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Motivation

« Traffic jams are a part of everyday problem for
commuters.

« Cause of Pollution(air and noise), Health issues,
accidents and monetary losses etc.

Facts:

The cost of traffic congestion in the EU is large, estimated to
be 1% of the EU's GDPp;.

Long commuters are associated with higher weight, lower

fitness levels, and higher blood pressurep; (2012 study by
Washington University.)



Current Research

« Use of Predefined traffic light cycles.
« Use of Wireless Sensors Networks.

« TRANSYT: optimisation process that adjusts the signal timings with the
ultimate aim of reducing the Performance Index to a minimum.

« SCOOT(Split Cycle and Offset Optimisation Technique): uses data from
vehicle detectors and optimises traffic signal settings to reduce vehicle
delays and stops.

« Use of Deep Reinforcement Learning
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Reinforcement Learning

- There Is no supervisor, only a reward
signal.

- Feedback is delayed, not instantaneous.

- Time really matters (sequential, non i.i.d
data).

- Agent’s actions affect the subsequent
data it receives.
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Rewards

+ Areward R is a scalar feedback signal.

 Indicates how well agent is doing at step t.

- The agent’s goal is to maximise cumulative
reward.

o0
G: = Ry +YRi2 + 72 Riyg +---= Z 7th+k+1

k=0
Gt = Ry + G
where T €[0,1] is the discounted term.
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Major Components of an RL
Agent

An RL agent may include one or more of these
components:

 Policy: Agent’'s behaviour function.

» Value function: How good is each state
and/or action.

* Model: Agent’s representation of the
environment.
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Policy

A policy is the Agent’s behaviour.

It is @ mapping from state to action.

Eg.

Deterministic policy: a = 11(s)

Stochastic policy: 1(als) = P[A, = a[S;= s]
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Value Function

* Value function is a prediction of future reward.
- Used to evaluate the goodness/badness of
states and therefore to select between actions.

’UW(S) = Er[GtISt = 3] = [, Z ’Yth+k+l|St = S8

k=0

forall s€ S
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Maze Example: Policy and Value function

14 |13 [-12 |11 |10 | -9
Start | -16 | -15 12 ®
-16 | -17 6 | -7
-18 | -19 -5
24 -20 -4 | -3
23 | 22 | 21 | -22 2 | -1 | Goal

Value Function[3]
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Model

A model predicts what the environment will
do next.

Eg.

p(s',r|s,a) = Pr{S; =s,R, =7r|S1 =841 =a}
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Markov Decision Process

. Markov decision processes formally
describe an environment for
reinforcement learning

- A state S, is Markov if and only if:
P(St—i—l | Sta Tt S27 Sl) — P(St+1 | St)
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Definition of MDP(tuple)

A Markov Decision Process is a tuple
(S, A, P)

S Is the space of possible states.

A is the space of possible actions.

P is a state transition probability matrix.

p(s',rls,a) = Pr{S; =s,R, =7r|S1 =841 =a}

“]
TUDelft

13



Q-Value Function

The action-value function g (s, a) is the
expected return starting from state s, taking
action a, and then following policy Tr.

gr(8,a) = Ex[Gi|S: = s, 4y = a] = Ex[Y Y*Resr11|Se = s, Ay = a
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Bellman Equation

It expresses a relationship between the
value of a state and the values of its
successor states.

vr(8) = E(;W(a | S)Zp(s’,r | s,a) [r + yvr(s)]

forall s ¢ S.
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Backup Diagrams
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Backup diagram for vx g= backup diagram

“]
TUDelft

16



Bellman Optimality Equation

(’U*) S (q*) S.a

max /\
a s
A 47" m axA A
/

OO0 OO O Of e o o o

V4 (8) = max, v,(s) g« (8,a) = max, q:(s,a)
g (8,a) = E[Ri11+7v (St11) | St = 8,41 = af
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Reinforcement Learning Algorithms

- Based on Policy:
~ On Policy: Eg. SARSA
— Off Policy: Eg. Q-Learning

- Based on Model:
- Model free: Eg. Q-Learning
—- Model Based: Eg. Value or Policy Iteration
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SARSA and Q Learning

The update rule is as given below:

sArsA:  Q(st,a) « Q(st,ar) + arepr + 79 (Se+1,ae+1) — Q(st, at)]

Q-Learning:  Q(sy,a¢) «— Q(st,ay) + afryer + ’)’mE?XQ(StJrl,a) — Q(st, at)]
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Deep Q Learning (Q learning with
Function Approximation)

Hidden

 Approximating the optimal Q-values Q.(s, a) by a
parameterized deep neural network (DNN) such
that the output of the neural network Q(s, a; 8) =
Q,(s, a), where 0 are features/parameters.

« These weights can be updated using gradient
Q descent methods, minimizing the mean squared
error between the current estimate of Q(s; a) and
the target, which is defined as the true Q-value of
the s; a-pair under policy 11, Q_(s; a).
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4 — CAR
— TRUCK

— VAN

— 4
’ <> D D — BICYCLE
FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN CONNECTED SOFTMAX
FEATURE LEARNING CLASSIFICATION

A typical CNN(Convolutional Neural Network)
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Problems with Deep Q-Learning

. Correlation in the sequence of

observation:
— Solution: Experience Replay

- Change in target Q value due to
updating:
— Solution: Periodical updation of the Target
Q-value.
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Experience Replay

- Storing of agent’s experience € (over many

ePISOdeS): €t = (staatartart—I-l)

* This is saved into a Dataset such as:
Dt — {617627“"7675}
» Q-value updates are applied to these

randomly selected sample of experience
from pool of stored samples.
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Target Network

. Updating the Target Q-value after a
certain number of steps. Eg. Soft Update
0 = B0+ (1—p)¢
where, 3 is the update rate and g <<1.
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Algorithm

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 6~ = 0
For episode =1, M do
Initialize sequence s; ={x; } and preprocessed sequence ¢, =¢(s)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a; =argmax, Q(¢(s;),a; )
Execute action a; in emulator and observe reward r; and image x; + ;
Set s+ 1=>5¢,a¢,%+1 and preprocess ¢, | =P(s;+1)
Store transition (¢t,at,rt,¢t +1) in D
Sample random minibatch of transitions (qﬁj,aj,rj,¢j " 1) from D

1 if episode terminates at step j+ 1
Sety]= 7:’+'Y max,y Q(¢j+l’al;0_> otherwise

Perform a gradient descent step on (yj -Q (¢j,aj; 0) )2 with respect to the
network parameters 0
Every C steps reset 0=0
End For
End For
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SUMO(Simulation of Urban MObility)

» free, open source software that allows for a realistic
simulation of different traffic networks.

* implemented in C++
 allows to import maps from OpenStreetMap etc.
« plethora of tools which can be used for visualisation,

emission calculations, network importing and finding
the route
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Single Agent Traffic Flow

A traffic light agent within a larger traffic network. The coloured circles represent the traffic
light setting for each lane
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Rewards

- Waiting time
* Queue length
« Average speed of cars in a lane.

« Eg. the absolute negative difference between queue
length in north-south/south-north direction and
those in east-west/west-east direction, i.e.

TLS;, WE NS
T, = — | mazq,” " — maxq,"” |

[6]
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Rewards(cont.)

Liang et al.4]defines the rewards as the change of
the cumula{ive waiting time between two neighboring
cycles.

Ty — Wt — Wt_|_1
_ Ny
Wt o Z’I,t:]. witat

Here, the waiting time of the vehicle ; till the tthcycle is denoted by:

Wi, ¢, (1 <4 < Ny)
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Actions

+

i

vPhase 4

The four phases of traffic Iights.[e]
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'Umazc

Adec

® Lyellow —

e Fixed time cycle

e As an action itself.

Nobody ever
listens to me...
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Multi-Agent Traffic Flow

A multi-agent system (MAS) is a system of multiple
interacting agents within the same environment.

* In a cooperative multi-agent system (CMAS), agents
cooperate to reach a common goal, often to maximize a
common reward. Thus, in a CMAS, at every time step,
the agents need to find an optimal joint action:

_>
a* = (al,az,...,aN)
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Difficulties with MARL

- Exponential growth in joint action space due
to increase in no. of agents.

» combining all locally optimal actions into a
joint action is not guaranteed to reach the

global optimum.
* Moving targets due to non-stationarity.
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Coordination Graphs

@—fm(a-l.ag) —@ CG(a1,az,a3,a4) = fi2(a1,a2) + f23(az,a3) + fs4(as,aq)
—7 —
a* = arg maz g(a)

fas(az, as) a

@— f3a(az,ay) —@

maz g(d) = maz [maz | fiz () +[... maz fy-1n ()]
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Variable Elimination

max Qi(as, az)+ Q2(az,as) + Q3(a1,a3) + Qa(as,aq)

az,az,as,ay

maz Qq(az, as)+ Qs(a1,a3) + 777&(}37[@4(0:3,(14) + Q2(az,a4)]

ay,a2,a3

maz Qq(as, az)+ Q3(a1,a3) + fi(az,as3)

as,az,as

manl (a’17 a’?) + f3(a17a2)
az,az

where, f3(a1,az) = 7@?-’6/@3 (a1, a3)+ fi(az,as)]
fa(ar) = ”’Zgw[Qz (a1, az) + f3(a1,az)]
fi = maz,, f2(a;)
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I\/Iax-PIus[S]

Representation of coordination graphs with V vertices and E the
G=(V,E) edgpes. o

zEV fl a’z + Z zg )EE fl](a’“a’])

Global Payoff /denotes the pair of neighboring

Local Payoff agents. Coordinated Payoff

pij(aj) = maz{fi(ai) + fij(ai, a;) + > operqy; pxi(ai) } + cij

| - .
Maximum payoff i can achieve for a given all neighbours of i normalisation
action of J. except j. vector
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I\/Iax-PIus[S]

At convergence, we define: gi(ai) = fz (a,i) -+ Z]’EI‘(Z') ,sz'(az')

It can be shown that: gi(ai) = maXx u(a’)
{a[al =2}

Each agent i now selects its *
a; — argmax,. g;l(a;
optimal action: [ ) aj gl( 1)

If there is one maximizing
action for every agent i *

’ a = argimax;ul\a
the global optimal joint & & ( )
action is unique.
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Transfer Planningm

* Once the joint Q-value function for the two-agent scenario is
learned, this is used as the source problem in transfer
planning.

 this is used as the source problem in transfer planning.

« After finding the local joint Q-value function for the factors in
the multi-agent problem, the Q-function is reused for all
similar factors in the larger multi-agent problem.

i
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Transfer planning
for traffic light
control.
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Transfer Planning + Max-Plus

Thus, the joint local Q-value Q; is learned for each factor f in
coordination graph CG, separately from the other agents.

Then, during execution, Q. is used to compute local payoff
functions for use in e.g. max-plus.
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Advantages
. Less time spent.

. Similar factored graphs can be learnt
from a single source.

- No more source problem than the
factors are needed.
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Research Questions

- How to decide the reward function in order to
effectively coordinate traffic and thereby reduce
traffic jams?

- How to scale from few agents involving few
intersections to a suburb of a city and finally the
entire city?

 Training the agent for different types of intersections
which we come across in the real life scenario and
extending it to bigger maps.

7
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Thank Youl!
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