.

For the advection of the color function, which is the main compon-
ent in the evolution equation for the Volume-of-Fluid field, an Eulerian-
Lagrangian algorithm is proposed that conserves the color function, and
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therefore the area enclosed within the interface up to machine precision.
Although the algorithm is computationally costly, the complexity of the
construction of (partially overlapping) donating regions is avoided.

The modified Level-Set method, as introduced by Olsson and Kreiss
[36, 38], is often claimed to have better mass conservation properties than
the standard Level-Set method that is based on a signed-distance function
formulation. The use of this modified Level-Set method as an alternative
for the Volume-of-Fluid module in the Mass Conserving Level Set method,
and as an interface capturing approach that can challenge the latter method
has been investigated.

Using a state-of-the-art limiter [32] specifically designed for discretisa-
tion of hyperbolic conservation laws on unstructured triangular grids, and
an additional compressive velocity field the transport equation for the mod-
ified Level-Set method can be discretised in such a way the interface width
remains nearly constant over time and any nonphysical over- and under-
shoots in the modified Level-Set field are suppressed. However, it was found
that the modified Level-Set method’s mass conservation properties are not
significantly better than those of the original Level-Set method, hence mak-
ing this not a viable approach. Furthermore, contrary to the Mass Con-
serving Level Set method, the properties of the modified Level-Set method
strongly depend on problem specific parameters.

8.1.1 Mass conservation

The mass conservation properties of the modified Level-Set methods have to
be assessed in the ’strict sense’ that the integral over the Heaviside function
of the shifted modified Level-Set field has to be constant when there is no
net influx of mass and not by assessing the change of the integral over the
modified Level-Set field itself.

For an expansion of these fields in a set of piecewise linear polynomials
this was found to be relatively straightforward, because within each control
volume the interface is a straight line, the intersection of which with bound-
ary of this control volume can be explicitly computed. For an expansion in
piecewise degree two or higher polynomials, the reconstruction of the inter-
face is possible too, but extremely complicated. Only by reconstructing the
interface the mass conservation can be accurately assessed.

The mass conservation properties of the original Level-Set and modified
Level-Set method are comparable. In both cases the area enclosed by the
interface fluctuates over time and the mass error increases over the duration
of the simulation. Either effect can be reduced to some extend by increasing
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the mesh resolution, but not eliminated. In all applications of the Mass
Conserving Level-Set method the area enclosed by the interface contour is
conserved to machine precision.

For those applications for which requirements on mass-conservation can
be relaxed, the computational efficiency of the modified Level-Set method
remains attractive.

8.1.2 The Mass-Conserving Level-Set Method in relation to
other hybrid interface capturing algorithms

The Mass Conserving Level-Set (MCLS) method introduced by Van der Pijl
[52, 53] is not unique. The most well known competitors are the CLSVOF
method of Sussmann et al. [48, 49] and the VOSET method of Sun [46].
The main difference between CLSVOF and VOSET on one side and the
original MCLS is the use of a very efficient algorithm to establish congruence
between the Level-Set field and the Volume-of-Fluid field, without explicit
interface reconstruction. A simple function relates the two fields within a
single Cartesian quadrilateral (2D) or hexahedral (3D) control volume. In
the current thesis a similar relation has been defined for triangular control
volumes. It is this key difference that makes the (extension of the) MCLS
so competitive.

8.1.3 The modified Level-Set method in comparison to the
Level-Set method

The near-discontinuous behaviour of the modified Level-Set field in the vi-
cinity of the interface makes accurate discretisation of the transport equa-
tion for this field much more challenging and costly than for the Level-Set
field. The strong non-linearity of the field will also negatively impact the
accuracy of the computation of the interface normal vector and the inter-
face curvature. For these reasons, and the fact that mass conservation is not
significantly better than for the Level-Set method, the modified Level-Set
method seems to offer little advantage over the original Level-Set method.

8.2 Outlook

A start has been made with the development of a model for two-dimensional
immiscible incompressible two-phase flow in geometrically intricate domains.
To complete the model the following steps are recommended to be taken.
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• The extension of the Mass Conserving Level-Set method has to be
embedded in a numerical method that can solve the incompressible
Navier-Stokes equations on the same type of control volumes utilized
by the proposed interface algorithm. A natural candidate would be a
discontinuous Galerkin method, using operator splitting, as proposed
by Hesthaven [23].

• To model the effects of surface tension, the local curvature of the
interface and the interface normal vector have to be determined from
the Level-Set field. It remains to be investigated how this is most
accurately done for the piecewise continuous Level-Set field.

• To have even more flexibility for automatic tessellations of geometric-
ally complicated domains, polygonal (2D) and polyhedral (3D) control
volumes are preferred. It is worth-while to investigate the possibility
of extending the Mass-Conserving Level-Set method for a discretisa-
tion using such control volumes, either directly or by using a subdivi-
sion of the polyhedral control volumes in a set of tetrahedral control
volumes. At least for convex polyhedral this subdivision is always
possible.

• Finally, it is recommended that alternatives to the computationally
intensive Volume-of-Fluid advection scheme are investigated.
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