
Fast Iterative Methods
for

The Incompressible Navier-Stokes Equations

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben,
voorzitter van het College van Promoties,

in het openbaar te verdedigen op woensdag 24 februari 2010 om 12.30 uur

door

Mehfooz ur REHMAN,
Master of Science (M.Sc.) Systems Engineering, Pakistan Institute of Engineering

and Applied Sciences, Quaid-i-Azam University Islamabad, Pakistan

geboren te Kohat, Pakistan.

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir. C. Vuik

Copromotor:
Ir. A. Segal

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof.dr.ir. C. Vuik Technische Universiteit Delft, promotor
Ir. A. Segal Technische Universiteit Delft, copromotor
Prof.dr.ir. C. W. Oosterlee Technische Universiteit Delft
Prof.dr. W. H. A. Schilders Technische Universiteit Eindhoven
Prof.dr. A. E. P Veldman Rijksuniversiteit Groningen
Dr. A. P. van den Berg Universiteit Utrecht
Prof.dr.ir. S. Vandewalle Katholieke Universiteit Leuven, België
Prof.dr.ir. C. R. Kleijn Technische Universiteit Delft, reservelid

This thesis has been completed in partial fulfillment of the requirements of Delft Uni-
versity of Technology (Delft, The Netherlands) for the award of the Ph.D. degree.
The research described in this thesis was supported by Delft University of Technol-
ogy, and Higher Education Commission (HEC) Pakistan. I thank them sincerely for
their support.

Fast Iterative Methods for The Incompressible Navier-Stokes Equations.
Dissertation at Delft University of Technology.
Copyright© 2009 by Mehfooz ur Rehman

ISBN # 978-90-9024925-4

Cover: A numerical solution of 2D driven cavity flow Stokes problem on 132 × 132
Q2-Q1 FEM grid.

Summary

Efficient numerical solution of the incompressible Navier-Stokes equations is a hot
topic of research in the scientific computing community. In this thesis efficient linear
solvers for these equations are developed.

The finite element discretization of the incompressible Navier-Stokes equations
gives rise to a nonlinear system. This system is linearized with Picard or Newton
type methods. Due to the incompressibility equation the resulting linear equations
are of saddle point type. Saddle point problems also occur in many other engineering
fields. They pose extra problems for the solvers and therefore efficient solution of such
systems of equations forms an important research activity. In this thesis we discuss
preconditioned Krylov methods, that are developed for saddle point problems.

The most direct and easy applicable strategy to solve linear system of equations
arising from Navier-Stokes is to apply preconditioners of ILU-type. This type of pre-
conditioners is based on the coefficients of the matrix but not on knowledge of the sys-
tem. In general, without precautions, they fail for saddle point problems. To overcome
this problem, pivoting or renumbering of nodal points is necessary. Direct methods
also suffer from the same problem, i.e zeros may arise at the main diagonal. Renum-
bering is used to reduce the profile or bandwidth of the matrix. To avoid zero pivots it
is necessary to use extra information of the discretized equations. First we start with
a suitable node renumbering scheme like Sloan or Cuthill-McKee to get an optimal
profile. Thereafter unknowns are reordered per level such that zero pivots move to
the end of each level. In this way unknowns are intermixed and the matrix can be
considered as a sequence of smaller subsystems. This provides a reasonable efficient
preconditioner if combined with ILU. We call it Saddle point ILU (SILU).

A completely different strategy is based on segregation of velocity and pressure.
This is done by so-called block preconditioners. These preconditioners are all based
on SIMPLE or Uzawa type schemes. The idea is to solve the coupled system with a
Krylov method and to accelerate the convergence by the block preconditioners. The
expensive steps in the preconditioning is the solution of the velocity and pressure
subsystem. The subsystems may be solved by direct methods, Krylov methods or
multigrid. We employ SIMPLE-type preconditioners that are based on the classical

iii

iv

SIMPLE method of Patankar. Convergence with the SIMPLE method depends on
relaxation parameters that can only be chosen by trial and error. Since our precon-
ditioner is based on only one step of a SIMPLE iteration, we predict that there is no
need for a relaxation parameter. We suggest several improvements of the SIMPLE
preconditioner, one of them, MSIMPLER, appears to be very successful.

To test the preconditioners we use the classical benchmark problems of driven cav-
ity flow and backward facing step both in 2D and 3D. We compare our preconditioners
(SILU and MSIMPLER) with the popular LSC preconditioner, which is considered to
be one of the most efficient preconditioners in the literature. SILU is combined with
Bi-CGSTAB(`) and IDR(s) a new method based on the Induced Dimension Reduc-
tion (IDR) algorithm proposed by Sonneveld in 1980. In cases where Bi-CGSTAB(`)
shows poor convergence, IDR(s) in general behaves much better.

Physical problems with slowly flowing materials, like for example mantle con-
vection in the earth, may be modeled with the variable viscosity Stokes equations. In
this case specially adapted preconditioners are required. In this thesis we present some
new preconditioners all based on the pressure mass matrix approximation of the Schur
complement matrix. Special emphasis is required for scaling and stopping criteria in
combination with variable viscosity. The new methods are tested on various classes of
problems with different viscosity behavior. They appear to be independent of the grid
size and the viscosity variation.

Samenvatting

Het efficiënt numeriek oplossen van de incompressibele Navier-Stokes vergelijkingen
is een hot topic research onderwerp in de scientific computing gemeenschap. In dit
proefschrift ontwikkelen we efficiënte lineaire solvers voor deze vergelijkingen.

De eindige elementen discretisatie van de incompressibele Navier-Stokes vergeli-
jkingen resulteert in een niet-lineair systeem. Dit systeem wordt gelineariseerd met
Picard of Newton methodes. Vanwege de incompressibiliteitsconditie zijn de resul-
terende lineaire vergelijkingen van het zadelpunt type. Zadelpuntsproblemen treden
ook op in veel andere technische vraagstukken. Zij veroorzaken extra problemen in
de solvers en daarom vormt het efficiënt oplossen van zulke vergelijkingen een belan-
grijke research activiteit. In dit proefschrift bediscussiëren wij gepreconditioneerde
Krylov methoden welke speciaal voor zadelpuntsproblemen zijn ontwikkeld.

De meest directe en eenvoudigste strategie om lineaire stelsels vergelijkingen,
welke ontstaan door discretisatie van Navier-Stokes, op te lossen is om precondi-
tioners van het ILU-type toe te passen. Dit type preconditioners is gebaseerd op de
coëfficiënten van de matrix, zonder kennis van het onderliggende probleem. Zon-
der bijzondere voorzorgsmaatregelen falen zij in het geval van zadelpuntsproblemen.
Teneinde dit te voorkomen, is het noodzakelijk om te pivoteren, dan wel knooppunten
te hernummeren.

Ook directe methodes hebben last van hetzelfde euvel, namelijk er komen nullen
voor op de hoofddiagonaal. Hernummeren van knooppunten wordt toegepast om het
profiel of de bandbreedte van de matrix te reduceren. Als we willen voorkomen dat
pivots nul worden, is het nodig extra informatie van de gediscretiseerde vergelijkingen
te gebruiken. Teneinde een optimaal profiel te krijgen, starten we met een geschikt her-
nummeringsalgorithme zoals Sloan of Cuthill-McKee. Daarna worden de onbekenden
per level herordend, zodat pivots die nul zijn naar het einde van ieder level worden ver-
plaatst. Op deze manier worden de onbekenden verwisseld en kan de matrix opgevat
worden als een stelsel van kleinere subsystemen. In combinatie met ILU ontstaat een
redelijk efficiënte preconditioner, die wij Saddle point ILU (SILU) noemen.

Een geheel andere strategie is gebaseerd op de scheiding van snelheid en druk
onbekenden. Dit wordt gedaan met behulp van zogenaamde blokpreconditioners.

v

vi

Al deze preconditioners zijn gebaseerd op SIMPLE dan wel Uzawa type schema’s.
Het idee is om het gekoppelde systeem op te lossen met een Krylov methode en de
convergentie te versnellen met behulp van de blokpreconditioners. Het oplossen van
de substelsels van de snelheid en druk vormt het rekenintensieve deel van de precon-
ditionering. De substelsels kunnen worden opgelost met behulp van directe meth-
odes, Krylov methodes of multirooster. Wij passen SIMPLE-achtige preconditioners
toe, gebaseerd op de klassieke SIMPLE methode van Patankar. De convergentie van
SIMPLE hangt af van relaxatieparameters die door trial-and-error gekozen moeten
worden. Omdat onze preconditioner is gebaseerd op slechts één stap van een SIM-
PLE iteratie, is relaxatie niet nodig. We suggeren verscheidene verbeteringen van de
SIMPLE preconditioner, waarvan één, MSIMPLER, erg successvol blijkt te zijn.

Om de preconditioners te testen gebruiken we twee klassieke benchmark proble-
men, te weten het driven cavity problem en de backward facing step, zowel in 2D
als 3D. We vergelijken onze preconditioners (SILU en MSIMPLER) met de populaire
LSC preconditioner, welke in de literatuur als een van de meest efficiënte precon-
ditioners wordt aangemerkt. SILU wordt gecombineerd met Bi-CGSTAB(`) en ook
met IDR(s), een nieuw algorithme gebaseerd op het Induced Dimension Reduction
(IDR) algorithme van Sonneveld (1980). In die gevallen waar Bi-CGSTAB(`) slecht
convergeert, blijkt IDR(s) in het algemeen veel beter te presteren.

Fysische problemen met langzaam stromende materialen, zoals bijvoorbeeld man-
tel convectie in het aardoppervlak, kunnen gemodelleerd worden met de Stokes vergeli-
jkingen met variabele viscositeit. In dat geval zijn speciale preconditioners vereist. In
dit proefschrift presenteren we enkele nieuwe preconditioners, alle gebaseerd op de
approximatie van de Schur complement matrix door de massamatrix van de druk.
Voor variabele viscositeits problemen is het noodzakelijk speciale aandacht te beste-
den aan schaling en afbreekcriteria. De nieuwe methodes worden getest op verschil-
lende probleemklassen met hun specifiek viscositeitsgedrag. Zij blijken onafhankelijk
te zijn van roosterafmeting en viscositeitsvariatie.

ACKNOWLEDGMENTS

I would like to thank my supervisor, Prof. Dr. Ir. Kees Vuik and co-supervisor, Ir.
Guus Segal for their supervision and support during my PhD. Their professional help
provided a jump start to my PhD-research. It all started by their introducing some
nice pointers to the literature. I would specifically like to mention the IFISS pack-
age, Benzi’s work on saddle point problems that was published in 2005 (start year of
this program), Kees Vuik’s work on SIMPLE-type preconditioners, and the SEPRAN
package. I learnt a lot of new things from them, and regular professional meetings
with them helped me in identifying areas having research potential. I found them
ever-welcoming in helping me solve my problems, both technical and social. I am
very grateful to them for their help, and would therefore like to take this opportunity
to express it formally.

As I consider my doctoral thesis a big achievement in my life, I would also like to
mention some people who had a share in making it happen. First of all, many thanks,
sincere prayers, and a lot of love and gratitude to my parents for their gross untiring
efforts to educate us. Their kindness and sympathy can neither be expressed, nor can
be amply thanked in words. They took good care of my family when I was estranged
from them at the start of my PhD, until the time when their re-union with me became
possible. I would also like to thank all my close and distant family who prayed for
my success and missed me on special occasions. Many thanks to my wife’s family for
their equal support in making us comfortable here. My late uncle Ahmed Jan, had a
jolly personality through which he taught me how to see the lighter side of life in days
of gloom. Many prayers for him, his lessons about life would stay kindled in my heart
and mind always.

In the Netherlands, after a hard first year, my house turned into a home by the
arrival of my wife, daughter and son. I thank my wife for managing all the activities
that would have hindered my progress. I revelled in their company and I am sure
we will remember this period of our life very much. We all spent a cherishable time
together in the Netherlands.

There was a lot of social support and community life through the acquaintance of
many Pakistani friends and families that I came to know during my Dutch stay. I am

vii

viii

happy that I found many friends. I thank them all for sharing very nice times with me
and my family. We enjoyed parties including Iftar and Eid gatherings. My weekends
were usually engaged by some of my cricketer friends (both Indians and Pakistanis).
Thanks to all of them. I also thank my friends in Germany with whom I shared very
fruitful time during my visits to Germany.

In the department, I would like to thank Coen Leentvaar, my ex-office mate, who
helped me in a lot of diverse issues, specially in translating Dutch letters that I received
from time to time from various organizations. I also thank Hisham bin Zubair for
helping me out in many matters during my PhD. Besides, I feel privileged to be a part
of the numerical analysis research group at Delft with the presence of Piet Wesseling,
Kees Oosterlee and P. Sonneveld. I wish to thank all group members with whom I
shared office, participated in conferences, enjoyed birthday parties and coffee breaks.
I thank Diana and Mechteld for providing assistance in numerous ways. Thanks to
Kees Lemmens for providing us with an error free network.

I would also like to thank Thomas Geenen from Utrecht and Scott MacLachlan
for their fruitful discussion on preparation of the Stokes papers. We, (I and Thomas),
shared many ideas and exchanged them electronically. This assisted us a lot us in
understanding issues related to iterative solvers.

Many thanks to Franca Post from CICAT and Loes Minkman from NUFFIC for
dealing our scholarship matters in a very efficient way.

I would like to thank the committee members for sparing time to read the manuscript.
I thank Kees Oosterlee for his helpful comments, which led to considerable improve-
ments in the manuscript. Besides, Guus Segal’s help in providing me Dutch translation
Samenvatting and Stellingen is highly appreciated.

All this would have not been possible without the help and willingness of
Almighty Allah. I thank Allah for His blessings on me.

Mehfooz ur Rehman
Delft, September 21, 2009

Contents

Summary iii

Samenvatting v

ACKNOWLEDGMENTS vii

1 Introduction 1
1.1 Open problem . 2
1.2 Outline of the thesis . 3

2 Finite element discretization and linearization 5
2.1 Problem description . 5
2.2 Discretization . 6
2.3 Linearization schemes . 7

2.3.1 Picard method . 8
2.3.2 Newton method . 8

2.4 Element selection conditions . 9
2.5 Summary . 12

3 Solution techniques 13
3.1 Direct method . 13
3.2 Iterative methods . 14

3.2.1 Krylov subspace methods 16
3.3 Preconditioning . 24
3.4 Summary . 25

4 Overview of Preconditioners 27
4.1 ILU-type preconditioners . 28

4.1.1 ILU for a general matrix . 29
4.2 Application of ILU to Navier-Stokes 31

ix

x Contents

4.3 Block preconditioners . 33
4.3.1 Approximate commutator based preconditioners 34
4.3.2 Augmented lagrangian approach (AL) 39
4.3.3 Remarks on selection of preconditioner 42

4.4 Summary . 43

5 Saddle point ILU preconditioner 45
5.1 Ordering of the system . 45

5.1.1 Ordering used in direct method 46
5.1.2 Application to ILU preconditioning 48
5.1.3 Breakdown of LU or ILU factorization 50

5.2 Numerical experiments . 52
5.2.1 Impact of reordering on the direct solver 53
5.2.2 Properties of the saddle point ILU solver (SILU) 54

5.3 Summary . 60

6 SIMPLE-type preconditioners 61
6.1 SIMPLE-type preconditioner . 61
6.2 SIMPLE preconditioner . 62

6.2.1 SIMPLER . 64
6.3 Effect of relaxation parameter . 67
6.4 Improvements in the SIMPLER preconditioner 67

6.4.1 hSIMPLER . 67
6.4.2 MSIMPLER . 67
6.4.3 Suitable norm to terminate the Stokes iterations 69

6.5 Numerical Experiments . 72
6.5.1 Effect of relaxation parameter 72
6.5.2 Comparison of SIMPE-type preconditioners 74

6.6 Summary . 77

7 Comparison of preconditioners for Navier-Stokes 79
7.1 Preconditioners to be compared . 79

7.1.1 Cost comparison . 79
7.1.2 Properties of LSC and MSIMPLER 80

7.2 Numerical experiments . 81
7.2.1 Comparison in 2D . 82
7.2.2 Comparisons in 3D . 84
7.2.3 Grid Stretching . 86

7.3 IDR(s) and Bi-CGSTAB(`) comparison 88
7.4 Summary . 91

Contents xi

8 Iterative methods for the Stokes problem 93
8.1 Iterative methods for the Stokes problem 93

8.1.1 Block triangular preconditioner 94
8.1.2 The Schur method . 95
8.1.3 Variant of LSC . 97
8.1.4 Construction of variable viscosity pressure mass matrix 97

8.2 Convergence issues . 99
8.2.1 Scaling of the velocity mass matrix 105

8.3 Numerical experiments . 106
8.3.1 Isoviscous problem . 106
8.3.2 Extrusion problem with a variable viscosity 107
8.3.3 Geodynamic problem having sharp viscosity contrast 111

8.4 Summary . 115

9 Conclusions and future research 117
9.1 Conclusions . 117
9.2 Ideas for future research . 119

Appendices

A Grid reordering schemes 121
A.1 Sloan renumbering scheme . 121
A.2 Cuthill and McKee’s algorithm . 123

List of publications 132

Curriculum Vitae 135

xii

List of Tables

4.1 Number of PCD preconditioned Bi-CGSTAB iterations required to
solve Test Case 1 with Re = 100 on different size grids. 37

4.2 PCD preconditioned Bi-CGSTAB iterations required to solve Test Case
1 on 64 × 64 grid. 37

4.3 LSC preconditioned Bi-CGSTAB iterations required to solve Test Case
1 with Re = 200 on different size grids. 39

4.4 LSC preconditioned Bi-CGSTAB iterations required to solve Test Case
1 on 32 × 32 grid. 39

4.5 Analysis of ILU preconditioner of Fγ. 41
4.6 AL preconditioned GCR iterations required to solve Test Case 1 with

Re = 200 on different grids. 42
4.7 AL preconditioned Bi-CGSTAB iterations required to solve Test Case

1 on 32 × 32 grid. 42

5.1 Ordering of unknowns for 5 nodes grid. 46
5.2 Profile and bandwidth reduction in the backward facing step with Q2-

Q1 discretization. 53
5.3 The Stokes backward facing step solved with a direct solver with Q2-

Q1 discretization. 54
5.4 Solution of the Stokes problem with the Q2-Q1 discretization in the

square domain. 54
5.5 Effect of mesh renumbering on convergence of Bi-CGSTAB. 55
5.6 Solution of the 3D Stokes backward facing step problem using Q2-Q1

elements with Bi-CGSTAB. 56
5.7 Solution of the 3D Stokes backward facing step problem using Q2-P1

elements with Bi-CGSTAB. 57
5.8 Accumulated inner iterations for the 3D Navier-Stokes backward fac-

ing step problem with p-last per level reordering. 57

xiii

xiv List of Tables

5.9 Solution of the Stokes problem in a stretched backward facing step
with Bi-CGSTAB with p-last ordering. 58

5.10 Solution of the Stokes problem in a stretched backward facing step
with Bi-CGSTAB using p-last per level ordering. 58

5.11 Effect of ε on the convergence with cases labeled with * in Table 5.9
and 5.10. 58

6.1 Backward facing step: Solution of the Stokes problem with SIMPLER
preconditioned GCR (accuracy of 10−6). 70

6.2 Effect of relaxation on the Navier-Stokes problem with a solution ac-
curacy 10−6. 73

6.3 Stokes backward facing step solved with preconditioned GCR(20). . . 74
6.4 Solution of the backward facing step Navier-Stokes problem with MSIM-

PLER preconditioned Bi-CGSTAB with accuracy 10−6. 76
6.5 Solution of the driven cavity flow Navier-Stokes problem with MSIM-

PLER preconditioned Bi-CGSTAB with accuracy 10−6. 76

7.1 2D Backward facing step Navier-Stokes problem solved with precon-
ditioned Bi-CGSTAB. 83

7.2 2D Backward facing step: Preconditioned GCR is used to solve the
Navier-Stokes problem. 83

7.3 2D Driven cavity flow problem: The Navier-Stokes problem is solved
with preconditioned Bi-CGSTAB. 84

7.4 3D Backward facing step (hexahedra): The Navier-Stokes problem is
solved with preconditioned Krylov subspace methods. 86

7.5 3D Lid driven cavity problem (tetrahedra): The Stokes problem is
solved with accuracy 10−6. PCG is used as inner solver in block pre-
conditioners (SEPRAN) . 86

7.6 3D Lid driven cavity problem (tetrahedra): The Navier-Stokes prob-
lem is solved with preconditioned Krylov subspace methods 87

7.7 2D Lid driven cavity problem on 64 × 64 stretched grid: The Stokes
problem is solved with various preconditioners. 88

7.8 2D Lid driven cavity problem on stretched grid: The Navier-Stokes
problem is solved with various preconditioners. 88

7.9 ILU preconditioned Krylov subspace methods comparison with in-
creasing grid size for the driven cavity Stokes flow problem. 90

7.10 SILU preconditioned Krylov subspace methods comparison with in-
creasing grid size and stretch factor for the driven cavity Stokes flow
problem. 90

8.1 Backward facing step Stokes problem (PMM preconditioner) 104
8.2 Driven cavity Stokes problem (PMM preconditioner) 104
8.3 Driven cavity Stokes problem (LSC preconditioner) 105
8.4 Driven cavity Stokes problem solved using scaled stopping criteria. . . 105

List of Tables xv

8.5 Solution of the Stokes driven cavity flow problem with constant vis-
cosity. 107

8.6 Solution of the extrusion problem (smooth varying viscosity). 109
8.7 Iterative solution of the Stokes problem with configuration (a), accu-

racy = 10−6. 112
8.8 Iterative solution of the Stokes problem with configuration (b), accu-

racy = 10−6. 113
8.9 Iterative solution of the Stokes problem with configuration (c), accu-

racy = 10−6. 114

xvi

List of Figures

2.1 Taylor-Hood family elements (Q2-Q1) , (P2-P1) elements and (Q2-
Q1) grid . 11

2.2 Crouzeix-Raviart family elements (Q2-P1), (P2-P1) elements and (P2-
P1) grid . 11

2.3 Taylor-Hood family mini-elements: Q+1 − Q1 element, P+1 − P1 element 12

4.1 Convergence plot for diffusion problem solved with two different class
of solvers (64 × 64 Q1 grid). 30

4.2 Test Case 1 discretized on 32×32 Q2-Q1 grid: Navier-Stokes matrices
before (p-last) and after reordering. 32

4.3 Test Case 1 discretized on 32× 32 Q2-Q1 grid: Convergence curve of
ILU preconditioned Bi-CGSTAB with Re = 200. 32

4.4 Equally spaced streamline plot (left) and presssure plot (right) of a
Q2-Q1 approximation of 2D driven cavity flow problem with Re = 200. 36

4.5 Eigenvalue of the original system and preconditioned with PCD. . . . 36
4.6 Convergence plot with PCD preconditioner. 37
4.7 Nonzero pattern of the velocity matrix in 32× 32 Q2-P1 driven cavity

flow problem with Re = 200: F (left), Fγ (right). 41

5.1 p-last ordering of unknowns of the Stokes matrix. 47
5.2 Levels defined for 4x4 Q2-Q1 grid. 48
5.3 Effect of Sloan and Cuthill-McKee renumbering of grid points and p-

last per level reordering of unknowns on the profile and bandwidth of
the matrix. 49

5.4 2x2 Q2-Q1 grid. 52
5.5 Backward facing step or L shaped domain. 53
5.6 Effect of grid increase and Reynolds number on the inner iterations

(accumulated) for the Navier-Stokes backward facing step problem. . 56

xvii

xviii List of Figures

5.7 Effect of the incompressibility relaxation ε on the number of iterations
and the relative error norm in the backward facing Stokes problem. . . 59

5.8 Effect of the incompressibility relaxation ε on the number of itera-
tions and the relative error norm in the backward facing Navier-Stokes
problem. 59

6.1 Eigenvalues of the Navier Stokes system (at 2nd Picard iteration) (A)
and preconditioned with SIMPLE (P−1A). 8 × 24 Q2-Q1 Backward
facing step problem with Re = 100. 65

6.2 Convergence plot of SIMPLE-type peconditioners for the Stokes prob-
lem . 68

6.3 The Stokes problem solved with 64 × 64 Q2-Q1 elements discretized
driven cavity problem with varying ω. 73

6.4 Effect of ω on convergence of the SIMPLE preconditioner solving the
Stokes backward facing step problem with increase in grid size. . . . 73

6.5 The Navier-Stokes problem solved with 64 × 64 Q2-Q1 elements dis-
cretized driven cavity problem with varying Reynolds number, Num-
ber of average inner iterations (Left), CPU time in seconds (Right)-
(SEPRAN) . 75

6.6 Eigenvalue distribution of the Navier Stokes system (A) and precondi-
tioned with (M)SIMPLER (P−1A). 8×24 Q2-Q1 elements discretized
Backward facing step problem with Re = 100. 77

7.1 2D Backward facing step (Q2-Q1): The Stokes problem is solved with
accuracy 10−6. PCG is used as inner solver in the block precondition-
ers (SEPRAN) . 82

7.2 3D Backward facing step (hexahedra): The Stokes problem is solved
with accuracy 10−6. PCG is used as inner solver in the block precon-
ditioners (SEPRAN) . 85

7.3 A 32 × 32 grid with stretch factor = 8 (Left), Streamlines plot on the
stretched grid (Right)-(SEPRAN) 87

7.4 The 2D Stokes backward facing step problem solved with ILU pre-
conditioned IDR(s) method with varying s dimension: 32 × 96 grid
(Top), 64 × 96 grid (Bottom). 89

7.5 SILU preconditioned Krylov subspace methods comparison with in-
creasing stretch factor for the driven cavity Stokes flow problem. . . . 90

8.1 A grid with 2 elements. 98
8.2 Two dimensional domain for the variable viscosity Stokes problem

(Left). At right, a 2D geodynamics test model: LVR represents the low
viscosity region with density ρ1 = 1 and viscosity ν1 = 1, and HVR
denotes the high viscosity region with density ρ2 = 2, and constant
viscosity ν2 (1, 103 and 106). 100

List of Figures xix

8.3 Solution of the variable viscosity Stokes problem using various solu-
tion schemes: The plot shows the pressure solution in the high viscos-
ity region at the SINKER problem. 102

8.4 Eigenvalue spectrum of the Stokes problem. 102
8.5 Convergence of MSIMPLER preconditioned GCR, where the subsys-

tems are solved with ICCG(0). 106
8.6 Constant viscosity Stokes problem: Number of iterations required for

the velocity and pressure subsystem. 108
8.7 Number of AMG/CG iterations required to solve the velocity subsys-

tem at each iteration of the iterative method. 108
8.8 Extrusion problem: Number of iterations required for the velocity and

pressure subsystem. 110
8.9 Extrusion problem results . 110
8.10 Geodynamic problem configurations where the dark region consists

of viscosity ν2 and density ρ2 and white region has viscosity ν1 and
density ρ1. 111

8.11 The pressure solution in various configurations. 114

xx

Chapter 1
Introduction

The Navier-Stokes equations form the basis for modeling both laminar as well as
turbulent flows. Depending on the Reynolds number a flow is characterized as either
laminar or turbulent. A fluid such as air, water or blood is called incompressible if
a large force acting on this fluid fails to impact a change in its volume. In general,
a fluid is considered to be (nearly) incompressible if the speed of the fluid is small
(≤ 0.1) compared to the speed of sound in that fluid. The Navier-Stokes equations
are used to simulate various physical phenomena, for example, weather prediction,
geodynamic flows, and aneurysm in blood vessels. Although the scope of this thesis is
limited to laminar, and incompressible flows, the techniques that we develop and apply
here may also be used for turbulent flows. Except for some simple cases, analytical
solution of the Navier-Stokes equations is impossible. Therefore, in order to solve
these equations, it is necessary to apply numerical techniques. To that end, numerical
discretization methods like Finite Difference Methods (FDM), Finite Volume Methods
(FVM) and Finite Element Methods (FEM) are usually applied as standard practice.
For relatively simpler problems analytical solution can be used to verify the numerical
results. In this thesis we shall focus ourselves on discretization by the FEM.

The discretization of the Navier-Stokes equations leads to a nonlinear system of
equations. The solution process therefore involves the linearization of such a nonlinear
system, which is followed by an efficient solution of the resulting matrix equation
Ax = b.

Direct solution methods give the exact numerical solution of this system x = A−1b.
Although each distinct direct method has a different route of reaching this, they all
have a common denominator in terms of memory and CPU time expense. Obtain-
ing the solution of large problems with direct solvers is therefore not viable. The
alternative is to apply iterative techniques that approximate the solution to the desired
accuracy. For large systems, iterative methods are usually cheap but less robust com-
pared to direct methods. There are three major classes of iterative methods, classical
stationary iterative methods such as Jacobi, Gauss Seidel, SOR etc., non-stationary

1

2 Chapter 1. Introduction

iterative methods which includes the family of Krylov subspace methods, and multi-
level iterative correction techniques which include multigrid and AMG. An efficient
scheme may consist of one of the methods from these classes, but also of a combina-
tion of solvers, for example, multigrid preconditioned Krylov methods are often used
as a solver of choice in many versatile situations. A survey of such methods can be
found in [67, 83, 5, 64].

1.1 Open problem

The advancement in computer hardware (high speed processors, large memory etc.)
has enabled researchers to obtain numerical solutions of many complex problems.
This achievement has contributed a lot to the third way of fluid dynamics (Compu-
tational Fluid Dynamics known as CFD) which was previously based mostly on ex-
perimental and theoretical setups. Patankar [60] was in 1980 one of the pioneers in
developing algorithms for a fast solution of the incompressible Navier-Stokes equa-
tions. Compared to experiments, CFD has reduced the cost and improved simulation
techniques and therefore provides better insight of the problem. Problems that would
have taken years to understand in experimental setups are now simulated in days.

One of the challenges of the last few decades is the construction of fast numerical
solution algorithms for the incompressible Navier-Stokes equations. The discretiza-
tion and linearization of Navier-Stokes gives rise to a saddle point problem with a zero
block on the main diagonal due to the absence of the pressure in the continuity equa-
tion. Saddle point problems also arise in electrical circuits, linear elasticity, constraint
optimization and many other fields. A survey on saddle point problems is given by
Benzi [9]. Due to its specific character and its appearance in many engineering fields,
solution of saddle point problems is a prominent subject in the numerical research
field. In case of the Navier-Stokes problem, SIMPLE-type and Uzawa-type methods
are well-known in the literature [60], [4]. These methods decouple the system and
solve the subsystem for the velocity and pressure separately.

Recent developments in the Krylov method and multigrid has improved the ef-
ficiency of iterative methods. Coupled systems are solved with the help of a pre-
conditioned Krylov method or efficient multigrid techniques. In the Navier-Stokes
problem, the final goal is to develop solvers that converge independently of mesh size
and Reynolds number.

In terms of preconditioning strategies, the most common and easy strategy is to
apply an algebraic preconditioner to the coupled system. Usually such precondi-
tioners rely on information present in the coefficient matrix without having complete
knowledge of the system. Such preconditioners can be easily adapted for a variety
of problems. Incomplete LU (Gaussian elimination) variants and approximate inverse
(AINV) are the good examples of such preconditioners [52], [11]. Convergence with
such preconditioners can be made efficient by using renumbering of the grid points or
applying pivoting techniques. In general such renumbering scheme are developed for
direct solvers to reduce the profile and bandwidth of the matrix [53, 29, 94]. However

1.2. Outline of the thesis 3

these schemes have also been efficiently used to enhance the convergence of the ILU
preconditioned Krylov method [51, 11, 14, 25, 93]. In this thesis we develop efficient
renumbering schemes for the incompressible Navier-Stokes problem.

Another popular strategy, known as block preconditioner, is based on a segregation
approach. SIMPLE and Uzawa-type schemes are the basis for such preconditioners. A
coupled system is solved with the help of a Krylov method that is accelerated with the
help of block preconditioners. The expensive component of these block precondition-
ers is the solution of the velocity and pressure subsystems. The pressure subsystem
arises due to an appropriate Schur complement approximation. The subsystems may
be solved directly, or through an iterative approach, such as by using a Krylov method
or a multigrid technique. Older schemes like SIMPLE and Uzawa are been used as
part of iterative methods by performing efficient precondioning steps [90], [35], [10].
These methods are also used as smoothers in some multigrid techniques [92, p. 298],
[15], [42]. In our work, we focus on improving convergence with block precondition-
ers. SIMPLE and block triangular preconditioners are employed. A block triangular
preconditioner is a special form of an Uzawa method, in which first the pressure sub-
system is solved and then the velocity subsystem is solved after updating the right-
hand side with the pressure obtained from the first step. The main part of this type
of preconditioners is the efficient solution of the subsystem corresponding to velocity
and pressure. Multigrid (MG) or preconditioned Krylov methods can be employed to
solve such systems.

Besides Navier-Stokes with constant viscosity, the variable viscosity Stokes prob-
lem models physical processes in geodynamics, for example mantle convection in the
earth. In geodynamical processes, viscosity varies due to change in material proper-
ties at short distances. The sharp varying viscosity makes the problem challenging
for the scientific computing community. Much research is going on to solve such
problems [50], [19], [57]. We apply our schemes to problems with different viscosity
configurations, including an extrusion problem that has a relatively smooth varying
viscosity.

1.2 Outline of the thesis

The thesis is divided in the following chapters.

• In Chapter 2, the model equation, finite element dicretization and linearization
of the incompressible Navier-Stokes equations are discussed.

• Linear solvers (direct, classical, Krylov, multigrid) and preconditioner introduc-
tion form the subject of Chapter 3.

• Since we are interested in preconditioners for the incompressible Navier-Stokes
problem, in Chapter 4 we give a brief overview of some important precondi-
tioners both algebraic and physics-based.

4 Chapter 1. Introduction

• We discuss the saddle point ILU (SILU) preconditioner in Chapter 5. This is
a cheap and easy to implement ILU preconditioner in combination with a well
chosen renumbering strategy.

• Chapter 6 deals with block preconditioners that are based on SIMPLE-type for-
mulations. Important improvements in SIMPLE-type preconditioners are dis-
cussed.

• A comparison of the preconditioners for Navier-Stokes in 2D and 3D is done in
Chapter 7. Preconditioners are also tested for stretched grids. Comparison of
SILU preconditioned IDR(s) and Bi-CGSTAB(`) is also part of this chapter.

• Some promising techniques for the solution of the Stokes problem are discussed
in Chapter 8. Preconditioners are applied to solve different problems with vari-
ous viscosity configurations.

• Chapter 9 is devoted to conclusions.

Chapter 2
Finite element discretization and
linearization of the Navier-Stokes
equations

In this chapter, we formulate the steady state, incompressible Navier-Stokes equations.
We shortly describe the discretization by finite element methods. It will be shown that
the structure of the matrix depends on the selection of the elements. Newton and
Picard techniques are used to linearize the system of nonlinear equations.

2.1 Problem description

We consider the basic equations of fluid dynamics and its discretization. We start
with the steady state incompressible Navier-Stokes equations governing the flow of a
Newtonian, incompressible viscous fluid. The equations are given by

− ν∇2u + u.∇u + ∇p = f in Ω (2.1)

∇.u = 0 in Ω. (2.2)

Ω ⊂ Rd(d = 2 or 3) is the flow domain with piecewise smooth boundary ∂Ω, u is
the fluid velocity, p is the pressure field, ν > 0 is the kinematic viscosity coefficient
(inversely proportional to Reynolds number Re), ∆ is the Laplace operator, ∇ denotes
the gradient and ∇. is the divergence operator.

Equation (2.1) represents conservation of momentum, while Equation (2.2) rep-
resents the incompressibility condition, or mass conservation. The boundary value
problem that is considered is the system (2.1, 2.2) posed on a two or three dimen-
sional domain Ω, together with boundary conditions on ∂Ω = ∂ΩD ∪ ∂ΩN given by

5

6 Chapter 2. Finite element discretization and linearization

u = w on ∂ΩD, ν
∂u
∂n
− np = s on ∂ΩN .

The presence of the convective term u.∇u in the momentum equation makes the
Navier-Stokes system nonlinear. It can be linearized with Picard or Newton’s method.
We will discuss this later. In the limiting case when the convection is negligible
(ν→ ∞), the Navier-Stokes equations reduce to the Stokes equations given by

− ∇2u + ∇p = f in Ω (2.3)

∇.u = 0 in Ω, (2.4)

with boundary condition

u = w on ∂ΩD,
∂u
∂n
− np = s on ∂ΩN .

2.2 Discretization
The discretization of the Navier-Stokes equations is done by the finite element method.
The weak formation of the Navier-Stokes equations is given by:

ν

∫
Ω

(∇2u).v +
∫
Ω

(u.∇u).v −
∫
Ω

(∇p).v = 0, (2.5)

∫
Ω

q(∇.u) = 0, (2.6)

where v and q are test functions in velocity and pressure space, respectively. After
applying the Gauss divergence theorem and substitution of the boundary conditions,
(2.5) and (2.6) reduce to:

Find u ∈ H1
E(Ω) and p ∈ L2(Ω) such that

ν

∫
Ω

∇u : ∇v +
∫
Ω

(u.∇u).v −
∫
Ω

p(∇.v) =
∫
∂ΩN

s.v, (2.7)

∫
Ω

q(∇.u) = 0. (2.8)

H1
E denotes the 2 or 3 dimensional Sobolev space of functions whose generalized

derivatives are in L2(Ω). The subscript E refers to the essential boundary condi-
tion. Subscript E0 refers to homogeneous essential boundary conditions. : denotes
the dyadic product. The discrete version of (2.7) and (2.8) is:

Given the finite dimensional subspaces Xh
0 ⊂ H1

E0
, Xh ⊂ H1

E and Mh ⊂ L2(Ω), find
uh ∈ Xh

E and ph ∈ Mh such that:

ν

∫
Ω

∇uh : ∇vh +

∫
Ω

(uh.∇uh).vh −

∫
Ω

ph(∇.vh) =
∫
∂ΩN

s.vh for all vh ∈ Xh
0, (2.9)

2.3. Linearization schemes 7

∫
Ω

qh(∇.uh) = 0 for all qh ∈ Mh. (2.10)

We see in the relations (2.9) and (2.10) that no derivative of ph and qh are used.
It is sufficient that ph and qh are integrable. For uh and vh, the integral of the first
derivative must exist. So we need the continuity of uh and vh and not of ph and qh in
the weak formulation. This plays an important role in the element selection.
In the standard Galerkin method we define two types of basis functions, ψi(x) for the
pressure and φi(x) for the velocity. So the approximation for uh and ph is defined as

ph =

np∑
j=1

p jψ j(x), np is the number of pressure unknowns (2.11)

and

uh =

nu
2∑

j=1

u1 jφ j1(x) + u2 jφ j2(x) =
nu∑
j=1

u jφ j(x), (2.12)

where nu is the number of velocity unknowns, u j is defined by u j = u1 j, j = 1, .. nu
2 ,

u j+ nu
2
= u2 j, j = 1, ... nu

2 and φ j in the same way. Substituting v = φi(x), q = ψi(x), we
get the standard Galerkin formulation.

Find ph and uh, such that

ν

∫
Ω

∇uh : ∇φi +

∫
Ω

(uh.∇uh).φi −

∫
Ω

ph(∇.φi) =
∫
∂ΩN

s.φi f or i = 1, ..nu, (2.13)

∫
Ω

ψi(∇.uh) = 0 f or i = 1, .., np. (2.14)

Formally the system of equations can be written as

Adu + N(u) + BT p = f (2.15)

Bu = g, (2.16)

where u denotes the vector of unknowns u1i and u2i, and p denotes the vector of
unknowns pi. Adu is the discretization of the viscous term and N(u) the discretization
of the nonlinear convective term, Bu denotes the discretization of minus the divergence
of u and BT p is the discretization of the gradient of p. The right-hand side vectors f
and g contain all contributions of the source term, the boundary integral as well as the
contribution of the prescribed boundary conditions.

Since only linear systems of equations can be solved easily, equations (2.15) and
(2.16), have to be linearized and combined with some iteration process.

2.3 Linearization schemes
The Navier-Stokes equations are solved by solving a linearized problem at each non-
linear step. Linearization is commonly done by Picard and Newton iteration schemes,
or variants of these methods.

8 Chapter 2. Finite element discretization and linearization

2.3.1 Picard method

In the Picard iteration method, the velocity in the previous step is substituted into the
convective term. The convective term at the new level is defined as

uk+1.∇uk+1 ≈ uk.∇uk+1.

Starting with an initial guess u0 for the velocity field, Picard’s iteration constructs a
sequence of approximate solutions (uk+1, pk+1) by solving a linear Oseen problem

− ν∆uk+1 + (uk.∇)uk+1 + ∇pk+1 = f in Ω, (2.17)

∇.uk+1 = 0 in Ω, (2.18)

k = 1, 2, No initial pressure is required.
If we use u0 = 0, the first iteration corresponds to the Stokes problem (2.3), (2.4).

2.3.2 Newton method

Newton’s method is characterized by the fact that it is a quadratically converging pro-
cess. Once it converges, it requires only a few iterations. Suppose we write the solu-
tion at the new level as the sum of the preceding level and a correction:

uk = uk−1 + δuk−1.

If the kth iteration uk is in the neighborhood of u , δu is small. The convective terms
can be written as:

uk.∇uk = (uk−1 + δuk−1).∇(uk−1 + δuk−1)

= uk−1.∇uk + (uk − uk−1).∇(uk−1 + δuk−1)

= uk−1.∇uk + uk.∇uk−1 − uk−1.∇uk−1 + δuk−1.∇δuk−1.

Neglecting the quadratic term in δu, the linearized form of (2.1), (2.2) becomes:

ν∆uk + uk.∇uk−1 + uk−1.∇uk + ∇pk = f + uk−1.∇uk−1, (2.19)

∇.uk = 0. (2.20)

Equations (2.19) and (2.20) are known as the Newton linearization of the Navier-
Stokes equations and continuity equation. The Stokes equations can be used as an
initial guess. Newton’s method gives quadratic convergence. However, convergence
with Newton largely depends upon the initial guess. For high Reynolds numbers, the
method does not converge due to a bad initial guess. In such a case few Picard itera-
tions could be used as a start. Another good starting guess can be achieved by starting
with a smaller Reynolds number, compute the solution and use this solution as an ini-
tial guess for a larger Reynolds number. This method is known as the continuation
method.

2.4. Element selection conditions 9

After linearization the system can be written as

Fu + BT p = f ,

Bu = g,

where F = Ad + N(uk) is the linearized operator and uk is the solution of the previous
iteration. In general nonlinear iteration consists of the following steps.

Algorithm 2.1 Solve Adu + N(u) + BT p = f and Bu = g

1. Initialize tolerance, u and p (usually u and p are obtained by solving the Stokes
problem) [

Ad BT

B 0

] [
u
p

]
=

[
f
g

]
2. Linearize N(u) using u from the previous step using a Picard or Newton lin-

earization scheme to create the matrix Fand the right-hand side f̃

3. Solve [
F BT

B 0

] [
δu
δp

]
= −

[
F BT

B 0

] [
u
p

]
+

[
f̃
g

]
4. Update [

u
p

]
=

[
u
p

]
+

[
δu
δp

]
5.

If

∣∣∣∣∣∣
∣∣∣∣∣∣
[
F BT

B 0

] [
u
p

]
−

[
f
g

]∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ tolerance

∣∣∣∣∣∣
∣∣∣∣∣∣
[

f
g

]∣∣∣∣∣∣
∣∣∣∣∣∣ Then Converged

Otherwise Goto 2

2.4 Element selection conditions
Now that the problem of the nonlinear term is dealt with, the linear system arising
from Algorithm 2.1 can be written as[

F BT

B 0

] [
u
p

]
=

[
f
g

]
(2.21)

Equation (2.21) shows another problem in the system of equations: the presence
of zeros in the main diagonal. The zero block reflects the absence of the pressure in
the continuity equation. As a consequence the system of equations may be underde-
termined for an arbitrary combination of pressure and velocity unknowns. Systems of
the form (2.21) are known as saddle point problems. In (2.14) we see that the number

10 Chapter 2. Finite element discretization and linearization

of equations for the velocity unknowns is determined by the pressure unknowns. If
the number of pressure unknowns is larger than the number of velocity unknowns,
the coefficient matrix in (2.21) becomes rank deficient, so we infer that the number of
pressure unknowns should never exceed the number of velocity unknowns irrespective
of the grid size. To meet this criterion in general, the pressure should be approximated
by interpolation polynomials that are at least one degree less than the polynomials for
the velocity. One can show [35] that for certain combinations of velocity and pressure
approximations, the matrix in (2.21) is singular even though the pressure has a lower
degree polynomial approximation. An exact condition that elements must satisfy is
known as the Brezzi-Babuška condition (BB condition) [6, 17]. This condition states
that, for BBT in (2.21) to be invertible it is necessary that
kernel(BT)= 0, where BT is nu × np.
kernel(BT)= 0 means that BT has rank np, and is equivalent to requiring

max
v

(Bv, p) = max
v

(v, BT p) > 0,∀p. (2.22)

The above relation in the framework of the finite element method is

max
v∈Vh

(∇.vh, qh)
‖vh‖Vh‖qh‖Qh

> 0. (2.23)

The above condition (2.23) allows the family of matrices to degenerate towards a
singular system as h→ 0. The strict Brezzi-Babuška condition ensures that BBT does
not degenerate towards zero as h decreases. The modified form of (2.23) is

inf
q∈Qh

sup
v∈Vh

(∇.vh, qh)
‖vh‖Vh‖qh‖Qh

≥ γ ≥ 0. (2.24)

In practice it is very difficult to verify whether the BB condition is satisfied or not.
Fortin [37] has given a simple method to check the BB condition on a number of
elements, which states that an element satisfies the BB condition, whenever, given a
continuous differentiable vector field u, one can explicitly build a discrete vector field
ũ such that ∫

Ω

ψi div ũ dΩ =
∫
Ω

ψi div u dΩ for all basis functions ψi.

The elements used in a finite element discretization of the Navier-Stokes equations
are usually subdivided into two families, one having a continuous pressure (Taylor-
Hood family) [77] and the Crouzeix–Raviart family [22] having a discontinuous pres-
sure approximation. In Figures 2.1 and 2.2, some of the popular elements of these
families in 2D are shown. Both quadrilateral and triangular elements are used with
different combinations of velocity and pressure polynomials. In the Crouzeix- Raviart
family the elements are characterized by a pressure which can be discontinuous on
element boundaries. For output purposes, these discontinuous pressures are averaged
in vertices for all the adjoining elements. For details see [24].

2.4. Element selection conditions 11

Figure 2.1: Taylor-Hood family elements (Q2-Q1) , (P2-P1) elements and (Q2-Q1)
grid

Figure 2.2: Crouzeix-Raviart family elements (Q2-P1), (P2-P1) elements and (P2-P1)
grid

12 Chapter 2. Finite element discretization and linearization

Figure 2.3: Taylor-Hood family mini-elements: Q+1 − Q1 element, P+1 − P1 element

Another class of elements from the Taylor-Hood family which satisfies the BB
condition is known as the mini-element, in which the velocity is defined by a bilinear
interpolation polynomial for the vertices with a bubble function at the centroid and the
pressure is defined as a bilinear polynomial. The bubble function is 1 in the centroid
and zero on the nodes and consequently, zero on the edges. This function is necessary
to prevent an overdetermined system of equations for the continuity equation. Since
the bubble function is strictly local for an element, the centroid only contributes to the
element matrix and vector for the specific element within which it exists. Therefore,
the centroid can be eliminated on element level (static condensation). The rectangular
and triangular mini-elements are shown in Figure 2.3. Elements that do not satisfy the
BB condition must be stabilized in order to get a nonsingular system. Usually this is
done by relaxing the incompressibility constraints. An example of such type of ele-
ments is the Q1-Q1 element in which equal order interpolation polynomials are used
to approximate the velocity and pressure. The mini-element with static condensation
is also an example of a stabilized element. Note that all elements used in this thesis
satisfy the BB condition and stabilized elements are beyond the scope of the thesis.

2.5 Summary
In this chapter, we discussed the steady incompressible Navier-Stokes equations. Since
we are interested in the numerical solution of the problem, we discretized it with a fi-
nite element discretization scheme. We use elements that satisfy the BB condition.
Since discretization gives rise to a nonlinear system, Picard and Newton linearization
schemes are used to linearize the Navier-Stokes problem. This gives rise to a sad-
dle point problem which is indefinite and has a large number of zeros on the main
diagonal.

In the next chapter, we will discuss solution techniques that can be employed to
solve the linear systems.

Chapter 3
Solution techniques

Linearization of the Navier-Stokes problem, leads to a linear system of the form Ax =
b that needs to be solved in each step. In this chapter, we give an overview of various
classes of solution methods that can be employed to solve a linear system.

3.1 Direct method
Each nonsingular matrix can be written in the form

A = LU,

with L a lower triangular matrix and U an upper triangular matrix. Direct methods
employ Gaussian elimination to construct L and U. After that we have to solve LUx =
b, which can be done by first solving Ly = b, and then solving Ux = y.

The cost of the Gaussian elimination algorithm is O(N3) whereas O(N2) flops are
used in backward and forward substitution, where N is the number of unknowns.

A direct method is preferred when the matrix is dense. However, sparse linear
systems with suitable sparsity structure are also often solved by direct methods, since
direct methods lead to a more accurate solution and a fixed amount of work compared
to iterative methods. For sparse matrices, sparsity can be used to reduce the computing
time and memory during the elimination process. An example of such kind of matrices
is the band matrix in which nonzero elements are only on the main and some adjacent
diagonals.

A =

x x 0 0 0 0 0
x x x 0 0 0 0
x x x x 0 0 0
0 x x x x 0 0
0 0 x x x x 0
0 0 0 x x x x
0 0 0 0 x x x

(3.1)

13

14 Chapter 3. Solution techniques

In (3.1), matrix A is a band matrix with lower bandwidth p, if (i > j + p ⇒ ai j = 0)
and upper bandwidth q if (j > i + q ⇒ ai j = 0) and having bandwidth p + q + 1.
The LU decomposition can now be obtained using 2N pq flops if N � p and N � q.
The solution of the lower triangular system costs 2N p flops and the upper triangular
system costs 2Nq flops.

Linear systems arising from finite element and finite difference discretizations are
such that p and q are equal. Each entry within the band can be either zero or nonzero
and all the elements outside the band are zero and remain zero during the elimination
process, due to the fact that L and U inherit the lower and upper bandwidth of A. The
cost of the banded solution methods is governed by the bandwidth, that is why these
schemes may be inefficient for sparse matrices which contain a significant number of
zeros inside the band. One alternative to the bandwidth strategy involves discarding
all leading zeros in each row and column and storing only the profile of a matrix. This
method is known as profile or envelope method.

For a square matrix A, the lower envelope of A is the set of all the ordered pairs
(i, j) such that i > j and aik , 0 for k ≤ j. The upper envelope of A is the set
of ordered pairs (i, j) such that i < j and ak j , 0 for some k ≤ j. Thus the upper
envelope is the set of all elements above the main diagonal excluding leading zeros in
each column. If a matrix is symmetric and positive definite then A = LLT , where L is
the lower triangular matrix. This is known as the Cholesky factorization. In Cholesky
factorization, L has the same envelope as A and we can save computer storage by
employing a data structure that stores only the half band (lower or upper) of A and L
can be stored over A.

Generally, the system arising from the discretization contains a large number of
zeros. Both band and profile storage depend on the order in which the equations
and unknowns are numbered. The elimination process in the LU factorization fills the
nonzero entries of a sparse matrix within a band or profile. So a large number of entries
has to be stored and CPU time increases when the number of nodes increases. The
aim of sparse direct solvers is to avoid doing operations on zero entries and therefore
to try to minimize the number of fill-in. We may save the computational cost and CPU
time with an efficient reordering strategy which can be used to modify the structure of
the matrix. Cuthill-McKee, Nested dissection, and some other renumbering schemes
are widely used in the literature to reduce fill-in and cost of the direct solver. More
details on direct solvers can be found in [27], [53], [40].

Although renumbering schemes may increase the efficiency of direct solvers con-
siderably, in case of large problems, memory and CPU requirements still make their
solution expensive. Especially in 3D, as well as in the case where a high accuracy is
not required it is useless to apply direct methods.

3.2 Iterative methods
Suppose we want to solve a linear system

Ax = b. (3.2)

3.2. Iterative methods 15

We assume that A is a nonsingular square matrix and b is given. An iterative method
constructs a sequence of vectors xk, k = 0, 1, ... (x0 given), which is expected to con-
verge towards x. The method is said to be convergent if

lim
k→∞
‖x − xk‖ = 0.

In many cases, the matrix A is split into two matrices

A = M− N.

The sequence xk can be defined as

Mxk+1 = Nxk + b. (3.3)

Let ek = x − xk be the error at the kth iteration. Then (3.3) can be written as

M(x − xk+1) = N(x − xk)

ek+1 = M−1Nek

ek+1 = (M−1N)ke0.

The method converges if lim
k→∞

(M−1N)k = 0.

Theorem 3.2.1. The iterative method (3.3) converges to x = A−1b if σ(M−1N) < 1
where σ(M−1N) = max{|λ|, where λ is an element of the spectrum M−1N}; the set of
eigenvalues of M−1N is said to be the spectrum of M−1N [87].

It is not easy to inspect the spectrum, since for most of the problems the eigen-
values of (M−1N) are not explicitly known. For more details see ([53], Chapter 5).
Variants of (3.3) are known as classical iterative methods. Gauss Seidel, Gauss Ja-
cobi and SOR (successive over relaxation) are examples of such classical methods.
Advantages of iterative methods are:

• The matrix A is not modified, so no fill-in is generated and there is no need for
additional space for new elements. Therefore, neither additional time nor mem-
ory is required for inserting these elements into a complicated data structure is
required.

• Only a limited additional memory is required.

• In large problems or if only a low accuracy is required, these iterative methods
may be much faster than direct methods.

• They are easy to implement.

Disadvantages of iterative methods are that convergence is not guaranteed for general
matrices. Moreover, classical iterative methods may require a lot of time especially
if a high accuracy is required. Classical iterative methods are used as smoothers in a
multigrid method, where they are used to damp high spatial frequencies of the error.

In the next section, we consider a more sophisticated class of iterative solvers,
known as Krylov subspace methods. They appear to be more robust than classical
iterative schemes and usually have better convergence properties.

16 Chapter 3. Solution techniques

3.2.1 Krylov subspace methods
If we replace N by M− A in the iterative method (3.3), then it can be written as

xk+1 = xk + M−1rk, (3.4)

where rk = b − Axk is the residual. If we start with x0, the next steps can written as

x1 = x0 + M−1r0,

x2 = x1 + M−1r1,

substituting x1 from the previous step and using r1 = b − Ax1, this leads to

x2 = x0 + 2M−1r0 − M−1 AM−1r0

.

.

.
This implies that

xk ∈ x0 + span{M−1r0, M−1 A(M−1r0), ..., (M−1 A)k−1(M−1r0)}

The subspace Kk(A; r0) := span{r0, Ar0, ..., Ak−1r0} is called the Krylov subspace
of dimension k corresponding to matrix A and initial residual r0. It means that the
Krylov subspace is spanned by the initial residual and by vectors formed by repeated
multiplication of the initial residual and the system matrix.

The Krylov subspace is defined by its basis v1, v2, ..., v j. This basis can be com-
puted by the Arnoldi [3] algorithm. We start with v1 = r0/‖r0‖2, then compute Av1,
make it orthogonal to v1 and normalize it, to get v2. The general procedure to form the
orthonormal basis is as follows: assume we have an orthonormal basis v1, v2, .., v j for
K j(A; r0). This basis is expanded by computing w = Av j and orthonormalized with
respect to the previous basis. The most commonly used algorithm is Arnoldi with the
modified Gram-Schmidt procedure as shown in Algorithm 3.1, [40]. Let the matrix
V j be given as

V j = [v1v2, ..., v j] where span(v1, v2, ..., v j) = K j.

The columns of V j are orthogonal to each other. It follows that

AVm−1 = VmHm,m−1.

The m × (m − 1) matrix Hm,m−1 is upper Hessenberg, and its elements hi, j are defined
by Algorithm 3.1 known as the Arnoldi algorithm.

The Arnoldi algorithm is composed of matrix-vector products, inner products and
vector updates. If A is symmetric, then Hm−1,m−1 = VT

m−1 AVm−1 is also symmetric
and tridiagonal. This leads to a three term recurrence in the Arnoldi process. Each
new vector has only to be orthogonalized with respect to two previous vectors. The
algorithm is known as the Lanczos algorithm. Krylov subspace methods are developed
on the bases of these algorithms. For more details see [64], [83]. We will discuss some
of the popular Krylov subspace methods that are used in numerical simulations.

3.2. Iterative methods 17

Algorithm 3.1 Arnoldi algorithm with modified Gram-Schmidt procedure

v1 = r0/‖r0‖2;
For j = 1 to m − 1

w = Av j;
For i = 1 to j,

hi, j = vT
i w;

w = w − hi, jvi;
end
h j+1 = ‖w‖2;
v j+1 = w/h j+1, j;

Conjugate gradient method (CG)

For symmetric and positive definite systems, CG is the most effective Krylov method.
CG finds a solution in a Krylov subspace such that

||x − xi||A = min
y∈Ki(A;r0)

||x − y||A ,

where (x, y)A = (x, Ay). The solution of this minimization problem leads to the con-
jugate gradient method [41].

Algorithm 3.2 Conjugate gradient method

k = 0, x0 = 0, r0 = b
While rk , 0

k = k + 1;
If k = 1 do,

p1 = r0;
Else

βk =
rT

k−1rk−1

rT
k−2rk−2

pk = rk−1 + βk pk−1

End If

αk =
rT

k−1rk−1

pk Apk

xk = xk−1 + αk pk

rk = rk−1 − αk Apk

End While

From Algorithm 3.2, it is clear that the vectors from the previous iterations can
be overwritten and only the vectors xk, rk, pk and matrix A need to be stored. If A
is dense, then matrix-vector multiplication costs N2 operations, and the total cost is

18 Chapter 3. Solution techniques

O(N3), the same as for the direct methods. However, for sparse matrices the matrix-
vector multiplication is much cheaper than O(N2), and in those cases CG may be
more efficient. The convergence speed of CG depends on the condition number of the
matrix.

Theorem 3.2.2. The iterates obtained from the CG algorithm satisfy the following
inequality [64]:

||x − xk ||A ≤ 2(
√

K2(A) − 1
√

K2(A) + 1
)k ||x − x0||A . (3.5)

This theorem suggests that CG is a linearly convergent process. However, it has
been shown that if extremal eigenvalues are well-separated, superlinear convergence
is observed [81]. It seems that after some iterations the condition number is replaced
by a smaller effective condition number.

Bi-CGSTAB

Bi-CGSTAB [82] is a member of the family of Bi-conjugate gradient (Bi-CG) [36]
algorithms. If the matrix A is symmetric and positive definite then the CG algorithm
converges to the approximate solution. The CG method is based on the Lanczos algo-
rithm. For nonsymmetric matrices the Bi-CG algorithm is based on Lanczos biorthog-
onalization. This algorithm not only solves the original system Ax = b but also a
linear system AT x∗ = b. In the Bi-CG method, the residual vector can be written as
r j = φ j(A)r0 and r̄ j = φ j(AT)r̄0, where φ j is a jth order polynomial satisfying the
constraint φ j(0) = 1. Sonneveld [74], observed that one can also construct the vectors
r j = φ2

j (A)r0, using only the latter form of the innerproduct for recovering the bi-
conjugate gradients parameters (which implicitly define the polynomials φ j). This is
the CGS method. In this method, the formation of vector r̄ j and multiplication by AT

can be avoided. However, CGS shows irregular convergence behavior in some cases.
To remedy this difficulty Bi-CGSTAB (Bi-conjugate gradient stabilized) is developed.
Bi-CGSTAB produces iterates with residual vectors of the form

r j = ψ j(A)φ j(A)r0,

ψ j is the new polynomial defined recursively at each step for stabilizing or smoothing
the convergence.

The advantage of Algorithm 3.3 is that it is based on a short recurrence. It is
always necessary to compare the norm of the updated residual to the exact residual as
small changes in the algorithm can lead to instabilities.

GMRES

The generalized minimal residual algorithm is developed by Saad and Schultz [66].
This method is based on long recurrences and satisfies an optimality property. This
means that it computes an approximation of the minimal of the residual. This method
is used for nonsymmetric (non)singular matrices. GMRES is based on a modified

3.2. Iterative methods 19

Algorithm 3.3 Bi-CGSTAB algorithm

1. x0 is an initial guess and r0 = b − Ax0

2. Choose r̄0 (an arbitrary vector), for example r̄0 = r0

3. ρ−1 = α−1 = ω−1 = 1
4. v−1 = p−1 = 0
5. For i = 0, 1, 2, 3...
6. ρi = (r̄0, r0); βi−1 = (ρi/ρi−1)(αi−1/ωi−1)
7. pi = ri + βi−1(pi−1 − ωi−1vi−1)
8. vi = Api

9. αi = ρi/(r̄0, vi)
10. s = ri − αivi

11. if ‖s‖ is small enough then xi+1 = xi + αi pi, exit For loop
12. t = As
13. wi = (t, s)/(t, t)
14. xi+1 = xi + αi pi + wis
15. if xi+1 is accurate enough then exit For loop
16. ri+1 = s − wit
17. End For loop

Gram-Schmidt orthonormalization procedure and can optionally use a restart to con-
trol storage requirements. From Algorithm 3.4, it is clear that the Arnoldi algorithm
is followed by a minimum least squares problem:

J(y) = ‖b − Ax‖2 = ‖b − A(x0 + Vmy)‖2

by using r0 = b − Ax, AVm = Vm+1H̄m, e1 = [1, 0, ..., 0]T the above relation leads to
minimization of

J(y) = ‖βe1 − H̄my‖2.

GMRES is a stable method and no breakdown occurs, if h j+1, j = 0 then xm = x and
one has reached the solution. It can be seen that the work per iteration and memory
requirements increase for an increasing number of iterations. In order to avoid the
problem of excessive storage requirements and computational costs for the orthogo-
nalization, GMRES is usually restarted after m iterations which uses the last iteration
as starting vector for the next restart. The restarted GMRES is denoted as GMRES(m).
Unfortunately it is not clear what a suitable choice of m is. A disadvantage in this ap-
proach is that the convergence behavior in many cases seems to depend quite critically
on the choice of m. The property of superlinear convergence is lost by throwing away
all the previous information of the Krylov subspace. If no restart is used, GMRES
(like any orthogonalizing Krylov subspace method) will converge in no more than N
steps (assuming exact arithmetic). For more details on the GMRES convergence see
[85].

20 Chapter 3. Solution techniques

Algorithm 3.4 GMRES algorithm

1. Compute r0 = b − Ax0, β := ‖r0‖2, and v1 = r0/β

2. For j = 1 to m
3. Compute w = Av j;
4. For i = 1 to j
5. hi j := (w j, vi)
6. w j := w j − hi jvi

7. End
8. h j+1, j = ‖w j‖2. if h j+1, j = 0 set m := j and exit For loop
9. v j+1 = w j/h j+1, j

10. End
11. Define the (m + 1)xm Hessenburg matrix H̄m = {hi j}1≤i≤m+1,1≤ j≤m

12. Compute ym, the minimizer of ‖βe1 − H̄my‖2, and xm = x0 + Vmym

Theorem 3.2.3. Suppose that A is diagonalizable so that A = XΛX−1 and let

ε(m) = min
p∈ pm
p(0)=1

max
λi∈σ
|p(λi)|

then the residual norm of the m-th iterate satisfies

‖rm‖2 ≤ K(X)ε(m)‖r0‖2

where K(X) = ‖X‖2‖X−1‖2. If furthermore all eigenvalues are enclosed in a circle
centered at Cc ∈ R with Cc > 0 and having radius Rc with Cc > Rc, then ε(m) ≤ (Rc

Cc
)m

[66].

GMRESR

This method is a variant of GMRES developed by Vuik and van der Vorst [84]. The
idea is that the GMRES method can be effectively combined with other iterative
schemes. The outer iteration steps are performed by GCR [30], while the inner it-
eration steps can be performed by GMRES or with any other iterative method. In
GMRESR, inner iterations are performed by GMRES. In Algorithm 3.5, if m = 0, we
get GCR and for m → ∞ we get GMRES. The amount of work and required mem-
ory for GMRESR is much less than GMRES. The choice of m in GMRESR is not
critical. The proper choice of m and amount of work have been discussed in [84]. In
some cases, when the iterative solution is close to the exact solution (i.e satisfies the
stopping criterion), the m inner iterations of GMRES at that point will lead to a higher
accuracy which is not required at that point. So it is never necessary to solve the inner
iterations more accurately than the outer one [84].

In the next chapters, we will also use GCR to solve linear systems. The rate of
convergence of GMRES and GCR are comparable. Like GMRES, GCR can also

3.2. Iterative methods 21

Algorithm 3.5 GMRESR algorithm

1. x0 is an initial guess and ro = b − Ax0

2. For j = 1, 2, 3...
3. si = Pm,i−1(A)ri−1,

si be the approximate solution of As = ri−1

obtained after m steps of an iterative method
4. vi = Asi

5. For j = 1 to i − 1
6. α = (vi, v j),
7. vi = vi − αv j,si = si − αs j,
8. End
9. vi = vi/‖vi‖2,si = si/‖vi‖2

10. xi = xi−1 + (ri−1, vi)si;
11. ri = ri−1 − (ri−1, vi)vi;
12. End

be restarted if the required memory is not available. Another strategy known as the
truncation method has a better convergence than the restart strategy, so if restarting or
truncation is necessary truncated GCR is in general better than restarted GMRES. For
properties and convergence results we refer to [30].

IDR(s)

IDR(s) (Induced dimension reduction) is a Krylov subspace method developed re-
cently by Van Gijzen and Sonneveld [75] and is based on the principles of the IDR
method which was proposed by Sonneveld in 1980. IDR(s) is a finite termination
(Krylov) method for solving nonsymmetric linear systems. IDR(s) generates residu-
als rn = b − Axn that are in subspaces G j of decreasing dimension.
These nested subspaces are related by

G j = (I − ω j A)(G j−1 ∩ S)

where

• S is a fixed proper subspace of CN . S can be taken to be the orthogonal com-
plement of s randomly chosen vectors pi, i = 1 · · · s.

• The parameters ω j ∈ C are nonzero scalars.

The parameter s defines the size of a subspace of search vectors. The larger s,
the more memory is required. IDR(s) requires N + N/s matrix-vector multiplications
to get the exact solution. Theoretically Bi-CGSTAB gives the exact solution in 2N

22 Chapter 3. Solution techniques

Algorithm 3.6 IDR(s) algorithm

1. While ‖rn‖ > TOL or n < MAXIT
2. For k = 0 to s
3. Solve c from PHdRnc = PH rn

4. v = rn − dRnc; t = Av;
5. If k = 0
6. ω = (tHv)/(tH t);
7. End If
8. drn = −dRnc − ωt; dxn = −dXnc + ωv;
9. rn+1 = rn + drn; xn+1 = xn + dxn;
10. n = n + 1;
11. dRn = (drn−1 · · · drn−s); dXn = (dxn−1 · · · dxn−s);
12. End For
13. End While

matrix-vector multiplications, provided exact arithmetic is used. IDR(1) has the same
properties as Bi-CGSTAB. A disadvantage of Bi-CGSTAB is its erratic convergence
behavior. For s > 1 the IDR(s) becomes more stable. The number of matrix-vector
multiplications per iteration is equal to s, the number of iterations usually decreases
for increasing s. The reduction of the number of iterations for increasing s is not
monotonic. Large values of s sometimes even do not improve performance of IDR(s)
[75]. Usually s is taken in the order of 4.

Multigrid

Multigrid methods are the most effective methods for solving large linear systems
associated with elliptic PDEs. The idea of multigrid is based on a combination of
two principles. First, the high frequency components of the error are reduced by
applying a classical iterative method like a Jacobi or a Gauss Seidel scheme. These
schemes are called smoothers. Next, low frequency error components are reduced by
a coarse grid correction procedure. The smooth error components are represented as
a solution of an appropriate coarser system. After solving the coarser problem, the
solution is interpolated back to the fine grid to correct the fine grid approximation for
its low frequency errors. The way multigrid components, i.e., smoothing, restriction,
prolongation, and solution of the error equation on the coarse grid are linked to each
other are shown in Algorithm 3.7.

Algorithm 3.7 is also known as the 2-grid algorithm; Step 4 can be optimized in
various ways. For example, the error equation on the coarse grid is seldom solved
exactly in practice. The customary method of solving it employs recursive calls to the
2-grid algorithm. If the recursion is carried out in a loop, thereby allowing different
numbers of iterative sweeps on different coarse grids, we obtain the different V, W,

3.2. Iterative methods 23

Algorithm 3.7 Solve Ahuh = bh

where subscript h is used for the fine grid and H for the coarse grid.

1. Perform smoothing by using k iterations of an iterative method (Jacobi, Gauss
Seidel, etc) on the problem Ahuh = bh

2. Compute the residual rh = bh − Ahuh

3. Restrict the residual rH = Rrh

4. Solve for the coarse grid correction, AHeH = rH

5. Prolongate and update uh = uh + PeH

6. Perform smoothing by using l iterations of an iterative method (Jacobi, Gauss
Seidel, etc) on the problem Ahuh = bh

and F multigrid cycles. The multigrid components (as well as the cycle type) play an
important role in achieving optimal convergence. It is widely accepted that the most
efficient multigrid algorithm can be rendered by the Full MultiGrid (FMG) strategy.
This involves predicting a solution of the fine grid equation by an interpolated version
of the original equation (nor the error equation) on the coarse grid. The computational
complexity of the FMG method is O(N) and gives h-independent convergence. In
geometric multigrid, restriction, prolongation, and coarse grids are chosen based on
the geometric information. For more details see [78]. In case of absence of geomet-
ric data, an alternative known as algebraic multigrid (AMG) [16], [62], [63] can be
employed.

AMG also uses these components; however, the information that travels from finer
grid levels to coarse levels is not based on the geometric location of the grid points. To
start the coarsening process, certain entries from matrix Ah are selected as influential
in determining the solution. For example, if ai j , 0 in Ah, we say that point i in the
grid is connected to point j and vice versa. The ith row of the matrix then consists of
only those entries that influence the unknown ui. The influence of unknown u j to ui is
said to be large if a small change in u j gives a large change in ui [18]. The influence
of one unknown on another is decided by the corresponding coefficient. A coupling
between two grid points i and j is strong if

|ai j| > θ
√

aiia j j,

where θ is a predefined coupling parameter [86]. A set of coarse variables is then
defined by aggregating the nodes in the graph of strong connections using a greedy
algorithm [86]. Once the coarse grid has been chosen, all operators in the coarse
grid correction process, including the restriction and interpolation operators, are con-
structed based on information obtained from the coefficient matrix. Unlike multigrid,
convergence of AMG does not require a robust smoothing strategy because the coarse
grid correction process is designed to complement simple smoothers. A piecewise

24 Chapter 3. Solution techniques

constant interpolation operator ˆIh
H is defined that has positive nonzero entries of unity

in positions determined so that its columns form a partition of unity over the aggre-
gates. This tentative interpolation operator is then smoothed using Jacobi relaxation,
defined by

Ih
H = (I − ωD−1

h AF
h) ˆIh

H ,

where ω is the relaxation parameter, Dh = diag(AF
h) and AF

h is the filtered matrix de-
rived from Ah by adding all weak connections to the diagonal. The remainder of the
multigrid components are formed based on the Galerkin condition [18], with restric-
tion defined as IH

h =
(
Ih

H

)T
and AH = IH

h AmhIh
H . This process is known as smoothed

aggregation. AMG based on this interpolation technique shows nice convergence for
problems with discontinuous coefficients and anisotropies [86], [76].

3.3 Preconditioning

Convergence of Krylov subspace method depends strongly on the spectrum of the
coefficient matrix. Krylov methods show the best convergence if all eigenvalues are
clustered around 1 or away from zero. Unfortunately, not all PDE’s give rise to the
desired eigenvalue distribution. Therefore, some techniques are required that change
the eigenvalue spectrum of the matrix. This is known as preconditioning. With pre-
conditioning, instead of solving a system Ax = b, one solves a system

P−1 Ax = P−1b,

where P is the preconditioner. A good preconditioner must have a variety of proper-
ties. First, the method applied to the preconditioned system should converge quickly.
This generally means that P−1 A has a small condition number (close to 1). Secondly, it
should be easy to solve systems of the form Pz = r. The construction of the precondi-
tioner should be efficient in both time and space. A system can also be preconditioned
by a right preconditioner (post conditioner) or a split preconditioner. These are defined
by:

AP−1y = b, x = P−1y (right preconditioner)

and

P−1
1 AP−1

2 y = P−1
1 b, x = P−1

2 y (split preconditioner).

Preconditioners are not restricted to Krylov subspace methods only, but for those
methods the use of a preconditioner is the most natural. Since the scope of this thesis is
restricted to the incompressible Navier-Stokes problem and we aim to solve the prob-
lem with Krylov subspace methods, we discuss preconditioners for the incompressible
Navier-Stokes problem in detail in the next chapters.

3.4. Summary 25

3.4 Summary
In this chapter, various solution techniques have been discussed that can be used to
solve a linear system. Direct solution methods give the exact solution at the cost of
memory and CPU time. An alternative is to use iterative methods, which solve lin-
ear systems with low cost and memory up to a desired accuracy. Classical iterative
methods based on the splitting of the coefficient matrix are easy to implement. They
converge for certain classes of matrices. Krylov subspace methods based on matrix-
vector multiplications give convergence for a wide range of problems. In absence of
round off errors, Krylov methods give convergence in at most N iterations. However,
if N is large these methods become expensive. Since convergence of Krylov subspace
method depends on the eigenvalue spectrum, convergence is enhanced with some pre-
conditioning technique. We discussed multigrid techniques that scale linearly with the
number of unknowns if suitable components are used. Since classical iterative meth-
ods reduce high frequency errors efficiently, they are used as smoother in multigrid
techniques. Multigrid can also be used for approximate preconditioner solves during
a Krylov subspace iteration. In this usage, a one or a few cycles of MG usually suffice.

In the next chapter, we give an overview of some preconditioners that are used to
solve the incompressible Navier-Stokes problem.

26

Chapter 4
Overview of Preconditioners

In this chapter preconditioners for the incompressible Navier-Stokes problem that ac-
celerate Krylov subspace methods are discussed. In general, preconditioning tech-
niques based on algebraic and physics-based approaches are widely used for the Navier-
Stokes equations. Algebraic-type preconditioners are based on an ILU factorization
or an approximate inverse of the coefficient matrix. These preconditioners are built
on information available in the coefficient matrix. For the class of M-matrices, the
importance of ILU as preconditioner was first highlighted by Meijerink and van der
Vorst [52]. Later on, preconditioners were used in solving systems that arise from
discretization of various PDE’s [54, 49, 29, 28, 51, 12, 7], and references therein. The
basic idea behind the ILU preconditioners is the same, but a variety of schemes have
been developed to make ILU factors accurate and stable, especially for the indefinite
systems. This is done by using various dropping strategies, scaling, reordering and
pivoting techniques [14, 53, 1, 65].

Although, most of the ILU preconditioners present in the literature can be used
to solve the incompressible Navier-Stokes problem, problem may arise due to the
presence of zeros on the main diagonal. This may result in zero pivots during the ILU
construction. Therefore, a dedicated efficient ILU preconditioner is required that can
handle the zero block properly to avoid breakdown of ILU. In [25, 93, 94] reordering
techniques are used to avoid zero pivots during elimination.

A special class of preconditioners is of the block structured type. The precon-
ditioners are based on a (block) splitting of the matrix in a velocity and a pressure
part. During each iteration each of the subblocks is solved separately. An important
aspect of this approach is a good approximation of the Schur complement. The final
goal is to get convergence independent of mesh size and Reynolds number. Various
cheap approximations of the Schur complement matrix have been published. For an
overview of this type of preconditioners, we refer to [33, 10, 31, 38, 43, 26, 58, 89, 47,
48, 7, 9, 35]. Some of those, which are used in combination with a block triangular
preconditioner are discussed in this chapter.

27

28 Chapter 4. Overview of Preconditioners

4.1 ILU-type preconditioners
The idea of an incomplete LU (ILU) preconditioner stems from the use of a direct
solver in which the system matrix is factorized into LU matrices. Since our system
matrix is sparse in structure, LU factorization gives rise to dense factors which is not
practical to solve by a direct solver due to memory requirement and work. However, an
approximation of LU factors, known as incomplete LU factorization, can be an option
in iterative methods. The idea of ILU is that some entries from LU are discarded at
the time of formation of incomplete LU factors. The result is

A = L̂Û − R, (4.1)

where L̂ is incomplete lower triangular matrix, Û is incomplete upper triangular matrix
and R consists of dropped entries.

Definition 4.1.1. (LU factors) In LU decomposition, a lower triangular matrix is
denoted by L = (li j), such that li j = 0 if i < j, and U = (ui j) as an upper triangular
matrix, such that ui j = 0 for i > j . Sn consists of all the pairs of indices of off-diagonal
matrix entries, where Sn ≡ {(i, j)| i , j, 1 ≤ i ≤ n, 1 ≤ j ≤ n}.

In ILU decomposition, the pairs of indices S ⊂ Sn, consists of indices based on
the dropping scheme. In ILU(0), S consists of only those indices where ai j , 0.
The idea of ILU factorization was first developed for M-matrices.

Definition 4.1.2. (M-matrix) The matrix A = (ai j) is an M-matrix if ai j ≤ 0 for i , j,
the inverse A−1 exists and has positive elements (A−1)i j ≥ 0.

For this class of matrices, the incomplete LU decomposition is a regular splitting.
By regular splitting we mean that if the decomposition given in (4.1) is applied in a
classical iterative method settings,

L̂Û xi+1 = Rxi + b for every choice x0, (4.2)

it will converge.

Theorem 4.1.1. If A = (ai j) is an M-matrix of order n × n, then there exists for every
S ∈ Sn a lower triangular matrix L̂ = (li j), with unit diagonal (li j = 1), an upper
triangular matrix Û = (ui j) and a matrix R = (ri j) with

li j = 0 if (i, j) < S,
ui j = 0 if (i, j) < S,
ri j = 0 if (i, j) ∈ S,

(4.3)

such that the splitting A = L̂Û − R is regular. The factors L̂ and Û are unique.

4.1. ILU-type preconditioners 29

Algorithm 4.1 ILU(0) factorization of matrix A
1 For k = 1,, n − 1
2 For i = k + 1, n and if (i, k) ∈ S
3 aik = aik/akk

4 For j = k + 1,, n and for (i, j) ∈ S
5 ai j = ai j − aik ∗ ak j

6 End For
7 End For
8 End For

For proof, see [52].

The creation of ILU(0) is defined in Algorithm 4.1. The upper part of A in Al-
gorithm 4.1 now contains Û (including diagonal) and lower part L̂ has unit main di-
agonal. This is known as dropping by position strategy and S consists of only those
indices which are a priori selected to place nonzeros entries in incomplete LU fac-
tors. Choice of indices can be based on matrix structure or connectivity of the grid
points. The memory and work required is known beforehand. ILU preconditioners
are very simple to implement and are quite effective for PDEs leading to M-matrices
and diagonally dominant matrices.

If a matrix is symmetric and positive definite (SPD) then the Cholesky factoriza-
tion exists. In incomplete Cholesky (IC) factorization A is decomposed in incomplete
LLT factors. Compared to M-matrices, IC factorization may breakdown due to zero
or negative pivots in the SPD matrices. IC factorization for SPD matrices can be
improved by increasing the matrix diagonal dominance, or by computing the precon-
ditioner by using an approximation Â of A which is changed into an M-matrix [1],
[49]. Of course, there are many schemes in the literature to improve performance of
the IC factorization [7].

Example 4.1.1. (A diffusion problem) We solve a diffusion problem on a square
mesh using linear FEM elements (64 × 64) with suitable boundary conditions. This
gives rise to an M-matrix. We employ the classical iterative method (4.2) and IC
preconditioned CG. Figure 4.1 refers to the convergence plot that shows that IC de-
composition is helpful in both classes of iterative methods. The classical iterative
method converges and the convergence of CG improves if we use the IC factors as
preconditioner.

4.1.1 ILU for a general matrix
The ILU (IC) factorization is developed for M-matrices, however, it appears that it also
works well for many applications where the coefficient matrix is not an M-matrix.
The choice of fill-in is not restricted only to ILU(0). For more difficult problems,
ILU(0) may give an approximation of A that is inaccurate and unable to produce a

30 Chapter 4. Overview of Preconditioners

0 10 20 30 40 50 60
10

−15

10
−10

10
−5

10
0

No. of iterations

E
rr

o
r

A
−

n
o

rm

LLT x
i+1

 = R x
i
 + b

CG
PCG

Figure 4.1: Convergence plot for diffusion problem solved with two different class of
solvers (64 × 64 Q1 grid).

fast converging scheme [21]. In such a case, ILU(k) with extra fill-in, and ILU(t) with
dropping based on size can do a better job than ILU(0).

Just like SPD matrices, indefinite problems also suffer from small or zero pivots.
Besides that, unstable LU factors can arise in nonsymmetric problems. In case of an
M-matrix, the properties of the matrix itself guarantee proper pivots and stable factors.
In case of indefinite problems, use of ILU as blackbox preconditioner is not a good
choice. The reason is that for indefinite problems, due to ill-conditioning, extremely
small diagonal elements can seriously hamper the factorization.

Zero or small pivots can be avoided by various techniques ([7] and references
therein). Even the formation of ILU factors without any breakdown does not guaran-
tee a good quality of the preconditioner. The accuracy and stability are the proper indi-
cators to judge the quality of a preconditioner. In case of an M-matrix, the ILU(0) pre-
conditioner shows nice convergence. Introducing extra fill-in reduces ‖R‖F (F stands
for Frobenius norm) usually, which improves the convergence of the ILU precondi-
tioned Krylov method. However, extra fill-in makes one iteration of a Krylov method
more expensive. In case of indefinite problems, increasing extra fill-in does not im-
prove convergence monotonically. Also the dropping by position strategy does not
give convergence all the time. Therefore, other schemes based on threshold dropping
are employed in which, instead of position, elements are dropped during the Gaus-
sian elimination based on their magnitude. An example of such method is ILUT (T in
this case is for threshold) [64]. With this approach, relatively accurate incomplete LU
factors can be computed. However, the nonzero positions in this case are computed
dynamically and predefined memory can not be used. A variant of ILUT, known as
ILUTP, uses a parameter P to limit the number of nonzero entries per row [14]. The
choice of the threshold value and preserving symmetry are issues in such schemes.

4.2. Application of ILU to Navier-Stokes 31

In indefinite problems, R alone can not be used to judge the quality of the pre-
conditioner. The quantity ‖(L̂Û)−1R‖ should be small [51]. Multiplying both sides of
(4.1) by (L̂Û)−1 gives

(L̂Û)−1A = I − (L̂Û)−1R. (4.4)

This means that (L̂Û)−1A is close to the identity if (L̂Û)−1R is small in some norm. In
diagonally dominant matrices, (L̂Û)−1 is well-conditioned, however, (L̂Û)−1 may have
a very large norm if the original matrix is not diagonally dominant, causing an increase
in the overall norm of (L̂Û)−1R. This will give rise to large perturbations in the identity
matrix in (4.4). It is well-known that the performance of the ILU preconditioner can
be improved with proper use of pivoting, reordering, scaling, and the use of a shifted
diagonal [28, 64, 53].

Pivoting strategies can be used apriori or partially at the time of formation of ILU
factors. In sparse matrices the profile and bandwidth of the matrices are important.
They govern the efficiency of using the ILU factors. If the pivoting strategy does
not increase the profile or bandwidth of the system, then pivoting can be effective,
otherwise the search for a suitable pivot can make the preconditioner less efficient
due to an increase in the profile of the matrix. Moreover, a large data structure that
keeps information of permutation matrices at each step of ILU factorization makes
the scheme more costly. The alternative to pivoting is apriori numbering. A suitable
apriori renumbering improves the profile and bandwidth of the matrix and produces
ILU factors that accelerate the Krylov method.

In [44, 71] an example of random matrices is given in which bandwidth reduction
does not influence the convergence of ILU preconditioned Krylov methods. How-
ever, in [93, 25, 52, 28, 29, 51, 11, 14] it is shown that the combination of suitable
node-renumbering techniques with ILU preconditioners improves convergence con-
siderably for many PDE’s resulting from engineering problems.

4.2 Application of ILU to Navier-Stokes

As discussed earlier, straightforward application of an ILU preconditioner is not ef-
fective or even not possible in some cases. This is true, for example, in the case of
Navier-Stokes problem which has a large number of zeros on the main diagonal. The
zero pivot problem may occur in the course of ILU operation of a saddle point type
matrix unless proper care is taken. Moreover, in the Navier-Stokes problem the perfor-
mance of a preconditioned Krylov iterative solver strongly depends on how variables
are ordered in the resultant global matrix. Therefore, reordering is important for the
effective ILU preconditioning of an assembled matrix. In the example below, we pro-
duce a globally reordered matrix by a reordering scheme, which minimizes bandwidth
of the global matrix and avoids zero pivots.

Test Case 1. Driven cavity problem: A 2D driven cavity problem is simulated in a
square cavity (−1, 1) × (−1, 1) with enclosed boundary conditions with a lid moving

32 Chapter 4. Overview of Preconditioners

0 2000 4000 6000 8000

0

2000

4000

6000

8000

0 2000 4000 6000 8000

0

2000

4000

6000

8000

Figure 4.2: Test Case 1 discretized on 32 × 32 Q2-Q1 grid: Navier-Stokes matrices
before (p-last) and after reordering.

0 50 100 150 200
10

−8

10
−6

10
−4

10
−2

10
0

iterations

|| R
ela

tiv
e

re
sid

ua
l ||

2

Lexicographic
Symmetric RCM

Figure 4.3: Test Case 1 discretized on 32 × 32 Q2-Q1 grid: Convergence curve of
ILU preconditioned Bi-CGSTAB with Re = 200.

from left to right with speed:

ux = 1 − x4 at y = 1; −1 ≤ x ≤ 1,

known as regularized cavity problem. The velocity and the pressure solution for the
driven cavity problem is shown in Figure 4.4.

Example 4.2.1. Test Case 1 is solved with ILU preconditioned Bi-CGSTAB with tol-
erance 10−6. In Figure 4.2, it is visible that application of a reordering scheme (sym-
metric reverse Cuthill-McKee (RCM) from Matlab) reduces profile and bandwidth of
the matrix. This reduces the number of nonzeros in L̂Û from 450k to 390k and the
norm of R reduces from 0.16 to 0.13. Therefore, reduction in the number of iterations
can be seen in Figure 4.3 (using LUINC routine of Matlab).

4.3. Block preconditioners 33

Blackbox ILU preconditioners like ILUPACK [14] enhance the convergence of
the iterative method if used for the Navier-Stokes equations. However, convergence
with ILU can be increased if the preconditioner is built on a matrix structure infor-
mation. In the literature [25, 93], dedicated apriori reordering schemes for ILU-based
Navier-Stokes solvers can be found. The schemes are helpful in accelerating the ILU
preconditioned Krylov method. Since fill-in is based on the finite element structure,
fill-in in these schemes is allowed at the pressure part that corresponds to the zero
block in the global Navier-Stokes matrix. According to [25], two nodes are said to
be coupled if they belong to the same finite element. Moreover, some work is also
related to apriori pivoting in direct solvers to solve the incompressible Navier-Stokes
problem [94].

We leave further discussion to Chapter 5, in which we present a new ordering
technique for direct methods and ILU preconditioners.

4.3 Block preconditioners

We know that certain classes of preconditioners like ILU, AINV (approximate in-
verse) [11] are algebraic and they can be applied to the complete system by solving
linear system(s) equal to the size of the problem. Besides that, there is a class of
preconditioners that is applied in the form of subblocks for the velocity and pressure
subsystems, separately. These preconditioners are known as block preconditioners.
The preconditioners are based on a block factorization of the Navier-Stokes matrix. A
block LbDbUb decomposition of the coefficient matrix gives:

A = LbDbUb =

[
F BT

B 0

]
=

[
I 0

BF−1 I

] [
F 0
0 S

] [
I F−1BT

0 I

]
, (4.5)

where S = −BF−1BT is the Schur complement matrix. Most preconditioners are
based on a combination of these blocks and a suitable approximation of the Schur
complement matrix. In this chapter, we will discuss preconditioners based on the
DbUb factors known as block triangular preconditioners:

Pt =

[
F BT

0 S

]
. (4.6)

The eigenvalues of the preconditioned system can be obtained from the generalized
eigenvalue problem: [

F BT

B 0

] [
u
p

]
= λ

[
F BT

0 S

] [
u
p

]
. (4.7)

From the first row one obtains

(1 − λ)(Fu + BT p) = 0. (4.8)

34 Chapter 4. Overview of Preconditioners

There are 2 possibilities: 1 − λ = 0 or (Fu + BT p) = 0.
If 1 − λ = 0, then λ = 1 and we have eigenvalues equal to 1 of multiplicity nu,
otherwise

(Fu + BT p) = 0 or u = −F−1BT p. (4.9)

Substituting (4.9) in the second row in (4.7) (Bu = λS p) gives:

−BF−1BT p = λS p. (4.10)

This shows that if S = −BF−1BT then λ = 1 has multiplicity np. An eigenvalue
analysis suggests that GMRES converges in two iterations [55] if exact arithmetic
is used. But in general, the use of F−1 and S −1 is not practical because they are
very expensive to compute and to store. Usually, F−1 is formally approximated by a
matrix F̂−1. Actually, such an approximation consists of a small number of iterations
with an iterative method. The preconditioning steps involve solving Ptz = r, where
z =

(
zu
zp

)
and r =

(
ru
rp

)
implies the steps given in Algorithm 4.2.

The preconditioner involves the solution of two subproblems associated with the

Algorithm 4.2 Perform Ptz = r

1 Solve S zp = rp

2 update ru = ru − BT zp

3 Solve Fzu = ru

velocity and the pressure part. The approximation of the Schur complement is problem
dependent. In general, the Schur complement matrix is not formed. Therefore, the
approximate inverse Ŝ −1, is replaced by a simple spectral equivalent matrix such that
the preconditioned matrix has a tightly clustered spectrum. Below we discuss a few
preconditioners based on different approximations of the Schur complement matrix.

4.3.1 Approximate commutator based preconditioners

An effective approximation of the Schur complement matrix is developed by Kay,
Login and Wathen ([43],[69]). This approximation utilizes the commutator action of
two operators. The commutator of two operators x and y is defined as

[x, y] = xy − yx. (4.11)

If x and y commute, then [x, y] = 0 i.e xy = yx.
The convection diffusion operator defined on the velocity space can be given as

L = −ν∇2 + wh.∇, (4.12)

where wh is the approximation to the discrete velocity, computed in the most recent
Picard iteration.

4.3. Block preconditioners 35

Pressure convection diffusion preconditioner

Suppose, that the commutator of the convection diffusion operator on the velocity
space, multiplied by the gradient operator, on the velocity space, and the gradient
operator, acting on the convection diffusion operator in the pressure space (Lp), is
small.

ε = L∇ − ∇Lp. (4.13)

Then the discrete commutator in terms of finite element matrices given as

εh = (Q−1
v F)(Q−1

v BT) − (Q−1
v BT)(Q−1

p Fp), (4.14)

might also be small. Fp is a discrete convection diffusion operator on pressure space.
Qv denotes the velocity mass matrix and Qp the pressure mass matrix. The multipli-
cation by Q−1

v and Q−1
p , transforms quantities from integrated values to nodal values.

Pre-multiplication of (4.14) by BF−1Qv, post-multiplication by F−1
p Qp and assuming

that the commutator is small, leads to the Schur approximation

BF−1BT ≈ BQ−1
v BT F−1

p Qp. (4.15)

The expensive part BQ−1
v BT in (4.15) is replaced by its spectral equivalent matrix Ap

known as the pressure Laplacian matrix, so

S = −BF−1BT ≈ −ApF−1
p Qp. (4.16)

The preconditioner (4.6), (4.16) is known as the Pressure Convection Diffusion (PCD)
preconditioner. This preconditioner is also effective for stabilized finite elements with-
out any adaptations of the Schur complement matrix approximation. The precondi-
tioner has nice convergence properties especially for enclosed flows if the equations
are linearized by a Picard method. The preconditioner gives rise to many iterations in
inflow/outflow problems, the reason might be that an approximation of BQ−1

v BT by Ap

is well-defined only for enclosed flow problems [35]. As wh in PCD is approximated
by Picard linearization, so the linear system obtained from Picard requires fewer itera-
tions than Newton. Boundary conditions are treated such that Ap and Fp are computed
with Neumann boundary conditions for an enclosed flow problem. However, in out-
flow problems, rows and columns of Ap and Fp corresponding to the pressure nodes on
an inflow boundary are treated as though they are associated with Dirichlet boundary
conditions [35].

Test Case 1 is solved both with and without PCD preconditioner. Figure 4.5 shows
that application of the preconditioner clusters the eigenvalues and thus enhances the
convergence of the preconditioned iterative method (shown in Figure 4.6) . The pre-
conditioner requires the action of a Poisson solve, a mass matrix solve and a matrix-
vector product with Fp. From Table 4.1, it is clear the PCD gives mesh independent
convergence. We use a direct solver to solve the velocity and the pressure subsystems
or one V-cycle of MG is applied to F and Ap. The reason for the decrease in number
of iterations with increase in the number of grid points is that the grid captures the
features of the solution well as it become finer and finer. In Tables 4.1 and 4.2, we see

36 Chapter 4. Overview of Preconditioners

−1

0

1

−1

0

1
−100

−50

0

50

xy

Figure 4.4: Equally spaced streamline plot (left) and presssure plot (right) of a Q2-Q1
approximation of 2D driven cavity flow problem with Re = 200.

−0.5 0 0.5 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Real axis

Im
ag

ina
ry

ax
is

A

−20 0 20 40 60
−4

−3

−2

−1

0

1

2

3

4

Real axis

Im
ag

ina
ry

ax
is

P−1A

Figure 4.5: Eigenvalue of the original system and preconditioned with PCD.

a clear difference between iterations consumed by PCD using direct solver and MG.
The small number of iterations with direct solver shows the dependence of PCD on
subsystem accuracies. The number of iterations of PCD increases with the increase in
Reynolds number as can be seen in Table 4.2.

Though PCD exhibits some nice convergence properties, the construction of two
extra operators Ap and Fp makes PCD a difficult choice to use, specially in 3D due
to extra memory requirements and extra boundary conditions. In [31], sparse approx-
imate inverse technique is used to compute Fp algebraically. However, the scheme
used in [31] reduces the effectiveness of the PCD preconditioners and iteration growth
is observed compared to the previous approach, with increase in grid size and increase
in Reynolds number.

4.3. Block preconditioners 37

0 50 100 150 200 250
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

iterations

||R
el

at
iv

e
R

es
id

ua
l|| 2

No preconditioner
PCD

Figure 4.6: Convergence plot with PCD preconditioner.

Table 4.1: Number of PCD preconditioned Bi-CGSTAB iterations required to solve
Test Case 1 with Re = 100 on different size grids.

Grid Exact MG
8 × 8 28 46

16 × 16 25 44
32 × 32 26 35
64 × 64 26 33

Table 4.2: PCD preconditioned Bi-CGSTAB iterations required to solve Test Case 1
on 64 × 64 grid.

Re Exact MG
100 20 29
200 26 35
300 28 38
400 34 45

38 Chapter 4. Overview of Preconditioners

Least squares commutator preconditioner

Another approach for the approximation of the Schur complement is described by El-
man, Howle, Shadid, Shuttleworth and Tuminaro [31] and is known as a Least Squares
Commutator (LSC) preconditioner. Instead of deriving the relation for the Schur com-
plement, an approximation is made to the matrix operator, Fp, in (4.15), that makes
the commutator small (4.14). This can be achieved by solving a least squares problem.
For the jth column of matrix Fp, the least squares problem is of the form:

min‖[Q−1
v FQ−1

v BT] j − Q−1
v BT Q−1

p [Fp] j‖Qv , (4.17)

where ‖.‖Qv is the
√

x
¯

T Qvx
¯

norm. The normal equations associated with this problem
are:

Q−1
p BQ−1

v BT Q−1
p [Fp] j = [Q−1

p BQ−1
v FQ−1

v BT] j,

which leads to the following definition of Fp:

Fp = Qp(BQ−1
v BT)−1(BQ−1

v FQ−1
v BT).

Substituting this expression into (4.15) gives an approximation to the Schur comple-
ment matrix:

BF−1BT ≈ (BQ−1
v BT)(BQ−1

v FQ−1
v BT)−1(BQ−1

v BT). (4.18)

Usually, the inverse of the velocity mass matrix Q−1
v is dense. In such a case the

velocity mass matrix is replaced by the diagonal matrix Q̂v (the main diagonal of Qv).
Without scaling, the Schur complement approximation in LSC is exactly the same as
in the BFBt preconditioner [33]. However, it has been observed that the velocity mass
matrix scaling increases the convergence rate of LSC preconditioner.

Algorithm 4.3 LSC preconditioner

1 Solve S f z2 = r2 Where S f = BQ̂v
−1

BT

2 update r2 = BQ̂v
−1

FQ̂v
−1

BT z2

3 Solve S f z2 = −r2

4 update r1 = r1 − BT z2

5 Solve Fz1 = r1

The Algorithm 4.3 involves two Poisson solves for the pressure subsystem and one
velocity solve. The LSC preconditioner is build from readily available matrices and
no extra boundary conditions are required.

Results in Table 4.3 show a mild increase in the number of iterations with the in-
crease in number of grid points. According to [35] sometimes there is no h-dependency.
The difference in the number of iterations obtained with the direct solver and MG is
reduced with in increase in problem size. Table 4.4 shows a mild dependence of LSC
on the Reynolds number. In [59] it is shown that for recirculating flows the conver-
gence clearly depends on both issues. This is true because in construction of PCD and
LSC, wh is assumed to be constant for the commutator to be small. The preconditioner
performs well for both enclosed and outflow problems.

4.3. Block preconditioners 39

Table 4.3: LSC preconditioned Bi-CGSTAB iterations required to solve Test Case 1
with Re = 200 on different size grids.

Grid Exact MG
8 × 8 14 25

16 × 16 15 22
32 × 32 17 21
64 × 64 25 26

Table 4.4: LSC preconditioned Bi-CGSTAB iterations required to solve Test Case 1
on 32 × 32 grid.

Re Exact MG
100 16 16
200 17 21
300 21 26
400 22 31

4.3.2 Augmented lagrangian approach (AL)
An effective preconditioner based on the augmented lagrangian approach is published
by Benzi and Olshanskii [10]. This technique suggests a preconditioner of the form:

PAL =

[
Fγ B
0 Ŝ

]
, (4.19)

where Fγ = F + γBT W−1B and the inverse of the Schur complement is approximated
by

Ŝ −1 = −(νQ̂−1
p + γW−1). (4.20)

Q̂p denotes the approximate pressure mass matrix, ν is the viscosity and γ > 0 is a
parameter. Usually, W is also replaced by Q̂p. For constant pressure approximation,
Qp is a diagonal matrix. For a linear pressure approximation, Qp is replaced by the
spectrally equivalent diagonal matrix. For a diagonal matrix Q̂p, the computation
of the inverse approximate Schur complement is very cheap. The preconditioner is
known as AL preconditioner (PAL). For this preconditioner, the original system given
in (2.21) is replaced by [

Fγ BT

B 0

] [
u
p

]
=

[
f
0

]
. (4.21)

Since Bu = 0, we can add the term γBT W−1Bu to the first row in (2.21) without any
change in the right-hand side.

Theorem 4.3.1. Assume that W = Qp, then the preconditioned matrix has eigenvalue
1 of multiplicity nu. The remaining np eigenvalues are given by

λi =
γ + ν

γ − µ−1
i

, 1 ≤ i ≤ np, (4.22)

40 Chapter 4. Overview of Preconditioners

where µi satisfies the generalized eigenvalues problem BF−1BT p = µQp p [10].

For proof see [10]. This means that for γ → ∞, all eigenvalues go to 1. AL pre-
conditioned Krylov subspace method will converge in 1 iteration, however, iterative
solution of the velocity subsystem is no longer possible. This scheme is close to the
penalty function formulation [24].

Results given in [10] reveal that the convergence of an iterative method with this
preconditioner is independent of the mesh size and Reynolds number and seems ro-
bust. The method is efficient, if it is used as a preconditioner in solution of the Navier-
Stokes problem, linearized by Picard’s iteration for both constant and linear pressure
approximations. But this preconditioner requires an efficient method to solve the ve-
locity subsystem in (4.19) . The quality of the preconditioner is based on the following
issues:

• The efficiency of the preconditioner depends on the additional term γBT W−1B
in the velocity matrix. If the problem does not have cross derivatives, then
Fγ introduces a coupling between components of the velocity vector, and thus
has a greater number of nonzero entries than F irrespective of the discretiza-
tion scheme used. Based on the discretization scheme used, the increase in the
number of nonzeros is more for the elements that use continuous pressure ap-
proximations (Q2-Q1) than for elements that use discontinuous linear pressure
approximations (Q2-P1).

• Usually γ is taken to be one. Moreover the convergence of the velocity subsys-
tem solver depends on the value of γ. A large γ makes the system Fγ more ill
conditioned and iterative methods fail to converge for such systems. Benzi [10]
has used MG with a new smoothing technique to solve the velocity subsystem.

We perform numerical experiments with the AL preconditioner by solving Test
Case 1. The pressure subsystem is just a diagonal scaling of the residual. The velocity
subsystem is solved with a direct solver and ILU. If Q2-P1 discretization is employed
an increase in the number of nonzeros from F to Fγ is almost two times whereas with
Q2-Q1 discretization the increase is much higher. Increase in the number of nonzeros
for the velocity subsystem is shown in Figure 4.7. With γ = 1 and greater, the solution
of linear system Fγz1 = r1 with ILU(0) preconditioned Krylov method is not possible.
This is due to computation of unstable ILU factors. This arises if the matrix is far
from diagonal dominance [21]. The stability of the ILU factors can be checked by
‖(LU)−1e‖∞ (refered to as condest in the Table 4.5) where e is a vector with all ones.
It appears that this quantity is large e.g 108 for even small problems. Application of
ILUT (in Matlab) makes the preconditioner very expensive due to a large increase in
the number of nonzero entries and does not guarantee convergence. If we compute
ILU of Fγ with the nonzero pattern of F the preconditioner becomes effective, at least
for our problem. For example in Table 4.5, A1 represents the nonzero pattern with F
and A2 with Fγ. It can been seen that skipping some entries gives stable ILU factors
with small R and condest [79].

4.3. Block preconditioners 41

0 2000 4000 6000 8000

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2000 4000 6000 8000

0

1000

2000

3000

4000

5000

6000

7000

8000

Figure 4.7: Nonzero pattern of the velocity matrix in 32 × 32 Q2-P1 driven cavity
flow problem with Re = 200: F (left), Fγ (right).

Table 4.5: Analysis of ILU preconditioner of Fγ.

Grid(nonzero max(1/pivot) max(L + U, Fγ) condest ‖R‖∞ Remarks
pattern) Q2-P1

8 × 24(A1) 2.55 3.48, 2.48 2 5 3.2 8(0.12)
(A2) 177 270, 2.48 105 225 NC(Unstable solve)

16 × 24(A1) 3.08 5.88, 4.88 27 3.4 8(0.28)
(A2) 203 104, 4.88 108 103 NC(Unstable solve)

32 × 24(A1) 3.31 10.7, 9.7 49 3.5 8(0.63)
(A2) 103 103, 9.7 1015 104 NC(Unstable solve)

42 Chapter 4. Overview of Preconditioners

Table 4.6: AL preconditioned GCR iterations required to solve Test Case 1 with
Re = 200 on different grids.

Grid Exact ILU
8 × 8 6 7

16 × 16 6 7
32 × 32 6 7
64 × 64 6 7

Table 4.7: AL preconditioned Bi-CGSTAB iterations required to solve Test Case 1 on
32 × 32 grid.

Re Exact ILU
100 6 7
200 6 7
300 6 7
400 6 7

The application of ILU(0) -with Fγ nonzero pattern- increases the norm of R and
(LU)−1, while ILUT gives rise to large number of nonzero entries.

Results in Table 4.6 indicate that the AL preconditioner gives convergence inde-
pendent of grid size. Also, we do not see much difference in outer iterations whether
the velocity subsystem is solved exactly or inexactly with an accuracy of 10−2. Table
4.7 shows that AL convergence is independent of the Reynolds number.

Despite that the AL preconditioner has nice convergence, an effective solver is
required to solve the linear system corresponding to Fγ, otherwise the gain in outer
iterations is offset by the loss in solving the velocity subsystem. The choice of γ shifts
the work between outer and inner iterations. If F is SPD, Fγ will also be SPD but
it will lose diagonal dominance due to the addition of an ill conditioned matrix. A
similar approach is also used in [26] known as AC (artificial incompressibility) and
GD (Grad-Div) preconditioner. Compared to the AL preconditioner, AC and GD are
more dependent on the choice of γ while with γ = 1, AL gives convergence in a fixed
number of iterations for a wide range of problems and Reynolds numbers. For small
values of γ, an inexact solver can be used to solve system Fz1 = r1. However, for γ of
O(1), an efficient solver is required.

4.3.3 Remarks on selection of preconditioner
From the discussion above it is hard to decide which method gives the best results for
various flow problem domains, boundary conditions and discretization schemes. Even
the developers of PCD and LSC are unable to conclude explicitly about the choice
when to use these preconditioners. Moreover, we are more interested in comparing
our preconditioners with one of the best preconditioners available in the literature. In
this thesis, we choose LSC for our experiments because:

• LSC is built from readily available matrices. Unlike PCD, the Schur comple-

4.4. Summary 43

ment approximation does not require information of boundary conditions. An
algebraic construction of Fp results in a decrease in effectiveness of the PCD
preconditioner.

• PCD gives mesh independent convergence especially for enclosed flow prob-
lems, while LSC shows mild dependence on mesh size. However, LSC always
converges in fewer iterations than PCD. In some cases, LSC shows convergence
behaviour which is twice as good as compared to the convergence of the PCD
preconditioner [31]. Moreover the dependence of LSC on mesh sizes reduces at
high Reynolds numbers. It may happen that for a large problem, PCD performs
better than LSC, however until now no problem is reported where PCD costs
less iterations than LSC [35], [31].

• In terms of outer iterations, AL shows better convergence than PCD and LSC.
However, the inner/outer iterations are dependent on parameter γ. An efficient
and dedicated solver is required to solve the velocity subsystem in AL. More-
over, AL becomes expensive to use for Taylor-Hood elements.

4.4 Summary
In this chapter we discussed two classes of preconditioners that can be used to solve
the incompressible Navier-Stokes problem. ILU-type preconditioners are based on
an incomplete factorization of the coefficient matrix. These preconditioners are well-
defined for PDEs the discretization of which gives rise to an M-matrix. For other type
of PDEs it may be necessary to make ILU factors accurate and stable in order to get
convergence. In Navier-Stokes direct application of ILU may breakdown due to zeros
on the main diagonal. Therefore, some suitable renumbering scheme is required to
make the factors effective. In the next chapter we will discuss such a scheme that can
be used to solve the incompressible Navier-Stokes problem.

Besides, we discussed preconditioners based on block factors of the coefficient
matrix. We discussed block triangular preconditioners that are based on some ap-
proximation of the Schur complement, the inexact solution of the velocity and the
approximated Schur system.

We overviewed the most popular ones in combination with Krylov subspace meth-
ods, PCD, LSC and AL. PCD gives mesh independent -but Reynolds number depen-
dent convergence. The construction of extra operators that are required for the Schur
complement makes it expensive. LSC is built from available matrices. Though LSC
shows mild dependence on mesh size and Reynolds number, its convergence is always
better (two times in some cases) than PCD [31]. Therefore, in the remaining chapters
we will compare our preconditioners with LSC.

In the AL preconditioner, an extra term is added both to the velocity matrix in
the original problem as well as to the preconditioner. This enhances the convergence
of the modified problem. The preconditioner gives mesh and Reynolds independent
convergence for a long range of problems. However, convergence of AL depends on

44 Chapter 4. Overview of Preconditioners

the choice of parameter γ. To get convergence, an efficient MG solver for the (1,1)
block in the preconditioner is required. In general, the demand of efficient MG solver
and choice of γ restricts the choice to use AL.

Chapter 5
Saddle point ILU preconditioner

In this chapter, we propose a new, a priori, ordering of the unknowns, which in com-
bination with a suitable renumbering of nodes, results in an optimal bandwidth or
profile (envelope) of the coefficient matrix in the Navier-Stokes problem. The new
ordering scheme avoids breakdown of LU/ILU factorization. In the direct method, it
reduces profile and bandwidth of the matrix and thus reduces memory and CPU time.
Moreover, if the scheme is applied prior to the construction of the ILU preconditioner,
reduction in the number of iterations is observed with the reordered ILU precondi-
tioner. Since the preconditioner is constructed for saddle point problems, we call it
the saddle point ILU (SILU) preconditioner.

5.1 Ordering of the system
For an application of block preconditioners from standard finite element codes, adap-
tation of the matrix builder and solver is necessary, since splitting of velocity and
pressure unknowns is required. From a practical point of view, it would be attractive,
if standard classical iterative solution schemes, like preconditioned Krylov solvers,
could be applied, without any changes. However, in the case of non-stabilized ele-
ments, the zero pressure block in the continuity equation, prevents straightforward ap-
plication of LU and ILU factorization. If the common ordering of unknowns is used,
i.e. placing first all unknowns of node 1, then those of node 2 and so on (Table 5.1),
one might get a zero pivot, especially if velocities at some boundaries are prescribed
and therefore both factorizations may fail. Pivoting, [8], on the other hand, will result
in a large increase of memory usage and, as a consequence, computation time. Be-
sides that, it is hard to predict, apriori, the amount of memory required, which from an
implementation point of view is, not very practical. To avoid this problem, it is better
to use a suitable apriori reordering of unknowns. As pointed out by Wille and others
[25], [93],[94], pivoting is not necessary, when the unknowns are ordered sequentially,
so that all velocity unknowns come first and then all the pressure unknowns; such as,

45

46 Chapter 5. Saddle point ILU preconditioner

Table 5.1: Ordering of unknowns for 5 nodes grid.
p-last node-wise

u1 u1

v1 v1

u2 p1

v2 u2

u3 v2

v3 p2

u4 u3

v4 v3

u5 p3

v5 u4

p1 v4

p2 p4

p3 u5

p4 v5

p5 p5

in the block preconditioners. The reason being that during (incomplete) factorization
the zeros at the main diagonal will vanish, provided that fill-in is allowed, based on
the connectivity of nodal points, rather than actual zeros in the matrix. Renumbering
of nodal points as suggested by Wille, and also classical renumbering techniques as
Cuthill-McKee (CMK) [23] and Sloan [73] may decrease the memory and computa-
tion time for direct solvers. An optimal numbering of unknowns, for a direct solver,
usually improves the convergence of ILU preconditioned Krylov solvers, [29], [51],
but exceptions to this rule exist [7].

5.1.1 Ordering used in direct method

If, for a direct solver, we use the same ordering as in case of the block preconditioners,
i.e. placing first all velocity unknowns and then all pressure unknowns, we end up
with a very large profile of the matrix. This is true even if we use an optimal node
renumbering. The main advantage of this ordering is that no pivoting is necessary,
since during factorization, the zeros on the main diagonal in the zero pressure block
disappear, see for example [93]. In the remaining part of this chapter we shall refer to
this reordering as p-last. Figure 5.1 shows an example of the nonzero structure of the
matrix for the p-last ordering, applied to a 4 × 4 rectangular grid of Q2-Q1 elements,
where a lexicographic numbering of the nodes is used.

A much smaller profile will be achieved, if we order the unknowns in the sequence
of the nodal points. However, especially in the case of Dirichlet boundary conditions
for the velocity, this may lead to zero pivots. So, if we try to avoid pivoting during
elimination, this ordering can not be applied. In order to get a reordering that has
almost the same favorable profile as the node-wise ordering, but does not lead to zero
pivots, we need to define the concept of levels, which originates from the classical

5.1. Ordering of the system 47

0 100 200 300 400 500 600

0

100

200

300

400

500

600

Profile = 52195, Bandwidth = 570
p−last ordering with lexicographic numbering

Figure 5.1: p-last ordering of unknowns of the Stokes matrix.

Cuthill-McKee renumbering scheme.
Let us first define the notion of levels for Cuthill-McKee. Suppose we have created

levels 1 to i-1. Then level i is defined as the set of nodes that are connected directly to
level i-1, and are not in one of the prior levels. Nodes are connected if they belong to
the same element.

The first level may be defined as a point, or even a line in R2 or a surface in R3. This
definition also applies in case of structured grids. For example in the 4 × 4 structured
grid of Figure 5.2, with Q2-Q1 elements, the first level might consist of the nodes 1 to
9. Level 2 consists of the nodes 10 to 29 and so on. It is clear that nodes in level i are
only connected to nodes in level i-1 and level i+1.

In case of a different renumbering scheme, like Sloan [73] or the one proposed by
Wille et al [93], we define levels in the following way:

Suppose levels 1 to i-1 have been constructed. Let node, k, be the node with
highest node number, that is directly connected to nodes in level i-1 Then level i,
consists of node k, and all nodes with node numbers less than k but not belonging to
one of the levels 1 to i-1. The first level is defined as node 1.

Once the levels have been defined, we reorder the unknowns in the following way.
First we take all the velocities of level 1, then all pressures of level 1. Next we do the
same for level 2, and repeat this process for all nodes. So instead of a global block
ordering we apply a block ordering per level. Such an approach has two advantages.

First, the profile is hardly enlarged, compared to the optimal ordering, since the
local band width is defined by the largest distance in node numbers.

Second, due to the local block reordering, zero pivots become nonzero, during
factorization, and no a posteriori pivoting is required. In the remainder we shall refer

48 Chapter 5. Saddle point ILU preconditioner

Figure 5.2: Levels defined for 4x4 Q2-Q1 grid.

to this ordering technique as p-last per level.
One has to be careful at the start of this process. If, for example, the velocities in

node 1, are prescribed, we start with a pressure unknown that gives rise to a zero pivot.
Therefore, we always combine levels 1 and 2, into a new level. If the number of free
velocity unknowns in this new level is less than the number of pressure unknowns, we
also add the next level to level 1, and if necessary this process is repeated. In practice
combinations of 2 or 3 levels is sufficient. Note that the starting level always has a
small contribution to the global profile. Figure 5.3 shows the effect of the p-last per
level renumbering, combined with Sloan (A.1) and Cuthill-McKee (A.2) renumbering,
respectively. The grid used, consists of 8 × 8 Q2-Q1 elements. The gain in memory is
clear, even for this small example.

So our reordering technique p-last per level, in combination with a suitable node
renumbering strategy, produces a nearly optimal profile and avoids the need for pivot-
ing in case of direct solvers. It has been applied to many practical problems, without
ever producing small pivots. Since optimal reordering of unknowns for direct meth-
ods, is usually also suitable for ILU preconditioners, we consider this method in the
next subsection.

5.1.2 Application to ILU preconditioning

Since an optimal ordering of unknowns for a direct solver, usually improves the be-
havior of an ILU preconditioner, we investigate p-last per level ordering, as well as
p-last ordering, in combination with ILU.

S in our case is, of fill-in positions as the set of unknowns, that are directly con-
nected. This implies that, zeros in the pressure block, may also be part of the set S,
provided that there is a connectivity with velocity unknowns. The ILU decomposition
A ≈ L̂D−1Û is defined as:

5.1. Ordering of the system 49

0 100 200 300 400 500 600

0

100

200

300

400

500

600

Profile =47468, Bandwidth =160
p−last per level ordering with Cuthill−McKee renumbering

0 100 200 300 400 500 600

0

100

200

300

400

500

600

Profile =31222, Bandwidth = 212
p−last per level ordering with Sloan renumbering

Figure 5.3: Effect of Sloan and Cuthill-McKee renumbering of grid points and p-last
per level reordering of unknowns on the profile and bandwidth of the matrix.

Definition 5.1.1. SILU

1. li, j = 0 for (i, j) < S ,

2. ui, j = 0 for (i, j) < S ,

3. (L̂D−1Û)i, j = ai, j for (i, j) ∈ S.

The solution method consists of following steps:

1. After mesh generation the grid points are reordered by the Cuthill-McKee or
Sloan renumbering method.

2. To prevent zero pivot during incomplete LU factorization, the unknowns per
grid point are reordered by the p-last or p-last per level reordering methods.

3. An incomplete LU decomposition of the reordered matrix is constructed and
used as a preconditioner.

4. A preconditioned Krylov subspace method (GMRES, Bi-CGSTAB, etc.) is used
to approximate the solution.

Experiments in Section 5.2.2, show that in a large number of practical cases, this
method performs very well. However, in some cases the Krylov method converges
slowly, or even diverges, for example in case of stretched grids, using elements with
a large aspect ratio. In that case, we apply extra fill-in referred to as ILUF. Extra
fill-in is defined by adding all neighbor points of the standard ILU node structure to
the connectivity set, provided these nodes do not affect the envelope of the original
matrix. In many cases, extra fill-in solves the convergence problem, but at the cost of
extra memory and computing time per iteration.

50 Chapter 5. Saddle point ILU preconditioner

Lumping

If the off-diagonal components of the matrix have the same sign as the diagonal of
matrix, then these components are added to the diagonal of the matrix and made zero
themselves. Of course, this is only used to compute the preconditioner. Though this
type of lumping is not defined for saddle point system, in our experience, the precon-
ditioning matrix P`(lumped) improves convergence in some cases but it should only
be used if one does not achieve convergence with extra fill-in.

Perturbation of the continuity equation

Convergence can be improved by perturbing the continuity equation with a factor εp.
The discretized form of the perturbed system of equation is given as[

F BT

B εQp

] [
u
p

]
=

[
f
g

]
. (5.1)

So the incompressibility condition is violated by a small amount, without influences
the solution. Note that this is almost the same as applying the penalty function method
[24]. The only difference is that p is not eliminated from the second row in (5.1).
Since, in general, it is hard to find a suitable value of ε we have decided to use mostly
ε = 0. In some cases, stretched grids and Q2-P1 discretization, we have perturbed the
incompressibility constraints and found good convergence.

5.1.3 Breakdown of LU or ILU factorization
Our strategy of p-last per level does not break down. The breakdown of ILU and LU
due to p-last per level is only based on the choice of the first level. In many cases the
first level contains prescribed boundary points. It might happen that our selected level
gives rise to the pressure as a first row in the matrix, that in turn gives rise to a zero on
the main diagonal. Therefore we take our first level larger than the other levels. The
question is, what should be the minimum number of points or nodes (unprescribed) in
the first level so that our scheme avoids the danger of breakdown?

To explain how the minimum size of the first level must be chosen we consider a
2× 2 Q2-Q1, Taylor-Hood element subdivision of a square shown in Figure 5.4. If all
the velocities at the boundary are prescribed, restricting the initial set to the (oblique)
dashed region, i.e. nodes 1 to 7, implies that in set 1 we have only 2 unknown veloci-
ties and 4 unknown pressures. Even if we start with the velocities, Gaussian elimina-
tion in these rows will not remove all zeros on the diagonal. This is the same reason
as we have to satisfy the LBB condition. Adding node 8 to the dashed region makes
the number of velocity unknowns in the first level equal to the number of pressure
unknowns and the problem no longer exists.

So on the first level we need at least the same number of unprescribed velocity
degrees of freedom as there are pressure degree of freedom. Furthermore, the velocity
unknowns should have a nonzero connection with the pressure unknowns. Exper-
imentally, we have seen that this also holds for ILU preconditioner. Consider the

5.1. Ordering of the system 51

nonsymmetrical case where we multiply the discretized continuity equation by a mi-
nus sign, hence −Bu = −g. We will prove that the preconditioner exists theoretically
for a ILUD (see Definition 5.1.2) decomposition of this matrix,

Ans =

[
F BT

−B 0

] [
u
p

]
=

[
f
−g

]
, (5.2)

in which the off-diagonal elements of L̂ and Û are taken equal to the corresponding
elements inAns. Only the matrixD has to be determined. In formulas:

Definition 5.1.2. ILUD:

1. diag(L̂) = diag(Û) = D,

2. li, j = ai, j for i > j and ui, j = ai, j for j > i,

3. (L̂D−1ÛL)i, j = ai, j.

Proposition 5.1.1. If we use the p-last ordering and assume that the ILUD decompo-
sition of F exists with positive matrix D then the ILUD decomposition exists because
every column of BT contains a nonzero element . Note that if BT has a zero column
thenAns is singular.

Proof: Before the proof, for simplicity second row in (2.21) is multiplied with a
minus one (−B). We consider the computation ofD:

(L̂D−1Û)i,i = di +

i−1∑
j=1

li, j · u j,i

d j
= ai,i, (5.3)

this will lead to

di = ai,i −

i−1∑
j=1

ai, j · a j,i

d j
. (5.4)

From the assumption it follows that the ILUD decomposition of F exists and thus
d j > 0 for j = 1, ..., nu. For i ∈ (nu + 1,N) we have ai, j = −a j,i and ai,i = 0. This

together with (5.4) implies that di =
∑i−1

j=1
a2

i, j

d j
. Since the norm of a column BT is

nonzero we have
∑i−1

j=1
a2

i, j

d j
> 0. Combined with dk > 0 for k < i it follows that

di ≥ (min
1≤k≤i−1

1
dk

)
i−1∑
j=1

a2
i, j > 0. (5.5)

Proposition 5.1.2. For an arbitrary ordering we suppose that the ILUD decomposi-
tion exists for all j < i, where the ith row is related to the continuity equation. If the
ith (pressure) unknown is preceded by at least one velocity unknown with a nonzero
connection to this pressure unknown (so there is one k < i such that ai,k , 0), then the
ILUD decomposition exists and di > 0.

52 Chapter 5. Saddle point ILU preconditioner

Figure 5.4: 2x2 Q2-Q1 grid.

Proof: It follows again from (5.4) that

di >

i−1∑
j=1

li, j · u j,i

d j
. (5.6)

Since d j > 0 for j < i and a2
i,k > 0 for at least one k < i we obtain di > 0.

From the above propositions it is clear that the ILUD decomposition gives positive
diagonal elements. If we use the original matrix (symmetric case) the diagonal ele-
ments corresponding to the pressure part appear to be negative. This is also the case
for ILU decomposition, but we have no theoratical proof.

Our reordering is applicable for all types of unstructured grids. The ordering in-
troduced by Wille [93], seems to be very effective for Navier-Stokes problems on a
square grid. It is not clear at this moment, how to generalize this to an unstructured
grid. However, the main difference is that Wille renumbers the nodes and uses the
p-last ordering, while we apply a node renumbering technique, which could be for
example Wille’s, along with reordering of unknowns by the introduction of levels.

5.2 Numerical experiments
In this section we present some numerical experiments. We start to use our renumber-
ing scheme in a direct method. Later on, we investigate properties of the saddle point
ILU preconditioner. SILU is tested for two benchmark problems, the lid driven cavity
problem given in Test Case 1, and a backward facing step given as:

Test Case 2. Backward facing step problem: The L shaped domain (−1, L)× (−1, 1),
known as the backward facing step (see Figure 5.5). A Poiseuille flow profile is im-
posed on the inflow (x = −1; 0 ≤ y ≤ 1) and no slip conditions are imposed on
the side walls. Neumann conditions are applied at the outflow which automatically
sets the mean outflow pressure to zero. The Navier-Stokes equations are also solved
in a 3D backward facing step domain with parabolic inflow velocity profile, no slip
condition on the side walls and Neumann conditions at the outflow.

5.2. Numerical experiments 53

Figure 5.5: Backward facing step or L shaped domain.

5.2.1 Impact of reordering on the direct solver
In this section, we present some results to see how our reordering strategy effects the
efficiency of the direct solver. We report our findings with our renumbering scheme.
Our renumbering scheme effectively reduces the profile and bandwidth of the matrix.
In Table 5.2, we see the reduction with the Sloan and Cuthill-McKee renumbering
methods with p-last per level reordering of unknowns. Profile and bandwidth reduc-
tion are computed by dividing the p-last per level profile and bandwith by p-last. Pro-
file reduction with the Sloan method is better than Cuthill-McKee, while in bandwidth
reduction Cuthill-McKee performs better than Sloan. Thus, our reordering method re-
duces the memory and work and computation time if the system is solved with a direct
solver.

To show numerically that our reordering scheme improves the efficiency of the
direct solver, the Stokes problem is solved with a direct solver with various renumber-
ing and reordering combinations shown in Table 5.3. With p-last reordering, - with
various renumbering schemes - we do not see much difference in CPU time consumed
by the direct solver to get the exact solution. However, using p-last per level, the
efficiency of the direct solver increases enormously. Sloan renumbering with p-last
per level reordering gives better results than the other combinations. Though a better
choice of a renumbering scheme also enhances the efficiency of the direct solver, we
see that the increase is largely due to the p-last per level reordering strategy.

Table 5.2: Profile and bandwidth reduction in the backward facing step with Q2-Q1
discretization.

Grid Profile p−last per level
p−last Bandwidth p−last per level

p−last
- Sloan CMK Sloan CMK

4 × 12 0.37 0.61 0.18 0.17
8 × 24 0.28 0.54 0.13 0.08
16 × 48 0.26 0.50 0.11 0.04
32 × 96 0.25 0.48 0.06 0.02

54 Chapter 5. Saddle point ILU preconditioner

Table 5.3: The Stokes backward facing step solved with a direct solver with Q2-Q1
discretization.

Grid p-last
- Lexicographic CMK Sloan

16 × 48 5.6s 3.9s 3.1s
24 × 72 44.3s 33.4s 28s
32 × 96 205s 160s 142s

Grid p-last per level
16 × 48 3.15s 0.25s 0.13s
24 × 72 21s 1.14s 0.54s
32 × 96 88s 3.3s 1.5s

5.2.2 Properties of the saddle point ILU solver (SILU)

We have tested and compared the SILU preconditioner for the Stokes and Navier-
Stokes problems in the domains mentioned in Test Case 1 and Test Case 2. In Table
5.4, Sloan renumbering for grid points is used to solve the Stokes problem in the
2D square domain for the Q2-Q1 discretization. The term ”Iter.” gives the number
of outer iterations for Krylov methods. For small problems, a direct method gives the
solution faster than iterative methods coupled with the SILU preconditioner. However,
memory requirements for the direct method are large compared to the iterative solution
methods [68] and beyond a certain number of grid points the time required to solve
the Stokes equations by a direct method increases considerably. The Krylov solvers
converge faster for p-last per level than the p-last reordering of the unknowns. The
time taken by the convergence of Bi-CGSTAB is less than GMRES(20). Also Bi-
CGSTAB uses less matrix-vector products than GMRES(20). The same convergence
behavior has been found for the Q2-P1 discretization.

Table 5.4: Solution of the Stokes problem with the Q2-Q1 discretization in the square
domain with an accuracy of 10−6 (Time = total time).

Solver. Renumber 16 × 16 32 × 32 64 × 64
Iter. Time(s) Iter. Time(s) Iter. Time(s)

Direct p-last - 0.61 - 20.34 - 1378
p-last per level - 0.13 - 2.28 - 37

GMRES(20) p-last 95 0.16 354 1.72 1800 44.0
p-last per level 50 0.12 207 1.14 792 20.0

Bi-CGSTAB p-last 36 0.11 90 0.92 255 11.98
p-last per level 25 0.09 59 0.66 135 6.74

With the p-last per level reordering, the effect of renumbering the mesh by the
Sloan or the Cuthill-McKee algorithm is shown in Table 5.5. The Sloan renumbering
gives faster convergence than the Cuthill-McKee renumbering for both Q2-Q1 and

5.2. Numerical experiments 55

Q2-P1 discretizations. The difference in the number of iterations for both renumber-
ing schemes is more pronounced in Q2-P1 discretization. The Sloan renumbering
produces a much better profile than Cuthill-McKee renumbering. With a better pro-
file, an incomplete LU decomposition gives a better approximation of the exact LU
decomposition and increases the convergence of the preconditioned Krylov subspace
method. However, if the problem is highly nonsymmetric and far from being diago-
nally dominant, the norm of residual R = A− L̂Û is not a good estimate for the quality
of the preconditioner. The Frobenius norm of the term R(L̂Û)−1 = I − A(L̂Û)−1 gives
better insight in the quality of the preconditioner. Even if R is small in norm, it may
happen that the preconditioned matrix deviates largely from identity due to very large
entries in (L̂Û)−1[51], [21].

Table 5.5: Effect of mesh renumbering on convergence of Bi-CGSTAB for various
discretizations in the backward facing step Stokes problem with p-last per level and
accuracy = 10−6.

Grid Q2-Q1 Q2-P1
- Sloan Cuthill-McKee Sloan Cuthill-McKee
- Iter. Iter. Iter. Iter.

8 × 24 9 15 29 97
16 × 48 22 32 40 288
32 × 96 59 65 73 1300

In case of Navier-Stokes, the number of accumulated inner iterations increases
with the increase in Reynolds number and the number of grid points is shown in Fig-
ure 5.6. The linear equations in the inner iteration are solved with an accuracy of
10−2. Figure 5.6 shows the accumulated number of inner iterations for solving the
linear problems linearized by Picard and Newton. The SILU preconditioned Krylov
subspace methods with Sloan renumbering and p-last per level reordering were ap-
plied. There are two reasons for the increase in the accumulated inner iterations when
the SILU preconditioner is employed:

With the increase in Reynolds number, the number of outer iterations increases,
however on average the number of inner iterations remains the same. Therefore, the
convergence of the SILU preconditioner itself is hardly influenced by an increase in
the Reynolds number. With the increase in the number of grid points, the number
of inner iterations increases that gives rise to an increase in the accumulated inner
iterations. Change in the number of grid points has less effect on the outer iterations.

In most cases it appears that the Newton method results in faster convergence than
the Picard method. However, for a high Reynolds number - due to a bad initial estimate
- Newton’s method diverges, so it is good practice to start with Stokes equations and
then a few Picard iterations followed by Newton iterations. Though the Picard method
converges in more outer iterations, the average number of inner iteration required
by Picard method is less than for Newton’s method. Note that we did not use an
upwind technique in our experiments. We expect that convergence will be better in
combination with Streamline-Upwind/Petrov-Galerkin (SUPG).

56 Chapter 5. Saddle point ILU preconditioner

8x24 16x48 32x96 64x192
10

1

10
2

10
3

10
4

Grid size

N
o.

 o
f i

te
ra

tio
ns

Bi−CGSTAB, Re =100
Bi−CGSTAB, Re=10
GMRESR, Re = 100
GMRESR, Re = 10

50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

Reynolds number

N
o.

 o
f B

i−
C

G
S

T
A

B
 it

er
at

io
ns

Picard method
Newton method

Figure 5.6: Effect of grid increase (left) and Reynolds number (right) on the inner
iterations (accumulated) for the Navier-Stokes backward facing step problem with an
accuracy of 10−2 using the p-last per level reordering.

The Stokes and Navier-Stokes equations are also solved for a 3D backward facing
step. Results with Q2-Q1 elements for the Stokes problem are shown in Table 5.6.
The Cuthill-McKee numbering shows faster convergence than the Sloan renumbering
with both p-last and p-last per level reordering schemes. A Stokes problem is also
solved with a direct solver in a 8×8×8 grid with p-last per level ordering. It gives the
solution in 20 seconds with the Sloan renumbering and 52 seconds with the Cuthill-
McKee renumbering. This approach consumes a huge amount of memory. For Q2-P1
elements, the Sloan renumbering gives faster convergence than Cuthill-McKee for
both reordering methods. Results given in Table 5.7 suggest that the Krylov subspace
method converges in the same number of iterations with both orderings for the Cuthill-
McKee renumbering. A possible explanation is that levels in 3D are much larger than
in 2D, since in 2D they consist of ”lines”, whereas in 3D they are essentially ”planes”.
This is the same as the difference in bandwidth between 2D and 3D. Hence effect of
levels is much more pronounced in 2D than in 3D. Table 5.8 shows the results obtained
from the solution of the Navier-Stokes problem. This reveals that the preconditioned
Krylov methods have the same convergence behavior for various Reynolds numbers
and grid sizes, as we have observed in the Stokes problem.

Table 5.6: Solution of the 3D Stokes backward facing step problem using Q2-Q1
elements with Bi-CGSTAB and accuracy = 10−4.

Sloan Cuthill-McKee
Grid p-last p-last per level p-last p-last per level

Iter. Time(s) Iter. Time(s) Iter. Time(s) Iter. Time(s)
8 × 8 × 12 64 2.1 62 2 60 1.76 44 1.63

16 × 16 × 24 164 42 140 40 140 27.5 100 23
24 × 24 × 36 274 266 236 251 252 215 188 123

5.2. Numerical experiments 57

Table 5.7: Solution of the 3D Stokes backward facing step problem using Q2-P1
elements with Bi-CGSTAB and accuracy = 10−4.

Sloan Cuthill-McKee
Grid p-last p-last per level p-last p-last per level

Iter. Time(s) Iter. Time(s) Iter. Time(s) Iter. Time(s)
8 × 8 × 12 53 3.72 48 3.45 64 4.20 64 4.16

16 × 16 × 24 138 114 107 92 278 214 231 181
24 × 24 × 36 295 591 255 512 425 833 426 836

Table 5.8: Accumulated inner iterations for the 3D Navier-Stokes backward facing
step problem with p-last per level reordering.

Picard method Q2-Q1 Q2-P1
Reynolds number = 75, Bi-CGSTAB, accuracy = 10−2

Grid Sloan Cuthill-McKee Sloan Cuthill-McKee
8 × 8 × 12 147 76 253 350

16 × 16 × 24 575 222 598 934
24 × 24 × 36 8634 533 1994 2441

Reynolds number = 100
8 × 8 × 12 150 85 318 376

16 × 16 × 24 694 249 690 1432
24 × 24 × 36 NC 576 1636 2668

The effect of grid stretching is shown in Table 5.9 and 5.10 with all possible com-
binations of renumberings. We increased the number of elements in one direction
only, so that the aspect ratio of the elements increases. Furthermore, some fill-in and
lumping is introduced in the SILU preconditioner for a stretched grid. This improves
the convergence of the iterative method. However, the CPU time and memory usage
increases. So this suggests that fill-in and lumping should only be used when the ILU
preconditioned iterative method is diverging. We see a sharp dive (minimum) in the
number of iterations for the 64 × 24 grid. For this behavior we do not yet have an
explanation. This has been observed for cells with an 8:3 ratio in the backward facing
step. For both reordering schemes the number of iterations increases with the increase
in stretching, but there is a clear difference between Sloan and Cuthill-McKee renum-
bering. Cuthill-McKee sometimes diverges, while Sloan in combination with p-last
per level always converges. The convergence is also improved in some cases where
the incompressibility constraint is relaxed with a parameter εp, see Table 5.11. How-
ever, it is difficult to find a suitable value of ε. In Figure 5.7, we see that the reduction
in number of iterations with the increase in ε is not linear for the Q2-P1 discretization
in the Stokes problem. Though the number of iterations decreases for higher values
of ε, there is a large increase in the error norm as well. For the Navier-Stokes prob-
lem the decrease in number of iterations is not large as shown in Figure 5.8. With a
slight compromise on the error norm, a suitable value of ε can be found in the range
10−10 to 10−6. We have made the same observation for Q2-Q1 elements.

58 Chapter 5. Saddle point ILU preconditioner

Table 5.9: Solution of the Stokes problem in a stretched backward facing step with
Bi-CGSTAB with p-last ordering.

Q2-P1 Sloan renumbering, accuracy = 10−4

SILU SILUF Lumped SILUF,Lumped
Grid p-last iter.-time(s)

8 × 24 36(0.04) 14(0.06) 41(0.04) 17(0.06)
16 × 24 55(0.15) 27(0.2) 71(0.18) 33(0.24)
32 × 24 364(1.78) 138(1.36) 305(1.5) 89(1.13)
64 × 24 NC NC >3000*1 237(5.31)*2
128 × 24 NC NC NC 780(34)*3

Cuthill-McKee renumbering, accuracy = 10−4

8 × 24 158(0.16) 14(0.08) 140(0.15) 17(0.1)
16 × 24 281(0.64) 26(0.34) 231(0.51) 36(0.41)
32 × 24 277(1.36) 50(0.96) 520(2.53) 71(1.24)
64 × 24 >3000 586(18.59) NC 209(7)*5
128 × 24 NC NC NC 727(47.34)*6

Table 5.10: Solution of the Stokes problem in a stretched backward facing step with
Bi-CGSTAB using p-last per level ordering.

Q2-P1 Sloan renumbering, accuracy = 10−4

SILU SILUF Lumped SILUF,Lumped
Grid p-last iter.-time(s)

8 × 24 23(0.03) 8(0.02) 27(0.04) 8(0.03)
16 × 24 47(0.12) 16(0.11) 52 (0.14) 19(0.12)
32 × 24 159(0.8) 60(0.63) 599 (2.91) 55(0.61)
64 × 24 58(0.65) 18(0.45) 217(2.22) 66 (1.26)
128 × 24 293(6.1)*4 - 808(16.34) 224(7.6)

Cuthill-McKee renumbering, accuracy = 10−4

8 × 24 148(0.15) 7(0.07) 175 (0.17) 9(0.07)
16 × 24 287(0.65) 20(0.25) 258 (0.58) 21(0.26)
32 × 24 276(1.31) 45(0.88) 568 (2.71) 50(0.96)
64 × 24 >3000 14(0.88) - 51(2.1)
128 × 24 NC 17(2) NC 120(9.33)

Table 5.11: Effect of ε on the convergence with cases labeled with * in Table 5.9 and
5.10.

case ε iterations- time(sec) case ε iterations- time(sec)
*1 1e-10 229(2.37 sec) *2 1e-10 150(3.52 sec)
*3 1e-09 405(17.8 sec) *4 1e-10 261(5.46 sec)
*5 1e-10 137(4.73 sec) *6 1e-10 313(21.0 sec)

5.2. Numerical experiments 59

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

0

100

200

300

400

500

600

ε

N
o.

 o
f i

te
ra

tio
ns

ε = 0

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

ε

R
el

at
iv

e
er

ro
r

no
rm

Figure 5.7: Effect of the incompressibility relaxation ε on the number of iterations
(left) and the relative error norm (right) in the backward facing Stokes problem using
Bi-CGSTAB with an accuracy of 10−4, and Cuthill-McKee renumbering with p-last
per level reordering for the 16 × 48 Q2-P1 discretization.

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

20

40

60

80

100

120

140

160

ε

N
o.

 o
f i

te
ra

tio
n

ε = 0

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

ε

R
el

at
iv

e
er

ro
r

no
rm

Figure 5.8: Effect of the incompressibility relaxation ε on the number of iterations
(left) and the relative error norm (right) in the backward facing Navier-Stokes problem
using Bi-CGSTAB with an accuracy of 10−4, and Cuthill-McKee renumbering with p-
last per level reordering for the 16× 48 Q2-P1 discretization with Re = 100 in the last
step of the Picard iteration.

60 Chapter 5. Saddle point ILU preconditioner

5.3 Summary
In this chapter, we discussed a preconditioner based on ILU factorization of the Navier-
Stokes matrix. It is well known that a straightforward application of this method can
lead to break down or bad convergence due to small pivot elements. In order to pre-
vent this the grid points are first renumbered with the classical Cuthill-McKee or Sloan
method. Thereafter we reorder the unknowns such that on each level the velocity un-
knowns are ordered before the pressure unknowns. In our experiments we never ob-
served any break down of the SILU decomposition and the convergence is fast for a
large range of problems.

We observed the following properties of the SILU preconditioner:

• in 2D problems, Sloan renumbering with p-last per level reordering leads to the
best results for Taylor-Hood and Crouzeix-Raviart elements,

• in 3D problems, Cuthill-McKee renumbering gives fast convergence for the
Q2-Q1 discretization, whereas for the Q2-P1 discretization, Sloan renumber-
ing gives a better convergence,

The number of iterations increases with the increase in the number of elements in the
grid and increases mildly with the increase in the Reynolds number. For this reason
we consider block preconditioners in the next chapter which appear to be less sensitive
to the grid size and Reynolds number.

Chapter 6
SIMPLE-type preconditioners

In this chapter, we discuss block preconditioners that are based on the SIMPLE method
formulation. SIMPLE (semi-implicit pressure linked equation) is used by Patanker as
an iterative method to solve the Navier-Stokes problem [60]. The convergence of the
iterative method depends on relaxation parameters for the velocity and pressure. The
scheme belongs to the class of classical iterative methods and gives slow convergence.
Still the scheme is very popular in the CFD community and has been used in many
commercial packages, for example FLUENT1.

A much faster convergence can be achieved if the SIMPLE method is accelerated
with a Krylov method. Variants of SIMPLE (SIMPLER, SIMPLEC) are also used as
preconditioners to solve the Navier-Stokes problem [32].

Two new SIMPLE variants are proposed here. They are called hSIMPLER (hybrid
SIMPLER) and MSIMPLER (Modified SIMPLER). We show that these new variants
give very good convergence. Moreover, the effect of relaxation parameters used in
SIMPLE is also discussed.

6.1 SIMPLE-type preconditioner

Originally SIMPLE has been developed for finite volume and finite difference dis-
cretizations [92], [60]. The algorithm is based on the following steps. First the pres-
sure is assumed to be known from the prior iteration. Then the velocity is solved from
the momentum equations. The newly obtained velocities do not satisfy the continu-
ity equation since the pressure is only a guess. In the next substeps the velocities
and pressures are corrected in order to satisfy the discrete continuity equation. The
Patankar formulation for FVM is written in the form of a distributive iterative method
(block matrices) by Wesseling [92].

1http://www.fluent.com/

61

62 Chapter 6. SIMPLE-type preconditioners

In this chapter we apply SIMPLE-type preconditioners for the incompressible
(Navier-) Stokes equations discretized by the finite element method. Before going
into details, we first give some definitions based on the blockLbDbUb decomposition
given in (4.5):

Definition 6.1.1.
Lbt = LbDb =

[
F 0
B Ŝ

]
, (6.1)

and

Ubt = DbUb =

[
F BT

0 Ŝ

]
, (6.2)

where Ŝ represents a Schur complement matrix approximation. Later on, we will
discuss possible choices for Ŝ .

Ûb =

[
I M−1

u BT

0 I

]
, (6.3)

L̂b =

[
I 0

BM−1
l I

]
, (6.4)

where Ml and Mu are approximations of F. In case SIMPLE is used as preconditioner
we have to solve a system Pz = r in each iteration. We will split this in a velocity and
pressure part as solving Pz = r, where z and r are already defined in Section 4.3.

6.2 SIMPLE preconditioner
The SIMPLE method as a preconditioner represented in a block matrix form is defined
as:

PS = LbtÛb, (6.5)

with Ŝ = BD−1BT and Mu = D, where D is the diagonal of the velocity matrix. To
solve PS z = r can be done with one iteration of the method given in Algorithm 6.1.

Vuik et al [89], used SIMPLE and its variants as a preconditioner with GCR to
solve the incompressible Navier-Stokes equations. One iteration of the SIMPLE algo-
rithm with assumption p∗ = 0 is used as preconditioner. The preconditioner consists
of one velocity solve and one pressure solve.

Proposition 6.2.1. For the SIMPLE preconditioned matrix Ã,

• 1 is an eigenvalue with multiplicity nu, and

• the remaining eigenvalues are defined by the generalized eigenvalue problem
S p = λŜ p.

6.2. SIMPLE preconditioner 63

Algorithm 6.1 SIMPLE algorithm

1. p∗ is given

2. Solve Fu∗ = ru − BT p∗.

3. Solve Ŝ δp = rp − Bu∗.

4. update zu = u∗ − D−1BTδp.

5. update zp = p∗ + δp.

6. If not converged goto 2

Proof: [45]

The eigenvalues of the preconditioned system can be obtained from the general-
ized eigenvalue problem:[

F BT

B 0

] [
u
p

]
= λ

[
F 0
B Ŝ

] [
I D−1BT

0 I

] [
u
p

]
. (6.6)

This can be written as:[
F BT

B 0

] [
u
p

]
= λ

[
F FD−1BT

B 0

] [
u
p

]
, (6.7)

that is

Fu + BT p = λ(Fu + FD−1BT p),
Bu = λBu.

(6.8)

Multiplying the first equation in (6.8) by F−1 and re-arranging the two equations gives

(1 − λ)u = (λD−1 − F−1)BT p,
B(1 − λ)u = 0.

(6.9)

From (6.9), it can be seen that 1 is an eigenvalue of (6.7). Note that the matrix (D−1 −

F−1) is non-singular by assumption. The eigenvectors corresponding to eigenvalue 1
are vi =

(ui
0
)
∈ R(nu+np), ui ∈ R

nu , where {ui}
nu
i=1 is a basis of Rnu .

If λ , 1 then Bu = 0 in (6.9). Multiplying the first equation in (6.9) by B gives:

0 = λBD−1BT − BF−1BT p,
λBD−1BT = BF−1BT p.

(6.10)

If follows that

S p = λŜ p, where S = −BF−1BT and Ŝ = −BD−1BT . (6.11)

64 Chapter 6. SIMPLE-type preconditioners

Figure 6.1 shows the eigenvalue spectrum of the Navier-Stokes system and the SIM-
PLE preconditioned system. The rectangular region shown is zoomed in the next sub-
figure. It shows that the SIMPLE preconditioner improves the overall spectrum and
clusters most of the eigenvalues around 1. The eigenvalues equal to 1 are expected
equal to the number of velocity unknowns. Remaining eigenvalues depend on the ap-
proximation of the Schur complement matrix. More details on eigenvalue analysis are
given in [45].

The preconditioner converges nicely if used in combination with the GCR method.
However, the convergence rate suffers from an increase in the number of grid elements
and Reynolds number.

6.2.1 SIMPLER
A variant of SIMPLE, known as SIMPLER is supposed to give Reynolds independent
convergence. Instead of estimating the pressure p∗ in the SIMPLE algorithm, p∗ is
obtained from solving a subsystem:

Ŝ p∗ = rp − BD−1((D − F)uk + ru). (6.12)

where uk is obtained from the prior iteration. In case SIMPLER is used as precon-
ditioner, uk is taken equal to zero. The classical SIMPLER algorithm proposed by
Patanker consists of two pressure solves and one velocity solve. In the literature the
SIMPLER algorithm is formulated such that the steps of the algorithm are closely re-
lated to the Symmetric Block Gauss Seidel method [88]. This form of the SIMPLER
preconditioner can be written as:(

u∗

p∗

)
=

(
uk

pk

)
+U−1

bt L̂b
−1

((
ru

rp

)
−A

(
uk

pk

))
, (6.13)

(
uk+1

pk+1

)
=

(
u∗

p∗

)
+ Ûb

−1
L−1

bt

((
ru

rp

)
−A

(
u∗

p∗

))
, (6.14)

whereA represents the complete matrix given in (2.21), Ŝ = −BD−1BT ,Ml = D, Mu =

D, uk and pk in (6.13) are obtained from the previous step (both zero in the precondi-
tioner case). This formulation is quite expensive if used as preconditioner, because
the steps given in (6.13) and (6.14) contain two Poisson solves, and two velocity
subproblems solves as opposed to one velocity solve in the classical algorithm and
matrix-vector updates. However, the extra velocity solve in formulation (6.13) and
(6.14) has no significant effect on the convergence with the SIMPLER preconditioner.

Lemma 6.2.1. In the SIMPLER preconditioner/algorithm, both variants (one or two
velocity solves) are identical.

Proof:
We first start with the choice uk and pk are zero vectors. To solve the system Pz = r,
(6.13) reduces to (

u∗

p∗

)
= U−1

bt L̂b
−1

(
ru

rp

)
. (6.15)

6.2. SIMPLE preconditioner 65

−5 0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Real axis

Im
ag

in
ar

y
ax

is

A

P−1A

(a) Complete picture

0 0.5 1 1.5 2 2.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Real axis

Im
ag

in
ar

y
ax

is

A

P−1A

(b) Zooming Figure (a)

1 1 1 1 1

−2

−1

0

1

2
x 10

−11

Real axis

Im
ag

in
ar

y
ax

is

A

P−1A

(c) Zooming Figure (b)

Figure 6.1: Eigenvalues of the Navier Stokes system (at 2nd Picard iteration) (A) and
preconditioned with SIMPLE (P−1A). 8 × 24 Q2-Q1 Backward facing step problem
with Re = 100.

66 Chapter 6. SIMPLE-type preconditioners

Rewriting (6.15) leads to

p∗ = Ŝ −1(rp − BD−1ru), (6.16)

and
u∗ = F−1(ru − BT p∗). (6.17)

Next we consider (6.14). First compute the residual part,(
run

rpn

)
=

(
ru

rp

)
−A

(
u∗

p∗

)
. (6.18)

The velocity part becomes

run = ru − Fu∗ − BT p∗.

If we substitute u∗ from (6.17) into run we get

run = ru − FF−1(ru − BT p∗) − BT p∗ = 0, and the pressure part

rpn = rp − BT u∗,

therefore, (6.14) reduces to(
uk+1

pk+1

)
=

(
u∗

p∗

)
+ Ûb

−1
L−1

bt

(
0

rpn

)
. (6.19)

The formulation (6.15) and (6.19) gives rise to three steps in the SIMPLER precondi-
tioner because there is no need to perform an extra velocity solve in (6.19) when the
right-hand side is zero.

δp = Ŝ −1(rp − Bu∗), (6.20)

uk+1 = u∗ − D−1BTδp, (6.21)

and
pk+1 = p∗ + δp. (6.22)

This can also be proven for the SIMPLER algorithm with nonzero uk and pk, which
proves the theorem 2

We observe in our numerical experiments that both variants are different if inexact
solves are used but the convergence of both variants is nearly the same. SIMPLER is
more expensive than SIMPLE. One iteration of the SIMPLER algorithm is approxi-
mately 1.3 times more expensive than the SIMPLE iteration [89]. SIMPLER conver-
gence is also faster than the SIMPLE preconditioner. However, both preconditioners
give h-dependent convergence.

6.3. Effect of relaxation parameter 67

6.3 Effect of relaxation parameter
In the classical SIMPLE method for finite volumes it is common practice to apply
relaxation parameters to improve convergence. Unfortunately good choices for relax-
ation parameters can only be found by trial and error.

In our case we use SIMPLE as preconditioner, which means that we apply only
one SIMPLE iteration per GCR step. Due to application of one SIMPLE iteration, it
is assumed that the introduction of a relaxation parameter will have almost no effect
on the convergence of the preconditioned Krylov method because SIMPLE is applied
to a problem with different right-hand side at each iteration. We have observed that
in some cases introduction of a relaxation parameter ω in the pressure part improves
convergence of the SIMPLE preconditioner. Therefore, the last step in the SIMPLE-
type preconditioners will be replaced by

p = p∗ + ωδp. (6.23)

In contrast to the finite volume case, no relaxation parameter for the velocity part is
used because the effect is negligible. The parameterω is varied between 0 and 1. From
our experiments it is clear that a proper choice of ω is more important when SIMPLE
is used as an iterative solver than as a preconditioner.

6.4 Improvements in the SIMPLER preconditioner
In this section, two SIMPLER variants are discussed that improve the convergence of
the SIMPLER preconditioner.

6.4.1 hSIMPLER
We have observed that in the Stokes problem, the SIMPLER preconditioner shows
stagnation at the start of the iterative method. This behavior is not seen in the SIMPLE
preconditioner. This is shown in Figure 6.2. A better convergence can be achieved if
the first iteration is carried out with the SIMPLE preconditioner and after that SIM-
PLER is employed. We call this combination hSIMPLER (hybrid SIMPLER). This
implementation gives a fair reduction in the number of iterations if the Stokes prob-
lem is solved. However, in the Navier-Stokes problem, SIMPLER performs better
than hSIMPLER. More details are given in the section with numerical experiments.

6.4.2 MSIMPLER
Elman et al [35], [31] discussed relation between SIMPLE and commutator precondi-
tioners. The more general form of (4.18) is given by:

(BF−1BT)−1 ≈ −Fp(BM−1
1 BT)−1, (6.24)

where
Fp = (BM−1

2 BT)−1(BM−1
2 FM−1

1 BT),

68 Chapter 6. SIMPLE-type preconditioners

0 20 40 60 80
10

−4

10
−3

10
−2

10
−1

10
0

No. of iterations

G
C

R
 r

e
la

tiv
e

 r
e

si
d

u
a

l

hSIMPLER
SIMPLE
SIMPLER

Figure 6.2: Convergence plot of SIMPLE-type peconditioners for the Stokes problem

where M1 and M2 are scaling matrices. Consider a new block factorization precondi-
tioner in which the Schur complement is based on a commutator approximation but
built on SIMPLE’s approximate block factorization written as:

P = LbtÛb

[
I 0
0 F−1

p

]
. (6.25)

When Ŝ = −BD−1BT , Mu = D and Fp is the identity matrix, then the precondi-
tioner formulation (6.25) corresponds to SIMPLE. The formulation given in (6.25) is
equivalent to the SIMPLE algorithm if the subsystem for the pressure part in Step 3 in
Algorithm 6.1 is solved with the approximation given in (6.24)

Ŝ δp = rp − Bu∗ where Ŝ = −(BM−1
1 BT)F−1

p .

When FD−1 is close to identity, Fp will also be close to identity. This is true in
a time dependent problem with small time steps where the diagonal of F has signifi-
cantly larger entries than the off-diagonal entries [31].

Here we utilize the observation of Elman regarding the time dependent problem.
We know that in time dependent problems,

Ft =
1
∆t

Qv + F, (6.26)

where Ft represents the velocity matrix for the time dependent problem and ∆t rep-
resents the time step. For a small time step Ft ≈

1
∆t Qv. This kind of approximation

has been used in fractional step methods for solving the unsteady Navier-Stokes prob-
lem [61],[13], [20]. We use this idea in solving the steady Navier-Stokes problem.

6.4. Improvements in the SIMPLER preconditioner 69

Therefore, we choose M1 = M2 = Q̂v in (6.24) resulting in:

Fp = (BQ̂v
−1

BT)−1(BQ̂v
−1

FQ̂v
−1

BT).

If we assume that the factor FQ̂v
−1 in Fp is close to identity, then

Fp = (BQ̂v
−1

BT)−1(BQ̂v
−1

BT) ≈ I,

and the approximation (6.24) becomes

BF−1BT ≈ −BQ̂v
−1

BT . (6.27)

Based on this result we replace D−1 in the SIMPLER algorithm by Q̂v
−1. We refer to

this method as MSIMPLER (Modified SIMPLER) (PMS R) .

Algorithm 6.2 MSIMPLER preconditioner

1. Solve Ŝ p∗ = rp − BQ̂v
−1

ru.

2. Solve Fu∗ = ru − BT p∗.

3. Solve Ŝ δp = rp − Bu∗.

4. update u = u∗ − Q̂v
−1

BTδp.

5. update p = p∗ + δp.

It is clear from Algorithm 6.2 that the cost of the MSIMPLER preconditioner is
equal to the cost of the SIMPLER preconditioner. However, in solving the Navier-
Stokes problem, at each nonlinear iteration, the Schur complement approximation in
the MSIMPLER does not need to be build again because the operators used in the
Schur complement approximation are independent of the any change that take place
at each nonlinear iteration.

6.4.3 Suitable norm to terminate the Stokes iterations
We have noticed that when we solve the Stokes equations by SIMPLE-type precon-
ditioned GCR method, the number of iterations depends on the viscosity (Reynolds
number). See for example Table 6.1. Such a result is unexpected since in the Stokes
equations the viscosity is only a scaling parameter and therefore the convergence
should be independent of the Reynolds number. Close inspection reveals that the
accuracy of the solution is lower for high Reynolds numbers than for low ones. Hence
the conclusion is that, in case of Stokes, the termination criterion should be adapted to
avoid this viscosity dependence.

70 Chapter 6. SIMPLE-type preconditioners

Table 6.1: Backward facing step: Solution of the Stokes problem with SIMPLER
preconditioned GCR (accuracy of 10−6).

Grid SIMPLER (Re=1) SIMPLER (Re=300)
8 × 24 20 18
16 × 48 40 36
32 × 96 110 52

To investigate this effect we take the SIMPLE preconditioner and solve the Stokes
problem with viscosity, ν = 1, [

F BT

B 0

] [
u
p

]
=

[
f
g

]
. (6.28)

The convergence criterion for the outer iterations is:∣∣∣∣∣∣
∣∣∣∣∣∣
[

f − Fu − BT p
g − Bu

]∣∣∣∣∣∣
∣∣∣∣∣∣
2∣∣∣∣∣∣

∣∣∣∣∣∣
[

f
g

]∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ ε. (6.29)

Since ν = 1, the solution is obtained up to the required accuracy because no scaling
is involved in the momentum and continuity equations and convergence check (6.29)
will terminate the iterative method at the desired accuracy. In case of a general value
of the ν we rewrite the system as:[

F̃ BT

B 0

] [
u
p̃

]
=

[
f̃
g

]
, (6.30)

where F̃ = νF, p̃ = νp and f̃ = ν f . The SIMPLE preconditioner for (6.30) can be
written as:

Effect of ν on the SIMPLE preconditioner

1. Solve F̃u∗ = f̃

2. Solve S δ̃p = g − Bu∗

3. update u = u∗ − D̃−1BT δ̃p, where D̃ = νD

4. update p̃ = δ̃p

• Step 1 is terminated if ‖ f̃−F̃u∗‖2
‖ f̃ ‖2

≤ ε, so no effect of ν on the convergence.

• In Step 2 we use ‖g−Bu∗−S δ̃p‖2
‖g−Bu∗‖2

≤ ε, so also no effect of ν on the convergence.

6.4. Improvements in the SIMPLER preconditioner 71

• For the outer iterations the usual termination criterion is∣∣∣∣∣∣
∣∣∣∣∣∣
[

f̃ − F̃u − BT p̃
g − Bu

]∣∣∣∣∣∣
∣∣∣∣∣∣
2∣∣∣∣∣∣

∣∣∣∣∣∣
[

f̃
g

]∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ ε. (6.31)

We see in (6.30), that only the momentum equation is scaled with ν so this will effect
the convergence of the outer iterative method if convergence check (6.31) is applied.
This means that using ν in the Stokes problem effects the accuracy of the solution of
the Stokes problem. If a suitable norm is used, νwill have no effect on the convergence
of the iterative method. First we shall define some quantities:

N f ull =

∣∣∣∣∣∣
∣∣∣∣∣∣
[

f̃ − F̃u − BT p̃
g − Bu

]∣∣∣∣∣∣
∣∣∣∣∣∣
2
, Nr =

∣∣∣∣∣∣
∣∣∣∣∣∣
[

f̃
g

]∣∣∣∣∣∣
∣∣∣∣∣∣
2

(6.32)

Nu =
∣∣∣∣∣∣ f̃ − F̃u − BT p̃

∣∣∣∣∣∣
2 , Nru =

∣∣∣∣∣∣ f̃
∣∣∣∣∣∣

2 (6.33)

Np =
∣∣∣∣∣∣ g − Bu

∣∣∣∣∣∣
2 , Nrp =

∣∣∣∣∣∣ g
∣∣∣∣∣∣

2 (6.34)

Convergence checks: We have implemented the following options to terminate the
iteration process:

1. N f ull ≤ εNr (standard criterion)
This check shows viscosity dependent convergence in the Stokes problem. The
reason is that in the overall norm, only the velocity is scaled with the viscosity.

2. Nu ≤ εNru and Np ≤ εNrp

Fails to show convergence in the Navier-Stokes problem due to too small εNrp.
However, in the Stokes problem it shows viscosity independent convergence.
Moreover, there is a chance that Nrp is zero due to certain boundary conditions.

3. N f ull ≤ εNr and Nu ≤ εNru

This check shows viscosity independent convergence in the Stokes problem and
faces no trouble in the Navier-Stokes problem. In this case, if pressure domi-
nates the full norm, then the second condition takes care of the velocity norm to
satisfy the convergence criterion.

4. (Nu + Np) ≤ ε(Nru + Nrp)
This convergence check shows viscosity dependence in the Stokes problem. If
the pressure dominates the norm then it will show viscosity dependent conver-
gence.

In our implementation, we tested all these conditions and the third option seems to
be the best condition both in the Stokes and the Navier-Stokes problem since this is
the only condition that encounters the effect of scaling on convergence without any
problem.
In the next section, we perform some numerical experiments to test convergence of
our preconditioners.

72 Chapter 6. SIMPLE-type preconditioners

6.5 Numerical Experiments

The preconditioners discussed in this chapter are employed to solve Test Cases 1 and
2. To solve the subsystems iteratively, MG and ILU preconditioned Krylov subspace
methods are used. The iteration is stopped if the linear systems satisfy ‖rk‖2

‖b‖2
≤ tol,

where rk is the residual at the kth step of the Krylov subspace method, b is the right-
hand side, and tol is the desired tolerance value. Some abbreviations used are: ts

for time in seconds, Iter. =total iterations for the nonlinear problem, NC for no con-
vergence, in-it-u and in-it-p for the number of iterations taken by the solver to solve
subsystems in the preconditioners corresponding to the velocity and pressure part, re-
spectively. The SEPRAN 2(written in FORTRAN) and IFISS packages 3(written in
MATLAB) are used to solve the problems. Numerical experiments are performed on
an Intel 2.66 GHz processor with 8GB RAM.

As already reported in [89], the convergence with SIMPLE preconditioner depends
on the mesh size and Reynolds number. Before discussing the SIMPLE-type precon-
ditioner comparison in Section 6.5.2, we investigate the effect of relaxation parameter
on the convergence of the SIMPLE preconditioner.

6.5.1 Effect of relaxation parameter

Experiments revealed that application of a relaxation parameter for the velocity part
gives no improvement in the convergence. Therefore, we restrict ourselves to varying
the relaxation parameterω in (6.23). Since relaxation did not improve the convergence
of SIMPLER only the SIMPLE preconditioner is considered.

In the case of Stokes, choosing ω properly, reduces the number of iterations with
a factor 3 or 4. For example, in Figure 6.3, the optimal value of ω (0.05) reduces the
number of outer iterations from 193 to 59 for a 64 × 64 grid. The reduction in the
number of inner iterations - not shown in figure - is from 1400 to 77 for the velocity
subsystem and 3600 to 1200 for the pressure subsystem. In Figure 6.4, it can be seen
that a suitable relaxation parameter gives nice convergence and reduction in CPU time
in solving the backward facing step Stokes problem for various grid sizes.

Table 6.2 shows the effect of ω for various values of Reynolds number (Re) in
the Navier-Stokes equations. We can see from the table that a proper value of ω may
give some gain, but the profit is only small compared to that for the Stokes problem.
Furthermore it is clear that the optimal value of ω is different for Stokes and Navier-
Stokes. The probable cause is that the pressure approximation in the second step of
the nonlinear iteration is much better than in the first iteration. A good value of ω is
problem dependent and therefore not pleasant to use.

2http://ta.twi.tudelft.nl/sepran/sepran.html
3http://www.maths.manchester.ac.uk

6.5. Numerical Experiments 73

0 50 100 150 200
10

−6

10
−4

10
−2

10
0

10
2

No. of iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

ω

p
=1

ω
p
=0.05

ω
p
=0.1

ω
p
=0.5

Figure 6.3: The Stokes problem solved with 64 × 64 Q2-Q1 elements discretized
driven cavity problem with varying ω.

(a) Effect on convergence (b) Effect on CPU time

Figure 6.4: Effect of ω on convergence of the SIMPLE preconditioner solving the
Stokes backward facing step problem with increase in grid size.

Table 6.2: Effect of relaxation on the Navier-Stokes problem with a solution accuracy
10−6.

Re ω = 1 ω = 0.5 ω = 0.35 ω = 0.3 ω = 0.2
Iter. Iter. Iter. Iter. Iter.

100 657 641 552 552 563
200 870 803 773 857 783
500 7637 7080 6800 6666 NC

74 Chapter 6. SIMPLE-type preconditioners

6.5.2 Comparison of SIMPE-type preconditioners

SIMPLE-type preconditioners are employed to solve the 2D backward facing step
Stokes problem. These preconditioners are combined with the GCR method ([30]),
since this method allows variable preconditioners.

Table 6.3 shows the computation time and number of iterations for a series of
grids. For each grid, experiments are performed twice, first with low inner accuracy
(upper row) and then with high inner accuracy (lower row).

In case of SIMPLE and MSIMPLER a low inner accuracy implies that the subsys-
tems for the velocities are solved with a relative accuracy of 10−1, and the systems for
the pressure with an accuracy of 10−2. In case of high accuracy we used 10−6 both for
the velocity and pressure. For SIMPLER and hSIMPLER it was necessary to increase
the accuracy for the inner solves for increasing grid size. Otherwise no convergence
could be reached. The motivation to compare low and high inner accuracies is to in-
vestigate the dependence of the SIMPLE-type preconditioners on the inner accuracy.
From Table 6.3 it is clear that MSIMPLER is the best choice both with respect to the
number of iterations as to the CPU time. Increasing the inner accuracy has only a
small effect on the number of GCR iterations but a considerable negative effect on the
CPU time.

Figure 6.2 shows that SIMPLER stagnates in the start of iterations. This behavior
has been erased by using hSIMPLER. The necessary increase of inner accuracies for
finer grids for SIMPLER and hSIMPLER is visible in the smaller difference between
upper and lower row in Table 6.3. We also see that SIMPLER does not converge at all
for fine grids. The behavior of these preconditioners for a Navier-Stokes flow (driven
cavity) is shown in Figure 6.5. A fixed 64 × 64 grid with Q2-Q1 elements are used.

Table 6.3: Stokes backward facing step solved with preconditioned GCR(20) with
accuracy of 10−6 , PCG used as an inner solver.

Grid SIMPLE SIMPLER hSIMPLER MSIMPLER
Iter. (ts) in-it-u

in-it-p Iter. (ts) in-it-u
in-it-p Iter. (ts) in-it-u

in-it-p iter. (ts) in-it-u
in-it-p

8 × 24 39(0.06) 64
299 26(0.05) 60

416 19(0.03) 43
300 11(0.02) 18

164

37(0.14) 19(0.07) 17(0.06) 12(0.05)
16 × 46 72(0.6) 205

1032 42(0.5) 177
1233 31(0.34) 124

907 12(0.1) 24
346

68(1.94) 30(0.86) 24(0.68) 15(0.44)

32 × 96 144(8.2) 692
4084 NC 44(5.97) 692

2824 16(0.9) 54
864

117(34) 114(32) 37(10.6) 20(5.75)

64 × 192 256(93) 2054
13075 NC 89(141) 4362

12033 23(8.5) 145
2307

230(547) NC 68(161) 25(60)

6.5. Numerical Experiments 75

The Reynolds number is varied from 100 to 1000 and no upwinding is applied. In all
cases the low inner accuracy of the upper row in Table 6.3 is used. The left-hand figure
shows the average number of inner iterations per Picard step and the right-hand figure
the overall CPU time, which increases due to the increase of Picard iterations when
Reynolds increases. We see that the average number of inner iterations per Picard step
depends mildly on the Reynolds number. Again MSIMPLER proves to be superior to
the other SIMPLE-type preconditioners.

100 200 300 400 500 600 700 800 900 1000
10

2

10
3

10
4

Reynolds number

A
ve

ra
g

e
in

n
er

 it
er

at
io

n
s

SIMPLE − u−in
SIMPLER−u−in
MSIMPLER−u−in
SIMPLE − p−in
SIMPLER−p−in
MSIMPLER −p−in

100 200 500 700 1000
10

1

10
2

10
3

O
ve

ra
ll

C
P

U
 t

im
e

in
 s

ec
o

n
d

s

SIMPLE
SIMPLER
MSIMPLER

Reynolds number

Figure 6.5: The Navier-Stokes problem solved with 64 × 64 Q2-Q1 elements dis-
cretized driven cavity problem with varying Reynolds number, Number of average
inner iterations (Left), CPU time in seconds (Right)-(SEPRAN)

The eigenvalue spectrum of the system preconditioned with SIMPLER and MSIM-
PLER is shown in Figure 6.6. We observe that the MSIMPLER preconditioner leads
to a much better clustered spectrum than SIMPLER. With SIMPLER, the zoomed re-
gion shows that, still most of the eigenvalues are negative or close to zero. This slows
down the convergence of the Krylov method.

We apply MSIMPLER to approximate the solution of the 2D backward facing
step for various grid sizes and Reynolds numbers. Table 6.4 shows the number of
iterations and CPU time in the second Picard step for MSIMPLER. The system of
equations for pressure and velocity is solved by one MG cycle. Due to the constant
preconditioner, Bi-CGSTAB and IDR(s) can be applied. Although we see that the
convergence depends on the Reynolds number for coarse grids this is no longer the
case for the finest grid. Furthermore in some cases the number of iterations decreases
for fixed Reynolds numbers for finer grids. Presumably this is due to the decrease in
cell Reynolds number. The relative good result of the last number in the MSIMPLER
column must be because of the better cell Reynolds number.

In order to see if the MSIMPLER preconditioner is sensitive to inner accuracies
we compare one MG cycle for the inner solver with an exact inner solver in Table 6.5.
From this table it is clear that MSIMPLER is hardly effected by the inner accuracy,
which is also one of the main advantages of MSIMPLER.

76 Chapter 6. SIMPLE-type preconditioners

Table 6.4: Backward facing step Navier-Stokes problem (after 2nd Picard iteration)
with MSIMPLER preconditioned Bi-CGSTAB with accuracy 10−6. The MG solver is
used to solve subsystems (IFISS).

Grid Re=100 Re=200 Re=400
Iter. (ts)

16 × 48 9(4.5) 15(7) 29(16)
32 × 96 11(13.7) 10(17) 15(21)

64 × 192 20(99) 15(84) 18(102)

Table 6.5: Driven cavity flow problem: The Navier-Stokes problem (after 2nd Picard
iteration) is solved with MSIMPLER preconditioned preconditioned Bi-CGSTAB
with accuracy 10−6. MG and direct solver is used to solve subsystems (IFISS).

Grid Re=100 Re=500 Re=1000
MG/Exact MG/Exact MG/Exact

No. of iterations per Picard step
16 × 16 10/9 28/25 50/53
32 × 32 13/12 26/20 45/43
64 × 64 19/19 25/25 34/32

128 × 128 25/28 42/44 43/43

6.6. Summary 77

−50 0 50 100 150 200
−40

−30

−20

−10

0

10

20

30

40

Real axis

Im
ag

in
ar

y
ax

is

SIMPLER preconditioned
MSIMPLER preconditioned

(a) Complete picture

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

−1

0

1

2

3

4

Real axis

Im
ag

in
ar

y
ax

is

SIMPLER preconditioned
MSIMPLER preconditioned

(b) Zooming Figure (a)

Figure 6.6: Eigenvalue distribution of the Navier Stokes system (A) and precondi-
tioned with (M)SIMPLER (P−1A). 8 × 24 Q2-Q1 elements discretized Backward
facing step problem with Re = 100.

6.6 Summary
In this chapter, we discussed SIMPLE-type block preconditioners. SIMPLE together
with 3 variants (SIMPLER, hSIMPLER and MSIMPLER) are discussed. SIMPLE(R)
as preconditioner is already known in the literature. hSIMPLER performs in the
first iteration, SIMPLE and SIMPLER are used for next iterations. SIMPLE and
(h)SIMPLER use the diagonal of the velocity matrix in the Schur complement ap-
proximation and updates. In MSIMPLER, the diagonal of the velocity mass matrix is
used. The outcome of this chapter is:

• The performance of SIMPLER in solving the Stokes problem can be enhanced
by employing the first iteration with SIMPLE and then use SIMPLER (hSIM-
PLER).

• MSIMPLER is at present the fastest of all SIMPLE-type preconditioners.

• In contrast with SIMPLER, MSIMPLER is not sensitive to the accuracies that
are used for the inner solvers.

• MSIMPLER is the cheapest to construct of all SIMPLE-type methods since the
Schur complement matrix is constant during the nonlinear steps and can there-
fore be made at the start of the process and reused in the following nonlinear
iterations. This is because the scaling is independent of the velocity.

• The number of outer iterations in MSIMPLER hardly increases if a direct solver
for the subsystems is replaced by an iterative solver.

In next chapter, we compare SILU, LSC and SIMPLE-type preconditoners for the
Stokes and the Navier-Stokes problem.

78

Chapter 7
Comparison of preconditioners
for the incompressible
Navier-Stokes equations

In this chapter, we compare the most favourable preconditioners for the incompress-
ible Navier-Stokes equations that are discussed in the previous chapters. Some exper-
iments are also done to compare convergence of IDR(s) and Bi-CGSTAB(`) precon-
ditioned with SILU.

7.1 Preconditioners to be compared
Based on the experiments in previous chapters, we compare convergence of the fol-
lowing preconditioners:

1. SILU (Saddle point ILU preconditioner) (PS ILU)

2. SIMPLE (PS)

3. MSIMPLER (PMS R)

4. LSC (PLS C)

These preconditioners are compared in 2D and 3D using various solvers for the sub-
systems.

7.1.1 Cost comparison
We define nnzB as the number of nonzero entries in B, nnzQp is the number of nonzero
entries in the pressure mass matrix and nnzF as the number of nonzero entries in F.

79

80 Chapter 7. Comparison of preconditioners for Navier-Stokes

We assume that solving the subsystem corresponding to the pressure takes sp flops
and the subsystem corresponding to the velocity part takes f u flops. Then the cost of
each preconditioner can be written as:

CostPS ILU = 2nnzB + nnzF + nnzQp

CostPs = 4nnzB + 3nu + np + sp + f u

CostPMS R = 8nnzB + 5nu + 2np + 2sp + f u,

and the cost of the LSC preconditioner is

CostPLS C = 6nnzB + 2nnzF + 3nu + 2sp + f u.

Per iteration, SILU is cheaper than the other preconditioners. SIMPLE is cheaper
per iteration than MSIMPLER since it consists of one velocity and one pressure solve.
Computationally, the MSIMPLER preconditioner is less expensive per iteration than
the LSC preconditioner. Both preconditioners have to solve three subsystems (2 for
the pressure and 1 for the velocity) per iteration. We assume that the cost of solving
the subsystem in both preconditioners is the same. Then the difference in cost of both
preconditioners consists of the number of matrix-vector multiplications and updates.
Per iteration, the difference in cost is:

di f f = (2nnzF) − (2np + 2nu + 2nnzB).

If di f f > 0, MSIMPLER is cheaper than LSC and this appears to be true for all finite
elements that satisfy the LBB condition.

7.1.2 Properties of LSC and MSIMPLER
As discussed in Chapter 6, (M)SIMPLER can be written in the form of a symmetric
block Gauss Seidel iteration. This can be done by combining (6.13) and (6.14) leading
to: (

uk+1

pk+1

)
=

(
uk

pk

)
+ P−1

MS R

((
ru

rp

)
−A

(
uk

pk

))
, (7.1)

where P−1
MS R is the MSIMPLER preconditioner which can be written as

P−1
MS R = Ûb

−1
L−1

bt L̂b
−1
TÛb

−1
U−1

bt L̂b
−1

where

T =

[
F 0
0 2Ŝ

]
.

This block Gauss Seidel form of the MSIMPLER preconditioner is based on the com-
plete system [88]. However, in case of an LSC preconditioner, the preconditioner

7.2. Numerical experiments 81

itself is of block triangular form given in (4.6) and the Schur complement can be seen
as a form of the symmetric block Gauss Seidel given by:

Ŝ −1 = (BQ−1
v BT)−1(BQ−1

v FQ−1
v BT)(BQ−1

v BT)−1. (7.2)

Some common properties of the two preconditioners are:

1. Both preconditioners use the velocity mass matrix in the approximation of the
Schur complement matrix.

2. The action of the preconditioner consists of two Poisson solves and one velocity
solve.

3. Both show mild dependence on Reynolds number and grid size.

4. Both preconditioners are built from available matrices.

5. The Schur complement may be constructed once -at the start of the linearization
because Q̂v

−1 remains the same during the linearization steps.

In case of quadrilaterals and hexahedrons Q̂v
−1 is the lumped velocity mass ma-

trix, which can also be constructed by using a Newton-Cotes integration rule. In case
of quadratic triangles this matrix is singular and we replace it by the diagonal of the
consistent mass matrix. For quadratic tetrahedra the situation is somewhat surprising.
The lumped velocity mass matrix contains negative entries for the elements corre-
sponding to vertices. Nevertheless the diagonal elements of BQ̂v

−1
BT are all positive.

The convergence of MSIMPLER applied to tetrahedra appears to be comparable to
that of hexahedra. If we replace Q̂v

−1 by the diagonal of the consistent mass matrix,
with positive elements only, the convergence of MSIMPLER becomes much slower.
We have no explanation for this phenomenon. The same results are also valid for LSC.

7.2 Numerical experiments

In this section, we compare SIMPLE (PS), MSIMPLER (PMS R) with LSC (PLS C) and
SILU. First we consider Test Case 1: the 2D lid driven cavity and Test Case 2: the
2D backward facing step with Q2-Q1 rectangular elements. Next we investigate the
behavior for 3D problems using both hexahedra and tetrahedra for the same problems.
Finally we test the methods for 2D stretched grids. The first test we apply is the
solution of the 2D Stokes backward facing step problem with various grid sizes. SILU
performs better with Bi-CGSTAB. With block preconditioners, we use GCR, because
it can be used in combination with variable preconditioner. In the last section, we
compare IDR(s) and Bi-CGSTAB(`).

82 Chapter 7. Comparison of preconditioners for Navier-Stokes

7.2.1 Comparison in 2D

In Figure 7.1, preconditioners are compared based on number of outer iterations, CPU
time and inner iterations. In terms of all these parameters, we can see that the MSIM-
PLER performance is better than the other preconditioners. In terms of CPU time,
SILU performance is comparable with MSIMPLER and better than other precondi-
tioners. We can see that the increase in the number of iterations with SILU (also
SIMPLE) is larger than MSIMPLER (and LSC) for increasing grid size. SIMPLE is
robust but expensive, therefore we do not report it in further experiments in 2D.

16x48 32x96 64x192 128x384
10

1

10
2

10
3

Grid size

G
C

R
 i
te

ra
ti
o

n
s

(a)

16x48 32x96 64x192 128x384
10

−2

10
0

10
2

10
4

Grid size

C
P

U
 t
im

e
 (

s
)

(b)

16x48 32x96 64x192 128x384

100

10^5

Grid size

V
e

lo
c
it
y
 i
te

ra
ti
o

n
s

(c)

16x48 32x96 64x192 128x384
10

2

10
3

10
4

10
5

Grid size

P
re

s
s
u

re
 i
te

ra
ti
o

n
s

(d)

SIMPLE
LSC
MSIMPLER
SILU

SIMPLE
LSC
MSIMPLER
SILU

SIMPLE
LSC
MSIMPLER

SIMPLE
LSC
MSIMPLER

Figure 7.1: 2D Backward facing step (Q2-Q1): The Stokes problem is solved with
accuracy 10−6. PCG is used as inner solver in the block preconditioners (SEPRAN)

In Table 7.1 we test block preconditioners where the system of equations for pres-
sure and velocity is solved by one MG cycle. Although we see that for coarse grids the
convergence depends on the Reynolds number, this is no longer the case for the finest

7.2. Numerical experiments 83

Table 7.1: Backward facing step Navier-Stokes problem solved with preconditioned
Bi-CGSTAB with accuracy 10−6. MG solver is used to solve subsystems (IFISS).

Grid Re=100 Re=200 Re=400
PLS C PMS R PLS C PMS R PLS C PMS R

Iter. (ts)

16 × 48 17(8) 9(4.5) 27(13) 15(7) 73(39) 29(16)
32 × 96 16(17) 11(13.7) 15(22) 10(17) 24(28.5) 15(21)
64 × 192 24(119) 20(99) 23(118) 15(84) 22(112) 18(102)

Table 7.2: Backward facing step: Preconditioned GCR is used to solve the Navier-
Stokes problem with accuracy 10−2, using Bi-CGSTAB as inner solver, the number
of iterations are the accumulated iterations consumed by the outer and inner solvers
(SEPRAN)

Grid PLS C PMS R PS ILU(Bi-CGSTAB)
Iter. (ts) Iter. (ts)
Re=100 (11 Picard iterations)

16 × 48 114(1.7) 73(1) 246(0.8)

32 × 96 193(22) 106(10.5) 731(8.7)

64 × 192 328(545) 182(162) 2071(95)

128 × 384 695(8863) 296(2806) 6352(1155)

Re=200 (17 Picard iterations)
16 × 48 179(2.3) 137(1.7) 436(1.3)

32 × 96 302(31) 161(14) 1100(13)

64 × 192 598(983) 232(191) 3114(141)

128 × 384 946(10405) 541(6301) 2668(9038)

Re=400 (31 Picard iterations)
16 × 48 441(4.93) 356(3.9) 716(2.13)

32 × 96 528(51) 328(25) 1706(20.7)

64 × 192 NC 405(408) 5366(246)

128 × 384 NC 663(7025) NC

grid. Furthermore it is clear that the number of iterations decreases for fixed Reynolds
number for finer grids. Presumably this is due to the decrease in cell Reynolds num-
ber (element size/ν). In all cases MSIMPLER requires less iterations than LSC but
the difference becomes small for increasing mesh size. The relative good result of the

84 Chapter 7. Comparison of preconditioners for Navier-Stokes

last number in the MSIMPLER column must be because of the better cell Reynolds
number.

Table 7.2 shows the convergence of MSIMPLER, LSC and SILU where an ILU
preconditioned Bi-CGSTAB solver is used for solving subsystems in the block pre-
conditioners. The accuracy for the inner solves is 10−2, which is sufficient to reach the
final accuracy of the Navier-Stokes problem without increasing the number of Picard
iterations. In this table we report the sum of the iterations in all Picard steps, which
gives a complete picture of the whole problem. In this case the difference between
MSIMPLER and LSC is much more pronounced. The reason must be the change of
inner solver. Furthermore we see that SILU is faster than MSIMPLER except for the
finest grid in combination with a large Reynolds numbers.

Table 7.3: Driven cavity flow problem: The Navier-Stokes problem is solved with
preconditioned Bi-CGSTAB with accuracy 10−6. MG and direct solver are used to
solve subsystems (IFISS).

Grid Re=100 Re=500 Re=1000
PLS C PMS R PLS C PMS R PLS C PMS R

MG/Exact MG/Exact MG/Exact MG/Exact MG/Exact MG/Exact

No. of iterations per Picard step

16 × 16 14/10 10/9 53/29 28/25 102/55 50/53
32 × 32 19/15 13/12 35/26 26/20 82/55 45/43
64 × 64 22/22 19/19 34/29 25/25 63/55 34/32

128 × 128 27/27 25/28 47/44 42/44 62/59 43/43

In order to see if the block preconditioners are sensitive to the inner accuracies we
compare one MG cycle for the inner solver with an exact inner solver in Table 7.3.
From this table it is clear that MSIMPLER is hardly effected by the inner accuracy,
whereas LSC is more sensitive in case of coarse grids in combination with a large
Reynolds number.

7.2.2 Comparisons in 3D
Iterative solvers for the Navier-Stokes are especially important for 3D problems. In
our experiments, we used both hexahedra and tetrahedra. Taylor-Hood elements have
been applied due to their availablity in SEPRAN package.

Figure 7.2 shows results of the various preconditioners for the Stokes problem
solved on a 3D backward facing step with hexahedral elements. An IC preconditioned
CG solver is used as inner solver for the block preconditioners. MSIMPLER requires
the least number of iterations (inner/outer) and shows almost grid independent con-
vergence behavior. The computation time of SILU is also good, but for finer grids it
becomes more expensive than MSIMPLER.

7.2. Numerical experiments 85

8x8x16 16x16x32 24x24x48 32x32x40
0

50

100

150

200

Grid size

G
C

R
 i
te

ra
ti
o
n
s

(a)

8x8x16 16x16x32 24x24x48 32x32x40
0

200

400

600

800

1000

Grid size

C
P

U
 t
im

e
 (

s
)

(b)

8x8x16 16x16x32 24x24x48 32x32x40
10

1

10
2

10
3

Grid size

V
e
lo

c
it
y
 i
te

ra
ti
o
n
s

(c)

8x8x16 16x16x32 24x24x48 32x32x40
10

2

10
3

10
4

(d)

Grid size

P
re

s
s
u
re

 i
te

ra
ti
o
n
s

SIMPLE
LSC
MSIMPLER
SILU

SIMPLE
LSC
MSIMPLER
SILU

SIMPLE
LSC
MSIMPLER

SIMPLE
LSC
MSIMPLER

Figure 7.2: 3D Backward facing step (hexahedra): The Stokes problem is solved with
accuracy 10−6. PCG is used as inner solver in the block preconditioners (SEPRAN)

In the Navier-Stokes problem it is sufficient to use an accuracy of 10−2 per Picard
step. In this case SILU performs slightly better than MSIMPLER. See Table 7.4.

To investigate the behavior of the preconditioners for tetrahedral elements we
solved the 3D lid driven cavity problem (Table 7.5). For the Stokes problem the result
is comparable to the hexahedral case. MSIMPLER requires less CPU time than LSC
and SILU. The number of GCR iterations is almost mesh-independent.

The situation for Navier-Stokes with tetrahedra is different from that of hexahedra.
Table 7.6 gives the CPU time and number of iterations. Now MSIMPLER proves to be
the best choice. The increase of iterations for increasing Reynolds number is caused
by an increase of the number of Picard iterations. The Reynolds dependency of all
methods per Picard iteration is only mild.

86 Chapter 7. Comparison of preconditioners for Navier-Stokes

Table 7.4: 3D Backward facing step (hexahedra):The Navier-Stokes problem is solved
with accuracy 10−4, a linear system at each Picard step is solved with accuracy 10−2

using preconditioned Krylov subspace methods. Bi-CGSTAB is used as inner solver
in block preconditioners(SEPRAN)

Re PS PLS C PMS R PS ILU

GCR iter. (ts) Bi-CGSTAB iter. (ts)
8 × 8 × 16

100 200(23) 117(17.6) 74(9.6) 140(8.9)
200 314(31) 176(25) 112(14.8) 255(13.8)
400 509(47) 280(36) 168(21) 1688(49)

16 × 16 × 32
100 447(591) 173(462) 96(162) 321(114)
200 718(839) 256(565) 145(223) 461(173)
400 1277(1223) 399(745) 235(312) 768(267)

32 × 32 × 40
100 909(12000) 240(5490) 130(1637) 1039(1516)
200 > 1000 421(7784) 193(2251) 1378(2000)
400 > 2000 675(11000) 295(2800) 1680(2450)

Table 7.5: 3D Lid driven cavity problem (tetrahedra): The Stokes problem is solved
with accuracy 10−6. PCG is used as inner solver in block preconditioners (SEPRAN)

Grid PLS C PMS R PS ILU (Bi-CGSTAB)
Iter. (ts) in-it-u

in-it-p Iter. (ts)
8 × 8 × 8 9(0.24) 17

52 8(0.23) 16
53 32(0.25)

16 × 16 × 16 12(4.8) 49
152 11(3.4) 31

150 73(5.6)

32 × 32 × 32 17(89) 129
426 14(54) 68

380 237(162)

7.2.3 Grid Stretching

One of the unsolved issues in the iterative solution of the Navier-Stokes equations
is the case of stretched grids. In practical applications it is very common to have a
stretched grid, so it is important that an iterative solver is capable of dealing with
such meshes. Therefore we consider a 2D lid driven cavity with a grid refined in the
region where we have strong gradients. The subdivision is symmetric with respect to
midpoints of the square, see Figure 7.3. The stretch factor (S F) is defined as the ratio
of the largest and smallest edge in the grid.

Results for solving the Stokes problem are shown in Table 7.7. The convergence
of MSIMPLER, LSC and SILU deteriorates with an increase in S F. All three precon-
ditioners show an increase in the number of iterations with increase in stretching. For

7.2. Numerical experiments 87

Table 7.6: 3D Lid driven cavity problem (tetrahedra):The Navier-Stokes problem is
solved with accuracy 10−4, a linear system at each Picard step is solved with accuracy
10−2 using preconditioned Krylov subspace methods. Bi-CGSTAB is used as inner
solver in block preconditioners(SEPRAN)

Re PLS C PMS R PS ILU

GCR iter. (ts) GCR iter. (ts) Bi-CGSTAB iter. (ts)
16 × 16 × 16

20 30(20) 20(16) 144(22)
50 57(37) 37(24) 234(35)
100 120(81) 68(44) 427(62)

32 × 32 × 32
20 38(234) 29(144) 463(353)
50 87(544) 53(300) 764(585)
100 210(1440) 104(654) 1449(1116)

Figure 7.3: A 32 × 32 grid with stretch factor = 8 (Left), Streamlines plot on the
stretched grid (Right)-(SEPRAN)

a large S F, the preconditioners even fail to converge. Compared to the performance
of these preconditioners in the Stokes problem, the situation is even worse in the
Navier-Stokes problem. Until now, as far as we know no results for LSC in stretched
grids are published. In Table 7.8, we see that MSIMPLER and LSC perform poorly
in stretched grids for the Navier-Stokes problem. With the increase in S F, all pre-
conditioners mentioned show bad convergence. The inner and outer iterations in the
block preconditioners stagnate after some reduction in the residual. For a certain S F,
the performance of these preconditioners becomes worse with increase in Reynolds
number and grid size.

88 Chapter 7. Comparison of preconditioners for Navier-Stokes

Table 7.7: 2D Lid driven cavity problem on 64×64 stretched grid: The Stokes problem
is solved with accuracy 10−6. PCG is used as inner solver in block preconditioners
(SEPRAN) .

S F PLS C PMS R PS ILU

GCR iter. GCR iter. Bi-CGSTAB iter.
1 20 17 96
8 49 28 189
16 71 34 317
32 97 45 414
64 145 56 NC

128 NC 81 NC

Table 7.8: 2D Lid driven cavity problem on stretched grid: The Navier-Stokes prob-
lem is solved with accuracy 10−4. A linear system in each Picard step is solved with
accuracy 10−2 using preconditioned Krylov subspace methods. Bi-CGSTAB is used
as inner solver in the block preconditioners(SEPRAN).

S F Re PLS C PMS R PS ILU

GCR iter. GCR iter. Bi-CGSTAB iter.
32 × 32

4 100 148 86 181
200 214 149 247
400 NC 261 268

8 100 171 104 242
200 228 155 234
400 NC 307 311

64 × 64
4 100 NC 114 526

200 NC 179 591
400 NC 407 630

8 100 NC 141 1131
200 NC 233 754
400 NC NC 814

7.3 IDR(s) and Bi-CGSTAB(`) comparison

In this section, we compare Bi-CGSTAB (`) [72] and IDR(s) preconditioned with ILU.
For ` = 1, we will refer Bi-CGSTAB (`) as Bi-CGSTAB. In Figure 7.4, the number of
iterations and CPU-time for the solution of the Stokes backward facing step problem
for two different grid are plotted. We see that an increase of s from 1 to 2 reduces the
CPU-time considerably (especially for the fine grid), but further increase of s has no

7.3. IDR(s) and Bi-CGSTAB(`) comparison 89

significant profit. The increase of s does not give a monotone decrease of iterations.

0 2 4 6 8 10
140

160

180

200

220

s dimension

N
o
.
o
f
it
e
ra

ti
o
n
s

0 2 4 6 8 10
3.9

3.95

4

4.05

4.1

4.15

4.2

s dimension

C
P

U
 t
im

e
(s

)

0 2 4 6 8 10
10

2

10
3

10
4

s dimension

N
o
.
o
f
it
e
ra

ti
o
n
s

0 2 4 6 8 10
10

15

20

25

30

s dimension

C
P

U
 t
im

e
(s

)

Figure 7.4: The 2D Stokes backward facing step problem solved with ILU precon-
ditioned IDR(s) method with varying s dimension: 32 × 96 grid (Top), 64 × 96 grid
(Bottom).

In Table 7.9 we see the number of matrix-vector multiplications and CPU-time
for the Stokes driven cavity problem solved on a uniform grid. Since 1 iteration of
Bi-CGSTAB costs 2 matrix-vector (Mat.-Vec.) multiplications and IDR(s) requires s
multiplications per step this is the best way of comparison. The difference between
Bi-CGSTAB and IDR(4) is not very significant. However, the table suggests that this
difference increases for increasing grid size.

The main reason to use IDR(s) is it better performance in case the ILU precondi-
tioner is not so efficient. Figure 7.5 shows the effect of the S F for the Stokes problem
on a 128 × 128 grid. The optimal choice, IDR(7), shows a much better performance
for increasing S F than Bi-CGSTAB.

IDR(s) is also compared with Bi-CGSTAB(`) for more difficult problems. In Table
7.10, we see with increase in grid size and stretch factor, IDR(s) performance becomes
better than Bi-CGSTAB(`) for different values of s and `.

In general, IDR(s) proved to be more stable than Bi-CGSTAB(`). For the prob-
lems, where Bi-CGSTAB(`) shows convergence, IDR(s) always shows convergence.
However, in some cases, we observed divergence of Bi-CGSTAB(`) -especially with
` = 1 - whereas IDR(s) converged.

90 Chapter 7. Comparison of preconditioners for Navier-Stokes

Table 7.9: ILU preconditioned Krylov subspace methods comparison with increasing
grid size for the driven cavity Stokes flow problem.

Grid Bi-CGSTAB IDR(4)
Mat.-Vec. (ts) Mat.-Vec. (ts)

16 × 16 38(0.01) 33(0.01)
32 × 32 90(0.14) 75(0.14)
64 × 64 214(1.6) 159(1.4)

128 × 128 512(16) 404(15)
256 × 256 1386(183) 1032(156)

0 5 10 15
200

400

600

800

1000

1200

1400

1600

Stretch factor

M
a

t.
−

V
e

c
.

Bi−CGSTAB
IDR(7)

0 5 10 15
15

20

25

30

35

40

45

50

Stretch factor

C
P

U
 t

im
e

 (
s
e

c
o

n
d

s
)

Bi−CGSTAB
IDR(7)

Figure 7.5: SILU preconditioned Krylov subspace methods comparison with increas-
ing stretch factor for the driven cavity Stokes flow problem.

Table 7.10: SILU preconditioned Krylov subspace methods comparison with increas-
ing grid size and stretch factor for the driven cavity Stokes flow problem.

Stretch factor Bi-CGSTAB(`) IDR(s)
` Mat.-Vec. (ts) s Mat.-Vec. (ts)

128 × 128
4 4 608(23) 6 437(19)

10 4 944(34) 6 696(28)
256 × 256

4 4 1864(283) 6 1383(243)
6 1848(285) 8 1066(204)

10 4 4184(606) 6 1927(331)
6 3768(558) 8 1796(327)

7.4. Summary 91

7.4 Summary
In this chapter we studied the convergence behavior of some block preconditioners for
the Stokes and Navier-Stokes problems both in 2D and 3D. Results for various grid
sizes and Reynolds numbers have been investigated. We also compared the conver-
gence with an algebraic preconditioner (SILU). Some common properties of MSIM-
PLER and LSC are discussed.

In all our experiments MSIMPLER proved to be cheaper than LSC. This concerns
both the number of outer iterations, inner iterations and CPU time. The number of
outer iterations in MSIMPLER hardly increases if a direct solver for the subsystems
is replaced by an iterative solver. This is in contrast with LSC where large differences
are observed. It appears that the combination of LSC with MG is almost optimal. The
combination of LSC with a PCG inner solver can take many iterations and much CPU
time. When problems are solved with low accuracy, for example in case of Navier-
Stokes, SILU sometimes shows better performance than the other preconditioners.
MSIMPLER proved to be cheaper than SILU, especially when the problem is solved
with high accuracy. The performance of all these preconditioners is affected by grid
stretching. The number of iterations increases with an increase in stretching or even
diverges in some cases.

A newly developed Krylov method, IDR(s), preconditioned with SILU is com-
pared with Bi-CGSTAB(`). For equidistance grids, perfomance of both Krylov meth-
ods is comparable. However, when the grid is stretched and preconditioner becomes
less efficient, IDR(s) start to perform better than Bi-CGSTAB(`) for optimal values of
s and `.

92

Chapter 8
On iterative methods for the
incompressible Stokes problem
with varying viscosity

In this chapter, we discuss various techniques for solving the system of linear equa-
tions that arise from the discretization of the incompressible Stokes equations by the
finite element method. The proposed solution methods, based on a suitable approxi-
mation of the Schur complement matrix, are shown to be very effective for a variety
of problems. We discuss two iterative methods. These approaches use the pressure
mass matrix as preconditioner (or an approximation) to the Schur complement. We
compare these methods with the preconditioners (MSIMPLER, LSC) that are already
discussed.

8.1 Iterative methods for the Stokes problem
In this chapter, we concentrate on the Stokes problem only. In contrast to many of the
Navier-Stokes preconditioners, we do not assume that the viscosity, ν, is constant, nor
that it is smaller than one. Our main goal is to investigate block preconditioners that
are suitable for the Stokes problem, both for constant and varying viscosity.

In this section, we discuss techniques for efficient solution of the Stokes problem.
These techniques use Krylov subspace methods on both the system and subsystem
level with appropriate choices of preconditioners and approximations of the pressure
Schur complement matrix. The schemes are:

1. Block triangular preconditioner with GCR

2. The Schur method (a new approach)

93

94 Chapter 8. Iterative methods for the Stokes problem

The first approach consists of a preconditioner that accelerates GCR to solve the
Stokes problem. The second technique is an iterative method that uses Krylov methods
on subsystem level. The important feature of the second method is the preconditioner
used to solve the implicitly constructed Schur complement matrix BF−1BT (available
in matrix-vector product form) at each step of the pressure subsystem solve.

8.1.1 Block triangular preconditioner
We have already discussed both the general form (4.6) as well as the eigenvalue analy-
sis of the block triangular preconditioner in Section 4.3. In Chapters 4 and 7, we have
used a block triangular preconditioner (LSC) for solving the incompressible (Navier-)
Stokes problem with constant viscosity. In this section, a special block triangular pre-
conditioner is discussed for the Stokes problem with an approximation of the Schur
complement matrix that enhances the convergence of the Krylov methods.

For the Stokes problem, with constant viscosity, the pressure mass matrix Qp is
known to be a cheap and spectrally equivalent approximation to the Schur complement
matrix [70], [35]. In [70] S̃ = −Qp is used with block diagonal preconditioner (Db)
for the Stokes problem. The block diagonal preconditioner is symmetric and positive
definite and can be used as a preconditioner for MINRES.

In our work, we use the pressure mass matrix with a block triangular precondi-
tioner given by:

Pt =

[
F BT

0 −Qp

]
. (8.1)

Algorithm 4.2 describes the steps that are used to solve Ptz = r. In general it is not a
good idea to use a nonsymmetric preconditioner for a symmetric problem. However,
if we use a block triangular preconditioner the number of iterations is half the number
of iterations necessary when a block diagonal preconditioner is used [34], whereas the
increase in cost per iteration is only minimal.

If the Stokes problem is scaled with a constant viscosity ν, then the pressure mass
matrix is also scaled with a constant viscosity (1/ν)Qp. The effectiveness of this ap-
proach is justified by the following theorems from [35, p. 270].

Theorem 8.1.1. For any flow problem with Dirichlet boundary conditions (prescribed
velocities) discretized using a uniformly stable mixed approximation on a shape regu-
lar, quasi-uniform subdivision of �2, the pressure Schur complement matrix BF−1BT

is spectrally equivalent to the pressure mass matrix Qp, with

µ2 ≤
〈BF−1BT q, q〉
〈Qpq, q〉

≤ 1 f or all q ∈ �m, q , 0. (8.2)

The inf-sup constant µ is bounded away from zero independently of h, and the
condition number satisfies k(BF−1BT) ≤ C/(cµ2), where C and c are the constants
defined by

ch2 ≤
〈Qpq, q〉
〈q, q〉

≤ Ch2 f or all q ∈ �m, q , 0. (8.3)

8.1. Iterative methods for the Stokes problem 95

Similar bounds also exist for the Neumann boundary condition problem. An extra
condition q , 1 is required in (8.2) and (8.3) in case of enclosed flow, because the
vector

(
0
1

)
corresponds to an eigenvector for a zero eigenvalue of the Stokes matrix.

Theorem 8.1.2. If the Stokes problem is preconditioned with a block triangular pre-
conditioner, then the preconditioned system has eigenvalue λ = 1 of multiplicity nu

and the remaining eigenvalues depend on the approximation to the Schur complement
matrix.

In this paper, we accelerate GCR with a block triangular preconditioner that uses
the pressure mass matrix approximation for the Schur complement matrix. For sim-
plicity, we call this approach PMM. The spectral equivalence of the Schur complement
matrix for the variable viscosity Stokes problem and the variable viscosity pressure
mass matrix has been proved recently by Olshanskii [57].

8.1.2 The Schur method
The Schur method is based on the block factorization of problem (2.21). The Schur
complement matrix, (BF−1BT), present in the factorization is treated implicitly. In
order to apply pressure-correction type methods, we split the coefficient matrix as
follows: [

F BT

B 0

] [
u
p

]
=

[
F 0
B −BF−1BT

] [
u∗

δp

]
, (8.4)

where [
u∗

δp

]
=

[
I F−1BT

0 I

] [
u
p

]
. (8.5)

Then the systems of equations can be solved in the steps given in Algorithm 8.1.
As already mentioned, the Stokes problem is symmetric and indefinite. However,

the subsystems corresponding to the velocity (vector Poisson) and pressure in Steps
1, 2 and 3 are symmetric and definite. F−1 in Steps 1 to 3 is computed approximately
by solving the velocity subsystem with an inexact solver. The best option is to use an
MG preconditioned CG or some multigrid technique since both of these methods are
known to give optimal convergence for Poisson-type problems.

The pressure subsystem in Step 2 can in principle be solved efficiently by CG.
However, we do not construct BF−1BT explicitly, but approximately solve (−BF−1BT)pδ =
rp − Bu f within each step of CG. Since F−1 is computed inexactly, CG can only be
applied if the number of iterations used to do this is kept constant in each step. This
is due to the fact that CG requires a constant matrix as preconditioner. This problem
can be overcome by either using a stand-alone solver, such as multigrid, or flexible
Krylov methods (GCR in our case). The efficiency of the Schur method requires ef-
ficient treatment of Step 2 . Because the Schur complement matrix is not constructed
explicitly, we need a special type of preconditioner. The pressure mass matrix appears
to be an efficient preconditioner for the Schur subsystem. If we use the same accuracy
to solve the system with PMM and to solve Step 2 of the Schur method, the number
of pressure mass matrix preconditioned GCR iterations in both methods is almost the

96 Chapter 8. Iterative methods for the Stokes problem

Algorithm 8.1 The Schur method
Initialize u(0), p(0) and maxiter (maximum iterations)
Compute: ru = f − Fu(0) − BT p(0)

rp = g − Bu(0)

For k = 0 to maxiter

1. Solve Fu f = ru

2. Solve −BF−1BT pδ = rp − Bu f

3. Update uδ = u f − ul, where ul is obtained by solving Ful = BT pδ

4. Update u(k+1) = u(k) + uδ

5. Update p(k+1) = p(k) + pδ

6. Update ru = f − Fu(k+1) − BT p(k+1)

7. Update rp = g − Bu(k+1)

8. If converged Exit

End For

same. These iterations govern the efficiency of both techniques. This observation also
motivates the use of GCR instead of flexible CG [56].

Based on the Schur method (Algorithm 8.1), we propose two schemes:

1. Schur method as direct method: By requiring the accuracy of the subsystem
solves to be the same or higher than the outer accuracy, the Schur method can
be used as a direct solver. To solve the Schur pressure system (−BF−1BT)pδ =
rp − Bu f , we use the pressure mass matrix Qp as preconditioner. The system
(−BF−1BT)pδ = rp − Bu f is solved with the help of GCR in which precondi-
tioned matrix-vector products within (BF−1BT)pδ are obtained by computing
preconditioned residual S (k+1) = Bum, where um is obtained by solving a sub-
system Fum = BT Qp

−1r(k) and r(k) is the residual computed in the previous GCR
iteration.

2. Schur as an iterative method: When the inner systems are solved with a lower
accuracy than desired for the final solution, outer iterations are required. Again,
the pressure mass matrix is used as preconditioner for the pressure subsystem.

From the above discussion, it is clear that three subsystems are solved for the velocity
unknowns u f , um, and ul and one subsystem is solved for the pressure unknown pδ
in each iteration of the Schur method. The most expensive part of the algorithm is the
computation of um since the number of times Fum = r must be solved is equal to the
total number of GCR iterations that are required to solve the pressure subsystem.

8.1. Iterative methods for the Stokes problem 97

One of the advantages that can be seen from the above algorithm is that most of
the computations are done at subsystem level. The system level computations can
be reduced by a proper choice of inner accuracy. For example, if subsystems are
solved as accurately as the outer tolerance requires, only one outer iteration is required.
However, more outer iterations are typically required. This will be further discussed
in Section 8.3, based on some numerical experiments.

8.1.3 Variant of LSC
In the LSC method the velocity mass matrix is used in the approximation of the
Schur complement matrix. In a recent paper [50], a scaling matrix has been con-
structed that improves the convergence considerably in the case of large viscosity
contrasts. The scaling is based on the maximum row entry in the velocity matrix,
(M1)ii = (M2)ii = max j|Fi j|. Based on this scaling, the LSC preconditioner is used
to solve the Stokes problem with sharp viscosity contrasts discretized with Q1-P0 el-
ements. Because these elements do not satisfy a discrete LBB condition [35], it may
be necessary to modify the discretized equations by adding a stabilization term to the
continuity equations. If such a modification is made, an appropriate adaptation of the
approximate Schur complement is also needed. In this chapter, we also use essentially
the same scaling, by using the diagonal of the velocity matrix (M1 = M2 = diag(F)).
For simplicity, we call this approach LS CD.

8.1.4 Construction of variable viscosity pressure mass matrix
The standard pressure mass matrix is defined independently of the viscosity

(Qp)i, j =

∫
Ω

φiφ jdΩ, (8.6)

where φ j and φi are the standard finite element basis functions for the pressure.
Experiments show that solving the variable viscosity problem using this matrix as

a preconditioner gives slow convergence. The Schur complement matrix, however,
contains F−1, which means that it is proportional to the inverse of the viscosity. So, it
makes sense to scale the pressure mass matrix used as a preconditioner by the inverse
of the viscosity. In this section, we discuss the construction of the pressure mass
matrix and scaling with the viscosity.
In case of constant viscosity, scaling of the pressure mass matrix is trivial. However,
in case of variable viscosity, such scaling must be done carefully. Here, we assume
that the viscosity is available at each point of the grid, and consider two alternatives to
incorporate the scaling.

1. Explicit scaling of the pressure mass matrix, which implies pre and post mul-
tiplication of Qp by a diagonal matrix S v: Qpe = S −1

v QpS −1
v , where S v =

diag(
√
ν). This guarantees that the mass matrix remains symmetric. The evalu-

ation of ν is done either on grid points (Taylor-Hood elements) or on elements
(Crouzeix-Raviart).

98 Chapter 8. Iterative methods for the Stokes problem

Figure 8.1: A grid with 2 elements.

2. Implicitly scaling the pressure mass matrix can be done at the time of formation
of the pressure mass matrix,

(Qpi)i, j =

∫
Ω

(1/ν)φiφ jdΩ. (8.7)

If the viscosity is defined to be piecewise constant on each element, we have mul-
tiple viscosity values to choose from at each node on the interface of two or more
regions if we choose to scale Qp explicitly. Consider the grid consisting of two el-
ements shown in Figure 8.1 with viscosity ν1 in element 1 and ν2 in element 2. We
can see that nodes 3 and 4 of element 1 and nodes 1 and 2 of element 2 (using local
numbering) are common to both elements. So, there are two different values of the
viscosity that could be used at each node. Before constructing the global mass matrix,
we define

αk
i j =

∫
ek

φiφ jdAk, (8.8)

where αk
i j represents the contribution to (Qpi)i, j from element k where i and j represent

node indices. The global pressure mass matrix from these two elements using implicit
scaling is:

8.2. Convergence issues 99

Qpi =

ν−1
1 α1

11 ν−1
1 α1

12 ν−1
1 α1

13 ν−1
1 α1

14 0 0

ν−1
1 α1

21 ν−1
1 α1

22 ν−1
1 α1

23 ν−1
1 α1

24 0 0

ν−1
1 α1

31 ν−1
1 α1

32 ν−1
1 α1

33 + ν
−1
2 α2

11 ν−1
1 α1

34 + ν
−1
2 α2

12 ν−1
2 α2

13 ν−1
2 α2

14

ν−1
1 α1

41 ν−1
1 α1

42 ν−1
1 α1

43 + ν
−1
2 α2

21 ν−1
1 α1

44 + ν
−1
2 α2

22 ν−1
2 α2

23 ν−1
2 α2

24

0 0 ν−1
2 α2

31 ν−1
2 α2

32 ν−1
2 α2

33 ν−1
2 α2

34

0 0 ν−1
2 α2

41 ν−1
2 α2

42 ν−1
2 α2

43 ν−1
2 α2

44

(8.9)

In (8.9), it is evident that for a high viscosity contrast, the smaller value of ν will
dominate the definition of Qpi (due to its inversion) at the nodes that are shared by
these two elements, and large entries will be observed on the diagonal of the matrix.

8.2 Convergence issues

We consider two variable viscosity problems:

• Extrusion Problem with a variable viscosity: The Stokes problem is solved
in the two dimensional domain shown on the left of Figure 8.2. The problem we
consider is that of a round aluminum rod, which is heated and pressed through
a die. In this way, a prescribed shape can be constructed. In this specific ex-
ample, we consider the simple case of the construction of a small round rod.
The viscosity model used describes the viscosity as function of shear stress and
temperature, which are highest at the die where the aluminum is forced to flow
into a much smaller region. The end rod is cut, which is modeled as a free
surface. Boundary conditions are given by prescribed velocity at the inlet and
a stress free condition at the outlet. At the container surface (boundary of thick
rod), we have a no slip condition. At the die, we have friction, which is modeled
as a slip condition along the tangential direction and a no flow condition in the
normal direction. The round boundary of the small rod satisfies free slip in the
tangential direction and no flow in the normal direction.

• Geodynamic problem having a sharp viscosity contrast: This problem is a
benchmark problem known as the SINKER model in [50]. It models a geody-
namic flow on a square region. Inside the region is a square with a different
(but constant) viscosity and jump in density, resulting in a sharp viscosity con-
trast. The configuration is shown in [50] and in Figure 8.2. Boundary conditions
are no normal flow and no shear stress (at all boundaries). For this boundary
condition, pressure can be determined only up to an arbitrary additive constant.

100 Chapter 8. Iterative methods for the Stokes problem

Figure 8.2: Two dimensional domain for the variable viscosity Stokes problem (Left).
At right, a 2D geodynamics test model: LVR represents the low viscosity region with
density ρ1 = 1 and viscosity ν1 = 1, and HVR denotes the high viscosity region with
density ρ2 = 2, and constant viscosity ν2 (1, 103 and 106).

If we try to solve the SINKER problem with high viscosity contrast (e.g 106) and
use an inexact solver, e.g ICCG(0), for the subsystem solves, we fail to get conver-
gence due to stagnation of the inner solvers for high accuracies (10−6). Each time, a
suitable tolerance is determined for which the inner solver shows convergence. We
would like to use higher accuracies to solve the subsystems because, for high viscos-
ity contrast problems, the number of iterations of the outer Krylov method depends
on the inner accuracies. Another issue with high viscosity contrast problems is that if
we use convergence criteria based on the L2 norm, some preconditioners e.g. PMM,
lead to fewer iterations. However, an inaccurate solution is obtained with this conver-
gence criterion. In order to achieve suitably accurate results, we must require a much
higher accuracy from the Krylov method, which is not a good practice. For example
if we use a direct solver for the high viscosity contrast problem PMM requires much
less iterations than LSC. However, the results with PMM are less accurate than those
computed by LS CD (see Section 8.1.3) for the same tolerance. Figure 8.3 shows the
pressure in the high viscosity region of the SINKER model for PMM and LS CD. The
differences in these solutions can be easily seen. Note also that at other places the
difference is not visible. It has been observed that the solution obtained with LS CD

mimics that obtained with a direct solver.

Remark 8.2.1. If we use a preconditioner for the Schur complement that involves the
diagonal of the velocity matrix D−1, the error in the iterative method using a direct
method for the subsystems becomes small. This has been verified for LS CD, BD−1BT

and SIMPLE.

The above remark is true even if convergence for the velocity and pressure sub-
systems is achieved with an iterative method, without scaling.

8.2. Convergence issues 101

To overcome the issue with convergence of the subsystems and accuracy of the
solution, we scale the original problem. In our case, we use a variant of scaling that
has already been used with SIMPLE preconditioners [88]. S m is a scaling matrix given
by:

S m =

[√
diag(F) 0

0
√

diag(BD−1BT)

]
. (8.10)

This scaling is applied to the complete system (Ax = b) and to the velocity
and pressure subsystems (within the preconditioner), but is only well-defined when
Fii > 0 and (BD−1BT)ii > 0. In our case, both conditions are satisfied and, hence,
the matrix S m is well-defined. With this scaling, convergence criteria are based on the
residual in a scaled L2 norm.

In our case, the linear system (for the SINKER model) is scaled before the itera-
tive methods are employed. After scaling, the pressure obtained with PMM mimics
the solution obtained with the exact solver. With this scaling, the number of itera-
tions required for convergence by the preconditioned iterative method may increase.
Scaling, however, only slightly changes the eigenvalue spectrum of the preconditioned
system. This has been proven for the diffusion problem having extreme contrasts (up
to 107) in the coefficients using ICCG [90]. For example, if we consider a precon-
ditioned system, P−1Ax = P−1b, and if both the preconditioner and the coefficient
matrix are scaled with the same matrix, Ds, the scaled matrices become P̂ = D−1

s P
and Â = D−1

s A, and the preconditioned system matrix after scaling is given by:
P̂−1Â = P−1DsD−1

s A = P−1A . So the spectrum of the preconditioned scaled system
is the same as the preconditioned unscaled system.

Figure 8.4 shows the computed eigenvalue spectrum before and after scaling. The
spectrum of the preconditioned system clearly remains almost unchanged. If we use
scaling, so that our system, Ax = b becomes S −1

m AS −1
m S mx = S −1

m b, the most impor-
tant change is the termination criterion for the iterative method. The relative conver-
gence criteria for both the scaled and unscaled problems are as follows:

For the unscaled system

‖b −Ax̂‖2 ≤ ‖b‖2 tol, (8.11)

where x̂ is an approximate solution and tol is the desired tolerance.
For the scaled system, the convergence criterion will be:

‖S −1
m b − S −1

m AS −1
m ŷ‖2 ≤ ‖S −1

m b‖2 tol, (8.12)

where x̂ = S −1
m ŷ.

From the discussion above, it is clear that to get convergence (in high viscosity
contrast problems), scaling subsystems in the preconditioner is required. However,
this does not guarantee that the computed solution will be accurate. For an accurate
solution, the complete system also requires scaling with an appropriate scaling opera-
tor (S m in our case).

102 Chapter 8. Iterative methods for the Stokes problem

(a) PMM (b) LS CD

Figure 8.3: Solution of the variable viscosity Stokes problem using various solution
schemes: The plot shows the pressure solution in the high viscosity region at the
SINKER problem.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−4

−3

−2

−1

0

1

2

3

4
x 10

−6

Real axis

Im
a

g
in

a
ry

 a
x
is

Preconditioned Stokes unscaled
Preconditioned Stokes scaled

Figure 8.4: Eigenvalue spectrum of the Stokes problem.

8.2. Convergence issues 103

The error between the results obtained with PMM and other preconditioners is
more visible in the SINKER model. However, we also want to check whether this
error also exists in case of more general problems. It has been observed that for
the same preconditioner, different implementations (Split, left or right preconditioner)
leads to the same eigenvalue spectrum of the preconditioned system [83, p. 175].
Therefore, the same number of iterations are expected for a desired accuracy. In our
software we use GCR in combination with a right preconditioner. This suggests that
the stopping criterion is independent of the preconditioner. The convergence criterion
we use is given in (8.11). From the relation in (8.11) it can be proved that

||x − xk ||2

||x||2
≤ K2(A)

||rk ||2

||b||2
≤ K2(A) tol.

This implies that the relative error depends on the condition number of the matrix.
The right preconditioner has the advantage that it only effects the operator and not the
right-hand side. This implies that stopping criteria for various preconditioners are the
same.

Remark 8.2.2. Since in right preconditioning we solve AP−1y = b with x = P−1y. One
must be careful with stopping criteria that are based on the error ||y − yk ||2 because
this error may be much smaller than the error norm ||x − xk ||2 (equal to

∣∣∣∣∣∣P−1(y − yk)
∣∣∣∣∣∣

2)
[83, p. 175].

However, if we solve the Stokes problem in combination with the PMM precon-
ditioner, we can see that for increasing grid size the actual error becomes much larger
than the required accuracy (see Table 8.1 and 8.2). This has already been observed in
the SINKER problem. Therefore we study the stopping criterion in more detail.

In case of left preconditioning, the convergence criterion depends also on the pre-
conditioner ∣∣∣∣∣∣P−1(b −Axk)

∣∣∣∣∣∣
2 <

∣∣∣∣∣∣P−1b
∣∣∣∣∣∣

2 tol.

Now the condition number is changed to K2(P−1A) which is expected to be smaller
than K2(A) and the convergence criterion may be quite different then the criterion
based on the unpreconditioned residual.

To get reasonable accuracy in case of right preconditioner, scaling a complete sys-
tem may be a better option to use. The idea is to minimize the condition number of the
matrix to K2(S −1

m A), where S m is the scaling matrix (already been tested in SINKER).
Scaling the complete system results in a termination based on

∣∣∣∣∣∣S −1
m rk

∣∣∣∣∣∣. This gives
an increase in iterations, but clearly much more reliable result. Diagonal scaling is
considered to be optimal if the original system is SPD [80]. For the symmetric in-
definite system we also use a diagonal scaling matrix. Because scaling of the system
only changes the convergence criterion, it is much cheaper to scale only the residual
by S −1

m , before checking the accuracy. Some cheap options are:

S m1 =

[
diag(F) 0

0 diag(BD−1BT)

]
. (8.13)

104 Chapter 8. Iterative methods for the Stokes problem

Another choice of scaling the stopping criteria can be that diag(BD−1BT) is re-
placed by diag(Qp) given as:

S m2 =

[
diag(F) 0

0 diag(Qp)

]
. (8.14)

For the pressure part, the pressure mass matrix is a good scaling operator because
in case of a lumped pressure mass matrix, this is only a diagonal matrix.

Tables 8.1 to 8.3 compare the error in the Stokes problem preconditioned with
PMM and LSC with different termination criteria. It is clear that, if we base the
termination on the norm of the residual, the real error increases for increasing grid
size. On the other hand if we use the norm of the residual multiplied by the inverse of
the preconditioner, we see that the real error is almost constant. Of course the number
of iterations increases in this case. P−1rk is available from the previous step and in case
of variable preconditioner, the operation P−1rk at each step is no more constant. This
may rise to a less accurate residual than constant scaling, if subsystems are solved with
small accuracy. The real error in all these cases is computed by solving the original
system with a direct solver.

Table 8.4 shows the results of this approach for two different choices of the scaling
matrices, S m1 and S m2 . It is clear that this cheap approach is a very good alternative
for complete scaling. Both scaling matrices are comparable, S m1 gives slightly better
error estimate than S m2. For more information concerning stopping criteria we refer
to [91], [2].

Table 8.1: Backward facing step Stokes problem (PMM preconditioner)
Grid ||rk ||

∣∣∣∣∣∣P−1rk

∣∣∣∣∣∣ ∣∣∣∣∣∣S −1
m rk

∣∣∣∣∣∣
Iter. Error-p Iter. Error-p Iter. Error-p

8 × 24 18 2e-5 22 2e-7 20 2e-6
16 × 48 17 3e-4 24 8e-7 20 4e-6
32 × 96 16 1e-3 23 5e-7 20 1e-5

Table 8.2: Driven cavity Stokes problem (PMM preconditioner)
Grid ||rk ||

∣∣∣∣∣∣P−1rk

∣∣∣∣∣∣ ∣∣∣∣∣∣S −1
m rk

∣∣∣∣∣∣
Iter. Error-p Iter. Error-p Iter. Error-p

16 × 16 9 9e-5 15 9e-8 13 9e-7
32 × 32 9 3e-4 16 7e-8 13 1e-6
64 × 64 9 2e-3 16 9e-8 13 2e-6

128 × 128 8 4e-3 16 1e-7 12 8e-6

8.2. Convergence issues 105

Table 8.3: Driven cavity Stokes problem (LSC preconditioner)
Grid ||rk ||

∣∣∣∣∣∣P−1rk

∣∣∣∣∣∣ ∣∣∣∣∣∣S −1
m1rk

∣∣∣∣∣∣
Iter. Error-p Iter. Error-p Iter. Error-p

64 × 64 10 1e-4 19 1e-8 15 3e-7
128 × 128 11 4e-4 24 1e-8 19 8e-7

Table 8.4: Driven cavity Stokes problem solved using scaled stopping criteria.
Grid PMM LSC∣∣∣∣∣∣S −1

m1rk

∣∣∣∣∣∣ ∣∣∣∣∣∣S −1
m2rk

∣∣∣∣∣∣ ∣∣∣∣∣∣S −1
m1rk

∣∣∣∣∣∣ ∣∣∣∣∣∣S −1
m2rk

∣∣∣∣∣∣
Iter. Error-p Iter. Error-p Iter. Error-p Iter. Error-p

16 × 16 16 1e-8 15 9e-8 11 2e-8 11 2e-8
32 × 32 17 2e-8 16 7e-8 14 2e-8 13 2e-7
64 × 64 17 4e-8 16 9e-8 19 1e-8 17 7e-8

128 × 128 18 2e-8 16 1e-7 24 1e-8 22 7e-8

8.2.1 Scaling of the velocity mass matrix

We use AMG/CG to solve the subsystems in the block preconditioners. One of the
properties of the AMG method that we use is that it requires a constant number of
unknowns per grid point. If the boundary conditions for the velocity are such that only
a subset of the degrees of freedom is prescribed, we must define an approximation to
the boundary that includes all velocity components. This is, for example, the case
if the normal velocity component is prescribed in combination with the shear stress.
The normal velocity is usually eliminated, leading to only 1(2D) or 2(3D) degrees of
freedom on those points. To overcome this problem, we approximate the given normal
velocity component by a mixed boundary condition of the form cnun+σ

nt = cnū, where
cn a large number and ū is the prescribed value of the normal velocity and σnt is the
tangential component of the stress tensor.

Such an approximation works well except when the velocity mass matrix is used
within the preconditioner, as in the Schur complement approximation of the MSIM-
PLER preconditioner. In that case, the inverse of the diagonal of the velocity mass
matrix is used as a scaling matrix. The combination of this preconditioner with the
approximate boundary condition leads to a lack of convergence in the outer Krylov
method. To overcome this difficulty, we update the velocity mass matrix by multiply-
ing the entries corresponding to the boundary elements with the approximate boundary
conditions by a factor of cn. After this change MSIMPLER converges as quickly as it
does in the case of full Dirichlet boundary conditions.

In our experiments, we observe no significant change in the number of outer/inner
iterations required using either the approximate or exact boundary conditions (see
Figure 8.5). The same observation is true if LSC is used as preconditioner.

106 Chapter 8. Iterative methods for the Stokes problem

0 5 10 15
10

−6

10
−4

10
−2

10
0

10
2

Number of GCR iterations

N
or

m
 o

f r
el

at
iv

e
re

si
du

al

Approximate BC
Exact BC

Figure 8.5: Convergence of MSIMPLER preconditioned GCR, where the subsystems
are solved with ICCG(0).

8.3 Numerical experiments

Numerical experiments are performed for both constant and variable viscosity prob-
lems. The constant viscosity problem that is solved is Test Case 1. The variable
viscosity problems are the extrusion and the SINKER problems discussed before.

In the tables that follow, we use the notation Schur(eps) to denote that all velocity
and pressure subsystems are solved with an accuracy of 10−eps. The term ”Iter.” gives
the number of outer iterations required in the Schur method and preconditioned GCR,
while ”inner” refers to the total number of inner iterations needed to solve the Schur
complement system in the Schur method. PMM stands for the block triangular pre-
conditioner that uses the pressure mass matrix as preconditioner for the pressure part.
The Stokes problem is solved up to an accuracy of 10−6. The iteration is stopped if the
current iterate satisfies the inequality ‖r

k‖2
‖b‖2
≤ tol, where rk is the residual at the kth step

of Krylov subspace method, b is the right-hand side, and tol is the desired tolerance
value.

To solve subsystems, we use an exact (direct) solver, ICCG(0) and AMG (alge-
braic multigrid) preconditioned CG from the library ML (Multi-Level Precondition-
ing Package) [46]. The choice for multigrid is based on its optimal convergence for
Poisson-type problems. Smooth aggregated multigrid, as is implemented in ML, is
known to be particularly effective for the vector Poisson problems of interest here.

8.3.1 Isoviscous problem

In this section, we consider the solution of the driven cavity Stokes problem with a
constant viscosity. For PMM, LSC and LS CD, we use an accuracy of 10−2 for the
velocity subsystem and 10−1 for the pressure subsystem and vice versa for MSIM-
PLER. We start with 2 level AMG for a 32 × 32 elements problem and increment the
number of levels when the grid size is doubled in each direction. In Table 8.5, we

8.3. Numerical experiments 107

report the number of outer iterations and CPU time required for solution. The table
shows that PMM and the Schur method both scale well as the problem size increases.
Scaling of PMM has also been observed for problem with up to 108 degrees of free-
dom [39]. Moreover, the CPU time consumed by each of these two approaches is
less than that needed for LSC-type preconditioners and MSIMPLER. One iteration of
the Schur method, however, is more expensive than the other preconditioned Krylov
methods. In Figure 8.6, the number of iterations required for the pressure and velocity
subsystems is plotted. The increase in the number of AMG/CG iterations required - as
the grid size (and , so, the number of levels) increases- to solve the velocity subsystem
is smaller for PMM and the Schur method than it is for the other methods. Figure 8.7
shows the number of AMG/CG iterations required per outer iteration for the velocity
subsystem, for a number of block preconditioners. We see a small increase as the grid
size increases, but this is not significant on the finer grids.

If we use the Schur method as direct method (Schur(6)), we require only one pres-
sure step. However, since the pressure matrix requires inversion of the velocity matrix,
we use an ICCG(0) to perform Pz = r step in outer GCR iteration and AMG/CG to
solve the velocity subsystems with high accuracy. The iterative approach with the
Schur method (Schur(1)) requires more outer iterations, but the total number of veloc-
ity iterations is smaller than for the direct method, due to the lower accuracy. So, for
finer grids, Schur(1) is less time consuming than Schur(6).

From Table 8.5, we can conclude that, of the methods compared, PMM shows
the best convergence behavior for the Stokes driven cavity problem. It is also evident
from results that LS CD performs only well for linear elements [50].

Table 8.5: The Stokes driven cavity flow problem with Q2-Q1 discretiza-
tion(SEPRAN) with AMG/CG for the velocity subsystem solves and ICCG(0) for
the Schur subsystem solves. Solution accuracy is 10−6.

Preconditioner Grids
32 × 32 64 × 64 128 × 128 256 × 256

Iter. (time in seconds)
PMM 11(1.4) 10(5.6) 9(23.6) 9(97)
LSC 10(1.38) 13(8.3) 17(54) 22(319)

LS CD 22(3.2) 37(25) 80(275) 180(2880)
MSIMPLER 13(1.5) 16(8) 22(50) 29(300)

Schur(1) 6(3) 5(10.2) 5(46) 6(221)
Schur(6) 1(2) 1(10.6) 1(53) 1(251)

8.3.2 Extrusion problem with a variable viscosity
The next problem that we consider is the extrusion problem, which has a smooth vari-
able viscosity. For this problem, we make a comparison between the Schur method
and the various preconditioners. We use AMG/CG to solve the velocity subsystem

108 Chapter 8. Iterative methods for the Stokes problem

32x32 64x64 128x128 256x256
10

1

10
2

10
3

10
4

Grid size

N
o

.
o

f
A

M
G

\C
G

 i
te

ra
ti
o

n
s

PMM
LSC
LSC

D

Schur(1)
Schur(6)
MSIMPLER

32x32 64x64 128x128 256x256
10

0

10
1

10
2

10
3

10
4

10
5

Grid size

N
o
.
o
f
IC

C
G

(0
)

it
e
ra

ti
o
n
s

PMM
Schur(1)
Schur(6)
LSC
LSC

D

MSIMPLER

Figure 8.6: Solving constant viscosity Stokes problem with accuracy 10−6: At left,
the total number of iterations required for the velocity subsystem. At right, the total
number of iterations required for the pressure subsystem.

32x32 64x64 128x128 256x256
2

4

6

8

10

12

14

16

18

20

22

Grid size

N
o

.
o

f
A

M
G

/C
G

 i
te

ra
ti
o

n
s

PMM
LSC
LSC

D

Schur(1)
Schur(6)

Figure 8.7: Number of AMG/CG iterations required to solve the velocity subsystem
at each iteration of the iterative method.

in all iterative methods. In MSIMPLER, LSC and LS CD only, AMG/CG is also em-
ployed for solving the pressure subsystems as for PMM or the Schur method only a
few iterations are required to solve the pressure subsystem with ICCG(0). In PMM
and the Schur method, we use an approximation of the Schur complement matrix that
has information about the variation in viscosity. LSC and MSIMPLER are different
from the other preconditioners because the scaling used in both preconditioners do not

8.3. Numerical experiments 109

have information about the viscosity variation, as the diagonal of the velocity mass
matrix is used for scaling the subfactors in the Schur complement matrix. In these
experiments we keep the tolerance required for the velocity and the pressure parts the
same. Therefore, in Table 8.6, only one tolerance is given for all preconditioners ex-
cept MSIMPLER, in which 10−1 is used for the velocity subsystem and 10−3 is used
for the pressure subsystem.

Table 8.6: The variable viscosity Stokes problem with Q2-Q1 discretization with
AMG/CG for the velocity subsystem and ICCG(0) (PMM, Schur method) or
AMG/CG (LSC, LS CD, MSIMPLER) for the Schur subsystem. Solution accuracy
is 10−6.

Grid ↓ Levels/N PMM LSC LS CD MSIMPLER Schur
tol −→ 10−3 10−3 10−6 10−1, 10−3 10−6

Iter. (time in seconds)
66k 3/394 19(51) 11(35) 74(357) 15(35) 1(104)
195k 4/152 18(183) 13(188) 129(2650) 19(138) 1(370)
390k 5/300 18(429) 14(480) > 1000 19(360) 1(869)
595k 5/408 19(743) 15(871) > 1000 19(693) 1(1478)
843k 6/112 19(1229) 15(1406) > 1000 21(989) 1(2686)

PMM and MSIMPLER show better performance than the other iterative methods.
In terms of outer iterations, LSC requires fewer outer iterations than PMM and MSIM-
PLER, but one iteration of LSC is more expensive than one of PMM and MSIMPLER.
Figure 8.8 reveals that LSC and MSIMPLER require more pressure iterations than
PMM due to the two Poisson solves required. Moreover, the pressure mass matrix
approximation itself is also responsible for reduction in iterations for pressure part
in PMM. MSIMPLER seems efficient in terms of velocity iterations. The number of
AMG/CG iterations taken by PMM and LSC for solving the velocity subsystem, are
however comparable. Figure 8.9(a) shows that LSC requires more inner iterations for
the velocity subsystem per outer iteration than PMM and MSIMPLER. PMM scales
well with the problem size, requires fewer inner iterations for the velocity and pres-
sure subsystems, and, so, it is a better choice than other schemes. The Schur method
seems to be two times more expensive than PMM, because it uses an inner accuracy
two times greater than PMM. MSIMPLER is efficient than the other schemes, but for
larger grids, PMM and the Schur method become better due to their scalibility with
problem size.

Figure 8.9(b) shows convergence patterns for different subsystem accuracies in the
Schur method. The horizontal line shows the norm of the termination residual. The
expected number of iterations for Schur(6), Schur(3) and Schur(2) are 1, 2 and 3, re-
spectively. However, Figure 8.9(b) shows that for lower inner accuracies, the number
of iterations is greater than expected. The main reason is that sometimes subsystems
accuracies do not guarantee the satisfaction of the outer convergence criteria. In fact,

110 Chapter 8. Iterative methods for the Stokes problem

in some cases, the number of outer iterations required for Schur(6) is greater than 1.
The main reason for this is that the accuracy of the update uδ = u f − ul computed
in Step 3 of Algorithm 8.1 might be less accurate than u f and ul due to subtraction.
As a consequence the overall termination criterion is not satisfied. The same can be
the case for steps 5 and 6 in the Schur method. In those cases, we have increased the
accuracy of the inner solver a little bit (doubled), which makes the Schur method more
expensive.

66k 195k 390k 595k 843k
0

200

400

600

800

1000

1200

1400

1600

1800

Number of unknowns

N
o
.
o
f
A

M
G

/C
G

 i
te

ra
ti
o
n
s

PMM
LSC
Schur(6)
MSIMPLER

66k 195k 390k 595k 843k
10

1

10
2

10
3

10
4

Number of unknowns

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

PMM
LSC
Schur(6)
MSIMPLER

Figure 8.8: Solving variable viscosity Stokes problem with accuracy 10−6: (Same as
Figure 8.6).

66k 195k 390k 595k 843k
0

10

20

30

40

50

60

Number of unknowns

N
o
.
o
f
A

M
G

/C
G

 i
te

ra
ti
o
n
s

PMM
LSC
Schur(6)
MSIMPLER

(a) Same as Figure 8.7.

0 1 2 3 4 5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

No. of iterations

R
e

la
ti
v
e

 R
e

s
id

u
a

l

Schur(6)
Schur(2)
Schur(3)
Schur(2), u

f
 = 10−4

(b) Solution of the Stokes problem with the
Schur method.

Figure 8.9: Extrusion problem results

8.3. Numerical experiments 111

Figure 8.10: Geodynamic problem configurations where the dark region consists of
viscosity ν2 and density ρ2 and white region has viscosity ν1 and density ρ1.

8.3.3 Geodynamic problem having sharp viscosity contrast

The SINKER problem (Figure 8.10(a)) that we consider in this section has already
been discussed in Section 8.2. Here we consider a forcing term f = (0, −ρg), where
g = 9.8m/s2. Figure 8.10 shows the 3 configurations that were used to check the con-
vergence and accuracy of the iterative methods. The corresponding problems are re-
ferred to as (a), (b), (c). Since LSC and MSIMPLER either diverges or converges very
slowly for the high viscosity contrasts considered here, we do not report any results of
these methods. The problem and subproblems are scaled as described in Section 8.2,
before applying the iterative methods. The velocity solution for all preconditioners
is accurate. Therefore we only discuss the accuracy of the pressure solution. This
is done by comparing with the ”exact solution”, computed by a direct method (Error
mentioned in tables).

Table 8.7 shows the number of iterations and the norm of the error in pressure for
configuration (a). In the first experiments, ν1 is kept fixed at one and ν2 is increased;
thereafter ν2 is kept equal to one and ν1 is increased. We see that the number of
iterations for PMM and Schur is almost the same for both the 30 × 30 and 60 × 60
grids, which suggests h-independent convergence. LS CD shows a clear increase with
the increase of grid points. For constant ν2, the difference in accuracy between all

112 Chapter 8. Iterative methods for the Stokes problem

Table 8.7: Iterative solution of the Stokes problem with configuration (a), accuracy =
10−6.

ν PMM LS CD Schur
Iter. Error Iter. Error Iter. (inner) Error

30 × 30
ν1 = 1, ν2 = 106 12 9 × 10−4 26 7 × 10−6 2(18) 2 × 10−8

ν1 = 1, ν2 = 103 12 2 × 10−5 26 3 × 10−6 2(20) 2 × 10−10

ν1 = 1, ν2 = 101 11 5 × 10−6 24 1 × 10−6 2(16) 2 × 10−10

ν1 = 1, ν2 = 1 11 4 × 10−7 25 2 × 10−6 2(5) 5 × 10−11

ν1 = 101, ν2 = 1 15 1 × 10−6 27 2 × 10−6 1(14) 2 × 10−6

ν1 = 103, ν2 = 1 18 4 × 10−6 26 3 × 10−6 1(18) 2 × 10−6

ν1 = 106, ν2 = 1 15 4 × 10−4 23 1 × 10−4 1(16) 2 × 10−5

60 × 60
ν1 = 1, ν2 = 106 13 8 × 10−3 40 6 × 10−5 2(19) 5 × 10−8

ν1 = 1, ν2 = 103 13 3 × 10−5 40 5 × 10−6 2(20) 3 × 10−9

ν1 = 1, ν2 = 101 13 1 × 10−6 41 3 × 10−6 2(18) 4 × 10−10

ν1 = 1, ν2 = 1 3 6 × 10−6 36 3 × 10−6 2(5) 9 × 10−10

ν1 = 101, ν2 = 1 16 2 × 10−6 41 4 × 10−6 1(14) 4 × 10−6

ν1 = 103, ν2 = 1 20 1 × 10−5 38 7 × 10−6 1(20) 5 × 10−6

ν1 = 106, ν2 = 1 17 4 × 10−4 35 1 × 10−4 1(18) 3 × 10−5

methods is small.
However, in the problem where ν1 is constant (SINKER), the accuracy obtained

with PMM is less than the other two iterative methods, even though all subsystems
are solved with high accuracy (10−6 or 10−7). The Schur method gives much more
accurate results than the other two preconditioners, because the first iteration of the
Schur method gives an accurate inner solve, while the second iteration makes the
solution more accurate than the desired tolerance. From the table we see, that with
respect to accuracy and efficiency, the Schur method seems a better option than the
other two. The reason is that PMM requires more iterations than Schur to get the
same accuracy, while the costs per iteration are comparable. Similar results have been
observed for a 90 × 90 grid.

Table 8.8 gives the results for problem (b). In principle, all methods reach the
same accuracy, but since the Schur method takes 2 outer iterations due to the fixed
inner accuracy of 10−6, its final accuracy is better.

Results for problem (c) with a 60 × 60 grid are given in Table 8.9. We consider
the convergence as function of the inner accuracy for two values of ν2 (103 and 106).
As we already know, the number of outer iterations in these methods depends on the
choice of the inner accuracy. One thing that is different from problem (a) is, that, in
PMM and the Schur method, inner accuracy also affects the accuracy of the solution
of the complete system, while, in LS CD, the system accuracy remains the same with
these changes in the subsystem accuracy. The reason is that problem (c) is relatively

8.3. Numerical experiments 113

Table 8.8: Iterative solution of the Stokes problem with configuration (b), accuracy =
10−6.

ν PMM LS CD Schur
Iter. (inner) Error Iter. (inner) Error Iter. (inner) Error

60 × 60, ν1 = 1
ν2 = 106 11 2 × 10−4 40 2 × 10−4 2(15) 2 × 10−8

ν2 = 103 11 1 × 10−5 40 1 × 10−5 2(18) 9 × 10−9

ν2 = 101 11 2 × 10−6 41 5 × 10−6 2(16) 2 × 10−10

simple, because the heavy layer is at the bottom and effect of this layer (buoyancy)
is much less than that in problems (a) and (b). This can be seen from the isobars in
Figure 8.11. The pressure is smooth for problem (c), but it contains wiggles for both
problems (a) and (b).

In this case, the preconditioner itself is the best approximation of the problem,
so increasing the inner accuracy has a large effect on the number of outer iterations
required and the outer accuracy achieved. In the Schur method, we see that the ac-
curacy obtained for solves with subsystem accuracy 10−3 and 10−8 is approximately
the same. The 3 iterations of the Schur method with inner accuracy 10−3 makes the
overall solution have roughly the same accuracy as one iteration of the Schur method
with inner tolerance 10−8. In this type of problem, PMM seems to be the better option,
as we can get an accurate solution by increasing subsystem accuracy.

From all of these experiments, it is clear that to get more accurate results the Schur
method is a better option than PMM and LSC. This property can be efficiently utilized
in the solution of problems of type (a). A reason that the Schur method gives more
accurate results might be the fact that it uses subfactors of the system iteratively in
a classical way. If that is the case, we may also expect better results when using
Richardson type iterative improvement of the form:

xk+1 = xk + PMM−1(b −Axk). (8.15)

We observe that (8.15) also gives better accuracy than PMM and LSC. Since we need
more iterations to apply Richardson, our conclusion regarding using the Schur method
in problems of type (a) remains valid.

We know that for high viscosity contrast problems, the condition number of the
matrix increases with the contrast between the matrix entries. For a 108 contrast, the
condition number of the matrix is expected to be of the same order or higher even
on the small meshes. Solving the problem with relative termination tolerance of 10−6

results in an error norm of roughly 102 (contrast·tolerance). Scaling does not change
the condition number of the system (its only affects the termination criterion). So,
in order to get the same order of accuracy for the non-scaled problem, we need a
termination criterion that is more severe than the previous 10−6. In this scenario, the
use of the Schur method can be a better option than other type of iterative methods.

114 Chapter 8. Iterative methods for the Stokes problem

Table 8.9: Iterative solution of the Stokes problem with configuration (c), accuracy =
10−6.

inner acc. PMM LS CD Schur
Iter. (inner) Error Iter. (inner) Error Iter. (inner) Error

ν1 = 1, ν2 = 106

10−3 9 5 × 10−4 39 4 × 10−4 3(10) 5 × 10−6

10−6 9 7 × 10−4 35 3 × 10−4 2(10) 3 × 10−9

10−8 2 7 × 10−6 33 2 × 10−4 1(1) 7 × 10−6

Direct 2 1 × 10−8 31 2 × 10−4 1(1) 9 × 10−9

ν1 = 1, ν2 = 103

10−3 11 1 × 10−5 41 2 × 10−5 3(11) 4 × 10−7

10−6 9 4 × 10−5 36 8 × 10−6 2(10) 3 × 10−10

10−8 2 8 × 10−7 34 9 × 10−6 1(1) 8 × 10−7

Direct 2 2 × 10−8 32 9 × 10−6 1(1) 9 × 10−9

(a) Problem (a), ν1 = 1, ν2 = 106 (b) Problem (b), ν1 = 1, ν2 = 106

(c) Problem (c), ν1 = 1, ν2 = 106

Figure 8.11: The pressure solution in various configurations.

8.4. Summary 115

8.4 Summary
In this chapter, we consider the solution of the incompressible Stokes problem using
preconditioned iterative methods. We solve three different classes of problems with
various configurations and viscosity distributions using PMM, LSC, MSIMPLER and
the Schur method. For the isoviscous problem, PMM and the Schur method show bet-
ter performance than the other preconditioners. We note that for this type of problem
based on a FEM discretization on an unstructured grid, the combination of PMM using
AMG/CG to solve the subsystems leads to a number of inner and outer iterations that
is essentially independent of h. For the variable viscosity problem, the performance
of PMM and the Schur method come close to one another due to the high accuracy
requirements for the subsystem solves in PMM. For the Schur method used as direct
method, the accuracy of the inner subsystems must be kept equal to the outer accuracy.
In general, this strategy works for isoviscous problems. However, in a variable vis-
cosity problem, the Schur method often needs a second iteration. This can be avoided
by solving the last velocity subsystem with a higher accuracy, in some cases, all sub-
systems should be solved using a higher accuracy than the desired tolerance for the
complete system. For a certain range of problems, MSIMPLER and LSC perform bet-
ter than PMM and the Schur method. However due to its h-dependent convergence,
its performance becomes equal to or worse than that of PMM and the Schur method
for large size problems. For a large viscosity contrast, LSC and MSIMPLER fail to
converge. This suggests that for a high viscosity contrast problem, the Schur comple-
ment matrix must be approximated by an operator that contains viscosity information
for the problem. The complete system is also required to be scaled with proper scaling
factors. The Schur method is a good choice to use in high viscosity contrast problems
because it gives more accurate solution at lesser cost than PMM and LS CD.

116

Chapter 9
Conclusions and future research

9.1 Conclusions

This thesis is devoted to preconditioners for the incompressible Navier-Stokes equa-
tions. The final goal is to develop solvers that are both fast and robust. However, it
is hard to find solvers that satisfy both properties, because solvers that are robust are
usually not optimal. For the Navier-Stokes equations, the ultimate goal is to develop a
preconditioner that gives mesh and Reynolds number independent convergence. Pre-
conditioned Krylov methods or multigrid techniques are considered to be the best
choices to solve large linear systems. In this thesis, we focus only on preconditioners
to accelerate a Krylov methods. Multigrid is used to solve subsystems only.

In Chapter 4 we gave an overview of the most popular preconditioners in the lit-
erature. Based on some experiments and its convergence behavior we choose LSC
for comparison with the schemes we developed ourselves. Besides that some of our
improved techniques are based on LSC.

Due to its ease of implementation and applicability, algebraic preconditioners are
always attractive. However, since there is no knowledge of the complete system in-
volved in construction they may suffer from bad convergence. The common approach
to make them efficient in case of indefinite systems is to apply pivoting or alternatively
renumbering of nodal points. In Chapter 5, we presented a new reordering technique
that is simple but effective and uses extra information of the discretized equations.
First the grid points are renumbered with a suitable renumbering scheme. The renum-
bering scheme can be any one that gives an optimal nonzero profile. In our case, we
use the Sloan and Cuthill-McKee renumbering schemes. After grid renumbering, the
unknowns are reordered per level. In such renumbering, unknowns are intermixed
with each other such that it seems that the matrix consists of a sequence of smaller
subsystems. The resulting method is called the SILU preconditioner. From our ex-
periments it is clear that the p-last-per level technique gives better convergence than
the other schemes discussed. In 2D problems, Sloan renumbering with p-last per level

117

118 Chapter 9. Conclusions and future research

reordering leads to the best results both for Taylor-Hood and Crouzeix-Raviart ele-
ments. In 3D problems, Cuthill-McKee renumbering gives fast convergence for the
Q2-Q1 discretization, whereas for the Q2-P1 discretization, Sloan renumbering gives
a better convergence. The convergence of the SILU preconditioner shows a depen-
dence on the grid size and mild dependence on the Reynolds number.

In Chapter 6 SIMPLE-type preconditioners are discussed based on the classic
SIMPLE method of Patankar. The convergence of the classic method depends on
relaxation parameters which we have to be chosen by trial and error. An alternative is
to use SIMPLE as preconditioner. Since only one SIMPLE step per iteration is used
there is no need for relaxation. Experiments showed that relaxation may improve con-
vergence in case of Stokes a little bit, but there is no effect at all for Navier-Stokes.
The convergence rate of SIMPLE increases with increasing in grid size. The alterna-
tive is to use SIMPLER which is more expensive per iterations but gives faster conver-
gence. Unfortunately its performance depends non-uniformly on the inner accuracies,
which makes this choice unreliable. In case of Stokes SIMPLER can be improved by
starting with SIMPLE step (hSIMPLER), but that does not solve the inner accuracy
dependence.

The above variants of SIMPLE use the diagonal of the velocity matrix in scal-
ing the Schur complement and updates. A much better convergence is attained if the
diagonal of the velocity mass matrix is used as scaling operator. This approach is
called MSIMPLER (Modified SIMPLER). MSIMPLER is superior to the other SIM-
PLE variants and shows faster convergence. It has only a mild dependence on the grid
size and Reynolds number. Its convergence is almost independent of inner accuracies.
Therefore, the preconditioner is efficient in both outer/inner iterations and CPU time.

SIMPLE, MSIMPLER, LSC and SILU are compared in 2D and 3D in Chapter 7.
MSIMPLER proved to be cheaper than SILU, especially in large problems or when
the problem is solved with high accuracy. The number of outer iterations in MSIM-
PLER hardly increases if a direct solver for the subsystems is replaced by an iterative
solver. This is in contrast with LSC where large differences are observed. It appears
that the combination of LSC with MG is almost optimal. The combination of LSC
with a PCG inner solver can take many iterations and much CPU time. MSIMPLER
performs better with both types of inner solvers. Convergence characteristics of LSC
and MSIMPLER are almost the same, they both show mild dependence on Reynolds
number and mesh size.

We compared IDR(s) and Bi-CGSTAB(`) both preconditioned with SILU. For
equidistant grids, performance of both Krylov method is comparable. However, when
the grid is stretched and the preconditioner becomes less efficient, IDR(s) starts to
perform better than Bi-CGSTAB(`) for optimal choice of s and `.

The previous discussion is based on solving the Navier-Stokes equations with con-
stant viscosity. For a number of physical processes variable viscosity models are im-
portant. In Chapter 8, we present preconditioners that can be effective to solve the
variable viscosity Stokes problem. The new methods are based on the pressure mass
matrix approximation of the Schur complement matrix. In order to make pressure
mass matrix spectrally equivalent to the Schur complement matrix in case of constant

9.2. Ideas for future research 119

viscosity, it is multiplied by the inverse of the viscosity. In case of variable viscosity
the best approach is to scale the pressure mass matrix at element level while creat-
ing this matrix. Since AMG performs better on scalar fields, it would be better if we
have constant degree of freedom at each grid point. Therefore, it is necessary to treat
Dirichlet boundary conditions as a penalized slip boundary condition. To get con-
vergence in MSIMPLER and LSC it is necessary to update the velocity mass matrix
by multiplying the entries of the boundary elements with the approximated boundary
conditions by the penalty parameter. The reason is that the velocity matrix contains
the same parameter in the corresponding rows.

It has been shown that for the right preconditioned GCR we use, the stopping
criterion needs to be adapted in order to get accurate results. Especially in case PMM
(see Section 8.1.1) is used as preconditioner, GCR may terminate too soon, giving
an inaccurate solution. The stopping criterion is corrected by scaling the complete
system or by scaling the residual with a scaling matrix. The alternative is to base the
stopping criteria on the preconditioned residual.

In all Stokes examples we investigated, varying from constant viscosity to sharp
viscosity contrasts the block triangular preconditioner PMM and the Schur method,
using the pressure mass matrix as preconditioner outperform the classical precondi-
tioners. Also MSIMPLER shows better convergence and for extrusion problem, it
appears to be the favorite. However, due to mild dependence on mesh size we ex-
pect that for very fine grids PMM will be the best choice. In case of large viscosity
contrasts both LSC and MSIMPLER fail to converge. Probably this is because the
preconditioner does not contain viscosity information. LS CD solves this problem for
LSC, but from our experiments it seems that the Schur method is to be preferred since
it gives more accurate solution at lesser cost than PMM and LS CD.

9.2 Ideas for future research
• The saddle point ILU preconditioner (SILU) performs well in many cases. SILU

is based on the ILU(0) concept. Making ILU(0) efficient for an indefinite sys-
tem, is always a difficult task. The performance of the preconditioner might be
improved by better renumbering and reordering algorithms. A better selection
of levels might also increase the efficiency especially in 3D. An alternative is
to use extra fill-in which requires extra memory but improves the quality of the
preconditioner.

• It is clear from our experiments that the key of success for the block precon-
ditioners, is the ability to approximate the Schur complement matrix. An im-
portant part of the matrix BF−1BT is the approximation of F−1. For example
MSIMPLER performs better than SIMPLE due to a better approximation of
F−1. In the future more work can be done to find even better approximations.

• In problems, with large jumps in viscosity, we have small eigenvalues O(ν−1) in
the region having large viscosity. Large viscosity jumps give rise to eigenvalues

120 Chapter 9. Conclusions and future research

close to zero causing stagnation of the Krylov solver. To improve convergence,
deflation type schemes can be developed to get rid of these bad eigenvalues. Ap-
plication of deflation type schemes on saddle point problem can be an attractive
area of further research.

• The convergence of all preconditioners for Stokes and Navier-Stokes treated in
this thesis is effected by stretching. Elongated domains have the largest effect
on the convergence especially in case of a pressure mass matrix. The reason is,
that condition number of the mass matrix increases with the increase in grid size
if grid does not have quasi uniform subdivision. Although we have reached an
improvement in this field, much more work must be done in finding the cause
and solution of bad convergence for stretched problems.

• To reduce the wall-clock time of the computations, parallelization of the solvers
should be investigated.

Appendix A
Grid reordering schemes

A.1 Sloan renumbering scheme
Before going into detail of algorithm, it is appropriate to state some basic definitions.
A graph G is defined to be pair (N(G), E(G)) where N(G) is a non-empty finite set
of members called nodes, and E(G) is a finite set of unordered pairs, comprised of
distinct members of N(G), called edges. A graph comprises of unordered pairs is
called undirected graph. The degree of node i in G is defined as the number of edges
incident to i. A path in G is defined by a sequence of edges such that consecutive
edges share a common node. A graph G is connected if each pair of distinct nodes
is connected. The distance between i and j is denoted d(i, j), and is defined as the
number of edges on the shortest path connecting them. The diameter of G is defined
as the maximum distance between any pair of nodes. Nodes which are at the opposite
ends of the diameter are called peripheral nodes. A rooted level structure is defined
as the partitioning of N(G) into levels l1(r), l2(r),, lh(r) such that:

• l1(r) = r where r is the root node of the level structure

• for i > 1, li(r) is the set of all the nodes not yet assigned level, which are adjacent
to nodes in li−1(r).

The depth h is defined as total number of levels. The width of a level is defined as total
number of nodes in one level. A width of the level structure is defined as maximum
number of nodes in level structure.

w = max
1≤i≤h
|li(r)|

STEP 1 (Selection of pseudo diameter)

1. Choose a node s with minimum degree.

121

122 Appendix A

2. build a level structure L(s) = L0(s),, Lk(s),

3. sort the nodes of Lk(s) by increasing degree, let m be the number of the elements
in Lk(s) and Q be the [m+2

2] first elements of the sorted set,

4. Let wmin = inf and kmax = k. For each node i ∈ Q in order of ascending degree,
generate L(s) = L0(s),, Lk(s). if k > kmax and w = maxi≤ j≤k |L j(i)| < wmin,
then we set s = i and go to step 3. Otherwise, if w < wmin, we set e = i and
wmin = w

We exit this algorithm with a starting node s and an end node e which define a pseudo
diameter.

STEP 2 (node labeling)

The nodes are classified in four catogories according to their status. Node which are
been already assigned label are postactive. Nodes which have not been assigned a
number but are adjacent to the postactive nodes are active. Nodes without a number
adjacent to active nodes are preactive. All other nodes are inactive. The current degree
ni of a node i is defined as
ni = mi − ci + ki,
where mi is the degree of i, ci is the number of the postactive or active nodes adjacent
to i and ki = 0 if i is active or postactive and ki = 1 otherwise. The input to the
following algorithm are the two nodes s and e selected in STEP 1.

1. for all nodes, compute the distance d(e, i) from i to e, initialize all nodes as in-
active and set

Pi = (nmax − ni) ∗W1 + d(e, i) ∗W2,

where nmax = max1≤i≤Nt ni. For convenience nmax may be set equal to Nt (since
the maximum current degree in any graph with Nt nodes is Nt). W1 and W2

are integer weights. The queue of eligible nodes is initialized with s which is
assigned a preactive status.

2. as long as the queue is not empty,

2.1 select the node i with highest priority (nodes with low current degree and
large distance to the end have high priorties, ties are broken arbitrarily),

2.2 delete i from the queue. If it is not preactive, go to 2.3. Else, consider each
node j adjacent to i and set P j = P j +W1. If j is inactive, insert j in the
queue and declare it preactive,

2.3 label node i and declare it postactive,

A.2. Cuthill and McKee’s algorithm 123

2.4 Examine every node j adjacent to i. If j is preactive, set P j = P j + W1,
declare j as active and examine each node k adjacent to j. If k is active or
preactive, set Pk = Pk +W1, otherwise if k is inactive, set Pk = Pk +W1,
insert k in the queue and declare it as preactive.

recommended values of W1 and W2 are 2 and 1, respectively.

A.2 Cuthill and McKee’s algorithm
The Cuthill-McKee (CMK) algorithm is a local minimization algorithm whose aim is
to reduce the profile of matrix. The starting level can be a node or number of nodes
which constitutes boundary of certain region.

Algorithm A.1 Cuthill and McKee’s Algorithm

1. Choose the starting node.

2. for i = 1,, n − 1 number all the non-numbered neighbors of xi in increasing
order of degree.

3. Update the degrees of the remaining nodes

124

Bibliography

[1] M. A. Ajiz and A. Jennings. A robust incomplete Choleski-conjugate gradi-
ent algorithm. International Journal for Numerical Methods in Engineering,
20(5):949–966, 1984.

[2] M. Arioli and D. Loghin. Stopping criteria for mixed finite element problems.
ETNA, 29:178–192, 2008.

[3] W. E. Arnoldi. The principle of minimized iteration in the solution of the matrix
eigen problem. Quart. Appl. Math., 9:17–29, 1951.

[4] K. J. Arrow, L. Hurwicz, and H. Uzawa. Studies in Linear and Non-Linear
Programming. Stanford University Press, Stanford, 1958.

[5] O. Axelsson. Iterative Solution Methods. Cambridge University Press, Cam-
bridge, 1994.

[6] I. Babuška. The Finite element method with Lagrange multipliers. Numer. Math.,
20:179–192, 1973.

[7] M. Benzi. Preconditioning Techniques for Large Linear Systems: A Survey. J.
Comput. Phys., 182(2):418–477, 2002.

[8] M. Benzi, H. Choi, and D. Szyld. Threshold Ordering for Preconditioning Non-
symmetric Problems. In G. Golub et al., editors, Sci. Comput., Proc. Workshop.
Hong Kong, pages 159–165. Springer Verlag, 10–12 March 1997.

[9] M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point prob-
lems. Acta Numerica, 14:1–137, 2005.

[10] M. Benzi and M. A. Olshanskii. An Augmented Lagrangian-Based Approach to
the Oseen Problem. SIAM J. Sci. Comput., 28(6):2095–2113, 2006.

[11] M. Benzi and M. Tuma. A Sparse Approximate Inverse Preconditioner for Non-
symmetric Linear Systems. SIAM Journal on Scientific Computing, 19(3):968–
994, 1998.

125

126 BIBLIOGRAPHY

[12] M. Benzi and M. Tuma. A Robust Incomplete Factorization Preconditioner
for Positive Definite Matrices. Numerical Linear Algebra with Applications,
10:385–400., 2003.

[13] J. Blasco, R. Codina, and A. Huerta. A fractional-step method for the in-
compressible Navier-Stokes equations related to a predictor-multicorrector al-
gorithm. International Journal for Numerical Methods in Fluids, 28(10):1391–
1419, 1998.

[14] M. Bollhöfer and Y. Saad. Multilevel Preconditioners Constructed From Inverse-
Based ILUs. SIAM J. Sci. Comput., 27(5):1627–1650, 2006.

[15] D. Braess and R. Sarazin. An efficient smoother for the Stokes problem. Appl.
Numer. Math., 23(1):3–19, 1997.

[16] A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic multigrid (AMG) for
sparse matrix equations. Cambridge University Press, Cambridge, 1984.

[17] F. Brezzi. On the Existence, Uniqueness Approximation of saddle-point prob-
lems arising from Lagrange multipliers. RAIRO, série rouge, Analyse Numérique
R-2, pages 129–151, 1974.

[18] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial: second
edition. Society for Industrial and Applied Mathematics, 2000.

[19] C. Burstedde, O. Ghattas, M. Gurnis, G. Stadler, E. Tan, T. Tu, L. C. Wilcox,
and S. Zhong. Scalable adaptive mantle convection simulation on petascale su-
percomputers. In Proceedings of the 2008 ACM/IEEE conference on Supercom-
puting, pages 1–15, Austin, Texas, 2008. IEEE Press.

[20] A. J. Chorin. Numerical Solution of the Navier-Stokes Equations. Mathematics
of Computation, 22(104):745–762, 1968.

[21] E. Chow and Y. Saad. Experimental study of ILU preconditioners for indefinite
matrices. J. Comput. Appl. Math., 86:387–414, 1997.

[22] M. Crouzeix and P. A. Raviart. Conforming and nonconforming finite element
methods for solving the stationary Stokes equations. Rairo Analyse Numerique,
7:33–76, 1973.

[23] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matri-
ces. In Proceedings of the 1969 24th national conference, pages 157–172. ACM
Press, 1969.

[24] C. Cuvelier, A. Segal, and A. A. van Steenhoven. Finite element methods
and Navier-Stokes equations. Reidel Publishing Company, Dordrecht, Holland,
1986.

BIBLIOGRAPHY 127

[25] O. Dahl and S. Ø. Wille. An ILU preconditioner with coupled node fill-in for it-
erative solution of the mixed finite element formulation of the 2D and 3D Navier-
Stokes equations. Int. J. Numer. Meth. Fluids, 15(5):525–544, 1992.

[26] A. C. de Niet and F. W. Wubs. Two preconditioners for saddle point problems
in fluid flows. Int. J. Numer. Meth. Fluids, 54(4):355–377, 2007.

[27] I. Duff, I. Erisman, and J. Reid. Direct methods for sparse matrices. Oxford
University Press, London, England, 1986.

[28] I. S. Duff and G. A. Meurant. The effect of ordering on preconditioned conjugate
gradients. BIT, 29(4):635–657, 1989.

[29] L. C. Dutto. The effect of ordering on preconditioned GMRES algorithm, for
solving the compressible Navier-Stokes equations. Int. J. Numer. Meth. Engng.,
36(3):457–497, 1993.

[30] C. Eisenstat, H. C. Elman, and M. H. Schultz. Variational iterative methods for
nonsymmetric systems of linear equations. SIAM J. Numer. Anal., 20(2):345–
357, 1983.

[31] H. Elman, V. E. Howle, J. Shadid, R . Shuttleworth, and R. Tuminaro. Block
Preconditioners Based on Approximate Commutators. SIAM J. Sci. Comput.,
27(5):1651–1668, 2006.

[32] H. Elman, V.E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro. A tax-
onomy and comparison of parallel block multi-level preconditioners for the
incompressible Navier-Stokes equations. Journal of Computational Physics,
227(3):1790–1808, 2008.

[33] H. C. Elman. Preconditioning for the Steady-State Navier–Stokes Equations
with Low Viscosity. SIAM Journal on Scientific Computing, 20(4):1299–1316,
1999.

[34] H. C. Elman. Preconditioning Strategies for Models of Incompressible Flow. J.
Sci. Comput., 25(1):347–366, 2005.

[35] H. C. Elman, D. Silvester, and A. J. Wathen. Finite Elements and Fast Iterative
Solvers with applications in incompressible fluids dynamics. Oxford University
Press, Oxford, 2005.

[36] R. Fletcher. Conjugate gradient methods for indefinite systems. pages 73–89.
1976.

[37] M. Fortin. Old and new finite elements for incompressible flows. Int. J. Numer.
Meth. Fluids, 1(4):347–364, 1981.

[38] A. Gauthier, F. Saleri, and A. Veneziani. A fast preconditioner for the incom-
pressible Navier Stokes Equations. Comput. Vis. Sci., 6(2):105–112, 2004.

128 BIBLIOGRAPHY

[39] T. Geenen, M. ur Rehman, S. P. MacLachlan, G. Segal, C. Vuik, A. P. van den
Berg, and W. Spakman. Scalable robust solvers for unstructured FE geodynamic
modeling applications: Solving the Stokes equation for models with large local-
ized viscosity contrasts. Geochem. Geophys. Geosyst., 10(9):–, 2009.

[40] G. Golub and C. Van Loan. Matrix computations. John Hopkins University
Press, Baltimore, MD, 1996.

[41] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. Journal of Research of the National Bureau of Standards, 49:409–435,
1952.

[42] A. Janka. Smoothed aggregation multigrid for a Stokes problem. Computing
and Visualization in Science, 11(3):169–180, 2008.

[43] D. Kay, D. Loghin, and A. Wathen. A Preconditioner for the Steady-State
Navier-Stokes Equations. SIAM J. Sci. Comput., 24(1):237–256, 2002.

[44] H. P. Langtangen. Conjugate gradient methods and ILU preconditioning of non-
symmetric matrix systems with arbitrary sparsity patterns. International Journal
for Numerical Methods in Fluids, 9(2):213–233, 1989.

[45] C. Li and C. Vuik. Eigenvalue analysis of the SIMPLE preconditioning for in-
compressible flow. Numer. Lin. Alg. Appl., 11(5-6):511–523, 2004.

[46] M. Sala C. Siefert M. Gee, J. Hu and R. Tuminaro. ML 5.0 Smoothed Aggrega-
tion User’s Guide, sandia report sand2006-2649 edition.

[47] M. Manguoglu, A. Sameh, T. Tezduyar, and S. Sathe. A nested iterative scheme
for computation of incompressible flows in long domains. Computational Me-
chanics, 43(1):73–80, 2008.

[48] M. Manguoglu, A. H. Sameh, F. Saied, T. E. Tezduyar, and S. Sathe. Precon-
ditioning Techniques for Nonsymmetric Linear Systems in the Computation of
Incompressible Flows. Journal of Applied Mechanics, 76(2):021204, 2009.

[49] T.A. Manteuffel. An incomplete factorization technique for positive definite lin-
ear systems. Math. Comput., 34:73–497, 1980.

[50] D. A. May and L. Moresi. Preconditioned iterative methods for Stokes flow prob-
lems arising in computational geodynamics. Physics of the Earth and Planetary
Interiors, 171(1-4):33–47, 2008.

[51] M.Benzi, D. B. Szyld, and A. van Duin. Orderings for Incomplete Factorization
Preconditioning of Nonsymmetric Problems. SIAM J. Sci. Comput., 20(5):1652–
1670, 1999.

[52] J. A. Meijerink and H. A. van der Vorst. An Iterative Solution Method for Linear
Systems of Which the Coefficient Matrix is a Symmetric M-Matrix. Math. of
Comp., 31(137):148–162, 1977.

BIBLIOGRAPHY 129

[53] G. Meurant. Computer solution of large linear systems, volume Vol. 28 of Stud-
ies in Mathematics and Its Applications. Elsevier, Amsterdam, 1999.

[54] N. Munksgaard. Solving Sparse Symmetric Sets of Linear Equations by Precon-
ditioned Conjugate Gradients. ACM Trans. Math. Softw., 6(2):206–219, 1980.

[55] M. F. Murphy, G. H. Golub, and A. J. Wathen. A Note on Preconditioning for
Indefinite Linear Systems. SIAM J. Sci. Comput., 21(6):1969–1972, 2000.

[56] Y. Notay. Flexible Conjugate Gradients. SIAM J. Sci. Comput., 22(4):1444–
1460, 2000.

[57] M. Olshanskii and P. Grinevich. An iterative method for the Stokes type problem
with variable viscosity. SAIM J. Sci. Comput., Submitted, 2008.

[58] M. A. Olshanskii. An Iterative Solver for the Oseen Problem and Numerical
Solution of Incompressible Navier-Stokes Equations. Numer. Linear Algebra
Appl., 6:353–378, 1999.

[59] M. A. Olshanskii and Y. V. Vassilevski. Pressure Schur Complement Precondi-
tioners for the Discrete Oseen Problem. SIAM Journal on Scientific Computing,
29(6):2686–2704, 2007.

[60] S. V. Patankar. Numerical heat transfer and fluid flow. McGraw-Hill, New York,
1980.

[61] J. B. Perot. An analysis of the fractional step method. J. Comput. Phys.,
108(1):51–58, 1993.

[62] J. W. Ruge and K. Stüben. Efficient solution of finite difference and finite ele-
ment equations by algebraic multigrid (AMG). In D. J. Paddon and H. Holstein,
editors, Multigrid Methods for Integral and Differential Equations, The Institute
of Mathematics and its Applications Conference Series, pages 169–212. Claren-
don Press, Oxford, 1985.

[63] J. W. Ruge and K. Stüben. Algebraic Multigrid (AMG). In S. F. McCormick,
editor, Multigrid Methods, Frontiers in Applied Mathematics, volume 3, pages
73–130. SIAM, Philadelphia, 1987.

[64] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, 2003.

[65] Y. Saad. Multilevel ILU With Reorderings for Diagonal Dominance. SIAM J.
Sci. Comput., 27(3):1032–1057, 2005.

[66] Y. Saad and M. H. Schultz. GMRES: A Generalized Minimal Residual Algo-
rithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput.,
7(3):856–869, 1986.

130 BIBLIOGRAPHY

[67] Y. Saad and H. A. van der Vorst. Iterative solution of linear systems in the 20th
century. J. Comput. Appl. Math., 123(1-2):1–33, 2000.

[68] G. Segal and C. Vuik. A simple iterative linear solver for the 3D incompressible
Navier-Stokes equations discretized by the finite element method. Technical
Report DUT-TWI-95-64, Delft, The Netherlands, 1995.

[69] D. Silvester, H. Elman, D. Kay, and A. Wathen. Efficient preconditioning of the
linearized Navier-Stokes equations for incompressible flow. J. Comput. Appl.
Math., 128(1-2):261–279, 2001.

[70] D. Silvester and A. Wathen. Fast iterative solution of stabilised Stokes systems
part II: using general block preconditioners. SIAM J. Numer. Anal., 31(5):1352–
1367, 1994.

[71] H.D. Simon. Incomplete LU preconditioners for conjugate gradient type iter-
ative methods. In In Proceedings of the Eighth SPE symposium on Reservoir
Simulations, number Paper SPE 13533, 1985.

[72] G.L.G. Sleijpen and D.R. Fokkema. BiCGstab(ell) for Linear Equations involv-
ing Unsymmetric Matrices with Complex Spectrum ,. ETNA, 1:11–32, 1993.

[73] S. W. Sloan. An algorithm for profile and wavefront reduction of sparse matrices.
Int. J. Numer. Meth. Engng., 23(2):239–251, 1986.

[74] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear sys-
tems. SIAM J. Sci. and Stat. Comput., 10(1):36–52, 1989.

[75] P. Sonneveld and M. B. van Gijzen. IDR(s): a family of simple and fast algo-
rithms for solving large nonsymmetric linear systems. SIAM J. Sci. Comput.,
31(2):1035–1062, 2008.

[76] K. Stüben. A review of algebraic multigrid. J. Comput. Appl. Math., 128(1-
2):281–309, 2001.

[77] C. Taylor and P. Hood. A numerical solution of the Navier-Stokes equations
using the finite element techniques. Computers and Fluids, 1:73–100, 1973.

[78] U. Trottenberg, C.W. Oosterlee, and A. Schüller. Multigrid. Number SBN 0-12-
701070-X. Academic Press, London, 2001.

[79] M. ur Rehman, C. Vuik, and G. Segal. Preconditioners for the incompressible
Navier-Stokes equations. Report 07-15, Delft University of Technology, Delft
Institute of Applied Mathematics, Delft, 2007.

[80] A. van der Sluis. Condition numbers and Equilibration of Matrices. Numer.
Math., 14:14–23, 1969.

[81] A Van der Sluis and H.A Van der Vorst. The rate of convergence of conjugate
gradients. Numer.Math., 48:543–560, 1986.

BIBLIOGRAPHY 131

[82] H. A. van der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging Variant
of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Stat.
Comput., 13(2):631–644, 1992.

[83] H. A. van der Vorst. Iterative Krylov Methods for Large Linear systems. Cam-
bridge University Press, Cambridge, 2003.

[84] H. A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods.
J. Numer. Lin. Alg. Appl., 1(4):369–386, 1994.

[85] H.A. van der Vorst and C. Vuik. The superlinear convergence behaviour of GM-
RES. J. Comp. Appl. Math., 48:327–341, 1993.

[86] P. Vanĕk, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggrega-
tion for second and fourth order elliptic problems. Computing, 56(3):179–196,
1996.

[87] R. S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, New
Jersey, 1962.

[88] C. Vuik and A. Saghir. The Krylov accelerated SIMPLE(R) method for incom-
pressible flow. Report 02-01, Delft University of Technology, Department of
Applied Mathematical Analysis, Delft, 2002.

[89] C. Vuik, A. Saghir, and G. P. Boerstoel. The Krylov accelerated SIMPLE(R)
method for flow problems in industrial furnaces. Int. J. Numer. Meth. Fluids,
33(7):1027–1040, 2000.

[90] C. Vuik, A. Segal, J.A. Meijerink, and G.T. Wijma. The construction of pro-
jection vectors for a Deflated ICCG method applied to problems with extreme
contrasts in the coefficients. Journal of Computational Physics, 172:426–450,
2001.

[91] A. Wathen. Preconditioning and convergence in the right norm. Int. J. Comput.
Math., 84(8):1199–1209, 2007.

[92] P. Wesseling. Principles of computational fluid dynamics, volume 29. Springer
Series in Computational Mathematics, Springer, Heidelberg, 2001.

[93] S. Ø. Wille and A. F. D. Loula. A priori pivoting in solving the Navier-Stokes
equations. Commun. Numer. Meth. Engng., 18(10):691–698, 2002.

[94] S. Ø. Wille, O. Staff, and A. F. D. Loula. Efficient a priori pivoting schemes for a
sparse direct Gaussian equation solver for the mixed finite element formulation
of the Navier-Stokes equations. Appl. Math. Modelling, 28(7):607–616, July
2004.

132

Publications

Journal publications
• M. ur Rehman and C. Vuik and G. Segal. A comparison of preconditioners

for incompressible Navier-Stokes solvers, International Journal for Numerical
Methods in Fluids. Vol. 57, pp. 1731-1751, 2008.

• M. ur Rehman and C. Vuik and G. Segal. Preconditioners for the Steady In-
compressible Navier-Stokes Problem , IAENG International Journal of Applied
Mathematics. Vol. 38, No. 4, pp. 223-232, 2008.

• M. ur Rehman and C. Vuik and G. Segal. SIMPLE-type preconditioners for the
Oseen problems, International Journal for Numerical Methods in Fluids. Vol.
61 No. 4, pp. 432-452, 2009.

• T. Geenen, M. ur Rehman, S.P. MacLachlan, G. Segal, C. Vuik, A. P. van den
Berg, and W. Spakman. Scalable robust solvers for unstructured FE geody-
namic modeling applications; solving the Stokes equation for models with large,
localized, viscosity contrasts , Geochemistry, Geophysics, Geosystems.Vol.10,
2009.

• M. ur Rehman and T. Geenen and C. Vuik and G. Segal and S. P. MacLach-
lan. On iterative methods for the incompressible Stokes problem, International
Journal for Numerical Methods in Fluids. Accepted 2009.

• A. Segal, M. ur Rehman, and C. Vuik. Preconditioners for incompressible
Navier-Stokes solvers, Numerical Mathematics: Theory, Methods and Ap-
plications. submitted 2009.

Conference proceedings
• M. ur Rehman and C. Vuik and G. Segal. Numerical solution techniques for the

steady incompressible Navier-Stokes problem, World Congress on Engineering

133

134 BIBLIOGRAPHY

2008, London, U.K., 2-4 July, 2008.Volume II Editors S.I. Ao and L. Gelman and
D.W.L. Hukins and A. Hunter and A.M. Korsunsky pp. 844–848, International Associa-
tion of Engineers, Hong Kong, 2008 SBN: 978-988-17012-3-7. Won the Best Student
Paper Award.

• M. ur Rehman, C. Vuik, G. Segal. Block preconditioners for the incompressible
Stokes problem, Seventh International Conference on ”Large Scale Scientific
Computations”, June 4-8, 2009, Sozopol, Bulgaria. To appear in Lecture Notes in
Computer Sciences (LNCS).

Talks
• Preconditioners for the incompressible Navier-Stokes problem. 3rd Interna-

tional conference on 21st century mathematics, Lahore-Pakistan, March 4-7,
2007.

• An advanced ILU preconditioner for the incompressible Navier-Stokes prob-
lem. Computational Methods with Applications, Harrachov - Czech Republic,
August 19-25, 2007.

• Numerical Solution Techniques for the Steady Incompressible Navier-Stokes
Problem. The 2008 International Conference of Applied and Engineering Math-
ematics , London - U.K., July 2-4, 2008.

• SIMPLE-type preconditioners for the Oseen problem. Burgersdag TU Eind-
hoven -The Netherlands, January 13, 2009.

• Preconditioning techniques for the incompressible Stokes equations. Seventh
International Conference on ”Large Scale Scientific Computations”, Sozopol-
Bulgaria, June 4-8, 2009.

• Block preconditioners for the incompressible Stokes problem. ENUMATH Up-
psala University-Sweden, June 29 - July 3, 2009.

Curriculum Vitae

Mehfooz ur Rehman was born on 11th October 1973 in Seni Gumbat, Kohat, Pak-
istan. He did his primary and secondary education from Government High School
Seni Gumbat, Kohat in 1989. He did his F.Sc. from P.A.F college Kohat in 1992.
From 1992-1997, he attended University of Engineering and Technology Peshawar
for his degree in B.Sc. Electrical Engineering. He was awarded fellowship to do
his Master degree in Systems Engineering from Pakistan Institute of Engineering and
Applied Sciences, Islamabad in 1997. From 1999 -2005, he did job in NESCOM, a
research and development organization in Islamabad. In 2005, he was awarded schol-
arship from Higher Education Commission (HEC), Pakistan to persue his PhD degree.
Since 2005, he is PhD student in Numerical Analysis Group at TU Delft under super-
vision of Prof. Dr. Ir. Kees Vuik and Ir. Guus Segal.

He worked on iterative methods for the incompressible Navier-Stokes equations.
This thesis consists of the work that he has been published in various journals and con-
ference contributions. He gave talks in various conferences including Lahore -Pakistan
2007, Harrachov-Czech Republic 2007, London-UK 2008, Eindhoven-Netherlands
2009, Sozopol-Bulgaria 2009 and Uppsala-Sweden 2009.

He enjoys playing Cricket and Table Tennis. His interests includes programming
in numerical methods.

135

	Summary
	Samenvatting
	ACKNOWLEDGMENTS
	Introduction
	Open problem
	Outline of the thesis

	Finite element discretization and linearization
	Problem description
	Discretization
	Linearization schemes
	Picard method
	Newton method

	Element selection conditions
	Summary

	Solution techniques
	Direct method
	Iterative methods
	Krylov subspace methods

	Preconditioning
	Summary

	Overview of Preconditioners
	ILU-type preconditioners
	ILU for a general matrix

	Application of ILU to Navier-Stokes
	Block preconditioners
	Approximate commutator based preconditioners
	Augmented lagrangian approach (AL)
	Remarks on selection of preconditioner

	Summary

	Saddle point ILU preconditioner
	Ordering of the system
	Ordering used in direct method
	Application to ILU preconditioning
	Breakdown of LU or ILU factorization

	Numerical experiments
	Impact of reordering on the direct solver
	Properties of the saddle point ILU solver (SILU)

	Summary

	SIMPLE-type preconditioners
	SIMPLE-type preconditioner
	SIMPLE preconditioner
	SIMPLER

	Effect of relaxation parameter
	Improvements in the SIMPLER preconditioner
	hSIMPLER
	MSIMPLER
	Suitable norm to terminate the Stokes iterations

	Numerical Experiments
	Effect of relaxation parameter
	Comparison of SIMPE-type preconditioners

	Summary

	Comparison of preconditioners for Navier-Stokes
	Preconditioners to be compared
	Cost comparison
	Properties of LSC and MSIMPLER

	Numerical experiments
	Comparison in 2D
	Comparisons in 3D
	Grid Stretching

	IDR(s) and Bi-CGSTAB() comparison
	Summary

	 Iterative methods for the Stokes problem
	Iterative methods for the Stokes problem
	Block triangular preconditioner
	The Schur method
	Variant of LSC
	Construction of variable viscosity pressure mass matrix

	Convergence issues
	Scaling of the velocity mass matrix

	Numerical experiments
	Isoviscous problem
	Extrusion problem with a variable viscosity
	Geodynamic problem having sharp viscosity contrast

	Summary

	Conclusions and future research
	Conclusions
	Ideas for future research

	Grid reordering schemes
	Sloan renumbering scheme
	Cuthill and McKee's algorithm

	List of publications
	Curriculum Vitae

