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HARES

HARES → HArbour RESonance.

Determines wave penetration into harbours.

Uses the non-linear Mild-Slope equation.

Developed by Svašek Hydraulics.

⋄ Consultant in coastal, harbour and river engineering.
⋄ Specialized in numerical fluid dynamics.
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HARES
Example

Figure: The harbour of Scheveningen
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Project description

PROBLEM

For large domains, when the number of unknowns is large, the computing
time becomes undesirably lengthy.
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For large domains, when the number of unknowns is large, the computing
time becomes undesirably lengthy.

TASK

Accelerate HARES, decrease the computing time.
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Wave motion

z = −h(x, y)

z = 0

L

h

H
ζ

h(x, y) Water depth

H Wave height

L Wave length

ζ(x, y, t) Elevation of the free surface
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Wave motion transforming effects

Objects in the domain =⇒
{

− Diffraction
− Reflection

Decreasing water depth =⇒
{

− Refraction
− Shoaling
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=⇒ Linear Mild-Slope equation

− Wave breaking
− Bottom friction

}

=⇒ Non-linear term in the Mild-Slope equation
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Wave motion transforming effects
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Non-linear Mild-Slope equation
Assumptions

To derive the non-linear Mild-Slope equation we make the following
assumptions:
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Non-linear Mild-Slope equation
Assumptions

To derive the non-linear Mild-Slope equation we make the following
assumptions:

Water is an ideal fluid, i.e. homogeneous, inviscid, irrotational and
incompressible flow.

Pressure at the free surface is constant and uniform.

Wave slope ǫs =
2πA
L

is small.

Wave motion is harmonic in time.

Surface tension and Coriolis effect can be neglected.

Changes in bottom topography are small.
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Non-linear Mild-Slope equation

The non-linear Mild-Slope equation is given by

∇ ·
(

n0

k2
0

∇ζ̃
)

+

(

n0 −
iW

ω

)

ζ̃ = 0.

With

n0(x, y) Parameter n0 ∈ [1
2
, 1]

k0(x, y) Wave number

ζ̃(x, y) Elevation of the free surface

W (x, y, ζ̃) Dissipation of wave energy

ω Wave frequency

i =
√
−1

∇ =
(

∂
∂x
, ∂
∂y

)T
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Non-linear Mild-Slope equation

The non-linear Mild-Slope equation is given by

∇ ·
(

n0

k2
0

∇ζ̃
)

+

(

n0 −
iW

ω

)

ζ̃ = 0.

Non-linearity

W (x, y, ζ̃)ζ̃ =

(

A|ζ̃|+ B
|ζ̃|2

)

ζ̃
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Non-linear Mild-Slope equation
Boundary conditions

We make the distinction between two types of boundaries, i.e.

The open boundary with an incoming wave from the exterior and an
outgoing wave from the interior.

The closed boundary where (partial) reflection occurs.
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Non-linear Mild-Slope equation
Boundary conditions

The condition for the open boundary is given by

∂ζ̃

∂n
= −i

{

p̂(ζ̃ − ζ̃in) +
1

2p̂

(

∂2ζ̃

∂s2
− ∂2ζ̃in

∂s2

)

− p̂(ein · n)ζ̃in
}

.
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)
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The condition for the closed boundary is given by

∂ζ̃

∂n
= −i
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1−R

1 +R

)

{

p̂ζ̃ +
1

2p̂

∂2ζ̃
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}
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The condition for the open boundary is given by

∂ζ̃

∂n
= −i

{

p̂(ζ̃ − ζ̃in) +
1

2p̂

(

∂2ζ̃

∂s2
− ∂2ζ̃in

∂s2

)

− p̂(ein · n)ζ̃in
}

.

The condition for the closed boundary is given by

∂ζ̃

∂n
= −i

(

1−R

1 +R

)

{

p̂ζ̃ +
1

2p̂

∂2ζ̃

∂s2

}

.

With

p̂(x, y, ζ̃) Modified wave number

ζ̃in Incoming wave

R Reflection coefficient

i =
√
−1
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Structure of HARES

HARES consist of three parts, i.e.
1 Outer loop to deal with the non-linearity of the equation.

→ Non-linear Mild-Slope equation is linearised.

2 Spatial discretization of the linearised Mild-Slope equation.

→ Results in a system of equations Sζ = b.

3 Inner loop to determine the solution of Sζ = b.

Gemma van de Sande (DUT) Acceleration of HARES May 23, 2012 15 / 39



Initial implementation

The current programme has the following implementation:

1 Outer loop: Picard iteration.

2 Spatial discretization: Ritz-Galerkin finite element method.

3 Inner loop: ILU(0) - Bi-CGSTAB.
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Linearising the non-linear equation
Picard iteration

Using Picard iteration the non-linear Mild-Slope equation is linearised with
the following steps:
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Linearising the non-linear equation
Picard iteration

Using Picard iteration the non-linear Mild-Slope equation is linearised with
the following steps:

1 Use the previous iterative solution ζ̃k to compute a value for
W (x, y, ζ̃) and p̂(x, y, ζ̃).

2 Determine the next iterative solution ζ̃k+1.

3 Repeat steps 1 & 2 until convergence is reached.

The current programme repeats steps 1 & 2 25 times without knowing
whether convergence has been reached.
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Spatial discretization
Ritz-Galerkin finite element method

The Ritz-Galerkin finite element method consist of the following steps:
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Spatial discretization
Ritz-Galerkin finite element method

The Ritz-Galerkin finite element method consist of the following steps:

1 Divide the domain into linear triangular elements.

(x1, y1)

(x2, y2)

(x3, y3)

Two types of elements:

⋄ Internal elements.
⋄ Boundary elements.

Number of nodes N = Number of unknowns.
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Spatial discretization
Ritz-Galerkin finite element method

The Ritz-Galerkin finite element method consist of the following steps:

1 Divide the domain into linear triangular elements.

2 Derive the weak formulation of the PDE.

Multiply the PDE by a test function η(x, y), integrate it over the domain
Ω and apply the boundary conditions.
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Spatial discretization
Ritz-Galerkin finite element method

The Ritz-Galerkin finite element method consist of the following steps:

1 Divide the domain into linear triangular elements.
2 Derive the weak formulation of the PDE.
3 Approximate the solution by a linear combination of basis functions.

ζ̃(x, y) ≈
N
∑

j=1

ζjψj(x, y),

ψj(x, y) piecewise linear basis function.

N unknown coefficients ζj .
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Spatial discretization
Ritz-Galerkin finite element method

The Ritz-Galerkin finite element method consist of the following steps:

1 Divide the domain into linear triangular elements.

2 Derive the weak formulation of the PDE.

3 Approximate the solution by a linear combination of basis functions.

4 Replace the test function by each of the basis function separately.

η(x, y) → ψm(x, y)
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Spatial discretization
Ritz-Galerkin finite element method

The Ritz-Galerkin finite element method consist of the following steps:

1 Divide the domain into linear triangular elements.

2 Derive the weak formulation of the PDE.

3 Approximate the solution by a linear combination of basis functions.

4 Replace the test function by each of the basis function separately.

5 Determine the element matrix Se and element vector be for each
element, with Se ∈ C

3×3 and be ∈ C
3.

6 Obtain the global matrix S and global vector b, with S ∈ C
N×N and

b ∈ C
N .

Se → S and be → b
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Spatial discretization
Ritz-Galerkin finite element method

The Ritz-Galerkin finite element method consist of the following steps:

1 Divide the domain into linear triangular elements.

2 Derive the weak formulation of the PDE.

3 Approximate the solution by a linear combination of basis functions.

4 Replace the test function by each of the basis function separately.

5 Determine the element matrix Se and element vector be for each
element, with Se ∈ C

3×3 and be ∈ C
3.

6 Obtain the global matrix S and global vector b, with S ∈ C
N×N and

b ∈ C
N .

7 Compute the solution in each node by solving Sζ = b.
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Ritz-Galerkin finite element method
Non-linear Mild-Slope equation

∇ ·
(

n0

k2
0

∇ζ̃
)

+

(

n0 −
iW

ω

)

ζ̃ = 0 and BC’s

Application of the Ritz-Galerkin finite element method results in element
matrices of the following form:
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n0

k2
0

∇ζ̃
)

+

(

n0 −
iW

ω
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Se = −n0
k2
0

Le +

(

n0 −
iW

ω

)

M e − i
n0

k2
0

(

1−R

1 +R

)

Ce.
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∇ ·
(

n0

k2
0

∇ζ̃
)

+

(

n0 −
iW

ω

)

ζ̃ = 0 and BC’s

Application of the Ritz-Galerkin finite element method results in element
matrices of the following form:

Se = −n0
k2
0

Le +

(

n0 −
iW

ω

)

M e − i
n0

k2
0

(

1−R

1 +R

)
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∇ ·
(

n0

k2
0

∇ζ̃
)

=⇒ −n0
k2
0

Le
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Ritz-Galerkin finite element method
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∇ ·
(

n0

k2
0

∇ζ̃
)

+

(

n0 −
iW

ω

)

ζ̃ = 0 and BC’s

Application of the Ritz-Galerkin finite element method results in element
matrices of the following form:

Se = −n0
k2
0

Le +

(

n0 −
iW

ω

)

M e − i
n0

k2
0

(

1−R

1 +R

)

Ce.

Boundary conditions =⇒ −in0
k2
0

(

1−R

1 +R

)

Ce
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Ritz-Galerkin finite element method
Non-linear Mild-Slope equation
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)

+
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Application of the Ritz-Galerkin finite element method results in element
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0
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ω

)
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)

Ce.

Global matrix S is a symmetric, non-Hermitian, sparse matrix.
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(

n0

k2
0

∇ζ̃
)

+

(

n0 −
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ω

)

ζ̃ = 0 and BC’s

Application of the Ritz-Galerkin finite element method results in element
matrices of the following form:

Se = −n0
k2
0

Le +

(

n0 −
iW

ω

)

M e − i
n0

k2
0

(

1−R

1 +R

)

Ce.

Global matrix S is a symmetric, non-Hermitian, sparse matrix.

Global vector b is completely determined by the incoming wave ζ̃in.
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Solving a system of equations

After linearisation and spatial discretization we obtain the system of
equations

Sζ = b.
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Solving a system of equations

After linearisation and spatial discretization we obtain the system of
equations

Sζ = b.

S is a general matrix =⇒ Krylov subspace methods

Iterative solution method.

Starting vector ζ0, iterations ζ1, ζ2, . . . , ζm until the stopping criterion is
satisfied.
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Solving a system of equations

After linearisation and spatial discretization we obtain the system of
equations

Sζ = b.

S is a general matrix =⇒ Krylov subspace methods

Iterative solution method.

Krylov subspace of dimension m is given by

Km(S; r0) = span{r0,Sr0, . . . ,Sm−1r0},

with r0 = b− Sζ0.
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Solving a system of equations

After linearisation and spatial discretization we obtain the system of
equations

Sζ = b.

S is a general matrix =⇒ Krylov subspace methods

Iterative solution method.

Krylov subspace of dimension m is given by

Km(S; r0) = span{r0,Sr0, . . . ,Sm−1r0},

with r0 = b− Sζ0.

Number of matrix-vector products is an important measure.
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Solving a system of equations

After linearisation and spatial discretization we obtain the system of
equations

Sζ = b.

To accelerate the convergence we can apply a preconditioner K to the
system of equations, i.e.

K−1Sζ = K−1b
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Solving a system of equations

After linearisation and spatial discretization we obtain the system of
equations

Sζ = b.

To accelerate the convergence we can apply a preconditioner K to the
system of equations, i.e.

K−1Sζ = K−1b

Preconditioner K is a good approximation of matrix S

Constructing the preconditioner K is not too expensive.
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Solving a system of equations
Bi-CGSTAB

Proposed by H.A. van der Vorst in 1992.
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Solving a system of equations
Bi-CGSTAB

Proposed by H.A. van der Vorst in 1992.

Krylov subspace method.

Finite method, one iterations has two matrix-vector products.
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Solving a system of equations
Bi-CGSTAB

Proposed by H.A. van der Vorst in 1992.

Krylov subspace method.

Finite method, one iterations has two matrix-vector products.

Stopping criterion for Bi-CGSTAB

‖b− Sζm‖2
‖b− Sζ0‖2

≤ TOL.
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Solving a system of equations
Preconditioner - Incomplete LU decomposition

The system of equations is preconditioned with the incomplete LU
decomposition of matrix S.
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Solving a system of equations
Preconditioner - Incomplete LU decomposition

The system of equations is preconditioned with the incomplete LU
decomposition of matrix S.

S = LU −R.

L lower triangular matrix.
U upper triangular matrix.
R residual matrix.
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L and U have the same zero-pattern as S, i.e. if si,j = 0 then
ui,j = li,j = 0 and if si,j 6= 0 then ui,j 6= 0 and li,j 6= 0.
diag(L) = 1 and diag(U ) is determined by the algorithm.

Preconditioning is done by L−1SU−1y = L−1b with y = Ux.
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Proposed improvements

To reduce the computing time we propose the following solution methods

1 Outer loop:

⋄ Implement a stopping criterion for Picard iteration.
⋄ Inexact Picard iteration.

2 Inner loop:

⋄ IDR(s) combined with the shifted Laplace preconditioner.
⋄ Direct method MUMPS.
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Improvement of the outer loop
Stopping criterion for Picard iteration

Current programme performs 25 outer iterations.

A suitable stopping criterion is needed to determine when and
whether the non-linear solution is obtained.

‖F (ζk)‖2
‖F (ζ0)‖2

≤ TOLresidual

Value for TOLresidual depends on the test case.
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Improvement of the outer loop
Inexact Picard iteration

Each iteration of Picard iteration we need to determine the solution of the
system of equations Sζ = b. This can be done exactly.
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Improvement of the outer loop
Inexact Picard iteration

Each iteration of Picard iteration we need to determine the solution of the
system of equations Sζ = b. This can be done exactly.

However, we can relax this condition with the following stopping criterion

‖Sζk − b‖2 ≤ ηk‖b‖2,

with

ηk = TOL · ‖ζ
k − ζk−1‖2
‖ζ0‖2

.
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Solving a system of equations
IDR(s)

IDR is proposed by P. Sonneveld in 1980.
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Solving a system of equations
IDR(s)

IDR is proposed by P. Sonneveld in 1980.

Krylov subspace method.

Generate residuals rn that are in the subspace Gj with decreasing
dimension.

Gj = (I − ωjA)
(

Gj−1 ∩ P⊥

)

,

with G0 = KN (A;v0) and P ∈ C
N×s.
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Krylov subspace method.

Generate residuals rn that are in the subspace Gj with decreasing
dimension.

Based on the IDR theorem

(i) Gj ⊂ Gj−1 for all Gj−1 6= {0}, j > 0,

(ii) Gj = {0} for some j ≤ N .
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IDR(s)

IDR is proposed by P. Sonneveld in 1980.

Krylov subspace method.

Generate residuals rn that are in the subspace Gj with decreasing
dimension.

Based on the IDR theorem

(i) Gj ⊂ Gj−1 for all Gj−1 6= {0}, j > 0,

(ii) Gj = {0} for some j ≤ N .

=⇒ Finite method, requires at most N + N
s
matrix-vector multiplications.
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Solving a system of equations
IDR(s)

IDR is proposed by P. Sonneveld in 1980.

Krylov subspace method.

Generate residuals rn that are in the subspace Gj with decreasing
dimension.

Based on the IDR theorem

Stopping criterion implemented in IDR(s)

‖b− Sζm‖2
‖b‖2

≤ TOL.
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Solving a system of equations
Shifted Laplace preconditioner

For each element the shifted Laplace preconditioner is given by

Ke = −n0
k2
0

Le − ξ2M e − i
n0

k2
0

(

1−R

1 +R

)

Ce

with Ke ∈ C
3×3 and ξ2 the shift parameter.
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0

Le − ξ2M e − i
n0

k2
0

(

1−R

1 +R

)

Ce

with Ke ∈ C
3×3 and ξ2 the shift parameter.

Very similar to the element matrices

Se = −n0
k2
0

L2 +

(

n0 −
iW

ω

)

M e − i
n0

k2
0

(

1−R

1 +R

)

Ce.
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Solving a system of equations
Shifted Laplace preconditioner

For each element the shifted Laplace preconditioner is given by

Ke = −n0
k2
0

Le − ξ2M e − i
n0

k2
0

(

1−R

1 +R

)

Ce

with Ke ∈ C
3×3 and ξ2 the shift parameter.

The global preconditioner K ∈ C
N×N is computed from the matrices

Ke.

Approximate inverse of K by its incomplete LU decomposition.

Use the shift ξ2 = i
∣

∣n0 − iW
ω

∣

∣.
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Solving a system of equations
Direct method MUMPS

MUMPS - MUltifrontal Massively Parallel Solver.
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Determines the solution of the system of equations Sζ = b, where S

is a square sparse matrix.

Computes the LU factorization of the matrix S, i.e. S = LU .

Obtains the solution by ζ = U−1L−1b.
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Solving a system of equations
Direct method MUMPS

MUMPS - MUltifrontal Massively Parallel Solver.

Determines the solution of the system of equations Sζ = b, where S

is a square sparse matrix.

Computes the LU factorization of the matrix S, i.e. S = LU .

Obtains the solution by ζ = U−1L−1b.

Available in a sequential and parallel version.
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Numerical experiments
Test cases

Four test cases are considered:
1 Harbour of Scheveningen

63,253 unknowns
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Numerical experiments
Test cases

Four test cases are considered:
1 Harbour of Scheveningen

63,253 unknowns

2 Maasvlakte - bottom topography A

173,612 unknowns

3 Maasvlakte - bottom topography B

173,612 unknowns

4 Harbour of Marsaxlokk - Malta

170,423 unknowns
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Numerical experiments
Results - computing time
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Numerical experiments
Results - Computing time

After implementing the proposed improvements we need the following
percentages of the computing time of the initial implementation.

Scheveningen Maasvlakte A Maasvlakte B Malta

Iterative 5.8 % 2.8 % 2.7 % 3.4 %
Direct 7.0 % 1.6 % 1.0 % 1.5 %
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Conclusions & Recommendations

Proposed improvements for the iterative solver are upto 35 times
faster than the initial implementation.
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Conclusions & Recommendations

Proposed improvements for the iterative solver are upto 35 times
faster than the initial implementation.

The number of matrix-vector products is reduced by a factor 58.

Using the direct method MUMPS the computing time is upto 100 times
faster than the original implementation.

Use a direct method, e.g. MUMPS, to determine the solution of the
system of equations.

If the dimension of the sparse matrix is considerably larger we propose
inexact Picard iteration, where the system of equations is solved using
IDR(s) preconditioned with the shifted Laplace preconditioner.
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Future research

Parallel version of the direct method MUMPS.
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Future research

Parallel version of the direct method MUMPS.

Parallel computation of the global matrix S.

Approximation of the complete LU factorization of the shifted Laplace
preconditioner.

Inexact Picard iteration based on a different forcing sequence.
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Numerical experiments
Computing time - logarithmic scale
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