Multiagent Deep Reinforcement Learning for Traffic Light Control

By Azlaan Mustafa Samad

Advisor: Frans A. Oliehoek
Asst. Professor
Department of Intelligent Systems
Delft University of Technology.

Advisor: Prof. Kees Vuik

Professor of Numerical Analysis Director of TU Delft Institute for Computational Science and Engineering.

Motivation

- Traffic jams are a part of everyday problem for commuters.
- Cause of Pollution(air and noise), Health issues, accidents and monetary losses etc.

Facts:

The cost of traffic congestion in the EU is large, estimated to be 1% of the EU's GDP[1].

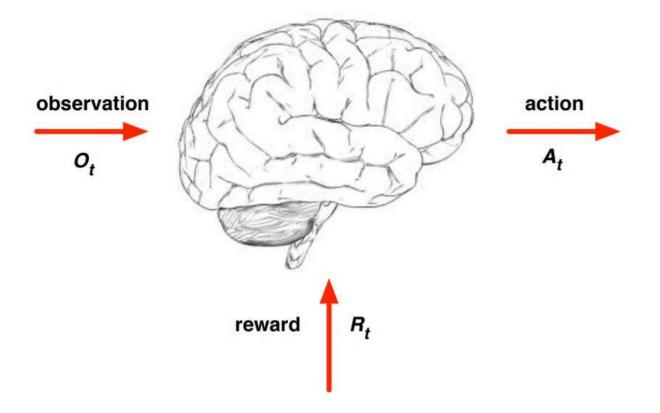
Long commuters are associated with higher weight, lower fitness levels, and higher blood pressure_[2] (2012 study by Washington University.)

Current Research

- Use of Predefined traffic light cycles.
- Use of Wireless Sensors Networks.
- TRANSYT: optimisation process that adjusts the signal timings with the ultimate aim of reducing the Performance Index to a minimum.
- SCOOT(Split Cycle and Offset Optimisation Technique): uses data from vehicle detectors and optimises traffic signal settings to reduce vehicle delays and stops.
- Use of Deep Reinforcement Learning

Reinforcement Learning

- There is no supervisor, only a reward signal.
- Feedback is delayed, not instantaneous.
- Time really matters (sequential, non i.i.d data).
- Agent's actions affect the subsequent data it receives.



Rewards

- A reward R₁ is a scalar feedback signal.
- Indicates how well agent is doing at step t.
- The agent's goal is to maximise cumulative reward.

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \ G_t \doteq R_{t+1} + \gamma G_{t+1}$$

where $\Upsilon \in [0,1]$ is the discounted term.

Major Components of an RL Agent

An RL agent may include one or more of these components:

- Policy: Agent's behaviour function.
- Value function: How good is each state and/or action.
- Model: Agent's representation of the environment.

Policy

A policy is the Agent's behaviour.

It is a mapping from state to action.

Eg.

Deterministic policy: $a = \pi(s)$

Stochastic policy: $\pi(a|s) = P[A_t = a|S_t = s]$

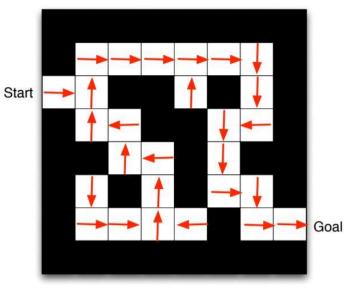
Value Function

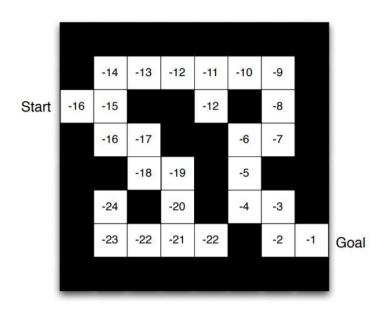
- Value function is a prediction of future reward.
- Used to evaluate the goodness/badness of states and therefore to select between actions.

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}_{\pi}igg[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}|S_t = sigg]$$

for all $s \in \mathcal{S}$

Maze Example: Policy and Value function





Value Function_[3]

Model

A model predicts what the environment will do next.

Eg.

$$p(s', r | s, a) \doteq Pr\{S_t = s', R_t = r \mid S_{t-1} = s, A_{t-1} = a\}$$

Markov Decision Process

 Markov decision processes formally describe an environment for reinforcement learning

A state S_t is Markov if and only if:

$$P(S_{t+1} \mid S_t, \dots, S_2, S_1) = P(S_{t+1} \mid S_t)$$

Definition of MDP(tuple)

A Markov Decision Process is a tuple $\langle S, A, P \rangle$

S is the space of possible states.

A is the space of possible actions.

P is a state transition probability matrix.

$$p(s', r | s, a) \doteq Pr\{S_t = s', R_t = r \mid S_{t-1} = s, A_{t-1} = a\}$$

Q-Value Function

The action-value function $q_{\pi}(s, a)$ is the expected return starting from state s, taking action a, and then following policy π .

$$q_\pi(s,a) \doteq \mathbb{E}_\pi[G_t|S_t=s,A_t=a] = \mathbb{E}_\pi[\sum \gamma^k R_{t+k+1}|S_t=s,A_t=a]$$

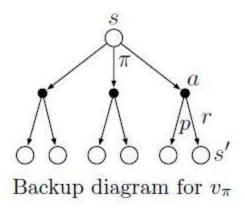
Bellman Equation

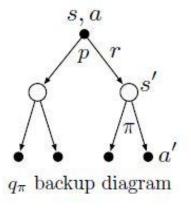
It expresses a relationship between the value of a state and the values of its successor states.

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) \left[r + \gamma v_{\pi}(s')
ight]$$

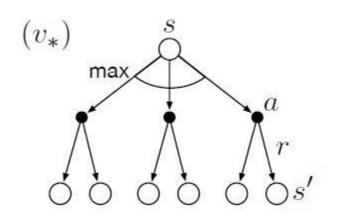
for all $s \in \mathcal{S}$.

Backup Diagrams

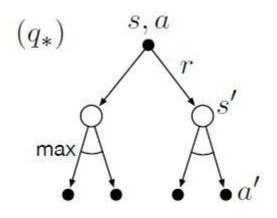




Bellman Optimality Equation



$$v_*(s) \doteq \max_{\pi} v_{\pi}(s)$$



$$q_*(s,a) \doteq \max_{\pi} q_{\pi}(s,a)$$

$$q_*(s,a) = \mathbb{E}[R_{t+1}\!+\!\gamma v_*\left(S_{t+1}
ight)\mid S_t=s,\!A_t=a]$$

Reinforcement Learning Algorithms

- Based on Policy:
 - On Policy: Eg. SARSA
 - Off Policy: Eg. Q-Learning
- Based on Model:
 - Model free: Eg. Q-Learning
 - Model Based: Eg. Value or Policy Iteration

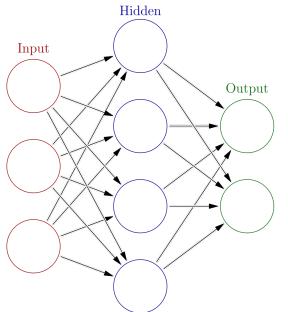
SARSA and Q Learning

The update rule is as given below:

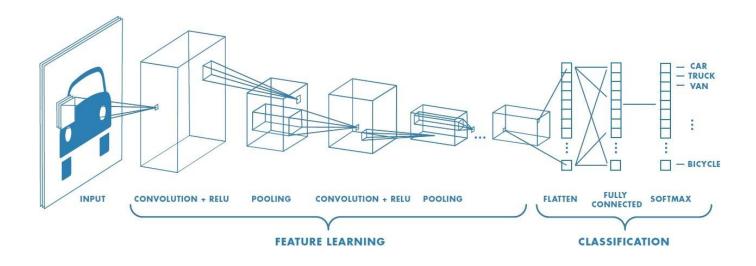
$$\text{SARSA:} \quad \mathcal{Q}(s_t, a_t) \leftarrow \mathcal{Q}(s_t, a_t) + \alpha[r_{t+1} + \gamma \mathcal{Q}(s_{t+1}, a_{t+1}) - \mathcal{Q}(s_t, a_t)]$$

$$\text{Q-Learning:} \quad \mathcal{Q}(s_t, a_t) \leftarrow \mathcal{Q}(s_t, a_t) + \alpha[r_{t+1} + \gamma \underset{a}{\text{max}} \mathcal{Q}(s_{t+1}, a) - \mathcal{Q}(s_t, a_t)]$$

Deep Q Learning (Q learning with Function Approximation)



- Approximating the optimal Q-values Q_{*}(s, a) by a parameterized deep neural network (DNN) such that the output of the neural network Q(s, a; θ) ≈ Q_{*}(s, a), where θ are features/parameters.
- These weights can be updated using gradient descent methods, minimizing the mean squared error between the current estimate of Q(s; a) and the target, which is defined as the true Q-value of the s; a-pair under policy π , $Q_{\pi}(s; a)$.



A typical CNN(Convolutional Neural Network)

Problems with Deep Q-Learning

- Correlation in the sequence of observation:
 - Solution: Experience Replay
- Change in target Q value due to updating:
 - Solution: Periodical updation of the Target Q-value.

Experience Replay

- Storing of agent's experience e_t (over many episodes): $e_t = (s_t, a_t, r_t, r_{t+1})$
- This is saved into a Dataset such as:

$$D_t = \{e_1, e_2, \dots, e_t\}$$

 Q-value updates are applied to these randomly selected sample of experience from pool of stored samples.

Target Network

 Updating the Target Q-value after a certain number of steps. Eg. Soft Update

$$\theta' = \beta \theta + (1 - \beta) \theta'$$

where, β is the update rate and β <<1.

Algorithm

```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights \theta
Initialize target action-value function \hat{Q} with weights \theta^- = \theta
For episode = 1, M do
   Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
   For t = 1,T do
       With probability \varepsilon select a random action a_t
       otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
       Execute action a_t in emulator and observe reward r_t and image x_{t+1}
       Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
       Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
       Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from D
```

Set $y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$

Perform a gradient descent step on $\left(y_j - Q\left(\phi_j, a_j; \theta\right)\right)^2$ with respect to the network parameters θ Every C steps reset $\hat{Q} = Q$

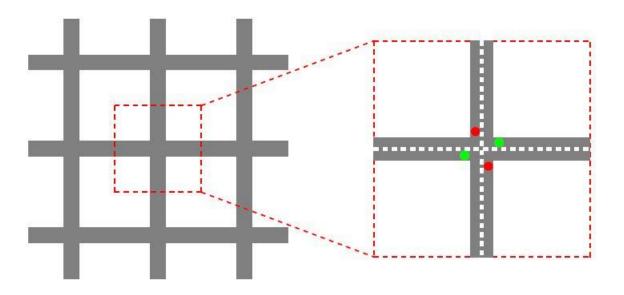
End For

End For

SUMO(Simulation of Urban MObility)

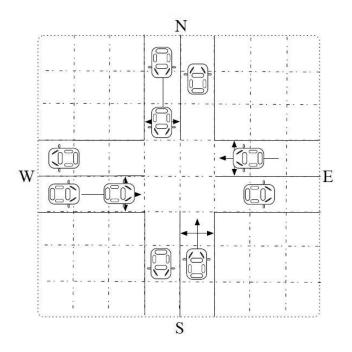
- free, open source software that allows for a realistic simulation of different traffic networks.
- implemented in C++
- allows to import maps from OpenStreetMap etc.
- plethora of tools which can be used for visualisation, emission calculations, network importing and finding the route

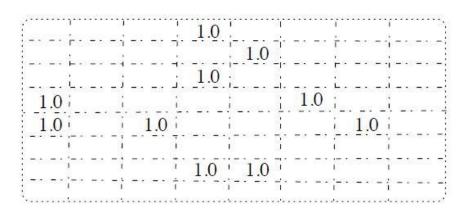
Single Agent Traffic Flow



A traffic light agent within a larger traffic network. The coloured circles represent the traffic light setting for each lane_[5].

States





Snapshot of traffic intersection at a particular time $_{[4]}$

Rewards

- Waiting time
- Queue length
- Average speed of cars in a lane.
- Eg. the absolute negative difference between queue length in north-south/south-north direction and those in east-west/west-east direction, i.e.

$$r_{t}^{TLS_{i}} = -\mid maxq_{t}^{WE} - maxq_{t}^{NS}
vert$$
 [6

Rewards(cont.)

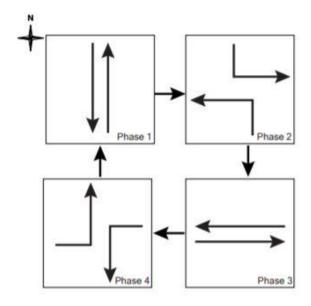
• Liang et al. [4] defines the rewards as the change of the cumulative waiting time between two neighboring cycles.

$$egin{aligned} r_t &= W_t - W_{t+1} \ W_t &= \sum_{i_t=1}^{N_t} w_{i_t,t} \end{aligned}$$

Here, the waiting time of the vehicle i till the t^{th} cycle is denoted by:

$$w_{i_t,t}, (1 \leq i_t \leq N_t)$$

Actions



The four phases of traffic lights.[6]

Yellow Light

- ullet $T_{yellow}=rac{v_{max}}{a_{dec}}$
- Fixed time cycle
- As an action itself.

Multi-Agent Traffic Flow

- A multi-agent system (MAS) is a system of multiple interacting agents within the same environment.
- In a cooperative multi-agent system (CMAS), agents cooperate to reach a common goal, often to maximize a common reward. Thus, in a CMAS, at every time step, the agents need to find an optimal joint action:

$$\overrightarrow{a^*} = (a_1, a_2, \dots, a_N)$$

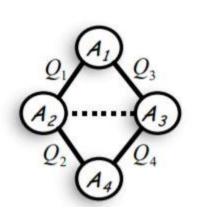
Difficulties with MARL

- Exponential growth in joint action space due to increase in no. of agents.
- combining all locally optimal actions into a joint action is not guaranteed to reach the global optimum.
- Moving targets due to non-stationarity.

Coordination Graphs

$$(A_1)$$
 (A_2) (A_3) (A_4) $(A_4$

Variable Elimination



$$\max_{a_1,a_2,a_3,a_4} Q_1(a_1,a_2) + Q_2(a_2,a_4) + Q_3(a_1,a_3) + Q_4(a_3,a_4)$$

$$\max_{a_1,a_2,a_3} Q_1(a_1,a_2) + Q_3(a_1,a_3) + \max_{a_4} [Q_4(a_3,a_4) + Q_2(a_2,a_4)]$$

$$\max_{a_1,a_2,a_3} Q_1(a_1,a_2) + Q_3(a_1,a_3) + f_4(a_2,a_3)$$

$$\max_{a_1,a_2} Q_1(a_1,a_2) + f_3(a_1,a_2)$$

where,
$$f_3(a_1,a_2) = \max_{a_3}[Q_3(a_1,a_3) + f_4(a_2,a_3)]$$

$$f_2(a_1) = \max_{a_2}[Q_1(a_1,\,a_2) + f_3(a_1,a_2)]$$

$$f_1 = max_{a_1}f_2(a_1)$$

Max-Plus_[8]

$$G=(V,E)$$

Representation of coordination graphs with *V* vertices and *E* the edges.

$$\mu_{ij}(a_j) = \max_{a_i} \{f_i(a_i) + f_{ij}(a_i,a_j) + \sum_{k \in \Gamma(i) \setminus j} \mu_{ki}(a_i)\} + c_{ij}$$

Maximum payoff *i* can achieve for a given action of *i*.

all neighbours of *i* except *j*.

normalisation vector

Max-Plus_[8]

At convergence, we define:
$$\mathrm{g_i}(\mathrm{a_i}) = f_i(a_i) + \sum_{i \in \Gamma(i)} \mu_{ji}(a_i)$$

It can be shown that:
$$g_i(a_i) = \max_{\{a' | a_i' = a_i\}} u(a')$$

Each agent *i* now selects its optimal action:

$$a_i^* = \operatorname{argmax}_{\operatorname{a_i}} \operatorname{g_i}(\operatorname{a_i})$$

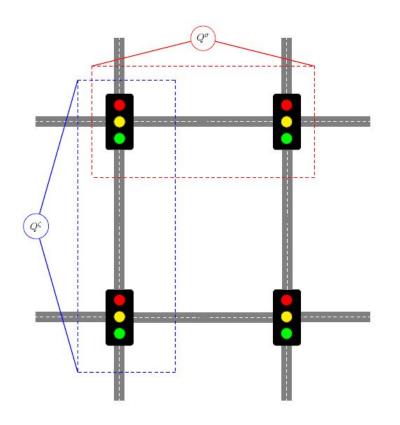
If there is one maximizing action for every agent *i*, the global optimal joint action is unique.

$$a^* = \operatorname{argmax_a} u(a)$$

Transfer Planning_[7]

- Once the joint Q-value function for the two-agent scenario is learned, this is used as the source problem in transfer planning.
- this is used as the source problem in transfer planning.
- After finding the local joint Q-value function for the factors in the multi-agent problem, the Q-function is reused for all similar factors in the larger multi-agent problem.

Transfer planning for traffic light control.



Transfer Planning + Max-Plus

Thus, the joint local Q-value Q_f is learned for each factor f in coordination graph CG, separately from the other agents.

Then, during execution, Q_f is used to compute local payoff functions for use in e.g. max-plus.

Advantages

Less time spent.

- Similar factored graphs can be learnt from a single source.
- No more source problem than the factors are needed.

Research Questions

- How to decide the reward function in order to effectively coordinate traffic and thereby reduce traffic jams?
- How to scale from few agents involving few intersections to a suburb of a city and finally the entire city?
- Training the agent for different types of intersections which we come across in the real life scenario and extending it to bigger maps.

43

References:

- [1] Commission of the European communities. White paper-European transport policy for 2010: time to decide. Office for Official Publications of the European Communities, 2001.
- [2] GMA News Online. Stress, pollution, fatigue: How traffic jams affect your health.
- [3] David Silver: Reinforcement Learning course in Imperial College London.
- [4] Xiaoyuan Liang, Xunsheng Du, Guiling Wang, and Zhu Han. Deep reinforcement learning for traffic light control in vehicular networks.arXivpreprint arXiv:1803.11115, 2018.
- [5] Elise van der Pol. Deep reinforcement learning for coordination in traffic light control. 2016
- [6] Yilun Lin, Xingyuan Dai, Li Li, and Fei-Yue Wang. An efficient deep reinforcement learning model for urban traffic control.arXiv preprintarXiv:1808.01876, 2018.
- [7] Frans A Oliehoek, Shimon Whiteson, and Matthijs TJ Spaan. Approximate solutions for factored Dec- POMDPs with many agents. In Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems, pages 563-570. International Foundation for Autonomous Agents and Multiagent Systems, 2013.
- [8] Carlos Guestrin, Michail Lagoudakis, and Ronald Parr. Coordinated reinforcement learning. In ICML, volume 2, pages 227{234, 2002}.

Thank You!

