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Samenvatting

Elektronenmicroscopen maken gebruik van een bundel elektronen om een mon-
ster te verlichten en halen de benodigde informatie uit de interactie van deeltjes
met materie om een beeld met hoge resolutie te produceren. De belangrijkste
onderzoeksvraag van de huidige studie is ontstaan uit het feit dat deze reso-
lutie vermindert wanneer een gegeven exemplaar isolatiematerialen bevat. In
de elektronenmicroscopie van isolatoren staat het effect achter de afbraak van
een beeldresolutie bekend als het oplaadeffect. Het oplaadeffect moet in het
bijzonder worden bestudeerd en begrepen, omdat biologische monsters ofwel
isolatoren zijn of isolerende delen bevatten.

Hoewel laadverschijnselen toepassingen hebben gevonden en voor sommige
gebieden gunstig zijn geweest, zoals elektrostatische replicatie en op tribo-
elektriciteit gebaseerde apparaten, is het opladen vaak destructief en kan het
apparaten beschadigen. Daarom is het doel om het laden te elimineren, of
op zijn minst het effect ervan te minimaliseren, en hiervoor is een duidelijk
begrip van de betrokken factoren essentieel. In de literatuur zijn verschillende
strategieën voorgesteld om het oplaadeffect te minimaliseren, en de meeste
daarvan verschaffen zorgen voor een doorgang voor ladingen weg van het
monster. Een metalen coating van het monster is waarschijnlijk de meest
praktische manier om opladen tijdens beeldvorming bij elektronenmicroscopie
te voorkomen. Het verwarmen van het monster en het aanpassen van de
bundelspanning en stroom zijn ook nuttig gebleken bij het verminderen van
de lading. Echter, dezelfde of soortgelijke behandelingen kunnen niet worden
toegepast op alle gebieden die worden blootgesteld aan de destructieve effecten
van opladen.

De natuurkundige basis achter het opladen van isolatoren is goed begrepen.
Wanneer echter al deze relevante natuurkunde in één wiskundig model wordt
samengevoegd, wordt het model te gecompliceerd voor analytische behandel-
ing en zijn numerieke simulaties onvermijdelijk.

De bovengenoemde complexiteit van laadfenomenen biedt voldoende rede-
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nen om zowel experimenteel als theoretisch onderzoek uit te voeren. De natu-
urkunde is goed beschreven door de Boltzmann transportvergelijking aange-
vuld met botsingsmechanismen die specifiek zijn voor isolatoren. De wiskundige
complexiteit van de Boltzmann transportvergelijking verhindert echter de di-
recte numerieke oplossing op praktisch relevante schalen. De gebruikelijke be-
nadering is om stochastische simulaties van deeltjestrajecten uit te voeren met
de Monte Carlo (MC) methode, wat overkomt met de statistische schatting van
de kansdichtheidsfunctie beschreven door de Boltzmann transportvergelijk-
ing. MC-simulaties van in de tijd varirende kansdichtheidsfunctie’s zijn uiterst
moeilijk en hebben grote verschillen. Daarom richt het merendeel van het on-
derzoek zich op het simuleren van het everwicht van het systeem, en niet op
het tijdsafhandelijke gedrag dat voorafgatt aan het everwicht.

De tijdsdomeinanalyse van laadfenomenen is de focus van dit proefschrift.
Daartoe hebben we een dynamisch continuümmodel ontwikkeld op basis van
de eerste twee momenten van de Boltzmann transportvergelijking.

Het resulterende model, bekend als de Drift-Diffusion-Reaction (DDR) be-
nadering, wordt veel gebruikt in simulaties van halfgeleiderapparaten. Het is
echter niet direct toepasbaar op door elektronenstraal bestraalde isolatoren
als gevolg van de aanvankelijk zeer niet-evenwichtstransport/ionisatiestadium
en de mogelijkheid van elektronenemissie door het vacuüm-monsterinterface.

De belangrijkste bijdrage van het huidige proefschrift is een aangepast
DDR-model dat een effectieve bronfunctie bevat die de injectie van primaire
elektronen en de initiële ionisatiefase beschrijft, en een nieuwe randvoorwaarde
die rekening houdt met zowel de emissie als de tegenstroom. Vergelijkin-
gen van dit aangepast DDR-model zijn numeriek opgelost met de eindige-
elementenmethode. Een optimale configuratie van de oplosser (onder de stan-
daard beschikbare opties) is gevonden, inclusief de discretiseringsstrategie, de
tijdintegrator, de niet-lineaire en lineaire solvers en preconditioners.

De tweede belangrijke bijdrage van dit proefschrift is de kalibratie van het
voorgestelde model op basis van experimentele gegevens voor ongeladen iso-
latoren. Deze procedure maakt precieze afstemming mogelijk van de paar
parameters waarvan de effectieve aard voortvloeit uit de modelbenaderin-
gen. Een van deze parameters is de oppervlakte-recombinatiesnelheid van het
monster-vacuüminterface, die hier is bepaald voor aluminiumoxide- en siliciu-
moxidemonsters. Een andere afgestemde parameter is de effectieve gemiddelde
penetratiediepte van het primaire elektron, waarvan is gebleken dat het zich
gedraagt volgens een algemeen gebruikte vergelijking voor hogere energieën,
maar daarvan afwijkt bij lagere energieën.

Verder zijn de tijdsdomeinvoorspellingen van het aangepast DDR-model
vergeleken met de voorspellingen van een alternatieve eendimensionale be-
nadering. Hoewel de twee modellen algemene kwalitatieve en kwantitatieve
overeenstemming vertonen, zijn er enkele verschillen in de waarde van het voor-
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spelde oppervlaktepotentiaal bij hogere energien. Daaropvolgend onderzoek
heeft aangetoond dat deze verschillen gedeeltelijk kunnen worden toegeschreven
aan het effect van ladingscreening door de Dirichlet-rand in onze simulaties.

Ten slotte is het aangepast DDR-model toegepast om laadeffecten te simuleren
in verschillende realistische scenario’s. De evolutie van opbrengst en op-
pervlaktepotentiaal in de tijd is berekend voor aluminiumoxide- en siliciu-
moxidemonsters bestraald met geconcentreerde bundels van verschillende en-
ergieën en stromen. De beweging van de bundel over een samengesteld monster
is ook gesimuleerd evenals de transmissieopbrengst van het membraan van een
nieuwe deeltjesdetector.





Summary

Electron microscopes take advantage of a beam of electrons to illuminate a
specimen and extract the needed information from the interaction of particles
with matter in order to produce a high resolution image. The main research
question of the present study arose from the fact that this resolution is de-
graded when a given specimen contains insulating materials. In the electron
microscopy of insulators the effect behind the degradation of an image resolu-
tion is known as the charging effect. The charging effect needs to be studied
and understood, in particular, since biological specimens are either insulators
or contain insulating parts.

Although charging phenomena have found applications and have been ben-
eficial in some areas such as electrostatic replication and triboelectricity based
devices, the charging is often destructive and may damage devices. Therefore,
the aim is to eliminate charging or at least to minimize its effect and in order
to do so a clear understanding of the involved factors is essential. Several
strategies have been proposed in the literature to minimize the charging effect
and most of them provide a passage for charges away from the specimen. A
metallic coating of the sample is probably the most practical way to prevent
charging during imaging in electron microscopy. Heating the specimen and
adjusting the beam voltage and current have also proven to be useful in re-
ducing the charge. However, the same or similar treatments cannot be applied
in all areas that are exposed to the destructive effects of charging.

The basic physics behind charging of insulators is well understood. How-
ever, when all this relevant physics is put together in one mathematical model
the latter becomes too complicated for analytical treatment and numerical
simulations are unavoidable.

The above-mentioned complexity of charging phenomena provides enough
reasons to perform both experimental and theoretical investigations. The
physics is well-described by the Boltzmann Transport Equation (BTE) sup-
plemented with collision mechanisms specific to insulators. However, the
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mathematical complexity of the BTE prevents its direct numerical solution
on practically relevant scales. The usual approach is to perform stochastic
simulations of particle trajectories with Monte Carlo (MC) method, which is
equivalent to statistical estimation of the probability density function (PDF)
described by the BTE. MC simulations of time-varying PDF’s are extremely
difficult and suffer from large variances. That is why the majority of MC
studies aim at simulating the steady state of the system and say very little
about the transient behavior preceding the steady state.

The time-domain analysis of charging phenomena is the focus of the present
dissertation. To this end, we have developed a dynamic continuum model
based on the first two moments of the BTE.

The resulting model, known as the Drift-Diffusion-Reaction (DDR) ap-
proximation, is widely employed in simulations of semiconductor devices. How-
ever, it is not directly applicable to e-beam irradiated insulators due to the
initial highly non-equilibrium transport/ionization stage and the possibility of
electron emission through the vacuum-sample interface.

The main contribution of the present Thesis is a modified DDR model
that includes an effective source function describing the injection of primary
electrons and the initial ionization stage, and a novel boundary condition that
takes both the emission and the reverse currents into account. Equations
of this modified DDR model have been solved numerically with the finite
element method. An optimal configuration of the solver (among the standard
available options) has been found including the discretization strategy, the
time integrator, and the nonlinear and linear solvers.

The second major contribution of this Thesis is the calibration of the pro-
posed model against experimental data for uncharged insulators. This proce-
dure allows precise tuning of the few parameters whose effective nature stems
from the model approximations. Among them is the surface recombination
velocity of the sample-vacuum interface, which has been determined here for
alumina and silica samples. Another tuned parameter is the effective mean
penetration depth of the primary electron, which has been found to follow
a commonly used formula for higher energies, but deviates from it at lower
energies.

Further, the time-domain predictions of the modified DDR model have
been compared to the predictions of an alternative one-dimensional approach.
While the two models show general qualitative and quantitative agreement,
there are some differences in the value of the predicted surface potential at
higher energies. Subsequent investigation revealed that these differences can
be partially attributed to the charge screening effect by the Dirichlet boundary
in our simulations.

Finally, the modified DDR model has been applied to simulate charging
effects in several practical scenarios. The evolution of yield and surface poten-
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tial with time has been calculated for alumina and silica samples irradiated
by focused beams of different energies and currents. The motion of the beam
across a composite sample has also been simulated as well as the transmission
yield from the membrane of a novel particle detector.





1
Introduction

1.1 Basic concepts

A microscope is an instrument used to produce an enlarged image of objects
that are invisible or too small for the naked eye. The science of studying
objects using microscope is called microscopy. There are many types of micro-
scopes. The first invented and most common microscope is optical (or light)
microscope which uses light to form an image of an object. Other types are:
atomic force, near-field scanning, tunneling, acoustic and electron microscopes.

An electron microscope is a microscope that instead of light uses electrons
to create an image of the object. The main advantage of using an electron
microscope over a light microscope is a much higher resolution allowing to
see much smaller objects in detail. Transmission electron microscope (TEM)
and scanning electron microscope (SEM) are the two most common types of
electron microscopes that are widely used in science and industry. Scanning
electron microscopy is the main focus of the present research.

The scanning electron microscope uses a moving beam of electrons (pri-
mary electrons) to produce various signals from the specimen. These signals
contain information about the specimen and can be used to form the final
image. The origins of these signals are secondary electrons, backscattered
electrons and x-rays each detected with a specific detector.

A specimen is either uniform or a composite of several materials. Materials
can be categorised into three groups according to their electrical resistance:
conductors, semiconductors and insulators. Conductors have a very low re-
sistance while semiconductors and insulators have a much higher resistance.
The difference in conduction can be explained by the band theory which dis-
tinguishes between the conduction band and the valance band. Electrons with
relatively low energies occupy the valance band and are called valance elec-
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2 Introduction Chapter 1

trons. When a valance electron gains some energy it can leave the valance
band, cross the energy band gap and end up in the conduction band. The
width of the gap between the valance and conduction bands -the band gap-
determines the conductivity of materials.

A conductor does not have a band gap and electron can move more or
less freely subject to collisions. A semiconductor has a relatively small band
gap and, for instance, room temperature is able to provide sufficient energy
to transfer some electrons to the conduction band. The band gap is large
in insulators so an electron from valance band should receive a high enough
energy in order to cross the band gape.

What is of particular interest and importance here is that crossing the
band gap, either from the valance band to the conduction band or vise versa,
is usually not a direct process especially for those materials with a wide band
gap like insulators. In fact, this is a multistep process involving trapping and
detrapping of electrons at discrete energy levels inside the band gap. These
energy levels are caused by the imperfections of the crystal lattice and are
associated with spatially localized trapping sites. Basically, an insulator by its
very nature has a significant amount of trapped electrons and accordingly also
trapped holes. Any disturbance in the balance between the amount of trapped
electrons and holes causes a charging effect and this effect is known to be a
particular response of insulators to electron-beam bombardment in scanning
electron microscopy. This charging effect needs to be studied and understood
since it degrades the quality and complicates the interpretation of images in
scanning electron microscopy and is important in other applications, such as
particle detectors.

1.2 Literature review and motivation

Charging phenomena in insulators have long been studied due to their impor-
tance in such areas as scanning electron microscopy (SEM), memory-based
technologies, particle detectors, ceramic surfaces, industrial cables, and the
safety of spacecraft [1, 2, 3, 4, 5]. Probably, the earliest systematic studies
of electron-irradiation effects in solids and charging phenomena in insulators,
as parts of research on electrets, were carried out by B. Gross who has had a
great impact on this research field. In his seminal works on irradiation phe-
nomena [6, 7] Gross investigated the electron trapping and charge buildup in
high-resistivity solid insulators bombarded with energetic electrons. Further
studies by Gross and coworkers produced new experimental techniques and
mathematical models [8, 9, 10, 11].

These and more recent [12, 13, 14, 15, 16, 17, 18] studies have not yet been
able to provide a complete and coherent account of all observed phenomena.
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This could be due to the prevailing emphasis on static (stationary) models [19,
20, 21] rather than time-domain analysis. Studying the dynamics of charging
in time domain is especially important in the analysis of response times in
particle detectors [2] and in designing novel scanning strategies for SEM [18].
The existing dynamic models are either one-dimensional [14, 15] or do not
include some of the essential physical processes, e.g., dynamic recombination,
trapping, etc [16, 17].

While the prevailing semi-classical Monte-Carlo (MC) method [22] makes
very few assumptions about the complicated electron-sample interaction pro-
cess, realizing its full theoretical potential is technically very challenging. First
of all, MC simulations are slowed down by the need to continuously update
the long-rage electrostatic potential. Secondly, it is computationally difficult
to keep track of all the trapped and de-trapped electrons. Finally, achiev-
ing acceptable variance not only in particle numbers, but also in the times of
events (e.g. emission times), may require a prohibitive number of statistical
realizations.

For these and other reasons an alternative and in many ways a much sim-
pler self-consistent approach originating in semiconductor physics has been
proposed [23, 24, 15, 14, 25, 26, 27, 28]. This so-called Rostoc Program takes
the current density point of view, considering currents rather than charge
densities to be the fundamental quantities. Some of the advantages of the
current-based approach are: the possibility to model the sample-vacuum in-
terface via a reflection-transmission coefficient formalism and to include the
reverse electrons returning to the sample into the model. On the other hand,
it is more difficult to describe proper ohmic contacts in this way and it is hard
to extend this approach to two and three spatial dimensions.

Instead of sampling the probability space, the drift-diffusion-reaction (DDR)
approach, mainly used to model low-energy transport in semiconductors [29,
30], directly describes the space-time evolution of a continuous probability
density function. The pertaining partial differential equations are obtained
from the semi-classical Boltzmann equation applying the method of moments
and a few assumptions about the distribution of particles over the momentum
space. From the mathematical point of view the DDR approach assumes that
the symmetric part of the secondary electrons (SE) probability density func-
tion is isotropic about the origin of the momentum space and is well-described
by a shifted Maxwellian distribution. Some parts of the DDR model have al-
ready been applied to the SEM problem [16, 31, 17, 32, 33, 34]. However, these
previous studies have omitted the trapping rate equations thereby missing an
important feature of the charging dynamics. Also, the model employed relies
on an MC treatment of the primary electrons (PE), their initial scattering,
and the emission of the secondary electrons (SE) through the sample-vacuum
interface. Hence, the question remains whether a fully self-consistent contin-
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uum DDR model without any MC parts can adequately describe the charging
of dielectric samples by a focused electron beam.

The main challenges one faces in developing a fully self-consistent DDR
model for the SEM problem are: the non-equilibrium charge injection mech-
anism followed by the generation of secondary particles via ionization, the
fact that secondary electrons may leave via the sample-vacuum interface, the
back-coupling effect of the accumulated charges on the primary beam, and the
multi-scale nature of the problem (spatial as well as temporal). Here we show
that all these problems can be successfully solved and that the traditional
DDR approach represents a viable alternative to MC simulations.

In our first publication [35] we argued that the DDR approach can be ap-
plied to electron-beam irradiated insulators if the initial high-energy transport
stage is approximated by an empirical source function. We showed that this
pulsed source function allows modeling both the short-time processes imme-
diately following the primary electron (PE) impact and the long-time charge
evolution due to sustained bombardment. Importantly, we demonstrated that
the sustained irradiation can also be modeled by a continuous current source,
which gives practically the same secondary electron (SE) emission current
as the time-averaged SE emission produced by many single-impact pulsed
sources.

However, the original DDR model [35] had serious shortcomings as well.
First of all, it was not calibrated against experimental data. Although we were
able to reproduce any SE yield at a chosen PE energy by tuning a single pa-
rameter – the surface recombination velocity at the sample-vacuum interface,
it was not clear which yield should be taken as a reference, since yields tend to
change over time and depend on beam currents. Secondly, using the same SE
emission velocity for all PE energies resulted in curves not fully compatible
with published SE yield data over the whole range of PE energies. And more
seriously, the model produced nonphysical results in the case of prolonged ir-
radiation. Namely, the surface potential at low PE energies could reach very
large positive values, which is not possible, since positive potential attracts
secondary electrons back to the sample leading to the neutralization of any
potentials exceeding ∼ 10 V.

We have identified the main reasons behind the bad long-time behavior
of the original DDR approach [35]. These were the employed steady-state
generation-recombination model, which is not really suitable for the analysis
of transient effects, and the neglected reverse electron current. The electrons
that are being pulled back to the sample by a positive surface potential are
called reverse electrons (REs). Incorporating fully dynamic generation and
recombination processes is relatively easy. Here we employ the so-called trap-
assisted generation-recombination model, which also reduces the number of
equations to be solved and charge species to be tracked.
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In hybrid MC-DDR methods [16, 17] reverse currents are estimated with
direct MC simulations of particle trajectories. Here we propose an alterna-
tive approach that keeps intact the self-consistent nature of the DDR model.
Namely, we introduce a novel boundary condition at the sample-vacuum in-
terface that accounts not only for the total number of electrons returning to
the sample, but also for the spatial distribution of this reverse current along
the sample interface.

We have also developed and implemented a clear calibration procedure for
our DDR model. It uses the fact that certain types of yield measurements –
the so-called standard-yield measurements – correspond to the situation where
single PE impacts happen sufficiently far enough from each other across the
sample surface for their mutual interaction to be neglected. As our code is
able to simulate single impacts, its calibration can be performed in this single-
impact mode.

1.3 Outline

This dissertation consists of five chapters and a conclusion followed by one
appendix.

Chapter 2 starts with the general form of the Boltzmann transport equa-
tion (BTE) and describes the relevant physics concerning the interaction of
energetic electrons with insulator. Owing to its complexity, the BTE in its
original form is not the target for practical modeling purposes. Hence, in
the Chapter 2 we describe the procedure to simplify the BTE towards a more
practical DDR model. In the subsequent sections, the DDR model is discussed
in more detail, including the charge generation/recombination mechanism and
the boundary conditions required for the modeling of contacts and interfaces
in SEM with a particular focus on the electron flow through the sample-sample
interface. Charge injection with respect to different beam modes is discussed
in a separate section of Chapter 2, including pulsed, focused and defocused
beams. Chapter 2 ends with a summary of approximations assumed in the
modified DDR model.

Our strategy for solving the DDR equations is described in Chapter 3,
which starts with an introduction followed by a section on the importance of
numerical scaling. The finite element method is introduced in Section 3.2. In
later sections, we discuss the details of the solver including the weak form of
DDR equations, the strategies for meshing, type and order of basis functions,
linear/nonlinear system solver and the time integration method.

Chapter 4 is devoted to the calibration of the DDR solver against experi-
mental data and comparison with other methods. In particular, the standard
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yield of insulators is reproduced based on the investigation of a single electron-
impact event. The standard yield data are used to study the relative influence
of material parameters such as the trapping site densities and cross-sections, as
well as to tune the maximum penetration depth of primary electrons and the
surface recombination velocity of the sample-vacuum interface. Further, the
proposed time-averaged source model for the sustained bombardment is vali-
dated by comparing it with the pulsed model. The last section of the chapter
is devoted to comparing the results of the DDR model with a self-consistent
one-dimensional approach.

Chapter 5 studies charging effect in insulators subjected to electron bom-
bardment by focused stationary and moving electron beams. Simulation ex-
periments for time-domain analysis of the SE yield and surface potential varia-
tions in e-beam irradiated insulators are presented followed by the quantitative
analysis of a more realistic scenario with a moving beam, including a dynamic
line-scan of a laterally inhomogeneous target. The final section of Chapter 5
deals with the simulation of electron emission from a thin membrane pertain-
ing to the transmission electron multiplier (Tynode).



2
Carrier transport modelling

An in depth understanding of how charge carriers travel through a given
medium requires both experimental and theoretical investigations. A formal
theoretical model describing this transport in the semi-classical approximation
is the Boltzmann Transport Equation (BTE). BTE was initially introduced
for describing dilute gases at the kinetic level, but has found applications in
modeling of charge carrier transport in semiconductors as well. In this chap-
ter the BTE model is reduced to a simpler Drift-Diffusion-Reaction (DDR)
model augmented with appropriate source function, generation-recombination
mechanism and boundary conditions.

2.1 Drift-Diffusion-Reaction model

The general form of the BTE appropriate for semiconductor physics can be
written as

∂f

∂t
+

~
m
k · ∇xf +

1

~
F · ∇kf = S, (2.1)

where f(x,k, t) is a probability density function (PDF), ~ is the reduced Plank
constant, k is the wave vector, F is the force, ∇x = 〈∂/∂x, ∂/∂y, ∂/∂z〉 and
∇k = 〈∂/∂kx, ∂/∂ky, ∂/∂kz〉. The right-hand-side of Eq. (2.1) corresponds
to the effect of collisions, specifically, here the collision integral S describes
the electron impact ionization and the electron trapping/detrapping (cap-
ture/emission) processes.

According to the Lorentz force law, the force F acting on a particle with
the electric charge q and velocity v due to the electric field E and the magnetic
field B is given by

F = ±q (E + v ×B) , (2.2)

7
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where the first and second terms represent the electric and magnetic forces.
Neglecting the magnetic force (due to small carrier velocities) leads to the
following form of the BTE:

∂f

∂t
+

~
m
k · ∇xf −

q

~
E · ∇kf = S, (for electrons). (2.3)

The phase space is 6-dimensional (x,k) = (x, y, z, kx, ky, kz) and the par-
ticle probability density function f is defined in such way that

dN = f(x,k, t) dx dk (2.4)

is the expected number of carriers in the phase space element dx dk at time
t. The total number of carriers in the considered domain can be obtained by
integrating over the phase space

N =

∫
phase space

f(x,k, t) dx dk

=

∫
position

∫
wave vector

f(x,k, t) dx dk

=

∫∫∫
position

∫∫∫
wave vector

f(x, y, z, kx, ky, kz, t) dx dy dz dkx dky dkz.

(2.5)

The BTE, in its most general form, is a seven-dimensional integro-differential
equation (six dimensions in the phase space and one in time) that can be
solved by one or another numerical method. The Monte Carlo approach is a
stochastic method that includes complex energy band structure and scattering
processes. Deterministic solution of the BTE is also possible by reducing it
to a simplified form of such as drift diffusion (DD) or hydrodynamic (HD)
models. The drift-diffusion approximation is the main focus of the present
study and in this section we show how the DDR model can be derived from
the BTE.

Considering the BTE for electron transport, the probability density func-
tion f(x,k, t) describes electrons of all possible energies and momenta. We
deal with two types of electrons in our model (Fig. 2.1): high-energy electrons
that are able to move and also escape the sample, and low-energy electrons
that can not escape, but can still move. Accordingly, if we consider these two
energy bands, f can be expressed as follows:

f(x,k, t) =


fa(x,k, t), |k| > ka;

fca(x,k, t), kc ≤ |k| ≤ ka;
0, |k| < kc;

(2.6)
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Figure 2.1: Schematics of the energy-band diagram in DDR.

where fa and fca are the probability density functions that correspond to the
high-energy electrons (above electron affinity), low-energy electrons (below
electron affinity but inside the conduction band), respectively. The ka and
kc denote the magnitude of the wave vectors corresponding to the electron
affinity and the lower edge of the conduction band, respectively.

The function f can be rewritten as follows

f(x,k, t) = fa(x,k, t) + fca(x,k, t), (2.7)

where the extensions are defined as

fa(x,k, t) =

{
fa(x,k, t) |k| > ka;

0 Otherwise;
(2.8)

and

fca(x,k, t) =

{
fca(x,k, t) kc ≤ |k| ≤ ka;
0 Otherwise.

(2.9)

The density of electrons in space-time can be obtained by integrating over k.
Therefore

n(x, t) =

∫
R3

f(x,k, t) dk

=

∫
R3

fa(x,k, t) dk +

∫
R3

fca(x,k, t) dk

= na(x, t) + nca(x, t),

(2.10)
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where n, na and nca are the densities of “free”, energetic and low-energy
electrons, respectively.

The first step towards simplifying the BTE can be achieved by integrating
equation (2.3) over k, which gives the first moment of the BTE∫

R3

∂f

∂t
dk +

~
m

∫
R3

k · ∇xf dk−
q

~

∫
R3

E · ∇kf dk =

∫
R3

S dk. (2.11)

Since ∇k ·E = 0,

∂n

∂t
+

~
m
∇x ·

∫
R3

kf dk− q

~

∫
R3

∇k · (fE) dk = Sn −Rn +Gn, (2.12)

where Sn, Rn and Gn correspond to the impact ionization, trapping and de-
trapping local rates, respectively.

Applying the divergence theorem, we obtain∫
R3

∇k · (fE) dk = lim
R→∞

∫
SR

(fE) · ν dS = 0, (2.13)

where

SR = {k ∈ R such that |k| ≤ R}. (2.14)

Therefore,

∂n

∂t
+

~
m
∇x ·

∫
R3

kf dk = Sn −Rn +Gn. (2.15)

Intruding the concept of current density Jn, Eq. (2.15) can be stated as

∂n

∂t
+∇x · Jn = Sn −Rn +Gn, (2.16)

where

Jn =
~
m

∫
R3

kf dk. (2.17)

The second moment of the BTE can be extracted by multiplying the equa-
tion (2.3) with k and integrating over k, thus

∂

∂t

∫
R3

kf dk +
~
m

∫
R3

k(k · ∇xf) dk− q

~

∫
R3

k(E · ∇kf) dk =

∫
R3

kS dk. (2.18)
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The first term in the left-hand side simplified to

∂

∂t

∫
R3

kf dk =
m

~
∂Jn
∂t

. (2.19)

Further we employ the relaxation-time approximation for the collision term
S:

S ≈ f0 − f
τ

, (2.20)

where f0 is the equilibrium density function and τ is a time constant (relax-
ation time). This approximation and the symmetry of f0 with respect to k,
i.e., f0 (x, |k|), allow to simplify the term in the right-hand side of (2.18) as
follows: ∫

R3

kS dk =
1

τ

∫
R3

k(f0 − f) dk

= 0− 1

τ

∫
R3

kf dk

= −m
τ~

Jn.

(2.21)

If we split f into its two symmetric and anti-symmetric parts (f = fS + fA),
for the second term in the left-hand side of the equation (2.18) we obtain

~
m

∫
R3

k(k · ∇xf) dk =
~
m
∇x ·

∫
R3

kkf dk

=
~
m
∇x ·

∫
R3

kkfS dk

=
~
m
∇x ·

∫
R3

D3fS dk,

(2.22)

where

D3 =

k2
x 0 0
0 k2

y 0

0 0 k2
z

 , (2.23)

since the symmetry eliminates all the elements outside the main diagonal, i.e.,∫
R

klfS dkl = 0, l = x, y, z. (2.24)
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Since∫
R3

k2
xfS dk =

∫
R3

k2
yfS dk =

∫
R3

k2
zfS dk =

1

3

∫
R3

(k2
x + k2

y + k2
z)fS dk, (2.25)

we can relate this integral to the expected energy

~
m

∫
R3

k(k · ∇xf) dk =
~
m
∇x ·

1

3
I3

∫
R3

(k2
x + k2

y + k2
z)fS dk,

=
~

3m
∇x

∫
R3

|k|2fS dk,

=
~

3m
∇x

∫
R3

|k|2f dk,

=
2

3~
∇x

∫
R3

~2

2m
|k|2f dk,

=
2

3~
∇xEn,

(2.26)

where the expected electron energy is defined as

En =

∫
R3

~2

2m
|k|2f dk. (2.27)

The last term on the left in the equation (2.18) can be simplified as follows:

q

~

∫
R3

k(E · ∇kf) dk =
q

~
E ·
∫
R3

k∇kf dk

=
q

~
E ·
∫
R3

(∇k(kf)− fI3) dk

= − q
~
E · I3

∫
R3

f dk +
q

~
E ·
∫
R3

∇k(kf) dk

= − q
~
nE + 0

= − q
~
nE.

(2.28)

Therefore, the equation (2.18) can be written as

∂Jn
∂t

+
2

3m
∇xEn +

q

m
nE = −1

τ
Jn. (2.29)
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As can be seen, equation (2.16) couples the zero’s moment of f , i.e., n, to
its first moments Jn. Whereas, equation (2.29) couples the first moment Jn
and the second moment En. In the present case, considering f to be a shifted
Maxwell distribution as shown in [36], the expected energy can be approxi-
mated as

En ≈
3

2
kBTnn, (2.30)

where kB is the Boltzmann constant and Tn is the effective temperature.
Hence, the equation (2.29) becomes

∂Jn
∂t

+
kB
m
∇x(Tnn) +

q

m
nE = −1

τ
Jn. (2.31)

This equation can be further simplified by assuming that the time variation
of the current density is relatively insignificant with respect to its magnitude,
and that the effective temperature of electrons is spatially uniform. Therefore,

Jn ≈ −
kBτ

m
Tn∇xn− q

τ

m
nE. (2.32)

This constitutes the drift-diffusion approximation of Jn.
The system of the equations (2.16) and (2.32) is known as the transport

equation for the free electron density. Expressing the electric field through its
potential, E = −∇V , the transport equation can be written in its common
form:

∂n

∂t
+∇ · Jn = Sn − (Rn −Gn), (2.33)

Jn = −Dn∇n+ µnn∇V, (2.34)

where

µn =
τ

m
q and Dn =

µnkBT

q

are the electron mobility and the diffusion constant, respectively, and ∇ = ∇x.
The above relation between the electron mobility and the diffusion constant
is known as the Einstein relation. Both the temperature and the relaxation
time are lumped into the macroscopic mobility and diffusivity parameters. Al-
though one might expect that these parameters become “effective” and require
tunning, a perfect match against experimental data is obtained with the usual
low-energy table values of µn and Einstein relation between µn and Dn.

By following a similar path, the transport equations for the free hole den-
sity is obtained as follows:

∂p

∂t
+∇ · Jp = Sp − (Rp −Gp), (2.35)

Jp = −Dp∇p− µpp∇V, (2.36)
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where µp is the hole mobility and Dp is the diffusion coefficient.

The electrostatic potential V (x, t) satisfies the Poisson equation:

−∇ · (ε∇V ) =
q

ε0

(
NT

2
+ p− n− nT

)
, (2.37)

where V (x, t) is the electrostatic potential and nT (x, t) is the density of trapped
electrons. As will be explained in Section 2.4 , NT /2 is the equilibrium value
of the trapped electrons density. Thus, the local excess of trapped electrons
nT > NT /2 causes additional negative charging, whereas, the local lack of
trapped electrons nT < NT /2 causes additional positive charging. The con-
stant ε0 is the dielectric constant of vacuum and the function ε(x) is the
(static) relative permittivity of the sample.

Thus, this method transforms the BTE into an infinite set of coupled
moment equations. One can reduce this set to just a few equations by a
process called closure, where the highest moment is approximated in terms of
the lower ones.

2.2 Generation and recombination

Carrier generation is a process in which electron-hole pairs are formed by
promoting an electron from the valence band into the conduction band and
by that generating a hole in the valence band. The process where an electron
falls down from the conduction band to annihilate a hole in the valence band,
is called recombination of carriers. Several forms of generation/recombination
mechanism are known in semiconductor physics, with the most common being
the Auger and the Shockley-Read-Hall (SRH) models [30].

It is known that the Auger model is more appropriate at higher carrier
concentrations caused, e.g., by heavy doping or high-level injection under con-
centrated sunlight. Therefore in the present case, where the concentrations
are not that high, we opt for the SRH model. The SRH, also known as a trap-
assisted generation/recombination, is a two step process that emits a phonon
rather than a photon.

The process that causes low-energy charges in insulators to be transferred
to a localized state is called trapping. Trapping occurs at a trapping site.
The charges that have been trapped at a certain site at one time, due to
several reasons, for instance, the field-induced detrapping, can get detrapped
and become free at a later time. The process can continue which means, this
free charge can get trapped again somewhere else [37]. A detailed analysis of
the electron and hole trapping in insulators can be found in [38].

In the present approach the dynamic SRH model is implemented. Here we
explain it along the lines of the PhD study by Robert Entner conducted at TU
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Wien [29] (more detail in Appendix A). An attractive feature of this model is
that there is no need to keep track of trapped holes as all the relevant physics
is already contained in the single equation for the rate of electron trapping:

∂nT
∂t

= (Rn −Gn)− (Rp −Gp). (2.38)

This process is coupled to the basic equations (2.33)–(2.37) and can be divided
into four subprocesses as illustrated in Fig. 2.2.

(a) Electron capture: An electron from the conduction band gets trapped at
the band-gap of the insulator and the surplus energy of Ec−Et is transmitted
to the phonon emission. The expected rate of this process is

Rn = σnυthn(NT − nT ). (2.39)

(b) Hole capture: A trapped electron moves to the valence band and neu-
tralizes a hole (i.e. the hole is captured by the occupied trap), producing a
phonon with the energy Et − Ev. The corresponding rate is

Rp = σpυthpnT . (2.40)

(c) Hole emission: An electron leaves a hole in the valence band and is
trapped (i.e. the hole is emitted from the empty trap to the valence band).
The energy Et − Ev is needed for this process, and the corresponding rate is

Gp = σpυthni(NT − nT ). (2.41)

(d) Electron emission: A trapped electron moves to the conduction band.
The required energy is Ec − Et, and the rate is

Gn = σnυthninT . (2.42)

In the above equations: σn(x) and σp(x) are the electron and hole mean
capture cross sections, NT (x) is the total density of traps, nT (x, t) is the
density of trapped electrons, υth(x) is the thermal velocity, and ni(x) is the
intrinsic carrier density. The spatial variable x indicates the possibility of
spatial inhomogeneity, i.e., the presence of different adjacent materials.

The initial conditions on n and p at t = 0 are set as the corresponding
intrinsic carrier densities of the materials under consideration, whereas the
initial condition for nT has been derived based on the assumption of the initial
steady state for the density of trapped electrons prior to the start of irradiation
(i.e. ∂nT /∂t = 0) and is set to

nT (x, 0) =
NT (x)

2
. (2.43)
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Figure 2.2: Trap-assisted generation/recombination model.

In the steady state, since electrons and holes are generated and recombined
in pairs, we have the same rate function for the two species, and so

(Rn −Gn) = (Rp −Gp). (2.44)

In this case, it is possible to simplify SRH model to the following form

Rn,p −Gn,p =
np− n2

i

τn(n+ ni) + τp(p+ ni)
, (2.45)

where τn and τp are the life time parameters for the electrons and holes,
respectively. The carrier lifetime can be expressed in terms of the capture
cross section and the density of traps

τn =
1

σnvthNT
, τn =

1

σnvthNT
. (2.46)
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Figure 2.3: Impact ionization due to high-energy particle.

2.3 Charge injection and beam model

2.3.1 Impact of an individual primary electron

When an electron beam illuminates the sample some of the primary electrons
will reflect as backscattered electrons, while the rest penetrates the sample
and produces a number of secondary electrons/holes. The creation of charge
carriers either by the impact of a high-energy charge carrier on a material
or under the action a high electric field is known as impact ionization in
semiconductor physics.

Impact ionization is a non-equilibrium three-particle generation process.
The mechanism is functionally similar to the generation part of the Auger
process. A highly energetic electron (hole) in the conduction band (in the
valence band) collides with (transfers its energy to) an electron in the valence
band and exciting it to the conduction band, and therefore leaving two elec-
trons in the conduction band and a free hole in the valence ban (Fig. 2.3).
The created electron-hole pair can also have a high enough energy in order
to continue the process. Continuation of the process leads to an avalanche
of carrier generation. At the end particles gradually lose their energies and
eventually become thermalized.

Mathematically, the injection of electrons is described by the terms Sn(x, t)
and Sp(x, t) in the right hand sides of the continuity equations (2.33) and
(2.35).

The source function Sn reconciles the drift-diffusion approximation applied
in (2.34) with the conservation law (2.33). To do so Sn(x, t) must correspond
to the creation rate of only such electrons that satisfy (2.34), i.e., whose sub-
sequent transport is governed by drift and diffusion. Here it is assumed that
a suitable Sn can be represented as the product of two functions – gn(x) and
s(t).

Up to a normalization constant, the function gn(x) is the probability den-
sity function for the location of a secondary electron (created during ionization
stage) at the time tg when its transport can already be described by (2.33) and
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(2.34). This function is approximated by an analytical expression based on
various first-principals calculations, MC simulations and experimental data.

However, since the emission of SE’s through the sample-vacuum interface
often occurs in the time between the PE impact and tg, one can not simply
use gn(x) as the initial condition in the simulations. Therefore, the function
gn(x) is used as a source and is multiplied with the rate function s(t) that is
the derivative of a function which equals zero at the time of impact and tends
to unity at tg, mimicking the avalanche-type ionization rate.

Note that the spatial extent of gn(x) allows for the creation of SE’s also
at the sample-vacuum interface where they can contribute to the emission
current starting from the moment of impact up to tg and beyond.

Thus, the source function has the form

Sn,p(x, t) =

{
gn,p(x, E0)s(t), if 0 ≤ t ≤ tg;

0, otherwise;
(2.47)

where gn,p(x, E0) is the charge distribution function depending on the effective
energy of the primary electron, as will be explained shortly, and

s(t) =
1

L(tg)− L(0)

dL

dt
, (2.48)

where L is the following logistic function:

L(t) =
1

1 +
(

1
w − 1

)
e−kt

,
dL

dt
= kL(1− L). (2.49)

Here k is the Malthusian parameter and w is an initial condition related to
the so-called carrying capacity ranging from 0 to 1. We choose L to be the
logistic function since pair creation is an avalanche-type process and as such
is mathematically similar to the population growth.

In (2.47) tg denotes the generation time, which is taken here to be ap-
proximately the time of the ballistic flight of the primary electron. Special
relativity provides a simple relation between the velocity of a primary electron
and its energy:

v = c

√
1− 1(

1 + E0
mc2

)2 , (2.50)

where c is the speed of light in vacuum. The time of flight tg can be estimated
by dividing the penetration depth (will be explained below) by this velocity
(or a twice lower ‘average’ velocity). In either case it appears that for the
relevant range of primary energies tg is in the order of femtoseconds, i.e.,
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extremely short with respect to the average time between electron impacts in
a typical SEM beam. If this estimate is correct, then the DDR model is indeed
applicable to the charge dynamics not only on large time scales, but also on
the scale of individual impacts.

Both source functions contain the semi-empirical distribution function of
the charge pairs at the end of the initial ballistic stage [26]:

gn,p(x, E0) =

(
A
E0

Ei
+B

)
1

πR3
exp

(
−C|x− x0|2

)
(2.51)

where E0 is the beam energy and the effective landing energy of PE’s, Vs is
the surface potential at the point of PE impact, Ei is the pair creation energy,
R is the maximum PE penetration depth (will be discussed further, in detail,
in Chapter 4), C is a R-dependent factor, x0 is the center of the Gaussian
distribution with the distance of 0.3R from the sample-vacuum interface, and
A is the constant corresponding to the backscattering rate. In the hole distri-
bution function gp the constant B is zero, however, it is different from zero in
the electron distribution function gn accounting for the remaining PE’s. Of
course, the source functions proposed here are only approximations. Never-
theless, they are based on the best experimental evidence and first principles
calculations available to date.

The pair creation energy Ei depends on the material of the sample via [15]

Ei ≈ 3Eg + 1 eV, (2.52)

with Eg denoting the energy gap of the material in eV.
For silicon, silicon dioxide, and aluminum oxide, with the backscattered

rate of about 0.2, the three-dimensional Gaussian distribution of the secondary
electrons and holes are:

gn(x, E0) =

(
11.58

E0

Ei
+ 13.158

)
1

πR3
exp

(
−7.5

R2
|x− x0|2

)
,

gp(x, E0) = 11.58
E0

Ei

1

πR3
exp

(
−7.5

R2
|x− x0|2

)
.

(2.53)

The total numbers NSE,SH of secondary electrons and holes corresponding
to the distribution (2.51) can now be estimated as

NSE = NSH ≈
∫∫∫
R3,z≥0

g(x, E0)dV ≈ 0.877
E0

Ei
, (2.54)

showing that approximately 88% of the effective energy is spent on the creation
of charge pairs, which generally agrees with MC simulations. According to
(2.54) the number of secondary electrons generated by one primary electron
is somewhere between tens and thousands. Hence, we may expect the DDR
approach to be a reasonable approximation at this scale.
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2.3.2 Bombardment and temporal smoothing

Depending on the beam current primary electrons may arrive at an average
rate as high as tens of millions per second. Previous applications of the drift-
diffusion-reaction approach typically describe the SEM beam as a constant
flux of electrons. Initially we would like to avoid the latter approximation and
directly consider, say, m, primary electrons arriving at times ti, i = 0, 1, . . . ,m.
Thus, one obtains a pulsed source where the next PE arrives in a medium with
some residual charge left from the impact of the previous PE.

Although, we gain some valuable insights about the subsurface charge dy-
namics and the effect of beam current, it is obviously too time consuming to
consider bombardments of a sample by a large number of electrons in this way.
Hence, a different approach is needed to study charging effects at larger time
scales.

The main technical challenge preventing direct large-scale simulations with
our method is the pulsed nature of the source terms requiring many time steps
to be performed by the solver between electron impacts. A way to reduce
the computational burden is to derive a smoother function describing the
behavior of source terms at larger time scales. In the limit such a smoother
source function should approach the constant beam currents of the other DDR
models.

To achieve this we employ a temporal average of our source function,
which also mimics the way the SEM response is measured (time-averaged
yield, rather than the yield due to individual PE’s). The average value of
Sn(x, t) over a period of time T between the impacts can be expressed as

S̄n

(
x, ti +

T

2

)
=

1

T

∫ ti+T

ti

Sn(x, t′)dt′, (2.55)

and is a time-independent function. In what follows we call this a time-uniform
or simply a uniform source.

Unfortunately, smoothing of the source has its price. Due to the presence
of nonlinear terms in (2.37)–(2.35), solutions obtained with a time-averaged
source term will not be the exact time-averaged values of the unknowns, but
only the approximations thereof. Hence, to apply the DDR approach at both
time scales successfully one needs to define constitutive relations and material
parameters, such as the electron surface recombination velocity, for each scale
separately. This is the so-called homogenization problem, typical for spatial
multiscale analysis in physics (e.g. effective medium problem in electrodynam-
ics).

Further, although a uniform source switched on at t = 0 may be expected
to eventually produce a steady-state distribution of charge, it is an open the-
oretical question whether the actual pulsed source leads to the corresponding
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e-beam

δ

Figure 2.4: Schematic for a broadened defocused beam.

periodic charge variations.

The above discussion demonstrates that there are two possibilities within
the DDR approach to model charge injection by a low- to moderate-energy
electron beam via the source terms Sn and Sp. The first fine-scale model cap-
tures the discrete nature of the electron beam. The rate of particle production
resolved at the level of pulses produced by individual PE impacts is given by:

Sn,p(x, t) =
∑
i

gn,p(x, Elan)

L(tgi)− L(tsi)

dL

dt
(t− tsi), (2.56)

where i is the number of the particular individual PE, tsi is the i-th PE impact
time, and tgi is the thermalization time of the generated electron-hole pairs.

To account for the action of the surface potential Vs on the primary elec-
tron, we introduce the landing energy Elan = E0 + Vs(ti), which should be
applied in the distribution function instead of E0. With single-impact events,
due to a relatively small number of produced pairs, the continuous results
of the DDR model should be interpreted as probability densities rather than
particle densities, especially at lower PE energies.

The second model is designed for studying the sustained bombardment of
the sample and is based on the temporal average of the above pulsed source
function:

Sn,p(x, t) =
j0
q
gn,p(x, Elan), (2.57)

where j0 is the average electron beam current.

In the continuous irradiation mode we consider two additional modifica-
tions of the source functions. One pertains to a defocused beam such that the
computational domain is smaller than the beam radius. In this case we use
the following distribution function derived from (2.51) by integrating over hor-
izontal coordinates and enforcing the conservation of the amount of generated
charge pairs:
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e-beam

δ

Figure 2.5: Schematic for a partially focused beam.

gn,p(x(r, z), Elan) = A
′
n,p exp

(
−β|z − z0|2

)
, (2.58)

where

A
′
n,p =

1− exp(−βδ2)

βδ2
An,p, (2.59)

An,p =

(
A
Elan

Ei
+B

)
1

πR3
, β =

7.5

R2
, (2.60)

and δ is the radius of the irradiated area (computational domain) at the surface
(Fig. 2.4). Accordingly, the beam current can be calculated as

j0 = i0πδ
2, (2.61)

where i0 is the current density. The formula (2.61) adjusts the beam current
to achieve results independent of δ.

If, on the other hand, the radius of a partially focused beam is smaller than
the radius of the computational domain we resort to the following distribution:

gn,p(x(r, z), Elan) =
1

βδ2 + exp(−βδ2)
An,p×{

exp
(
−β|z − z0|2

)
, r ≤ δ

exp
(
−β(r2 + |z − z0|2)

)
, r > δ.

(2.62)

Here δ denotes the beam radius rather than the radius of the computational
domain (Fig. 2.5).

2.4 Boundary and initial conditions

The SEM chamber consists of two main parts – the vacuum and the sample.
Considering a cross-section, we assume a rectangular outer boundary Fig. 2.6,
which can be further adjusted to take the actual geometry into account. The
domain is further divided into two parts, where one represents the sample and
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the other the vacuum chamber. The Poisson equation (2.37) is considered on
the whole domain (Ω1 and Ω2), whereas, equations (2.33), (2.35) and (2.38)
are solved on the lower domain (Ω2) only.

The boundary conditions on V , n, p at the interfaces of the sample with
its holder and at the walls of the vacuum chamber are standard: Dirichlet at
ohmic contacts and Neumann to simulate isolation and prevent any currents
from flowing through the corresponding interface.

At ohmic contacts (for instance at Σ3) the space charge vanishes, i.e.,

p− n = 0, on Σ3 × [0, tend]. (2.63)

Furthermore, the system is in thermal equilibrium there, which is expressed
by the relation

np = n2
i , on Σ3 × [0, tend]. (2.64)

From the above relations, we have

n(x, t) = ni, p(x, t) = ni, on Σ3 × [0, tend]. (2.65)

We also assume homogeneous Dirichlet condition for the potential at ground
or metallic contacts (ohmic contact) . i.e.

V (x, t) = 0, (2.66)

which could be easily adjusted to account for any finite value of the electric
potential.

For an isolation (for instance at Γ), the condition should be such as to
prevent any current through the interface and that means

Jn · ν = 0, Jp · ν = 0, on Γ× [0, tend], (2.67)

where ν is the outward normal vector at the surface. These Robin-type bound-
ary conditions set the sum of drift and diffusion currents equal to zero while
applying zero Neumann condition for potential at the isolation side, the con-
ditions (2.67) also turn into the following zero Neumann conditions for both
free electrons and holes and in that case the drift and diffusion current are set
to zero separately.

∂n

∂ν
= 0,

∂p

∂ν
= 0, on Γ× [0, tend], (2.68)

Regarding the initial condition, the intrinsic carrier density has been con-
sidered for free charges

n(x, 0) = ni, p(x, 0) = ni, in Ω2. (2.69)
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The density of trapped electrons in thermal equilibrium can be computed
as follows:

n(x, 0) = ni, p(x, 0) = ni, and
∂nT
∂t

(x, 0) = 0. (2.70)

Therefore,

(Rn −Gn) = (Rp −Gp)⇒
σnυthni(NT − nT )− σnυthninT = σnυthninT − σpυthni(NT − nT )⇒

nT (x, 0) =
NT

2
.

(2.71)

Since the sample in equilibrium is electrically neutral the density of trapped
holes is also obtained as

pT (x, 0) + p(x, 0)− n(x, 0)− nT (x, 0) = 0⇒

pT (x, 0) + ni − ni −
NT

2
= 0⇒ pT (x, 0) =

NT

2
,

(2.72)

Thus, the local excess of trapped electrons nT > NT /2 causes negative lo-
cal charging, whereas, the local lack of trapped electrons nT < NT /2 causes
positive charging.

2.5 Sample-vacuum interface

The sample-vacuum interface, however, is not common in DDR-type simula-
tions. Initially [35] we have used the following Robin-type boundary condition
at this interface

Jn · ν = vn(n− ni) for n > ni on Σ2 × [0, tend], (2.73)

Jp · ν = 0 on Σ2 × [0, tend], (2.74)

which sets the SE current density at the level proportional to the charge den-
sity at the boundary with the surface recombination velocity vn controlling
the magnitude of the current. This interface model can been obtained as a
simplification of the SRH model [39].

2.5.1 Surface recombination velocity at sample-vacuum inter-
face

The concept of surface recombination velocity is commonly used to model the
charge recombination at the interface of two solids, especially for insulator-
semiconductor interfaces; and so far we have not seen any use of this concept
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Figure 2.6: General schematics of the problem.

for the modeling of electron emission at the solid-vacuum interface. Therefore,
the use of this concept in this particular area needs more justification and
explanation. To this end, we examine the interpretation of this concept from
the perspective of the BTE.

According to the definition of the current density introduced in Section 2.1,
the normal component of the current density at the sample-vacuum interface
can be expressed as follows

Jn · ν =
~
m

∫
Ωa

(k · ν)f(x,k, t) dk, (2.75)

where only electrons in the affinity band contribute to emission, i.e.,

Ωa = {k ∈ R3 : |k| ≥ ka}. (2.76)

Employing the basic properties of integrals, the equation (2.75) can be
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written as follows

Jn · ν =
~
m

(kc(t) · ν)

∫
Ωa

f(x,k, t) dk,

=
~
m

(kc(t) · ν) na(x, t)

=
~
m

(kc(t) · ν) (n(x, t)− nca(x, t)) ,

(2.77)

where kc(t) is a vector function of time.

We assume that

nca(x, t) = ni + ∆nca(x, t)

≈ ni,
(2.78)

which from the physical point of view means that the free electrons with
energies below the affinity band will almost immediately be lost to trapping.
Therefore, we have

Jn · ν =
~
m

(kc(t) · ν) (n(x, t)− ni) . (2.79)

Hence, this leads to the introduction of the SRV as follows:

vn =
~
m

(kc(t) · ν). (2.80)

As expected, and as the equation (2.80) clearly shows, the SRV is a time-
dependent parameter. The time dependent behavior of this parameter is such
that it initially takes a positive value and then decreases with time, and even-
tually it reaches a certain lower bound. Indeed, this behavior is related to
the fact that initially the free electrons are energetic and then they lose their
energy over time.

In the single-impact study, it is in principle possible to use this parameter
in its time-dependent form, and it will definitely lead to better understanding
of the problem. While using it in other modes, such as the e-beam irradiation
with the pulsed source model, would be troublesome and it is not compatible
with the continuous source model.

Although the model may deviate somewhat from the actual physics, the
scheme we propose to solve this problem is to use the effective time-average
value of vn. In fact, the SRV is determined by tunning against experimental
data as a value independent of time, like other material properties. Thus, in
addition to simplicity, the main advantage of the effective vn is that it allows
for long-term simulations.



Section 2.5 Sample-vacuum interface 27

2.5.2 The interface condition and reverse current

Equations (2.73)–(2.74) describe a semi-insulating contact for the electrons
and an insulating contact for the holes (since holes cannot exist in vacuum).
It should be noted however, this model does not account for the electrons
that are being pulled back to the sample by a positive surface potential –
the so-called reverse electrons (RE’s). This leads to nonphysical results –
very strong positive charging of samples under prolonged irradiation with low-
energy beams.

Experiments show [40] that the energy of secondary electrons, although
greater than the electron affinity of the material, rarely exceeds 10 eV. There-
fore, even a relatively weak positive potential at the surface will pull back
some of the secondary electrons. To account for this reverse current we pro-
pose the following modified version of the Robin-type boundary condition at
the sample-vacuum interface:

Jn · ν =

vn(n− ni)− α(max(V +))
∂V

∂ν

−
, if n > ni;

0, otherwise,
(2.81)

Jp · ν = 0, on Σ2 × [0, tend], (2.82)

where

∂V

∂ν

−
|Σ2 =


∂V

∂ν
|Σ2 , if

∂V

∂ν
< 0;

0, otherwise,
(2.83)

α(max(V +)) = (2.84)
0, if max(V +) < Vmin;

αmax
max(V +)−Vmin

Vmax−Vmin
, if Vmin ≤ max(V +) < Vmax;

αmax, otherwise,

V +|Σ2 =

{
V |Σ2 , if V > 0;

0, otherwise,
(2.85)

max(V +) = Maximum of (V +|Σ2 − Vg), (2.86)

and

αmax =

vn

∫
Σ2

(n− ni)dA∫
Σ2

∂V

∂ν
dA

, (2.87)
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where Vg is the applied potential at the upper boundary, which in the present

study is set to zero (Vg = V |Σ1 = 0 V ). The term −α∂V∂ν
−

in (2.81) represents
the reverse electrons current density. The function α controls the total magni-

tude of this current and the factor −∂V
∂ν

−
determines its spatial distribution.

We assume that reverse electrons will re-enter the sample only through regions
where the normal component of the electric field is negative. The stronger is
the local attractive electric field, the higher is the density of reverse current
at that location.

The function α(t) is chosen here in such a way, see (2.84)–(2.87), that the
magnitude of the total reverse current varies linearly from zero, when the max-
imum surface potential V +(t) is below a certain value Vmin, to the value of the
total outward SE current, when V +(t) reaches Vmax. This means that the net
current through the sample-vacuum interface will be zero if V +(t) ≥ Vmax as
all SE’s leaving the sample will re-enter the sample as reverse electrons. Typi-
cally this leads to the surface potential never raising above Vmax (or Vmax+Vg).
This choice of α(t) is not unique and could be further refined to take the en-
ergy spectrum of the SE’s into account. One should also mention that, from
the computational point of view, the mesh along the sample-vacuum interface
should be fine enough in order to capture the gradient of the potential at the
surface.

Since in the present case of zero extraction potential the attractive surface
potential does not typically exceed the value of 10 V, the electrons of the
reverse current will not have enough energy to cause any further ionization
in the studied materials (ionization energy is in the order of 28 eV for both
alumina and silica). Thus, no reverse electrons will be generated in the sample.
In the situations where it is not the case, i.e., with positive surface potentials
larger than the material ionization energy, our method would require further
modification in the form of an additional source term – the creation rate of
reverse electron-hole pairs.

Modeling issues for interfaces are common not only for the sample-vacuum
interface, but also for other types of dissimilar material interfaces such as
insulator-semiconductor, insulator-metal and semiconductor-metal interfaces.
Although the charge-carrier behavior at interfaces has been studied for a long
time and indeed is one of the oldest problems in condensed matter physics,
the topic remains one of the fundamentally least understood. What can be
both very difficult and absolutely essential in the interface modeling is the
understanding of physical features such as the nature of interfacial character-
istics, in order to arrive at how an interface behaves in the presence of charge
carriers.

Among all types of interfaces, perhaps the insulator-semiconductor inter-
face (like those in Metal-Insulator-Semiconductor (MIS) structure Fig. 2.7) is



Section 2.5 Sample-vacuum interface 29

Semiconductor

Insulator

Metal

Figure 2.7: Metal-Insulator-Semiconductor (MIS) structure.

the easiest one to deal with, since the same physics holds for both of them, i.e.,
DDR is applicable for both without the need of any additional condition at
the interface. The main difference is that the carrier mobility in an insulator
is low (sometimes extremely low), while the charge carriers in a semiconductor
have significantly higher mobility.

The study of metal-nonmetal interfaces leads to a more complex situa-
tion as the charge carriers exhibit substantially different behaviors in these
two types of substances. This implies that together with applying DDR in
the nonmetal part, an additional physics must be considered at the interface.
In the present study the metal is always grounded; therefore, it is sufficient
to only model the interface. For this purpose, one is referred to literature
on modern semiconductor technology focusing on involving metal-insulator-
semiconductor (MIS) [41, 42, 43], metal-oxide-semiconductor (MOS) [44] and
metal-semiconductor-metal (MSM) [45] structures that have drawn a lot of
attention due to their promising applications for memories, solar cells, tran-
sistors, sensors, etc. Admittedly, the topic is too wide to be appropriately
covered in the present study, so we do not address the details and we only
follow a common path leading to a proper mathematical model.

When a metal is brought into intimate contact with a semiconductor, a
potential barrier is created between the two that prevents most charge carriers
(electrons or holes) from passing through the interface and, indeed, only a
small number of carriers have enough energy to get over the barrier and cross
the interface. Depending on the combination of metal and semiconductor,
two types of contacts can result. The contact may be rectifying (also called
Schottky barrier contact), which only allows current to pass in one direction.
Also, it could be ohmic, in which case current can pass in both directions.
From the theoretical point of view, the factors that are playing a major role
in this scenario are work function, electron affinity, Fermi level, valence band
and conduction band. Among them, perhaps the most important one is the
work function. In solid-state physics, the work function is the minimum energy
required to remove an electron from a solid to escape to the vacuum outside
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the solid surface.



3
Numerical solution of DDR equations

Determination of analytical solutions of partial differential equations is usually
restricted to one dimensional problems and involves complex mathematical
manipulation with many assumptions. To study PDEs, numerical methods
are often needed to find approximate solutions.

The first step toward obtaining a numerical solution of an equation or
a system of equations is to investigate the existence and uniqueness of the
exact solution. With regards to the present model, the consistency analysis
relies on previously published results. A detailed investigation of existence and
uniqueness questions for stationary drift-diffusion equations can be found in
[30]. In a study conducted by Jerome [46] a mathematical analysis of a system
solution map for the weak form of the DDR model, which forms a basis for
the numerical solution of the model, has been provided. Also, in a follow-up
study by Busenberg et al. [47] the wellposedness of a DDR model similar to
the present one (with different source/sink terms) has been demonstrated.

Our strategy for solving the DDR equations is described in this chapter.
The chapter starts with a section on the importance of numerical scaling.
The finite element method is introduced as the chosen numerical solver in
Section 3.2. In later sections, we discuss the details of the solver including
the strategies for meshing, type and order of basis functions, linear/nonlinear
system solver and time integration method substantiating our choices with
numerical evidence.

3.1 Numerical scaling

The problem is multiscaled in nature, hence to avoid numerical difficulties
and maintain the accuracy of the solution, a simple scaling of variables has
been performed. The scaling should not affect the solution, however, a proper

31
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scaling can significantly affect the convergence rate by reducing the condition
number of the matrix pertaining to the linear system arising from the dis-
cretization of PDEs. In solving nonlinear PDEs, like those in DDR model, a
method, such as the Newton-Raphson method, is needed for solving nonlinear
equations, where the scaling can also affect the convergence of the nonlinear
solver.

To this end we introduce a set of characteristic dimensionless quantities.
We denote the characteristic length scale by l∗, the characteristic time scale
by t∗ and the characteristic density scale by ρ∗. There is a relation between
these values (t∗ = (l∗)2 and ρ∗ = (l∗)−3) that doesn’t change the form of the
equations, so that one only needs to introduce the rescaled versions for some
of the constitutive parameters:

ñi =
ni
ρ∗
, ε̃ =

ε

ρ∗(l∗)2
, σ̃n,p = t∗ρ∗σn,p,

ÑT =
NT

ρ∗
, S̃n,p =

t∗

ρ∗
Sn,p.

(3.1)

Also the boundary and initial conditions should be rescaled, since, e.g. the
rescaled versions of the emission velocity and the function α are given by:

ṽn = l∗vn, α̃ =
α

ρ∗
. (3.2)

In order to demonstrate the necessity of the scaling, simulations are per-
formed with a cylindrical sapphire sample irradiated by a single PE of 2 keV.
With the same configuration in terms of the mesh quality, the order of ba-
sis functions and etc, the result presented in Fig. 3.1 shows a considerable
influence of not only the scaling itself but also of the value of characteristic
parameters on the solution time of the simulation. We note that the length
and time scales will also change while changing the density scale. All sim-
ulations in this thesis have been performed on a Debian Linux PC with an
Intel(R) Core(TM) four-core 3.5 GHz CPU and 32 GB RAM.

3.2 FEM formulation

A variety of techniques is used to discretize partial differential equations: finite
differences, finite elements, spectral methods etc. In spite of the differences in
discretization strategies, fundamental concepts are pertinent to all of them.

Finite element theory has an elegant mathematical structure and numerical
features that allows a priori and a posteriori estimates of discretization errors
and convergence rates. Unfortunately a significant part of this theory relies on
functional analysis which is outside the scope of our discussion here. Instead,
we will provide an overview of important aspects based on numerical results.
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Figure 3.1: The influence of the scaling on solution time corresponding to the
simulation of a single impcat on the sapphire sample for the period of 1 ns.

We employ the finite element method (FEM) for the numerical solution
of the coupled system (2.33)–(2.38) and implement it as a solver within the
COMSOL Multiphysics package. Although, there are many predefined mod-
ules and solvers in COMSOL, none of them can be directly applied with the
present problem. The closest match is the semiconductor module. However,
it is neither suited for studying the two different domains defined above, i.e.,
Ω1∪Ω2 for equation (2.37) and Ω2 for the rest, nor does it allow to incorporate
the additional equation (2.38). Therefore, we have opted for building a new
model using the Weak Form PDE interface.

The concept of weak formulation can be explained from two different per-
spectives. The first is that the PDEs are derived from conservation laws of
physical principles and these laws can be formulated as integral equations.
Accordingly, this implies that weak-form equations are actually closer to the
underlying physics than strong-form equations. While from the second per-
spective, the weak formulation allows for weaker assumptions concerning the
smoothness of the solution, hence the name. Since, numerical schemes, such as
FEM, are based on weak formulation, it is necessary to transform the classic
equations into this form. This section deals with the derivation of weak form
of the DDR in Cartesian and axisymmetric systems.
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First we write down the problem in its strong form with reference to the
domain shown in Fig. 2.6.

Find V , n, p and nT satisfying the equations:

−∇ · (ε∇V ) =
q

ε0

(
NT

2
+ p− n− nT

)
in (Ω1 ∪ Ω2)× [0, tend], (3.3)

∂n

∂t
+∇ · Jn = Sn − (Rn −Gn) in Ω2 × [0, tend],

Jn = −Dn∇n+ µnn∇V,
(3.4)

∂p

∂t
+∇ · Jp = Sp − (Rp −Gp) in Ω2 × [0, tend],

Jp = −Dp∇p− µpp∇V,
(3.5)

∂nT
∂t

= (Rn −Gn)− (Rp −Gp) in Ω2 × [0, tend], (3.6)

with the boundary conditions:

V (x, t) = 0 on (Σ1 ∪ Σ3)× [0, tend],

n(x, t) = ni on Σ3 × [0, tend],

p(x, t) = ni on Σ3 × [0, tend],

(3.7)

Jn · ν =

vn(n− ni)− α
∂V

∂ν

−
, if n > ni;

0, otherwise,

Jp · ν = 0,

on Σ2 × [0, tend], (3.8)

and the initial conditions:

V (x, 0) = 0 in (Ω1 ∪ Ω2),

n(x, 0) = ni in Ω2,

p(x, 0) = ni in Ω2,

nT (x, 0) =
NT

2
in Ω2.

(3.9)
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3.2.1 Cartesian system

The weak formulation of equations (3.3)–(3.6) can be derived by multiplying
the equations by so-called test (or weight) functions wV , wn, wp and wnT , then
integrating over the domains, arriving at:∫

Ω1∪Ω2

wV ((−∇ · (ε∇V ))−Q) dΩ = 0,

Q =


q

ε0
(NT /2 + p− n− nT ), in Ω2

0, in Ω1

,

(3.10)

∫
Ω2

wn

(
∂n

∂t
−∇ · (Dn∇n− µnn∇V )− Sn + (Rn −Gn)

)
dΩ = 0, (3.11)

∫
Ω2

wp

(
∂p

∂t
+∇ · (−Dp∇p− µpp∇V )− Sp + (Rp −Gp)

)
dΩ = 0, (3.12)

∫
Ω2

wnT

(
∂nT
∂t
− (Rn −Gn) + (Rp −Gp)

)
dΩ = 0. (3.13)

Applying the Gauss divergence theorem, the equations (3.10), (3.11) and (3.12)
and can be written as∫

Ω1∪Ω2

((∇wV · (ε∇V )− wVQ)dΩ−
∫
∂Ω1∪∂Ω2

wV (ε∇V ) · ν dΓ = 0, (3.14)

∫
Ω2

wn

(
∂n

∂t
− Sn + (Rn −Gn)

)
dΩ +

∫
Ω2

∇wn · (Dn∇n− µnn∇V ) dΩ

−
∫
∂Ω2∪Σ2

wn(Dn∇n− µnn∇V ) · ν dΓ = 0,

(3.15)

∫
Ω2

wp

(
∂p

∂t
− Sp + (Rp −Gp)

)
dΩ−

∫
Ω2

∇wp · (−Dp∇p− µpp∇V ) dΩ

+

∫
∂Ω2∪Σ2

wp(−Dp∇p− µpp∇V ) · ν dΓ = 0,

(3.16)

where ν is the outward unit normal vector at the boundary, ∂Ω1 = Λ ∪ Σ1

and ∂Ω2 = Γ ∪ Σ3. The weak form (3.13) remains the same as the spatial
derivatives are not present in the trap rate equation.
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The ground contact at Σ1, ohmic at Σ3 and isolation for the rest of the
boundaries are considered. Since the boundary condition for the Poisson equa-
tion is homogeneous Dirichlet, the test and trial spaces are equal:

Wte = Wtr = {w ∈ H1(Ω) : w|Σ1∪Σ3 = 0}, (3.17)

where H1(Ω) is the first-order Sobolev space.

For the transport equations, the trial and test spaces are different due to
inhomogeneous boundary condition,

Wte = {w ∈ H1(Ω) : w|Σ3 = 0}, (3.18)

Wtr = {w ∈ H1(Ω) : w|Σ3 = ni}. (3.19)

The test and trial spaces for the trap-rate equation are:

Wte = Wtr = {w ∈ H0(Ω)}, (3.20)

where H0(Ω) is the zero-order Sobolev space.

Accordingly, the weak formulations corresponding to the DDR equations
under these assumptions are:

∫
Ω1∪Ω2

((∇wV · (ε∇V )− wVQ)dΩ = 0, (3.21)

∫
Ω2

wn

(
∂n

∂t
− Sn + (Rn −Gn)

)
dΩ +

∫
Ω2

∇wn · (Dn∇n− µnn∇V ) dΩ

+

∫
Σ2

wn

(
vn(n− ni)− α

∂V

∂ν

−)
dΓ = 0,

(3.22)

∫
Ω2

wp

(
∂p

∂t
− Sp + (Rp −Gp)

)
dΩ

−
∫

Ω2

∇wp · (−Dp∇p− µpp∇V ) dΩ = 0.

(3.23)

The boundary conditions at ground and ohmic contacts are called essential
here, since they should be satisfied explicitly. The boundary conditions at
isolation and sample-vacuum interface are called natural, as they are implicitly
satisfied by the weak formulations.
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Figure 3.2: Computational domain in the axisymmetric case.

3.2.2 Axisymmetric system

In some cases, we reduce the original 3D problem to a 2D problem in the
(r, z)-plane of the cylindrical coordinate system as the geometry, boundary
conditions, and the source are all axially symmetric. Consider, for example,
the cylindrical geometry presented in Figure 3.2. In the cylindrical coordinate
system (r, θ, z) the PE beam impinging along the z-axis corresponds to the
source term and boundary conditions independent of the angular coordinate
θ. The solution will also be independent of θ and the original 3D model is
reduced to a 2D model in the (r, z)-coordinates.

Consider the partial differential equations (3.3)–(3.6) in the axisymmetric
geometry (see Fig: 3.2):
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(3.26)

To derive the weak formulation we integrate over the cross-sectional area
(rdrdz) arriving at the following form of the equation (3.24):∫
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Integrating the highest-order terms by parts we obtain:
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where ν̂ = 〈ν̂r, ν̂z〉 is the outward unit normal vector at the boundary. There-
fore, the weak form of the equation (3.24) can be written as:∫
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(3.30)

or ∫
Ω1∪Ω2

ε(∇wV · ∇V )rdrdz −
∫
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wVQrdrdz = 0, (3.31)

where wV |Σ1∪Σ3= 0 and ∇ = 〈∂/∂r, ∂/∂z〉.
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The weak form of the equation (3.25) is:
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Integrating the highest-order terms by parts we get:
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Therefore, the weak form of the equation (3.25) can be written as:

∫
Ω2

wn

(
∂n

∂t
− Sn + (Rn −Gn)

)
rdrdz

+

∫
Ω2

∇wn · (Dn∇n− µnn∇V )rdrdz

−
∫

Σ2∪∂Ω2

wn(Dn∇n− µnn∇V ) · ν̂ rds = 0.

(3.35)
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Substitution of the boundary conditions gives:∫
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where n |Σ3= ni and wn |Σ3= 0.

Along similar lines the weak form of the equation (3.26) can be derived as:∫
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)
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−
∫

Ω2
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(3.37)

where p |Σ3= ni and wp |Σ3= 0.

The above calculations reveal that despite differences in the strong form
of the DDR equations in these two coordinate systems, the weak formulations
have the same form and the only difference is in the integral elements, i.e.
rdrdz for the axisymmetric system and dxdydz in the Cartesian case.

3.3 Mesh and refinement strategy

Simple uniform meshes are not suitable for the problem at hand, at least with
the chosen simple scaling strategy. A coarse mesh may cause an instability
resulting in negative values for the concentrations n and p. These negative
values emerge around strong gradients in n, p, nT and V .

The two common strategies of achieving more accurate finite element solu-
tions are to decrease the mesh size (h-refinement) and to employ higher-order
basis functions (p-refinement). These strategies can be used separately or
in combination (hp-refinement). In fact, both of them are different ways of
increasing the degrees of freedoms (Fig. 3.3).

Although p-refinement is known to be a powerful method of finding accu-
rate solutions, h-refinement is more popular [48, 49]. Here, both strategies are
evaluated, performing simulation with sapphire sample subjected to sustained
bombardment with a focused beam of 2 keV and 1 nA. A simple approach to
study the influence of h-refinement is to perform simulations on sequence of
gradually refined meshes until the numerical solution is relatively stable.
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original mesh h-refinement p-refinement

Figure 3.3: Refinement strategies.

Figure 3.4 compares solutions at time 10 ns for a sequence of meshes, start-
ing with a uniform triangular mesh with the average element size of h = 10 nm
followed by three uniform refinements with the element sizes h/2, h/4 and h/8.
The images show the spatial distribution of the changes in the numerical values
of n, p and nT . The results indicate that, for sapphire irradiated with a 2 keV
1 nA beam, acceptable accuracy is achieved with the element size of about
2.5 nm for first-order basis functions. Simulations have also been performed
with the same mesh size but increasing the order of basis functions. Solutions
for different orders of basis functions are compared in Fig. 3.5.

It is obvious from the results that a careful mesh strategy is required for the
impact zone and under the sample-vacuum interface, since the charge densities
may be extremely concentrated around the impact zone and form very thin
layers near the interface.

Automated adaptive mesh refinement is another widely used approach,
which adds mesh elements based on an error criterion to resolve those areas
where the error is large. We employ adaptive refinement only in the initial
simulations to identify the regions where a fine mesh is needed and then fixed
local refinement is used in the follow-up simulations. The L2-norm of the
gradient of the variables is chosen as the error indicator: ‖∇n‖2 + ‖∇p‖2 +
‖∇nT ‖2.

Conclusion drawn from adaptive mesh simulations confirm those obtained
with manually refined meshes, and Figure 3.6 shows the general pattern of
the locally refined mesh over the sample part, applying all types of contacts
considered in our model. For an isolated contact, the gradient of all the
quantities is expected to be very small, in fact, it should be zero in order to
satisfy the applied homogeneous Neumann boundary condition for potential
and charge concentrations, so further refinement is not needed for this contact.
However, at the ohmic contact and at the sample-vacuum interface where
the gradients can be steep, the mesh should be fine enough to capture the
steepness. Moreover, for these contacts, the structure of the mesh should be
getting gradually finer towards the contact.

In addition to the influence of contact type on the local refinement pattern,
other factors should be considered namely, the primary energy and the beam
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Figure 3.4: The influence of h-refinement on the solution for a sapphire sample
irradiated with a 2 keV 1 nA beam. The element sizes are h1 ≈ 10 nm and
hi = h1/2

i−1 for i = 2, 3, 4. The variables have been normalized as n/ni, p/ni
and nT /(NT /2).

current. The lower is the energy and the higher is the current, the finer should
be the mesh especially in the impact zone. The correspondence can be roughly
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Figure 3.5: The influence of the p-refinement on the solution for a sapphire
sample with the e-beam of 2 keV and 1 nA. The element size is h ≈ 10 nm and
the order of basis functions is from 1 to 4. The variables have been normalized
such that n/ni, p/ni and nT /(NT /2).

expressed as follows:

h ∝ E0

j0
, (3.38)

where h is the average element size. Table 3.1 shows the required element
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Figure 3.6: The mesh pattern for the sample part.

Table 3.1: The average element size.

E0(keV) 0.5 2 5

h(nm) 0.5 2 5

size for the impact zone and under the sample-vacuum interface of a sapphire
sample irradiated with different beam energies but the same current of 1 nA.

3.4 Stability

Since DDR equations are of convection-diffusion type one may expect var-
ious stability-related issues and should be prepared to introduce additional
dissipation via artificial diffusion [50] or up-winding [51, 52].

Instability may emerge if convection dominates diffusion, i.e., in our case,
if the drift current µnn∇V dominates the diffusion current −Dn∇n. Although
at room temperature µn ≈ 38.5Dn, one still needs reasonably high local values
of both n and ∇V for the drift current to dominate and cause any significant
trouble.

For a convection-diffusion transport equation, it has been proved that nu-
merical instabilities occur when the element Péclet number is greater than
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one. The element Péclet number for the equation (2.33) can be defined as

Pe =
µn‖∇V ‖h

2Dn
, (3.39)

which is the ratio of convective to diffusive effect. Therefore, either large
convective transport or small diffusive transport or both would cause numerical
instabilities.

Probably the easiest (in terms of implementation) and cheapest approach
that strengthens the stability of the FEM solver is to define the following
artificial diffusion

Dart = δµn‖∇V ‖h, 0 < δ ≤ 0.5, (3.40)

and solve the equation (2.33) with the new diffusion constant of Dn + Dart.
This approach with δ = 0.5 guarantees the stability of the solver, regardless
of the mesh quality. However, this approach is not the method of choice here,
since it may lead to inconsistent solutions.

Our investigations show that we are not dealing with a highly convective
problem, so it is possible to treat numerical instabilities simply with proper
meshes. Figure 3.7 shows how the resolution of the mesh is determined for
the simulation of a sapphire sample irradiated by a 2 keV 1 nA beam. The
figure presents the local Péclet number at certain times of the simulation with
different mesh resolutions. The first and second rows of Fig. 3.7 correspond
to a uniform mesh with an average element size of 10 and 5 nm, respectively.
As expected, the Péclet number decreased with decreasing the mesh size. Yet
a uniform mesh with 5 nm resolution is not fine enough to keep the Péclet
number below one everywhere. Therefore, the mentioned mesh refinement
strategy has been used applying a finer mesh of h = 1 nm for the impact zone
and under the sample-vacuum interface. The result, shown in the last row
of Fig. 3.7, highlights the potential of the applied h-refinement strategy to
maintain the Péclet number below unity.

To assess the effect of p-refinement on the Péclet number, simulation was
performed with the second-order basis functions. The result, presented in Fig.
3.8, should be compared with those of the second row of Fig. 3.7 since the
same mesh resolution has been used in both cases. The comparison indicates
the inability of p-refinement approach to tackle the numerical instabilities in
the present case.

3.5 Solvers

Unlike the steady state models, the discretization of time-dependent models
doest not directly result in a system of algebraic equations and in fact the
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Figure 3.7: The element Péclet number at certain times from the simulation
of a sapphire sample irradiated by a 2 keV 1 nA beam using different mesh
resolutions and the same basis functions of the first order.

result would be a system of ordinary differential equations. In general, two
types of methods, known as explicit and implicit methods, are used to solve
this system of ordinary differential equations. The choice here is to use an
implicit scheme since they are known to be unconditionally stable. The ap-
plied method is the generalized version of Backward Euler so called Backward
Differentiation Formula (BDF). The BDF is a linear multi-step method for the
numerical integration of ordinary differential equations. Indeed, by applying
an implicit scheme, a system of ordinary differential equations is converted into
a system of algebraic equations. The last strategy concerns the time-stepping
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Figure 3.8: The element Péclet number at certain times from the simulation
of a sapphire sample irradiated by a 2 keV 1 nA beam using a uniform mesh
of h = 5 nm and the second-order basis functions.

Table 3.2: Computational cost corresponding to the simulations of Figs. 3.7
and 3.8.

Mesh Basis function Solver Time DOFs Memory
(min:sec) (GB)

uniform first order fully 00:24 14217 1.68
h = 10 nm coupled

uniform first order fully 02:29 54358 2.02
h = 5 nm coupled
uniform second order fully 16:36 215856 3.94
h = 5 nm coupled

non-uniform first order fully 11:28 184006 3.23
h = 5&1 nm coupled
non-uniform first order segregated 02:38 184006 2.6
h = 5&1 nm

technique. For that, we apply automatic (adaptive) time-stepping technique
in the presence of a smooth source model and a mixed of an automatic and
strict time-stepping methods in the presence of pulsed source model. One
faces a variety of challenges in obtaining the solution to the discretized FEM
equations at each step of the BDF solver. The algebraic equations to be solved
at each time instant are nonlinear and can be treated as either fully-coupled
or segregated. As can be seen from the last two rows of Table 3.2 segregated
equations are easier to solve, although the fully-coupled is generally more sta-
ble. First of all, the system of algebraic equations arising in the discretized
model can be very large with degrees of freedom in the order of several mil-
lions. At each iteration of the Newton-Raphson scheme, a linear system should
be solved. Since the linear systems in two dimensional case are not as large,
the MUMPS (MUltifrontal Massively Parallel sparse direct Solver) solver is
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Table 3.3: Computational time corresponding to the 3D simulation in Section
5.2.

Solver formulation Solution time Memory (GB)

Fully coupled 04:44:38 16.26
Segregated 11:05:24 5.38

applied, which is based on the LU decomposition.
Table 3.3 presents the computational cost of 3D simulations in Section

5.2 with respect to different solving strategies. This table shows that, un-
like two-dimensional case, solving with the fully-coupled approach takes less
computation time compared to the segregated approach, while the segregated
scheme has shown to be cheaper in terms of needed memory in both two- and
three-dimensional cases. Since the degrees-of-freedom was not as large, the
linear systems were solved by the direct solver. Both methods provide very
similar solutions.



4
Model calibration and validation

In this chapter the model is calibrated against published experimental data
and validated by means of comparison with other models. In Section 4.1
the so-called standard yield of insulators is discussed and reproduced for a
wide range of PE energies. Sensitivity of the model output with respect to
material parameters is investigated and the values of parameters that are
either unknown or uncertain are established by tuning. Sections 4.3 and 4.4
are devoted to the analysis of the continuous bombardment and defocused
irradiation modes. In Section 4.4 we compare the charging dynamics predicted
by our model with the predictions of a different one-dimensional model. Most
of the material of this chapter has been published in [53].

4.1 Reproducing the standard yield of insulators

There are two main kinds of yield measurements from insulators: dedicated
measurements with homogeneous pure samples [54, 55] and SEM scans of
insulator-containing targets [56]. In the former case often great care is taken
to avoid the charging effects. Typically, a defocused beam, a weak beam
current, and a pulse of short duration are used. We define the SE yield free
of charging effects as the standard yield and calibrate our code to reproduce
such data as close as possible.

Parameters of standard-yield experiments [54, 55] (current, pulse duration,
irradiation area) imply that the probability for the primary electrons to land
anywhere close to each other on the surface is very small. In fact, with defo-
cused beams and low, short-duration currents the expected distance between
PE’s is large enough to permit neglecting mutual interaction between any two
impact zones. This is the main reason why standard-yield measurement are
free of charging effects. The single-impact source function (2.56) with i = 1

49
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allows to compute directly the expected number of emitted SE’s per single
(isolated) PE impact and is, therefore, applicable for modeling the standard
yield. The cross-section of the axially-symmetric configuration used for cali-
brating the code is shown in Fig. 3.2. With sufficiently large computational
domain the boundary conditions at the sides of the sample have no influence on
the SE yield from a single PE impact and were set to homogeneous Neumann
(zero current condition).

There are two classes of parameters that may be tuned within their physi-
cally admissible ranges: those that determine the shape of the source function
approximating the initial pair generation and the short-time high-energy trans-
port stage, and the material (bulk) parameters that determine the transport
and trapping/de-trapping at much longer time scales. While these time scales
may seem well-separated, in the DDR model, material parameters, especially
the SRV vn, have some influence on the initial transport stage as well.

The pair generation time tg, defined as the time when all pairs have al-
ready been generated, determines the time width of the pulsed source functions
Sn,p(x, t) and of the resulting SE emission current pulse. According to the-
oretical and experimental investigations by D.I. Vaisburd et al [57], between
10−17 and 10−14 s after impact the generated secondary pairs have already
lost their ability to ionize the medium and their energy spectrum begins to
evolve away from the spectrum of the primary beam as the result of collisions.
However, up to 10−14 s most of the generated pairs still have energies above
20 eV. Since “true” SE’s dominating the emission spectrum have energies be-
low 20 eV, most of them must be emitted after 10−14 s. It has also been
found that 10−11 s after impact all generated pairs are already thermalized
with their energy spectra tightly localized around the edges of conduction and
valence bands and trapping becomes more pronounced. Hence, the SE emis-
sion current pulse following a single PE impact should start after 10−17 s and
be almost finished by 10−11 s. Moreover, if one aims at modeling “true” SE’s,
then the relative contribution to the total emission between 10−17 and 10−14 s
should be small, compared to the contribution between 10−14 and 10−11 s. The
DDR method produces exactly this type of pulses for tg set between 10−16 and
10−14 s, see Fig. 4.1.

Notably, some parameters such as the SRV as well as the penetration depth
influence only the magnitude, not the duration of the emission current pulse,
see Fig. 4.2. In that figure Rmin and Rmax are the minimum and maximum
values for the penetration depth estimated with published formulas and Rtuned
is the tuned penetration depth by DDR model (explained below). As can be
seen from Fig. 4.3, trap density and capture cross section influence not only
the magnitude but also the duration of the emission pulse with the expected
tendency for shorter pulses with the increase in the trapping rate.

We emphasize that the curves of Fig. 4.1 should be interpreted in the
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Figure 4.1: Emission current pulse, calculated using the calibrated DDR model,
from sapphire sample after the impact of a single 500 eV PE. Corresponding
standard yields are: 6.07 (tg = 10−14 s), 6.17 (tg = 10−15 s), and 6.14 (tg =
10−16 s).

probabilistic sense. Namely, the integral of this curve between any two time
instants tA ≤ tB is the number of particles expected to be emitted from the
sample surface during the corresponding time interval. Thus, the expected
yield at a given PE energy can be computed by numerically integrating the
emission current between t = 0 and some sufficiently large t > 10−11.

Among the material parameters the carrier mobilities µn,p have been de-
termined with the highest precision and are simply assumed here to have the
same values as in [35, 58, 59, 60]. Strictly speaking, these are the so-called
low-energy mobilities and a more rigorous approach would be to use femtosec-
ond and picosecond mobilities to model the transport of particles during the
corresponding time intervals after the impact [57]. However, mainly due to
the absence of data about these high-energy mobilities, here we use the same
low-energy mobility values at all times. Nevertheless, the extremely short
duration [10−17, 10−12] s of the high-energy regime allows us to expect the
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Figure 4.2: Influence of SRV and penetration depth on the emission current
pulse following the impact of a single 500 eV PE on a sapphire sample.

approximations made in the DDR approach concerning the mobility values
during this stage to be appropriate at least in the numerical sense. Notice
that the changes in the yield do not exceed 0.2 when we vary the generation
time tg between 10−16 and 10−14 s in Fig. 4.1. Thus, to have any significant
impact on the yield the mobility would have to vary dramatically during this
interval of time.

Parameters σn,p and NT related to trapping weakly influence the magni-
tude of the emission current pulse and have, generally, large uncertainties. For
example, in a study set out to investigate electron trapping in alumina [61]
a relatively large variation of 10−21 to 10−15 cm2 was reported for the elec-
tron capture cross section σn in polycrystalline alumina. The same study also
revealed that polycrystalline metal oxide materials like sapphire (α-alumina)
generally have trap site densities NT in the order of 1018 cm−3. Insulating
solids are often grouped into three types: crystals, polycrystalline and amor-
phous [62]. The trap site density has been estimated to be around 1016 cm−3

for an alumina crystal, from 1017 to 1020 cm−3 for polycrystals, and around
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Figure 4.3: Influence of the total trap density and electron capture cross-section
on the emission current pulse following the impact of a single 500 eV PE on
a sapphire sample.

1021 cm−3 for an amorphous sample.
Probably one of the most comprehensive and systematic studies on charge

transport and trapping in silica has been done by DiMaria and co-workers
[63, 64, 65, 66], where a strong link has been identified between the capture
cross sections and the nature of traps. The capture cross sections have been
estimated to range from 10−18 to 10−13 cm2. Confusingly, the values and
ranges for these parameters are not limited to the above mentioned estimates
[67, 68, 69].

Another parameter that strongly influences the magnitude of the emission
current pulse is the maximum PE penetration depth R. It determines the
spatial shape of the source functions Sn,p(x, t) and, therefore, the expected
number of particles in the neighborhood of the sample-vacuum interface – the
main contributors to the emission current. Many semi-empirical expressions
have been proposed for R with the following general form

R(ρ,E0) = CEΓ
0 , (4.1)
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Figure 4.4: The maximum penetration depth of PE’s in sapphire as a function
of PE energy.

where the values for C and Γ vary from study to study [23, 26]. The constant
C depends on the material and the exponent Γ has been mostly assumed to
have a certain material-independent value, although, in some studies Γ has
also been considered material-dependent [70].

The exponential expression for R emanates from Bethe’s theory for the
stopping power of charged particles in matter. Bethe’s formula involves the
density, atomic number, and atomic weight of the material. However, with
the exception of studies by Kanaya and Okayama [71] and by Feldman [70],
the density of the material is considered to be the only parameter influencing
the electron penetration depth. As of now the estimation of R is far from
being certain as can be seen from large discrepancies in the penetration depth
estimates employed by different authors, see Fig. 4.4 and Fig. 4.6. Apparently,
similar disagreement concerning the penetration depth exists for metals as well
[72].

Having identified vn, σn,p, NT , and R as the most uncertain of the model
parameters influencing the magnitude and duration of the emission current
pulse we have performed a series of numerical experiments to determine the



Section 4.1 Reproducing the standard yield of insulators 55

Primary energy (keV) 

0 2 4 6 8 10 12

S
E

 y
ie

ld

0

1

2

3

4

5

6

7

8

Sintered alumina (Dawson 1966)

Sapphire (Dawson 1966)

Polished sapphire (Dawson 1966)

Monte Carlo (Dapor, 2011)

 Empirical formula (Agarwal 1958)

DDR (v
n
=1.35 ×10 5 cm/s)

DDR (v
n
=2 ×10 5 cm/s)

Figure 4.5: The standard (uncharged) yield of sapphire as a function of PE
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sensitivity of the DDR model output (SE yield) with respect to changes in
these parameters. During these simulations some of the factors would be held
fixed while other were varied with the goal to achieve the best possible fit
between the computed SE yields and the experimental data.

Three key points emerged from this analysis:

• The shape of the yield-energy curve is influenced by the capture cross
section and the density of traps. Namely, the larger the trap density and
the capture cross section, the lower is the high-energy tail of the curve.

• The SRV affects the height not the shape of the yield-energy curve.

• Following any one of the published penetration depth formulas together
with adjusting the values of material parameters within their permitted
ranges does not produce yield-energy curves fully compatible with the
experimental data over the whole range of PE energies.

In view of these facts and the aforementioned uncertainty about the en-
ergy dependence of the penetration depth, fine-tuning R for each PE energy
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against the available experimental data was deemed by us as not only admis-
sible, but also necessary. While tuning R other parameters have been fixed
at the best found fitting values within their reported ranges. In particular,
the electron and hole capture cross-sections were set at the frequently used
values of 10−15 cm2 and 10−17 cm2, respectively. The trap site density turned
out to be slightly higher than the reported upper bound 1019 cm−3, namely,
3×1019 cm−3, leading to the initial (equilibrium) density of trapped electrons
of 1.5× 1019 cm−3, close to what was used by us previously [35].

For PE energies higher than 2 keV the tuned penetration depths for sap-
phire and silica presented in Fig. 4.4 and Fig. 4.6, perfectly match those of
Lane and Zaffarano [73] and are well-described by the formula of Young [74]:

R(ρ,E0) = 115
E1.66

0

ρ
[nm], E0 ≥ 2 keV. (4.2)

However, according to Young [74] the exponent of E0 is 1.35, while the present
results agree with the earlier reported [73] value of 1.66. There is some ar-
gument about this exponent in the literature. For instance, the study about
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Kapton and Teflon [75] supports the idea of 1.66. Yet, the investigation of
Salehi and Flinn [76] with V2O5 − P2O5 materials shows that, although at
low energies the exponent is close to 1.35, neither 1.35 nor 1.66 provide good
matches with higher-energy experimental data. The value of 1.66 was assumed
for sapphire in several other investigations as well [77, 78].

As can be seen from the insets of Fig. 4.4 and Fig. 4.6 at energies below
2 keV the tuned penetration depths deviated from the formula (4.2) and did
not follow any other published formulas, while remaining within their range.
Least squares fitting of a separate exponential formula of the type (4.2) to
the tuned penetration depths for alumina and silica did not provide a satis-
factory fit. This suggests that below 2 keV the energy exponent Γ is indeed
material dependent. Hence, for calibration purposes penetration depths bel-
low 2 keV must be determined by fitting to the corresponding standard yield
data, whereas above this energy the depth may be safely deduced from the
formula (4.2).

With the tuned penetration depths the DDR method provides practically
exact yield-energy curves for the whole range of PE energies. As was men-
tioned previously, the height of the yield-energy curve is mainly controlled by
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the surface recombination velocity at the sample-vacuum interface. In Fig. 4.5
we compare the output of the calibrated DDR model with the standard-yield
data [54] (reported also in the database of Joy [79]), as well as Monte-Carlo
simulations [80] and the empirical formula of Agarwal [81] for alumina sam-
ples. As far as the DDR model is concerned the only difference between the
unpolished and polished alumina samples is the SRV at the sample-vacuum
interface (1.35× 105 cm/s and 2× 105 cm/s, respectively), which sounds rea-
sonable, since surface polishing should not affect the maximum penetration
depth.

Comparison of the results by the calibrated DDR model with the exper-
imental data [55], Monte-Carlo simulations [82], and the formula of Agarwal
[81] for a silica sample is shown in Fig. 4.7. The tuned SRV at the silica-
vacuum interface (0.8 × 105 cm/s) is lower than the SRV at the alumina-
vacuum interface, indicating that vn depends on both the material and the
surface properties.

DDR simulations indicate that the first and the second unit yields for
sapphire occur around 50 eV and 10 keV, respectively. For silica, the unit
yields are observed below 50 eV and again at 4.35 keV. The values of the
calibrated material parameters used in the present study are listed in Table
4.1.

A nearly linear dependence of SE yield on the SRV has been identified in
our investigation. Based on this property, the following optimization proce-
dure has been devised for tuning the value of SRV:

• Let Yexp be the SE yield measured for PE’s with energy E0.

• Let v
(0)
n be the initial guess for the SRV, and let Y (v

(0)
n ) be the SE yield

computed by the DDR solver with the SRV set to v
(0)
n .

• For v
(0)
n sufficiently close to the true (optimal) value we can assume a

linear relation:

Yexp − Y (v(0)
n ) = α(vn − v(0)

n ). (4.3)

Since, obviously, Y (0) = 0, the coefficient α can be obtained as α =
Y (v

(0)
n )

v
(0)
n

, so that v
(1)
n = v

(0)
n

Yexp

Y (v
(0)
n )

.

• Compute Y (vn(1)) with the DDR solver.

• If Y (v
(1)
n ) is sufficiently close to Yexp, then stop and set vn = v

(1)
n . Oth-

erwise, continue with v
(1)
n as the new initial guess.
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Table 4.1: Parameters of dielectric materials.

Parameter SiO2 Al2O3 Unit

ε 3.9 (ref.[83]) 10 (ref.[14])
µn 20 (ref.[60]) 4 (ref.[58]) cm2V−1s−1

µp 0.01 (ref.[60]) 0.002∗ cm2V−1s−1

σn 10−15 10−15 cm2

σp 10−15 10−15 cm2

vth 107 (ref. [84]) 107 cms−1

ρ 2.2 (ref. [85]) 3.98 (ref. [85]) gcm−3

Eg 9 (ref. [86]) 9 (ref. [87]) eV

Nt 3× 1019 3× 1019 sapphire
1020 amorphous

cm−3

vn 0.8× 105
1.35× 105 unpolished
2.0× 105 polished
1.4× 105 amorphous

cms−1

*This value could not be found in literature and has been chosen by analogy with

the relation between the electron and hole mobilities in SiO2.

In principle, this process should be repeated with the SE yield data for a
whole range of PE energies E0. Unless changes in E0 significantly alter the
temperature of the sample, the SRV of a given material is supposed to be
independent of E0. Since the corresponding tuned values of vn for the studied
materials are all close to each other, so we have an additional confirmation
that the DDR method is working properly.

4.2 Aftermath of a single impact

In this section we investigate the events following the injection of a single
primary electron into a neutral dielectric sample. The goal of these numerical
experiments is to estimate the space-time scales of the dynamics separately for
all three particle species, i.e., n, p, and nT as well as the total charge density
q(NT /2 + p− n− nT ).

Figures 4.8 and 4.9 show the snapshots of the charge densities relative to
their initial values in the two materials at 1 ps and 1 ns after impact. These
images too should be interpreted in the probabilistic sense as the expected
charge density. As can be seen, the smaller mass density of SiO2 means, that
with the same E0 the maximum PE penetration depth R and the center of
the initial charge distribution are deeper for SiO2 than for Al2O3. The overall
shapes of the initial charge distribution are different as well, see eq’s. (2.51)
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and (2.53), with the one of SiO2 being broader. Hence the DDR dynamics
starts with different initial states in these materials.

The generation of charge pairs by ionization is considered to take place
in the period of 1 femtosecond after injection (tg=1 fs). At tg the density
of free electrons reaches its maximum of 7.12 × 1018 and 1.89 × 1018 cm−3

in the center of impact region for Al2O3 and SiO2, respectively. The density
of free holes reaches its maximum at the same time of 1 fs. The maximum
density of free holes in this stage for Al2O3 is 6.9× 1018 cm−3 and for SiO2 is
1.83×1018 cm−3. Table 4.2 shows that the density of electrons decreases faster
than that of holes since electrons are involved in three different processes; i.e.
emission, trapping and recombination, while holes are only involved in the
latter two. The density of holes remains constant for a short period of time
(less than 0.1 ps). What is also apparent from the Figs. 4.8 and 4.9 is the
difference in the spatial distributions of the electrons and holes at the end of
the studied time period (1 ns). The maximum density for the electrons is in
the center of impact zone but for the holes it is at the surface around the
injection point. At 1 ns after impact, the densities of both free electrons and
holes are already close to the intrinsic carrier concentration of the materials,
(the last columns of Table 4.2).

The density of trapped electrons is initially equal to its equilibrium value
and this equality remains for a period of 0.1 ps. Afterwards, detrapping process
gradually starts from the center of impact zone as well as the sample surface.
Simultaneously, a weak trapping occurs around the impact zone. As can be
seen form Figs. 4.8 and 4.9 and also Table 4.2, the two processes proceed in
their own regions leading to a significant detrapping of electrons mainly at
and near the sample surface.

The interplay of the three charge species and the contribution of empty
traps lead to the total charge density resembling an expanding spherical wave
with initially an apple-shaped accumulation of negative charge at the end of
pair generation time (the first columns of Figs. 4.10 and 4.11). This negative
charge is seen as a disk on the surface of the sample. A plausible explanation
for the presence of only negative charge at very early stages after the injection
would be that during this very short period of time, charges are not mobile
enough to escape from the impact region. Indeed, the generated electrons
and holes are spatially close enough to compensate each other while they
are not yet recombined. Therefore it could be concluded that this negative
charge originates from only one extra primary electron in the sample. Another
evidence that supports this scenario is that the depth of the occupied zone by
negative charge is the same as the maximum penetration depth of the primary
electron and so there are no charges outside the impact zone.

Afterwards, the pattern is transformed into a different structure, arriving
at a positive charge region in the middle surrounded by a shell of negative
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Figure 4.8: The density of free electrons, free holes and trapped electrons
( cm−3) in sapphire (Al2O3) at certain times after the impact of a single pri-
mary electron with the energy E0 = 1 keV. Vertical cross-section, side length
is 100 nm.

charge, see the second and third columns of Figs. 4.10 and 4.11. Due to the
emission of electrons the initial predominantly negative charge at the sample-
vacuum interface is gradually replaced by a disk of positive charge in the
middle and at the injection point surrounded by a ring of the negative charge.
Since the electrons are much faster than the holes, they can readily escape form
the impact zone, leading to the result shown in the second columns of Figs.
4.10 and 4.11. The observed space-charge behavior is in a close agreement
(only in terms of charge pattern) with the earlier studies of Renoud et al
[60, 88].

In Al2O3, the positive charge reaches its maximum of 0.33 C/cm3 at the
surface at t = 1 ns and the negative charge has the maximum of (in the sense
of absolute value) −0.033 C/cm3 at t = 1 fs and is situated in the center of
impact zone. In SiO2, the positive charge increases its maximum of 0.08 C/cm3

at the surface at time t = 1 ns and the negative charge has the maximum of
−0.009 C/cm3 in the center of impact zone at t = 1 fs. As can be seen from
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Figure 4.9: The density of free electrons, free holes and trapped electrons
( cm−3) in silica (SiO2) after the impact of a single primary electron with
the energy E0 = 1 keV. Vertical cross-section, side length is 100 nm;

Table 4.3, total charge up to 1 ps is predominantly supplied by free charges.
Thereafter the situation gradually changes by involving the free charges in
generation/recombination (trapping/detrapping) process, resulting in a total
charge that comes mainly from the trapped charges at time 1 ns, (see the last
column of Table 4.3).

Obviously, the electric potential closely follows the distribution of the total
charge. Initially we observe a negative potential in the middle of the impact
zone. For example, in Al2O3 at the beginning a negative potential with the
maximum of −0.07 V is observed in the impact zone at tg. After less than 1 ps,
a transition occurs which results in the positive potential in the middle.The
maximal value achieved by the positive potential is 0.41 V at in the center of
impact zone at 1 ns.
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Figure 4.10: Evolution of the total charge (NT /2 + p− n− nT )q (C cm−3) in
sapphire (Al2O3) after the impact of a single primary electron with the energy
E0 = 1 keV. Top row: vertical cross-section, side length is 100 nm; bottom
row: top-view of the sample-vacuum interface, diameter is 200 nm.

4.3 Pulsed source versus smooth source

The electron gun of a typical SEM is able to produce PE currents in the range
of pico to nano Ampéres (i.e. average interval between PE impacts from nano
to picoseconds). The charge dynamics following the impact of a single PE,
analyzed in the previous section, clearly shows that the next electron faces
variable conditions in the sample depending on the time of its arrival.

Since the main features of the charge dynamics in SiO2 and Al2O3 are
essentially similar, we restrict our discussion to the latter material. In this
section an Al2O3 sample is considered under focused beams with the current
of 10 nA (average time between PE impacts is 16 ps) and the primary energy
of 5 keV. In the case of bombardment, we opt for energies above 2 keV, so
that the penetration depth estimation follows formula (4.2).

We have performed a simulation with 100 PE impacts and compared the
idealistic source with periodic impacts, see eq. (2.56), with the time-uniform
source model, see eq. (2.57). In fact, in the more realistic source, PE’s impact
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Figure 4.11: Evolution of the total charge (NT /2 + p − n − nT )q (C cm−3)
in silica (SiO2) after the impact of a single primary electron with the energy
E0 = 1 keV. Top row: vertical cross-section, side length is 100 nm; bottom
row: top-view of the sample-vacuum interface, diameter is 200 nm.

the sample at time instants drawn from the Poisson distribution. The source
models considering regular and Poisson assumption impacts can be formulated
as follows:

Sn,p(x, t) =
∑
i

gn,p(x, Elan)

L
(
i
(
q
j0

)
+ tg

)
− L

(
i
(
q
j0

)) dL
dt

(
t− i

(
q

j0

))
. (4.4)

Whereas impacts following the Poisson distribution can be modelled as:

Sn,p(x, t) =
∑
i

gn,p(x, Elan)

L
(
ri

(
q
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)
+ tg

)
− L

(
ri

(
q
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)) dL
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(
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(
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))
,

r0 = − ln(1− r)
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)
,

ri = ri−1 − ln(1− r)
(
q

j0

)
, for i > 0,

(4.5)
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where j0 is the beam current and r is a random number in the interval (0, 1).

From the mathematical point of view no steady-state solution exists with
the pulsed source model (where each PE impact is modelled individually). At
most, one can expect a time-periodic solution if PE impacts happen at regular
intervals. The continuous source may, on the other hand, result in a solution
that converges to a steady state for t→∞.

Figure 4.12 shows the variation of total (including reverse electrons) and
SE yields with time obtained by the regular pulsed model (4.4). The result
indicates a sharp increase in the yield at the time of impact. It is also ob-
served that in the presence of charging, the yield peaks move downwards while
charging does not significantly affect the pulse duration. From the computa-
tional point of view and based on our investigation, performing simulation
with regular pulsed model using automatic time-stepping method would re-
sult in missing some of the pulsed sources. So, one possibility is to apply
strict time-stepping method resulting in a time-consuming and costly simula-
tion. Here, in order to have a reasonable computational time and catch the
pulsed sources, we have applied a combination of both strict and automatic
time-stepping methods with strict time-stepping active only for a short period
after impacts and automatic time-stepping during the relaxation periods be-
tween impacts. The same strategy can not be followed with the Poisson model
of (4.5) since the impact times are random.

Figure 4.13 shows the variation of the total (including reverse current) and
SE yields with time by the time-average (2.55) and continuous (2.57) models.
The time-average yields have been calculated based on the results of pulsed
model. The irregular behavior of the yield curve by time-average model led
us to perform simulation with finer time steps and 50 pulsed impacts. As
can be seen from Fig. 4.13, the finer time-stepping delivers a smoother yield
curve by the time-average scheme as well as a result closer to the yields of
continuous source model. Apparently the time-average source model tends to
underestimate the instantaneous SE yield by almost 10%. One can correct
for this by increasing the effective beam current value. Otherwise, the time-
average model is much easier to handle numerically.

4.4 Continuous irradiation with defocused beams

Sustained bombardment, even with defocused beams, increases the probability
for an incoming PE to fall in close proximity to a previous impact zone. This
will introduce the interaction between the previously trapped charges and the
newly generated pairs, so that the yield will vary with time. At the moment
a standard experimental procedure for measuring yield variation during sus-
tained bombardment does not exist. Therefore, here we compare predictions
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Figure 4.12: The variation of total and SE yields against time by the regular
impacts of 100 electrons with the energy and current of 5 keV and 10 nA,
respectively. The solid line shows SE yield and the dotted line shows total
yield including reverse current.

of the DDR model with the earlier one-dimensional simulations by the Flight-
Drift (FD) model – a self-consistent approach by Touzin et al[15]. FD model is
a current-density based formalism incorporating a detailed recombination and
trapping mechanism. For comparison purposes we have considered the same
material (amorphous alumina), current density, and the penetration depth
formula (energy exponent in (4.2) is set as Γ = 1.55). We switch now to the
continuous (time-integrated) source function (2.57), (2.58)–(2.61) suitable for
long-time modeling.

Since the sample is amorphous alumina rather than sapphire, we choose a
higher trap density of 1020 cm−3 pertaining to the so-called shallow traps[15].
We set the SRV to 1.4× 105 cm/s, close to what we have obtained above for
unpolished sapphire. We note that in time-domain investigations the quantity
of interest is not the charge yield, but the instantaneous ratio of the net SE
emission current to the incident beam current – SE emission rate.

Taking into account that our approach is fundamentally three- not one-
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Figure 4.13: The variation of total and SE yields against time by the the
time-average and continuous models with the energy and current of 5 keV and
10 nA, respectively. The solid line shows SE yield and the dotted line shows
total yield including reverse current.

dimensional, the results presented in Figs. 4.14 and 4.15 show general agree-
ment with the Figures 10 and 11 by Touzin et.al [15], especially for the surface
potentials at low PE’s and the corresponding SE emission rates. However,
at higher PE energies the accumulated negative potential is smaller (lower
bounds: −0.9 kV in 3D-DDR against −2.5 kV in 1D-FD) and the yield col-
lapses to unity faster (upper bounds: ∼ 1 ms in 3D-DDR against ∼ 10 ms in
1D-FD).

It appears that the distance to the closest Dirichlet boundary, where the
electric potential is maintained at some fixed value, e.g., zero, strongly affects
the value of the surface potential at the sample-vacuum interface. Apparently,
the most important parameter controlling the magnitude of the potential is
not the total charge density, as one would naively assume, but the proximity
to an ohmic contact. Most likely this is due to the image-charge effect, which
partially screens the charge accumulated in the sample.

Numerically, the screening effect of the Dirichlet condition can be min-
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Figure 4.14: Time evolution of the yield from an amorphous alumina sample
versus PE energy for a defocused beam with current density of 10−5 A/cm2.
The distance between Σ1 and Σ2 is 1 mm.

imized by placing the ohmic contact Σ1 as far as computationally possible
from the sample surface Σ2. Thus, we have placed Σ1 at various distances
from Σ2 and, as can be seen in Fig. 4.16, the surface potential does reach sig-
nificant negative values when the Dirichlet boundary is far enough. However,
the time of collapse of yield to unity becomes even shorter in these numeri-
cal experiments and remains at odds with the previous one-dimensional FD
simulations.
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Figure 4.15: Time evolution of the electric potential at the surface of an amor-
phous alumina sample versus PE energy for a defocused beam with current
density of 10−5 A/cm2. The distance between Σ1 and Σ2 is 1 mm.
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Figure 4.16: Time evolution of the yield and the surface potential from an
amorphous alumina sample at 10 keV PE energy versus the proximity to the
ground contact for a for a defocused beam with current density of 10−5 A/cm2.



5
Applications

The aim in this chapter is to study the charging effect in insulators subjected
to electron bombardment by focused stationary and moving electron beams.
Utilizing the information from Chapter 4, in Section 5.1 we present the re-
sults of numerical experiments concerning the SE yield and surface potential
variations in e-beam irradiated insulators. Section 5.2 presents further quan-
titative analysis of a more realistic scenario with a moving beam, including a
dynamic line-scan of a laterally inhomogeneous target. The final section of this
chapter deals with the simulation of electron emission from a thin membrane
pertaining to a transmission electron multiplier called Tynode.

5.1 Focused beam

In the first series of numerical experiments we use the axially symmetric target
of Fig. 3.2 illuminated in the middle by a focused stationary beam. The
distance between Σ1 and Σ2 is set to 0.1 mm. The samples studied in Fig’s 5.1–
5.4 are isolated in the sense that the only boundary penetrable for particles in
the sample-vacuum interface Σ2. We consider the worst case scenario – perfect
focusing – where all PE’s hit the same spot on the sample surface. It is easy
to deduce that defocusing will affect low-energy PE’s with their small impact
zones much stronger than higher energy PE’s with their extended impact
zones. To anticipate the results for more realistic partially focused beams the
reader is advised to compare plots of this Section 5.1 with those presented in
Section 4.4.

Figure 5.1 pertains to an unpolished sapphire sample irradiated at 5 keV,
where the standard yield is around 1.7 as can be deduced from Fig. 4.5. The
net SE emission rate – yield for short – starts at the standard yield value,
but after a certain interval of time drops to unity for all beam currents. The

73



74 Applications Chapter 5

stronger the current, the shorter is the standard yield interval preceding the
drop. In fact, it is easy to calculate that the drop in the yield happens after
a certain amount of charge has been injected into the sample by the beam,
which confirms conclusions of many previous investigations. The point of
fastest decline in the yield roughly corresponds to 3 × 10−18 C of injected
primary charge, i.e., approximately 19 primary electrons.

While the magnitude of the surface potential in the steady sate regime
has shown to be independent of the beam current in the presence of positive
potential (Fig. 5.1), the result presented in Figure 5.2 shows that the same
cannot be claimed for the higher PE of 30 keV with negative potential. In fact,
the result introduces the beam current as an influential factor in controlling
the magnitude of the surface potential in the steady state.

The DDR model does not substantiate the usual intuitive explanation
[60, 15] concerning the reasons behind this seemingly inevitable convergence
of yield to unity with time. Commonly it is argued that the charging of the
sample leads to the change in the landing energy of PE’s, so that the yield no
longer corresponds to the standard yield of that energy, but rather to another
point on the standard yield curve of Fig. 4.5. If, for example, the standard
yield is greater than one, then the sample accumulates positive charge. The
landing energy increases and one should look to the right along the standard-
yield curve to know what the new yield should be. If, on the other hand, the
standard yield is less than one, then the accumulated negative charge reduces
the landing energy of the PE’s, thus, moving to the left along the standard-
yield curve. Thus, it is argued, a yield larger than one would eventually lead
to a positive potential high enough to shift the landing energy of primary
electrons to the second unity-crossing point on the standard yield curve. This
argument, while intuitively appealing, does not take into account the spatial
distribution, the dynamics, and the screening of charges. In fact, in our sim-
ulations the accumulated potential was never strong enough for the landing
energy to reach a unity-crossing point.

The unity-crossing argument for small PE energies and larger than one
standard yields has been previously criticized in [89, 90], where the significant
role of the reverse current in the yield drop was pointed out. We also believe
that the PE landing energy change alone cannot explain the yield collapse,
since in all our simulations the accumulated potential was never strong enough
for the landing energy to reach a unity-crossing point.

For example, Figure 5.1 (bottom) clearly shows that the value of the posi-
tive surface potential is insignificant with respect to the PE energy and cannot
possibly change the landing energy by so much that it becomes 10 keV – the
second point along the standard-yield curve where it crosses the unity line.
What the DDR model shows, though, is that the drop in the yield coincides
with the rapid increase in the reverse current, caused by the relatively weak
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Figure 5.1: Time evolution of the yield (top) and the surface potential at the
beam entry point (bottom) for a sapphire sample continuously irradiated by a
focused stationary beam at 5 keV PE energy – effect of beam current. Top:
dashed line – positive part of the SE emission rate through the sample-vacuum
interface, solid line – net SE emission rate, including the negative reverse-
electron current.

positive surface potential attracting low-energy SE’s back to the sample. Fig-
ure 5.1 (top) compares the contribution of the positive part vn(n − ni) of
the emission current density (dashed lines) to the net SE emission rate (solid
lines). The onset of the reverse current can be deduced from the emergent
discrepancy between the solid and dashed curves, which coincides with the
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Figure 5.2: Time evolution of the yield (top) and the surface potential at the
beam entry point (bottom) for a sapphire sample continuously irradiated by a
focused stationary beam at 30 keV PE energy – effect of beam current.

positive surface potential reaching the value Vmin = 1 V in the bottom plot of
Fig. 5.1. Moreover, reverse current remains significant even after the net yield
reaches unity. Thus, the unity yield is the product of a neat dynamic bal-
ance between the PE injection, positive outward SE emission, and the reverse
reverse current. The result is a steady-state process and the conservation of
total charge (on average): one PE in, one SE out, and a conserved ‘circular’
current at the sample-vacuum interface.

Figure 5.3 (sapphire) and Figure 5.4 (silica) correspond to the beam current
of 100 pA and show the time evolution of the yield and potential for various
PE energies. Comparison with the defocused beam irradiation of Fig’s. 4.14–
4.15 reveals a larger discrepancy in convergence times of the yield to unity for
different energies in the focused beam case. The yield drops much sooner at
lower PE energies than it increases at higher PE energies.

Similarly, from the surface potential plots of Fig’s 5.3–5.4 we conclude
that the rise of sub-unit yields (above 10 keV for sapphire and above 4 keV
for silica) to unity cannot be explained by the change in the landing energy,
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Figure 5.3: Time evolution of the yield (top) and the surface potential at the
beam entry point (bottom) for a sapphire sample continuously irradiated by a
focused stationary beam of 100 pA – effect of PE energy.
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as the associated potential is never negative enough for that. Minimizing
the screening by removing the Dirichlet boundary Σ1 farther away from the
sample-vacuum interface Σ2 we could bring the surface potential in silica down
to −15 kV, which, however, was still not enough to decrease the landing energy
of PE’s from 30 keV down to the required 4.35 keV, where the standard yield
of silica is equal to one. We propose a much simpler alternative explanation:
sub-unit yields increase the number of free electrons near the sample-vacuum
interface, which, in its turn, increases the SE emission rate up until the steady-
state condition of unit yield is reached. Sometimes, as at 20 keV in sapphire
and at 4 keV in amorphous alumina, the yield grows so fast that there is
an overshoot, and it temporarily becomes larger than one, causing a positive
surface potential, which creates the reverse current pulling the yield back to
unity.

Still, while the maximal magnitude of the positive potential is indeed con-
trolled by the reverse current, it is wrong to assume that the Σ1 surface has
no influence in this case. For instance, Fig. 5.5 corresponds to an isolated
sapphire sample irradiated with a 1 nA focused beam of 5 keV PE’s. It shows
that a close ground contact suppresses the surface potential with positively
charged samples just as well as it does with negatively charged ones. In par-
ticular, the distance of 0.1 µm to Σ1 does not allow the potential to raise above

3 V, while, in principle, our boundary condition term α∂V∂ν
−

would allow the
potential to reach 10 V.

We have also performed simulations with and without the reverse current

term α∂V∂ν
−

in the boundary condition, see Fig. 5.6. As one can see from
the plots in the first column of Figure 5.6, the effect of reverse current is not
significant when the ground contact is very close to the sample surface. Plots
shown in the second column of Fig. 5.6 demonstrate the increasingly important
role the reverse current plays in our model when we put the ground contact
further away from the sample surface.

Since the coupled DDR equations is a very difficult system to analyze, it is
perhaps easier to illustrate the Σ1 proximity effect directly with the following
simple Poisson equation on a 1D domain shown in Fig. 5.7:

−u′′ =


1

ε1
, 0 ≤ x ≤ a;

0, a ≤ x ≤ b,
u′(0) = 0, u(b) = 0, (5.1)

which structurally mimics the Poisson part of the DDR model.

Assuming u to be a continuously differentiable function (u ∈ C1), the exact
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Figure 5.5: Suppression of surface potential by the Σ1 proximity for a positively
charged sample.

solution of equation (5.1) is

u =


− 1

2ε1
(x2 + a2) +

1

ε1
ab, 0 ≤ x ≤ a;

1

ε1
(−ax+ ab), a ≤ x ≤ b,

(5.2)

where the linear dependency of u on the distance to the condition u(b) = 0 is
clear, i.e. the presence of b in the solutions.

The unity yield appears to be a stable equilibrium state for isolated sam-
ples. The precise mathematical nature of this state requires further theoretical
analysis, beyond the scope of this paper. At the moment we can conclude that
there are two processes – reverse current and trapping – that play significant
role in the approach to equilibrium. Starting from the initial state correspond-
ing to the standard yield above unity (low PE energies), the sample gradually
acquires positive charge, which turns on the reverse current and reduces the
yield towards unity. The sample ends up positively charged in equilibrium
with the surface potential bounded above by Vmax.

Starting from the standard yield below unity (higher PE energies), the
sample accumulates electrons, which are being transported by electrostatic
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Figure 5.7: The considered 1D domain

drift and collision-induced statistical diffusion towards the sample boundary.
While energetic electrons coming from higher depths will initially be com-
pletely lost to trapping (which account for both the energy loss and actual
trapping in our model), as traps get filled more energetic electrons will survive
the transport to the sample surface. This leads to the gradual increase in the
emission through the sample-vacuum interface, thereby increasing the yield.

In addition, trapping plays the role of a damping factor in the swing of
the yield towards the unity. If the trapping is strong enough, then we have
the so-called overdamped oscillation, where the unity yield is approached from
below and remains at the unit value as soon this value is reached (30 keV in
sapphire). The sample ends up negatively charged in equilibrium with the
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values of the surface potential reaching a few negative kV, depending on the
proximity of the Dirichlet contact.

If the trapping is relatively weak, then we have a simple damped oscillation,
where the yield overshoots the unity. The resulting positive charging switches
on the reverse current and the yield returns to unity. The sample ends up
weakly positively charged at equilibrium in this case.

We note that the relative strength of trapping (trapping rate) depends on
the local balance between the free-electron density and the number of available
trapping sites.

The yield does not always have to drop/increase to unity, though. If it
was the case, all insulators would look exactly the same under SEM. One
possible scenario, where the yield may not converge to unity, is a (partially)
grounded sample. The condition on charge conservation that requires a unit
yield in an isolated sample may be relaxed if the sample is grounded. It is,
of course, an open question whether a contact between an insulator and, say,
a metallic grounded holder can ever be made efficient enough to allow for an
easy passage of charges. Assuming for simplicity a perfect ohmic contact, the
charge conservation no longer requires the exact unit yield for the sample-
vacuum interface as additional electrons may enter the sample via the ground
channel. This situation is illustrated in Fig. 5.8, where we have imposed an
ohmic boundary condition on the side of sapphire sample. Although the yield
in such a grounded sample does not stay at the level of the standard yield
at that energy, after a few oscillations it stabilizes at a slightly lower value,
well above unity. This effect is also observed in samples with a relatively
poor ground contact described by a Robin-type boundary condition with a
low surface recombination velocity.

Although, the surface potential does take longer to build up in a sample
with contact, Fig. 5.8 (bottom), the behavior of the surface potential at the
injection point is not very revealing. It is, perhaps, more instructive to look
at the distribution of the total charge at the surfaces of isolated and grounded
samples under identical irradiation conditions. While the surface potential
is weaker in the grounded case, Fig. 5.8 (bottom), the images of Fig. 5.9
explicitly show that the amount of accumulated positive charge at the surface
of a grounded sample is higher. Also the spatial distributions of the surface
charge are different. A large disk of positive charge surrounded by a ring of
negative charge is seen in the grounded sample, whereas, in the isolated sample
most of the positive surface charge is concentrated around the injection point
followed by a weaker positive ring some distance away.



Section 5.2 Moving beam 83

10 -6 10 -4 10 -2 10 0 10 2

Y
ie

ld

0

0.5

1

1.5

2

Metallic contact

Isolated

Time (ms)

10 -6 10 -4 10 -2 10 0 10 2

S
u

rf
a

c
e

 P
o

te
n

ti
a

l 
(V

)

0

2

4

6

8

Figure 5.8: Time evolution of the yield and the surface potential from isolated
and grounded sapphire samples for 5 keV PE energy and 100 pA beam current.
The distance between Σ1 and Σ2 is 0.1 mm.

5.2 Moving beam

Another situation well-known to SEM practitioners where the yield does not
drop/increase to unity is the rapid scanning of the sample by a moving focused
beam. To simulate the scanning process the source function (2.51) has to be
modified to account for the motion of the beam. This is achieved by setting
x0(t) = x0 +vt, where v is the velocity of beam displacement in the horizontal
plane. Consider a 1× 4 µm2 sample surface imaged with a 1000× 4000 pixels
resolution at the rate of 30 frames per second. Then, the beam moves across
the sample with the horizontal speed |v| ≈ 33 µm/s.

We consider an inhomogeneous sample consisting of adjacent blocks of
sapphire and silica, see Fig. 5.10. Samples consisting of one insulator on top
of another have been previously studied with a one-dimensional approach [24],
while vertical stacks of insulators, similar to the one considered here, have been
recently investigated experimentally [56].

We simulate a single scan line through the middle of the sample perpendic-
ular to the interface between the adjacent insulators. Across the vertical in-
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Figure 5.9: Build up of the surface charge (NT /2 + p− n− nT )q (C/cm3) in
isolated (top row) and grounded (bottom row) sapphire samples irradiated by a
focused stationary 100 pA beam of 5 keV PE’s. The distance between Σ1 and
Σ2 is 0.1 mm.

terface between the two different insulators the source function (2.51) exhibits
a discontinuity due to the change in material density and the corresponding
maximum PE penetration depth.

Since cylindrical symmetry is lost, the following DDR computations had
been performed in the full three-dimensional mode. Figure 5.11 shows the
yield as a function of the beam position along its trajectory for an isolated
sample. These curves correspond to the intensity of pixels in a single-line SEM
image. The standard yields of both insulators at the considered PE energy
are also shown as dotted lines.

First of all we notice the difference between the left-to-right (from sapphire
to silica) and the right-to-left (from silica to sapphire) scanning modes. This
difference is easy to understand by looking at Figs. 5.12, 5.13, 5.14 and 5.15
where the images show the surface charge and potential during these two scans.
Since the charging of sapphire is stronger than that of silica, the resulting
residual charge strongly depends on the scan history.

Otherwise, the scans of Fig. 5.11 have several common features. One can
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Figure 5.10: An inhomogeneous sample consisting of vertically stacked sapphire
and silica blocks.

notice higher yields in the neighborhood of the sample edges due to increased
emission via the vertical interfaces. This is a well-known effect – the sample
edges look brighter in SEM images compared to the rest of the sample sur-
face. One can also see the drop of the yield towards unity during left-to-right
scanning due to continuous charging of the sapphire part. This charging also
causes the yield at the beginning of the silica part to drop below its standard
value. The relatively smaller charging during the right-to-left scanning does
not allow the yield in silica to reach its standard below-unity value after the
initial edge-related surge, and pushes the yield below the standard value when
the beam crosses into the sapphire part. Additional simulations show that
reducing the beam current (down to a few pA) while maintaining a high beam
displacement velocity gives scans that truthfully reflect the standard yields
of each part of the sample. Unfortunately, in practice this would, probably,
result in a bad signal to noise ratio.

5.3 Modelling of charge transport in detector mem-
branes

We devote the final section of this study to a more applied subject, which
concerns electron multipliers. An electron multiplier is a vacuum-tube struc-
ture that multiplies incident electrons. In a process called secondary emission,
a single electron can induce emission of more than one electron. The use of
an electron multiplier is most prominent in the area of detectors. Although
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Figure 5.11: Yield as a function of beam position while scanning an inhomoge-
neous sapphire-silica sample with a focused 10 pA beam of 5 keV PE’s. Dotted
– standard yield.

detectors usually rely on the refection secondary emission, in some detectors,
the transmission secondary emission is used.

The recently proposed detector so called Tynode [2] is among those that
use transmission secondary electrons. This detector takes advantage of a stack
of transmission dynodes on top of a pixel chip, as shown in the schematic
representation in Fig. 5.16. A special feature of its structure is that the
detector is made of ultra thin membranes. The mechanism is such that an
energetic electron collides with one side of the membrane, which results in
the emission of multiple electrons from the other side. The continuation of
this process over a stack of membranes leads to the production of a significant
amount of electrons, that can be detected. In order to achieve a high rate of
secondary emission, the membranes are usually made of insulators.

The main objective of the present study is to investigate the effects of the
PE energy and the membrane thickness on the electron yields of dynodes.
While other simulations were carried out with the Monte Carlo technique, the
DDR method was used for a better understanding of the underlying mecha-
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Figure 5.12: The surface charge (NT /2 + p− n− nT )q (C/cm3) at the initial,
middle and last stages of scanning with a focused e-beam of 5 keV and 10 pA.
Scanning from sapphire to silica.

nisms as well as for further validation of the obtained results. Our aim here
is to see if there is a consistency between the results obtained from the DDR
model and the experimental results shown in the figure 5.17.

For several reasons, the results of the present model are expected to be
compatible with experimental data mostly in terms of quality, and not neces-
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Figure 5.13: The surface charge (NT /2 + p− n− nT )q (C/cm3) at the initial,
middle and last stages of scanning with a focused e-beam of 5 keV and 10 pA.
Scanning from silica to sapphire.

sarily quantitatively. The first reason is that the yields shown in Fig. 5.17 are
the result of the rapid scanning electron mode, while in our simulations we
shall be relying on the single PE impact model , i.e., the standard SE yield.
In fact, these experimental data are also presented to be free of charging ef-
fects, which has been achieved through an extremely thin coating of titanium



Section 5.3 Modelling of charge transport in detector membranes 89

-1 -0.5 0 0.5 1 1.5 2 2.5 3

Figure 5.14: The surface potential at the initial, middle and last stages of
scanning with a focused e-beam of 5 keV and 10 pA. Scanning from sapphire
to silica.

nitride (TiN) on the ALD alumina membrane. The second reason is related
to this coating, which due to the current uncertainty about the bulk proper-
ties of TiN was not included in the model. Given that the bulk properties of
sapphire are fully known, in the first simulation, it is also assumed that the
membrane is made of sapphire. The membrane is modelled as a disk with the
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-1 0 1 2 3 4

Figure 5.15: The surface potential at the initial, middle and last stages of
scanning with a focused e-beam of 5 keV and 10 pA. Scanning from silica to
sapphire.

radius of 1 µm for three thickness values (15, 30 and 55 nm). The schematics
of the model is shown in Fig. 5.18 and the imposed boundary conditions are
as follows

V = 0, on OD & CG; (5.3)
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Figure 5.16: The core of the newly proposed detectors: a stack of transmission
dynodes in vacuum. The figure has been taken from Ref. [2].

Figure 5.17: Transmission electron emission yields of a Tynode consisting of
a conductive titanium nitride layer (5 nm) and a layer of ALD alumina (of
10, 25 and 50 nm). The figure has been taken from Ref. [2].

∂n

∂ν
= 0,

∂p

∂ν
= 0,

∂V

∂ν
= 0, on EF ; (5.4)
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Figure 5.18: General schematics of the problem.

Jn · ν = vn(n− ni)− α
∂V

∂ν

−
if n > ni on AE & BF ; (5.5)

Jp · ν = 0 on AE & BF. (5.6)

Except for the source term, most parts of the model are similar to those
in Chapter 2. Since the PE penetration depth may happen to be greater than
the thickness of the membrane, a particular attention should be paid to the
modeling of the source term by accounting for the primary electrons emerging
from the other side of the membrane. Here, we consider a part of the charge
distribution, which is spatially located in the membrane, as the source term.
Accordingly, the probability for the PE to pass through is calculated based on
the other part of the charge distribution. Therefore, the model can be stated
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Figure 5.19: Self-consistent simulation of reflection and transmission (includ-
ing forward scattered) secondary electron yield from sapphire membranes for
three thickness values (15 nm, 30 nm and 55 nm) under the impact of single
primary electron of different energies.

as follows:

gn,p(x, E0) =

(
A
E0

Ei
+B(1−NFSE)

)
1

πR3
exp

(
−C|x− x0|2

)
,

NFSE =
B

CR3

∫ a

(b−R)
exp

(
−C|z − z0|2

)
dz,

a = OA, b = OB,

(5.7)

where A, B and C are the same as in the formula (2.51). The NFSE determines
the rate of forward scattered electrons.

As we already mentioned, we have considered sapphire membranes for
the first experiment. The results shown in Fig. 5.19 indicate that both the
reflected SE yield (RSEY) and the transmitted SE yield (TSEY) of sapphire
are larger than the experimental results for ALD alumina. This shows the
significant difference between these two types of alumina in terms of secondary
emission capability. Perhaps the important point about the results, shown in
Fig. 5.19, is the apparent effect of the membrane thickness on the SE yields.
This effect on the reflective SE yield for low PE energies is negligible, because
the penetration depth is very small, so even a very thin membrane can cover
it.



94 Applications Chapter 5

Primary energy (eV) 

0 200 400 600 800 1000

S
E

 y
ie

ld

0

0.5

1

1.5

2

2.5

3

3.5

4

experimental data (van der Graaf et al. 2017 )

experimental data (Jokela et al. 2012)

DDR

Figure 5.20: Reflection SEY obtained by the experimental investigations of van
der Graaf et al. [2] and Jokela et al. [95] and DDR model for ALD alumina
with thicknesses of 12.5, 20 and 15 nm, respectively.

Our investigation showed that the main difference between the sapphire
and ALD alumina is that the sapphire is crystalline [91, 92], while ALD alu-
mina is amorphous [93, 94]. Therefore, it is reasonable to assume that the trap
density of ALD alumina is higher than that of sapphire. With this in mind,
we conducted a series of numerical experiments to obtain an estimate for the
trap density of ALD alumina. In these experiments, except for the trap den-
sity, the other parameters were exactly the same as those for sapphire. Our
analysis indicates that the use of three times the trap density of the sapphire
for ALD alumina leads to the results shown in Fig. 5.20, that are in close with
the experimental data.

Based on this finding, we were able to carry out the same analysis for the
ALD alumina membrane as for the sapphire membrane. The results, presented
in Fig. 5.21, show that although the agreement with the experimental data is
still not close, it is more satisfactory. The clear difference with the sapphire
membrane, the clear difference is that the effect of the membrane thickness
on the SE yield, especially for the reflective SE yield, is less significant for the
ALD alumina membrane. Since the only difference is in their trap density,
it can be said that the lower the trap density, the greater the effect of the
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Figure 5.21: Self-consistent simulation of reflection and transmission (includ-
ing forward scattered) secondary electron yield from ALD alumina membranes
for three thickness values (15 nm, 30 nm and 55 nm) under the impact of
single primary electron of different energies.

thickness on the SE yield. Perhaps another conclusion that can be drawn is
that the thickness plays a more important role in semiconductors in terms of
SE yield capability.

All of the above analysis was based on the impact of a single electron,
and the effect of the TiN coating was not included. For the reasons given
above, at present, modeling of the coating is not possible. However, one can
assume that the coating achieves a better electrical contact with the ground,
providing a sink for the accumulated charge and/or a source of additional
charges. Thus, in the next simulations the focus is on the effect of the ohmic
contact at the edge of the ALD membrane. Namely, we assume that without
the TiN layer the poor contact of the ALD membrane with its support does not
allow for a free charge transport/recombination and the particles can escape
the membrane exclusively via its upper and lower interfaces at a rate governed
by the surface recombination velocity.

Since the effect of the ohmic contact can only be evaluated in the pres-
ence of electron bombardment, we have conducted experiments with the ALD
alumina membrane under electron bombardment, with and without providing
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Figure 5.22: Time evolution of the SE yield for the ALD alumina membranes
continuously irradiated by a focused stationary beam at 2 keV PE energy and
1 nA beam current. The upper and lower figures correspond to the membrane
with the radius of 100 and 50 nm, respectively. The thickness of the membrane
is 15 nm.

the electrical contact. If the ohmic contact is applied, the boundary conditions
at EF will be changed as follows:

n = ni, p = ni, V = 0, on EF ; (5.8)

otherwise, the conditions are kept the same as in (5.3), (5.4), (5.5) and (5.6).
The PE energy and the beam current are considered 2 keV and 1 nA, re-
spectively. With the PE energy of 2 keV, the primary electrons can reach
a maximum depth of approximately 90 nm. Considering this, we choose the
membrane radius of 100 and 50 nm, with the aim that the first membrane
with one of the two horizontally covers the source charge distribution, while
the second doest not.

Figure 5.22 presents the time-domain evolution of the reflection and trans-
mission SE yields obtained from isolated and grounded membranes. What is
evident from Fig. 5.22 is the rapid and severe drop in the SE yield for the
isolated membrane. Another noteworthy point concerns the steady state of
the SE yields, which is higher in the case of the smaller radius. A possible
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Figure 5.23: The evolution of the density of trapped electrons in isolated (the
two upper figures) and grounded (the two lower figures) ALD alumina mem-
branes irradiated by a focused stationary 1 nA beam of 2 keV PE’s. The
thickness and radius of the membrane are 15 and 100 nm, respectively.

explanation for this might be that with the smaller radius, the charge pairs
are generated in the adjacent area to the ground contact. Therefore, in this
case, it is expected that the process of interactions between charges, and in
particular the transfer of charges through the ground contact, are different.

The last figure in this dissertation corresponds to the evolution of the
trapped charge. Figure 5.23 shows the density of trapped electrons at cer-
tain times for both isolated and grounded membranes. The results show a
significant difference between the distribution of trapped electrons in these
two cases. Similarly, but not to the same extent, the electron detrapping is a
dominant process at interfaces with vacuum for both isolated and grounded
membranes. Also, as can be seen from Fig. 5.23, the process that occurs at
the isolated interface is the electron trapping, while at the ground contact, a
strong electron detrapping is observed.





6
Conclusions and recommendations

In this Thesis a self-consistent drift-diffusion-reaction model for the time-
domain analysis of charging phenomena in electron-beam irradiated insulators
has been presented. The DDR model is a simplified formulation of the Boltz-
mann transport equation with minimal modifications to account for the pulsed
and non-equilibrium nature of the charge injection mechanism and the back
reaction of the accumulated charge on the incoming primary electrons. We
have presented and compared two approaches to the charge injection problem.
The first one is a pulsed source model reflecting the actual discrete nature of
the electron beam. The second approach reduces the computational burden by
applying a temporal average of the actual pulsed source function, which allows
simulation at much longer time scales. Our results show an acceptable agree-
ment between these two approaches. We have further devised several source
models with regard to different modes of electron bombardment including fo-
cused and defocused beams, either stationary or moving. The proposed model
features a novel semi-permeable boundary condition at the sample-vacuum
interface reflecting the fact that the electrons are allowed to go through the
boundary, while holes are not, and also taking into account the reverse electron
current.

The finite element method was selected as the method of choice for the
numerical solution of the model equations. Our investigations show that the
balance between the accuracy and the computational cost can be achieved by
using local mesh refinement, Lagrange shape functions (of first and second
order), the fully coupled approach with the Newton-Raphson solver, and an
adaptive time-stepping algorithm. Regarding the meshing strategy, a fine
mesh is required for the impact zone and wherever there is a passage for the
electric current, e.g. the sample-vacuum interface and interfaces with metal.
In many cases it was possible to take advantage of the spatial cylindrical (axial)

99
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symmetry and extract 3D results from 2D computations.

In reviewing the literature on semiconductor device modelling with the
drift diffusion equation, one would realize that the instability of numerical
solvers has always been the main concern and, therefore, many approaches
have been developed to tackle the issue. Here, we have seen that, owing to the
presence of low mobilities, homogeneous Neumann conditions and consider-
ing either homogeneous materials or materials with the same intrinsic carrier
concentration, the present solver does not face this difficulty, i.e. neither drift-
dominated regime nor steep gradients in the diffusion term occur.

The method has been calibrated against experimental data do deliver ex-
act standard yields for alumina and silica samples over a wide range of PE
energies. For alumina and silica all calibrated parameters remain within or
close to their reported uncertainty bounds, thereby further confirming the ac-
ceptability of model approximations. The consistent and realistic results were
possible through a detailed analysis of sensitivity to the parameters involved
in the model. The findings of the sensitivity analysis can be summarized as
follows. The shape of the yield-energy curve is influenced by the capture cross
section and the density of traps. Namely, the larger the trap density and the
capture cross section, the lower is the high-energy tail of the curve. Following
any one of the published penetration depth formulas together with adjusting
the values of material parameters within their permitted ranges does not pro-
duce yield-energy curves fully compatible with the experimental data over the
whole range of PE energies. The surface recombination velocity (SRV) affects
mainly the height and not the shape of the yield-energy curve. Eventually we
restored to tuning the penetration depth for low beam energies while for higher
energies, the depth follows one of the empirical formulas from the literature.

Tuning also appeared to be the only way to estimate the SRV at the sample-
vacuum interface. In this regard, we have devised an optimization procedure
to deduce the SRV of insulators in the vacuum from the experimental SE yield
data. Moreover, to get a further insight into the concept of the SRV, we have
shown how the concept is rooted in the Boltzmann theory. This investigation
revealed that the SRV is a time-dependent factor. However, for the sake of
simplicity and to be consistent with the purpose of simulation at long time
scales, the SRV is assumed to be a time-independent material property which
it interpreted as the time-averaged value of the realistic SRV.

Single PE impact studies gave valuable insight into the aftermath following
the injection of a single primary electron revealing the dynamics of all particle
species and the electric potential. The contribution of both free and trapped
charges to the total charge has been evaluated, indicating the primary role
of trapping/detrapping processes in the charging effect. Further simulations
have been conducted with more PE impacts in which we have compared the
idealistic pulsed source model with the alternative continuous source model.
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The results indicate a reasonable agreement between both models.

Time-domain simulations with defocused beams have been compared to
the previously published results from a one-dimensional Flight-Drift model
demonstrating similar long-time behavior. Our investigations so far show that
the initial high-energy transport stage can, indeed, be approximated by a
semi-empirical source function and low-energy material parameters, whereas,
subsequent transport stages fall within the original domain of validity of the
low-energy DDR method.

Simulations with stationary focused beams allowed us to have a better
understanding of the role of each of the factors separately. The investigations
have shown that the time-behavior of the SE yield and the surface potential
is affected by many factors, including the PE energy, the beam current and
the quality and proximity to the ground contact. As expected, the results also
confirm that in electrically isolated samples the yield collapses to unity after
a certain number of primary electrons, which depends on the PE energy, has
been injected roughly at the same location on the sample surface. However,
our simulations do not support the widespread intuitive explanation of this
phenomenon in terms of the changing landing energy of PE’s. The effect
appears to have dynamic origins and is related to transient changes in the
distribution of charges close to the sample surface.

The reason for the unity yield cannot be solely attributed to the effects
of the reverse current and trapping/detrapping processes, although we have
found that these two effects have a significant impact on SE yield. To sub-
stantiate this point, we have conducted several simulations while either one of
these effects or both of them were turned off. In fact, the results indicate their
impact on “how” not “why” the yield arrives at unity. Therefore, a conclusion
can be drawn from our study that the unity yield is an equilibrium state of
isolated samples, regardless of their conductivity, i.e. no matter the sample is
an insulator, semiconductor or metal.

The surface potential, and especially it’s magnitude, is strongly affected
by the proximity of metallic grounded surfaces due to the associated charge
screening. This fact was analytically confirmed on a much simpler electrostatic
model. In addition, numerical evidence showed that the beam current is also
a factor affecting the surface potential which is in accord with some earlier
studies. Moreover, we have seen that in the presence of reverse current (i.e.
positive surface potential), the beam current affects only the time-domain be-
havior of the surface potential; while, when the surface potential is negative,
it affects also the magnitude of the potential. Therefore, the second major
finding of our study is that the surface potential is not unique with respect
to the PE energy, which in fact would be contrary to the assumption of the
above mentioned widespread model. This assumptions may thus lead to mis-
interpretation of charging effects, if one relies solely on the surface potential
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measurements, but also may present an opportunity to alleviate SEM image
distortions. Our simulations show that a good ground contact could also pre-
vent the collapse of the yield to unity.

We have presented, probably, the first 3D simulations of a laterally in-
homogeneous sample irradiated by a moving beam taking into account both
the dynamic charge trapping/detrapping and the reverse electrons. While to
a certain extent the yield obtained during this realistic simulations could be
interpreted on the basis of time-domain results with stationary beams, some
effects are unique to dynamic scanning. For example, the scan profile appears
to depend on the direction of scanning.

Simulation of the SE yield and charge transport in the recently proposed
electron multiplier was also presented. In this study, we were able to inves-
tigate the effect of the thickness on the emission yields of sapphire and ALD
alumina. It is interesting to note that by simply increasing the corresponding
trap density and retaining the other assumptions we used for sapphire, we
obtained the yields for ALD alumina consistent with experimental data. Our
study also examined the importance and impact of the quality of the contact
for enhancing the SE yield in dynode membranes.

A recent review by Walker et al [18] mentions the lack of reliable simu-
lations related to low-energy SEM studies. We partly fill this gap with the
present modified and calibrated version of the DDR method. Our method, as
well as other simulation software, would greatly benefit from publicly available
high-quality time-domain data in addition to the already available standard
yields. While we realize that direct time-domain sampling of detector currents
may be difficult, it should be possible to collect and publish single line scans
of ∼ 1 µm insulator targets for a range of dwell times (scan speeds).

While the present minimal extension of the standard DDR method from
semiconductor physics gave some valuable insights into the charging phe-
nomenon of e-beam irradiated insulators, we believe that several improvements
are possible. Without resorting to the full-blown Boltzmann transport equa-
tion one can still consider the transport of free electrons belonging to different
energy bands separately. In the present context it may be interesting to split
the free electrons into two species - those that have enough energy to exit the
sample and those that do not and introduce additional transport and reaction
equations into the model.

On the computational side, the practically important cases of highly het-
erogeneous materials with strongly varying intrinsic carrier concentrations may
require a more sophisticated discretization strategy and error control.



A
Generation-recombination model

The differential of the electron capture rate Rn at energy E can be stated as
follows [36, 29],

dRn = knc(E)(NT − nT )fn(E)gc(E)dE, (A.1)

where fn(E) is the energy dependent distribution function of free electrons,
gc(E) is the density of states for electrons and knc is a proportionality constant.
The density of states (DOS) is the number of different states at a certain energy
level that carriers are allowed to occupy.

The amount of electrons in the conduction band can be found by the
following integration

n =

∫ ∞
Ec

n(E)dE =

∫ ∞
Ec

fn(E)gc(E)dE. (A.2)

The differential of the hole capture rate vpc at energy E can be stated as
follows,

dRp = kpc(E)nT fp(E)gv(E)dE, (A.3)

where fp(E) is the energy dependent distribution function of free holes, gv(E)
is the density of states for holes and kpc is a proportionality constant.

The amount of holes in the valence band is obtained by the following
integration

p =

∫ Ev

−∞
p(E)dE =

∫ Ev

−∞
fp(E)gv(E)dE. (A.4)

The differential of the hole emission rate vhe at energy E can be stated as
follows,

dGp = kpe(E)(NT − nT )(1− fp(E))gv(E)dE, (A.5)
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where kpe is a proportionality constant.
For the electron emission rate, we have

dGn = kne(E)nT (1− fn(E))gc(E)dE, (A.6)

where kne is a proportionality constant.
The net generation/recombination rates for electrons and holes are

dRn − dGn =

(knc(E)(NT − nT )fn(E)− kne(E)nT (1− fn(E))) gv(E)dE,
(A.7)

dRp − dGp =

(kpc(E)nT fp(E)− kpe(E)(NT − nT )(1− fp(E))) gv(E)dE.
(A.8)

In thermal equilibrium, the emission and capture rates for electrons and holes
should be equal, which means

dRn − dGn = dRp − dGp = 0. (A.9)

Therefore

kne(E)

knc(E)
=

1− fT
fT

fn(E)

1− fn(E)
, (A.10)

kpe(E)

kpc(E)
=

fT
1− fT

fp(E)

1− fp(E)
, (A.11)

where

fT =
nT
NT

. (A.12)

According to Fermi-Dirac probability density function

f(E) =
1

1 + exp

(
E − EF
kBT

) . (A.13)

So for the electrons we have

kne(E)

knc(E)
= exp

(
ET − EF
kBT

)
exp

(
−E − EF

kBT

)
= exp

(
ET − E
kBT

)
, (A.14)

and for the holes

kpe(E)

kpc(E)
= exp

(
−ET − EF

kBT

)
exp

(
E − EF
kBT

)
= exp

(
−ET − E

kBT

)
, (A.15)
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since

fp(E) = 1− fn(E). (A.16)

Applying formulas (A.14) and (A.15) in (A.7) and (A.8), and performing sim-
ple mathematical operations and also involving the concept of trap’s quasi
Fermi energy EFT would results in the following formulas for the net genera-
tion/recombination rates for electrons and holes

dRn − dGn =(
1− exp

(
EFT − EF

kBT

))
(1− fT )fn(E)kne(E)gc(E)NTdE,

(A.17)

dRp − dGp =(
1− exp

(
EF − EFT

kBT

))
fT fp(E)kpe(E)gv(E)NTdE.

(A.18)

Integration over energies will result in the following formulas for net genera-
tion/recombination for electrons and holes

Rn −Gn =(
1− exp

(
EFT − EF

kBT

))
(1− fT )NT v

n
th

∫ ∞
Ec

fn(E)σn(E)gc(E)dE,
(A.19)

Rp −Gp =(
1− exp

(
EF − EFT

kBT

))
fTNT v

p
th

∫ Ev

−∞
fp(E)σp(E)gv(E)dE,

(A.20)

where vnth and vpth are the thermal velocities for electrons and holes, respec-
tively, and σn(E) and σp(E) are the capture cross sections of electrons and
holes such that

kne = vnthσn(E), kpe = vpthσp(E). (A.21)

By applying the concept of Maxwell-Boltzmann distribution from classical
physics for near equilibrium

f(E) = exp(−E − EF
kBT

), (A.22)

and assuming constant values for capture cross sections (which means σn(E)
and σp(E) are independent of energy so σn(E) = σn and σp(E) = σp) and also
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the same thermal velocities for electrons and holes vnth = vpth = vth, we have

Rn −Gn =(
n−Nc exp

(
−Ec − EF

kBT

)
exp

(
EFT − EF

kBT

))
(1− fT )NT vthσn,

(A.23)

Rp −Gp =(
p−Nv exp

(
−EF − Ev

kBT

)
exp

(
EF − EFT

kBT

))
fTNT vthσp,

(A.24)

where

n = Nc exp

(
−Ec − EF

kBT

)
, p = Nv exp

(
−EF − Ev

kBT

)
, (A.25)

Also Nc and Nv are the effective density-of-states for electrons and holes,
respectively.

Allowing
fT

1− fT
= exp(−ET − EFT

kBT
) to play a role, the equations (A.23)

and (A.24) can be written as follows

Rn −Gn = σnvthNT (n(1− fT )− n1fT ) , (A.26)

Rp −Gp = σpvthNT (pfT − p1(1− fT )) , (A.27)

where

n1 = Nc exp

(
−Ec − ET

kBT

)
, p1 = Nv exp

(
−ET − Ev

kBT

)
. (A.28)

The equations can be further simplified by considering the approximations of
n1 ≈ ni and p1 ≈ ni,

Rn −Gn = σnvth (n(NT − nT )− ninT ) , (A.29)

Rp −Gp = σpvth (pnT − ni(NT − nT )) , (A.30)

where ni is the intrinsic carrier concentration such that n1p1 = n2
i , so

ni =
√
NcNv exp

(
−Ec − Ev

kBT

)
. (A.31)
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