Deep Convo-

Jtional — Net-
WOIKS_ for Im-
ade FProcess-

:‘:‘"\\' 3 | ! g . .

o) an Overview on Convolutional
eural Networks for Image
A Blassification and Segmenta-
| |_| |
) Rlegger

eep

Convolutiona
Networks for
mage

-rocessing

An Overview on Convolutional Neural
Networks for Image Classification and

Segmentation

~. Rlegger

]
TUDelft

Introduction
Artificial Intelligence and Deep Learning

Multilayer Perceptron
31 Model
3.2 Performancemeasure
3.3 Optimization
3.3.1 Backpropagation
3.4 Validation
3.5 From Shallow to Deep Neural Networks
3.6 AMLP as MNIST Classifier

Statistical Learning Theory

41 LearningProblem.
4.2 Empirical Risk Minimization
4.3 Capacity, Over- and Underfitting.

4.4 Structural Risk Minimization

Regularization Theory for Deep Learning

5.1 Parameter Norm Penalties.
5.1.1 L2-Regularization.
5.1.2 L'-Regularization.

5.2 Invariance Learning
5.2.1 Dataaugmentation.
5.2.2 Parametersharing

53 Dropout.

Basics of Convolutional Networks

6.1 The Discrete Convolution Operation.

6.2 Characteristics of Discrete Convolution in Neural Networks
6.21 Tensor.
6.2.2 Sparse connectivity.
6.2.3 Parametersharing

6.24 Equivariance

Contents

Contents

7 Image Classification with Convolutional Networks

7.1 Conventional Convolutional Networks.
711 Feature Extraction
7.1.2 Classification oo 0oL
713 Implementation. oo

7.2 Network in Network Approach
7.21 FeatureExtraction
7.2.2 Classification L.
7.2.3 Implementation.

7.3 ACNNas MNIST Classifier

8 Image Segmentation with Convolutional Networks

8.1 Fully Convolution Networks for Image Segmentation

8.2 Methodsof Upsampling
8.3 Methods of Context Embedding
8.4 Methods of Boundary Alignment.

9 Conclusion and Research Strategy

Appendices
Appendices
A Optimization
A1 Momentum Algorithm.
A2 Adam
B Tensorflow Implementation
B.1 The MLP MNIST Classifier.
B.2 The CNN MNIST Classifier

Bibliography

57

............ 58
............ 60
............ 62
............ 64

67

70

Introduction

Digital Image Processing (DIP) is the procedure of extracting useful information from a given
image or generating a modified version of it by applying mathematical operations [2]. Al-
though this seems to be somehow abstract, DIP became a daily component of many people’s
life.

Numerous smart phone applications such as bar code scanner or social networks make
heavily use of DIP techniques. In Facebook for instance, it was common for a user to upload
an image and link the persons shown in it with their profile. DIP however, recognizes the faces
in images without the need of an explicit, manual link and informs the person automatically.

In spite of that, it affects lives in more essential means from a medical view point. DIP
does not only pave new ways to detect cancer in earlier stages [47] but can also provide a
substitution of the human eyesight. The detection of a smile triggers the vibration of a device
and gives a blind person the possibility to interact with her or his counterpart [5].

DIP techniques also found their ways into academic life by tracking the attendance and
attention of students during lectures, as lately introduced in universities in China and Paris
[3]. Evaluating satellite images to explore new areas for oil and gas extraction or monitor the
wildlife on the North Slope of Alaska and in Africa’s National Parks is based on DIP methods
[4]. Hence, even far away from civilization in the outer space, DIP is applicable and even
necessary.

Although these applications could barely be more different, they are all instances of either
Image Classification and Image Segmentation. Both are subfields of DIP and assign parts or
the entirety of an input image to a class or category which, e.g., comprises all images that
show the same object.

While classification aims at coarsely correlating one image with a unique class, segmen-
tation can be interpreted as its refined version, where each pixel is assigned to one category.

The difference can be clarified by considering a potential application. Assume for instance,
a sailing ship keeled over. Before leaving the sinking ship and escaping in the life boat, the
captain released an appeal for help. Immediately, the coast guard moves out in a helicopter
to search the survivors. To see a wider range of the ocean, a DIP capable camera tracks the
happenings from above. Whenever this instrument detects an object, an image classification
program tells the coast guard what exactly they see. Is it only a heap of rubbish, a tiny island
or the desired life boat? As soon as, the latter is found, an image segmentation application
is brought into operation. It analyses the exact position of the persons seeking for help, and
the rescue mission succeeded.

The vast amount of different applications of classification and segmentation motivated the
development of a wide range of diverse approaches. In the last few years, however, mainly
one of these methods attracted the attention of scientists and researchers. One of them are
so-called Deep Convolutional Networks, an approach that is based on artificial intelligence.

1

2 1. Introduction

It is a special kind of neural networks, which in turns are learning machines.

This report aims at giving an overview about the most recent developments in the field
of image classification and segmentation with deep convolutional networks. Preceding this,
the relevant basics of machine learning including neural networks are introduced. These
explanations are accompanied by a real-world image classification problem which I first ap-
proach by implementing a very simple neural network. My analysis reveals that this does
not suffice to yield the expected results and motivates further theoretical studies of learning
theory. Gradually, I add improvements to the simple neural network and based on that, the
concept of Deep Convolutional Networks is developed. To finally emphasize the power of this
kind of neural networks, I implement a more elaborate model and compare it to its simple
predecessor.

The understanding and designing of machine learning systems is a complex task and so is
their implementation. That is what the researchers of the Google Brain Team within Google’s
Machine Intelligence research organization felt like in 2015, when they decided to ease the
task of implementation by developing the open source software library Tensorflow. While
initially tailored for machine learning systems and deep neural networks, it is applicable to
a wide range of different problems.

As indicated by the expression "Tensorflow”, models are abstracted to tensor-represented
data that flows through a graph. Each node of this graph, represents a computation unit,
and the edges express the data consumed or produced by a computation.

However, at this point the graph can be imagined to be a static construction that merely
defines the computations but does not perform them. This is in the responsibility of so-called
sessions. Not before a graph is run in a session, the operations are executed and tensors
evaluated. While for designing the graphs a convenient, Python-based front-end API can be
used, sessions provide the links between this API and the high-performance C++ runtime.
Apart from executing the computation on local devices, sessions provide also access to remote
devices using the distributed TensorFlow runtime [52]. Within this report, models of neural
networks are implemented in the Tensorflow framework.

A further application of image segmentation is the automation of processes that would
either take too long or would suffer from subjectivity if they were done by humans. One such
process, is the analysis of material properties based on its microstructure. Often, this is used
as a tool of quality assurance. In particular in the aerospace industry, where damages are
avoided at any price, the condition of material is directly responsible for the safety and scrap
rate of products. Hence, the German engine manufacturer MTU Aero Engines who is respon-
sible for the entire product development process of aircraft engines, faces the challenge of
microstructure analysis every day. For this reason, the company puts particular effort in the
development of high-quality, automated image segmentation procedures. At the same time,
the complexity and number of different manifestations of certain substructures hampers au-
tomation and demands further investigation of potential image segmentation methods. In
this context, MTU commissions a research project, posing the question:

Is it possible to apply an image segmentation technique based on Deep Learning to deter-
mine different phenotypical structures of a material with nearly human-like precision?

This is examined in the use case of nickel-base superalloys. The latter can be precip-
itation hardened by a so-called y'-phase which appears in a cubic shape. The automated
identification of these precipitations, has to take the following properties and difficulties into
account:

1. two size-depending instances of y’'-phase need to be distinguished
2. their cubic shape can be deformed due to temperature or force effect

3. the quality metallographic images does not always allow the detection or visibility of all
four edges

4. the magnification of the given images and hence snippet of the microstructure which
they show is crucial for the final phenotypic occurrence

Given this research problem, the following explanations are firstly intended to explore the
abilities and borders of image processing techniques based on Deep Learning. As summa-
rized in chapter 9, this allows the elaboration of a strategy how to approach the research
question.

Artificial Intelligence and Deep Learning

In the early 19th century, Augusta Ada King, Countess of Lovelace developed the basics
of programmable languages and conceived the first programmable computers. Since then
humanity has wondered whether such machines can become intelligent. A lot of effort has
been put in the attempt to answer this question of the existence of artificial intelligence (Al).

It soon became evident, that machines perform well in solving abstract issues such as
manipulating strings or playing chess. For instance, while a machine easily solves a system
of linear equations within a couple of seconds, this problem is intellectually challenging for
humans and a manual solution might take minutes.

However, when it comes to classifying an object such as a randomly chosen digit in an
image, computers can not compete with humans. While solving a linear system of equations
relies on a few basic arithmetic rules, the human abilities to recognize objects arise from an
intuitive knowledge which was derived from the immense amount of environmental impres-
sions. Humans saw digits a thousands times before and it became natural to recognize them.
However, the impalpable and most often subjective nature of this knowledge aggravates the
formulation of general rules that define what a particular digit looks like. This reveals one
of the main challenges in Al - fetching the same informal knowledge that humans have and
process it in such a way that computers can employ it.

A general approach to capture the necessary knowledge about the world is to hard-code
it in a formal language. It clearly, for example, defines what a particular digit has to look
like. Given this formulation, a computer can automatically reason about statements by using
inference rules. This knowledge-based branch of Al suffers from a particular difficulty. It
assumes that Al systems are able to acquire their knowledge by extracting patterns from raw
data. From thousands of pictures with digits, the machine has to learn the appearance of
any of them. This capability of machine learning empowers computers to make apparently
subjective decisions or solve tasks that involve knowledge about the real world - skills that
have been claimed by humanity for long time [19].

A crucial factor that heavily influences the performance of machine learning algorithms is
the representation of data. To decide whether an image contains a four, the computer does
not have to know if the shown digit is red or blue. Moreover, the only relevant information is
the shape of the digit. This kind of useful information that is included in the representation
is called feature. A simple visual example for the dependency on representation is given in
figure 2.1.

Machine learning algorithms which are aware of the meaningful features that need to be
extracted, are capable of solving the corresponding Al tasks. For instance, assume one wants
to write a program that recognizes cars in an image. For humans wheels and spotlights are
obvious features that clearly describe a car. The machine, yet, only sees the pixels of an image
and the actual difficulty is to describe a wheel in terms of pixels. Of course, the geometric

5

6 2. Artificial Intelligence and Deep Learning

Cartesian coordinates Polar coordinates

'v'
vy VW
T
y o'i'v‘

W,

vy ¥
> y ’vv =

ve A AS
Wy 0T e

v v w' v

w \ "'
Yev

Figure 2.1: Assuming the scatter plot of some data has to be separated into two categories, using only one straight light.(Left)
For data in Cartesian coordinates, this is impossible.(Right) If the data is represented in polar coordinates, the task becomes
easy. [19]

shape of a car is simple and easy to translate into pixel values. However, these values are
strongly affected by shadows falling on the wheel or objects obscuring the front of the car
[19]. Hence, features that might be meaningful for humans are less useful for machines.

Instead of trying to prescribe the features, why shouldn’t the machine learn them by
itself? Until now, machine learning detects mappings from representation to outputs, e.g.
wheels are clearly associated with a car. Representation learning is a field of machine learning
that further leaves the machine the freedom to not only learn the mapping but also the
representation. Hence, the computer learns from given data which set of features to extract.
Often, learned representations outperform hand-designed representations [19].

Meaningful features are learned by separating factors of variation that explain the data.
Often, these factors are not observable. Instead, they could be thought of as concepts or
abstractions that are used to make sense of the wide variety of the given data. When analyzing
cars in an image the factors of variation include, e.g., the position of the car, its color, angle,
the brightness of the sun and so on [19].

However, this reveals the central difficulty of representation learning: how can these ab-
stract or high-level features be obtained from raw data?

Deep Learning (DL) is one approach to solve this essential issue. It introduces represen-
tations that are expressed in terms of other, simpler representations. Construction-kit-like,
complex and meaningful concepts are built up by simple ones. As shown in figure 2.2, a
human can be recognized by combining simple concepts. For instance, edges are used to
define corners and contours which are parts of higher-level objects.

The most fundamental example of a deep learning model is the Multilayer Perceptron (MLP).
Basically, it is a mathematical function, mapping input to output. This function might by
complicated and is formed by composing many simple functions.

As summarized in figure 2.3, DL is an approach to Al. In general, Al is concerned with
finding methods to extract knowledge from data. Most often capturing knowledge is difficult
to achieve, since the input data is complicated and arises from real-world problems. In par-
ticular, ML resolves this problem by extracting only patterns and relevant features. However,
this prompts the further question: how does the computer know which features are mean-
ingful? For a long time, these features were hand-crafted and stipulated by the programmer.
Opposed to that, representation learning allows the machine to learn the meaningful features
on its own. DL is a special kind of representation learning. It achieves great flexibility by
representing the world as a nested hierarchy of concepts with each concept being defined in
relation to simpler ones.

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

Figure 2.2: The shown model illustrates the approach of deep learning. The Al task is to classify whether an input image shows
a car, person or an animal. However, computers can barely directly map the input data to the categories since it is difficult to
analyze the raw input data. Deep learning resolves this issue by reducing the complicated mapping to several, nested sub-
stages. The raw input data is visible for humans and hence represented by the visible layer. Opposed to that hidden layers
extract increasingly abstract features which are not directly observable from the input data. The images in each hidden layer
visualize the extracted features. From input data, edges are extracted which can easily be described in terms of raw input pixels.
These are then used to resolve the more complicated corners and contours which are the basic for object parts. Merging them
together indicates which object is depicted in the input image [19].

RL ML | Al

Figure 2.3: The diagram shows the relation of each sub-branch of artificial intelligence (Al). Deep learning (DL) is a kind of
representation learning (RL) which in turn is a part of machine learning (ML).

Multilayer Perceptron

Based on the idea of deep learning, complicated real-life problems such as image classifi-
cation or segmentation can be tackled by Al approaches. However, models for this kind of
tasks are complicated and not easy to understand without any prior knowledge of machine
learning. Therefore, this chapter is devoted to summarizing the basic mechanisms. Machine
learning is a huge and fast developing field of research and summarizing everything would
exceed the framework of this report. Thus, the focus is only on either very fundamental
strategies or those that will become relevant when dealing with image processing.

The core part of everything is a learning algorithm. This is an algorithm that is able to
learn from data. Since learning is a process that is most often associated with humans or
animals but rarely with machines, this needs further explanation. A concise definition is: “A
computer program is said to learn from experience with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with
experience.” [30]

Suppose for instance, the so-called MNIST data set is given. As can be seen in figure
3.1, it is a collection of images of handwritten digits. In a typical machine-learning task, one
image is feed-forwarded to a learning algorithm. The latter is designed such that it recognizes
which digit is encoded in the input image pixels. This is an instance of a classification task
where an input is assigned to one of K classes. Referring to the MNIST data set, each digit
forms one of the K = 10 possible classes.

From a mathematical point of view the classification is defined as a function that somehow
maps an input vector x € RY to one out of K discrete class C, where k = {1,..,K}. Most often,
the classes are taken to be disjoint and each input uniquely belongs to one class. This
can be imagined as separating the input space into decision regions whose boundaries are
called decision boundaries or decision surfaces. Linear models for classification have decision
boundaries which are linear functions of the input vector x and hence are defined by (N —1)-
dimensional hyperplanes within the N dimensional input space. Data sets whose classes can
be separated by linear decision boundaries are said to be linearly separable.

However, real-world classification problems are none of those and hence more complex
models have to be derived. As will be shown, Multilayer perceptrons are a good choice for
non-linearly separable data sets.

10 3. Multilayer Perceptron

NNERNESSEE
NEENEESEES
BN NSRS N
Gl [0 o]l ol B
1 IR EY T M B M-
EY IS S D S E EN NN ES-
NESSSINMSISNS-

HNNRANEAENE
%] [vaf4 [[oo [on| oo [B
<a[sbololvlalalolog

Figure 3.1: The MNIST data set contains 60 000 monochrome images. Each of them has a resolution of 28 x 28 and shows
only one handwritten digit. [33]

However, classification is only one example of machine learning tasks. More generally, the
machine learning system should be able to process a certain event or object like an image.
Here, examples are defined as a collection of features which arose from measurements of the
object like the pixel values of images. Then, the task is to describe how a learning algorithm
should process with given examples [19].

A further essential part of learning is the performance measure. Often, it correlates to the
learning task and indicates how well the learning algorithm solves it. Classification tasks
can, e.g., be measured by the accuracy which gives the proportion of images that are as-
signed to the right class. At the same time, equivalent information can be obtained by the
error rate. This performance measure depends on the amount of images for which the learn-
ing algorithm generates a wrong output. While only a few examples are used to design the
learning algorithm, the final interest is in how well it performs in real-world application.
Hence, a second set of unseen examples is necessary. Finally, this so-called test set is used
to measure the performance and validate the learning algorithm [19].

Last but not least, the third pillar of the learning process is the experience. The kind
of experience a learning algorithm has while learning separates the wide field of machine
learning into two categories, the unsupervised and supervised. Note, that the examples which
were introduced in terms of the learning tasks, are called data set or data points. For the
MNIST data set in figure 3.1 the examples are simply the images. However, it might happen
that each of the examples is associated with a label or target. In figure 3.1 these are denoted
by the very first row which does not contain images but solely digits. Obviously, labels are
the right solution to the learning task.

The existence of labels is the parting of the ways. While unsupervised learning algorithms
do not have access to labels, supervised learning exploits them to design the algorithm. The
remainder of the report focuses on supervised learning.

In the course of this report, the following frame is maintained. All machine learning al-
gorithms discussed and derived are supervised. The final implementation of a supervised
learning algorithm is separated into four steps. First of all, from a class of parameterised
mathematical models the one that is associated with the learning task is chosen. As will be
shown later, a well-known model class are so-called neural networks and a corresponding
performance measure is defined. This is used in the next step where an optimization algo-
rithm adjusts the model parameter. In terms of neural networks this phase is called the
training step. Last but not least, the model is evaluated in a validation step. This phase
can be used to further adjust special parameters, so-called hyperparameters that control the
model performance but can not be derived adapted training.

These basic steps to design a machine learning algorithm are explained within the fol-

3.1. Model 11

lowing chapter. All formulas that are derived during the following chapter are based on two
books, Pattern Recognition and Machine Learning written by Bishop et al. [11] or Deep Learn-
ing by Goodfellow et al. [19]. It is exemplified by deriving a classification model for the MNIST
data set.

3.1. Model

The most successful parametric model in the context of pattern recognition is the so-called
Multilayer Perceptron (MLP). This is a representative of the class of feedforward neural net-
works. Initially appearing in 1943, McCulloch and Pitts aimed at finding a mathematical
representation of information processing in biological systems. Nowadays, neural networks
cover a wide range of different models including even models that do not resemble biological
systems.

The goal of these networks is the approximation of a function y(x®) = f(x®,w) with

w € A. Here, A is the space of all possible parameters. Consider the data set {x®, t(rz:,l)e} with

p = 1,-+,D where x® € R is some input data and yt(’rge the one out of K labels that corre-

sponds to x(P). For instance, the input x?) can be an image in pixel format that is flattened
out to a N x 1 dimensional column vector. The label yt("ril)e denotes a class to which the image
belongs to as, e.g., all images that show a hand-written four.

The function f : R¥ » R¥ with f(x(P),w) generates a K-dimensional output vector. A input
vector x®) is then assigned to class Cy if y, (x®) > y;(x®)) for all 1 < j,k < K and j # k. For

simplicity y,(x®) and y,ﬁ”) will be used interchangeable. The parameters w € A are chosen

such that y,(x®) = f(x),w) predicts the true label. However, before the parameters w € A
are set, the model f(x®),w) has to be defined.

A very first and naive attempt, is to model f as a linear combination of the input data

N
Ve (x®)) = wyo + Z wkixi(p). (3.1)

=1

This is a simple but also very restrictive approach. First of all, it only exploits linear relations
between input and output. In addition to that, it does not scale well with the input space
dimension. This curse of dimensionality states that the amount of input data has to grow ex-
ponentially with the dimension of the input data to maintain statistical significance. Enough
data has to be provided to learn the structure of the input space.

Linearly combining the input yields linear decision boundaries in the input space. Anal-
ogously, combining non-linear transformations ¢(x®) of the input leads to linear decision
boundaries in the space of the fixed, so-called basis functions ¢. These correspond to non-
linear decision boundaries in the space of the original input x. This can be formalized as

M
WGP = wig + D i (xP), (3.2)
=1

with M non-linear functions ¢. For classification problems, a generalized version of equation
3.21is

M
Ve(x®) = 9(2 ij¢j(x(p))>, (3.3)
=0

where ¢(x8p)) = 0 and g(-) is a non-linear activation function. It is chosen such that the out-
puts are more interpretable for classifying the input. For instance, for the right choice of g(+)
the output can be understood as the probability that the input belongs to a certain class.

Models that are defined by equation 3.3 are known as Rosenblatt perceptrons [11]. The cor-
responding perceptron convergence theorem guarantees that for any data set that is linearly
separable, equation 3.3 finds the exact solution within a finite number of steps.

12 3. Multilayer Perceptron

1 O _ N O—> f(x, w)s

«© i GG o Orrem

. o @ S Qe

Input layer Hidden layer 1 Output layer 1

Figure 3.2: In general, feedforward neural networks are associated with directed computational graphs. In particular the multi-
layer perceptron is composed of several layers where each often them consist of so-called units, neurons or nodes. The number
of layers is called the depth while the number of units in a layer determines its width.

Despite the fact that these functions have useful analytical and computational proper-
ties, their practical applicability is limited by the curse of dimensionality. MLPs remedy this
shortcoming by choosing a particular kind of basis functions ¢(x).

The fixed functions like in equation 3.3 are parameterized such that they adapt to the
input data. Obviously, there exists a vast number of parametric nonlinear basis functions.
The MLP model chooses in particular basis functions which are non-linear functions of a
linear combination of the input set of

a;=wQ + Z wPx;, (3.4)

® M o

where for simplicity x;"’ is substituted by x;. The parameters are the coefficients wj;

the linear combination which often are called weights. In case of w]0 one often says blas.
In terms of neural networks the quantities a; are activations. To achieve nonlinearity with
respect to the input, each of these coefficients are transferred to an activation function h.
The output z; = h(a;), known as hidden units or neurons correspond to the output of the
fixed basis functions ¢. Following the definition of the Rosenblatt perceptron in equation
3.3, these hidden units are again linearly combined, yielding output activations of the form

a, = w® Z @, (3.5)

where k = {1, .., K} is the total number of outputs. As before in equation 3.3, an appropriate
non-linear activation function g(-) is applied and the final predictions y, are

Vie = f(x, W) = (Z W h(z wiPx +wi)) + W(Z)) (3.6)

All in all, this leads to a basic multilayer perceptron model which can be described as a
composition of functional transformations. As illustrated in figure 3.2, this composition is
associated with a directed, acyclic graph, where each layer corresponds to one functional
transformation.

One of the striking advantages of MLP is the nonlinearity with respect to the input data,
which is yield by nonlinear activation functions. The choice of these functions depends on
the application purpose. While output activation functions mainly determine the appearance
of the output units, activation functions in hidden layers strongly affect the behaviour of

3.2. Performance measure 13

Tanh function tanh(z) = 20/(2z) — 1

Logistic function o(x)
T T T

tanh(z)

Figure 3.3: Two prominent representatives of saturating activation functions are the (LEFT) logistic function ¢ (x) = —— and

the (RIGHT) tanh function tanh(x) = 2a(2x) — 1. In particular, the logistic function can easily be interpreted as a probability and
hence is often used in the output layer. At the same time, saturating functions are hardly found in hidden layers. Their asymptotic
behaviour might causes vanishing gradients what is harmful during backpropagation (see section 3.3.1).

ReLU (Rectified Linear Unit) Leaky ReLU
T T T T T T

8

il] [|LReLU(2) = 1{peqy(az) + gm0y () ‘
‘RGLU(.’IJ) = max(0, z) ‘

6+

Leaky ReLU(z)

Figure 3.4: Non-saturating functions mainly include (LEFT) Rectified Linear Unit function which is nothing else than a threshold
function at 0 as well as it’s slightly modified version (RIGHT) the Leaky ReLU. Both of them are easy to implement and show
fast convergence during optimization (see section 7.1.3). While ReLU suffers from dying units i.e. parameters are updated such
that they will never become active again (see section 3.3.1) this issue is remedied in its leaky version.

the network while setting the parameters. Generally, two types of activation functions are
distinguished, saturating or non-saturating ones. Figure 3.3 shows representatives of the
first kind while figure 3.4 illustrates non-saturating functions.

Neural networks are universal function approximators. A multilayer perceptron with one
hidden layer and a sufficiently large number of units can uniformly approximate any contin-
uous function on a compact input space with arbitrary accuracy. However, the key issue is
to find the right parameters wji™ in the n-the hidden layer.

3.2. Performance measure

To evaluate how well a model solves the given task a performance measure is defined. A
commonly chosen measure for classification tasks is the accuracy, which gives the portion
of correctly predicted labels. This is quantified by the difference between predicted and true
label and defined as the loss function L® (w) = L(yF), f(x®),w)). Intuitively, a well designed
model is one that yields a low loss and vice versa.

While the loss function itself can be defined arbitrarily, the procedure stays the same. In
the following, this is exemplified by one of the most commonly used classifiers, namely the
softmax classifier. It relies on the MLP model as defined in equation 3.6. The activations in
the output layer, so-called scores can be understood to be the unnormalized log-probabilities

14 3. Multilayer Perceptron

D
RO) (W)
risk

Figure 3.5: The empirical risk function can be imag-

ined as a surface that is spanned in the space of the

parameter. Adjusting the parameter of a neural net- ,

work is equivalent to find the deepest point of this > W
W1 0pt

surface. 0p

for each class. Hence, before calculating the loss a normalization is executed by applying the
softmax function

K
o:RX o {0 € RK|g; > O,Zai =1}
=1 (3.7)

ef (xw);

a(f(x,w))j = forj=1,.,K

ZIIC(= 1 ef(xwW)k

as the activation function to the scores. It takes a K-dimensional vector f(x,w) of arbitrary
real-valued scores and squashes it into a K-dimensional vector of values between O and 1
that sum to one. Finally, the loss in one data point x(P) is derived as

L (w) = —Ino(f (x,w)); (3.8)

where In (+) is the logarithm with natural basis. Moreover, f(x,w)); is the predicted value that
corresponds to the true label. Often, loss 3.8 is called cross-entropy loss.

Summing over all data points gives the full data loss, defined as

D
REpw) = = > LOwW) | (3.9)
p=1

Next to data loss, this quantity has multiple names including cost function, empirical risk
function or simply training error. In many cases an extended loss function is applied however
the plain loss as in 3.9 is sufficient to obtain a basic understanding.

3.3. Optimization

The softmax classifier is an instance of a MLP whose performance is measured based on
the cross-entropy loss as defined in equation 3.8. The higher the value, the more labels are
wrongly predicted by the model. Although a perfect model would always predict the true
label, this state of perfection is not feasible. Instead, an optimal model makes as few false
predictions as possible what is equivalent to minimize the empirical loss 3.9. As depicted
in figure 3.5, for a given model and the chosen loss function, the cost function depends on
the number D of observations and the model parameters wi(}l). Hence, adjusting the param-
eters is a method of controlling the performance. In terms of neural networks, this phase of
parameter adaption is called training or learning from examples. One faces the optimization
problem

wl-(;l) = arg min (Rgﬁfp (w)) (3.10)
WEA

3.3. Optimization 15

€ too small

risk risk
A A

Figure 3.6: The choice of the hy-
perparameter € is essential for the
convergence behaviour of BGD. Itis
a hyperparameter and is interpreted
as the step size in direction of steep-
est descent. (LEFT) Too small val-
> > ues slow convergence too strongly

down while (RIGHT) too large values
wq Wiy might lead to oscillations.

R, (W)

The branch of optimization is wide and this section is devoted to a very basic introduction
of essential algorithms. However, in the course of this report more elaborated algorithms
are applied whose short descriptions can be found on the Appendix ??. Most often, neural
networks are optimized iteratively.

Generally speaking, in every iteration step 7 the weights are adjusted according to

witl = w? + Aw® (3.11)

where Aw? is the weight update. In particular, different algorithms such as batch gradient
descent (BGD), stochastic gradient descent (SGD) or momentum learning (MOM) use different
weight updates Aw?®.

Batch Gradient Descent is the simplest algorithm. Here, the weights are chosen to be a
step in the direction of the negative gradient of the empirical risk. The term batch indicates
that the error is evaluated with respect to the whole data set. Iteration scheme 3.11 specifies
to

wot = w? — eV, R (w?) (3.12)

where the learning rate € determines the size of the step in direction —Réﬁl)p (wh). The learning
rate is a so-called hyperparameter. Such parameters strongly affect the performance of the
MLP but are neither learnable nor easy to estimate. However, they must be set before the
learning process starts. For this reason, much time is invested in finding and adjusting the
values of hyperparameters [49].

As becomes apparent in figure 3.6, the learning rate has a crucial influence on the con-
vergence behaviour of 3.12. Hence, it has to be chosen wisely.

This additional fine-tuning effort is one characteristic disadvantage of BGD. A further
disadvantage is the computation intensity, which is large since the whole data set has to be
evaluated. As common for deterministic gradient-based optimization methods, BGD features
the unfavorable property that it might get stuck in local minima.

This can be remedied by adjusting the number of data points that are taken into account
while evaluating the risk. Online Gradient Descent is an extreme case and evaluates only
one observation at a time. Although the term online is normally reserved for methods, where
observations are drawn from a stream of continuously generated examples, it simply indicates
that, here the error is evaluated with respect to only one data point. This introduces some
noise to the parameter update. This is why Online Gradient Descent methods are more
often known as Stochastic Gradient Descent (SGD) approaches. Opposed to that, BGD is
a deterministic algorithm. As can be see in the iteration scheme 3.13, this randomness is
controlled by the parameter €;. Again, this hyperparameter is called learning rate but in
contrast to BGD it now depends on the iteration step 7.

Wil = Wt — ETVWRS:E%)(WT) with m € [1,M],M << D
m=1: SGD (3.13)
m > 1 : Mini-batch GD

16 3. Multilayer Perceptron

This is due to the fact, that convergence is only assured if the effect of noise is diminished
during the iteration. Hence, a so-called annealing scheme takes care of this by gradually
decreasing €.

Although a wide variety of learning rate decay methods exist, one mainly comes across the
same three [49]:

1. Step Decay simply reduces the learning rate after a certain number of iterations, e.g.
by halving it.

2. Exponential Decay with €, = €, - e %7 where k and ¢, are two further hyperparameters.

3. % decay has the mathematical formulation €, =
eters.

—(152-7) with k and ¢, again hyperparam-

Finally, which of those is the right annealing schedule and how to adjust its hyperpa-
rameters depends on the given network and learning tasks and there is not one uniformly
superior one. Hence, evaluating only one observation is boon and bane at once. Although
it allows the algorithm 3.13 to escape from local minima and find the global one, it causes
additional work due to the necessity to design an annealing schedule.

Both algorithms, BGD as well as SGD suffer from certain disadvantages which are dimin-
ished by creating a hybrid approach. The Mini-Batch Gradient Descent (Mini BG) method is
based on the iteration scheme 3.13 and evaluates a small number m of observations at once.
While SGD sets m = 1 and BDG uses m = D, the Mini BG choses an appropriate value of m
that is somewhere in between.

3.3.1. Backpropagation

Obviously, there exist a vast number of different approaches how to specify the general iter-
ation scheme 3.11. The previous section introduced instances of gradient descent methods
which all rely on the same idea: the update of a particular parameter depends on how strongly
it affects the performance, hence the loss of the MLP. This is measured by the gradient of the
empirical risk function with respect to this parameter. The larger this gradient is, the more
sensitive does the MLP react on changes of this parameter.

However, the graphical architecture of neural networks naturally hampers this approach.
As the empirical risk function depends on the outputs f(x,w), its gradient can easily be de-
rived with respect to the parameters of the last layer. But how can the gradient information
with respect to parameters of the first layer be derived?

Although their core ideas were already investigated in the early 1950, this question paral-
ysed the development of neural networks for decades. The turning point was the appearance
of backpropagation, introduced by various independent persons. It gives an applicable an-
swer to the question on propagating gradient information [15].

Backpropagation (BP) is an efficient technique that applies the idea of the chain rule to
evaluate the gradients of the empirical risk

v, 0 R W) (3.14)
ij

with respect to the parameter Wi(;)'r of the hidden layer [. Each iteration step T contains one

propagation which in turn consists of one forward and one backward sweep. As shown in
figure 3.7, they differ in the direction in which information is propagated in the network. For
simplicity, the iteration parameter v will be omitted.

According to figure 3.8, the forward sweep processes information on the input by consec-
utive hidden layers. In the final layer, the empirical risk that m input observations yield with
the current set of parameters of iteration step 7 is calculated.

The backward sweep aims at deriving the gradient of this risk with respect to a particular
parameter by backpropagating the error in the opposite direction. The implementation is

3.3. Optimization 17

Input Output R (w)
layer layer emp
s
1 C}_\ P ’,«’ - N N Figure 3.7: The green colored forward sweep de-
. \\\ < s : A notes the direction of information that travels from
. e < “5,\" h S the input to the output side. Intuitively, this is
x; -— % ;J(WA f(x W) the "normal” working direction of neural networks
VLY v » Ik since it is also used to derive the desired predic-

ters w;; based on gradients of the empirical risk

Y/ \ rd
/ - /
XN O - ——-_ '-\“O“ R, (w), the direction of the information flow can

be reversed. This backward sweep is denoted by

Input <:| Output <:| R(m) w) the red arrows and points from output to input.
laver emp Both sweeps together form one backpropagation
layer y step

Hidden layer H,

a:® = W(l)Z(l—l) Fi .) . Y
it = i Zi igure 3.8: The hidden layer [receives its input

h i €link zgl_l) from the units of the preceding layer (1-1).
-1~ ; - s 10)

Linearly combining the with its parameters wij

: @ results in activations aj(-l). The final output z]w of

the layer is yield by applying the nonlinear acti-
Zj(l) = h(aj(l)) vation function h(-). Often, z]w is referred to as
hidden units.

: Ppus \ . P : tions f(x,w),. However, to adapt the parame-

exemplified by a simple MLP with two hidden layers. It adapts parameters with SGD and
since m = 1, Remp simplifies to LP(w) = L.
In accordance with figure 3.8, the output layer is interpreted as a hidden layer [= 2. When

evaluating the derivatives of L with respect to the parameter w® it is important to see that

kj
the error only depends on W,g-) via the summed input a,({z) to unit k. Therefore, the chain rule
for partial derivatives gives

oL oL 9ay 5.15)
BWS-) aa,(f) aw,ﬁ'j) . -

Using the definitions of activations a}l) as shown in figure 3.8 and introducing an abbreviation

for the second derivative in the above equation allows the rewriting of the two factors as

da oL
’EZ) = z}l) and 6,((2) = (3.16)
owy day,
Hence, for parameter in the output layer it is
oL
— ., D@
@ z; 6. (3.17)
kj

Obviously, the partial derivative of the error with respect to w,g-) depends on two quantities,
namely, the value of 251) on the input side of the weight and the error derivative 6,(62) on its
output end. The latter can easily be derived with the output of the network. Moreover, 6,(3)
gives the relation between the error L and the inputs a}({z) of the output layer. As will become
relevant later, keep in mind that these inputs are linearly correlated to the outputs 25-1) of the

preceding hidden layer 1. Consequently, 6,&2) also reveals the relation between the loss and
the values zf-l) [11].

18 3. Multilayer Perceptron

Figure 3.9: The figure shows the training of a deep 5(l+1)
neural network via gradient descent methods with
BP. To derive the error derivative in the hidden layer
1 with respect to the parameter w(;) the chain rule .—é 6(l+1)
is repeatedly applied. This allows to express the

desired derivative in terms of the outputs 2P How-
ever, these are connected with the final loss L via 5(”1)
the higher layers. This is indicated by the quantities

sU with k = 1,..., K.

Computing the error derivative with respect to parameters w](l1) of the first hidden layer
follows the same scheme. Again, it is

®

aL 0L Oa; (3.18)
awﬁ) aaﬁ-l) 6W}§i1) '
with .
0a” a 6. oL (3.19)
(1) =x; an oy)
owj; da;
(1)

As before, the error derivative composes two factors, x; on the input side of the weight w

and the error derivative §; @ 6n the output side. However, computing §; @ for the inner layers

W M of

is not that trivial anymore. The loss L depends on the activations a;* via the output z;

the layer. Applying the chain rule, decomposes 51(-) into two factors accordmg to

6(1) dL oL aZ(l)

(1) ® (1)
da azj aa]-

(3.20)

While the second term exists for every differentiable activation function h(:), the first factor
depends on information of higher layers. This clarifies by using the chain rule once more,
since
oL oL da
8251) aa,(f) 6251) .
Combining this with the preceding considerations, it becomes evident that the relation be-
tween L and 251) can be formulated in terms of 6,((2). Figure 3.9 shows that the output z()
of neuron j in layer 1 is in sum affected by all neurons of the higher level with which 1t is
connected. This leads to

(3.21)

daL _ daL aa,(f) _ 8(2) ()
0720 9a@ 9,0 Weej -
zZj ay” 0z;

(3.22)

kelinks layer 2-1

For a general deep neural network with more than two layers, this perceptions are merged

in the following equations:
O]

oL oL aa M, 1-1 (3.23)
7 .
awj(f) da (l)a (l) J
and o
0z;
PSS g o2

k€links layer [+1-1

These BP formulas allow an easy calculation of the error derivative with respect to any pa-
rameter by using information from higher layers [11].

3.4. Validation 19

3.4. Validation

By introducing the BP, the last milestone of the MLP model is laid. Assuming again a classifi-
cation model for the MNIST data set. Within the above framework, a handful of observations
of the whole set is fed into the neural network and its parameters are iteratively adapted
based on its performances. Any stopping criteria can be formulated to define, when this
parameter updating should terminate. A fixed number of iterations, a maximal computing
time or low error rate are only three of numerous examples [42].

A successful training, results into a network whose parameters are optimized for the ex-
amples by which is was trained. Hence, whenever one of the observations that were used
during training is represented to the MLP, it will predict its label quite well.

A good MNIST classifier however, is one that performs well on any arbitrary input that is
taken from the MNIST set. The validation stage evaluates how well this requirement is met
by the designed MLP.

This phase is not only useful to check whether the trained model can be applied to the
original classification task but also to fine-tune hyperparameters.

In general, the disjoint training and test or validation data set are used for each of the two
phases of training and validation.

One very simple method for validation is the Set Method, where two distinct data sets are

given. The training data {x(®, t%)e} with @ = 1,---,p is only used to select model parameters.

The validation data {x®,y%#)} with = 1,--,q is uniquely used to evaluate the selected
parameters [42].

A further approach is the k-fold cross validation. This is a special variation of cross vali-
dation where a given data set is partitioned into complementary subsets. One subset is used
as training data while the other is used for validation.

k-fold cross validation is an iterative version, where all observations D are divided into k
disjunct subsets D; such that U;‘zl D;. Of the k subsamples, one is retained as validation set
while k — 1 others are merged and used for training. This is repeated until each subset was
used for validation once. Finally, the model is evaluated k times and averaging these results
gives one final estimation of the model performance.

This approach fully exploits the set of observations D since each observation is used for
training as well as for validation. However, a noteworthy disadvantage is its high computation
intensity [42, 49].

3.5. From Shallow to Deep Neural Networks

It seems as if the MLP is only a stone’s throw away from the desired deep neural networks.
All, that needs to be done is adding hidden layers. However for a long time, increasing the
number of these layers was avoided and science mainly put effort in shallow neural networks
as the presented MLP. For the start, Kolmogorov stated 1965 that a neural network with a
single layer of enough hidden units can approximate any multivariate continuous function
with arbitrary accuracy [6]. By the end of the 1980s, training based on gradients worked
well for shallow problems. However, it seemed that in contempt of using BP, more than a
few hidden layers do not offer empirical benefit. This insight in addition with Kolmogorov’s
theorem pushed the computer vision community even further away from deep neural nets.
1991, Hochreiter identified the major hurdles that impede training of typical deep neural
networks by BP. Combined with standard, saturating activation functions, the cumulative
backpropagated error signals either vanish or explode. Their evolution while backpropagated
through deep hidden layers depends on the size of the network parameters. Large gradients
may cause oscillating weights. In the case of gradients close to zero, the learning process
becomes either prohibitively long or even unfeasible. During the following years, different
ways to cure this problem of deep learning arose. Despite of discussing alternatives to gra-
dient descent based training methods, the lately competition-winning deep neural networks
stayed with this principle [22, 45]. The approach that finally settled down, combines GPU-

20 3. Multilayer Perceptron

Figure 3.10: The schema
illustrates the architecture of my
implemented fully-connected
neural network. The grey
layers denote the input side,
while shades of red mark fully-
connected layers. | distinguish
between fully-connected hidden
layers and the fully-connected

layer which is used for the final ™= output fully-connected layer
classification. === fully-connected layer

= input layer

based computation (GPU: Graphics Processing Units) with adjusted activation functions and
advanced optimization schemes.

The final breakthrough of deep neural networks became apparent in 2011 when Dan
Ciresan et al. trained a neural network with a GPU for the first time [7]. From then on, im-
provements arose blow on blow. 2012, Krizhevsky et al. stated that in terms of training time
with gradient descent methods, saturating nonlinearities perform worse than non-saturating.
The proposed ReLU activation function, as shown in figure 3.4 (LEFT) can be found in most
of the latest deep neural networks [27].

In addition to that, improved optimization schemes and parameter update stage were de-
veloped. These include momentum update or Adam, as introduced in the appendix A.

3.6. A MLP as MNIST Classifier

With the knowledge from the preceding section, I implemented a first prototype of an image
processing MLP for the MNIST classification problem. The corresponding Tensorflow code
can be found in the appendix B.

As shown in figure 3.10, the model is solely based on fully-connected layers. Each of the
hidden layers comprise 2048 units with a ReLU activation function. This is followed by a
third fully-connected layer, which applies the softmax-activation function to finally derive
the ten class predictions. Summarizing all, the neural network has a total number of 5 824
522 parameters.

In accordance with the preceding section 3.2, the cross-entropy loss measures the per-
formance. Moreover, I try to circumvent the difficult adjustment of the learning rate, by
optimizing the parameter with the Adams-algorithm, as described in the appendix A.

In machine learning, an epoch is one complete presentation of the data set which is to
be learned by a learning machine. Within one epoch, the MNIST classifier iterates over all
60 000 input images. Hence, training the MLP over 10 epochs is equivalent to feeding it 10
times with each training example. This results into a cross-entropy loss as shown in figure
3.11. Obviously, it shrinks and the final parameter setting predicts the correct digits with a
probability of 99.72%.

This final accuracy seem to expose the set of parameters to be well-chosen. However,
when evaluating the model over the same number of epochs for 10 000 test examples, this
high performance can not be met. Only 97.15 % of all test images are recognized correctly.

In general, the undesired phenomena of an insufficient validation performance in con-
tempt of a low training error is called overfitting. Before chapter 5 introduces efficient tech-
niques to counteract it, the statistical learning theory provides a deeper insight into its entity.

In the remainder of this report, I use this neural network as the base model to examine
the effect and strength of methods that are introduced to prevent overfitting.

3.6. A MLP as MNIST Classifier 21

== M.L.P. Val = M.L.P. Train
)
3 R4
- ,
7
//
- /7
—____"—’ ~s~~,
0.00 i
0 1 2 3 4 5 6 7 8 9
Epoch

Figure 3.11: Training my neural network over 10 epochs with 60 000 examples yields the solid blue graph. Evaluating it over the
same number of epochs for the 10 000 test examples leads a loss that is depicted by the dashed line.

Statistical Learning Theory

Two essential parts of designing a neural network are the training and validation phase. The
first is necessary to adapt the model parameters. In principle, this is based on evaluating a
performance measure of examples that are taken from the training set.

The validation stage takes a fixed set of trained parameters and examines whether the
neural network successfully fulfills the learning task. This is done, by computing a perfor-
mance measure yet, using a different set of observations.

At the first moment, a two-folded computation of an error might seems to be redundant
and needless. However, training and evaluating the MNIST classifier in the previous chap-
ter proved this assumption wrong. The graphs in figure 3.11 give the development of the
loss during those two phases. While longer training increases the prediction accuracy, the
performance during validation first saturates and then even starts to worsens.

Clearly, these observations impose several burning questions: How do the performance
measures differ from each other? Why does the validation performance measure increase?
Which of them really captures how well the network solves its task?

Examining learning from a statistical point of view gives the promising answers. The so-
called Statistical Learning Theory (SLT) characterizes a machine learning model based on how
well it learns and generalizes from data. In other words, its ability to use the knowledge that
is retrieved from the training data to infer statements about any other point that originates
from the same process. This is the true learning task of machine learning systems.

While the learning ability is analysed by asymptotic considerations of infinitely large train-
ing sets, generalization is related to its non-asymptotic behaviour. These characteristics are
quantified by a capacity concept.

The framework of SLT allows the description of a model behaviour during learning based
on its generalization ability. For instance, the model in figure 3.11 overfits. Both, overfitting
as well as its counterpart underfitting are equally harmful for the generalization performance.

In the following section, the difference between training and validation loss is derived and
a deeper insight into the origin of over- and underfitting is gained. Based on that, axioms
that are useful for training and designing a machine learning system are formulated. All
formulas are based on the paper An overview of statistical learning theory by V. Vapnik [54].

4.1. Learning Problem

Machine learning systems such as neural networks are so-called models of learning from
examples. Their framework composes three elements:

1. a fixed but unknown data-generating distribution P(x) from which independently, iden-
tically distributed (iid) random vectors x are drawn

23

24 4. Statistical Learning Theory

2. a likewise fixed but unknown conditional distribution P(y|x) that returns a respond y to
every input x

3. the learning algorithm f(x,w),w € A described by set of functions that predict the re-
sponse to an unknown input x; .

Within this terminology, the components of neural networks as introduced in section ??
are reformulated as follows.
The training set consists of D random observations

(x®,yM), .., (x@), y(P)) 4.1)

that are iid drawn from the joint distribution P(x,y) = P(y|x)P(x), P(x,y) € IIl. Moreover, SLT
assumes that the test set is drawn from the same distribution P(x) as the training examples.
The general loss function L(w) = L(y, f(x,w)),w € A measures the discrepancy between the
true response and the learning machine’s prediction of one particular example x. Hence,
it quantifies the error that the learning algorithm f(x,w),w € A makes when predicting the
response. The expected value of this loss, given by the risk functional or short risk

R = [L0, f WP () (4.2)

determines the error for any arbitrary input pair (x,y) ~ P(x,y).

Based on these definitions, the problem of learning is to find the function f(x,wy),wy, € A
that minimizes the risk R(w). This is equivalent to finding the function f(x,w,), wy € A which
approximates the unknown conditional distribution P(y|x) the best.

However, this is hampered by the fact that the joint probability P(x, y) is unknown and the
only available information is contained in the empirical data 4.1 [54].

4.2. Empirical Risk Minimization

Since P(x,y) is unknown, the expected value in 4.2 can not be computed exactly but only
approximated. One approach to achieve this is the Empirical Risk Minimization Induction
Principle (ERM) which retrieves the maximal available information by exploiting the training
set 4.1. It is based on substituting the integral in 4.2 by a sum and defines an empirical risk
as

D
1 ; .
Remp(W) = £ > LOO, GO, w)) . (4.3)
i=1

As shown in figure 4.1, the idea of ERM is to approximate the final learning algorithm

flx,wy),wyg €A with wy = arg min(R(w))
WEA

by a function

f(x,w) with w=arg min(Remp(W))
weA

with w € A, which minimizes the empirical risk.

Comparing equation 4.3 to the cost function 3.9 shows that the empirical risk has already
appeared in section 3.2 in form of the training error. During training, a MLP minimizes it in
order to adjust its parameter. In the following evaluation phase, the neural network is applied
to a validation set and the test error is measured. In SLT, the previously unobserved data
points of the validation set can be interpreted as any arbitrary sample that originates from
the same distribution as the training examples. Hence, the validation error corresponds to
the risk as defined in 4.2 and gives the ability of the neural net to learn from data. For this
reason, it is referred to as the generalization error. A machine learning system is considered

4.3. Capacity, Over- and Underfitting 25

risk 4 Remp® W)

R(w)
R(W) \

D) (35
R(wo) Remp) Figure 4.1: The ERM principle approximates the finally sought
o function f(x, w) that minimizes the risk R(w) by a further func-
~ W tion f(x,W) that minimizes the empirical risk instead. This so-

Wo w called learning from data is if ERM is consistent.

to be good if the set of parameter that is retrieved from data yields a minimal generalization
error.

Obviously, MLPs are trained in accordance with the ERM. While chapter 3 examines its
implementation step by step, this chapter asks for the justification of ERM based learning.
Is it reasonable to assume that minimizing the empirical risk leads to the desired minimal
generalization error?

The SLT states that learning from data is guaranteed if the ERM is consistent over the set
of functions f(x,w),w € A, i.e. if

Lim P (IR(wp) =R >m) =0 ¥n>0 . (4.4)

At the same time, the Key Theorem of SLT links this consistency with convergence and con-
sequently condition 4.4 is satisfied if

lim P <sup(R(w) — Remp(w)) > 6) =0 Ve . (4.5)
D—oo WEA

To quantify bounds on the convergence of the empirical to the actual risk so-called capacity
concepts are introduced. These are essential when deriving necessary and sufficient condi-
tions under which the ERM principle is applicable. The capacity of a given set of function
f(x,w),w € A quantifies its ability to learn from data [54].

4.3. Capacity, Over- and Underfitting

A commonly used capacity measure are the so-called Vapnik-Chervonenkis-dimensions (VC)
h. Despite their principle is valid for sets of general functions, they were originally defined
for indicator functions [54].

Image 4.2 shows that such indicator functions f(x,w) are half planes in R whose position
in the d-dimensional space depends on the parameters w € A. They are for instance used to
separate a set of D data points into two classes. Naturally, there exist 22 unique possibilities
to separate a set of D points into two categories. The VC dimensions h capture the maximal
number D,,,, of data points that these indicator functions can uniquely classify in all its
2Dmax possible ways. It is h = Dy gy

Based on this definition and as further explained in figure 4.2, the classifier in image ??
has VC dimension h = 3. The situation in 4.2 shows that data sets which contain more than
h examples restrict the choice of possible classifiers and hence enforce a selection. This is
learning from data.

With this perception, a more intuitive idea of the necessary and sufficient conditions for
learning from data i.e. for the ERM can be derived. This ability is given when the VC-
dimensions of the set of functions f(x,w),w € A is finite.

Asymptotic considerations for samples of infinite size D clarify the circumstances under
which learning is possible. However, to determine its quality it is interpretation as a problem

26 4. Statistical Learning Theory

Figure 4.2: (BOTTOM RIGHT) Indicator
functions f(x,w) are half planes in R%. For
d = 2, as denoted by the dashed line are
planes they reduce to planes whose angle D = 3 @ @
and position are adjusted by the parameters

w € A. They separate a set of D points into @ @

a green and a red colored class. The VC di- .
mension h gives the maximal number D, ® @)
of data points that can be separated in its
2Pmax unique classifications by the given set
of indicator functions. Hence, the sample of ® ®
h = Dy points is shattered by the func- / 3
tions. (TOP) A plane can uniquely separate ® ®
D = 2 points in 2P = 4 ways. Note, that /

the picture only shows two of these classifi- ;
cations. The missing ones arise when invert- @ O
ing the color categories. (MIDDLE) Again,
the half planes are capable of assigning the
D = 3 points in 23 = 8 unique ways two _ 2
one of the two classes. For the same reason- D 4 © half plane in R
ing as before, only 4 of the 8 classifications

are illustrated. (BOTTOM LEFT) For D = 4 @ ®)
points, constellations can appear which can @

not be uniquely classified. Hence, the VC di-
mension of indicator functions in R? is h = 3.

of approximating the unknown conditional distribution P(x|y) by f(x,w) is reused. The ca-
pacity of the model directly determines the complexity of the approximation function f(x,w).
Ideally, a high-quality approximation is similarly complex as its solution. Models with low
values of h are too simple to reproduce the true distribution and hence features a bad gen-
eralization ability. Opposed to that, machine learning systems of high capacity are modelled
by a large number of parameters and can approximate more complex distributions. Small
training sets however, do not provide enough information to perfectly adjust all w. Again the
generalization error is large.

Obviously, the generalization ability does not only depend on h but also on the size D of
the training set. A non-asymptotic analysis of R(w) for finite D shows that, with probability
1 — 71 the generalization error of a set of bounded functions 0 < L(y, f(x,w)) < 1 is limited by

(D)
4R
R(wW) < RSR(w) + %(1 + |1+ %(W)) (4.6)
with
h(lnZ +1)—1n
g0+ 1) -y 4.7)
D

Compromising the second summand in the function

h € 4RD) (w)

allows the reformulation of the equation 4.6 as

R(w) < RSp(w) + C (%) . 4.9)

4.4. Structural Risk Minimization 27

R(w)

Underfitting Overfitting

Figure 4.3: The relation 2 heavily impacts the
generalization error R(w). The blacj graph de-
notes its development for fixed D and increas-
ing capacity h, hence for decreasing %. More-
over, the dashed lines give the contributions of
the complexity term and empirical risk. In situ-
ation in which the gap between those is big are
even called over- or underfitting, depending on

whether C(£) or R}, (w) dominate R(w).

Consequently, the bound of the generalization error depend on the empirical risk R((e?n)p (w) as
well as on a complexity function C (%).

Figure 4.3 shows the schematic development of the terms for a fixed sample size D and
growing h. First of all, the two extreme cases in which h is either very low or high are ana-
lyzed. For both, the generalization error is large and considering the contributions of Réﬁl)p (w)
and C (%) reveals that in both situations the gap between them is huge.

For small h the complexity term is very low and the generalization error mainly consists
of the empirical risk. This situation is know as underfitting and can easily be tackled by the
ERM. Thus, for high values of % vanishing training errors Régfp(w) cause minimal general-
ization error R(w).

In the reverse situation for high h, i.e. small % the gap between Réfi?p(w) and C (%) arises
from large complexity terms. Hence, the parameters of the model fit nearly perfectly but
exclusively to the given training set. Such an adaption of the parameter to the training ex-
amples is that accurate that the model even captures singularities of the training set, which
are not representative for general data point (x,y). This so-called overfitting leads to high gen-
eralization errors R(w). Here, the distance between the two error terms can not be bridged

by ERM. Given this situation, reducing Réﬁl)p(w) is not sufficient to minimize R(w). Even for

Rggfp(w) ~ 0, the complexity term C (%) sets a bound on the generalization error.

This shortcoming of the ERM principle motivates the development of a more elaborate
approach to minimize the generalization error, namely the Structural Risk Minimization (SRM).

4.4. Structural Risk Minimization

The SRM can be understood as an extension of the ERM, which does not solely minimize the
empirical risk but also the capacity of the model and, hence, it reduces the undesirable gap
between C (%) and Réﬁl)p (w). To accomplish this, the model complexity is treated by imposing
a structure on the set of functions f(x,w),w € A.

Assume, for instance, that a learning machine has to select a model for a binary classifier
for the observations as given in figure 4.4. In this case, a structured set S, of all possible
models are polygonal chains with k line segments. Figure 4.4 shows that k can be utilized to
control the complexity of the model.

The simplest model, for k = 1 is described by one line. Its parameters can be adjusted
such that at least 9 observations are assigned incorrectly. The simple model, with a high
training error generalizes badly.

This is tackled by further increasing the complexity and adding a second line segment. The
optimal model in this set S, reduces the missclassification rate to 5. Hence, a relatively low
training error while maintaining simplicity is achieved and the model generalizes sufficiently.

28 4. Statistical Learning Theory

R class14
[
N B> P oclass2°
o > IN
[N > D
IS IS
o
o o o ° » > b
o
o o o) > ° 5
>
o o
° o o o >
o ©

Figure 4.4: Depicted are the applications of three classifiers of the set S, of k polygonal chains whose complexity is stepwise
increased. (TOP LEFT) The learning task is to separate the given oberservations into its two calsses, a triangular and a circular
one. (TOP RIGHT) For k = 1 the classifier is very simple and the training error with 9 missclassifications is high. This is
insufficient for generalization. (BOTTOM LEFT) Increasing k to 2 reduces the training error to 5 missclassifications while keeping
the model simple, hence that generalization error suffice. (BOTTOM RIGHT) Trying to further decrease the trainging error to 4
missclassifications by increasing k = 3 results in a too high complexity and generalization is again insufficient.

The training error can be further decreased by applying more complex models which are
composed of three lines. Indeed, the training error lowers to only 4 wrong classification.
However, due to the increase in complexity the generalization error starts to increase again.

Consequently, the optimal generalization is achieved with a complexity of k = 2.

SRM is based on the same stepwise approach of first setting the complexity and then
minimizing the risk as shown in the above example. In general, it defines a set S of functions
with an admissible structure' such that

S ={L, f(x,w)),w €A} and (4.10)
Sl C SZ C .- C Sn
and S* = U, Sy. Then, for a given set of D observations the complexity is set by choosing an
element S, of S with n = n(D). For this set S,,, the ERM is applied. Thus, the function in S,
for which R(w) is minimized by decreasing Réﬁ?p (w) is selected.
Often, SRM is interpreted as an approach to balance the trade-off between over- and
underfitting.

"An admissible structure of set S of functions features: S* everywhere dense in S, VC-dimension hy, of each set S, is finite, any
element of S, is totally bounded 0 < L(y, f(x,w)) < By, w € A.

Regularization Theory for Deep Learning

In 1996, Wolpert et al. unveiled in their No Free Lunch Theorem (NLT) for machine learning
algorithms that the error rate that is yield by applying every classification algorithm to previ-
ously unobserved data points x ~ P(x) is averaged over all possible data-generating processes
P(x) always the same. Universally, no learning algorithm is better than any other [56].

Although this seems to be a discouraging result, it only holds if taking all possible P(x)
into account. However, not all of them are equally relevant for the given learning task. Only
taking the meaningful ones into account allows the design of learning algorithms that per-
form well on these distributions. To restrict the focus to only a few distributions particular
preference are built into the learning algorithm.

One example of such a preference is the adaption of the model complexity by adjusting
k, as shown in the figure 4.4. Modifying the capacity affects the set S, of functions from
which the learning algorithm can choose the optimal one. This has a direct impact on the
generalization ability. However, the performance of learning machines is not only affected by
the size of S, but also by the kind of functions that it comprises. While polygonal chains are
useful to categorize observations that are separated by linear boundaries, splines perform
better in classifying data points that are non-linearly separated [19].

Instead of excluding or including particular functions from the set of possible models, a
more general approach is to modify the learning algorithm such that it prefers one over the
other. Such preferences can be expressed in numerous ways and are summarized in the
term of regularization. To be precise, any modification to a learning machine to reduce its
generalization error but not the training error is called regularization. The latter might even
increase, and finally regularization aims at closing the gap between the two errors [19]. While
ERM combats underfitting, regularization counteracts overfitting.

The field of regularization techniques is huge and which of them improves the performance
the most, finally depends on the learning task. Some of them restrict the learning algorithm
while others modify the cost function and hence put a soft constraint on the values of the
parameter. Still others, improve generalization by encoding prior knowledge. Further, some
regularization methods are designed to prefer simpler models over complex ones as advo-
cated by Occam’s razor. In terms of neural networks, ”simple” can be interpreted in different
ways. One straightforward meaning is simple in the sense of containing fewer parameter.
As depicted in figure 5.1, I applied this idea to the MNIST classification model in section 3.
Reducing the number of parameters from 2048 units per hidden layer to only 512, indeed
boosts the generalization performance. The price to pay is an increase in the training error
[53].

Presenting all existing regularization techniques is beyond the scope of the present report.
In lieu thereof a small selection of different methods, mainly applied for neural networks is
examined. The choices are either motivated by their commonness of occurrence or their role

29

30 5. Regularization Theory for Deep Learning

Figure 5.1: The graphs show the 035 == M.L.P.Complex Val M.L.P. Simple Val
training and validation loss of two —— M.L.P.Complex Train M.L.P. Simple Train
versions of the MNIST classifier. A 030
complex model, corresponding to

the blue graphs is similar to the origi- 025
nal but has 2 hidden layers with 4096
units. Summing all trainable param-
eters leads to a total of 20 037 642.
Opposed to that, the 2 layers of the
simple model have only 512 units.
This reduces the number parame-
ters that need to be trained to 669
706. Although, the simple model
performs worse during training, it
outperforms the complex model dur-
ing validation. Moreover, the gap
between training and test error re- 0 H 3 3 : 3
duces with decreasing model size. Epoch

0.20
(9]
[
o
-

0.15

in the field of image processing. I investigate their regularization effect and power by mod-
ifying the MNIST classifier from section 3.6. All corresponding Tensorflow implementations
can be found in the appendix B.

5.1. Parameter Norm Penalties

A particular solution can by achieved, by excluding any other. Whether to discard a certain
parameter constellation or not, depends on the loss that it yields. Hence, alerting the loss
function to the disadvantage of any solution that is is to be excluded, steers the system in
the direction of more favorable ones.

Parameter Norm Penalties are one instance of this regularization approach. As implied by
its name, solutions are punished in dependency of a parameter norm. This is formulated in
terms of an adapted, regularized loss function, which takes the form

Liota1, f (6, W) = Ly, f (%, W)) + ALreg(W), (6.1)

where L(y, f(x,w)) is the general or data loss since it is induced by observations. Opposed
to that, the additional term Lgeg(w) is the regularization loss, which solely depends on the
weights. Its contribution to Ly (¥, f(x,w)) is controlled by the regularization parameter A €
[0,).

Different choices of Lge,(w) have a different influence on the weights and, hence, result in
different solutions. Two common techniques to define the regularization loss are the L2- and
L'-Regularization.

5.1.1. L?>-Regularization

The L?-parameter penalty norm, often referred to as weight decay defines the regularization
loss as

L =1 T. 5.2
Reg(W) 2W wo. (5.2)

Models that contain many parameters or a few of high value are punished by increasing their
loss.

Its mechanism becomes more evident by analysing its behaviour during the training
phase. For instance, a SGD optimization that minimizing the newly defined regularized loss
updates parameters in iteration t according to

WT+1 =w'— erVthotal(y' f(x' W)) (53)

5.1. Parameter Norm Penalties 31

= —
2.0
@ —= M.LP.val M.L.P. L2 La = 0.005 Val —= M.LP. L1 La = 0.005 Val
3 —— M.L.P. Train M.L.P. L2 La = 0.005 Train —— M.L.P. L1 La = 0.005 Train

0s Figure 5.2: The original MNIST classifier is
marked by the blue graphs and its regular-
_ ized versions by orange and green. While
I e e L L i the first applies the L?-regularization with
0 i 3 3 7 : : 7 : 5 A =0.005, the second uses the same regu-
Epoch larization parameter for a L*-regularization.

with learning rate €;. As the regularized loss, its gradient
- = — Aw;; (5.4)

aWij aWU

as well contains two parts. The first displays the dependency of parameter w;; on the data,
represented by the data loss L(y, f(x,w)). Small values indicate that w;; are weakly supported
by the data. Hence, they are less reliably estimable and one runs the risk of distorting
the solution when taking them into account. This is were regularization becomes evident,
embodied by the second part of the gradient 5.4. While the data loss is too small to do so, this
weight decay reduces parameter w;;. For the right choice of 1, the parameter w;; gradually
decays to zero [42].

While examined only for a particular parameter w;;, this advance is applied independently
to all of them. However, each parameter is estimated more or less reliable from the data and
hence is more or less strongly affected by the weight decay.

5.1.2. L'-Regularization

The L!'-Regularization is closely related to the previous approach, yet it defines the regular-
ization loss as
Lreg(w) = Allwll1 . (5.5)

As stated earlier for the L?-regularization, this loss function is plugged into any gradient
descent scheme of desire, now applying

6Ltotal 6L .
- VL} = —Wij -1 31gn(wij) (56)
to update the parameters. Again, regularization comes into effect when updating parameters
that rely only weakly on the data. Depending on the adjustment of A the decay of w;; is more
or less fast. For sufficiently large values, Asign(w;;) can overrule the data induced gradient

and set the parameter directly to O.

Both, the L?- as well as the L'-regularization steer the values of parameters that can not
be derived from data towards zero. The latter, however, is more aggressive in doing so and
sets more parameters to O.

The impact of such solutions that feature a high level of sparsity becomes evident when
considering for instance feature learning. The feature which corresponds to the parameters
that are set zero is safely discarded [19].

The schematic illustration in figure 5.4 shows the adapted architecture of my base model.
The regularization strength of the L'-approach, however, becomes already apparent when I
incorporate it into the MNIST classifier. In order to compare it with the L?-regularization,

32 5. Regularization Theory for Deep Learning

== M.L.P. Val M.L.P. L2 La = 0.005 Val == M.LP. L1 La = 0.0005 Val
= M.L.P. Train M.L.P. L2 La = 0.005 Train == M.L.P. L1 La = 0.0005 Train

Figure 5.3: Choosing the right regulariza-
tion parameter A is crucial for the effect
of parameter norm penalties. While 4 =
0.005 seems to be a reasonable value for
the L?-regularization, it is 2,1 = 0.0005.

Figure 5.4: The scheme shows

the structure of my MNIST clas-

sifier after incorporating param-

eter norm penalties. Obvi-

ously, the architecture does not

change. As denote by the color

(shade of red) the hidden lay- === input layer

ers are still fully connected. The === ocutput fully-connected layer
stripped pattern marks the addi- === fully-connected layer with
tional regularization. parameter norm penalty

both methods are include into the base model. To ensures that the regularization terms are
included into the loss at the same extent, I set the regularization parameter in both cases to
A = 0.005. As shown in figure 5.2, the L?>-method shifts the errors closer to each other while
increasing both. Opposed to that, regularizing with L' sets the gap to zero and pushes the
errors to a high level. Although the setting prevented overfitting for both approaches, over-
regularizing can be damaging as well. Figure 5.3 reveals that finding the right regularization
parameter is a dedicated issue. Apparently, reducing 1 by one order of magnitude leads to a
less aggressive Ll-regularization.

5.2. Invariance Learning

Parameter norm penalties regularize by exploiting the relation between parameters and data.
This approach can be applied without knowing the final purpose of the learning machine.
Opposed to this invariance learning aims at improving the generalization performance by
incorporating prior knowledge about the learning task. A system is called invariant towards
a specific feature, if changes in the input with respect to this feature do not alert the output.

However, the nature of this invariance strongly depends on the application purpose of
the learning system. Assuming for instance a neural network that is designed to classify the
MNIST data set. For a human, it is obvious that a five in the bottom of an image still remains
a five if it is shifted to the top. On the pixel level of the input data though, this translation
causes a significant change. Nevertheless, a neural network that generalizes well has to be
capable of correctly recognize the five. It has to be invariant with respect to translation.

In principle, an adaptive model such as the neural network can learn this invariance if it
is trained with a sufficiently large number of input images which show fours in either of the
lower corners. This approach is hampered if not infeasible if too few training examples are
given or several invariances have to be trained.

The following presented techniques offer alternative approaches how to learn invariances

5.2. Invariance Learning 33

l_._l

Original

Figure 5.5: To train the MNIST classifier
with respect to invariance towards transla-
translation rotation tion or rotation can be yield by modifying the
invariance invariance input in accordance with the invariance.

== M.L.P. Val M.L.P. Da Val
o4 —— M.L.P. Train M.L.P. Da Train

Figure 5.6: Feeding the basic MNIST classifier
with augmented input data leads to less over-
fitting. Blue denotes the basic model while the
orange graphs depict the bahivour of the same
model, but trained with augmented input data.
The following input modifications were used: ran-
_____________________ dom rotation of +/ — 8°, random horizontal and
vertical shifts of +/ — 8% of pixel width respec-
tively height, random shearing with a maximal an-
° T T gle of 0.3% in counter-clockwise direction as well
Epoch as random zoom in a range of 8%.

~~~~~~~~~~
________________

and hence improve the generalization ability [11].

5.2.1. Data augmentation

Small data sets restrict the most straightforward way to improve the generalization ability
of a model, namely training with more data. One approach to get around this issue is to
artificially extent the given data set by exploiting it to create faked inputs. However, not
every learning task allows the augmentation of data.

For a density estimation task, fake data can only be produced with the final solution.
Opposed to that, classification is one of the learning tasks for which it is easiest. Here, a high-
dimensional and complicated input x is mapped to a single category y. It is inherent in this
learning task, that the classifier features invariances towards a wide range of transformation.
With this knowledge about classification, new training data can be generated by augmenting
the input data x [19].

How to finally augment the data depends again on the learning tasks and the kind of
invariances that the system needs to learn. To examine that, I trained the base model for
the MNIST classification with respect to translation by spatially shifting the original image.
figure 5.5 shows, that turning it leads to invariance towards rotation. Figure 5.6 depicts that
my classifier as earlier tends to less overfitting when training it with slightly rotated, spatially
shifted, zoomed or sheared input images.

A further possibility to benefit from data augmentation arises with the finding of Tang and
Eliasmith that neural networks are not very robust towards noise [S1]. This characteristic
can be diminished by training them with data that is augmented by applied random noise.

5.2.2. Parameter sharing

While data augmentation trains the learning machine to produce the same output for two
slightly different inputs, invariances can also manifest themselves within the same input.



34 5. Regularization Theory for Deep Learning

Figure 5.7: Invariances can also be neces- &
sary to find the same object within one input &
data. Image: [1]

Assuming for instance that a classifier tries to recognize all blue eyes in figure 5.7. Ob-
viously, the object of desire is spread all over the image and might even differ in its angle.
Hence, the system has to behave invariant towards translation and small rotations within the
input. In spite of the different locations, the object of the blue eye is still the same and all of
its instances share the same pixelwise description. From a neural network point of view the
same feature can be detected by the same parameters. Hence, instead of using independent
parameters for each eye, the different components of the model share a unique set of param-
eters. This so-called parameter sharing leads not only to invariance towards translation and
distortion but it also reduces the number of parameters.

A special instance of neural networks, namely Convolutional Neural Networks makes ex-
tensive use of this regularization technique. They mainly profit from the significantly lower
amount of parameters. This allows the network not only to save memory but also to dramat-
ically grow in size without requiring a corresponding increase in training data [19].

In general, parameter sharing is not only applicable to components of the same model but
also to several models that are instructed with the same learning task. An even more general
approach is parameter tying or soft parameter sharing. This approach encourages groups
of parameters or parameters of multiple models for the same learning task to have similar
values. Assuming for instance, one model uses parameter w(!) while a second model uses
w® . The dependency between them can be expressed by adding a regularizing parameter
norm penalty of the form Lgeg = W™ —w®||3 to the loss function. Opposed to parameter
sharing, where the w) = w(?) parameter tying misses the remarkable advantage of a reduced
number of parameters [11, 19].

5.3. Dropout

The approach of dropout has its origin far away from artificial intelligence, in genetics. Natu-
rally, a set of genes is an offspring of combining each time half of the parental sets and adding
a small pinch of random mutation. In a laboratory, this process is emulated by using slightly
alerted copies of the original genes. Intuitively, one might assume that individual fitness is
optimized by combining such set of genes, which have proven to work well together. However,
in nature such connections are broken up but still the highest developed organisms evolve.

Srivastava et al.[48] try to explain that by fathoming the paths of natural selection. Accord-
ing to them, nature does not generate gene sets to optimize individual fitness but maximize
their ability to mix with others. Indeed, genes that are able to work well together with another
random set of genes make them more robust. Such genes can not rely on the presence of a
large sets of partner. Rather, they have to adapt to situations in which they are on their own
or with only a small set of others.

Interpreting units of a neural network as genes, leads to the idea to increase their ro-
bustness and ability to work independently from other neurons by combining them with a
randomly chosen sample of units.

Dropout achieves this random combination of units by temporally removing a number of
units from the network. Figure 5.8 illustrates, that this removal includes all incoming and
outcoming connections. Discarded units neither participate in the forward nor in the back-
ward propagation when training the network with gradient descent methods and BP. As with



5.3. Dropout 35

Figure 5.8: The scheme
visualizes the drop out
model. (LEFT) An origi-
nal two-layered standard
neural network.(RIGHT)
After Dropout is applied, the
crossed units as well as their
in- and outcoming connec-
tions, are temporally removed
from the network. Comparing
it to the original architecture
shows how Dropout alerts the
architecture [48].

w2 pw;

Figure 5.9: Models that are trained with dropout
Wy ws have to be treated differently during training and
pwy pw3 test phase. (LEFT) While training the model each
of the units is only present with probability p.
b~ PDTopout (RIGHT) During testing, this is represented by
keeping all units but down-scaling their outputs

with a factor of p.

genes, the dropped units are set randomly. For instance, each unit is retained with a fixed
probability of p.

o
I‘.
)

{ )
<
>

o
o
%
AN

N

ow @
AN,
SN/
, \§ ‘;
’ ONA
05 ;c
O

Dropout can be interpreted as a version of ensemble learning. In general, such meth-
ods combine several base models to derive a final, optimal prediction model. Given a neural
network of fixed size, base models are all possible different parameter settings which are com-
bined by averaging their weighted predictions. This works well, since different models suffer
from different shortcomings. It works even better for combined models that strongly differ
from each other i.e. feature varying architectures. For a sufficiently large model, however
training all of its instances or several different architectures is fatally expensive [19].

Dropout addresses this issue by providing a way to approximately combine exponentially
many different neural networks architectures. In figure 5.8, the dropped out network appears
to be a "thinned out” samples of its version. Assuming n parameters, then dropping out units
leads to 2™ different instances of the network. Each time an input is presented to the network,
a different architecture is sampled by randomly dropping out units. Yet, all of them share
the same parameters. All in all, training with dropout is equivalent to combining 2" different
models which all share the same weights and are rarely trained [27, 48].

Finally, the neural network is trained with exponentially many smaller samples of itself
by retaining each unit with a probability of p. During the test phase, however, this is not
reproducible. As shown in figure 5.9, it is instead approximated by one single neural network
without dropout. It is a scaled-down version of the original model whose units outputs are
scaled with a factor p. This allows to merge the 2" training networks, which share weights
into a single one during test phase.

Again to examine the effect of dropout, I build it into the MNIST classifier. Opposed to
parameter norm penalties, [ have to alert the network architecture to include dropout reg-
ularization. This is visualized in figure 5.11. The training and generalization performances
of the base model as introduced in section 3.6 and its adapted version with dropout are de-
picted in figure 5.10. Setting the keep probability to p = 0.5 regularizes well in the sense that
the gap between the errors is narrowed while even improving the generalization performance.
For this achievement, an increasing training error is accepted.

As mentioned before in context of the parameter norm penalties, the choice of the hy-
perparameter p is essential for the regularization performance. To get an idea of its impact,



36 5. Regularization Theory for Deep Learning

== M.L.P. Val == M.L.P. Dropout P = 0.5 Val
—— M.L.P. Train —— M.L.P. Dropout P = 0.5 Train

Figure 5.10: Modifying the basic MNIST
classifier by incorporating Dropout regular-
izes well. However, overfitting is not com-
pletely prevented but reduced.

mmmm input layer
Figure 5.11: The scheme illustrates again _
the architecture of my MNIST classifier. To output fu]ly connected layer

include dropout, | add a further stage af- === fully-connected layer
ter each fully-connected layer. This dropout

) : dropout layer
layer is colored in yellow. p ¥
——= M.LP.Val —— M.LP.DoP=0.1Val
02 = M.L.P. Train = M.L.P. Do P = 0.1 Train
— = M.L.P. Do P = 0.5 Val == M.L.P. Do P = 0.8 Val
——— M.L.P. Do P =0.5Train = M.L.P. Do P = 0.8 Train

Loss

Figure 5.12: Modifying the basic MNIST
classifier by incorporating Dropout regular-
izes well. However, overfitting is not com-
pletely prevented but reduced.




5.3. Dropout 37

I train and evaluate the MNIST classification model with three different keep probabilities
p € {0.1,0.5,0.8}. The error courses are depicted in figure 5.12. Although three values are by
far not enough to make final predictions, the graphs indicate a non-linear behaviour of the
loss function on p. While increasing p from 0.1 to 0.5 nearly does not cause any change in
performance, further increasing p finally leads to radical modifications in training and vali-
dation performance. While the validation error stays on the same level as with the examined
lower values of p, the training error strongly increases. Hence, the gap between the empirical
and actual risk is extremely high and it is questionable whether that is necessary.






Basics of Convolutional Networks

With their 1943 released mathematical description of nervous activities, neural nets and their
relation among each other, Warren McCulloch and Walter Pitts laid the cornerstone of neural
networks [35]. One outstanding characteristic of them is their ability to learn i.e. generalize
from examples. While aiming to optimize this power, researchers draw the conclusion that
generalization performance is improved by reducing the number of free parameters in the
model. At the same time the network has to maintain a certain level of complexity to deal
with the learning task.

LeCun et al. found that a success-promising remedy for this trade-off is the incorporation
of prior knowledge. Obviously, it is utopistic to uniformly specify such knowledge. However,
considering a particular learning task makes it feasible.

A prime example for this idea is visual pattern recognition. Three basic perceptions from
classical works in this field are adopted. First, higher-level features can be split up into
basic, more abstract ones. Hence, extracting local features and using them to rebuilt the
final pattern is advantageous. Second, distinctive features of an object can appear in various
locations of the input pattern. And last but not least, to eventually recognize the object, the
relative position of such features towards each other matters whereas information on the
precise location is needless [31].

In terms of neural networks, these principles formulate as follows. The detection of ab-
stract features correlates to hidden layers that only combine local information. Hence, a full
connection of units in a network is obsolete and they can be substitute by sparse links in-
stead. Since similar parameters extract similar features, parameter sharing allows to scan
the entire input pattern for the sane feature. Finally, reducing the outputs resolution, from
now on called downsampling leads to approximated feature locations instead of retain exact
positions [31].

Fully-connected, regular neural networks are based on common matrix multiplication.
Opposed to that, the above considered requirements for visual pattern recognition are met by
networks which are built on alternating layers of discrete convolution and downsampling. In
terms of LeCun’s idea, this is equivalent to exploit prior knowledge by tailoring the network’s
architecture.

This chapter is devoted to the discrete convolution whereas downsampling is thematised
in chapter 7. Starting with a discussion on the fundamental operation of convolution, the
remainder of the chapter is concerned with the detailed explanations of the impact of discrete
convolution if applied in neural networks.

39



40 6. Basics of Convolutional Networks

6.1. The Discrete Convolution Operation

The operation of convolution has its origin in functional analysis. For the two functions
f,g: RN xRM & C, it is defined as

(@ =] | fs096-sy-odsa 61)

with
F*9y) =g =*Hxy). (6.2)

To understand the effect of convolution, consider the following situation. The function f
describes a series of data e.g. supplied by a sensor that scans the surface of a particular
material. However, the sensor is noisy and one tries to diminish its impact by averaging
several data values.

For a measurement in location x, the values of the closest surrounding are the most
relevant. Hence, a weighted average with emphasis on spatially neighboring values leads to
a more precise estimate of f[19, 41].

In the convolution operation as defined in 6.1, the function g(s,t) takes the part of the
weights of certain values. For the smoothed estimate of f in location (x,y), values that are
shifted by s respectively t to the left or right respectively up or down are enhanced.

Equation 6.1 describes a continuous convolution. However, the principle can easily be
extended to discrete situation as appearing when the sensor measures the surface in equidis-
tant steps of size x and y. Analogously to 6.1, the discrete convolution formulates as

Fep@n =Y > fgE=sy-1 (6.3)

S=—00 t=—00

where (s,t) take only integer values. For functions f, g that are non-zero for a finite subset
of s and t, the summation reduces to the sum over the values of non-zero overlaps. Hence,

FrD@y =) ) fls,90c =57 -1 (6.4)

If the functions f,g are interpreted as matrices, the 2D discrete convolution can also be
regarded as a matrix multiplication. For that, represent f(x,y) by the matrix I € R™™ and
g by Q € RF*¥ The convolution (f * g)(x,y) is then a matrix F whose dimension depends on
the final implementation of the convolution [19]. Taking the commutative property 6.2 of the
convolution into account, the matrix-multiplication reads as follows:

k k
ny = Z Z Ix—n’,y—m’ : Qn’,m’ (6-5)
m'=0n'=0

Figure 6.1 illustrates how a 2D discerte convolution is computed.

In real life, there is a wide range of different interpretations of the matrices in 6.5. As-
suming for example, that the matrix I represents a black-white image of resolution n X m.
The matrix Q takes the role of a so-called filter or kernel. Such kernels, applied to images
according to equation 6.5 extract one specific property of the image as for instance a vertical
edge. In each pixel of I, a numerical value is associated with this feature. These are stored
in the convolution matrix F, which often is referred to as feature map of kernel Q.

If the regular matrix multiplication in a fully-connected neural network is substituted
by a convolution operation as defined in equation 6.5 the network turns into a so-called
Convolution Neural Network (CNN) or deep Convolution Neural Network (ConvNets) [19]. In
the further course of this report, the terminology concerning I, Q and F as used in the above
example is retained.



6.2. Characteristics of Discrete Convolution in Neural Networks 41

oj1]2
2121]0
ofl1]2 \

Figure 6.1: The image illustrates one example for a 2D discrete convolution with a filter of values as shown in the gray matrix
in top. Applying this to the blue 5 x 5 input matrix generates an output of size 3 x 3. The image exemplifies the calculation on
the first row of the input matrix. Discrete convolution is illustrated as overlapping the input matrix with the kernel. The resulting
outputs are yield by first multiplying the overlapping input and kernel entries and then summing over all these products [? ].

6.2. Characteristics of Discrete Convolution in Neural Networks

The motivation to substitute an ordinary matrix multiplication by a convolution operation and
thus change the network’s architecture, is rooted in the need for an increase in generalization
performance. In fact, convolution comes with a few distinctive and advantageous features.
It corresponds to a sparsely connected, shared parameter matrix that is associated with an
equivariant network. A further distinctive feature of the discrete convolution is its ability
to proceed tensors. Before examining the properties and their effect, the term of tensors is
briefly clarified.

6.2.1. Tensor

The heart piece of common neural networks is affine transformations. In each layer, an
input vector is received and multiplied with a matrix to produce an output vector. This
procedure is independent of the input’s dimensionality. Sound clips, images or even a not
ordered collection of data, can be flattened into an one-dimensional vector before being fed
into the transformation. However, a wide range of input data have an intrinsic structure
which features distinctive properties [16].

Such data is represented by so-called tensors. For the given purpose, it is sufficient to
think of tensors as a multi-dimensional array. They are characterized by the number of
dimensions or axes, the rank of the tensor. A tensor of rank O is simply a scalar. Rank 1
tensors denote a column vector of size 1 X n and analogously, rank 2 a m X n-matrix.
Although, tensors seem to be abstract mathematical structures, they can be encountered in
many daily situations. As shown in figure 6.2 images for example are simply tensors of either
rank 2 or rank 3.

A further important feature of structured data is the fact that the ordering of the dimension
matters. An image has particular width and height axes, while sounds clips possess one time
axis. In addition to that, one of the axes, called channel axis is used to access different views
of the data. For images it is three-dimensional and represents the three colors red, blue and
green whereas the channel axis of a stereo audio track has only two dimensions. Each of
them representing the left and right channel.

If applying an affine transformation as in regular neural networks, these properties of the
structured data are lost while flattening. All the axes are treated the same, assuming that
none of them carry additional knowledge. However, when dealing with the complex task of
object recognition one should be thankful for every bit of data that can be retrieved. Hence,



42 6. Basics of Convolutional Networks

1 X n tensor m X n tensor m X n X 3 tensor mXxXnx3Xttensor

i M | }Mv '} IM i

Figure 6.2: Daily life examples such as audio files, images or video clips are tensors of different dimensions.

preserving the intrinsic structure would be of striking advantage [16].

That is where discrete convolution comes into game. Opposed to common matrix-vector

multiplication, it is able to retain the topology and its containing information. Incorporating
prior knowledge about the data representation of images, layers in convolutional networks
are designed such that they expect a structured input.
In CNNs tensors do not only appear when dealing with input data. Furthermore, the tensor
representation is also applied to transfer data between the internal layers of the network.
Here again, knowledge is stored in the data structure. Working with tensors can be under-
stood as an increase in the information density of the data that travels within the network.

However, to efficiently deal with large input, CNNs take advantage of further properties of
discrete convolution [19] .

6.2.2. Sparse connectivity

Imagine one wants to detect a feature in an image that occupies 100 pixels. Even if the input
image has thousands or millions of pixels, it still suffices to scan a small, 100 pixels contain-
ing area to find the feature. Such a local restriction can be accomplished by constraining
the kernel to the spatial extent of the feature. The so-called receptive field of Q describes this
spatial size. It determines the "window of the image” that is visible for the kernel. Choos-
ing kernels Q of remarkable smaller size than the input I results in networks with sparsely
connected layers [19].

Thus, there exist two kinds of connectivity in neural networks. Regular neural networks
are built up by fully-connected layers where every input interacts with every output. Each of
these connections is uniquely described by one parameter. Opposed to that, convolutional
neural networks make use of sparse interactions where an input is only connected to a few
outputs. Figure 6.3 illustrates the effect of an input unit on the output for both kinds of
connectivity. Figure 6.4 describes the opposed point of view.

Sparse connectivity features a distinctive advantage: it leads to a remarkably reduced
number of parameters. This in turn, does not only alleviate overfitting and save memory. In
addition to that, the computational costs decrease in the same extent in which the connec-
tivity is reduced. Hence, sparsity yields an improvement in efficiency without affecting the
performance [19].

However, it seems as if locally connected networks suffer from a serious drawback. The
number of inputs that directly interact with each other is limited by the number of inputs
that is covered by the kernel. Thus, more complex connections i.e. interactions that involves
more inputs are represented indirectly and the inputs are connected in deeper layer of the
network. Hence, this issue is tackled by describing complicated connections by constructing



6.2. Characteristics of Discrete Convolution in Neural Networks

43

Figure 6.3: Two versions of connectivity,
sparse and fully. Input units are denoted with
x, output units with s. Grey colored units are
connected. (TOP) The output s is generated by
convolution with a kernel of size 3 x 3 and in-
put x5 only affects 3 outputs. (BOTTOM) The
output is formed by a matrix multiplication and
no longer spares. x; affects each of the output
units [19]

Figure 6.4: Two versions of connectivity, sparse
and fully. Input units are denoted with x, output
units with s. Grey colored units are connected.
(TOP) The output s is generated by convolution
with a kernel with receptive field of size 3 x 3.
Output s is affected by 3 inputs. (BOTTOM) The
output is formed by a matrix multiplication and
no longer spares. s is affected by each of the
input units [19]



44 6. Basics of Convolutional Networks

Figure 6.5: In the above illustration, x; denotes
the inputs and h; and k; following hidden units.
Assuming that a kernel of size 3 x 3 operates on
each of this layers. Hence, the first hidden layer

is not able to combine the information derived
from input x; and x5. This can be tackled by
adding the second hidden layer g which merges
the units h,, h; and h, that suffice to represent
the whole range of inputs x; with i = 1,...,5.
[19]

them from simpler ones, as presented in figure .

6.2.3. Parameter sharing

Each kernel is associated with a particular learning task, namely to extract a specific feature.
Assuming that the same feature can be detected in several areas of the input, the parameters
of the correlated kernel Q are used in every location of the input I. Consequently, instead of
training a set of parameter for each location, the same parameters are shared in each location
[19].

Parameter sharing is a technique to integrate prior knowledge. As mentioned in section
?7? it regularizes the network and hence improves its generalization performance.

6.2.4. Equivariance

Despite their outstanding performance in image representation, a comprehensive theoretical
understanding of deep convolutional neural networks has not been reached so far. Attempt-
ing to extent the limited knowledge about them, the mathematical properties of representa-
tion are examined. These are equivalence and equivariance with the special form of invariance
[32]. Equivalence is concerned with the question whether two CNNs capture the same visual
information or not. Equivariance investigates how transformations of the input impact the
output '. Broadly speaking, a representation is equivariant with respect to a transformation
in the input, if the output changes in the same way. Invariance occurs if transformations of
the input have no effect at all.

The success of CNNs is generally attributed to their equivariance to translation [25]. Ife.g.
the input image is shifted by one pixle to the left its representation in the feature map shifts
in the same extent [19]. This property is directly inherited from parameter sharing which, in
turn is intrinsic to discrete convolution [25]. However, the convolution operation leads only
to representations that are equivariant with respect to translation. To deal with differently
transformed inputs such as rotated images, further mechanism are necessary. With data
augmentation, one such alternative approach was presented in ??.

Concluding, neural networks generalize better if prior knowledge about their learning task
is exploited. For instance, discrete convolution forces the network to behave in accordance
with principles of object recognition. The price to pay is a design overhead since the network
architecture needs to be restructured.

' Let the function ¢ that maps an image x € X to ¢(x) € Z describe a CNN. This CNN is equivariant with respect to a
transformation g : X - X if
IMy:Z - Z,VREX : p(gx) = Mygd(x)
A sufficient condition for the existence of M, is that ¢ is invertible, since in this case My = ¢ o g o ~*. The nature of g is in
principle arbitrary [32].



Image Classification with Convolutional
Networks

The task of image classification consists of two sub problems: finding objects in the image
and classifying them. This division can be recovered in the architecture of classification
networks. One substructure detects features, the second categorizes them. While the latter
can easily be implemented as a fully-connected multi-layer network, the feature extraction
is less straightforward [29]. Since the late 1980s, it is known that regular neural networks
with a few hidden layers do not suffice for real-life object recognition tasks [31].

This is justified by the fact that fully-connected layers do not scale well with images. To
clarify, consider a colored image of resolution m X n. Since tensors can not be proceeded
with fully-connected layers, a transformation of the 3D original data into a 1D vector of size
m-n -3 is required. Consequently, not only the topology of the input is ignored but also the
model capacity increased. A first hidden layer of size k has n-m - 3 - k parameters. At the
same time, sufficiently many and large hidden layers are necessary to cope with the complex
task of image recognition. However, this further increases the number of parameters and the
model becomes more and more prone to overfit. Finally, not even extremely large data sets
can deliver enough information for the network to generalize well [27]. The redeeming idea,
as examined in chapter 6 is the incorporation of prior knowledge by redesigning the network
as implemented in convolutional neural networks.

A further deficit of fully-connected layers manifests when taking early studies on cat’s
visual cortex' into account. Accoring to Hubel and Wiesel [23] simple and complex cells for
visual processing can be distinguished. Both primarily respond to edges and gratings. In
addition to that, complex cells pool from the simple and, hence, feature a certain degree of
spatial invariance.

Equivariance is a generalization of invariance. Pooling from simple cells is emulated by
downsampling stages. This exploits the equivariance property of discrete convolution and
turns it into invariance towards translation.

The following chapter aims at giving an overview on convolutional neural networks, which
are designed to classify images. In their outlines, all of them share the same substructures
which are presented in the first two sections. Applying convolutional neural networks to real
life problems comes with further implementation issues. The type of problems and ways to
cope with them is exemplified in the remainder of the chapter.

"Visual cortex is the part of the brain that is responsible to process visual information.

45



46 7. Image Classification with Convolutional Networks

=== input layer

Figure 7.1: The two-folded architecture of a conventional feature extraction

convolutional network is emphasis by coloring: green de-
notes the feature extraction. In this first part, the proper-
ties of the input which are relevant for classification are
obtained. They are forwarded to the subsequent classifi-
cation part.

= classification

7.1. Conventional Convolutional Networks

Conventional Convolutional Networks for images classification share a common structure.
Figure 7.1 shows that first features are extracted which are then used for classification.

7.1.1. Feature Extraction

Since 1979, when Fukushima et al. introduced a neural network for pattern recognition
based on convolution and translation invariance? for the first time, numerous improvements
have been achieved. However, feature detectors still appear as a stack of stages [18]. A
general overview of functionality and design parameters of the layers will be given in the
following section.

Convolution Layer

As implied by its name, the core part of the convolution stage is the discrete convolution
operation itself. Briefly recapping, the convolution consists of an input I and a kernel Q that
maps to a feature map F. This corresponds to a sparsely connected and shared parameter
matrix. Entries in feature maps will be referred to as units, activations or pixels.

One stage of the network consists of multiple such kernels K that are applied in parallel.
Each of them extract a particular feature and hence results in a distinctive feature map. This
imprints a three dimensional shape on the output. Often, the number of maps and hence
the third dimension is referred to as the depth of the layer. Note that this is an unfavorable
terminology, since the here described depth should not be confused with the depth of deep
neural networks which gives the number of hidden layers. Sparse connectivity is asymmet-
ric and only valid for spatial extent. Kernels are always full in depth and thus their third
dimension equals the number of maps in the prior layer. In the first convolutional layer, this
depends on the input, as already pointed out in 6.2.2. Besides, some kernels even have a
fourth dimension which treats the batch size [49].

In addition to the number of kernels, their implementation play a crucial role for the
appearance of the output. While depth sets the third dimension, the spatial extent of the
output is controlled by the stride and zero-padding.

The discrete convolution as defined in 6.5 is applied to each pixel of an input image.
However, taking only each s-th pixel into account, yield a more compact but less fine repre-
sentation as illustrated in figure 7.2. Note that this reduction in the output size is interpreted
as a downsampling of the full convolution. It does not only lower the computational cost but
also exploits spatial invariance. The number s of skipped values is the stride of the kernel
[19].

Zero-padding describes the possibility to pad the input with zeros. This is motivated by
the fact, that each entry of the kernel needs to correspond to an element of the input. To
illustrated this, the extreme situations are taken into account.

2Fukushima et al. developed the so-called Neocognitron is a convolutional network whose parameters are fixed. The first CNN
that applied backpropagation to learn from examples was LeNet [29].



7.1. Conventional Convolutional Networks 47

e

Figure 7.2: In figure 6.1 it was shown that convolving a 3 x 3 kernel over a 5 x 5 input matrix generates an output of size 3 x 3.
This is equivalent to use a unit stride s = 1. However, increasing the stride to s = 2 in both dimensions of the input alerts not
only the output’s values but also its size. It reduces to 2 x 2. The larger the stride, the smaller the output. This example also
illustrates that the stride can be imagined as the step size with which the filter slides trough the image [16].

-

Ilcoloclocloclocloclol

Ladadlacbadacal.d

rFr=1I~"=~r=a-=-r-r-"
1101010101010
Ilololololololol
Ladadlaabadackal.d
1101010101010

r=I===“r=a-=r=r-"

badadlaala

loltotlolo

0
0
0
0

Figure 7.3: Shown is the same situation as in figure 6.1 but this time, the input is padded with one layer of zeros and the filter
is convolved with a stride of s = 2. Comparing the output entries of the first row shows that zero padding affects the results.
Assuming a zero-padding with unit stride s = 1 would increase the output map. However, this effect is counteracted by adapting
the stride to s = 2. That shows how both, stride and zero-padding can be used to control the size of the output [16].

First, consider a convolution without zero-padding. Convolution is applied such that the
kernel only visits position where the complete kernel is contained in the image. This approach
ensures that the output only contains entries that arise from the same number of input pixels.
However, it necessarily leads to a reduced output size. Thus, this rate of shrinkage restricts
the number of convolutional layers. As soon as the feature map reaches a spatial extent of
1 X 1, convolution is not possible anymore. This effect is indicated in figures 6.1 and 7.2.
In both cases the convolution is executed without zero-padding and indeed the output size
decreases compared to the input tensor.

Opposed to that, the input can be padded such that a convolutional layer does not modify
the size of the input. It stays constant through the entire ConvNet and does not constraint
the networks architecture. This freedom is excepted at the expense of the representation of
the bordering pixels. Due to the padded zeros, these pixels influence fewer output units than
those in the center of the input [19].

Summarizing, the output of the convolutional layer is a volume whose third dimension is
described by the depth. The spatial size is a function of the several hyperparameters such
as input size, stride, zero-padding and the receptive field of the kernel.

The presented convolutional layer is the simplest of its kind. In reality, a widely used
approach is the multi-channel convolution opposed to the here assumed single channel con-
volution. This is based on adding multiple feature maps of different kernels.

In addition to that, in some cases it is necessary to adapt the connectivity of input and out-
put. By sharing weights throughout the complete input, it detects the same feature in the
whole image. However, if it is known that a specific feature only appears in certain areas of
the input, shared weights are unnecessary. For instance, eyebrows only appear in the upper
part of faces. Instead of convolution, locally connected layers can be used. Misleadingly, this
is sometimes called unshared convolution [19].

In section 6.1 discrete convolution is introduced as a specialized form of linear operations.



48 7. Image Classification with Convolutional Networks

Figure 7.4: The image applies average pooling to the same input tensor as introduced in figure 6.1. Assuming a pooling kernel

of size 3 x 3 means that all 9 input elements that are covered by the kernel are averaged [16].

Applying it to any kind of input yields linear combinations, which are then forwarded to a
nonlinear activation function. According to Krizhevsky et al. [27], deep neural networks with
ReLU activation functions train several times faster than networks with hyperbolic tangent
activation functions. Hence, choosing an appropriate activation function is crucial for the
feasibility of deep neural nets.

Figure 7.5: MAX pooling with a pooling kernel of size 2 x 2 can
be imagined as splitting the input in several grids. The pooling 3 2
is then conducted independently on each of these. If the stride
is chosen such that it is equivalent to the kernel dimension leads
to non-overlapping grids. In the above example, s = 2 and each 1 2
separate grid region is marked with a different color. Since each 4 L’

grid generates only one output, namely the one with the largest

value, the output size is remarkable smaller [49].

2
7
1
3

= O 00| &

T

Downsampling

The nonlinear activations of convolutional layers are fed into a donwsampling stage. This
reduction in resolution yields spatial invariance.

In its earliest beginnings, downsampling was performed by applying a non-linearity on the
weighted average of the input units. Further possibilities are averaging as shown in figure
7.4 or taking the L2-norm within a small spatial window of the feature maps [49]. In 1992,
the so-called MAX-pooling method was introduced [55]. Since Scherer et al. showed in 2010
that MAX-pooling generalizes better and converges faster than any others, it has established
as the downsampling approach of choice [44]. Hence, the idea and properties of general
downsampling are examined based on MAX-pooling.

MAX-pooling computes the maximum of a local patch of units in one feature map. Typi-
cally, neighboring pooling units do not overlap. As depicted in figure 7.5, pooling layers can
be imagined as multiple pooling grids, each of them operating on z X z units. At the same
time, the center of adjacent grids are spaced s pixels apart.

Figure 7.5 shows that non-overlapping pooling is obtained for s = z. Here, each unit is
represented in only one pooling grid. Opposed to that, for s < z the region of impact of two
neighboring pooling grids overlap. Slightly better results in the top-1 and top-5 error rate
can be attributed to overlapping pooling. Moreover, Krizhevsky et al. claim that networks
with overlapping are more robust towards overfitting [27].

The effect of pooling can be enhanced by even using coarser pooling grids. Again, figure 7.5
shows that fewer pooling units than input units down-sample stronger and lead to layers that
are invariant to larger spatial translations. Additionally, this leads to reduced computational
time and less memory demand.

Changing the dimension in which the pooling grids are extended, effects the invariance
learning. While spatial pooling correlates to translation invariance, pooling over feature maps
is associated with an invaraince towards other transformations in the input [19].



7.1. Conventional Convolutional Networks 49

A more descriptive perspective on pooling and invarince to translation is obtain by consid-
ering the processes of pooling at the feature level. For that, recap that the convolutional layer
detects features. When generating patterns from such basic features their relative position
towards each other can vary slightly [28]. Assume for instance, a CNN that classifies the
MNIST data set. If an input image contains the endpoint of a roughly horizontal edge in its
upper left and right corners as well as the endpoint of the a vertical edge in its lower right
input pixels, that is enough information to deduce a 7 [29].

Pooling exploits this freedom by coarse-graining the position of the features and finally

merges semantically similar features into one [30]. Obviously, invariance to local translation
is in particular useful if the pure existence of several features is more important than their
exact position towards each other. Thus, pooling happens at the expense of loosing position
information.
This motivates a global interpretation of down-sampling. Correlating spatial dimension to
image content, shrinking feature map dimensions are equivalent to compressed content.
Transferring these maps to a subsequent convolutional stage means that a kernel of the
same size has a more global view on the features and their relation as before. Hence, down-
sampling results in a large input image context and allows the capturing of structures on a
larger scale [58], [9].

Both, its natural invariance towards translation as well as the reduction of parameters
make pooling an efficient prevention of overfitting. Moreover, it compresses the semantics of
the input step-wise until global objects can be recognized [46]. In each passing through a
whole convolution layer, higher level features are extracted by discarding locality information,
a process comparable to a contradiction or compression of the image [43]. Lining up multiple
of these layers, generates a Convolutional Neural Network. They transform highly resolved
inputs with high-level features such as edges into coarsely resolved outputs with low-level
features, e.g., a car.

7.1.2. Classification

For classification, off-the-shell classifiers such as fully-connected layers are convenient. To
bridge the convolutional structure with traditional neural network the feature maps of the
last convolutional layer are vectorized. After feeding them into fully-connected layers, a final
softmax logistic regression layer computes the scores for each class [20, 27].

7.1.3. Implementation

Neural networks for pattern recognition are built up by a stack of alternating convolution and
downsampling layers, followed by a fully-connected classifier, exist in their simplest form
since the early 1980s [18]. While these precursors were handcrafted, LeCun et al. applied
backpropagation to let the network learn its parameters in 1989 [28]. Despite the fact that
none of the former state-of-art approaches classified the MNIST data set more accurately
than his LeNet neural network, no remarkable advancement in the field of convolutional
neural networks was recorded within the following two decades [15]. The remedy was long in
coming, but finally the breakthrough of deep convolutional neural networks was marked in
2012. During the annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC), one
of the most well-known object classification task challenges in computer vision community,
Alex Krizhevsky, Ilya Sutskever and Geoff Hinton presented their deep convolutional neural
network AlexNet. While the runner-up network reached a top-5-error of 26% when classifying
images, AlexNet significantly outperformed it with an error-rate of only 15.8% [27].

The years of silence are owed to a bilateral constraint of deep neural networks. One in-
herently algorithmic, the other of pragmatic nature.

As discussed in section 3.3.1, the key issue of deep learning is the fading or amplifi-
cation of feedback error signals as the number of layers increase. Although not solving
the fundamental problem in its heart, Krizhevsky et al. combined GPU-based training with
non-saturating nonlinearities to alleviate its influence. Further, they found that locally nor-



50 7. Image Classification with Convolutional Networks

oag \dense

1000

048

Max‘ 128 Max
pooling pooling

Figure 7.6: As indicated by thin lines, training is distributed on two GPUs that communicates only at certain layers. The applied
training scheme is the momentum update [27].

warp
image ->{ crop / warp l—> conv layers » fc layers » output
image - conv layers -{ spatial pyramid pooling |—> fc layers » output

Figure 7.7: ((TOP)) cropping or wrapping to a fixed size. ((MIDDLE)) Process in conventional CNN. ((BOTTOM)) Process with
Spatial Pyramid Pooling. [21]

malizing the nonlinear activations improves generalization even more. In addition to these
modifications, AlexNet incorporates overlapping pooling as mentioned in section 7.1.1. The
resulting network is shown in figure 7.6.

The fully-connected layers that are used for classification suffer from two serious draw-
backs. First of all, they are prone to overfit and thus hamper the generalization ability. Heavy
use of data augmentation and dropout are relatively easy ways to alleviate this [27].

In addition to that, fully-connected layers need to have a fixed-size input by definition. De-
spite the fact that convolution layers are not constraint to inputs of a particular size, CNNs
require a fixed input image to allow classification. Since most data sets comprise images of
arbitrary sizes, these are either cropped or wrapped to obtain the requested resolution. As
shown in figure 7.7 cropped region might suffer from content loss, whereas wrapping leads
to distortion of the image. Both can compromise recognition accuracy.

In 2015, He et al. suggested an additional spatial pyramid pooling (SPP) on top of the last
convolution layer, as displayed in figure 7.7 [21]. This allows the removal of the fixed-size
constraint without drastically modifying the network architecture. The SPP layer contains
M so-called spatial bins, each applying MAX-pooling to the response of all filters [21]. The
generated output is a kM dimensional vector where k denotes the number of filters in the last
conventional layer. These vectors are the fixed-size inputs of the fully-connected classifier.
Figure 7.8 illustrates the method.

7.2. Network in Network Approach

In 2013, Bengio et al. released a paper on representation learning, answering the essential
question of the ingredients for a good representation [10]. Among others, hierarchically orga-
nized explanatory factors is one of them. Deep learning exploits this assumption by reusing
features, i.e., constructing multiple levels of representations with increasing abstraction.
More abstract concepts are composed of easier ones and are more invariant to local modifi-



7.2. Network in Network Approach 51

fully-connected layers (fcs, fc7)

fixed-length representation

N N ..o o S ——

4 16x256-d 4 4x256-d 4 256-d

LEEET

spatial pyramid pooling layer

feature maps of convs
(arbitrary size)

ﬁ convolutional layers
input image

Figure 7.8: Network structure with a spatial pyramid pooling layer. After the last convolution layer with 256 output feature maps,
SPP is applied. The vectorized output is passed to fully-connected layers denoted with fcg and fc, [21].

cation of the input. Bengio et al. conclude that representations that are capable of capturing
such concepts are generally nonlinear functions of the raw input [10]. This reveals a sys-
tematical deficit of conventional CNNs since the convolutional filters are linear models. One
suggested approach to compensate the linearity is an over-complete set of filters. Multiple
filters are learned to detect different variations of the same concept. A MAXOUT stage re-
duces the number of filters by MAX-pooling over the direct outputs from linear convolution.
Networks that apply this strategy are convex function approximators and thus not capable
to capture nonlinearities.

However, following Kolmogorov’s theorem [6], MLPs are known to be universal function ap-
proximators. Lin et al. exploit this idea by substituting convolutional filters by micro neural
networks, creating the idea of Network in Network (NIN) [34].

7.2.1. Feature Extraction

In their eponymous paper Network in Network [34], the authors design a convolution-like
layer yet, using a MLP consisting of multiple fully-connected layers with non-linear activation
functions instead of convolution filters. As before in convolution, this MLP is shared among
all local receptive fields and feature maps are generated by sliding the MLP over the input.

This sequence of steps is the same as cascaded cross channel parametric pooling. Cross
channel parametric pooling describes the weighted linear recombination of input feature
maps and applying a ReLU nonlinearity. Cascading implies an over and over repetition.
According to [34], this is equivalent to a 1 X 1 convolution filter.

7.2.2. Classification

Besides, the classification structure is fundamentally adapted. Due to numerous disadvan-
tages of fully-connected layers, a global averaging pooling layer is favored. Averaging over
each feature map and feeding this directly into a softmax function yields a more native clas-
sification as with fully-connected layers. Here, more native means that averaging pooling
layers can be interpreted more intuitively as category confidence maps.

A further noteworthy advantage of global averaging is its behaviour as structural regu-
larizer. It is not only free of parameters and, hence, not fragile in overfitting but also more
robust to spatial translation of the input [34].



52 7. Image Classification with Convolutional Networks

Filter
concatenation
1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

Figure 7.9: Naive Inception layer
that consists of convolution filters
with different receptive fields. This
empowers the layer to find corre-
lated units with varying spatially dis-
tance [50].

Previous layer

7.2.3. Implementation

A well-known application of the NIN-principle are so-called Inception-layers. Since initially
introduced during ILSVRC14 in the CNN GoogLeNet by Szegedy et al. [S0], it has been the
new state-of-the-art for classification and detection.

Its driving key idea is founded on the theoretical analysis of Arora et al. [8]. The main point
of their work is a scheme to layer-wise construct an optimal network topology for datasets
that feature probability distributions which are representable by a large, very sparse deep
neural network. New layers are constructed by analyzing the statistical correlation of the
preceding layer activations and cluster such neurons whose outputs are highly correlated 3
[8].

Based on that, Szegedy et al. approximate the optimal local sparse structure of convolution
layers [50]. Note that building blocks have to consist of convolutional layers in order to
maintain spatial invariance. However, their filter sizes depend on the spatial freedom of the
features, which in turn depend on the depth level of the network. For instance, in input-
near layers a majority of correlated units are rather concentrated in local regions. The few
correlations that are spatially set wider apart are covered by convolution over larger patches.
The deeper one goes, the less patches of increased size will appear. For convenience, Szegedy
et al. concentrate on filter of three varying receptive fields, namely 1x1, 3X3 and 5x5. Finally,
the overall network is a combination of those layers. Since pooling proved to be beneficial, a
fourth pooling option is added. As depicted in figure 7.9 their outputs are concatenated in a
joint output vector which becomes the input of the following layer [50].

The ratio of 3 X 3 and 5 X 5 should increase with increasing depth and hence increasing
abstraction of the features that are captured. However, this is hampered by the large com-
putational effort, needed for convolution with large receptive fields, in particular if applied
to numerous filters. To prevent a computation blow-up, Szegedy et al. introduce additional
dimension reductions, accomplished by 1 X 1 convolution. Besides, these reductions are
equipped with a ReLU nonlinearity [50]. The final structure of the Inception-layer is shown
in figure 7.10.

As shown in figure 7.11, GoogLeNet starts with a conventional network to obtain a certain
level of feature abstraction before stacking Inception layers above each other. Despite its 22
layers it uses 12 times less parameters as AlexNet while pushing the top-5 error rate from
15.8 % to 6.67 %.

Introducing the alternative Image Classification approach is motivated by the importance
of these networks for further image processing. GoogLeNet and its successors are often found
as building blocks for image segmentation as will be depicted in the following chapter.

3Within a network whose egde weights are in [-1,1], Arora et al. define related nodes of a hidden layers as node with common
neighbour to which they are attached with a +1 edge [8].



7.3. A CNN as MNIST Classifier 53

Filter
concatenation
3x3 convolutions 5x5 convolutions 1x1 convolutions Figure 7.10: A low dimensional em-
. bedding might compress a lot of in-
ConCliions L b t formation about a large input image
and hence a dimension reduction

1x1 convolutions 1x1 convolutions 3x3 max pooling does not lead to a loss of informa
P a——— tion. To prevent unbearable com-

putational cost, Szegedy et al. add
1 X 1 convolution before convolution
with large receptive fields and after
the pooling path [50].

Previous layer

7.3. A CNN as MNIST Classifier

Within the course of the report, the MNIST data set proved itself to be a grateful guinea pig.
Section ??, I examined the applicability of shallow neural networks. Although the MLP I used
is rather small, it is prone to overfit and counteracting this behaviour by regularization turns
out to be a delicate issue that demands a lot of fine-tuning.

This gives rise to classify the MNIST data set with a CNN. However, in this section I rather
aim at exploring the behaviour of CNNs than at outperforming classifiers that are based on
common MLPs.

Figure 7.12 shows the schematic construction of the CNN model I designed. While red
denotes the part for classification, the layers in shades of green are responsible for the feature
extraction and yellow marks additional dropout regularization layers. The kernel sizes and
further implementation details of the two alternating convolution and MAX-pooling layers are
summarized in table 1.1. The corresponding Tensorflow code is attached in the appendix B.

Again, I decided to use the Adams optimizer, which is an advanced instance of gradient
descent to train the model and its performance is measured with the cross-entropy loss.
Opposed to my earlier MLP-based attempt in section 3.6, I train the CNN classifier for 1000
epochs. Figure 7.13 visualizes some randomly chosen kernels.

Although, the trained filters do not seem to exhibit any predictable patter, their outputs
partly do.

Assuming for instance, that the first convolution layer receives a handwritten three. In
the generated output, its shape can still be recognized although the image is alerted by the
filters. However, the relation between in- and output is less distinct in the second convolu-
tional layer. After going through a MAX-pooling stage and applying further kernels modifies
the image that strongly, that a human can not realize any digit. CNNs though, seem to be
capable. Classifying the images with a fully-connected layer and the cross-entropy loss leads
to a final training accuracy of 96.88%.

Since only validation uncovers the relevant usability of the model, the trained CNN is
applied to the test set. The graphs in figure 7.14 shows that, although the model performs
slightly worse during evaluation and correctly predicts the digits with a probability of 96.15%,
evaluation and training accuracy are of the same order of magnitude. Hence, opposed to my
first MLP classifier the more elaborated CNN model does not tend to overfit. My implemen-
tation confirm that an adaption of the neutal networks architecture, combined with further
regularization prevent overfitting and allows a precise classification of the MNIST data set.



54 7. Image Classification with Convolutional Networks

Figure 7.11: Training deep networks with gradient descent meth-

ods and BP is hampered by vanishing gradients. Szegedy et al. ;
tackle this issue by adding auxiliary classifiers. While adding

their loss to the total loss of the network with a weight decay <>
during training, they are discarded while inferring [50].



7.3. A CNN as MNIST Classifier 55

NREOBEE -

Y e

Figure 7.12: The illustration
shows the schema of the CNN
that | used to classify the
MNIST data set. Each oval
form denotes one different
layer. The first four are re-
sponsible for feature extrac-
RS tion as denoted by the green
~ color. Opposed to that, red

== input layer S~ —_————— _‘l' _____ denotes the classification lay-

Sso | ers. Between those block |

=== convolutional layer pRY - I added a regularization inter-
) N ]l mediate stage. Dense relates

== downsampling layer to a fully-connected layer and
pooling to MAX-pooling. Fur-
thermore, a flattening is in-

= output fully-connected layer terpose.d between the feature
extraction and dropout block.

dropout layer

Figure 7.13: In this schematic archi-
. tecture of the CNN the convolutional

R _Pﬂﬂlﬂti A _I stages are substituted by some of
_Ir the trained filters from which they

built up. The figure illustrats the path
of an input image through the classi-

L fication part of the model. However,
—_—— — —_—— — for reasons of visualization the sizes
I Classiﬁcutinn I of kernels and intermediate images

are adapted.



56 7. Image Classification with Convolutional Networks

Prediction accuracy CNN MNIST classifier

1L
. 0.8+
5]
o
8 Training accuracy
% 0.6 Validation accuracy d
=i
8
=
2
2 0.4+ g
—
on

0.2+ .

0 1 1 1 1
0 100 200 300 400 500

number of epochs

Figure 7.14: Training the CNN MNIST data set with Adams for 1000 training epochs and finally evaluating lead to a prediction
accuracy of 96.88% respectively 96.15%.

input size kernel size output size padding stride activation other

Input - - [128,28,28,1] - - - -
Conv1 [128,28,28,1] 5%5 [128,28,28,32] same (1,1) RelLU 32 filters
Pool1 [128,28,28,32] 2X2 [128,14,14,32] - (2,2) - -
Conv2 | [128,14,14,32] 5%5 [128,14,14,64] same (1,1) ReLU 64 filters
Pool2 | [128,14,14,64] 2X%X2 [128,7,7,64] - (2,2) - -
Dense [128,7*7*64] - [128,1024] - — RelLU 1024 units
Dropout [128,1024] - [128,1024] - - - Ptrain = 0.9

Table 7.1: The table summarizes information on the layers. The first dimension of the input and output size denotes the number
of elements in one batch, whereas the last denotes either the channel or the number of kernels in the preceding layer. Second
and third give the width and height dimensions of the feature map. Moreover, padding in mode same refers to a padding such
that the input size is maintained. Opposed to that, valid means no zero padding. Furthermore, the stride is defined as a tuple.
Each entry denotes to the stride in one of the dimensions of the width and height dimension of the input tensor. Note, that dropout
in Tensorflow is only applied during training.



Image Segmentation with Convolutional
Networks

Classification results in denoting the entire input image to one unique class. In contrast, se-
mantic segmentation detects instances of multiple objects and yields dense predictions. This
is equivalent to fine-grained classification where labels are inferred for each pixel separately.
While classification tasks lead to a single vector that contains the probability of each class,
semantic segmentation leads to a score map that gives class predictions for each pixel.

The task of semantic segmentation is considerable more complex than the previously in-
troduced classification problem, since it consists of two prior challenges. First, segmentation
has to deal with classification since a detected object has to be assigned to a semantic con-
cept correctly. Besides, the classification label for a pixel must be aligned to the appropriate
coordinates of the output score map. That is a localization problem.

Recently, deep convolutional neural networks are driving advances in whole image clas-
sification and state of the art ConvNets cover the semantic issue of segmentation quite well
[27, 50]. Among others, new concepts such as Spatial Pyramid Pooling empower them to
perform well in tasks with structured output such as bounding box object detection [21].
These improvements attract attention of science to further employ the concept of ConvNets
for image segmentation tasks.

The crux of the matter is the bilateral and inherently contradictory requirements of image
segmentation. The classification performance of ConvNets is based in invariance towards
translation and other transformations. Opposed to that, localization results depend on the
position of inputs i.e. it is a transformation-sensitive problem. In terms of deep learning,
different requirements lead to different models and there is a natural trade-off between clas-
sification and localization accuracy. As depicted in figure 8.1 classification models such as
AlexNet or GoogLeNet are cone-like shaped, compressing the input to high-level features.
Small and coarse hidden layers are responsible to extract these features, at the expense of
location information. Classifiers are normally densely connected to the final, low resolved
feature map to assign the feature to a semantic object.

Localization favours a relatively large, highly resolved feature map that contains a lot of
spatial information. Models rather take the shape as shown in figure 8.1. Finally, pixel-wise
labels are generated with locally connected classifiers [39].

A well-designed ConvNet for image segmentation has to cover both sides simultaneously.
In 2014, Long et al. faced this challenge by taking advantage of special ConvNets, so-called
fully-convolutional networks (FCN). Semantic segmentation becomes feasible by adapting
these ConvNets to enable pixel-wise predictions [46]. While maintaining the structure and
idea of fully-convolutional neural nets, several lately released works try to further improve
the ansatz. Focus of research are three main aspects, namely context embedding, resolution

57



58 8. Image Segmentation with Convolutional Networks

Figure 8.1: Different learning tasks result in differ-
ent network architecture. (LEFT) Classification net-
works reduce the input image to one single pre-
diction by discarding spatial information. This be-
comes apparent in the cone-like shaping of these
nets. (LEFT) Opposed to that, networks that aim on
localizing objects in an image keep spatial informa- == feature extraction
tion and hence do not reduce the input dimension. == assification
Again, this is depicted in the networks architecture.

Input and output are of the same dimension .

=== input layer

enlargening and bounadry alignment.

The following chapter is a review of the active fields of research. For each, the dominating
difficulties, possible solutions and their implementation are summarized. Beforehand, the
basic concept of fully-convolutional networks is introduced.

8.1. Fully Convolution Networks for Image Segmentation

Standard deep convolutional neural networks as initially introduced for classification tasks,
share a common structure. As presented in chapter 7, high-level features are extracted by
alternating convolutional and downsampling layers and finally classified by fully-connected
or global pooling ones [27, 50].

Despite performing well in classification tasks, two design properties of ConvNets hamper
semantic segmentation. One problem is induced by the fully-connected or global pooling
layers, the second by downsampling and the accompanying loss of spatial information. While
the latter is less easy to solve and until today a hot topic in research, handling the first is
relatively straightforward.

Semantic segmentation aims to achieve a dense classification, hence an optimal output
has the same size as the input and each of its pixels is assigned to one class. However, as
examined in section 7.1.3, fully-connected layers have stipulated dimensions. Given a fixed-
sized input, they generate an output vector of prescribed dimension K X 1, with K the number
of classification classes. Although, as demonstrates in section 7.2.3, global average pooling
layers allows flexible input sizes, still they generate an output tensor of dimension 1x1xd, d
denoting the number of feature maps in the last convolution layer. Consequently, both these
layers do not only modify the resolution of feature map but alert the spatial information be-
tween the pixels by changing the data structure. Opposed to that convolution conserves data
structures. Thus, to yield an output score map of input image size, fully-connected and global
average layers have to be substituted. However, fully-connected layers are equivalent to con-
volutions with kernels that cover the entire input image. Hence, discarding the last layers of
standard ConvNets and substituting them by convolutions with a kernel of size 1 Xx1Xxd X K
allows a prediction of class labels at each pixel of the last feature map. This casts ConvNet
in deep fully-convolutional neural networks (FCN). Here, the attribute fully-convolution is re-
lated to the fact that every layer involves convolution [46]. A FCN derived from a ConvNet
generates a score map and hence is capable of performing semantic segmentation. However,
Long et al. found resulting segmentation dissatisfying coarse [40].

This outcome reveals the second issue when alienating standard classification networks
for semantic segmentation tasks. While the modification of the standard ConvNets to FCN in
principle allows segmentation, the output dimensions are typically alerted by downsampling
and hence smaller than the input image size. However, upsampling strategies increase the
resolution of the score map and connect coarse outputs to dense pixels [46]. Long et al. apply
fractionally strided convolution, also called deconvolution to perform upsampling [22].

Although might associated with the term deconvolution”, this procedure is not equivalent
to the inverse of convolution. Rather than reproducing the original input, it only recovers
the input’s shape. Not only for this reason but also since it is more closely related to the
underlying mathematical operation, it is advocated to use the more descriptive expression
transpose convolution. For further explanation, the convolution has to be rewritten as a linear



8.1. Fully Convolution Networks for Image Segmentation 59

- *e

Figure 8.2: Convolving a 3 x 3 kernel over a 4 x 4 input image using no padding and unit stride yields a 2 x 2 output map [16].

32x upsampled
image convl pooll conv2  pool2 conv3 pool3 conv4 poold convd pool5  conv6-7  prediction (FCN-32s)

\

Figure 8.3: Long et al. extract features with the help of 5 alternating convolution and downsampling layers. This part of the
neural net is responsible for extracting semantic objects. conv6-7 are additional 1 x 1 convolutions which predict scores at each
coarse output pixel before upsampling the feature map in one step by factor 32 [46].

matrix operation. Taking for instance the common convolution from chapter 6 as represented
in figure 8.2 and assuming the weights w of the kernel are learned with backpropagation.
Unrolling the input from left to right and from top to the bottom yields a vector of size 16.
The weights of the kernel define a unique sparse matrix C € R**1¢, with a nonzero pattern as
shown in equation 8.1.

x x x 0 x x x 0 x x x 0 0 O O O

0 x x x 0 x x x 0 x x x 0 0 O O 8.1)
0 000 x x x 0 x x x 0 x x x 0 ’
0 0000 x x x 0 x x x 0 x x x

In the forward pass, a matrix multiplication generates a 4 dimensional outputs. Reshap-
ing it reproduces the 2 X 2 output as shown in figure 8.2. In the backward pass, the error
is backpropagated by multiplying the loss with CT. This maps a 4-dimensional vector in a
16-dimensional space. Both, the forward and backward pass use the same matrix ¢ which
in turn only depends on the kernels weights.

The transposed convolution is then simply swapping forward and backward pass. Conse-
quently, the same kernel defines both, common and transposed convolution. Whether the
convolution is transposed or not only depends on whether C is assigned to the forward or to
the backward pass through the network.

Despite the parameters of the transpose convolution can be learned by pixel-wise training,
Long et al. initialize them correspond to bilinear interpolation [46].

As shown in figure 8.3, a first trial includes upsampling in one stage. However, the last
feature map contains only little spatial information and a simple reshaping of it results in
insufficiently coarse segmentation. Deconvolution as applied here, only recovers the input
image shape but it does not reconstruct the locality information that was discarded during
pooling. To embed this lost context, Long et al. equip the FCN with additional skips. The
lower the layers i.e. the closer to the input the more contextual information are contained.
Hence, fusing copies of these layers with the upsampled complement by element-wise addi-
tion improves segmentation remarkably. A detailed description is illustrated in figure 8.4.

FCNs are instances of auto-encoder, neural networks that are trained to reproduce a copy
of their input. Their general structure is illustrated in figure 8.5. Obviously, they consist of
an encoder- and decoder-stage. The encoding part of FCNs, generates a coarse prediction



60 8. Image Segmentation with Convolutional Networks

32x upsampled 2x upsampled 16x upsampled 2x upsampled 8x upsampled
prediction (FCN-32s) prediction  prediction (FCN-16s) prediction prediction (FCN-8s)

pool3 pool4 pool5 poold pool3
prediction prediction
-
Se————mmmm 4
FCN-32s FCN-16s FCN-8s Ground truth

l.. '
b 4

Figure 8.4: Simply upsampling the last feature map by a large factor limits the scale of detail in the output. This is addressed
by adding a corresponding feature map from the feature extraction part. (TOP) Note that for reasons of depiction, convolution
layers are left out. Instead of upsampling by factor 32, predictions are derived from twice upsampling the output feature map with
factor 16. At the same time an additional class prediction is yield by convolving the pool4 layer with a 1 x 1 kernel. Element-wise
adding them yields a more detailed segmentation as in the first trail. This can even be extended by reusing this prediction and
fusing it with lower level feature maps. (BOTTOM) The more fusion stages are involved, the more precise the segmentation is
[46].

while extracting latent features by compressing the input. The decoding block, reverses the
encoding by enlarging the resolution. However, due to the loss of spatial information while
compressing, decoding is not the exact inverse of encoding but only an approximation of it
[58]. To refine the prediction and hence improve its quality, as much context as possible has
to be embedded by recovering spatial information from the encoder block.

Encoding is mainly based on the principles of classification and hence established ar-
chitectures can be exploited. Opposed to that, upsampling and embedding context during
decoding are the hottest topics of image segmentation. Since the first success of Long et al.
numerous improvements were suggested [22]. While most of them maintain the encoding
structure of FCN some alerting them to achieve further advances while decoding.

The remainder of the chapter is devoted to the most important fields of research, including
methods for upsampling and retrieving spatial information. Although boundaries between
the research fields are blurry and modifications in one alerts the network behaviour with
respect to another, all three topics are investigated separately.

8.2. Methods of Upsampling

Essential part of encoding based on ConvNets is the downsampling. Hence, to reconstruct a
copy of the input the resolution of the feature maps has to be enlarged.

Initially, FCNs proposed transposed convolution with fixed kernels to enlarge the resolution
of the output. Missing spatial information is added by copying feature maps from the encoder
block.

Zeiler et al. primarily introduced unpooling as a reverse operation of MAX-pooling [58].
Approaches such as Deconv-Nets and SegNet employ this scheme to enlarge the resolution
and add spatial information at once. As shown in figure 8.6, location information that is



8.2. Methods of Upsampling 61

input feature input
Space space ’ space

Figure 8.5: In the encoder block the
input image X is mapped from the
input to the latent feature space.
This yields an encoded and com-
pressed representation Z which in
turn is mapped back to input space

. . in the decoder block. Here, the out-
=== encoding block === decoding block put X' is generated such that the re-

(feature extractio_n) _cons‘tr‘uctilo[r; 9e]rror between X and X’
is minima .

Switch variable (z,y)

2 | 4 0 0
unpooling e
7 8 L 0 | 8
1 0 II: pooled feature map II: 3 0 0 0
8
1 2 3 4 0 0 ‘ 3 0
Y
T—» 3 4 —

T

Figure 8.6: The scheme visualizes, how MAX-pooling with filter size 2 x 2 has to be adapted for later unpooling. Pooling is
applied to feature maps during the encoding phase. While downsampling, switchs record the location of the chosen maximal
activation. The reverse operation, the upsampling, uses these in combination with the pooled map to enlarge the resolution.

discarded during downsampling is captured in separate variables. A variable called switches
stores the indices of the activations with maximal values. Together with the pooled map,
the positions stored in switches is used to place each variable that is stored in the pooled
map back to its original position. This preserves the original structure and hence no further
contextual information is necessary.

Despite unpooling generates an enlarged output, most of the entries are zero elements.
Therefore, multiple filters are learned and applied in a transposed convolution layer to densify
the sparse activation map [38].

Summarizing, comparing Deconv-Nets [38] and SegNet [9] to the basic FCN [46], they
differ concerning three main characteristics. Deconvolution filters are learned by data and
only used for densification. The employed unpooling strategy covers both requirements: it
enlarges resolution and recovers spatial relation in unpooled outputs. Last but not least,
instead of entire feature maps only switch variables and unpooled feature maps are copied
to the decoding path. This fact yields a remarkable reduction in memory demand.

A more radical ansatz to address the issue of reversal downsampling, is based on dilated
convolution. Although it is based on alternatively embedding context, it is discussed with
respect to its effect on upsampling. It is driven by the question after structural differences in



62 8. Image Segmentation with Convolutional Networks

Figure 8.7: (Left) Standard discrete convolution has dilation rate r = 1 (Middle) Increasing rate r increases receptive field to
7 X 7(Right) With r = 4 the same parameters as before as used in an enlarged receptive field [57].

classification and dense prediction. While classification involves downsampling to aggregate

multi-scale contextual information, this hampers the dense prediction in segmentation task

since it needs multi-scale reasoning with full-resolution outputs. With the initially by Yu et

al. [37] introduced module of dilated convolution, context can be implied without losing res-

olution. By omitting downsampling stages, upsampling in turns is obsolete while decoding.
Dilated convolution used for image segmentation tasks is defines as

ny,r =

!

||'_\4Pr

k
Z Li—ya? y—ram’ = Qn’';m! (8.2)
on’'=0

m

where r is the dilation factor. Setting r = 1 recovers the already known equation 6.5 and
hence standard discrete convolution a special instance dilated convolution. As visible in fig-
ure 8.7, dilated convolution supports exponentially expanding receptive fields without losing
resolution.

Dilating a convolution does not modify the parameter of the filter but the manner to use
them. Indeed, the same filter is applied but using different ranges and different dilation.
Despite an increase of the effective receptive field the number of parameters and operations
stay constant since only non-zero elements need to be taken into account.

The basic so-called context module, developed by Yu et al. is designed such that it takes d
input maps and outputs d feature maps of the same form. It consists of 7 layer that apply 3x3
convolution with different dilation factors r. In principle, this can be plugged into existing
ConvNets. However, Yu et al. suggested attaching to a front-end module which is equivalent
to the semantic encoder of FCNs. Compared to classical FCN as introduced by Long et al.
[46], dilated convolution based networks yield more accurate segmentation results [57].

Summarizing, two main approaches to deal with the fateful downsampling established.
FCNs directly reverse it by adding stages of upsampling while dilated convolution tries to
avoid it and rather maintain the resolution.

8.3. Methods of Context Embedding

Context embedding is motivated by the fact that pixel-wise classification is hampered if only
information that is retrieved from an isolated local surrounding is considered. Accuracy is
improved and segmentation facilitated if the classifier exploits and analyzes contextual infor-
mation about the whole image. Among the first, Mostajabi et al. introduced a hand-crafted
hierarchical Zoom-out approach. The core idea is to compute representation at multiple lev-
els with increasing spatial extend around the pixel to be classified and to combine all the
features before classification [37]. The effect of context information is shown in figure 8.8.

Lately, different concepts to exploit contextual information has established. Four of them,



8.3. Methods of Context Embedding 63

Figure 8.8: Three examples that visualize the effect of inclusion of context information. They are taken from VOC database and
segmented based on the Zoom-out ansatz. Different colours denote different VOC classes whereby the background is black.
Images from left to the right show the following: Original image, Ground truth [37].

Small Resolution 1
A~ X up
L7 Merge = L7 — ? ~ Q Spatial Pyramid Pooling
r r r —
& 5 s Fmay =
X up
f ! f f t f
/ S LT s / / /
Image Scale 1 Image Scale 2 Image Image Image Image

Figure 8.9: Alternative architectures to capture multi-scale context. Going from left to right it is Image Pyramid, Encoder-Decoder,
Dilated Convolution and Spatial Pyramid Pooling [13].

namely Image Pyramid, Encoder-Decoder, Dilated Convolution and Spatial Pyramid Pooling are
shown in figure 8.9. Due to the various but only slightly differing implementations of each
branch, only the main idea and one descriptive example are given in the following.

Image Pyramids apply the same model to multi-scale inputs. The larger the scale the
more detailed the extracted features are. Thus, feature responses from small scale inputs
encode global context. For instance, Farabet et al. [17] generate inputs of multiple scales
by transforming the image through a Laplacian pyramid representation. Each differently
scaled image is fed into a 3-stage convolutional network and after aligning the spatial dimen-
sions all outputs are merged. However, models of this class do not scale well for very deep
convolutional neural networks [13].

With FCNs [46] such as SegNet [9] an important representative of Encoder-Decoder models
is already introduced in section 8.4. Encoder parts gradually reduce the spatial dimension
of feature map and capture longer range information in the deeper encoder output. From
this output, the decoder recovers spatial information and image details [13].

Further, context can be captured stage-wise by employing spatial pyramid pooling as pre-
sented in section 7.1.3. As depicted in figure 8.10, the Pyramid Scene Parsing Net (PSP)
performs spatial pyramid pooling at different grid scales.

Last but not least, atrous convolution is taken into account. Atrous convolution is equiva-
lent to the previously introduced dilated convolution. The core idea is to convolve the output
of a common ConvNet with multiple dilated filters of different rates. The more dilated a filter
is, the more global context it aggregates. As shown in figure 8.11, a module based in atrous



64 8. Image Segmentation with Convolutional Networks

i Ry B
~o

oy | )~ o~

o)
CONCAT

(a) Input Image (b) Feature Map (¢) Pyramid Pooling Module (d) Final Prediction

T
!
!

Figure 8.10: Structure of PSPNet which employs spatial pyramid pooling to capture long range information.(a) Shows the input
image which is to be segmented. (b) A regular Convnets is applied. The output feature map is transfered to a spatial pooling
module in (c). There, different sub-region representation are captured, upsampled and concatenated. In this stage, local and
global information is fused. (d) finally shows the pixel-wise prediction [59].

convolution can either be implemented sequentially or in parallel [13].

In general, it is worth mentioning that upsampling and context embedding are strongly
connected. Indeed, a clear distinction is nearly impossible since, e.g., some upsampling
strategies such as dilated convolution naturally come with context embedding.

8.4. Methods of Boundary Alignment

In turn, boundary alignment is strongly related to context embedding. It tries to refine the
predictions near the object boundaries.

Among other, one often used approach is an additional post processing stage where Con-
ditional Random Fields (CRF) improve the segmentation results, yield by ConvNets. DeepLab
[12], as shown in figure 8.12 appends a fully connected CRF stage. Further examination and
explanation of CRF would exceed the framework of the present report. However, details can
be found in [12] which in turn refers to Krahenbtihl and Koltun [26].



8.4. Methods of Boundary Alignment 65

Convl
+
Pooll Block1 Block2 Block3 Block4 Block5 Block6 Block7
: []
: output
|mage stride 4 8 16 32 64 128 256 256
Convl rate=2 rate=4 rate=8 rate=16
+
Pooll Block1 Block2 Block3 Block4 Block5 Block6 “ Block7
- £ B3 —E: -
X output
Image rige 4 8 16 16 16 16 16 16

(a) Atrous Spatial
Pyramid Pooling

a 1x1 Conv
= 3x3 Conv
rate=2 EE rate=6 Cozcal
Blockl Block2 Block3 Block4 3x3 conv | 1x1 Conv
EE! rate=12 —
output h = o 3x3 Conv
Image stride 4 8 16 16 -~ rate=18 16

(b) Image Pooling

Figure 8.11: (TOP) Starting with a regular Convnet, cascaded modules based on atrous convolution can be yield duplicating
several blocks of the original Convnet. (MIDDLE) Feature map size is maintained by convolving with dilated filters with increasing
rates. This structure rather resembles an encoder-decoder structure like FCNs as presented in section 8.1. (BOTTOM) The idea
of atrous convolution can also be used in parallel. This structure can be recovered in segmentation nets like DeepLabV2 [14]

and is understood as an adopted version of spatial pyramid pooling. [13]

DCNN Aeroplane Coarse
- Score ma
Atrous Convolution ﬁ
— ] B B [ —
A 4
\/
Final Output Fully Connected CRF Bi-linear Interpolation

ek

Figure 8.12: The DeepLab model gradually improves the segmentation performance. A coarse score map, generated by a
Convnet is upsampled by bi-linear interpolation. A fully connected CRF stage is appended to further refine the segmentation [12]







Conclusion and Research Strategy

An intrinsic challenge of DIP is the complexity of images. The vast amount of information
which they contain, hampers an efficient processing based on machine learning approaches.
For image classification problems, e.g., a big fraction of this data is not even relevant and
simple neural networks are not powerful enough to extract the latent features. Instead of
inferring general rules, they overfit the training data set and perform badly during valida-
tion. Merely presenting more images during the optimization to the network does not provide
remedy. This behaviour is explained by the statistical learning theory, which characterizes
a model class by a capacity measure. It turns out, that for large ratios of this capacity and
the size of the given training set, further training does not improve the generalization ability
of the model. Instead, regularization methods try to decrease the capacity of the model, in
order to boost the network performance.

One of such strategy, namely the incorporation of prior knowledge about the learning task
is the fundament of deep convolutional networks. In ConvNets for image classification and
segmentation this idea is heavily exploited and appears for instance in form of adapting the
network architecture. Image classification networks, e.g., take their learning task into ac-
count by subdividing the structure into two main blocks: one feature extraction part, which
is followed by the classification. Among other concepts, the idea of combining the extraction
of features with an invariance towards translation leads to a high performance of these net-
works.

The consideration of the learning task of image segmentation however, is less straightfor-
ward. This is due to the fact that segmentation suffers from a natural tension. It does not
only have to extract latent features themselves but also their position. This loacilty infor-
mation however, has to be discarded for a high-quality feature extraction. Figure 9.1 shows
one possible solution how this problem can be tackled by inserting a third block between
feature extraction and classification. This upsampling stage recovers the necessary loca-
tion information. It also illustrates how different learning tasks result in different network
architectures.

The chapters 7 and 8 revealed, that the design and implementation of ConvNets does
not simply depend on the differentiation between image classification and segmentation but
rather on the very specific learning task itself. For instance, even within the field of image
segmentation, there exist numerous instances of ConvNets and the final choice depends on
the particular requirements of the segmentation task.

All in all, extremely tailoring a neural network to the learning task leads to a remarkable
boost in performance. Based on this idea in combination with the basic principles of machine
learning, I am going to approach the research task iteratively. For this, I subdivide the
development of the segmentation model into five main phases. In the first four steps of the
initial iteration, a base model is designed and trained. Its quality is evaluated in the fifth

67



68 9. Conclusion and Research Strategy

= input layer <J
Figure 9.1: The scheme compares the architeC- e convolutional layer 4
ture of a conventional convolutional network for .
image classification to the architecture of a fully- == downsampling layer
convolutional network with unpooling and trans- ____ transpose convolutional layer
pose convolution stages as it can be used for im- [ <‘r’/
age segmentation problems. The structures ex- === upsampling layer =
hibit fundamental variations due to different de-
mands of the learning problem.

= output classification layer

Learning problem {x(p),y(p) },p =1,..,D

Model class f(x,w),w € A €------- y

l :

1

H

Performance Measure: Optimize R(w) <—----E
i

i

Training: Optimize Rpmp (W) <------- 1

i

H

Figure 9.2: The scheme illustrates the my workflow how to ap- Validation —-----nnmnemmmmmm i

proach the research question.



69

phase and depending on this, one of the previous steps are revisited and the quality of the
new model is evaluated again. My strategy is illustrated in figure 9.2 and each of the phases
with corresponding central questions, is explained in the following listing.

1. The learning problem

First of all, the learning problem has to be defined and specified. The data set is investigated
and the framework of the classification and segmentation is defined. The characteristics and
difficulties of the y’'-phase as stated in chapter 1 can be transferred to the context of image
classification and segmentation as follows:

1. the classification needs to be sensitive towards object size
at the same time it can be invariant towards deformation

due to quality issues the data might has to be preprocessed

nal I

the context embedding plays a crucial role.

This already imposes requirements for the segmentation, however they have to be formulated
more precisely in collaboration with material scientists. Allin all, this first phase is concerned
with the following questions:

» Which classes are to be detected and which are the classification and segmentation cri-
teria? For instance, what is the magnitude of acceptable deformations?

* What input images are given and do the corresponding ground truth segmentation maps
exist? Is preprocessing or preparation of the data necessary? If so, what kind of prepro-
cessing is reasonable? Is data augmentation possible and can it be exploited to meet any
of the classification criteria (such as invariance towards distortion)?

* Which validation method is applied, i.e. how should the data set be divided into training
and validation set?

2. The model class

Based on the outcomes of phase 1, an appropriate, basic networks architecture is chosen.
Chapter 8 discusses the three different research fields of image segmentation and how mod-
ifications in the network architecture can shift the focus from one of those fields to another.
Knowing this might affect the decision and the reply to the question

* Which network architecture meets the requirements of step 1 the best and can be chosen
as a starting point?

3. The performance measure

The quality of this model is quantified by the performance measure. A natural choice for
classification problems is the prediction accuracy where the true label is compared with the
predicted class. However, in image segmentation multiple classes appear within the same
image and instead of prediction vectors, entire maps have to be compared. Hence, an adapted
performance measure has to be defined:

* How can the accuracy of a prediction map be measured?

One possible solution which I am going to examine, is to measure the overlapping segmen-
tation ares of the prediction map and the ground truth segmentation map. The larger the
overlapping, the more accurate the segmentation.

4. The training

First thing to do in the training phase is to set the iteration method and initially guesses
of the hyperparameters if necessary. Since this is an extremely working intense step, the
following questions have to be considered:



70 9. Conclusion and Research Strategy

» Which possibilities to reduce the computation time do exist? Is running a parallelized
algorithm on a CPU-based cluster an option? Which speed-up can be achieved by using a
hardware accelerator such as a GPU? Does the latter request any adaption of the model
or optimization algorithm?

Based in section 3.5, a further interesting point to examine, is the development of the gradi-
ents during optimization:

* How do the error gradients behave during the optimization? Is saturating an issue? If so,
which effect does it have and are there possibilities to prevent it?

5. The validation

From a computational point of view, the validation step faces the same challenges as the
training. In addition to that, it shows the quality of the defined model and reveals whether
overfitting occures or not:

* Does the model overfit? If so, how to prevent this?

* Is a regular pattern in the missclassification or inaccurate segmentation recognizable (e.g.
do errors occur in particular classes or does the model struggle with the segmentation of
certain areas)? Can this be correlated to certain structural parts of the network or to steps
in the optimization algorithm?

Based on this, different measures can be taken and the previous steps are revisited, adjusted
and the performance is measured again.

= Revisiting phase 1: Possibilities to enhance regularization are

— further data augmentation without alerting the classification criteria of the model
— other techniques to enlarge the data set

= Reuvisiting phase 2: The performance might be improve by modifying the network archi-
tecture

— if regularization is necessary, structural regularizer can be incorporate such as
adding dropout layers, adjust the number and kind of layers etc

— if a certain error pattern in the segmentation maps occurs the basic network has to
adapted more dramatically; depending on this patter, possibilities are e.g. to alert
the architecture such that the focus is larger on boundary alignment or context
embedding

= Reuvisiting phase 3: Possibilities to enhance regularization are

— adjust the empirical risk function by adding a regularization term as examined in
section 5.1

= Revisiting phase 4: Stronger regularization can be achieved by

— early stopping (a regularization method that is based on steady comparison of val-
idation and training error)

Furthermore, the validation phase is crucial to optimize the value of hyperparameters. It also
reveals how strongly the performance is affected by a particular parameter.

* How strong and in which way (e.g. convergence rate, convergence accuracy etc) does
each hyperparameter affect the performance of the model? What is an efficient approach

to examine this?

Based on this stepwise stragety



Appendices

A. Optimization

The step size of the parameter update is crucial for the performance of the optimization
algorithm. While SGD defines it as the product of the learning rate €; and the norm of the
gradients, the following algorithms choose more elaborate techniques.

A.1. Momentum Algorithm

Although the SGD as introduced in section 3.3 does its job and remains a popular optimiza-
tion strategy [19], it is sometimes found to be too slow. Updating the parameters according
to

pT*tD) = gp(® — EVWR((J,IL),, w®)

w@tD = @ 4 pE+D)

(1)

nearly always enjoys better convergence rates on deep neural networks [49].

In this so-called momentum update an exponentially decaying moving average of the past
m gradients is accumulated. How strongly the past gradients contribute to the updated is
controlled by the hyperparameter a. A basic SGD algorithm derives the step size of the
parameter update depending on the learning rate € and the gradient. Opposed to that, the
momentum approach takes into account how large and how aligned a sequence of gradients
are. Consequently, the step in a particular direction the parameter space is larger if many
successiv gradients point in this direction [19].

A further detailed description of the method can be found in the 1964 released paper by
Polyak [40].

A.2. Adam

Although, the momentum algorithm is a possibility to tackle the issue of step size by enlarg-
ing it in relevant directions, it introduces a new hyperparameter a. More advanced methods
adaptively tune the learning rates, and even do so per parameter. The 2015 developed “adap-
tive moment” or short Adam algorithm reads as follows [24]

71



72 9. Conclusion and Research Strategy

Algorithm 1 Adam optimization

input: step size €

input: the exponential decay rates for moment estimates 3, and 3,
input: constant @ used for numerical stabilization

Initializes: mg=0,1v,=0,7=0

while convergence criterion not met do
Ir+1 = Vng:l’L)p(WT)
Moy = Pr-me+ (1 —p1) 'igr+1
ey = P2 ve + (1= B2) - 9741
Mey1 = lr_n;;%

v = Y41
T+1 1—ﬁ§+1

— . _Mzt1
Wrp1 =W — € ————

Vr4rta

B. Tensorflow Implementation
B.1. The MLP MNIST Classifier

1 #!/usr/bin/env python3
2 # —-*- coding: utf-8 -*-

70707

4+ Created on Thu Jan 17 01:06:46 2019

6 @author: franziskariegger

707 17

9 import tensorflow as tf
1o from tensorflow import keras

12 import numpy as np
13 import matplotlib.pyplot as plt

16 from tensorflow.keras.preprocessing.image import ImageDataGenerator
18 print(tf. version )

20

21 #%%

22

23 mnist = tf.keras.datasets.mnist

24

»s (X _train, y train), (x test, y test) = mnist.load data()

26 X _train, x test = x _train / 255.0, x_test / 255.0

27

8  #5%

29

3 (X train gen, Y train gen), (X test gen, Y test gen) = mnist.load data()
31

2 X train gen = X train gen.reshape (X train gen.shape[0], 28, 28, 1)
33 X test gen = X test gen.reshape(x test.shapel0], 28, 28, 1)

34



B. Tensorflow Implementation 73

3s X train gen = X train gen.astype(’float32’)
3s X test gen = X test gen.astype(’float32’)
37

s X train gen/=255

39 X test gen/=255

40

41 #%% BASE 2048 with Data augmentation

42

3 model 2048 DA = tf.keras.models.Sequential ([

44 tf.keras.layers.Flatten (input shape=(28,28,1)),

45 tf.keras.layers.Dense (2048, activation=tf.nn.relu),
46 tf.keras.layers.Dense (2048, activation=tf.nn.relu),
47 tf.keras.layers.Dense (10, activation=tf.nn.softmax)

48 1)

49

so. model 2048 DA.compile (optimizer=’"adam’,

51 loss='sparse categorical crossentropy’,

52 metrics=["accuracy’,’sparse categorical crossentropy’])

53

s+ gen = ImageDataGenerator (rotation range=8, width shift range=0.08,
» shear range=0.3,

55 height shift range=0.08, zoom range=0.08)

56

sz test gen = ImageDataGenerator ()

58

s9 train generator = gen.flow(X train gen, Y train gen, batch size=512)

0 test generator = test gen.flow(X test gen, Y test gen, batch size=512)
61

2 model 2048 DA history = model 2048 DA.fit generator (train generator,

63 epochs=10,
64 validation data=test generator,
65 verbose=2)

66

ez model 2048 DA.summary ()
68

60 #%% BASE 1024

70

n model 1024 = tf.keras.models.Sequential ([

72 tf.keras.layers.Flatten(),

73 tf.keras.layers.Dense (1024, activation=tf.nn.relu),
74 tf.keras.layers.Dense (1024, activation=tf.nn.relu),
75 tf.keras.layers.Dense (10, activation=tf.nn.softmax)

6 1)

77

s model 1024.compile (optimizer="adam’,

79 loss='sparse categorical crossentropy’,

80 metrics=[’accuracy’,’sparse categorical crossentropy’])
81

&2 model 1024 history = model 1024.fit(x train,

83 y_train,

84 epochs=10,

85 batch size=512,

86 validation data=(x_test, y test),
87 verbose=2)

88

so model 1024.summary ()



74 9. Conclusion and Research Strategy

90

91 #%% BASE 2048

92

s model 2048 = tf.keras.models.Sequential ([

94 tf.keras.layers.Flatten(),

o5 tf.keras.layers.Dense (2048, activation=tf.nn.relu),
96 tf.keras.layers.Dense (2048, activation=tf.nn.relu),
97 tf.keras.layers.Dense (10, activation=tf.nn.softmax)

9 1)

99

wo model 2048.compile (optimizer="adam’,

101 loss='sparse categorical crossentropy’,

102 metrics=["accuracy’,’sparse categorical crossentropy’])
103

104 model 2048 history = model 2048.fit(x train,

105 y_train,

106 epochs=10,

107 batch size=512,

108 validation data=(x test, y test),
109 verbose=2)

110

m  model 2048.summary ()

113 #9%% BASE 4096
114

us model 4096 = tf.keras.models.Sequential ([

116 tf.keras.layers.Flatten(),

117 tf.keras.layers.Dense (4096, activation=tf.nn.relu),
118 tf.keras.layers.Dense (4096, activation=tf.nn.relu),
119 tf.keras.layers.Dense (10, activation=tf.nn.softmax)

120 )

121

122 model 4096.compile (optimizer="adam’,

123 loss='sparse categorical crossentropy’,

124 metrics=[’accuracy’,’sparse categorical crossentropy’])
125

126 model 4096 history = model 4096.fit(x train,

127 y_ train,

128 epochs:lO,

129 batch size=512,

130 validation data=(x _test, y test),
131 verbose=2)

132

133 model 4096.summary ()

134

1352 #9%% L2-REGULARIZATION

136

13z model 12 = tf.keras.models.Sequential ([

138 tf.keras.layers.Flatten(),

139
- tf.keras.layers.Dense (2048, kernel regularizer=keras.regularizers.12(0.005),
- activation=tf.nn.relu),

140
-~ tf.keras.layers.Dense (2048, kernel regularizer=keras.regularizers.12(0.005),
- activation=tf.nn.relu),

141 tf.keras.layers.Dense (10, activation=tf.nn.softmax)



B. Tensorflow Implementation 75

142 1)

143

s model 12.compile(optimizer="adam’,

145 loss='sparse categorical crossentropy’,

146 metrics=["accuracy’,’sparse categorical crossentropy’])
147

s model 12 history = model 12.fit(x train,

149 y_train,

150 epochs=10,

151 batch size=512,

152 validation data=(x test, y test),
153 verbose=2)

154

155 model 12.summary ()

156

157

158 #%% L1-REGULARIZATION

159

o model 11 = tf.keras.models.Sequential ([

161 tf.keras.layers.Flatten(),

162
-~ tf.keras.layers.Dense (2048, kernel regularizer=keras.regularizers.11(0.0005),
- activation=tf.nn.relu),

163
- tf.keras.layers.Dense (2048, kernel regularizer=keras.regularizers.11(0.0005),
- activation=tf.nn.relu),

164 tf.keras.layers.Dense (10, activation=tf.nn.softmax)

165 ])

166

167 model 1l.compile (optimizer="adam’,

168 loss='sparse categorical crossentropy’,

169 metrics=["accuracy’,’sparse categorical crossentropy’])

170

i model 11 history = model 11.fit(x train,

172 y_train,

173 epochs=10,

174 batch size=512,

175 validation data=(x test, y test),
176 verbose=2)

177

iz model 11.summary ()

179

180 #9%% L1-REGULARIZATION

181

12 model 11 0 005 tf.keras.models.Sequential ([
183 tf.keras.layers.Flatten(),

184
- tf.keras.layers.Dense (2048, kernel regularizer=keras.regularizers.ll
o activation=tf.nn.relu),

185
- tf.keras.layers.Dense (2048, kernel regularizer=keras.regularizers.ll
- activation=tf.nn.relu),

186 tf.keras.layers.Dense (10, activation=tf.nn.softmax)

187 ] )

188

19 model 11 0 005.compile (optimizer='"adam’,



190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

208

209

210

211

213

214

215

216

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

76 9. Conclusion and Research Strategy

loss='sparse categorical crossentropy’,
metrics=["accuracy’,’sparse categorical crossentropy’])

model 11 0 005 history = model 11 0 005.fit(x train,
y_train,
epochs=10,
batch size=512,
validation data=(x test, y test),
verbose=2)

model 11 0 005.summary ()
#%% DROPOUT p = 0.5

model DO = tf.keras.models.Sequential ([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense (2048, activation=tf.nn.relu),
tf.keras.layers.Dropout (0.5),
tf.keras.layers.Dense (2048, activation=tf.nn.relu),
tf.keras.layers.Dropout (0.5),
tf.keras.layers.Dense (10, activation=tf.nn.softmax)

1)

model DO.compile (optimizer="adam’,
loss='sparse categorical crossentropy’,
metrics=["accuracy’,’sparse_ categorical crossentropy’])

model DO history = model DO.fit(x train,
y train,
epochs=10,
batch size=512,
validation data=(x_test, y test),
verbose=2)

model DO.summary ()
#%% DROPOUT p = 0.8

model DO 0 8 = tf.keras.models.Sequential ([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense (2048, activation=tf.nn.relu),
tf.keras.layers.Dropout (0.8),
tf.keras.layers.Dense (2048, activation=tf.nn.relu),
tf.keras.layers.Dropout (0.8),
tf.keras.layers.Dense (10, activation=tf.nn.softmax)

1)

model DO O 8.compile (optimizer="adam’,
loss='sparse categorical crossentropy’,
metrics=["accuracy’,’sparse categorical crossentropy’])

model DO 0 8 history = model DO 0 8.fit(x train,
y_train,
epochs=10,
batch size=512,
validation data=(x_test, y test),



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

269

270

271

272

16

17

18

19

20

21

22

23

24

25

B. Tensorflow Implementation

77

verbose=2)
model DO 0 8.summary ()
#%% DROPOUT p = 0.1

model DO 0 1 = tf.keras.models.Sequential ([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense (2048, activation=tf.nn.relu),
tf.keras.layers.Dropout (0.5),
tf.keras.layers.Dense (2048, activation=tf.nn.relu),
tf.keras.layers.Dropout (0.5),
tf.keras.layers.Dense (10, activation=tf.nn.softmax)

1)

model DO 0 1.compile (optimizer="adam’,
loss='sparse categorical crossentropy’,
metrics=[’accuracy’,’sparse categorical crossentropy’])

model DO 0 1 history = model DO 0 1.fit(x train,
y_train,
epochs=10,
batch size=512,
validation data=(x _test, y test),
verbose=2)

model DO 0 1.summary ()

B.2. The CNN MNIST Classifier

import tensorflow as tf

import os

import shutil

from tensorflow.contrib.learn.python.learn.datasets.mnist import
-~ read data_ sets

# ______________________________________________________________________
# ______________________________________________________________________
# ###READ DATA###

# ______________________________________________________________________
# ______________________________________________________________________
print (”“\nImporting the MNIST data”)

mnist = read data sets(”/tmp/data/”, one hot=True)

# ______________________________________________________________________
# ______________________________________________________________________
# ###SET THE CNN OPTIONS###

# ______________________________________________________________________
# ______________________________________________________________________
n_outputs= 10

image x = 28

image y = 28

display step = 10
training epochs = 1000

image shape = [-1, image x, image y, 1]
batch size = 50
learning rate = le-4

output directory = 'mnist TB logs’



26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

78 9. Conclusion and Research Strategy

print (' \nBuilding the CNN.’)
# set placeholders
with tf.name scope ('’ input’):
= tf.placeholder (tf.float32, [None, 784], name='x-input’)
tf.placeholder (tf.float32, [None, 10], name=’y-input’)

|*<1 b
Il

with tf.name scope (’input reshape’):
x_reshaped = tf.reshape(x, image shape)
tf.summary.image (' input’, x reshaped, 10)

with tf.name scope (’dropout’):
keep prob = tf.placeholder (tf.float32)
tf.summary.scalar (’dropout keep probability’, keep prob)

with tf.name scope(’convl’):
with tf.name scope(’'weights’):
W convl = tf.Variable(tf.truncated normal ([5, 5, 1, 32],
o stddev=0.1))

with tf.name scope ('’ summaries’):
mean = tf.reduce mean (W convl)
tf.summary.scalar ('mean’, mean)
with tf.name scope (’stddev’):

stddev = tf.sqgrt(tf.reduce mean(tf.square (W convl - mean)))

tf.summary.scalar ('stddev’, stddev)
tf.summary.scalar (‘max’, tf.reduce max (W _convl))
tf.summary.scalar('min’, tf.reduce min(W convl))
tf.summary.histogram(’histogram’, W _convl)

with tf.name scope(’biases’):
b convl = tf.Variable(tf.constant (0.1, shape=[32]))
with tf.name scope ('’ summaries’):
mean = tf.reduce mean (b convl)
tf.summary.scalar ('mean’, mean)
with tf.name scope (’stddev’):
stddev = tf.sqgrt(tf.reduce mean(tf.square(b _convl - mean)))
tf.summary.scalar (' stddev’, stddev)
tf.summary.scalar ('max’, tf.reduce max(b convl))
tf.summary.scalar(‘min’, tf.reduce min(b_ convl))
tf.summary.histogram(’histogram’, b convl)
with tf.name scope ('Wx plus b’):
preactivatedl = tf.nn.conv2d(x_reshaped, W_convl,
strides=[1, 1, 1, 17,
padding='SAME’) + b convl
h convl = tf.nn.relu(preactivatedl)
tf.summary.histogram(’'pre activations’, preactivatedl)
tf.summary.histogram(’activations’, h convl)
with tf.name scope ('max pool’):
h pooll = tf.nn.max pool(h convl,
ksize=[1, 2, 2, 11,



B. Tensorflow Implementation 79

81 strides=[1, 2, 2, 11,
82 padding=’SAME")
83 # save output of conv layer to TensorBoard - first 16 filters
84 with tf.name scope ('’ Image output convl’):
85 image = h convl1([0:1, :, :, 0:16]
86 image = tf.transpose(image, perm=[3,1,2,0])
87 tf.summary.image (' Image output convl’, image)
88 # save a visual representation of weights to TensorBoard
s with tf.name scope(’Visualise weights convl’):
90 # We concatenate the filters into one image of row size 8 Iimages
91 W a = W _convl # i.e. [5, 5, 1, 32]
92 W b = tf.split (W a, 32, 3) # i.e. [32, 5, 5, 1, 1]
9 rows = []
04 for i in range(int(32/8)):
95 x1l = 1*8
% x2 = (1+1)*8
97 row = tf.concat(W b[x1l:x2],0)
o8 rows.append (row)
99 W ¢ = tf.concat(rows, 1)
100 c_shape = W _c.get shape().as list()
101 W d = tf.reshape(W ¢, [c_shape[2], c_shape[0], c_shape[l], 11)
102 tf.summary.image (“Visualize kernels convl”, W d, 1024)
103 # ______________________________________________________________________
104 # Second conv+pool layer
105 @ fmm
ws with tf.name scope(’conv2’):
107 with tf.name scope (’'weights’):
108 W conv2 = tf.Variable(tf.truncated normal ([5, 5, 32, 64],
» stddev=0.1))
109 with tf.name scope ('’ summaries’):
110 mean = tf.reduce mean (W _conv2)
111 tf.summary.scalar ('mean’, mean)
112 with tf.name scope (’stddev’):
113 stddev = tf.sqrt(tf.reduce mean (tf.square (W conv2 - mean)))
114 tf.summary.scalar (’'stddev’, stddev)
115 tf.summary.scalar ('max’, tf.reduce max (W _conv2))
116 tf.summary.scalar('min’, tf.reduce min(W_conv2))
117 tf.summary.histogram(’histogram’, W _convZ2)
118
119 with tf.name scope(’biases’):
120 b conv2 = tf.Variable(tf.constant (0.1, shape=[64]))
121 with tf.name scope ('’ summaries’):
122 mean = tf.reduce mean (b conv2)
123 tf.summary.scalar ('mean’, mean)
124 with tf.name scope (’stddev’):
125 stddev = tf.sqgrt(tf.reduce mean(tf.square(b conv2 - mean)))
126 tf.summary.scalar ('stddev’, stddev)
127 tf.summary.scalar ('max’, tf.reduce max(b_conv2))
128 tf.summary.scalar('min’, tf.reduce min(b conv2))
129 tf.summary.histogram(’histogram’, b convZ2)
130 with tf.name scope ('Wx plus b’):
131 preactivated2 = tf.nn.conv2d(h pooll, W conv2,
132 strides=[1, 1, 1, 11,
133 padding='SAME’) + b _conv2
134 h conv2 = tf.nn.relu(preactivated?2)

135 tf.summary.histogram(’pre activations’, preactivated2)



80 9. Conclusion and Research Strategy

136 tf.summary.histogram(’activations’, h conv2)

137 with tf.name scope ('max pool’):

138 h pool2 = tf.nn.max pool (h conv2,

139 ksize=[1, 2, 2, 1],

140 strides=[1, 2, 2, 1],

141 padding='SAME’)

142 # save output of conv layer to TensorBoard - first 16 filters

143 with tf.name scope ('’ Image output conv2’):

144 image = h conv2[0:1, :, :, 0:16]

145 image = tf.transpose(image, perm=[3,1,2,0])

146 tf.summary.image (' Image output conv2’, image)

147 # save a visual representation of weights to TensorBoard

s with tf.name scope(’Visualise weights conv2’):

149 # We concatenate the filters into one image of row size 8 images

150 W a = W _conv2

151 W b = tf.split(W_a, 64, 3)

152 rows = []

153 for i in range (int(64/8)):

154 x1l = 1*8

155 x2 = (1+1)*8

156 row = tf.concat(W b[xl:x2],0)

157 rows.append (row)

158 W c = tf.concat(rows, 1)

159 c_shape = W _c.get shape().as list()

160 W d = tf.reshape(W ¢, [c_shape[2], c_shape[0], c_shape[l], 1])

161 tf.summary.image (“Visualize kernels conv2”, W _d, 1024)

162 # ______________________________________________________________________

s # Fully connected layer

64 HF-———————————

s with tf.name scope(’Fully Connected’):

166 W _fcl = tf.Variable(tf.truncated normal ([7*7*64, 1024], stddev=0.1))
o #28/(2%2) =7

167 b fcl = tf.vVariable(tf.constant (0.1, shape=[1024]))

168 # Flatten the output of the second pool layer

169 h pool2 flat = tf.reshape(h pool2, [-1, 7*7*64])

170 h fcl = tf.nn.relu(tf.matmul (h pool2 flat, W fcl) + b fcl)

171 # Dropout

172 #keep prob = tf.placeholder (tf.float32)

173 h fcl drop = tf.nn.dropout(h fcl, keep prob=1.0)

174 HFo—— e e

175  # Readout layer

176 # ______________________________________________________________________

17 with tf.name scope ('Readout Layer’):

178 W fc2 = tf.vVariable(tf.truncated normal ([1024, n outputs], stddev=0.1))

179 b fc2 = tf.Variable(tf.constant (0.1, shape=[n outputs]))

1o # CNN output
181 with tf.name scope(’Final matmul’):

182 y _conv = tf.matmul (h_fcl drop, W _fc2) + b fc2

183 # ______________________________________________________________________
18« # Cross entropy functions

185 HFmmm e e e e
186 with tf.name scope(’cross _entropy’):

187 diff = tf.nn.softmax cross entropy with logits(labels=y ,

188 logits=y conv)

189 with tf.name scope(’total’):

190 cross_entropy = tf.reduce mean (diff)



B. Tensorflow Implementation 81

o1 tf.summary.scalar (’'cross entropy’, cross entropy)

92 #F-—————---"-"--—-—-—
13 # Optimiser
194 # ______________________________________________________________________
s with tf.name scope(’train’):
196 train step =
- tf.train.AdamOptimizer (learning rate) .minimize (cross_entropy)
197 #Fmmmmm e e e
w8 # Accuracy checks
199 # ______________________________________________________________________
200 with tf.name scope (’accuracy’):
201 with tf.name scope (’correct prediction’):
202 correct prediction = tf.equal(tf.argmax(y conv,1),
203 tf.argmax(y ,1))
204 with tf.name scope(’accuracy’):
205 accuracy = tf.reduce mean(tf.cast(correct prediction, tf.float32))

206 tf.summary.scalar (’accuracy’, accuracy)
207 print (’CNN successfully built.’)

208 HF-———————
209 # ______________________________________________________________________
210 # ###START SESSSION AND COMMENCE TRAINING###

211 # ______________________________________________________________________
212 # ______________________________________________________________________
213 # create session

214 sSess = tf.Session|()

215 # 1nitalise variables
216 sess.run(tf.global variables initializer())

zn18  # Merge all the summaries and write them out to ”“mnist logs”
210 merged = tf.summary.merge all ()
20 if not os.path.exists (output directory):

221 print (' \nOutput directory does not exist - creating...’)
222 os.makedirs (output directory)

223 os.makedirs (output directory + ' /train’)

224 os.makedirs (output directory + ’/test’)

225 print (/' Output directory created.’)

26 else:

227 print (' \nOutput directory already exists - overwriting...’)
208 shutil.rmtree (output directory, ignore errors=True)

229 os.makedirs (output directory)

230 os.makedirs (output directory + ’/train’)

231 os.makedirs (output directory + ' /test’)

232 print (’/Output directory overwitten.’)

2us # prepare log writers

23« train writer = tf.summary.FileWriter (output directory + ’/train’,
- sess.graph)

235 test writer = tf.summary.FileWriter (output directory + ’/test’)

236 roc_writer = tf.summary.FileWriter (output directory)

237 # prepare checkpoint writer

238 saver = tf.train.Saver()

29 HF-————— -
290 # Train

241 # ______________________________________________________________________

242 print (' \nTraining phase initiated.\n’)
243 for i in range(l,training epochs+1):
244 batch img, batch 1bl = mnist.train.next batch(batch size)



245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

271

272

273

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

82 9. Conclusion and Research Strategy

testbatch = mnist.test.next batch(batch size)

# run training step

sess.run(train_step, feed dict={x: batch img,
y_: batch 1bl,
keep prob: 1.0})

# output the data into TensorBoard summaries every 10 steps
if (i)*%*display step == 0:
train_ summary, train accuracy = sess.run([merged, accuracy],
-~ feed dict={x:batch img,
y : batch 1bl,
keep prob: 1.0})
train writer.add summary(train summary, i)

print (“step %d, training accuracy %g”% (i, train_ accuracy))

test summary, test accuracy = sess.run([merged, accuracy],
-~ feed dict={x: testbatch[0],
y_: testbatch[1l],
keep prob: 0.9})
test writer.add summary(test summary, 1)
print (“test accuracy %g”%test accuracy)
# output metadata every 100 epochs
if i % 100 == 0 or i == training epochs:
print (' \nAdding run metadata for epoch ' + str(i) + ’"\n’)
run_options = tf.RunOptions(trace level=tf.RunOptions.FULL TRACE)
run metadata = tf.RunMetadata ()
summary, = sess.run([merged, train step],
feed dict={x:batch img, y : batch 1bl,
-~ keep prob: 1.0},
options=run_options,
run _metadata=run metadata)
train writer.add run metadata(run metadata, ’'step%03d’ % 1)
train writer.add summary (summary, i)
# save checkpoint at the end
if i == training epochs:
print (' \nSaving model at ’ + str(i) + ’ epochs.’)
saver.save (sess, output directory + ”/model at ” + str(i) +
-~ ” epochs.ckpt”,
global step=i)

# close writers
train writer.close()
test writer.close()

print (' \nEvaluating final accuracy of the model (1/3)’)
train accuracy = sess.run(accuracy, feed dict={x: mnist.test.images,
y_: mnist.test.labels,
keep prob: 1.0})
print ('Evaluating final accuracy of the model (2/3)')
test accuracy = sess.run(accuracy, feed dict={x: mnist.train.images,
y_: mnist.train.labels,



297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

B. Tensorflow Implementation

83

keep prob:

print (' Evaluating final accuracy of the model (3/3)7)
val accuracy = sess.run(accuracy, feed dict={x: mnist
y_: mnist

keep prob:
# _____________________________________________________
# _____________________________________________________
# Output results
# _____________________________________________________
# _____________________________________________________
print (”“\nTraining phase finished”)
print (”\tAccuracy for the train set examples =7
print (”\tAccuracy for the test set examples ="
print (”\tAccuracy for the validation set examples = ”

1.0})

.validation.images,
.validation.labels,
1.0})

, train accuracy)
, test accuracy)
, val accuracy)

#print a statement to indicate where to find TensorBoard logs
print (' \nRun ”“tensorboard --logdir=’ + output directory + ’” to see results

- on localhost:6006")






[1]

(2]

[3]
[4]

[S]

[6]

[7]

(8]

9]

[10]

(11]

[12]

[13]

Bibliography

dreamstimes. https://www.dreamstime.com/photos—-images/
abstract-composition-hands-eyes.html. Accessed: 2018-12-13.

Convolutional neural networks for image and video processing. https://wiki.tum.
de/display/1fdv, . Accessed: 2018-01-22.

Nestor, artificial intelligence. https://nestor-ai.com/#, . Accessed: 2018-01-22.

Satellite imaging corporation. https://www.satimagingcorp.com, . Accessed: 2018-
01-22.

Listerine - feel every smile. https://jwt.co.uk/work/feel-every-smile, . Accessed:
2018-01-22.

N Andrey. Kolmogorov. on the representation of continuous functions of many variables
by superposition of continuous functions of one variable and addition. Amer. Math. Soc.
Transl, 28:55-59, 1963.

Ignacio Arganda-Carreras, Srinivas C Turaga, Daniel R Berger, Dan Ciresan, Alessan-
dro Giusti, Luca Maria Gambardella, Jurgen Schmidhuber, Dmitry Laptev, Sarvesh
Dwivedi, Joachim M Buhmann, Ting Liu, Mojtaba Seyedhosseini, Tolga Tasdizen,
Lee Kamentsky, Radim Burget, Vaclav Uher, Xiao Tan, Cangming Sun, Tuan Pham,
Erhan Bas, Mustafa Gokhan Uzunbas, Albert Cardona, Johannes Schindelin, and
H. Sebastian Seung. Crowdsourcing the creation of image segmentation algorithms
for connectomics. Frontiers in Neuroanatomy, 9(142), 2015. ISSN 1662-5129. doi:
10.3389/fnana.2015.00142. URL http://www.frontiersin.org/neuroanatomy/10.
3389/fnana.2015.00142/abstract.

Sanjeev Arora, Aditya Bhaskara, Rong Ge, and Tengyu Ma. Provable bounds for learning
some deep representations. In International Conference on Machine Learning, pages 584—
592, 2014.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolu-
tional encoder-decoder architecture for image segmentation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 39(12):2481-2495, Dec 2017. ISSN 2160-9292.
doi: 10.1109/tpami.2016.2644615. URL http://dx.doi.org/10.1109/TPAMI.2016.
2644615.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review
and new perspectives. IEEE transactions on pattern analysis and machine intelligence,
35(8):1798-1828, 2013.

C.M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statis-
tics. Springer New York, 2016. ISBN 9781493938438.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L.
Yuille. Semantic image segmentation with deep convolutional nets and fully connected
crfs, 2014.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking
atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587,
2017.

85


https://www.dreamstime.com/photos-images/abstract-composition-hands-eyes.html
https://www.dreamstime.com/photos-images/abstract-composition-hands-eyes.html
https://wiki.tum.de/display/lfdv
https://wiki.tum.de/display/lfdv
https://nestor-ai.com/#
https://www.satimagingcorp.com
https://jwt.co.uk/work/feel-every-smile
http://www.frontiersin.org/neuroanatomy/10.3389/fnana.2015.00142/abstract
http://www.frontiersin.org/neuroanatomy/10.3389/fnana.2015.00142/abstract
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1109/TPAMI.2016.2644615

86

Bibliography

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]

[27]

[28]

[29]

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L.
Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 40(4):834-848, Apr 2018. ISSN 2160-9292. doi: 10.1109/tpami.
2017.2699184. URL http://dx.doi.org/10.1109/TPAMI.2017.2699184.

Francois Chollet. Deep Learning with Python. Manning Publications Co., Greenwich,
CT, USA, 1st edition, 2017. ISBN 1617294438, 9781617294433.

Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learn-
ing. CoRR, abs/1603.07285, 2016. URL http://dblp.uni-trier.de/db/journals/
corr/corrl603.html#DumoulinVvie.

Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learning hier-
archical features for scene labeling. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1915-1929, 2013.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological Cyber-
netics, 36(4):193-202, Apr 1980. ISSN 1432-0770. doi: 10.1007/BF00344251. URL
https://doi.org/10.1007/BF00344251.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Ben-
gio. Maxout networks. arXiv preprint arXiv:1302.4389, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling in
deep convolutional networks for visual recognition. In European conference on computer
vision, pages 346-361. Springer, 2014.

Sepp Hochreiter and Jirgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735-1780, 1997.

David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and func-
tional architecture in the cat’s visual cortex. The Journal of physiology, 160(1):106-154,
1962.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

Risi Kondor and Shubhendu Trivedi. On the Generalization of Equivariance and Con-
volution in Neural Networks to the Action of Compact Groups. arXiv e-prints, art.
arXiv:1802.03690, February 2018.

Philipp Krahenbtihl and Vladlen Koltun. Efficient inference in fully connected crfs with
gaussian edge potentials. In Advances in neural information processing systems, pages
109-117, 2011.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages
1097-1105. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip
code recognition. Neural computation, 1(4):541-551, 1989.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.


http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://dblp.uni-trier.de/db/journals/corr/corr1603.html#DumoulinV16
http://dblp.uni-trier.de/db/journals/corr/corr1603.html#DumoulinV16
https://doi.org/10.1007/BF00344251
http://www.deeplearningbook.org
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Bibliography 87

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):
436, 2015.

Yann LeCun et al. Generalization and network design strategies. Connectionism in
perspective, pages 143-155, 1989.

Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring
their equivariance and equivalence. CoRR, abs/1411.5908, 2014. URL http://arxiv.
org/abs/1411.5908.

Seung-Hwan Lim, Steven R Young, and Robert M Patton. An analysis of image storage
systems for scalable training of deep neural networks. system, 5(7):11, 2016.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115-133, 1943.

Tom M Mitchell. Does machine learning really work? Al magazine, 18(3):11, 1997.

Mohammadreza Mostajabi, Payman Yadollahpour, and Gregory Shakhnarovich. Feed-
forward semantic segmentation with zoom-out features. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 3376-3385, 2015.

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network
for semantic segmentation. In Proceedings of the IEEE international conference on com-
puter vision, pages 1520-1528, 2015.

Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo, and Jian Sun. Large kernel
matters — improve semantic segmentation by global convolutional network. 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul 2017. doi:
10.1109/cvpr.2017.189. URL http://dx.doi.org/10.1109/CVPR.2017.189.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics, 4(5):1-17, 1964.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Nu-
merical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press,
New York, NY, USA, 3 edition, 2007. ISBN 0521880688, 9780521880688.

Klaus Prof. Dr. Obermayer. Machine intelligence 1. TU Berlin, Institute of Software
Engineering and Theoretical Computer Science, March, 2018.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, pages 234-241. Springer, 2015.

Dominik Scherer, Andreas Mtller, and Sven Behnke. Evaluation of pooling operations in
convolutional architectures for object recognition. In Artificial Neural Networks—-ICANN
2010, pages 92-101. Springer, 2010.

Jurgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks,
61:85-117, 2015.

Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(4):640-651, Apr 2017. ISSN 2160-9292. doi: 10.1109/tpami.2016.2572683. URL
http://dx.doi.org/10.1109/TPAMI.2016.2572683.


http://arxiv.org/abs/1411.5908
http://arxiv.org/abs/1411.5908
http://dx.doi.org/10.1109/CVPR.2017.189
http://dx.doi.org/10.1109/TPAMI.2016.2572683

88

Bibliography

[47]

[48]

[49]

[S0]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Lakshmanaprabu S.K., Sachi Nandan Mohanty, Shankar K., Arunkumar N., and Gus-
tavo Ramirez. Optimal deep learning model for classification of lung cancer on ct im-
ages. Future Generation Computer Systems, 92:374 — 382, 2019. ISSN 0167-739X. URL
http://www.sciencedirect.com/science/article/pii/S0167739X18317011.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929-1958, 2014.

Standford. Convolutional neural networks for visual recognition. http://cs231n.
stanford.edu/. Accessed: 2018-10-13.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015.

Yichuan Tang and Chris Eliasmith. Deep networks for robust visual recognition. In
Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages
1055-1062. Citeseer, 2010.

Tensorflow. Graphs and sessions. https://www.tensorflow.org/tutorials/keras/
overfit and underfit, . Accessed: 2019-01-16.

Tensorflow. Explore overfitting and underfitting. https://www.tensorflow.org/
guide/graphs, . Accessed: 2019-01-17.

Vladimir Naumovich Vapnik. An overview of statistical learning theory. IEEE transac-
tions on neural networks, 10(5):988-999, 1999.

Juyang Weng, Narendra Ahuja, and Thomas S Huang. Cresceptron: a self-organizing
neural network which grows adaptively. In Neural Networks, 1992. IJCNN., International
Joint Conference on, volume 1, pages 576-581. IEEE, 1992.

David H Wolpert. The lack of a priori distinctions between learning algorithms. Neural
computation, 8(7):1341-1390, 1996.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions.
arXiv preprint arXiv:1511.07122, 2015.

Matthew D Zeiler and Rob Fergus. Visualizing and Understanding Convolutional Net-
works. arXiv e-prints, art. arXiv:1311.2901, November 2013.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid
scene parsing network. 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), Jul 2017. doi: 10.1109/cvpr.2017.660. URL http://dx.doi.org/10.
1109/CVPR.2017.660.


http://www.sciencedirect.com/science/article/pii/S0167739X18317011
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
https://www.tensorflow.org/tutorials/keras/overfit_and_underfit
https://www.tensorflow.org/tutorials/keras/overfit_and_underfit
https://www.tensorflow.org/guide/graphs
https://www.tensorflow.org/guide/graphs
http://dx.doi.org/10.1109/CVPR.2017.660
http://dx.doi.org/10.1109/CVPR.2017.660

	Introduction
	Artificial Intelligence and Deep Learning
	Multilayer Perceptron
	Model
	Performance measure
	Optimization
	Backpropagation

	Validation
	From Shallow to Deep Neural Networks
	A MLP as MNIST Classifier

	Statistical Learning Theory
	Learning Problem
	Empirical Risk Minimization
	Capacity, Over- and Underfitting
	Structural Risk Minimization

	Regularization Theory for Deep Learning
	Parameter Norm Penalties
	L2-Regularization
	L1-Regularization

	Invariance Learning
	Data augmentation
	Parameter sharing

	Dropout

	Basics of Convolutional Networks
	The Discrete Convolution Operation
	Characteristics of Discrete Convolution in Neural Networks
	Tensor
	Sparse connectivity
	Parameter sharing
	Equivariance


	Image Classification with Convolutional Networks
	Conventional Convolutional Networks
	Feature Extraction
	Classification
	Implementation

	Network in Network Approach
	Feature Extraction
	Classification
	Implementation

	A CNN as MNIST Classifier

	Image Segmentation with Convolutional Networks
	Fully Convolution Networks for Image Segmentation
	Methods of Upsampling
	Methods of Context Embedding
	Methods of Boundary Alignment

	Conclusion and Research Strategy
	Appendices
	Appendices
	Optimization
	Momentum Algorithm
	Adam

	Tensorflow Implementation
	The MLP MNIST Classifier
	The CNN MNIST Classifier


	Bibliography

