
Delft University of Technology
Faculty Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Enhancing iterative solution methods for general
FEM computations using rigid body modes.

A thesis submitted to the
Delft Institute of Applied Mathematics

as part of

the degree of

MASTER OF SCIENCE
in

APPLIED MATHEMATICS

by

ALEX SANGERS

Delft, the Netherlands
June 2014

Copyright c© 2014 by Alex Sangers. All rights reserved.

MSc THESIS APPLIED MATHEMATICS

“Enhancing iterative solution methods for general FEM computations using
rigid body modes.”

ALEX SANGERS

Delft University of Technology

Daily supervisor Responsible professor

Dr.ir. M.B. van Gijzen Prof. dr.ir. C. Vuik

Other thesis committee members

Dr.ir. G.M.A. Schreppers (TNO DIANA)

Dr. J.L.A. Dubbeldam

June 2014 Delft, the Netherlands

i Abstract

The demand for large nonlinear finite element models in the field of Civil engineering grows
every year. The finite element software has to facilitate the analysis of larger models in
less time. One of the computationally most intensive parts of a finite element analysis is
the solution of one or more systems of linear equations. Iterative solution methods have
proved to be efficient for some classes of applications.

Diana (DIsplacement ANAlyzer) is a general finite element software package that can be
used to analyze a wide range of problems arising in Civil engineering. This thesis focuses
on improving the convergence of iterative solution methods of general finite element ap-
plications. The convergence of iterative solvers stagnates if some eigenvalues are relatively
small. Large stiffness jumps in the underlying model, such as significant material differ-
ences, cracking or other nonlinear behavior, can result in such harmful eigenvalues.

The considered remedy is based on the approximate rigid body modes of the model. To
identify the approximate rigid body modes in a finite element application we propose a
generally applicable method based on element stiffness matrices. Furthermore, we propose
a strategy for reusing the rigid body modes in a nonlinear iteration loop. The rigid body
modes are used for deflation and coarse grid correction and the performance is compared in
a sequential and parallel environment with various number of threads. Both the symmetric
case (Conjugate Gradient) and the non-symmetric case (restarted GMRES) are considered.

The proposed methods are implemented in the commercial software package Diana and
are extensively tested. Cases with sudden stiffness jumps of a factor 103 or higher can
be significantly improved by using approximate rigid body modes. We find that coarse
grid correction is more robust than deflation and it also scales better with the number of
concurrent threads.

i

ii Notation and definitions

Below some common mathematical notation and definitions are introduced.

Definition 1. Let x ∈ Rn be a vector and A ∈ Rn×n be a matrix. Then A is defined:

Symmetric if A = AT .

Positive definite if xTAx > 0, ∀x 6= 0.

Definition 2. Let x, y ∈ Rn be vectors and let A ∈ Rn×n be a positive definite matrix.
Then the following inner products are defined as

〈x, y〉2 =

n∑
i=1

xiyi = xT y,

〈x, y〉A = xTAy.

Inner products can induce norms.

Definition 3. Let x ∈ Rn be a vector, A ∈ Rn×n be a positive definite matrix and p ∈
N ∪ {∞}. Then the following commonly used norms are defined by

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

‖x‖A =
√
xTAx,

‖A‖p = max
x∈Rn\{0}

‖Ax‖p
‖x‖p

‖A‖F =

√√√√ n∑
i=1

n∑
j=1

|aij |2.

The ‖ · ‖p is often chosen as ‖ · ‖1, ‖ · ‖2 or ‖ · ‖∞, where

‖x‖∞ := max
i=1,...,n

|xi|.

The ‖ · ‖2 is called the Euclidean norm or L2-norm and for the Euclidean matrix norm
holds that ‖A‖2 =

√
λmax(ATA). The ‖ · ‖F -norm is the Frobenius norm and is often used

in numerical computations since it is relatively cheap to compute.

Any norm induced by an inner product satisfies ‖x‖∗ =
√
〈x, x〉∗. The Euclidean norm is

induced by the Euclidean inner product and for positive definite matrices, the A-norm is
induced by the A-inner product.

Definition 4. Let A ∈ Rn×n be a matrix. The condition number κ∗ of A is defined as

κ∗(A) = ||A||∗||A−1||∗.

If there is no ambiguity we write κ(A) := κ2(A). Furthermore, if A is symmetric positive
definite, this reduces to

κ(A) =
λmax(A)

λmin(A)
.

ii

The effective condition number of the symmetric (semi-)positive definite matrix A is defined
by the following ratio:

κeff(A) =
λmax(A)

λm+1(A)
,

where λm+1(A) is the smallest positive eigenvalue of A.

Definition 5. A matrix (or any operator) A is self-adjoint if

〈Ax, y〉 = 〈x,Ay〉.

Note that any symmetric matrix is self-adjoint.

Definition 6. Let the function f be defined on domain V . Let k ∈ N ∪ {∞} and p ∈ N 1.
Then the following function spaces are defined as

C(V) := {f → C | f is continuous},
Ck(V) := {f → C | f is k-times continuously differentiable},

Lp(V) := {f → C |
∫
V
|f |p dV <∞},

H(V) := {f → C | ||f || =
√
〈f, f〉 is well-defined},

H1(V) := {f ∈ L2(V) | f has a weak derivative},
Hn(V) := {f ∈ H1(V) | f ′ ∈ Hn−1(V)}.

The function space H is called a Hilbert space and the function space Hn is called a Sobolev
space. Any space with a well-defined inner product is a Hilbert space. The mentioned weak
derivative above will be elaborated later. In addition, any lower index 0, such as f ∈ C1

0 (V),
indicates that the corresponding function f is zero at the boundary Γ of V .

1Typically, k = {1, 2,∞} and p = {1, 2}.

iii

iii Acknowledgments

This paper presents the results of my Master thesis. The graduation project was performed
to obtain my masters degree in Applied Mathematics at the Delft University of Technology
and carried out at TNO DIANA in Delft.

I would like to thank some people who supported and helped me during my graduation
project. Firstly, I want to thank the graduation committee members, Martin van Gi-
jzen, Gerd-Jan Schreppers, Kees Vuik and Johan Dubbeldam for their support and advice
throughout the course of my graduation project.

I would like to thank my colleagues at TNO DIANA for their help with the Diana software.
In particular, I would like to thank Gerd-Jan Schreppers for giving me the opportunity to
work on this project and Wijtze Pieter Kikstra, Jonna Manie and Jos Jansen for their
know-how advice about Diana. I would also like to thank Erik Jan Lingen for his feedback
on parallel computing and Jantine van Steenbergen for all sorts of practical problems.

The guidance of my supervisor Martin van Gijzen was instructive and cooperating with
him was very pleasant.

Finally, I want to thank my family and my girlfriend Iris for their continued support and
being a listening ear in the hard-to-understand mathematical world.

Delft, June 2014

Alex Sangers

iv

Contents

i Abstract i

ii Notation and definitions ii

iii Acknowledgments iv

1 Introduction 1

2 The finite element method 2
2.1 The weak formulation . 3
2.2 Solving the weak formulation . 4
2.3 Application of the finite element method to structural problems 5
2.4 Elements . 6
2.5 Element integration . 9
2.6 Nonlinear analysis . 9

3 Iterative solution methods for linear systems 10
3.1 Krylov subspace methods . 11
3.2 Preconditioning . 17
3.3 Multigrid . 20

4 Domain decompositions 21
4.1 Partitioning . 21
4.2 Substructuring . 23
4.3 Schwarz domain decomposition . 23
4.4 Substructuring versus parallel domain decomposition 25

5 Deflation 26
5.1 Convergence of deflation . 29
5.2 Robustness . 30
5.3 Eigenvector deflation . 30
5.4 Subdomain deflation . 31
5.5 Rigid body modes deflation . 31

6 Identifying rigid bodies 32
6.1 Motivation . 32
6.2 The coloring algorithm . 36
6.3 Generalizing the coloring algorithm . 39
6.4 Limitation of rigid bodies . 41
6.5 Reusing rigid bodies in nonlinear iterations 42

7 Rigid bodies within the solution method 42
7.1 The rigid body modes . 42
7.2 Deflation versus coarse grid correction . 43

8 Implementation 46
8.1 Parallel computers . 46
8.2 Parallel computations . 48
8.3 The condition number of the coarse matrix 50

9 Results 54
9.1 General applicability . 54
9.2 Case descriptions . 54
9.3 Numerical experiments . 60

10 Conclusions 68
10.1 Summary of theory . 68
10.2 Conclusions from the results . 69
10.3 Future research . 70

A DIANA 72
A.1 The DIANA user . 72
A.2 HENDRIKS machine . 73

B Performance and memory considerations 73
B.1 Approximate null space matrix . 73
B.2 Pre-computing KZ versus not pre-computing KZ 74

C Stiffness range as generalization of the coloring algorithm 74

D Induced dimension reduction 75

1 Introduction

In the field of Civil engineering there is a growing demand for large three-dimensional non-
linear finite element models. One of the computationally most intensive parts of a finite
element analysis is the solution of one or more systems of linear equations. Large three-
dimensional problems lead to systems with millions of degrees of freedom. To solve these
systems a number of direct and iterative solution methods are available [34]. Iterative solu-
tion methods have proved to be able to solve these systems in a reasonable time and require
less memory than the direct methods. A major drawback is that iterative solvers are not
always robust, i.e., convergence can be slow or they may not converge at all. Several tech-
niques are available to increase the robustness of iterative solvers, such as preconditioning.

Diana (DIsplacement ANAlyzer) is a general finite element software package that can be
used to analyze a wide range of problems arising in Civil engineering including structural,
geotechnical, tunneling, earthquake disciplines and oil and gas engineering [40]. The pur-
pose of this research is to get more insight in the iterative solvers of Diana and how to
improve them. This thesis addresses the following research question:

How can the iterative solution methods of Diana be improved by incorporating
the physical properties of the model?

The solvers are implemented in a general commercial finite element software package, which
requires that non-specialist users should be able to use it. Therefore, any improvements
of the iterative solvers should be easy to use and generally applicable. Furthermore, the
implementation should be easy to understand and easy to maintain.

The convergence of the iterative solvers stagnates if some eigenvalues are relatively small.
Large stiffness jumps in the underlying model, such as material differences, cracking or
other nonlinear behavior, can result in such harmful eigenvalues. The considered remedy
is based on the stiff parts in a model, the so-called approximate rigid body modes [20].
This approach aims to increase the robustness and the convergence of an iterative solution
method in case large jumps in stiffness occur. Examples are different material layers in a
geotechnical model or nonlinear material behavior in tunneling models. Furthermore, the
rigid body modes can improve global convergence in the context of parallel computing [28].

The rigid body modes can be used for coarse grid correction or for deflation. Coarse grid
correction is an algebraic multigrid method to enhance the convergence of low frequency
modes of a model. Deflation is a projection technique similar to preconditioning, with the
purpose to increase the robustness and the convergence speed of an iterative solver. Defla-
tion is very suitable in combination with a preconditioner and has shown to be successful
in the application of structural mechanics and composite materials [20–23,43].

This thesis builds on the work of Lingen [28], who implemented coarse grid correction in
Diana based on the subdomains of a domain decomposition. This works also strongly
relates to the work of Jönsthövel [20], who described the rigid body modes deflation tech-
nique applied to composite materials. Some theoretical background of the finite element
method is based on Bathe [2] and Zienkiewicz [52] and the information available in the
Diana manuals [40–42]. Background theory of iterative solution methods can be found in
Saad [34] and a starting point for deflation theory is Frank et al. [12].

1

The outline of the remainder of this thesis is as follows:

Section 2: The finite element method. The displacement based finite element method
is introduced.

Section 3: Iterative solution methods for linear systems. The iterative solution
methods, preconditioners and other solution techniques that are currently available in Di-
ana are described.

Section 4: Domain decompositions. The domain decomposition techniques substruc-
turing (Schur complement) and parallel Schwarz domain decomposition are explained.

Section 5: Deflation. The deflation technique to improve the iterative solver is intro-
duced.

Section 6: Identifying rigid bodies. This section explains the idea of (approximate)
rigid bodies in the model and describes how to identify and reuse the rigid bodies.

Section 7: Rigid bodies within the solution method. Both deflation and coarse grid
correction can take advantage of the rigid body modes.

Section 8: Implementation. Some implementation considerations are illustrated and
motivated.

Section 9: Results. This section shows the results for the iterative solution methods
when applying the proposed techniques. A comparison is made with the current solvers in
Diana.

Section 10: Conclusions. The summary, conclusions and recommendations of this thesis
are presented.

2 The finite element method

The finite element method (FEM) is a multi-purpose numerical method to solve involved
partial differential equations (PDEs). Finite element procedures are very widely used in
engineering analysis and an important advantage of the FEM over other numerical methods
is its broad applicability. A general but extensive introduction to the FEM can be found
in the historically significant books of Bathe [2] and Zienkiewicz [52].

Partial differential equations arising from physics can often be written as a minimization
problem [46]. Such minimization problems typically aim to minimize the underlying po-
tential energy or seek the shortest path. The advantage of minimization problems is that
they admit a larger solution class than the corresponding PDE formulation; they require
fewer boundary conditions. The boundary conditions explicitly described in the minimiza-
tion problem are called essential boundary conditions. Other boundary conditions that
are present in the PDE but are absent in the minimization problem are called natural
boundary conditions. These natural boundary conditions are only implicitly present in the
formulation of the minimization problem. As a rule of thumb, for second order PDEs all
boundary conditions regarding to the displacement vector u are essential and all boundary

2

conditions regarding to the spatial derivative of u are natural.

Another, more general approach, is the weak formulation. The weak formulation as well as
the minimization problem allow a larger solution class than the corresponding PDE formu-
lation. The weak formulation is identical to the minimization problem if the minimization
problem can be formulated. Although of historical relevance and linked with physical mean-
ing, the minimization problem formulation is only applicable in specific cases. For more
information on the minimization problem formulation, please refer to Van Kan et al. [46].
This thesis will mainly focus on the weak formulation.

2.1 The weak formulation

The goal of the weak formulation is to admit a larger solution class by using the concept
of weak derivatives.

Definition 7. The function g ∈ L2(V) is the weak derivative of f ∈ L2(V) if g satisfies∫
V
g(s)λ(s) ds = −

∫
V
f(s)λ′(s) ds, ∀λ ∈ C1

0 (V). (2.1)

Note that the (strong) derivative f ′ of f is also the weak derivative and that the weak
derivative g of f is also the (strong) derivative f ′ of f if it exists.
An example of a function with a weak derivative without a strong derivative is f = |x| on
V = [−1, 1]. The strong derivative f ′ of f does not exist in {0}, while the weak derivative
g is given by

g(x) =

{
−1 if x ∈ (−1, 0],
1 if x ∈ (0, 1).

The function g is well-defined and the choice of the value of g at x = 0 is irrelevant, since
the weak derivative is only defined up to point-wise almost-everywhere equivalence [19].
The function g is equal to the strong derivative of f on V \{0}. Furthermore, since the
function space C1(V) is ||.||H1-dense in the function space H1(V) [16], Equation (2.1) also
holds for all λ ∈ H1

0 (V).

The strength of the weak formulation can be illustrated by considering the following Poisson
problem on V with f ∈ L2(V):{

−52 u = f, on V,
u = 0, on Γ = ∂V.

(2.2)

The PDE notation demands that u is twice differentiable. Now consider the weak formu-
lation approach:

−52 u = f (2.3)∫
V
−52 u λ dV =

∫
V
fλ dV, ∀λ ∈ H1

0 (V) (2.4)∫
V
5u · 5λ−5 · (5u λ) dV =

∫
V
fλ dV, ∀λ ∈ H1

0 (V)∫
V
5u · 5λ dV −

∮
(5u λ) · n dΓ =

∫
V
fλ dV, ∀λ ∈ H1

0 (V) (2.5)∫
V
5u · 5λ dV =

∫
V
fλ dV, ∀λ ∈ H1

0 (V). (2.6)

3

Equation (2.4) results from multiplying with a test function λ ∈ H1
0 (V), which satisfies the

essential boundary conditions of u, and integrating on the whole domain. This is equivalent
to Equation (2.3) by the extension of DuBois-Reymond’s lemma [46]. Equation (2.5) follows
by Gauss divergence theorem and Equation (2.6) follows from the boundary conditions of λ.

The weak formulation approach results in a lower order problem (in derivatives) with the
same unique solution as the original PDE. It admits a larger solution class by only demand-
ing that u ∈ H2

0 (V). The weak formulation is a generalization of the corresponding PDE; a
solution of the PDE is also a solution of the weak formulation, but not necessarily vice versa.

2.2 Solving the weak formulation

The finite element method solves Equation (2.6) by approximating u by a linear combination
of so-called test functions, i.e.,

u ≈ un =

n∑
j=1

ujλj ,

where λj are test functions. The domain V is divided into nel elements with each element
consisting of a number of (shared) nodes. The number of nodes per element varies with
the specific choice of test functions. The choice of the test functions λj ∈ H1

0 (V) strongly
determines the sparsity of the resulting linear system of equations. In order to preserve
the underlying model sufficiently accurate, the test functions λj always satisfy λj(xi) = δij .
This ensures that u(xi) = ui in the nodes.

Reconsider the Poisson problem in Equation (2.2). Independent of the specific choice of
λj , the approximation un in our example leads to:

∫
V
5un · 5λi dV =

∫
V
fλi dV∫

V
5(

n∑
j=1

ujλj) · 5λi dV =

∫
V
fλi dV

n∑
j=1

uj

∫
V
5λj · 5λi dV =

∫
V
fλi dV.

Assume the number of elements to be nel and denote the elements by em. Let us introduce

Kij =

∫
V
5λj · 5λi dV

=

nel∑
m=1

∫
em

5λj · 5λi dV =

nel∑
m=1

Kem
ij ,

fi =

∫
V
fλi dV

=

nel∑
m=1

∫
em

fλi dV =

nel∑
m=1

femi .

(2.7)

4

By choosing test functions, this notation leads to:

n∑
j=1

Kijuj = fi, ∀i = {1, . . . , n},

Ku = f. (2.8)

The solution u of the linear system in Equation (2.8) can be found by a direct or iterative
solution method. The solution u of the original PDE in Equation (2.2) is approximated by

the solution u =
(
u1 . . . un

)T
found in Equation (2.8) by u ≈ un =

∑n
j=1 ujλj .

2.3 Application of the finite element method to structural problems

In a structural problem the displacements u, strain ε and stress σ are the unknowns of in-
terest. The displacements can be directly analyzed in a finite element method as in Diana.
The formulation of the displacement based finite element method is extensively described
in Bathe [2].

Strain is a two-dimensional tensor and it is a measure of deformation, representing the dis-
placements between particles relative to a reference length. It is therefore a dimensionless
quantity. Strain is often expressed as an array (engineering notation) for convenience [49].
It consists of normal components (diagonal terms in the tensor) and shear components (off-
diagonal terms). Strain is expressed as a function of the derivative of the displacements.

Stress is also a two-dimensional tensor and is a measure of the internal forces per area that
particles exert on each other. Stress is therefore of dimension force per area. Any strain
generates a stress in the linear elastic case, as a reaction on the deformation. Stress can also
occur due to the environment, for example when a solid vertical bar supports a hanging
weight. Stress may even exist when strain is absent, or when no external forces occur (e.g.
with so-called pre-stress). Stress is expressed in the stress-strain relation. Often, the stress
is expressed as an array (engineering notation) for convenience [49].

Consider a static structural problem. The local strain ε can be calculated by ε = Bmu,
with Bm the local strain-displacement (differential) matrix. The stress corresponding to
ε are given by σ = Dm(ε), with Dm the local stiffness relation. Assuming linear elastic
behavior, this can be written as σ = Dmε, with Dm the local rigidity matrix. This rigid-
ity matrix depends on material properties such as Young’s modulus E and Poisson’s ratio ν.

In element formulations the displacements u, strain ε and stress σ are locally formulated
for each element using the interpolation matrix Nm. This matrix Nm is determined by the
test function λ as introduced in Equation (2.4). The local matrices Bm depend on Nm and
vary from element to element. The matrix Tm maps the local element numbering to the
global numbering. In conclusion, the local stiffness matrices Kem and the global stiffness
matrix K are formed by:

Kem =

∫
em

BT
mDmBm dV,

⇒ K =

nel∑
m=1

T TmK
emTm,

5

where nel is the number of elements. In essence this matrix formulation is a special case of
the general weak formulation approach.

2.4 Elements

Elements model local physical behavior. This behavior can consist of extensive material
properties, friction, contact between faces and more [41]. Therefore, a large number of
element types and element shapes exist. All elements consist of a number of nodes and
corresponding degrees of freedom. Nodes in three dimensional models consists up to: three
translational degrees of freedom, three rotational degrees of freedom and a number of scalar
degrees of freedom. These scalar degrees of freedom can for example be temperature,
pressure or Lagrange multipliers. Geometrically speaking, Diana offers: nodal point, line,
triangle, quadrilateral, pyramid, wedge and brick elements. For structural analysis Diana
provides a number of structural elements, such as continuum, interface, spring, and mixture
elements.

2.4.1 Structural elements

Three-dimensional structural elements usually consist of three translational degrees of free-
dom per node. Standard type structural elements consists of a geometry and a material,
the latter at least described by Young’s modulus E and Poisson’s ratio ν [42]. Young’s
modulus E indicates the material elasticity property. The Young’s modulus of a material
can be used to calculate the stress it exerts under specific strain. Poisson’s ratio ν indicates
the ratio of material deformation in the plane perpendicular to the direction of the exert-
ing compression or stretching. Assuming linear elasticity, the following three-dimensional
relation holds

σxx
σyy
σzz
σyz
σzx
σxy

 = Dm

εxx
εyy
εzz
εyz
εzx
εxy

 , (2.9)

where the stress σ and strain ε are two-dimensional tensors expressed as arrays and where
the entries of the rigidity matrix Dm depend on e.g. Poisson’s ratio ν and Young’s modulus
E. Equation (2.9) is the three-dimensional generalization of Hooke’s law for linear elastic
material. In general, there are 36 matrix components. In many applications the components
of matrix Dm may lose independence. This reduces the number of independent components
to 21 in the symmetric case (anisotropic), 9 (orthotropic), 5 (transverse isotropic) or 2
(isotropic) [52]. Considering the one-dimensional case, Hooke’s law reduces to:

σ = Eε,

F = Aσ =
EA

L
∆u,

(2.10)

where F is the force, A is the cross-sectional area through which the force is applied, L is
the original length of object and ∆u is the relative displacement.

In structural mechanics it is common to use finite elements such as beam, plate and shell
elements. These elements are introduced in situations where classical elements perform
poorly, e.g., the underlying problem is governed by fourth-order equations. Therefore, the

6

shape of the elements, the degrees of freedom and the test function λ have to be adapted.
These elements restrict the local rigidity matrix Dm by assumptions on the stress-strain
relation.

Rotational degrees of freedom are typical for special elements, such as shell elements [41].
The essence of shell elements is that they are planar (although they may be curved in that
plane). In general two hypotheses hold:

• Straight-normals. Particles that are originally on a straight line remain on a straight
line during deformations.

• Zero-normal-stresses. The stress through the thickness of the shell is zero.

In each node of a shell element occur five (or six) degrees of freedom: three translational
degrees of freedom and two (or, if drilling rotations are included, three) rotational degrees
of freedom. Many principals of shells are described in Zienkiewicz [52].

2.4.2 Interface elements for structural analysis

Diana offers three families of interface elements, namely structural interfaces, contact el-
ements and fluid-structure interfaces. Interface elements are placed between nodes, lines
and/or planes with special properties. Typical applications of structural interface elements
are elastic bedding, nonlinear elastic bedding, discrete cracking, bond-slip along reinforce-
ment, friction between surfaces, joints in rock, masonry and so on [42]. Moreover , structural
interface elements can be pre-stressed.

Contact elements model zones of possible contact. There are two types of contact elements:
surface containing contact elements and surface containing target elements. Contact ele-
ments can result in poor performance of the solution method and are avoided as much as
possible by using structural interface elements when possible.

At fluid-structure interface elements the additional pore pressure potential degrees of free-
dom are one-side added. The fluid-structure interface elements are used in fluid-structure
interaction analysis, coupling the fluid domain to the structure via pressure of the fluid and
the normal displacement of the structure.

The behavior of interface elements is nonlinear in general. For example, in cracking the
interface elements will act linearly at the beginning, but as cracking starts to take place,
the nonlinear behavior will become dominant. The transition of this behavior is hard to
compute, and in general more iterations per nonlinear loop and smaller increments are
required during the initiation of a crack.

The input for Diana for interface elements are not Young’s modulus and Poisson’s ratio,
but the elastic rigidity D and depending on the application, the stiffness can be specified
per direction and can depend on maturity, temperature, friction, etc. [42]. The diagonal
entries of D need always to be specified. Assuming linear elasticity and an uncoupled
system, the following three-dimensional relation is given: τx

τy
τz

 =

 D11 0 0
0 D22 0
0 0 D33

 ∆xu
∆yu
∆zu

 , (2.11)

7

where τ is the traction vector (equivalent to the stress σ), D is the stiffness relation and
∆u is the relative displacement. Equation (2.11) is called Hooke’s law for linear elastic
material. Considering the one-dimensional case, Hooke’s law reduces to

τ = D∆u,

F = τA = DA∆u,
(2.12)

where F is the force and A is the cross-sectional area through which the force is applied.
Comparing the one-dimensional stiffness of a classical structural element in Equation (2.10)
with an interface element in Equation (2.12) gives the following one-dimensional relation:

F =

(
EA

L

)
∆u = (DA)∆u,

⇒ E

L
= D.

(2.13)

Thus, to compare the two different types of elements, one should compare the interface
element’s stiffness D with the classical structural element’s Young’s modulus and original
length.

2.4.3 Spring elements

Spring elements act as continuous dampers in the finite element model between two nodes
or model the interaction of the finite element model with its environment [42]. Therefore,
a spring element can consist of one or two nodes. A spring element requires the spring
‘constant’ k, which may depend on the relative displacements. Spring elements can model
springs and/or dashpots in both translational or rotational direction. A spring element
often models one-dimensional elasticity and for linear static analysis the following relation
holds (Hooke’s law):

F = k∆u,

where F is the force, k is the spring stiffness and ∆u is the relative displacement.
Comparing the spring stiffness with classical structural element stiffness gives the following
one-dimensional relation:

F = k∆u =

(
EA

L

)
∆u,

⇒ k =
EA

L
.

(2.14)

Thus, to compare the two different types of elements, one should compare the spring
element’s spring stiffness with the classical structural element’s Young’s modulus, the area
through which the force is applied and its original length.

2.4.4 Mixture elements

If deformation affects the pore pressures, one may extend a structural element with pore
pressure potential degrees of freedom. These elements are called mixture elements. All
Diana ’s regular plane strain, axisymmetric and solid structural elements can be extended
to mixture elements, adding a scalar pore pressure potential degree of freedom to each
element node. Also interface elements can be mixture elements.

8

In static analysis, the time derivatives are zero, yielding only a single-sided coupling between
stress and flow (flow influences stress only). In a dynamic analysis there is a two-sided
coupling. The pressure degrees of freedom are often of a different order of magnitude than
the translational degrees of freedom. Details of mixture elements can be found in Diana
User’s Manual, Analysis Procedures [40], Section 60.2.

2.5 Element integration

The element integrals Kij and fi as in Equation (2.7) can be calculated using exact or
numerical integration. Often exact integration cannot be done. Numerical integration is
typically done by Newton-Cotes, composite Simpson, Lobatto or Gauss integration [40] in
the following way: ∫

em

f dV =

nξ∑
i=1

wξif(ξi),

where ξi are the integration points, wξi is the weight function of the integration scheme and
nξ is the number of integration points. The number and location of required integration
points depends on the used integration scheme and the order of the test function.

2.6 Nonlinear analysis

In nonlinear finite element analysis the relation between the force vector f and the vector u
is no longer linear. The general behavioral description F (u) = 0 cannot be reformulated to
Ku = f as in the linear case. A common approach to solve F (u) = 0 is Newton’s method.
Newton’s method takes an initial guess u0 and then determines an improved solution uk+1

by a Taylor expansion in the neighborhood of uk.

F (uk+1) = F (uk) + J(uk)(uk+1 − uk) +O((uk+1 − uk)2),

where J = ∂F
∂u . Setting F (uk+1) = 0 and neglecting second order terms results in the

following iteration scheme:

J(uk)vk = −F (uk),

uk+1 = uk + vk.
(2.15)

Note that u, v and F are vectors and J is the Jacobian matrix. Forming and solving the
linear system in Equation (2.15) is the hard part.

Newton’s method is effective, but nonlinear behavior can results in very small eigenval-
ues of the stiffness matrix and furthermore, the computation of the Jacobian J is very
time consuming. A number of alternative iterative approximations are available in Diana,
namely Modified Newton, Quasi-Newton and linear and constant stiffness. Furthermore,
continuation and line search are used to speed up these nonlinear iterative methods.

Modified Newton uses only the initial Jacobion matrix J(u0) so that each nonlinear iter-
ation is cheap. Of course, in general more iterations are needed with Modified Newton.
Quasi-Newton methods, such as BFGS [4] and Crisfield [6], use information of previous iter-
ations to achieve better approximations than Modified Newton. The linear stiffness method
uses the initial linear stiffness matrix all the time (also for successive states, e.g. in time)

9

and is therefore very cheap per iteration (using a direct solution method) but yields slow
convergence in general. The constant stiffness method uses the constructed stiffness matrix
of another method, keeping it constant from that point on (also for successive states). The
constant stiffness method also yields very cheap iterations but slow convergence in general.

Speeding up these iterative methods can be done by continuation and line search. Contin-
uation assumes relative continuous deformation, so that the previous increment is a first
prediction of the current increment. The line search algorithm is useful if the prediction
is far from the equilibrium, e.g., if strong nonlinearities take place. The line search algo-
rithm determines the amplification factor of the direction of the nonlinear iterative method.

In Diana a nonlinear analysis is performed by using load or time stepping. In essence
these two types of stepping are similar: they both define a sequence of states. The following
problem illustrates how to solve a nonlinear problem using stepping. The following equation
represents a nonlinear spring satisfying Hooke’s law.

k(u)u = f, (2.16)

where k(u) = (1 − u)k0. The solution u of Equation (2.16) requires solving the nonlinear
problem

F (u) = −k0u
2 + k0u− f = 0.

In the light of load stepping, this means that the first load step (right-hand side vector) of
Equation (2.15) is initialized at zero and increased with −F (u0). If the right-hand side vec-
tor is too large or if the model is strongly nonlinear, the nonlinear iterations could converge
slowly or not at all. This can be solved by applying several load steps to incrementally
increase the right-hand side f of Equation (2.16).

In many applications several nonlinear PDE’s need to be solved. The solutions can also
affect subsequent solutions in next time/load steps, e.g., material elasticity can change
after deformation as in Equation (2.16). This results in a nonlinear stress-strain relation.
Suppose the solution vector ukm at time/load step k is converged afterm nonlinear iterations.
By applying the continuation technique, the solution vector ukm does not need to be reset
after convergence of the nonlinear iteration method, but can be scaled and used as initial
solution vector uk+1

0 at time/load step k + 1.

3 Iterative solution methods for linear systems

The analysis of a finite element analysis requires to solve at least one linear system of
equations Ku = f . In general, this system of equations is too large to be solved by directly
computing K−1. Two classes of solution methods exist to solve a system effectively, namely
direct and iterative solution methods, also called direct and iterative solvers. This thesis
focuses on the iterative solution methods due to its attractive properties for large three-
dimensional problems. Two category of iterative solution methods for solving Ku = f exist.

The first category of iterative solvers is called Basic Iterative Methods and they are based
on a splitting K = P −N , followed by the iteration scheme

um+1 = um + P−1rm, (3.1)

10

with rm = f −Kum the residual and u0 is an initial guess. The matrix P should resemble
K in some way and it should be easy to solve Px = y. Typical resulting methods are
(damped) Jacobi, Gauss-Seidel and SOR(ω). For increasing size of K, the Basic Iterative
Methods can converge very slowly [48].

The second category of iterative solvers is called Krylov subspace methods. This category
is widely popular and often more effective than the Basic Iterative Methods.

3.1 Krylov subspace methods

Krylov subspace methods can be used to solve large systems of linear equations or to find
eigenvalues, without performing matrix-matrix operations. Many different iterative solu-
tion methods are based on Krylov subspaces. This thesis mainly focuses on (the derivation
of) the well-known methods Conjugate Gradient (CG) and Generalized Minimal Residual
(GMRES) [34], since these methods are currently available in Diana.

Krylov subspace methods yield two m-dimensional subspaces: Km, which is also called the
solution space, and Lm, which is called the constraints space. A Krylov subspace method
uses the span of the vectors in subspace Km to reduce the residual rm = f −Kum, while
rm should be orthogonal to Lm. Reformulated, this implies

Find um ∈ u0 +Km such that f −Kum ⊥ Lm. (3.2)

The exact solution u is approximated by um ∈ Km. In order to find an approximation um
satisfying Equation (3.2), the bases Vm for Km and Wm for Lm have to be constructed.
The approximation um can be computed by um = u0 +Vmym such that W T

m(f−Kum) = 0.

The Krylov subspace Km is based on a polynomial of degree m−1. The choice for the poly-
nomial approximations strongly determines the success of the Krylov method. The Krylov
subspace is defined as Km(K; r0) = span{r0,Kr0, . . . ,K

m−1r0}, which is the mth-order
Krylov subspace generated by matrix K with starting vector r0. If no ambiguity occurs,
this is shortly denoted by Km.

Arnoldi’s procedure is an algorithm for building an orthonormal basis of the Krylov sub-
space Km(K; v1) [34].

Algorithm 1. Arnoldi
1 Choose a vector v1, such that ‖v1‖2 = 1
2 For j = 1, 2, . . . ,m Do:
3 hi,j = 〈Kvj , vi〉 for i = 1, 2, . . . , j

4 wj = Kvj −
∑j

i=1 hijvi
5 hj+1,j = ‖wj‖2
6 If hj+1,j = 0 then Stop
7 vj+1 = wj/hj+1,j

8 EndDo

At iteration j this algorithm multiplies the vector vj with K and orthonormalizes the
resulting vector wj with respect to all previous vi by a Gram-Schmidt procedure. The
Arnoldi algorithm stops if wj = 0. The resulting vectors v1, v2, . . . , vm are equal to the
orthonormalized (with respect to each other) vectors v1,Kv1, . . . ,K

m−1v1. This orthonor-
mal property is very useful, which will be elaborated later. This version of Arnoldi uses a

11

Gram-Schmidt procedure, but due to rounding errors often a more stable method is used,
such as modified Gram-Schmidt or Householder reflection.

Let the entries of matrix H̄m be given by hij at the m-th iteration in Algorithm 1. The
resulting matrix H̄m ∈ R(m+1)×m is an upper-Hessenberg matrix. This is a matrix with
only non-zero entries hij for j = i−1, i, . . . ,m. Let us also define Vm = [v1 · · · vm], and Hm

obtained from H̄m by deleting its last row, so

Hm =

h11 · · · · · · · · · h1m

h21 h22 · · · · · · h2m

h32
. . . · · · h3m

. . .
. . .

...
hm,m−1 hmm

 .

The following equalities hold:

KVm = VmHm + wme
T
m (3.3)

= Vm+1H̄m (3.4)

V T
mKVm = Hm (3.5)

From Algorithm 1 follows that

vj+1hj+1,j = wj = Kvj −
j∑
i=1

hijvi,

⇒ Kvj =

j+1∑
i=1

hijvi.

Rewriting in matrix formulations leads to Equation (3.4). Equation (3.3) follows by step
4 in Algorithm 1, where wj is orthogonal with respect to all previous vi. By premultiply-
ing Equation (3.3) with V T

m and using orthonormality of its columns follows Equation (3.5).

The following subsections describe different iterative solution methods that can be derived
from Arnoldi’s procedure or its symmetric variant, the Lanczos procedure. The first de-
scribed method is the Full Orthogonalization Method (FOM). It is not used in Diana, but
acts as an introduction to the Generalized Minimimal Residual method (GMRES) and the
Conjugate Gradient method (CG). The FOM solves non-symmetric problems by orthog-
onalizing the residuals with respect to each other. The solution and constraints spaces
are chosen to be Km = Lm. The CG method applies the same strategy for symmetric
problems. GMRES solves non-symmetric problems by minimizing the residual and takes
Km = K · Lm. The Conjugate Residual method (CR) applies the same strategy for sym-
metric problems, but this method is less popular and will not be further discussed in this
report. The methods are graphically classified in Figure 1.

12

Arnoldi

FOM GMRES

orthogonal residual minimal residual

CG CR

Lanczos

Figure 1: Krylov-based iterative solution methods.

More Krylov-based iterative solution methods have been developed and some of them will
be shortly addressed.

3.1.1 Full Orthogonalization Method

The Full Orthogonalization Method uses the Arnoldi procedure with solution space and con-
straints space Km = Lm. The Arnoldi procedure becomes particularly interesting if Algo-
rithm 1 is initialized with v1 = r0/||r0||2 := r0/β. Now, for any vector um ∈ u0 +Km(K; r0)
there is a vector ym of appropriate length such that um = u0 + Vmym.

The challenge is to find ym such that the residual corresponding to the calculated um
satisfies rm ⊥ Lm. It follows from KVm = Vm+1H̄m that

rm = f −Kum = f −K(u0 + Vmym)

= r0 −KVmym
= βv1 − Vm+1H̄mym

= Vm+1(βe1 − H̄mym).

(3.6)

The residual is orthogonalized with respect to the current Krylov subspace Km(K; r0). The
approximate solution um can be found by solving

ym = H−1
m βe1,

um = u0 + Vmym.
(3.7)

To determine whether the solution um is sufficiently accurate, Equation (3.6) is reduced to

rm = f −Kum = βv1 − Vm+1H̄mym

= βv1 − VmHmym − hm+1,me
T
mymvm+1

= −hm+1,me
T
mymvm+1,

(3.8)

by Hmym = βe1. Taking the norm of Equation (3.8) yields ||rm||2 = |hm+1,mym(m)|, which
is cheap to evaluate.

Furthermore, as a consequence of Arnoldi’s procedure on r0/β, all residuals rm are mutually

13

orthogonal,

rm = f −Kum = −(hm+1,me
T
mym)vm+1

⇒ rm ∈ span{vm+1}
⇒ rm ⊥ span{v1, . . . , vm} ∈ Km

⇒ rm ⊥ ri, ∀i 6= m.

The FOM subsequently orthogonalizes all residuals and computes um by Equation (3.7).

3.1.2 Generalized Minimal Residual Method

The full GMRES procedure can be motivated by the FOM and the Arnoldi procedure [35].
Its strategy is to set Lm = K · Km. Theorem 1 shows that this is equivalent to minimizing
the residual [1].

Theorem 1. The condition f −Kum = rm ⊥ Lm = K · Km is equivalent to

‖rm‖2 = min
u∈u0+Km

‖f −Ku‖2 = min
r∈r0+Lm

‖r‖2.

Proof. Write r = r0 + l with l ∈ Lm and define Pm as the orthogonal projector onto Lm and
Qm = I−Pm. Then we can decompose the initial residual r0 according to r0 = (Pm+Qm)r0,
so r can be decomposed as

r = r0 + l = (Pmr0 + l) +Qmr0.

Taking the Euclidean norm and applying Pythagoras yields

‖r‖22 = ‖Pmr0 + l‖22 + ‖Qmr0‖22.

The minimum rm is attained for l = −Pmr0 resulting in

rm = r0 − Pmr0 = Qmr0 ⊥ Lm.

Reversed reasoning implies that if r ⊥ Lm, then r = Qmr so that ‖r‖22 = ‖Qmr‖22 =
‖Qmr0‖22.

In the light of Equation (3.6), let us define the following operator

J(ym) = ||f −Kum||2 = ||f −K(u0 + Vmym)||2.

To solve the system Ku = f it is clear that minimizing the Euclidean norm of the residual,
J(ym), could be an advantageous strategy. Recall that at iteration m holds f − Kum =
Vm+1(βe1 − H̄my) from Equation (3.6). Taking the norm yields by orthonormality

J(y) = ||βe1 − H̄my||2. (3.9)

The GMRES method computes after convergence the solution um of the minimization
problem in Equation (3.9) by

ym = argmin
y
||βe1 − H̄my||2

um = u0 + Vmym.

14

The Hessenberg matrix Hm has eigenvalues that approximate the eigenvalues of the matrix
K. These eigenvalues are called the Ritz values. Since Hm typically is much smaller than
K, only the extreme eigenpairs are approximated. Thereafter, the corresponding approxi-
mate eigenvectors can be computed. This information can be reused in the nonlinear loop
by using deflation of the smallest eigenvectors, as will be discussed in Section 5.

Full GMRES has optimal properties based on Km(K; .), but has long recurrences. The
iteration process is ceased as soon as the solution has converged. Meanwhile, each Krylov
vector has to be stored and is used in each iteration, resulting in more CPU time. Fur-
thermore, the required computer memory can grow to an enormous amount. Restarted
GMRES or GMRES(s) bounds the number of iterations up to s iterations and thereafter
u0 := us is used to restart GMRES. Restarted GMRES computes the approximate solution
after convergence or if the memory requirements of the Krylov vectors exceed a certain
threshold.

In Diana the restarted GMRES method is available with a modified Gram-Schmidt or-
thogonalization procedure. GMRES is restarted if 50% of the memory used by the system
matrix and the preconditioner is used for the Krylov vectors.

3.1.3 On other non-symmetric iterative methods

For general (non-symmetric) matrices K there exist many iterative solution algorithms
based on Krylov subspaces. A small selection of popular choices is Bi-CGSTAB, IDR(s),
GMRES and restarted GMRES [34]. For non-symmetric matrices it is impossible to
combine the advantageous properties optimality and short-recurrence. The Bi-CGSTAB,
IDR(s) and restarted GMRES algorithm are not optimal (they do not guarantee to decrease
the residual over an always-increasing subspace) and full GMRES has long recurrences.
This implies that GMRES is preferable if the solution converges relatively fast, but as
soon as a restart is required due to memory issues, another short-recurrence, non-optimal
method could be preferable.

In Appendix D the IDR(s) method [38, 45] is described as an alternative for restarted
GMRES. IDR(s) is short-recurrent and can be a valuable addition to the methods currently
available in Diana.

3.1.4 The Conjugate Gradient Method

The Conjugate Gradient (CG) method is a popular choice for symmetric positive defi-
nite (SPD) matrices [17]. SPD matrices yield some favorable properties, such as short-
recurrence, optimality and orthogonal residuals based on Km. Looking at Arnoldi’s proce-
dure, note that by symmetry of K it follows from Equation (3.5) that

Hm = V T
mKVm = V T

mK
TVm = HT

m,

which implies that the Hessenberg matrix is a symmetric tridiagonal matrix Tm, so

Hm := Tm =

t11 t12

t12 t22 t23

t23
. . .

. . .
. . .

. . . tm−1,m

tm−1,m tmm

 .

15

Referring to Algorithm 1, this property results in a short-recurrence algorithm, since each
additional column of Tm only consist of two unique non-zero entries. Therefore, in Algo-
rithm 1 step 3 only tjj has to be calculated. In step 4 only tj−1,j and tjj can be unequal
to zero. Adapting to common notation, let us introduce βj := ||wj−1||2 and hjj := α. This
yields the Lanczos procedure and can be viewed as a special (symmetric) case of Arnoldi’s
procedure [34].

Algorithm 2. Lanczos
1 Choose a vector v1, such that ||v1||2 = 1
2 For j = 1, 2, . . . ,m Do:
3 wj = Kvj − βjvj−1

4 αj = 〈wj , vj〉
5 wj = wj − αjvj
6 βj+1 = ‖wj‖2. If βj+1 = 0 then Stop
7 vj+1 = wj/βj+1

8 EndDo

Note that due to symmetry the βj is reused in the update of wj . Also note that by short-
recurrences this version of Arnoldi is using the Modified Gram-Schmidt procedure, since
vj+1 is orthogonalized with respect to all previous relevant predecessors.

Similar as with the non-symmetric case there are two popular strategies, namely orthogo-
nalizing residuals (Lm = Km) or minimizing the residual (L = K · Km) [34]. The strategy
for CG is that the residuals rm are orthogonalized with respect to each other. The SPD
matrix K yields an easy-to-invert matrix Tm, which can be decomposed by a direct LU
decomposition of Tm = LmUm, where Lm is a lower triangular matrix and Um an upper
triangular matrix. The bandwidth of Tm is only two, resulting in

Tm = LmUm =

1
λ2 1

. . .
. . .

λm 1

 ·

η1 β2

η2
. . .
. . . βm

ηm

 .

Consider Equation (3.5), which can be reduced in the symmetric case to

V T
mKVm = Tm = LmUm,

V T
mKVmU

−1
m = Lm,

U−Tm V T
mKVmU

−1
m = U−Tm Lm.

(3.10)

Define Pm = VmU
−1
m , then Equation (3.10) reduces to

P TmKPm = U−Tm Lm. (3.11)

The right-hand-side of Equation (3.11) results in a symmetric and lower triangular matrix
and therefore a diagonal matrix. The columns pj of Pm are called the search direction
vectors or conjugate vectors. From the resulting diagonal matrix in Equation (3.11) follows
that the conjugate vectors pj are K-orthogonal, i.e., 〈pi,Kpj〉 = 0, ∀i 6= j.

The consequence of symmetry is that the residuals rj andK-conjugate pj can be constructed
in a recurrence of only two vectors, while the non-symmetric FOM requires an additional

16

vector for every iteration. Furthermore, the approximating solution vector um can be
updated every iteration. The resulting Conjugate Gradient algorithm applicable for SPD
matrices K is shown in Algorithm 3, adapted to common notation.

Algorithm 3. Conjugate Gradient
1 Compute r0 = f −Ku0, p0 = r0.
2 For j = 0, 1, . . . ,until convergence, Do:
3 αj = 〈rj , rj〉/〈pj ,Kpj〉
4 uj+1 = uj + αjpj
5 rj+1 = rj − αjKpj
6 βj = 〈rj+1, rj+1〉/〈rj , rj〉
7 pj+1 = rj+1 + βjpj
8 EndDo

For a full derivation of the CG method please refer to Saad [34]. In [34] is also shown that
the coefficients in Algorithm 3 can be used to directly compute Tm as

Tm =

1
α0

√
β0
α0√

β0
α0

1
α1

+ β0
α0

√
β1
α1

. . .
. . .

. . .
. . .

. . .
√
βm−2

αm−2√
βm−2

αm−2

1
αm−1

+ βm−2

αm−2

. (3.12)

Corresponding eigenvalues of Tm in Equation (3.12) are called Ritz values and they approx-
imate the extreme eigenvalues of the matrix K. The QR algorithm [11] could be used to
determine the Ritz vectors, where Q is an orthogonal matrix and R an upper triangular ma-
trix. This information can be useful in a nonlinear iteration loop using eigenvector deflation.

The CG algorithm is the most popular choice for SPD matrices, combining optimality
and short-recurrence. To be precise, CG minimizes ||u− um||K using orthogonal residuals
rm = f−Kum. The convergence behavior of the CG method is determined by the condition
number (for SPD matrices) κ = λmax/λmin as by Definition 4 in Section ii. The following
bound for the CG method is well-known:

Theorem 2. Let K be a symmetric positive definite matrix. Then the error u− um of the
CG method at iteration m is bounded by

‖u− um‖K ≤ 2

[√
κ− 1√
κ+ 1

]m
‖u− u0‖K .

This implies that a small condition number κ ≥ 1 results in fast convergence. The proof
can be found in e.g. Saad [34].

3.2 Preconditioning

For any Krylov subspace method it is important to have a preconditioner to improve its
performance. Preconditioning means that the system is multiplied with a well-chosen ma-
trix called the preconditioner. The newly acquired system should have better convergence
properties than the original one. An effective preconditioner P should resemble K in some
way and it should be easy to solve Px = y. Preconditioners are often inspired by the

17

matrix P where K = P − N as in Equation (3.1), or by direct methods. Precondition-
ing can be applied in different ways. Left-preconditioning is shown in Equation (3.13),
central-preconditioning in Equation (3.14) and right-preconditioning in Equation (3.15).

P−1Ku = P−1f, (3.13)

P = LU ; L−1KU−1x = L−1f ; u = U−1x, (3.14)

KP−1x = f ; u = P−1x. (3.15)

3.2.1 Preconditioned CG

Preconditioning CG directly effects the convergence by Theorem 2. Central-preconditioning
preserves symmetry by P = LLT . This is advantageous for SPD matrices K, since CG can
directly be applied on the symmetric system L−1KL−T .

Left- and right-preconditioning can destroy the symmetry of the system, even when P−1 is
symmetric. Yet, there is a solution to circumvent this by using other inner products than
the standard Euclidean inner product in CG iterations. Note that the left-preconditioned
system P−1K is self-adjoint if the P -inner product is used:

〈P−1Kx, y〉P = 〈Kx, y〉2 = 〈x,Ky〉2 = 〈x, P (P−1K)y〉2 = 〈x, P−1Ky〉P .

This implies that left-preconditioning combined with the P -inner product preserves sym-
metry. Note that the right-preconditioned system KP−1 is self-adjoint if the P−1-inner
product is used

〈KP−1x, y〉P−1 = 〈P−1KP−1x, y〉2 = 〈x, P−1KP−1y〉2 = 〈x,KP−1y〉P−1 .

This implies that right-preconditioning combined with the P−1-inner product preserves
symmetry. Moreover, rewriting the CG algorithm for left-preconditioning with the P -
inner product results in the same algorithm as rewriting the CG algorithm for right-
preconditioning with the P−1-inner product. In other words, the left-preconditioned CG al-
gorithm with the P -inner product is mathematically equivalent to the right-preconditioned
CG algorithm with the P−1-inner product [34]. The central-preconditioning can also be
rewritten to the same algorithm.

3.2.2 Preconditioned GMRES

GMRES does not require a symmetric system. Therefore, preconditioning GMRES can
be done straightforwardly. Left-preconditioning results in computing the initial residual at
the start of GMRES as

r0 = P−1(f −Ku0).

Right-preconditioning yields computing the solution at the end of GMRES as

xm = x0 + P−1Vmym.

Central-preconditioning P = LU is a combination of both by r0 = L−1(f − Ku0) and
um = u0 + U−1Vmym.

18

When comparing left-, right- and central-preconditioning for GMRES, observe that the
spectra of the three associated operators P−1K, KP−1 and L−1KU−1 are identical. In
practice however, the convergence behavior differs. Left-preconditioning minimizes the
residual norm ||P−1(f−Kum)||2, but preserves the original iterations um. Right-preconditioning
preserves the original residual norm, but requires to calculate um = P−1xm after conver-
gence. Although all norms on a finite space are equivalent, it still means that ill-conditioned
systems yield different convergence behavior due to numerical issues. Diana applies right-
preconditioning for restarted GMRES.

3.2.3 Diagonal scaling

The simplest preconditioner P for K ∈ Rn×n is diagonal scaling or Jacobi preconditioning.
The Jacobi preconditioner P has non-zero entries

Pii = Kii, i = 1, . . . , n.

The advantage of this preconditioner is that is cheap to construct, it is cheap to solve
Px = y and easy to parallelize. The disadvantage is that it does not resemble K very
accurately in general, resulting in only slightly less iterations.

3.2.4 Incomplete decompositions

The full Cholesky decomposition is applicable for SPD matrices K, which decomposes the
matrix K = LLT , where L is a lower triangular matrix. The non-symmetric variant is a full
LU decomposition, which decomposes K = LU , where L is a lower triangular matrix and U
an upper triangular matrix. Full decompositions can be used as a direct solution method,
where a forward and backward substitution are performed to solve Ku = f . Performing
a full decomposition on a large sparse matrix can be too expensive to be applied directly.
The so-called bandwidth of the matrix K results in fill-in and a full decomposition is not
always competitive.

The Incomplete Cholesky (IC) decomposition for symmetric systems and the Incomplete
LU (ILU) decomposition for non-symmetric systems are based on the idea to do the de-
composition of the matrix incompletely. These incomplete decompositions can be used
as preconditioners for an iterative solution method. The preconditioners P = LU for
non-symmetric systems and P = LLT for symmetric systems should approximate the stiff-
ness matrix K to some extent. Note that preconditioning by diagonal scaling is actually a
special case of an incomplete decomposition, restricting the fill-in of P to the diagonal of K.

The standard preconditioner in Diana for non-symmetric systems is the ILU decomposition
without fill-in ILU(0).

(L+ U)ij = 0 if Aij = 0,

(LU)ij = Aij otherwise.
(3.16)

Replacing in Equation (3.16) matrix U by LT gives the IC decomposition without fill-in,
IC(0). As a result, the sparsity pattern of K is unchanged, which saves memory and CPU
time.

19

The ILU and IC decompositions can also be applied in a block-wise approach, e.g. appli-
cable in a parallel environment. In that case the following holds:

(L+ U)[i,j] = 0 if A[i,j] = 0,

(LU)[i,j] = A[i,j] otherwise.

This block-wise approach is used in Diana for the parallel domain decomposition.

If the iterative solution method fails to converge using this preconditioner, then a thres-
hold τ for fill-in is set up. These preconditioners are abbreviated by ICT(τ) and ILUT(τ).
The threshold τ for fill-in is decreased until the iterative solver converges within a specified
number of iterations. Decreasing τ results in a more accurate and more expensive approx-
imation of K. Note that the exact factorization is obtained if the drop tolerance is small
enough, e.g. τ = 0. Details of the IC and ILU decomposition can be found in e.g. Saad [34]
or Van der Vorst [44].

3.2.5 Other preconditioners

Diana also offers substructuring in the form of a preconditioner (although technically, it
is a Schur domain decomposition). In the context of Schwarz domain decomposition an
additive Schwarz preconditioner and a coarse grid correction are available. These domain
decomposition techniques are explained in Section 4. The coarse grid correction is a specific
case of algebraic multigrid.

3.3 Multigrid

Multigrid methods are efficient iterative methods for the solution of linear systems [34].
Two types of multigrid can be distinguished, namely geometric and algebraic multigrid.
The advantage of geometric multigrid is its efficiency, however, it can only be applied when
the geometric grid and underlying PDEs are explicitly known. Algebraic multigrid is more
adaptive and only requires information from the matrix and underlying connectivity itself,
although the costs per iteration are slightly higher than with geometric multigrid. For
generic problems, algebraic multigrid is more robust than geometric multigrid.

Multigrid can be implemented as a preconditioner, but this is only implicit. Multigrid
actually corrects the residual vector in the following way:

ui+1 = ui + P−1(f −Kui).

This computation is not directly performed. Multigrid uses two complementary processes,
namely relaxation and coarse grid correction. In the relaxation phase an iteration is per-
formed to damp the low frequencies in the error. Thereafter, the coarse grid correction
damps the high frequencies by projecting the grid on a restrictive coarse grid. The follow-
ing procedure is followed

1. Restrict the residual
r̃i = Y T ri.

20

2. Compute the coarse solution
Y TKZ∆ũi = r̃i.

3. Expand the coarse solution
∆ui = Z∆ũi.

4. Correct the solution
ui+1 = ui + ∆ui.

where Y T the restriction operator and Z the interpolation operator. In algebraic multigrid
it often holds that Y = Z. The coarse problem of the algebraic multigrid is formulated
with the coarse matrix (also: Galerkin matrix)

E = ZTKZ.

This technique can be implemented as a stand-alone solution algorithm, where the coarsen-
ing process is repeatedly applied, see e.g. Notay [33]. Furthermore, algebraic multigrid can
be used in a Krylov method. In Diana an analogue technique called coarse grid correction
is implemented in the Schwarz domain decomposition method.

4 Domain decompositions

Domain decomposition methods aim at the divide-and-conquer strategy. A domain can
be described by a collection of subdomains, which can be solved separately with correct
coupling. Domain decomposition methods attempt to solve the problem on the entire
domain

Ω =

nd⋃
i=1

Ωi,

by constructing solutions on the subdomains Ωi [34].

Domain decomposition methods have several advantages. Historically, one of the most im-
portant features was memory management. The idea is to partition the original structure
into nd subdomains, where each subdomain fits in memory. Thereafter, the subdomain
solutions can be used to compute the global solution. A more recent trend in domain de-
composition methods is parallel computing.

Two types of domain decomposition methods exist: the Schur and Schwarz domain decom-
position method. Diana supports a sequential Schur domain decomposition method, also
called substructuring, and a parallel Schwarz domain decomposition method. Any domain
decomposition method requires partitioning.

4.1 Partitioning

A simple partitioning is illustrated in Figure 2. An efficient partitioner should have three
objectives: minimize the number of so-called interface degrees of freedom, minimize the
variation in subdomain sizes and group together the degrees of freedom that have similar
properties [28,34].

21

Figure 2: The domain Ω divided in three subdomains without overlapping elements.

1. Minimize the number interface degrees of freedom. The so-called interface
degrees of freedom can be loosely described as degrees of freedom that occur in multi-
ple domains. This first objective minimizes communication between subdomains. In the
context of parallel processes this improves parallelism and in the context of sequential com-
puting this speeds up the computation of the solution in the interfaces.

2. Minimize the variation in subdomain sizes. The second objective ensures bal-
anced computing time for the subdomains. This is mainly important for optimal parallel
computations.

3. Group together degrees of freedom with similar properties. The third ob-
jective is based on the observation that preconditioners tend to be more effective if the
subdomain is fairly regular in terms of geometry, linearity, underlying PDEs or material
properties [28,34].

A variety of domain decompositions have been developed and applied. It is hard to satisfy
the three above objectives all together and a preference has to be made. Diana supports
two types of domain decompositions in the form of substructuring (Section 4.2) and par-
allel domain decomposition (Section 4.3). The partitioning for substructuring focuses on
objectives 1 and 3. The partitioning for parallel domain decomposition focuses on objec-
tives 1 and 2. The parallel domain decomposition partitioning uses Metis [26], a graph
partitioning open software package. Metis partitions the elements of the model, so that no
element is split up. This implementation does make sure that the partitioning is balanced,
based on the underlying connectivity of the elements and it also minimizes the interface
degrees of freedom. However, no other information, such as material properties, element
types or stiffness is used to determine the partitioning.

In principal, a partition does not need to contain any overlapping elements; all elements can
be assigned to exactly one subdomain. In substructuring no overlapping elements occur.
In the parallel domain decomposition some elements are assigned to multiple subdomains
to improve the convergence of an iterative solution method.
Degrees of freedom are originally mapped to one subdomain; these are called internal de-
grees of freedom. The additional degrees of freedom are called interface degrees of freedom.
Each degree of freedom is an internal degree of freedom in exactly one subdomain and an
interface degree of freedom in a subdomain is also an internal degree of freedom in exactly

22

one other subdomain.

4.2 Substructuring

Substructuring or Schur domain decomposition is one of the two types of domain decompo-
sition methods. The idea is to divide the whole domain into nd substructures (subdomains)
of similar properties. The most important example in Diana is to put elements that behave
linearly in a nonlinear model in a substructure. The coefficients of such a substructure will
not change throughout the nonlinear iterations and the decomposition can be reused by a
direct solver.

The partitioning in substructures is based on element properties. Thereafter, the degrees
of freedom are divided in internal degrees of freedom and interface degrees of freedom.
Internal degrees of freedom belong uniquely to a substructure, whereas interface degrees of
freedom belong to multiple substructures. The degrees of freedom corresponding to the nd
substructures can be reordered such that the stiffness matrix K can be written as

K ∼

A1 B1

A2 B2

. . .
...

And Bnd
BT

1 BT
2 . . . BT

nd
C

 .

The Ai correspond to internal degrees of freedom of substructure i and the coupling between
the substructures is described by the interface degrees of freedom in Bi and BT

i . The
reordered matrix K can easily be factorized as

A1

A2

. . .

And
BT

1 BT
2 . . . BT

nd
C∗

I A−1

1 B1

I A−1
2 B2

. . .
...

I A−1
nd
Bnd
I

 .

The local solution of the internal degrees of freedom in each substructure can be computed
independently. Assuming all Ai are SPD, the local solution is computed by BT

i A
−1
i Bi using

a Cholesky factorization. The computation of the so-called Schur complement is given by

C∗ = C −
nd∑
i=1

BT
i A
−1
i Bi,

which can be the most time consuming part. The system of equation C∗u = f is in general
a dense system and it can be solved by a solver of the user’s choice. Substructuring can be
effective, but has some disadvantages. If the ratio interface degrees of freedom to internal
degrees of freedom is high, then substructuring can be ineffective due to the density of C∗.

Substructuring in Diana is implemented as a preconditioning technique without overlap-
ping subdomains.

4.3 Schwarz domain decomposition

The purpose of Schwarz domain decomposition is to divide the domain into a number of
subdomains for parallel processing. The parallel Schwarz domain decomposition at Diana

23

is designed by Erik Jan Lingen and the implementation has strong similarities with his later
work [28]. The Diana user can specify the number of available threads when using the
iterative solver. This number is equal to the number of subdomains the parallel iterative
solver will use.

Let us define the boolean left and right restriction operators of the i-th subdomain [28].
The left restriction operator Li correspond to the internal degrees of freedom of the i-th
subdomain, while the right restriction operator Ri corresponds to internal and interface
degrees of freedom of the i-th subdomain. Note that non-zero columns of (Ri−Li) indicate
the interface degrees of freedom of the i-th subdomain.

The matrix K can be expressed in terms of the subdomain matrices Ki (which may be
overlapping) by

K =

nd∑
i=1

LTi KiRi.

The domain decomposition uses a two-level Schwarz preconditioner. The first precondi-
tioner is an additive Schwarz (AS) preconditioner and the second is a coarse grid correction.
The AS preconditioner is used to combine the local preconditioners of each subdomain. The
coarse grid correction aims to provide global communication at each iteration in order to
make the convergence rate independent of the problem size and the number of subdomains.

The AS preconditioner P−1 preserves symmetry (in case of symmetric subdomain precon-
ditioners P−1

i) by ignoring overlap and is constructed as follows:

P−1 =

nd∑
i=1

RTi P
−1
i Ri,

where P−1
i are the subdomain preconditioners, such as an ILU decomposition precondi-

tioner. If the additive Schwarz preconditioner fails, the more effective restricted additive
Schwarz (RAS) preconditioner is being used, given by

P−1 =

nd∑
i=1

LTi P
−1
i Ri.

The RAS preconditioner, however, is non-symmetric and forces the use of GMRES(s) or
another non-symmetric iterative solver.

The second preconditioner is a coarse grid preconditioner. It is constructed in a similar way
to classical algebraic multigrid, described in Section 3.3, only the coarsening is extreme [37].
The coarse grid correction without other preconditioner is obtained in the following way:

PC = I + Z(ZTKZ)−1ZT = I + ZE−1ZT , (4.1)

where Z is given by the rigid body modes of the nd subdomains.

In multigrid terminology ZT is the restriction operator and Z the interpolation operator.
The restriction and interpolation are based on the approximate null space of the domains as
described in Section 6. Each domain is described by (restricted to) six vectors, namely three
translation and three rotation vectors per domain. The coarse system Ex = y can then be

24

solved by e.g. a direct solution method. The coarse solution x is thereafter interpolated
by applying Z. The extended solution vector can be used to correct the iterative solution
vector.
The computation of E−1 is computationally most expensive and is done in Diana by a
QR-decomposition

E = QR,

with Q an orthonormal matrix and R an upper triangular matrix. This process can be
performed in parallel (as implemented in Diana) by applying a Gram-Schmidt orthonor-
malization procedure to the columns of E. For details we refer to Lingen [28].

Coarse grid correction can be applied as a stand-alone preconditioner as in Equation (4.1)
or in combination with another preconditioner. Combining preconditioners can be done in
an additive or a multiplicative way. The additive way is simply the addition:

PC,P−1 = P−1 + ZE−1ZT . (4.2)

A more effective strategy is the multiplicative way [28]. The techniques are computed as
follows:

Additive Multiplicative
y1 = P−1x, ỹ = P−1x,
y2 = ZE−1ZTx, r̃ = x−Kỹ,
y = y1 + y2. y = ZE−1ZT r̃.

(4.3)

Although more effective, the multiplicative technique requires an extra matrix-vector mul-
tiplication including additional communication between threads.

4.4 Substructuring versus parallel domain decomposition

The two domain decomposition methods in Diana seem similar but are very different. This
section provides a short overview of (the implementation of) substructuring and parallel
domain decomposition in Table 1.

25

Substructuring Parallel domain decomposition

Sequential computations Parallel computations

Partitioning: minimum number of interface Partitioning: minimum number of interface

degrees of freedom and similar type degrees of freedom and balanced work

Home-made partitioning in Metis partitioning in

SOLVE building block DOMDEC building block

Non-overlapping Overlapping as well as non-overlapping

Cholesky decomposition per substructure Additive Schwarz preconditioner

Solve Schur complement by Coarse grid correction

method of user’s choice

Implemented as preconditioner Implemented as solution method

Table 1: Differences between Diana’s Schur (left) and Schwarz (right) domain decomposi-
tion methods.

5 Deflation

Deflation is a technique to improve an iterative solution method. The main difference
between preconditioning and deflation is that deflation is a projection and hence not in-
vertible. Deflation is particularly suited to eliminate eigenvectors corresponding to small
eigenvalues of a matrix. These eigenvalues are projected out of the system of equations.
Deflation has been developed by Nicolaides [32] and Dostál [8] and different deflation tech-
niques have been developed, improved and exploited by other authors [9, 12,25].

Deflation has some analogies with algebraic multigrid methods, as deflation also uses the
restriction operator Y T and interpolation operator Z. Deflation is based on two projections
Π∈ and Π⊥, which are constructed by Y T and Z [12].

The solution u is split into two parts: one part to be solved directly and one part to be
solved iteratively. The splitting of solution u can be written as follows:

u = u∈ + u⊥. (5.1)

Let the interpolation operator Z ∈ Rn×m be a basis for the Z and the restriction operator
Y T ∈ Rn×m be a basis for Y with m � n. The part of the solution u in Z, u⊥, can be
written as a linear combination of Z, implying u⊥ = Zy. The residual r⊥ = f −Ku⊥ is
orthogonalized with respect to Y , i.e., r⊥ ⊥ Y . This requirement [34] can be written as

Y T r⊥ = 0,

Y T (f −Ku⊥) = 0,

Y T (f −KZy) = 0.

(5.2)

Define the coarse matrix or Galerkin operator E = Y TKZ. Equation (5.2) requires y =
(Y TKZ)−1Y T f = E−1Y T f . Substituting this into u⊥ results in

26

u⊥ = Zy = ZE−1Y T f,

= ZE−1Y TKu.
(5.3)

Defining the projector Π∈ = I − ZE−1Y TK yields

u⊥ = (I −Π∈)u.

Note that for projector Π∈ indeed holds (Π∈)2 = Π∈. Furthermore, the solution u⊥ can
be calculated directly as in the first statement of Equation (5.3). In general the matrix Z
consists of m columns with m� n, implying that this part is relatively easy to solve.

Equation (5.1) can also be written as

u = (I −Π∈)u+ Π∈u. (5.4)

The projector Π⊥ can be constructed by finding a solution for u∈ := Π∈u. For this purpose
u∈ is premultiplied by K, resulting in

Ku∈ = KΠ∈u,

KΠ∈u = K(I − ZE−1Y TK)u,

= f −KZE−1Y TKu,

= (I −KZE−1Y T)f.

Defining the projector Π⊥ = I −KZE−1Y T yields

KΠ∈u = Π⊥f. (5.5)

Note that indeed holds (Π⊥)2 = Π⊥. Using the identity Π⊥K = KΠ∈ in Equation (5.5)
implies

Π⊥Kũ = Π⊥f. (5.6)

The solution ũ of Equation (5.6) is introduced to avoid ambiguity. The solution ũ is the
computational difficult part and can be solved iteratively. Deflation can in the light of
Equation (5.6) be seen as a left preconditioner (although it is a projection). This projec-
tion results in a singular system. The singularity of this system is not necessarily a problem,
as long as the corresponding right-hand side Π⊥f is in the range of Π⊥K (Equation (5.6)
should be consistent) [3, 24]. The projection Π⊥ is applied at the right-hand side as well,
thus it still holds that f = Kũ for some ũ.

The solution u = u∈+u⊥ can be computed by combining the solutions u⊥ and ũ of Equation
(5.3) respectively Equation (5.6) into Equation (5.4) as

u = ZE−1Y T f + Π∈ũ. (5.7)

Note that the extreme case where the complete space is deflated, Z = Y = I, results in a
direct solution method and reduces Equation (5.7) to u = K−1f .

In case that matrix K is symmetric, it is advantageous to preserve symmetry in the appli-
cation of deflation. Note that to preserve symmetry, only Π⊥K = KΠ∈ is not sufficient,

27

but the requirement Π⊥K = K(Π⊥)T should hold. This implies Π∈ = (Π⊥)T and thus
Y = Z.

The non-symmetric case allows more freedom for the choice of Y and Z. Often the choice
Y = Z is made anyway. This choice allows us to draw some conclusions about the robust-
ness of deflation. An SPD matrix K and full rank matrices Y = Z ensure a nonsingular
coarse matrix E. The robustness and (non)singularity concerning E is discussed in Section
5.2. Another advantage is that only one set of vectors need to be determined and stored.
From this point it is assumed that Y = Z.

Deflation is very suitable in combination with a preconditioner. Typically, deflation could
deal with the smallest eigenvalues, while a preconditioner deals with the largest eigenvalues.
The choice of Z strongly influences the effectiveness of deflation. A good choice for Z is
an important but not so obvious part of deflation. Typical options for Z are elaborated in
Sections 5.3, 5.4 and 5.5.

A variant of the Deflated Preconditioned Conjugate Gradient method [39] is given in Al-
gorithm 4:

Algorithm 4. Deflated Preconditioned Conjugate Gradient
1 Choose u0. Compute r0 = f −Ku0. Set r0 := Π⊥r0.
2 Solve Pz0 = r0 and set p0 = z0.
3 For j = 0, 1, . . . until convergence, Do
4 zj = Π⊥Kpj
5 αj = 〈rj , zj〉/〈pj , zj〉
6 uj+1 = uj + αjpj
7 rj+1 = rj − αjzj
8 Solve Pzj+1 = rj+1

9 βj = 〈rj+1, zj+1〉/〈rj , zj〉
10 pj+1 = zj+1 + βjpj
11 EndDo
12 u = ZE−1ZT f + Π∈uj+1

The algorithm for deflation applied to GMRES(s) is given as Algorithm 5:

Algorithm 5. Deflated right-preconditioned GMRES(s)
1 Choose u0. Compute r0 = f −Ku0.
2 Set r0 := Π⊥r0, β = ‖r0‖2 and v1 = r0/β.
3 For j = 0, 1, . . . , s, Do
4 Compute w = Π⊥KP−1vj
5 For i = 1, . . . , j, Do
6 hi,j = 〈w, vi〉
7 w := w − hi,jvi
8 EndDo
9 hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

10 Vs = [v1, . . . , vs] and H̄s = {hi,j}1≤i≤j+1;1≤j≤s
11 EndDo
12 Compute ys = argminy ‖βe1 − H̄sy‖2 and us = u0 + P−1Vsys
13 u = ZE−1ZT f + Π∈us

28

5.1 Convergence of deflation

The convergence of an iterative method is influenced by the condition number of the system
of equations. The condition number is defined as κ(K) = ||K−1||2 · ||K||2, which yields for
symmetric positive definite matrices κ = λmax/λmin.

Deflation involves multiplying matrix K from the left by the projection matrix Π⊥. By
(effective) deflation some small eigenvalues are projected out of the system of equations
(projected to zero). This decreases κ and often increases the rate of convergence. The
following two theoretical bounds on the effective condition number (Definition 4) of Π⊥K
for SPD matrices K are given [12].

Theorem 3. Let K be symmetric positive definite, let Π⊥ = I −KZ(ZTKZ)−1ZT , Z ∈
Rn×m, and suppose we can split K = C + R such that C and R are symmetric positive
semidefinite with N (C) = span{Z} the null space of C. Then

λi(C) ≤ λi(Π⊥K) ≤ λi(C) + λmax(Π⊥R). (5.8)

The effective condition number of Π⊥K is bounded by

κeff(Π⊥K) ≤ λmax(K)

λm+1(C)
. (5.9)

Proof. Note that Π⊥K is symmetric. Since Z is in the null space of C, it follows that
Π⊥C = C is also symmetric. Matrix R is positive semidefinite, Π⊥ a projection and
Π⊥R = Π⊥K − C is symmetric. Define y = (Π⊥)Tx, then:

xTΠ⊥Rx = xT (Π⊥)2Rx

= xTΠ⊥R(Π⊥)Tx

= ((Π⊥)Tx)TR((Π⊥)Tx)

= yTRy ≥ 0,

so Π⊥R is symmetric positive semidefinite. This implies λmin(Π⊥R) ≥ 0. The bounds in
Inequality (5.8) follow from Theorem 8.1.5. of Golub et al. [13].

λi(Π
⊥C) + λmin(Π⊥R) ≤ λi(Π⊥K) ≤ λi(Π⊥C) + λmax(Π⊥R).

This results in λi(Π
⊥K) ≥ λi(C). Furthermore, since Π⊥K is also positive semi-definite,

Theorem 8.1.5 of [13] gives λmax(Π⊥K) ≤ λmax(K). Combining these bounds gives In-
equality (5.9).

The preconditioned variant of Theorem 3 with a split Cholesky preconditioner P = LLT is
the following theorem [12]:

Theorem 4. Assume the conditions of Theorem 3 and let P = LLT be a symmetric
positive definite Cholesky based preconditioner. Then the effective condition number of
L−1Π⊥KL−T is bounded by

κeff(L−1Π⊥KL−T) ≤ λmax(L−1KL−T)

λm+1(L−1CL−T)
.

29

Proof. Define K̂ = L−1KL−T , Ĉ = L−1CL−T , R̂ = L−1RL−T , Ẑ = LTZ and

Π̂⊥ = I − K̂Ẑ(ẐT K̂Ẑ)−1ẐT = L−1Π⊥L.

Note that Π̂⊥ = Π̂⊥
2

is a projection, Π̂⊥K̂ is symmetric and it still holds that Π̂⊥Ĉ =

Ĉ. Now, apply Theorem 3 on the deflated matrix Π̂⊥K̂ and substitute back all original
variables.

Enlarging the size of the full rank matrix Z ∈ Rn×m, thus increasing m, is equivalent
to enlarging the null space of C. This means that the effective condition number of the
deflated system will in general improve for increasing dimensions of full rank matrix Z. For
symmetric matrices this means that the convergence improves. For non-symmetric matrices
this is not necessarily true, although if the non-symmetric part is not too dominant, similar
convergence behavior may be expected.

5.2 Robustness

The coarse matrix E = ZTKZ must be nonsingular. For SPD matrices K it is sufficient
to have full rank Z by the following theorem [12].

Theorem 5. Assume K ∈ Rn×n to be a symmetric positive definite matrix and let Z ∈
Rn×m be a full rank matrix. Then E = ZTKZ is nonsingular.

Proof. It is sufficient to show that E is also SPD. Since K is SPD, by definition holds that:

xTKx > 0, ∀x ∈ Rn, x 6= 0.

Since Z is full rank, we can always write x = Zy 6= 0, ∀y ∈ Rm, y 6= 0. Now, ∀y ∈ Rm, y 6= 0
holds

yTEy = yTZTKZy = (Zy)TK(Zy) = xTKx > 0,

which shows that E is positive definite. The theorem follows by E = ZTKZ = (ZTKZ)T =
ET .

This theorem does not hold for non-symmetric matrices K. In Yeung et al. [51] it is proven
that E is nonsingular under the assumption that the columns of Z form a K-invariant
subspace. This is certainly true for eigenvectors of K, but in general needs to be checked.
For practical implications concerning the robustness of deflation please refer to Section 8.3.

5.3 Eigenvector deflation

An obvious choice for Z is the span of the eigenvectors corresponding to the smallest eigen-
values. Such an approach certainly is effective, although the smallest eigenvectors are not
always known beforehand. However, in some iterative methods such as GMRES(s), the
(approximate) eigenvectors can be computed relatively cheap. These vectors can be used
as a deflation space in the restart of GMRES(s) or in the nonlinear iterative loop [9, 29].
Another limitation is the effectiveness in case of a large number of independent small
eigenvectors. Deflating a large amount of small eigenvectors means that the dimension of
Z grows beyond its effectiveness.

Eigenvector deflation has shown to be effective. The Ritz vectors can be computed and
used in CG and GMRES(s). In Erhel et al. [9] and Morgan [29] the restart of GMRES(s)

30

is augmented or deflated using approximated eigenvectors and in Gosselet et al. [14,15] the
CG method is augmented in nonlinear structural analysis problems. In Diana these appli-
cations of eigenvector deflation can be an effective technique to speed up the convergence
process.

5.4 Subdomain deflation

Let us divide the domain Ω =
⋃nd
j=1 Ωj into nd subdomains and choose

Zij =

{
1 if i ∈ Ωj ,
0 otherwise,

resulting in Z ∈ Rn×nd . If it is advantageous to decouple these domains (for similarity in
properties or parallel computations), then the convergence of an iteration method could
speed up by using subdomain deflation. Diana uses a coarse grid correction in its Schwarz
domain decomposition, which has the same purpose as subdomain deflation. Subdomain
deflation can be extended to rigid body modes deflation.

5.5 Rigid body modes deflation

The idea of rigid body modes deflation is to treat a collection of elements as a rigid body.
This can be advantageous due to physical properties or for parallel computations. The stiff-
ness of a collection of elements can be relatively large and therefore it approximately acts as
a rigid body. A true rigid body would result in a singular matrix and eigenvalues equal to
zero. The so-called approximate rigid bodies show similar behavior, resulting in eigenvalues
close to zero. Approximate rigid bodies are a collection of stiff and interconnected elements
and these typically cause the matrix K to be ill-conditioned, as the discontinuities in the
physical properties result in large jumps in the coefficients of K. Deflating the rigid body
modes of these collections of elements would improve the condition of K.

Ignoring scalar degrees of freedom for the moment, the rigid body modes of a three-
dimensional node, element or collection of elements can be described by six modes, namely
three translational modes and three rotational modes. Consider a single node consisting of
three translational degrees of freedom ux, uy and uz. The rigid body modes of this nodes
are given by

ux
uy
uz

 1 0 0 0 −z y
0 1 0 z 0 −x
0 0 1 −y x 0

 .

Consider a three-dimensional problem consisting of two materials; a connected rigid ma-
terial and a not-so-rigid material. Let us split the stiffness matrix K = C + R, with C
containing one independent singular submatrix corresponding to the rigid material and
R corresponding to the not-so-rigid material. Using rigid body modes deflation, the sub-
space Z is equal to the span of the null space of C, i.e., Z = N (C) = span{Z} with
Z = {z1, . . . , z6} the six base vectors corresponding to the six rigid body modes of the rigid
material. This results in Z ∈ Rn×6.

Assume the number of bodies to be nb. Splitting K = C + R provides us the possibility
to decouple the matrix K into disjoint matrices Ci with C =

⋃nb
i Ci and mutual couplings

Ri, with R =
⋃nb
i Ri. If we choose matrices Ci on basis of material properties, then the

31

matrices Ci do not have irregular jumps in their coefficients.

K = C +R =

C1

C2

. . .

Cnb

+R.

Recall Theorem 3 and 4 for the bounds on the effective condition number of the deflated
system Π⊥K and the preconditioned deflated system L−1Π⊥KL−T . The split of K = C+R
is here explicitly given.

Section 6 explains the identification of rigid bodies. More details on the rigid body modes
and how to apply the modes can be found in Section 7.

6 Identifying rigid bodies

An approximate rigid body is a collection of connected elements in a finite element mesh
that acts to a certain extent as a rigid body. The approximate rigid body modes of a model
can be used in deflation or in coarse grid correction. These modes (vectors) can negatively
influence the convergence of a Krylov subspace method. This section proposes a method
applicable for general finite element packages to identify the approximate rigid bodies in a
model.

6.1 Motivation

One-dimensional Poisson case
Consider the following illustrative one-dimensional Poisson problem on V =

⋃3
i=1 Vi, where

V2 seperates V1 and V3:

− d

dx

(
c
du

dx

)
= f, x ∈ V,

u = 0, x ∈ ∂V,
(6.1)

where

c =

{
c1 if x ∈ V1 ∪ V3

c2 if x ∈ V2
,

u the unknown displacements and f the given external forces. Equation (6.1) can be
discretized with the finite element method. Linear test functions and regular elements of
size h results in the following discretization:

Ku = hf (6.2)

32

where

K =

2c1 −c1

−c1
. . .

. . .
. . . 2c1 −c1 ∅

−c1 c1 + c2 −c2

−c2
. . .

. . .
. . . 2c2 −c2

−c2 c1 + c2 −c1

∅ −c1
. . .

. . .
. . . 2c1 −c1

−c1 2c1

.

Let us take c1 = 10, c2 = 107, h = 1/40 and Vi such that

c =

{
10 if x ∈ {el1, . . . , el19, el26, . . . , el40}
107 if x ∈ {el20, . . . , el25}

.

Note the jump in the coefficient of c around the 20-th and 25-th element.

Equation (6.2) can be solved by the Preconditioned Conjugate Gradient method, precondi-
tioned by a Jacobi preconditioner (diagonal scaling) P with entries pii = kii. The spectrum
of P−1K is illustrated in blue crosses in Figure 3.

Figure 3: The eigenvalue spectrum of P−1K and Π⊥P−1K for the one-dimensional Poisson
problem.

The eigenvalues of P−1K are despite of diagonal scaling strongly diverse due to one rela-
tively small eigenvalue. Recall that the convergence of Conjugate Gradient is influenced by
the effective condition number κeff(K) = λmax/λmin by Theorem 2. This basically means
that the small eigenvalue of P−1K in Figure 3 results in slow convergence of CG. The
convergence of Preconditioned CG (PCG) is illustrated in the dotted blue line in Figure 4.
This figure shows that PCG converges just within the theoretical iteration bound (39) of

33

Figure 4: The convergence of PCG and DPCG for the one-dimensional Poisson problem.

the size of the problem [17].

The jumps in c have a bad influence on the eigenvalues of P−1K. Deflation based on the
rigid body modes as discussed in Section 5.5 can significantly improve this. By choosing
the three uniform parts of the model as approximate rigid bodies, we can decouple the
system into parts with constant coefficients c. The three corresponding one-dimensional
rigid body modes are:

Z =

1 0 0
...

...
...

1 0
...

0 1
...

...
...

...
... 1 0
... 0 1
...

...
...

0 0 1

, (6.3)

which in practice will be normalized. As can be seen in Equation (6.3), in one-dimensional
problems rigid body modes deflation is equivalent to subdomain deflation. Figure 3 shows
the eigenvalue spectrum of Π⊥P−1K in red dots, excluding the three eigenvalues equal
to zero2 due to deflation. Note that the small eigenvalues of P−1K and Π⊥P−1K are
significantly different, but the large eigenvalues are not. The convergence of Deflated Pre-
conditioned CG (DPCG) is illustrated in the solid red line in Figure 4.

The effective condition number decreases from κeff(P−1K) ≈ 2 · 108 to κeff(Π⊥P−1K) ≈
1 · 102. The number of CG iterations decreases from 39 to 22 iterations.

2Actually, these computed eigenvalues are of order 10−16.

34

SphereInCube case
Consider the three-dimensional SphereInCube case consisting of a stiff sphere located in a
low stiffness cube, as illustrated in Figure 5. This case is modeled, evaluated and solved in
Diana.

Figure 5: A section of the SphereInCube case with high stiffness material (red sphere) in
low stiffness material (blue cube).

The SphereInCube case is a linear elastic model and built with tetrahedron elements. It
has 36.129 degrees of freedom of which 33.425 degrees of freedom are really free (not con-
strained). The inner sphere is 106 stiffer than the surrounding cube. The cube is fixed at
the bottom and at the top edges in the normal direction. A uniform load is applied on the
top plane of the cube. The inner sphere with high stiffness acts, by approximation, as a
rigid body in the low stiffness cube. The convergence of PCG using preconditioner IC(0)
is shown as the dotted blue graph in Figure 6.

Figure 6: Convergence of PCG and DPCG for the case SphereInCube.

Figure 6 shows that PCG has six ‘difficulties’ in the convergence process. These jumps
indicate the six modes in the model that are typically hard to find in Krylov subspace
methods. Typically, Krylov subspace methods have difficulties with reducing the residual
in the span of small eigenvectors.

35

The sphere is not a true rigid body in the model, but due to the high stiffness of the sphere,
the corresponding modes are dominant in the model. By choosing the two uniform parts of
the model as approximate rigid bodies, namely the sphere and the cube, we can decouple
the system into parts with more or less constant coefficients in the stiffness matrix. The
convergence of Deflated PCG (DPCG), preconditioned by IC(0) and deflated by the ap-
proximate rigid body modes, is shown as the red graph in Figure 6. The curious little jump
in convergence for DPCG could be due to numerical rounding errors.

The number of iterations reduces from 410 to 84 and the residual decreases more grad-
ual. Furthermore, the computation time reduces from 11.2 to 4.7 seconds, including the
identification time for the approximate rigid bodies. The above analysis indicates that
approximate rigid bodies can result in slow convergence of an iterative solution method.
Identification of these bodies can be advantageous, since two techniques (deflation and
coarse grid correction) can be used to improve this behavior.

The real rigid body modes of an unsupported model are eigenvectors corresponding to
eigenvalue zero. Such vectors indicate a singular system. Approximate rigid bodies occur if
a part of the model approximately floats free in the remainder of the model. This happens
if a group of elements is mutually strongly coupled, but weakly coupled with its environ-
ment. This behavior can be caused by large stiffness jumps and by attempts to decouple
parts of the model, e.g. for the purpose of domain decomposition. In general, domain
decomposition methods result in subdomains that lack boundary conditions [20, 28]. The
boundary conditions can be imposed (or corrected for) by using the rigid body modes of a
complete subdomain.

The remainder of this section explains how to identify the approximate rigid bodies in a
FEM model. Please note that the terms ‘rigid body’ and ‘approximate rigid body’ are used
interchangeable for convenience if there is no ambiguity.

6.2 The coloring algorithm

The approximate rigid bodies are actually a collection of connected elements with a compa-
rable stiffness. A classical method to identify the bodies is the so-called coloring algorithm.
Each element consists of a material and the coloring algorithm groups together the con-
nected elements of the same material. A relevant classical example of the coloring algorithm
is described in Jönsthövel et al. [20], similar to Algorithm 6.

36

Algorithm 6. Coloring algorithm to identify rigid bodies

Given the FE mesh with d materials and elements Λ = {Λ1, . . . ,Λnel}.
Define element i as Λi = {χΛi , θΛi , γΛi}, with

• neighboring elements, χΛi, containing indices of neigboring elements of
element Λi.

• material type, θΛi.

• rigid body, γΛi.

1 For j = 1, . . . , d, Do
2 set dj = 0
3 For i = 1, . . . , nel, Do
4 select element Λi with χΛi, θΛi and γΛi.

5 assign element to body(Λi) {
6 If θΛi = j, Then
7 If γΛi = 0, Then
8 dj = dj + 1, set γΛi = dj
9 EndIf
10 For all Λk ∈ χΛi, Do
11 select element Λk with χΛk , θΛk and γΛk .
12 If θΛk = j, Then
13 If γΛk = 0, Then
14 set γΛk = γΛi,
15 put element Λk on the heap of element Λi.
16 EndIf
17 EndIf
18 EndFor
19 EndIf
20 }
21 For all Λk on the heap of Λi, Do
22 assign element to body(Λk)
23 EndFor
24 EndFor
25 EndFor

Algorithm 6 starts with defining an element as a rigid body and seeks all connected el-
ements of the same material by sequentially checking all neighbors of those elements. If
all connected elements of the same material are identified and labeled as a rigid body, an
unlabeled element is defined as a new rigid body. Thereafter, all connected elements of
the same material as the new rigid body are identified and labeled as a rigid body. This
process repeats itself until all elements are contained in a rigid body.

On one hand, it is advantageous to eliminate all stiffness jumps in the corresponding system
of equations to improve the convergence of an iterative solution method. On the other hand,
increasing the number of rigid bodies results in larger matrices Z and E. This can increase
the computation time required for one iteration significantly. Therefore, a proper balance
between stiffness jumps and the number of rigid bodies is required for optimal performance.

For this reason the number of bodies should be limited to a maximum. Let this maximum

37

number of allowed bodies be nb bodies. In case of domain decomposition, each subdo-
main may contain nb bodies. Actually, no domain decomposition is equivalent with one
subdomain. Each subdomain combines neighboring bodies found by Algorithm 6, based
on their material properties, until nb bodies remain for each subdomain. The assembled
bodies per subdomain form the complete subdomain. In other words, the approximate
rigid body caused by the decoupling of the subdomain can be constructed by the assembly
of all bodies in the subdomain.

Figure 7 presents a model with two non-overlapping subdomains divided by the dashed
line. The complete model Ω consists of four bodies and each of the subdomains Ω1 and
Ω2 consists of three bodies. Bodies Ωa

1, Ωb
1 and Ωc

1 make up for the complete subdomain
Ω1 and bodies Ωa

2, Ωb
2 and Ωc

2 make up for the complete subdomain Ω2. If in this case the
maximum number of bodies nb = 3, then all bodies can be used by the iterative solver.

Figure 7: A model consisting of four bodies divided into two subdomains, each consisting
of three bodies.

Unfortunately, Algorithm 6 is insufficiently applicable in a general FEM software package.
The most important short-coming of the classical coloring algorithm is a proper criterion to
classify the different ‘materials’ in the model, since a wide variety of elements and materials
exist.

Element can be described by various parameters, such as Young’s modulus, time, previous
(local) stresses, temperature, pressure, etc. This implies that one material can lead to large
behavioral differences throughout the model. This also implies that two different materials
can actually behave similarly.

Furthermore, in some cases it is not possible to compare elements on the previously men-
tioned parameters. It is not obvious how to compare a classical structural element with
an interface element, which can model various phenomena, such as elastic bedding, crack-
ing, bond-slip along reinforcements, friction between surfaces, joints in rocks, contact and
fluid-structure relations. In general, the relation between e.g. a structural element and an
interface element depends on the element sizes and the cross-sectional area through which
the force is applied are also involved, as described in Section 2 in Equation (2.13) and (2.14).

It may be possible to incorporate every relevant parameter that determines the behavior
of an element. Nevertheless, for general FEM computations it is important to identify the
rigid bodies in an easy and broad applicable way. The rigid body identification should easy

38

to understand and easy to maintain.

6.3 Generalizing the coloring algorithm

This section describes how to compare elements in any model and how to use this compar-
ison to identify rigid bodies in the model.

6.3.1 Comparing elements

The issue that relates to approximate rigid bodies in the iterative solution method is the
large stiffness jumps in the global stiffness matrix K. A group of elements corresponding
to an approximate rigid body will have a dominant contribution to the matrix K compared
to its surrounding. This relatively large contribution can be caused by various relevant pa-
rameters, such as the Young’s modulus of an isotropic material, a so-called dummy stiffness
Dm of an interface element or the spring constant of a spring element.

As an illustration, consider the rigidity matrices Diso
m of an isotropic structural element and

Dint
m of an interface element. The rigidity matrix Diso

m for a three-dimensional structural
element modeling isotropic behavior equals

Diso
m =

E

(1 + ν)(1− 2ν)

1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 (1− 2ν)/2 0 0
0 0 0 0 (1− 2ν)/2 0
0 0 0 0 0 (1− 2ν)/2

 ,

where E is Young’s modulus and ν is Poisson’s ratio. The rigidity matrix Dint
m for an

interface element equals

Dint
m =

 D11 0 0
0 D22 0
0 0 D33

 ,

where Dii is the user’s input.

All relevant parameters will eventually result in an element stiffness matrix. The element
stiffness matrix is always present if the element contributes to the global stiffness matrix.
The element stiffness matrices are formed as follows:

Kem =

∫
em

BT
mDmBm dV.

These matrices Kem can be mutually compared in a fair and relatively easy way. In general
the diagonal of the element stiffness matrix is leading for the stiffness of the element.

An attempt to describe an element stiffness matrix with one value is to take the maximum,
the sum or the average of the element stiffness diagonal. The sum of the element stiffness
diagonal is the trace by definition.

Theorem 6. Let Kem, m = 1, . . . , nel denote the element stiffness matrices of the global
stiffness matrix K ∈ Rn×n such that

∑nel
m=1K

em = K. Then the following holds:

39

nel∑
m=1

tr(Kem) =
n∑
j=1

λi(K).

Proof. Note that the sum of the assembled element stiffness matrices is the global stiffness
matrix.

nel∑
m=1

tr(Kem) =

nel∑
m=1

∑
i

Kem
ii ,

=
n∑
i=1

Kii,

= tr(K).

The characteristic polynomial of K can be written as p(λ) = (−λ)n + tr(K)λn−1 + . . . +
det(K), and also as p(λ) = (−1)n(λ− λ1) · · · (λ− λn). Comparing the λn−1 coefficients of
both expressions yields

∑n
i=1 λi = tr(K), which concludes the theorem.

This means that the trace of an element stiffness matrix Kem directly contributes to the
sum of the eigenvalues of the global stiffness matrix K. We suggest to take the average
of the element stiffness diagonal, since this also relates to the classical approach based on
Young’s modulus.

6.3.2 Identifying bodies

An effective approach is to iteratively define the rigid bodies based on the relative stiffness
difference of neighboring elements. The parameter δ indicates when two neighboring ele-
ments are put in the same body; if their stiffness relatively differs less then δ ∈ R, then the
two elements are put in the same body. The parameter δ is initialized based on the mini-
mum and maximum stiffness occurring in the model. A minimum value for the parameter δ
is set (e.g. δ ≥ 100). If the number of identified bodies is too large, then δ is increased and
the rigid body identification is re-applied until a reasonable amount of bodies is identified.
The steps are summarized in the illustrative Algorithm 7.

Algorithm 7. Extended coloring algorithm to identify rigid bodies

1 Compute the average of the element stiffness diagonals.
2 Estimate the δ parameter.
3 Apply a variant of Algorithm 6: Combine neighboring elements to bodies

if their stiffness differs less than factor δ.
4 If the number of bodies is much larger than nb, then increase δ and goto 3.
5 Combine identified bodies until nb bodies per subdomain remain.

This approach is intuitively clear; the stiffness of an approximate rigid body should be
much larger than the stiffness of its neighboring elements, which implies a “stiffness jump”
at the boundary of the rigid body. The internal coupling of the degrees of freedom in the
approximate rigid body is significantly stronger then the coupling of the degrees of freedom
between the rigid body and its surrounding elements. Therefore, the rigid body floats rel-
atively free, if no other boundary conditions are attached to the body itself. In that case,

40

the surrounding elements effectively put Dirichlet boundary conditions on the rigid body.

An alternative (less effective) approach to identify rigid bodies is based on “stiffness ranges”
in the model. More information can be found in Appendix C.

6.4 Limitation of rigid bodies

Although the approximate rigid body approach is often effective, some limitations should
be addressed.

1. Gradual versus sudden stiffness increases. A simple preconditioning matrix
such as Jacobi can deal with gradual stiffness increases throughout the model. The
elements of the stiffness matrix can be properly scaled in that case. Convergence
problems do occur if stiffness jumps are induced by the model. Figure 8 illustrates
how a gradual stiffness increase (as the extension of the coloring algorithm detects it)
can ultimately lead to a large stiffness difference. For the case in Figure 8, it could
be wise to define two or three bodies.

Figure 8: An annular finite element model where gradual stiffness increases can result in
large stiffness jumps.

2. Scalar degrees of freedom of another order of magnitude. The rigid body
modes approach in general can identify and improve systems of equations with a small
number of approximate rigid bodies. This approach is unsuitable for models where
stiffness differences occur throughout a large part of the model.

Let us illustrate this limitation by a model with pressure degrees of freedom that
occur throughout a large part of the model. These scalar degrees of freedom interact
with other (translational) degrees of freedom, which have other units and order of
magnitude. All these scalar degrees of freedom can be seen as rigid bodies, as each
pressure degree of freedom implies a large stiffness jump in the matrix. As the number
of pressure degrees of freedom can be very large, it is unwise to define each of them
as an approximate rigid body, since the size of Z will grow beyond its effectiveness.

In short, scalar degrees of freedom with another order of magnitude than the degrees
of freedom that they interact with, should not defined as a separate rigid body. The
approximate rigid body approach cannot improve convergence for those cases.

41

6.5 Reusing rigid bodies in nonlinear iterations

The system of equations in a nonlinear iteration loop may change only slightly or not at
all. For a preserved system, e.g. constant stiffness, it is obvious how to reuse information.
A direct solver can reuse the matrix decomposition and an iterative solver can reuse the
preconditioner and deflation operator. It is less obvious if and how to reuse information
in a slightly changing system of equations, for example in a relative linear Newton iteration.

The extended coloring algorithm described by Algorithm 7 starts with computing the av-
erage trace of each element stiffness matrix. Let nel be the number of elements, γ ∈ R the
nonlinear tolerance parameter and let yi ∈ Rnel be a vector. The vector yi contains the
average trace of each element stiffness matrix in nonlinear iteration i. By storing vector yi,
each element can be compared with yi+1 in the next nonlinear iteration. The previously
identified rigid bodies can be reused if the element stiffness difference is small:

|yi+1(j)− yi(j)|
min(yi+1(j), yi(j))

< γ, ∀j = 1, . . . , nel, (6.4)

provided that yi+1 and yi do not contain zero entries. Inequality (6.4) checks whether all
vector entries differ less than factor 1 + γ. Some numerical experiments suggest γ = 1,
resulting in a bound of factor-two relative stiffness change.

7 Rigid bodies within the solution method

7.1 The rigid body modes

The rigid body modes are spanned by the kernel base vectors of the corresponding element
stiffness matrix. The rigid body modes are the eigenvectors corresponding to eigenvalue
zero. The null space of the element matrices can therefore be approximated by the rigid
body modes of the element matrices. The rigid body motions (in three dimensions) are
given by three translations and three rotations plus any scalar degrees of freedom types,
such as temperature or pressure.

Equation (7.1) shows the eight rigid body modes of a node with eight degrees of freedom.
The node consists of three translation degrees of freedom ux, uy and uz, three rotational
degrees of freedom φx, φy and φz and two scalar degrees of freedom p and T corresponding to
pressure and temperature. Translation and rotational degrees of freedom are not necessarily
coupled in the model, but they are coupled in the rigid body rotational modes.

ux
uy
uz

φx
φy
φz

p
T

1 0 0 0 −z y 0 0
0 1 0 z 0 −x 0 0
0 0 1 −y x 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

(7.1)

For the sake of completeness, all rigid body modes should be correctly oriented with respect
to the orientation of the nodes (which could differ from {(1, 0, 0), (0, 1, 0), (0, 0, 1)}). Each
column represents the null vector corresponding to the translation in x-, y- and z-direction,

42

linearized rotation in x-, y- and z-direction and pressure and temperature. Each row rep-
resents one of the eight degrees of freedom of the node. Each body (collection of elements)
imply 6 + s deflation vectors in three dimensions, as each body has three translational and
rotational degrees of freedom [20] plus s types of scalar degrees of freedom.

The rigid body modes of a single element are the combination of the vectors in Equation
(7.1) for all nodes contained in that element. Sets of elements make up the bodies. The
rigid body modes of a collection of elements is equal to the assembly of the rigid body modes
of the individual elements, ignoring their overlap. Nodes that do not uniquely belong to
one element are assigned to the stiffest element, so that nodes that belong to two bodies
will be assigned to the stiffest body.

7.2 Deflation versus coarse grid correction

The coarse grid correction described in Section 4.3 and rigid body mode deflation described
in Section 5.5 are analogous to a large extent. Recall that the stand-alone coarse grid pre-
conditioner is PC = I + ZE−1ZT as in Equation (4.1). The preconditioned coarse grid
preconditioner is PC,P−1 = P−1 + ZE−1ZT as in Equation (4.2). Recall that the deflation
operator is Π⊥ = I −KZE−1ZT .

The coarse grid correction in Diana takes the rigid body modes of the subdomains as base
for Z. This can be extended in such a way that it not only takes the subdomains as bodies,
but that each subdomain contains up to nb bodies. This means that the matrix Z of coarse
grid correction and deflation can be chosen equal.

Algorithm 8 provides an algorithm where one can choose deflation [D] (DPCG) or coarse
grid correction in the form of a second preconditioner [P] (PPCG) to use the rigid body
modes. If deflation [D] is applied, then the coarse grid correction [P] should be skipped
and vice versa3. The preconditioners are additively applied and can be replaced by a
multiplicative version as in Equation (4.3).

3Some numerical experiments suggest that applying both deflation and coarse grid correction is possible,
but without gain.

43

Algorithm 8. PCG menu: DPCG [D] or PPCG [P]
1 Choose u0. Compute r0 = f −Ku0.

[D] 2 Set r0 := Π⊥r0.
3 Solve Pz0 = r0 and set p0 = z0.

[P] 4 Compute z̃0 = ZE−1ZT r0 and set p0 := p0 + z̃0.
5 For j = 0, 1, . . . until convergence, Do
6 zj = Kpj

[D] 7 zj := Π⊥zj
8 αj = 〈rj , zj〉/〈pj , zj〉
9 uj+1 = uj + αjpj
10 rj+1 = rj − αjzj
11 Solve P1zj+1 = rj+1

[P] 12 Compute z̃j+1 = ZE−1ZT rj+1 and set zj+1 := zj+1 + z̃j+1.
13 βj = 〈rj+1, zj+1〉/〈rj , zj〉
14 pj+1 = zj+1 + βjpj
15 EndDo

[D] 16 u = ZE−1ZT f + Π∈uj+1

Algorithm 8 shows at what moment deflation and coarse grid correction are applied in
PCG. GMRES(s) can be modified analogously. The application of the techniques is as
follows:

Deflation Coarse grid correction

y = x−KZE−1ZTx y = ZE−1ZTx

In both techniques the coarse matrix E = ZTKZ acts as a representation of the rigid
bodies in the subdomains and in both techniques the coarse system should be efficiently
solved. In Nabben et al. [30, 31] a comparison is made between coarse grid correction and
deflated preconditioning. The following theorem and proof are from [30]:

Theorem 7. Let K ∈ Rn×n be symmetric positive definite and Z ∈ Rn×m be full rank such
that span{Z} = N(C), where C = K−R is positive semidefinite. Let Π⊥ = I−KZE−1ZT

be the deflation operator and PC = I + ZE−1ZT be the coarse grid preconditioner. Then
the following holds:

λ1(Π⊥K) = . . . = λr(Π
⊥K) = 0, (7.2)

λn(Π⊥K) ≤ λn(PCK), (7.3)

λr+1(Π⊥K) ≥ λ1(PCK). (7.4)

Proof. By the proof of Theorem 3, Π⊥K is positive semidefinite. All eigenvalues of Π⊥K
are therefore real and non-negative. Since Π⊥KZ = KZ −KZE−1ZTKZ = 0, Equation
(7.2) holds. Consider

K
1
2PCK

1
2 −Π⊥K = KZE−1ZTK +K

1
2ZE−1ZTK

1
2 .

The right-hand side is positive semidefinite, so for the left-hand side holds that λi(K
1
2PCK

1
2) ≥

λi(Π
⊥K) by Corollary 7.7.4 in Horn et al. [18]. Since the spectra of PCK and K

1
2PCK

1
2

are equal, we obtain

44

λi(PCK) = λi(K
1
2PCK

1
2) ≥ λi(Π⊥K),

which proves Inequality (7.3). Now consider

PCKPC −Π⊥K = K + ZE−1ZTK +KZE−1ZT + ZE−1ZTKZE−1ZT

−K +KZE−1ZTK

= ZE−1ZTK +KZE−1ZT + ZE−1ZT +KZE−1ZTK

= (K + I)ZE−1ZT (K + I).

This shows that PCKPC − Π⊥K is symmetric and of rank m. By Theorem 4.3.6 in Horn
et al. [18] follows that

λr+1(Π⊥K) ≥ λ1(PCKPC) = λ1(P 2
CK).

Since PC − I is positive semidefinite, P 2
C −PC and K

1
2P 2

CK
1
2 −K

1
2PCK

1
2 are also positive

semidefinite. Hence,

λi(P
2
CK) = λi(K

1
2P 2

CK
1
2) ≥ λi(K

1
2PCK

1
2) = λi(PCK).

Combining the inequality above gives

λr+1(Π⊥K) ≥ λ1(P 2
CK) ≥ λ1(PCK).

From Theorem 7 follows that

κeff(Π⊥K) ≤ κ(PCK),

so deflated CG converges faster than CG combined with coarse grid correction, for arbi-
trarily full rank Z ∈ Rn×m. Theorem 7 can extended to a preconditioned version.

Theorem 8. Let K ∈ Rn×n and P−1 be symmetric positive definite and Z ∈ Rn×m be full
rank. Let Π⊥ = I −KZE−1ZT be the deflation operator and PC,P−1 = P−1 + ZE−1ZT be
the coarse grid preconditioner. Then the following holds:

λn(P−1Π⊥K) ≤ λn(PC,P−1K), (7.5)

λr+1(P−1Π⊥K) ≥ λ1(PC,P−1K). (7.6)

The proof is given in Nabben et al. [30]. From Theorem 8 follows that

κeff(P−1Π⊥K) ≤ κ(PC,P−1K),

so deflated PCG (DPCG) converges faster than PCG combined with coarse grid correction
(PPCG).

Table 2 gives an overview of the strong and weak characteristics of deflation and coarse
grid correction.

45

Deflation Coarse grid correction

Cost per iteration +4 +
Scalability with # threads – 4 +
Effectiveness + –
Sensitivity to numerical issues – +

Table 2: Comparison of the weak and strong characteristics of deflation and coarse grid
correction.

The costs per iteration for deflation are larger due to an extra vector addition and a multi-
plication with K. This extra multiplication can be performed beforehand by pre-computing
KZ = KZ, which considerably reduces the extra costs per iteration. Appendix B.2 indi-
cates that pre-computing KZ is efficient, especially for a small number of threads (< 5).
On the other hand, in parallel computing this strategy poorly scales with the number of
threads. For each additional thread i, each thread has to store the contribution Ki

Z of
thread i. Details on parallel deflation follow in Section 8.2.

Deflation is more powerful than coarse grid correction, if properly used. This can be seen
by the effective condition number of the system and by the number of iterations of an iter-
ative solver. It is be proven that, with arbitrary full rank matrix Z, the effective condition
number for deflation is always below the condition number of the system preconditioned
by the coarse grid correction [30].

A disadvantage of deflation is that it is more sensitive to numerical errors. The projection
operation in deflation has to be very accurate. If a small part of a deflation vector is not
completely projected out of the system, then it will never leave the Krylov subspace. In
that case, the iterative method possibly never converges at all. The coarse grid correction
allows for inaccuracy, only the correction will be less effective. The next iterations are likely
to improve this ineffective correction.

For a performance comparison of deflation and coarse grid correction in Diana, please refer
to Section 9. Additional theoretical background can be found in Nabben et al. [30, 31].

8 Implementation

Diana-specific implementation details can be found in Appendix A.1.

8.1 Parallel computers

A parallel computer is a collection of processors that is able to work cooperatively to solve
a computational problem [10]. Three classes of parallel computers exist: shared memory
computers, distributed memory computers and virtual shared memory computers.

A shared memory computer or Symmetrical Multi-Processor (SMP) consists of multiple
processors sharing the same memory. Each processor can access all memory addresses
through a bus, as illustrated in the upper left figure in Figure 9 acquired from Lingen [27].
The memory access time increases with the number of processors due to the capacity of

4if KZ is pre-computed as KZ = KZ .

46

the bus. Therefore, each processor has its own fast cache memory. Typically, the number
of processors ranges from 2 to 32.

Figure 9: The three classes of parallel computers.

A distributed memory computer consists of multiple processors, each having its own mem-
ory. The processors interact with each other through a communication network, as illus-
trated in the upper right figure in Figure 9. The performance of a distributed memory
computer is strongly influenced by the performance of the communication network. This
can be expressed in terms of latency and bandwidth. Latency is the time required to start
an interaction between two processors and the bandwidth is the number of bytes that can
be transferred over the network within one second. The number of processors can be very
large, since no restrictive bus is required.

A virtual shared memory computer combines the properties of a shared memory computer
with that of a distributed memory computer. It has a memory architecture that is phys-
ically distributed, but the memory can be accessed by all processors. Each processor can
directly access the memory of any other processor through a routing network, as illustrated
in the lower left figure in Figure 9.

The implementation in Diana targets shared memory computers. This architecture repre-
sents most modern desktop computers and is relatively easy to implement within existing
software. In the shared memory programming model, a parallel program consists of con-
current threads, each executing its own sequential program. In the case of Diana, all tasks
execute the same sequential program, which classifies the implementation of Diana as ‘Sin-
gle Program, Multiple Data’ (SPMD). This model supports all shared memory and virtual
shared memory computers, as long as each computer provides the same shared memory
programming language or software libraries.
Two standard software libraries are POSIX Threads software library [5] and OpenMP [7].
The customized software library in Diana is implemented by Lingen [27] and is based on
OpenMP.

47

8.2 Parallel computations

Recall the left and right restriction operators Li and Ri as introduced in Section 4.3 with

K =
n∑
i=1

LTi KiRi.

Both Li and Ri are the same size with the number of columns equal to the global size and
the number of rows equal to the local size (of subdomain i). The right restriction operator
can be used to extract subdomain matrices/vectors from the global matrices/vectors:

Ki = RiKR
T
i ,

xi = Rix.

The left operator can be used to assemble the local vectors into a global vector, which is
useful for inner products:

x =
n∑
i=1

LTi xi.

Parallel computations involve three different types of data exchange. The different types of
data exchange will be explained through three examples: an inner product, a matrix-vector
product involving stiffness matrix K and a matrix-vector product involving approximate
null space Z.

Parallel: inner product
A parallel inner product yields

s = xT y =
n∑
i=1

xTi LiL
T
i yi (8.1)

The inner product computation requires to evaluate matrix LiL
T
i . This is a boolean di-

agonal matrix containing non-zero values for the unique set of degrees of freedom in the
i-th subdomain. In other words, LiL

T
i only preserves the internal degrees of freedom and

disregards all overlapping degrees of freedom.
This is in alignment with the intuitive interpretation that the multiplication of all entries
in the global vectors is evaluated exactly once. After the local inner products, the local
sums are synchronized (added up) to obtain the global inner product.

Parallel: matrix-vector product with stiffness matrix
A parallel matrix-vector product with K yields

yj = Rjy = RjKx

= Rj

n∑
i=1

LTi KiRix

=
n∑
i=1

RjL
T
i Kixi

48

The matrix RjL
T
i is non-zero if subdomain i shares degrees of freedom with subdomain j.

In other words, RjL
T
i communicates and contributes between subdomains in one direction:

only domain i can influence domain j, but not the other way around.
The computation is performed in two steps. Firstly, each local thread computes Kixi. Sec-
ondly, the contributions Kjxj of all domains are exchanged, corresponding to the shared
degrees of freedom between subdomains. This data exchange is one-directional.

Parallel: the approximate null space matrix

Following notation of Lingen et al. [28], the coarse restrictor operators Ci ∈ R6×(6·nd)

extracts a coarse subdomain vector from a global coarse vector by applying xi = Cix.
Furthermore, just as the left restriction operator Li, Ci has a unique set of non-zero columns
such that

CiC
T
j =

{
0 if i 6= j,
I if i = j.

Now, the matrix Z can be written as

Z =

n∑
i=1

RTi ZiCi,

where Zi is the local approximate null space of Ki, i.e., the local rigid body modes. A
parallel matrix-vector product with Z yields

yj = Rjy = RjZx

= Rj

n∑
i=1

RTi ZiCix

=

n∑
i=1

RjR
T
i Zixi

The matrix RjR
T
i is non-zero if the subdomain i and j share common degrees of freedom.

In other words, RjR
T
i indicates symmetric communication between subdomains.

The computation is performed in two steps. Firstly, each local thread computes Zixi. Sec-
ondly, the contributions Zixi of all domains are exchanged, corresponding to the shared
degrees of freedom between subdomains. This data exchange is symmetric and thus two-
directional.

Let us illustrate the consequence of domain decomposition on the (local) null spaces. As-
sume two domains of uniform material, resulting in two null spaces Z1 and Z2 which are
non-zero for the corresponding domains. In order to compute the correct null space of each
domain, we scale the border of the subdomain Z by the diagonal of K. This approach is
also called weighted overlap [47]. To be precise, define Ki the stiffness matrix of domain i
and Kα

i the diagonal element of Ki at border degree of freedom α. Consider border degree
of freedom α, present in domains i and j, such that Kα = Kα

i + Kα
j . Then (until so far

globally determined) Zαi and Zαj are scaled in the following way:

Zαi :=
Kα
i

Kα
i +Kα

j

Zαi ,

Zαj :=
Kα
j

Kα
i +Kα

j

Zαj .

(8.2)

49

Due to overlapping domains (in terms of nodes), note that the above scaling results in the
correct global assembled null space Z, as all overlapping nodes add up to one.

8.2.1 Deflation

Since the multiplication with KZ is required each iteration, it is advantageous to compute
KZ in advance. A performance comparison is discussed in Appendix B.2. The following
steps are analogue to the approach of Lingen [28]. Let us compute bji , column j of KZ.

bji = KZej

= Ri

n∑
l=1

LTl KlRl

n∑
k=1

RTk ZkCk e
j .

1. Form the coarse subdomain vector ejk = Cke
j .

2. Compute ãjk = Zke
j
k.

3. Exchange data to obtain ajl =
∑n

k=1RlR
T
k ã

j
k.

4. Compute b̃jl = Kla
j
l .

5. Exchange data to obtain bji =
∑n

l=1RiL
T
l b̃

j
l .

Each thread stores all partial columns of KZ. The vector y = KZx is computed by data
exchange after the local computations

yi = bix.

Data exchange is required for each thread, resulting that the matrix KZ grows with each
thread. This is a severe disadvantage if a large number of threads is used.

Deflation also requires to evaluate y = ZTKx, one time after convergence. In the symmetric
case this can be done by ZTK= (KZ)T . The resulting vector y = (KZ)Tx is in fact a
number of inner products, which can be computed analogue to Equation (8.1):

y(j) = (bj)Tx =
n∑
i=1

(bji)
TLiL

T
i xi.

In the non-symmetric case, y = ZTKx is just computed by first multiplying with K and
thereafter with ZT .

The coarse matrix E ∈ R(6·nd)×(6·nd) can be computed by pre-multiplying bj with ZT , so
that each thread i stores the partial columns Ei ∈ R6×(6·nd).

8.3 The condition number of the coarse matrix

The robustness of both deflation and coarse grid correction strongly depend on the quality
of the rigid bodies and the quality of the coarse matrix E = ZTKZ. To successfully project
or correct for the rigid body modes, the coarse matrix E must be nonsingular.

50

In case of deflation, the projection needs to be very accurate to completely project the rigid
body modes out of the system. If only the slightest span of a projected vector remains in the
system, then this part can freely influence the solution vector. An unsuccessfully projected
vector will never leave the Krylov subspace and therefore, it is unlikely that the iterative
solution method will ever converge.

In case of coarse grid correction, the correction is allowed to be less accurate. The correction
may lose accuracy, but as long as the main direction is correct, there is no serious harm in
using coarse grid correction. Unlike deflation, the coarse grid correction can be seen as a
preconditioner, where accuracy is of lesser importance.

8.3.1 Improving the condition number of the coarse matrix

The condition number of E = ZTKZ can be effectively improved by adjusting the approx-
imate null space Z. It is clear that if Z is not full rank, then this results in a singular
matrix E. The choice of non-overlapping bodies per domain ensures that no problem can
occur on each domain. On the other hand, due to overlapping elements in the domain
decomposition, some small bodies located in more than one domain can result in (almost)
linearly dependent vectors in Z. Such overlapping bodies can dramatically increase the
condition number κ(E).

Figure 10 shows a two-dimensional model with overlapping partitioning. The global model
Ω consists of two rigid bodies Ωa and Ωb. The partitioning provides two subdomains Ω1

and Ω2, each consisting of two rigid bodies. Note that due to overlap, body Ωb
1 and Ωb

2 are
the same body, but regarded by the iterative solver as two bodies.

Figure 10: A model with two rigid bodies is partitioned into two overlapping subdomains.

The nonzero elements of the globally assembled null space matrix Z of the model in Figure
10 are illustrated in Equation (8.3).

51

Z =

Z1

Z2

=

Za1

Za2

Zb1 Zb2

Za1

Za2

.

(8.3)

The matrix Z in Equation (8.3) is scaled at the overlapping parts by the diagonal of K,
as described in Equation (8.2). Nevertheless, it is clear that bodies Ωb

1 and Ωb
2 result in

(almost) linearly dependent vectors in Z.

One strategy to deal with (almost) linearly dependent vectors in Z is to apply orthogonal-
ization. Resulting vectors with a relative small norm are disregarded, other vectors can be
normalized and are linear independent. The disadvantage of this approach is that the or-
thogonalization results in coupled vectors throughout several domains. An identified rigid
body on the edge, located in two overlapping domains, results in an orthogonalized vector
with values in previously non-overlapping parts in both domains. This approach couples
the approximate null vectors, so that the implementation is less parallelizable.

Another strategy is to directly disregard (almost) linearly dependent vectors in Z. The
quality of the vectors can be checked by orthogonalization. Resulting vectors with a rela-
tive small norm are disregarded. The original (‘not-orthogonalized’) vectors of good quality
are preserved. Note that the quality check can be done by orthogonalizing the nodes of the
bodies instead of Z, which is much cheaper (for example, reducing six degree-of-freedom-
vectors to one node-vector results in a speed up of factor 18).

Both strategies should incorporate the correct scaling of the null space as described in Sec-
tion 8.2. This means that after disregarding a body, the null space should be scaled with
only the present bodies.

The current implementation is based on the second strategy to enforce parallelism. As an
addition, it starts with ordering the bodies on size. The bodies are orthogonalized with
respect to the previous bodies, starting with the largest bodies. This ensures that large

52

bodies are less likely to be disregarded.

8.3.2 Computing the condition number of the coarse matrix

The QR-decomposition determines Q and R such that E = QR, after which R−1 and
QT are computed. Each thread i computes local QTi and local R−1

i , the partial columns of
QT and of R−1. Due to the explicit inversion of R it is cheap to compute the exact condition
number κ(E) as follows:

κ∗(E) = ‖E‖∗‖E−1‖∗
= ‖QR‖∗‖R−1QT ‖∗
= ‖R‖∗‖R−1‖∗,

where typically ‖.‖∗ = {‖.‖2, ‖.‖F }. The last statement holds because Q is orthonormal.

The Frobenius norm is used to compute the condition number for its computational attrac-
tiveness and the bound on the Euclidean condition number.

Theorem 9. Let K ∈ Rn×n be a symmetric positive definite matrix. Then holds the
following:

κ2(K) ≤ κF (K).

Proof. Let K−1 denote the symmetric positive definite inverse of K. Let σ1 ≥ . . . ≥ σr > 0
be the singular values for K. Then

‖K‖22 = σ2
1 ≤

r∑
i=1

σ2
i = ‖K‖2F .

Applying the same analysis for K−1 concludes the theorem.

8.3.3 Accuracy of the coarse solution

The condition number κ(E) strongly influences the accuracy of the solution x of Ex = y.
The following inequality holds:

‖∆x‖
‖x‖

≤ κ(E)
‖∆y‖
‖y‖

.

This inequality indicates the rate of change of the solution x with a change in the right
hand side vector y. Assuming a machine precision of 10−16 and a convergence criterion of
ε, the solution x of the coarse system can lose up to log(1016ε) significant digits without
any problems. However, the solution of the coarse system may lose log(κ(E)) significant
digits. Consider the two techniques deflation and coarse grid correction.

1. Deflation. Since deflation is based on a projection technique, it is important not
to lose any significant digits within the convergence criterion in the solution x of
Ex = y. If a deflated vector has a small contribution in the non-deflated part, then
this contribution will never leave the Krylov subspace again. Therefore, to make
sure no significant digits within the convergence criterion are lost, it is required that
κ(E) < 1016ε.

53

2. Coarse grid correction. Since coarse grid correction can be seen as a preconditioning
technique based on multigrid, it is allowed to lose significant digits in the solution.
Some numerical experiments showed that coarse grid correction can be effective even
if the condition of the coarse matrix is extremely large (see e.g. Table 12 using 8
threads). Coarse grid correction will give a warning for large condition numbers but
never aborts, except if the iterative solver fails to converge.

As a result, if the condition number κ(E) ≥ 1016ε, then we switch from deflation to coarse
grid correction. Most computations, such as the approximate null space matrix Z and the
coarse matrix E, can be reused, but are just differently applied. The costs for switching
to coarse grid correction are therefore relatively low; in practice this costs less than 0.1
seconds.

9 Results

This section describes artificial and real-life engineering cases and the performance of the
iterative solution methods for these cases.

The methods are implemented in Diana, which is programmed in Fortan77 and C. The
supporting libraries are BLAS and LAPACK in the Intel MKL library. All cases are per-
formed on the Hendriks machine, a Dell PowerEdge 2900 workstation. This workstation
contains 2 Quad-Core Intel Xeon X5355 processors (8 CPUs) running at 2.66GHz and 24GB
DDR2 ECC memory. Maximum parallelism is gained at 8 concurrent threads running in
parallel. For more details please refer to Appendix A.2.

9.1 General applicability

Apart from the described cases in this section, the implementation of the rigid body modes
approach has been extensively tested by performing the standard Diana test suites. An
amount of 828 linear, 139 geomechanical and 1605 nonlinear test problems were analyzed
on the Hendriks machine. The tests validate correct behavior on a large scale of problems.
The new implementation is tested for the original iterative solver settings, rigid body modes
deflation and rigid body modes coarse grid correction.

9.2 Case descriptions

An overview of all cases is given in Table 3. The first five cases illustrate the strength and
weakness of the iterative solvers and the last three cases are models of real-life applications.

9.2.1 3Cubes

3Cubes is a linear static model consisting of three high-stiffness cubes inside a low-stiffness
cube. The model is built with tetrahedron elements and consists of four materials [Figure
11].

54

free d.o.f. # materials Analysis Symmetry

3Cubes 15.735 4 Linear Y

BeddingByInterfaces 206.681 2 Linear Y

BeddingBySprings 203.401 2 Linear Y

SplittedCube 161.711 2 Linear Y

MixtureCube 33.832 2 Linear N

Geo 73.336 9 Linear Y

PitExcavation 10.856 8 Nonlinear N

Road 2.286 5 Nonlinear Y

Table 3: Overview of the cases.

Figure 11: A graphical representation of the 3Cubes case. Inside this cube there are three
relatively stiff cubes located.

The three inner cubes are much stiffer than the outer cube as given in Table 4. The itera-
tive solver is expected to perform poorly.

Material Young’s modulus

OuterCube 1.0 · 100 kPa
InnerCube1 9.0 · 105 kPa
InnerCube2 6.0 · 105 kPa
InnerCube3 3.0 · 105 kPa

Table 4: Young’s moduli of the materials in the 3Cubes case.

The model 3Cubes has 17.058 degrees of freedom of which 15.735 degrees of freedom are
really free (no constraints). The cube has fixed boundary conditions at the bottom. A
uniform load is vertically applied on top of the large cube.

9.2.2 BeddingByInterfaces

BeddingByInterfaces is a linear static model of a cube standing on fixed interface elements,
which function as a linear elastic bedding. The model is built with plane interfaces and
hexahedron elements and consists of two materials [Figure 12]. The model BeddingByIn-
terfaces has 211.806 degrees of freedom of which 206.681 degrees of freedom are really free
(no constraints). The cube is attached to the interfaces at the bottom and supported at

55

two sides of the cube. The load is vertically applied at one of the top plane’s corners, which
physically will result in tilting the cube.

Figure 12: A graphical representation of the BeddingByInterfaces and BeddingBySprings
cases. The blue bottom represents the linear elastic bedding.

9.2.3 BeddingBySprings

BeddingBySprings is similar to BeddingByInterfaces, but instead of interface elements, the
linear elastic bedding is modeled with spring elements. The remainder of the model is built
with hexahedron elements [Figure 12]. The model BeddingBySprings has 206.763 degrees
of freedom of which 203.401 degrees of freedom are really free (no constraints). The cube
is attached to the springs at the bottom and supported at two sides of the cube. The load
is vertically applied at one of the top plane’s corners, which physically will result in tilting
the cube.

9.2.4 SplittedCube

SplittedCube is a linear static model consisting of quadratic hexahedron elements and
quadratic plane interfaces. A uniform cube is divided into two parts by interface elements
[Figure 13]. The interface elements are located between the green part and the yellow part.
The stiffness of the interface elements is relatively low in comparison with the stiffness of

Figure 13: A graphical representation of the SplittedCube case. Interface elements are
placed between the two parts.

the cube. The model SplittedCube has 170.706 degrees of freedom of which 161.711 degrees
of freedom are really free (no constraints). The cube is supported in the normal direction at
three neighboring planes (bottom, back and one side). A uniform load is vertically applied
on top of the cube.

56

9.2.5 MixtureCube

MixtureCube is a non-symmetric linear static model. It consists of two materials modeled
by classical and mixture hexahedron elements [Figure 14]. The classical elements form a
horizontal three-element thick layer in the middle of the cube. Below and above the layer
are the mixture elements. The model MixtureCube has 36.817 degrees of freedom of which
33.832 degrees of freedom are really free (no constraints). The cube is supported in the
normal direction at two side planes and at all edges. A uniform load is vertically applied
on top of the cube.

Figure 14: A graphical representation of the MixtureCube case. A three-thick element layer
divides two mixture element blocks.

9.2.6 Geo

Geo is a linear static geotechnical model of a real-life application. The model is built with
plane interfaces and hexahedron elements and consists of eight materials which roughly
form layers in the model [Figure 15].

Figure 15: A graphical representation of the Geo case. A pressure load is applied in the
center.

Young’s moduli of the materials is presented in Table 5. This table gives the materials as
they appear in the model from top to bottom.

57

Material Young’s modulus

Sediments 1.0 · 104 kPa
Chalk 5.0 · 106 kPa

Cromer Knoll 1.0 · 106 kPa
Kimmeridge 2.0 · 106 kPa

Interface n/a
Upper Fulmar 5.0 · 105 kPa
Lower Fulmar 1.0 · 106 kPa

Pentland 4.0 · 106 kPa
Triassic 8.0 · 106 kPa

Table 5: Young’s moduli of the materials in the Geo case.

The interface elements are located between the Kimmeridge and Upper Fulmar layer. The
interface elements have 2.0·103 kN/m3 normal stiffness and 1.0·10−1 kN/m3 shear stiffness
moduli.
The model Geo has 77.517 degrees of freedom of which 73.336 degrees of freedom are really
free (no constraints). The cube is supported in the normal direction at two side planes and
at all edges of the model. A pressure load is applied in the center of the model; gravity is
ignored. The model contains some ‘ill-shaped elements’, which means that the volume of
the element is relatively low in comparison with the nodal distances.

9.2.7 PitExcavation

PitExcavation is a non-symmetric, nonlinear geotechnical model of a real-life application
consisting of three phases: the initial state, wall installation and drainage, and excavation
and loading. These phases result in five nonlinear steps. The case is modeled with plane
interfaces and hexahedron elements and consists of eight materials [Figure 16].

Figure 16: A graphical representation of the PitExcavation case. The part inside the red
sheet pile wall will be excavated.

Young’s moduli of the materials are presented in Table 6.

58

Material Young’s modulus

Sand 2.0 · 104 kPa
Sheet Pile Wall 1.8 · 1011 kPa

Strut 2.1 · 108 kPa
Interfaces (5) n/a

Table 6: Young’s moduli of the materials in the PitExcavation case.

Five variants of interface elements occur in the model; between the sand and the wall and
in the sand layers. The interface stiffness is of order 109 kN/m3.
The model PitExcavation has a varying number of degrees of freedom, depending on the
phase. In each phase one or more parts of the model is active. The number of degrees of
freedom that is not constrained is between 10.856 and 11.808, depending on the phase. The
cube is supported in the normal direction at three planes and at all edges of the model.
There are three load cases. First, the gravity load is applied, then a load is applied on the
surface and the last load is pore pressure on both sides of the wall after drainage.

9.2.8 Road

The case Road is a two-dimensional, nonlinear model of a real-life application. It consists of
five layers, namely bitumen, a granular base, two sand layers and a soil foundation [Figure
17].

Figure 17: A graphical representation of the two-dimensional Road case.

Young’s moduli of the top-to-bottom layers are presented in Table 7.

Material Young’s modulus

Bitumen 4.0 · 106 kPa
Granular 8.0 · 103 kPa
Sand 1 6.5 · 104 kPa
Sand 2 1.3 · 105 kPa

Soil 6.0 · 104 kPa

Table 7: Young’s moduli of the materials in the Road case.

59

The two-dimensional model Road consists of 2.324 degrees of freedom of which 2.286 are
really free (no constraint). The boundary conditions support the outside of the model in
horizontal direction and the bottom in vertical direction.

A gravity load and a wheel load are applied. The wheel load is located at the upper left
corner of Figure 17.

9.3 Numerical experiments

In this section the results of the cases are described. Table 8 presents the solvers that are
compared.

PARDISO

PCG Preconditioned Conjugate Gradient

GMRES(s) Restarted Generalized Minimal Residual method

DPCG Deflated Preconditioned Conjugate Gradient

PPCG Preconditioned Preconditioned Conjugate Gradient

DGMRES(s) Restarted Deflated Generalized Minimal Residual method

PGMRES(s) Restarted Preconditioned Generalized Minimal Residual method

Table 8: The solvers that are compared.

The PARDISO solver will be the standard solution method in Diana version 9.6. It is a
parallel direct sparse solver implemented by the Intel Math Kernel Library (Intel MKL).
The solver uses a combination of left- and right-looking supernode techniques [36].

The PCG method respectively GMRES(s) method are the current implementations of the
symmetric respectively non-symmetric iterative solver. The PCG and GMRES(s) methods
use coarse grid correction that is purely subdomain-based, by the subdomains of the Schwarz
domain decomposition method. The number of available threads is equal to the number
of subdomains. The domain decomposition is not performed if it is specified to use one
thread. In that case no coarse grid correction is applied.

The DPCG and DGMRES(s) methods are the newly implemented iterative solvers using
rigid body modes deflation. The PPCG and PGMRES(s) methods are the newly imple-
mented iterative solvers using rigid body modes in coarse grid correction. The rigid body
modes are based on the physical properties of the model. The number of available threads
is equal to the number of subdomains and each subdomain results in at least one and up
to nb rigid bodies. The rigid body modes are also used if it is specified to use one thread.

All iterative solution methods use the preconditioners IC(0) for symmetric matrices or
ILU(0) for non-symmetric matrices, if not specified otherwise. Substructuring with or
without rigid bodies proved not to be competitive and is therefore not included in the
comparison.

Tables 9 – 16 show the performance of several solution methods in Diana. The first column
presents the number of available threads, which equals the number of subdomains. The

60

second column presents the condition number of the coarse matrix formed by the identified
rigid bodies. The condition number is explicitly computed by

κF (E) = ‖E‖F ‖E−1‖F = ‖R‖F ‖R−1‖F .

The CPU times of the DPCG, PPCG, DGMRES(s) and PGMRES(s) methods include the
rigid body identification time.

Figures 18 – 20 show the convergence of several iterative solvers. The vertical axis rep-
resents the relative residual and the horizontal axis represents the iteration number. The
convergence criterion is 10−8. The residual is always explicitly computed after convergence
to verify the results.

9.3.1 3Cubes

Table 9 presents the results for the 3Cubes case. The DPCG and PPCG solvers identified
four global rigid bodies in 0.3 seconds. Note that the assembly of the bodies per subdo-
main always forms the whole subdomain. The bodies are formed by the three cubes and
the remainder of the model, implying Z ∈ Rn×24 for one subdomain. The number of re-
moved bodies due to overlap increases with the number of threads. For example, four of
the seventeen global bodies were removed using eight threads.

threads κF (E) PCG PARDISO DPCG PPCG
iter CPU(s) iter CPU(s) iter CPU(s) iter CPU(s)

1 4 · 103 820 5.2 1 1.1 92 1.2 91 1.2
2 6 · 103 761 3.1 1 0.8 92 0.9 100 0.8
4 1 · 104 846 2.3 1 0.6 103 0.8 102 0.7
8 4 · 109 746 3.6 1 0.6 63 1.0 67 0.9

Table 9: The results of the 3Cubes case.

The PARDISO solver outperforms the iterative solvers due to the small size of the model.
Figure 18 shows how the relative residual decreases with each iteration of the PCG, DPCG
and PPCG methods for the 3Cubes case.

61

Figure 18: The convergence behavior of the 3Cubes case using one thread.

This shows that convergence of the PCG method for the 3Cubes case is slow and erratic.
The DPCG and PPCG methods improve convergence by using the rigid body modes.

9.3.2 BeddingByInterfaces

Table 10 presents the results for the BeddingByInterfaces case. The DPCG and PPCG
solvers identified two global rigid bodies in 0.8 seconds. These bodies are the interface
elements (the bedding) and the solid elements, implying Z ∈ Rn×12 for one subdomain.

threads κF (E) PCG PARDISO DPCG PPCG
iter CPU(s) iter CPU(s) iter CPU(s) iter CPU(s)

1 3 · 106 130 25.8 1 132.3 88 21.0 104 23.8
2 9 · 106 113 14.7 1 79.2 104 14.6 110 15.4
4 2 · 107 123 12.8 1 44.7 113 13.4 125 13.9
8 5 · 107 120 13.2 1 44.7 85 12.0 96 12.5

Table 10: The results of the BeddingByInterfaces case.

Figure 19 shows the convergence of the iterative solvers with sequential computations. Note
that deflation and coarse grid correction improve the convergence of the PCG method. As
shown, coarse grid correction results in a more erratic convergence process. Also note that
the rigid bodies have a slightly negative effect on the convergence of PPCG for four threads,
which is unexpected.

9.3.3 BeddingBySprings

Table 11 presents the results for the BeddingBySprings case. The DPCG and PPCG solvers
identified one global rigid body in 0.8 seconds. The springs have a low stiffness, so that
the nodes attached to the springs and the solid elements are put in the body of the solid

62

Figure 19: The convergence behavior for the BeddingByInterfaces case using one thread.

elements. This implies Z ∈ Rn×6 for one subdomain.

threads κF (E) PCG PARDISO DPCG PPCG
iter CPU(s) iter CPU(s) iter CPU(s) iter CPU(s)

1 1 · 102 143 26.7 1 128.9 90 21.4 95 22.9
2 3 · 102 112 14.3 1 75.1 105 14.6 112 15.1
4 8 · 102 135 13.5 1 43.6 127 13.9 135 14.4
8 2 · 103 93 10.6 1 42.7 83 10.9 93 11.4

Table 11: The results of the BeddingBySprings case.

As can be seen in Table 11, the identification of rigid bodies in the model BeddingBySprings
is not worthwhile. The result is one rigid body per subdomain, which is identical to the
original PCG method. The iterations of the PCG and PPCG methods are identical when
using more than one thread. The PCG method is faster than the PPCG method by saving
the required time to identify one rigid body per subdomain. Note the difference between
the PCG and PPCG methods in the sequential setting. The reason for this difference is
that the PCG method does not use coarse grid correction in sequential computations.

9.3.4 SplittedCube

Table 12 presents the results for the SplittedCube case. The DPCG and PPCG solvers
identified two global rigid bodies in 0.5 seconds. These bodies are the two cube parts. The
interface elements have a low stiffness and the corresponding nodes are put in the bodies
formed by the two cube parts. This implies Z ∈ Rn×12 for one subdomain.

63

threads κF (E) PCG PARDISO DPCG PPCG
iter CPU(s) iter CPU(s) iter CPU(s) iter CPU(s)

1 3 · 108 248 66.2 1 132.0 122 37.8 126 38.7
2 6 · 108 229 43.1 1 78.0 n/a n/a 144 30.7
4 9 · 108 255 35.4 1 47.1 n/a n/a 151 23.3
8 3 · 1019 248 37.5 1 47.9 n/a n/a 128 23.4

Table 12: The results of the SplittedCube case.

Note that deflation is too sensitive to rounding errors for 2, 4 or 8 threads, since the con-
dition number κF (E) is too large.

Figure 20 presents the convergence behavior of the PCG, DPCG and PPCG methods. The
DPCG method does not always converge, as illustrated in Figure 20b. The convergence
jumps for the PCG method in Figure 20a can be explained by the interface crack of the
SplittedCube case. This jump is removed by correcting for the rigid body modes in Figure
20c.

64

(a) The PCG method: computations with one, two, four
and eight threads.

(b) The DPCG method: computations with one, two, four
and eight threads. Only the computation with one thread
converges.

(c) The PPCG method: computations with one, two, four
and eight threads.

Figure 20: The convergence behavior for the SplittedCube case.

65

9.3.5 MixtureCube

Table 13 presents the results for the MixtureCube case. The DGMRES(s) and PGMRES(s)
solvers identified three global rigid bodies in 0.2 seconds. In two bodies extra pressure de-
grees of freedom occur. This implies Z ∈ Rn×(7+7+6) for one subdomain. The number of
removed bodies due to overlap increases with the number of threads. For example, two
of the sixteen global bodies were removed using eight threads. Nevertheless, the coarse
matrix is very ill-conditioned.

threads κF (E) GMRES(s) PARDISO DGMRES(s) PGMRES(s)
iter CPU(s) iter CPU(s) iter CPU(s) iter CPU(s)

1 2 · 1022 17 23.7 1 15.8 n/a n/a 23 27.1
2 2 · 1011 30 210.4 1 10.3 29 221.6 30 223.7
4 8 · 1012 41 9.2 1 7.2 44 9.8 41 9.8
8 2 · 1011 42 8.8 1 7.0 44 9.5 44 10.1

Table 13: The results of the MixtureCube case.

Table 13 shows that the iterative solver with two threads is very inefficient. The additional
time is required for the setup of the ILUT(10−6) preconditioner. With other number of
threads, the much cheaper ILUT(10−3) preconditioner is used. Furthermore, identifying
the rigid bodies does not seem not to speed up or even to slow down the convergence speed.
This is caused by the ill-conditioned coarse matrix, which imply that deflation and coarse
grid correction may be less effective. Using one thread and deflation results in divergence.

9.3.6 Geo

Table 14 presents the results for the Geo case. The DPCG and PPCG solvers identified two
global rigid bodies in 0.3 seconds. These bodies are formed by the top layer Sediments and
the remainder of the model. Note that the interface elements do not result in an additional
rigid body. This implies Z ∈ Rn×12 for one subdomain.

threads κF (E) PCG PARDISO DPCG PPCG
iter CPU(s) iter CPU(s) iter CPU(s) iter CPU(s)

1 2 · 104 289 17.5 1 18.6 248 16.6 251 16.7
2 7 · 104 255 10.3 1 11.1 255 10.9 258 10.8
4 1 · 105 284 9.2 1 7.1 279 10.1 283 9.8
8 4 · 105 256 9.2 1 6.5 251 10.6 255 9.9

Table 14: The results of the Geo case.

The convergence of all methods for the Geo case is acceptable. The residual decreases
relatively slow, but gradually and stable. Note that the identified rigid bodies for two
threads have a slightly negative effect on the convergence, which is unexpected.

9.3.7 PitExcavation

The nonlinear relation is solved by a Quasi-Newton method (see Section 2.6). This implies
that the matrix does not change and hence, the decomposition can be reused in all non-
linear iterations per step. The first phase (initial state) requires two steps, involving the

66

solutions of nine linear systems; the second phase (wall installation and drainage) requires
two steps, involving the solutions of thirteen linear systems; the third phase (excavation
and loading) requires five steps, involving the solutions of thirty linear systems.

The iterative solvers GMRES(s), DGMRES(s) and PGMRES(s) use the ILUT(10−5) pre-
conditioner. The computation time of the complete analysis is given in Table 15. Only one
thread is analyzed, since the GMRES(s) method failed to converge for a larger number of
threads. The number of iterations and the condition number in Table 15 are averaged over
all the solution procedures.

threads κF (E) GMRES(s) PARDISO DGMRES(s) PGMRES(s)
iter CPU(s) iter CPU(s) iter CPU(s) iter CPU(s)

1 9 · 102 249,3 843 1 63 221,1 763 233,1 878

Table 15: The results of solving the linear systems of the PitExcavation case.

Note that PARDISO clearly outperforms the iterative solvers, since the decomposition can
be reused every nonlinear iteration.

The DGMRES(s) and PGMRES(s) solvers identified two rigid bodies in each phase, im-
plying Z ∈ Rn×12. In the first phase the rigid bodies are the group of interface elements,
where the wall will be placed and the remainder of the active part of the model. In the
last two phases the rigid bodies are the wall and the remainder of the model. The stiffness
matrix does not change within each phase. The DGMRES(s) and PGMRES(s) methods
reuse the identified rigid bodies every nonlinear iteration in each phase.

9.3.8 Road

In the nonlinear analysis two gravity load steps and fifty wheel load steps are applied using
Newton’s method. The granular layer becomes stiffer as more load is applied, reducing
the stiffness jump between the bitumen and the granular layer. The computation time of
the complete analysis is presented in Table 16. Due to the small size of the model only
one thread is analyzed. The number of iterations is averaged over all solution procedures
that were able to solve the system using the IC(0) preconditioner. This means that fill-in
solutions were neglected for the average number of iterations.

threads κF (E) PCG PARDISO DPCG PPCG
iter CPU(s) iter CPU(s) iter CPU(s) iter CPU(s)

1 1 · 102 292.2 17 1 8 239.7 18 248.5 17

Table 16: The results of the Road case.

The DPCG and PPCG solvers identified one rigid body in each linear system, implying
Z ∈ Rn×3, since the Road case is two-dimensional. The rigid body was reused in 75
of the 133 linear solves, since the element stiffness matrices changed not so extremely.
Recomputing the new rigid body took 2 milliseconds on average.

67

The DPCG and PPCG methods are more effective if the stiffness difference is larger5. Note
that PARDISO is significantly faster than any iterative solver for this small two-dimensional
problem.

10 Conclusions

This section provides a summary of the theory, the conclusions from the numerical results
and possible future research.

10.1 Summary of theory

The finite element method is introduced by the weak formulation of a PDE. Diana uses a
displacement application for structural problems including linear and nonlinear finite ele-
ment analysis. Different types of properties are addressed as well as a variety of structural
elements, such as continuum, spring, mixture and interface elements.

The resulting system of equation(s) can be solved by a number of iterative solution meth-
ods. A Krylov subspace method based on Arnoldi’s procedure is the Full Orthogonalization
Method (FOM), which orthogonalizes the residuals. A Krylov-based variant of the FOM
is the Generalized Minimal Residual Method (GMRES), which minimizes the residual over
the Krylov subspace. The symmetric version of Arnoldi’s procedure is Lanzcos, resulting
in the efficient short-recurrent Conjugate Gradient (CG) method.

Preconditioning a system can significantly improve convergence and robustness of an iter-
ative solution method. Both left- and right-preconditioning are useful; left-preconditioning
preserves the original iterations and right-preconditioning preserves the original residual
norm. Different preconditioners are discussed such as: Jacobi, Incomplete Cholesky de-
composition, Incomplete LU decomposition, Schwarz preconditioning and coarse grid cor-
rection.

Diana provides the Schur and Schwarz domain decomposition methods. The Schur do-
main decomposition method, or substructuring, divides the model into parts based on their
properties and computes the global solution sequentially. The Schwarz domain decomposi-
tion method divides the model into almost-equally large parts and can be used for parallel
computations. Parallel computation in Diana targets shared memory computers. All tasks
execute the same sequential program (Single Program, Multiple Data). This way, the re-
quired data exchange between threads are kept to a minimum.

It is showed that the convergence of a Krylov subspace method can be improved by defla-
tion. Thee deflated preconditioned iterations for the Conjugate Gradient and Generalized
Minimal Residual Method are given. Some deflation strategies are eigenvector deflation,
subdomain deflation and rigid body modes deflation.

The (approximate) rigid bodies of a model can be identified by using a coloring algorithm.
The balance between the number and size of the stiffness jumps, and the number of rigid
bodies determines the performance of the rigid body modes strategy. In a general finite

5If the stiffness difference between the bitumen and the granular layer is sufficiently increased (factor 10)
or a linear analysis is performed, then the algorithm initially identifies two bodies. After applying gravity
load, it identifies only one body.

68

element application, the coloring algorithm cannot be directly applied.

We propose to compute the average trace of the element stiffness matrices. Elements may
be combined to rigid bodies based on their relative stiffness difference. Furthermore, we
propose to reuse the identified rigid bodies in a nonlinear iteration loop if the average trace
of the element stiffness matrices do not change significantly.

The modes corresponding to the identified rigid bodies can be used for deflation and coarse
grid correction. Deflation is a more powerful technique than coarse grid correction, re-
sulting in less iterations. On the other hand, coarse grid correction is better parallelizable
and is more robust than deflation. An important factor in the robustness of deflation and
coarse grid correction is the condition of the coarse (Galerkin) matrix.

We propose to remove small, substantially overlapping rigid bodies. Furthermore, we pro-
pose to compute the condition number of the coarse matrix and to efficiently switch from
deflation to coarse grid correction for ill-conditioned coarse systems.

10.2 Conclusions from the results

This thesis addressed the following research question:

How can the iterative solution methods of Diana be improved by incorporating
the physical properties of the model?

Eight cases are described in terms of dimensions, boundary conditions, external forces and
performance. The first five cases illustrate the strengths and weaknesses of the iterative
solvers and the last three cases are models of real-life applications. An analysis of the spec-
trum of the one-dimensional Poisson problem is a motivation to eliminate the rigid body
modes corresponding to the stiff parts of the model.

The stiffness jumps are induced by approximate rigid bodies present in the underlying
model, which result in slow convergence of the iterative solvers. The iterative solvers in
Diana are Conjugate Gradient (CG) and restarted GMRES (GMRES(s)). Identifying the
rigid bodies in a finite element model only takes a fraction of the time of the complete
analysis, often less than one second. The corresponding rigid body modes can be used by
the iterative solvers for deflation or coarse grid correction.

In terms of iterations it is often beneficial to identify and use the rigid bodies in the model.
In terms of CPU time it is beneficial for cases with stiffness jumps of 103 or larger. For
these cases, the rigid body modes significantly improve the convergence of the iterative
solvers, thus decreasing the computation time.

In the 3Cubes, MixtureCube, PitExcavation and Road cases, the standard PARDISO solver
clearly outperformed the iterative solvers. This is the result of small models, whereas the
iterative solvers are more suitable for large models. In the PitExcavation case, the perfor-
mance gain of PARDISO is enforced by reusing the matrix decomposition in the nonlinear
iteration loop. Furthermore, the MixtureCube model with mixture elements is hard to solve
by the iterative solver. The rigid body modes approach does not significantly improve con-
vergence for models with mixture elements or other elements with scalar degrees of freedom

69

of another order of magnitude.

Rigid body modes deflation and rigid body modes coarse grid correction are compared in
sequential and parallel computations. In general, deflation is more powerful than coarse
grid correction in number of iterations. Deflation is also often more efficient in CPU time
for a small number of threads. On the other hand, coarse grid correction is slightly cheaper
per iteration, it scales better with the number of threads and it is more robust than defla-
tion. In general, deflation outperforms coarse grid correction until four threads, provided
that deflation can be applied sufficiently accurate. Deflation failed to converge for some
cases with an ill-conditioned coarse matrix. The condition of the coarse matrix can be
improved by removing some small overlapping rigid bodies, which can occur due to over-
lapping subdomains. In general, the number of removed bodies increases with the number
of subdomains. If the condition number is still too large, the strategy is to switch from de-
flation to coarse grid correction. This takes about one-tenth of a second of computing time.

In nonlinear analysis, the identified rigid bodies of the previous linear system can some-
times be reused. In the PitExcavation case the rigid bodies were reused in the constant
stiffness method in each phase of the analysis. In the Road case the rigid bodies were
reused in 56% of the linear systems in Newton’s method. Rigid bodies can be reused if the
element stiffness matrices do not change significantly. A relative stiffness change of factor
two seems an acceptable choice.

Rigid body modes deflation and rigid body modes coarse grid correction are implemented
in CG and GMRES(s) in Diana and may be available in Diana 9.6. The techniques
have been extensively tested by performing the standard Diana test suites. An amount
of 828 linear, 139 geomechanical and 1605 nonlinear test problems were analyzed on the
Hendriks machine. The test were performed to validate correct behavior on a large scale
of problems.

10.3 Future research

Rigid body modes deflation and rigid body modes coarse grid correction have been exten-
sively tested. The recommendations for future research aim in particular at new concepts
in the context of rigid bodies and at other problems with the iterative solvers.

• Approximate rigid bodies can be used in the partitioning. The corresponding rigid
body modes can be specialized for certain problems.

– The Schwarz domain decomposition method in Diana can be improved by a
partitioning that takes the rigid bodies into account. The idea is to identify
the rigid bodies in the model and subsequently to decompose the domain into
subdomains with the identified rigid bodies as a starting point [28].

– Another point of interest is the approximate null space matrix Z corresponding
to a rigid body. Diana provides some elements with high stiffness in only a part
of the element (e.g. in specified directions). The approximate null space of a
collection of these elements can be improved by restricting the rigid body modes
to the high stiffness parts. A question that arises is whether this approach is
worthwhile.

• Nonlinear iteration schemes can require considerable computation time. Reusing
information from previous solutions is a natural approach to speed up the solve pro-

70

cedure. The nonlinear iteration methods linear and constant stiffness can reuse the
matrix decomposition of a direct solver. For slightly changing systems of equations,
Newton-Krylov methods are efficient methods for solving sequences of linear systems.

– Several improvements can be made in Diana, such as automatically using the
exact decomposition of the previous nonlinear iteration as a preconditioner in
the current nonlinear iteration. Also, eigenvector deflation can effectively reuse
information in nonlinear iterations loops [9, 14,15,43].

– The identified rigid bodies are reused in a nonlinear iteration scheme if the
element stiffness matrices do not change significantly. The criterion to reuse the
rigid bodies can be further optimized.

• Several elements in Diana can result in slow converging iterative solvers. Mixture
and shell elements introduce different units within the element stiffness matrices,
which induce jumps in the global stiffness matrix. Other scalar degree of freedoms
can also have bad influence on the convergence.

– The convergence of the iterative solvers is poor with e.g. mixture elements
and shell elements. This could be resolved by defining or identifying each non-
translational degree of freedom as an approximate rigid body, but in practice this
is too cumbersome. An obvious approach would be to seek a proper (physics-
based) preconditioner.

– Mixture elements always yield non-symmetric systems, which may be difficult
to solve and may require many iterations. An alternative for GMRES(s) is the
short-recurrent IDR(s) algorithm. IDR(s) can outperform GMRES(s) in case
of a large number of required iterations [38, 45]. One of the main challenges is
to select the best performing non-symmetric method beforehand.

71

A DIANA

Table 17 converses some important parameters in this thesis to Diana-implementation
(where we like six-character capitalized parameters). These parameters are useful for Di-
ana developers.

Thesis Diana

Maximum number of allowed
bodies per subdomain nb MAXBOD

Distinguish parameter for
combining bodies δ DISBOD

Nonlinear tolerance paramater
for reusing bodies γ REUSEB

Table 17: Conversion table for parameters.

A.1 The DIANA user

An average user of Diana is likely to be unfamiliar with solution methods. Therefore, the
solver is implemented as a ‘black box’ and requires but little knowledge of the user.

In the light of the implemented rigid body approach, the user can specify two input parame-
ters, namely TYPE and MAXBOD. The input TYPE determines how to use the rigid bodies, thus
by deflation or coarse grid correction (preconditioning). The default is TYPE = AUTOMA. The
input MAXBOD determines the maximum number of allowed bodies per subdomain, which
was previously denoted by nb in Section 6. The default is MAXBOD = 4. The possible input
values are described in Table 18.

Input Value Result

TYPE DEFLAT Rigid body modes deflation
PRECON Rigid body modes preconditioning
AUTOMA Automatic

[Unspecified] Automatic

MAXBOD nb ∈ N≥1 Maximum of nb bodies
[Unspecified] Automatic

Table 18: Possible user-supplied input.

The following two input commands give the same results.

SOLVE ITERAT

SOLVE ITERAT RIGBOD TYPE AUTOMA MAXBOD = 4

Automatic rigid body type determines how to apply the rigid bodies by the number of spec-
ified threads. Rigid body modes deflation is applied if the number of threads is less than
four; otherwise rigid body modes preconditioning is applied. The choice can still change
during the solve procedure (from deflation to coarse grid correction) due to the condition
number of the coarse matrix.

72

The command RIGBOD OFF explicitly switches off rigid body identification.

A.2 HENDRIKS machine

The details of Diana’s Hendriks machine are showed in Table 19.

Dell PowerEdge 2900
2 Quad-Core Intel Xeon X5355 2.66GHz/2x4MB 1333FSB
24GB 667MHz FBD (12x2GB dual rank DIMMs)
2 * 146GB SAS (15,000rpm) 3.5 inch Hard Drive (RAID1) System
2 * 300GB SAS (10,000rpm) 3.5 inch Hard Drive (RAID1) Data
2 * 450GB SAS (15,000rpm) 3.5 inch Hard Drive (RAID0) Scratch
PERC 5/i integrated RAID Controller Card, 256MB cache, battery backup
Red Hat Enterprise Linux Server release 5.10 (Tikanga)

Table 19: Detailed hardware specifications of the Hendriks machine.

B Performance and memory considerations

B.1 Approximate null space matrix

The approximate null space matrix Z is in general a sparse matrix, depending on the num-
ber of rigid bodies. Computations concerning Z can therefore be performed sparse. An
advantage of storing Z sparsely is the memory requirements.

Let us illustrate this by a model Ω with four rigid bodies Ωa, Ωb, Ωc and Ωd. Suppose that
the rank of each body is equal to six (three translations and three rotations). Equation
(B.1) shows how the four rigid bodies can be described by six vectors with the same
sparse structure; it contains only non-zeros in for those degrees of freedom that lay in
that particular body. For this reason, it can be advantageous to exploit this sparse block
structure. The corresponding sparse computations use one local-to-global mapping for six
vectors at a time. This local-to-global mapping is therefore cheap.

Z =

Za

Zb

Zc

Zd

. (B.1)

Full computations are merely faster for the special case with just one rigid body and only
slightly faster in that case. The current implementation only supports sparse computations.

73

B.2 Pre-computing KZ versus not pre-computing KZ

Deflation requires to compute y = KZx every iteration. The matrix KZ can be pre-
computed (one-time-computation in advance of the iteration process) or be computed as
y = KZx = Kỹ, i.e. not pre-computed. A disadvantage of pre-computing KZ is some ad-
ditional memory requirements, but this can be minor by converting KZ to a sparse matrix.

The test problems in Table 20 compare pre-computing KZ and not pre-computing KZ
within deflation with varying number of available threads. Only test problems with suf-
ficiently accurate coarse matrix E (see Section 8.3.3) are included; other test problems
automatically switched to coarse grid correction. The computations were performed using
an executable that was created without optimization during compiling.

Case # threads CPU(s)
Pre-computed Not pre-computed

Block 1 0.83 1.01
2 0.57 0.65
4 0.47 0.49
6 0.35 0.34
8 0.49 0.46

SphereInCube 1 3.16 3.83

3Cubes 1 1.54 1.87
2 0.98 1.15
4 0.86 0.89

Geo 1 19.45 24.04
2 12.64 14.83
4 9.64 10.88
6 10.47 11.49
8 9.96 10.58

Table 20: Computation time in seconds for preparing and solving the system of equations.

The best performing tests in Table 20 are colored green. Note that not pre-computing
KZ can only be advantageous if the number of threads is large, but in these cases it is
advantageous to use coarse grid correction. Therefore, deflation with pre-computing sparse
KZ is applied.

C Stiffness range as generalization of the coloring algorithm

This approach defines the stiffness ranges in the model. A stiffness range in the model
can be seen as a newly defined material. The elements are divided in a number of stiffness
ranges and each element is contained in exactly one stiffness range. Thereafter, the classical
coloring algorithm can be applied as in Algorithm 6. The steps are illustrated below.

1. Compute the trace of the element stiffness matrices and determine the maximum and
minimum of all elements.

2. Determine the stiffness ranges. These stiffness ranges are based on relative differences:
the upper bound of the current stiffness range is a constant factor times the upper
bound of the previous stiffness range.

74

3. Put all elements into a stiffness range.

4. Check which stiffness ranges are filled with one or more elements and label these as
active stiffness ranges.

5. Remove inactive stiffness ranges and combine stiffness ranges until a reasonable
amount (> nb) of stiffness ranges remain.

6. Apply the coloring algorithm to identify rigid bodies.

7. Combine identified bodies until nb bodies (per subdomain) remain.

A disadvantage of this approach is its cumbersomeness. The identification of the stiffness
ranges can be ineffective, since some neighboring elements with comparable stiffness can be
split up into two stiffness ranges. The identification of stiffness ranges is merely based on
stiffness and not on location; this can easily lead to a diffused distribution of the stiffness
ranges, resulting in a large number of identified bodies.

D Induced dimension reduction

The recently proposed method IDR(s) [38] has proven to be highly efficient for some classes
of non-symmetric systems. It is a short-recurrence Krylov subspace method, but, different
from Bi-CG-type algorithms, it is not typically based on the bi-Lanzcos method. These
Bi-CG-type methods (such as CGS and Bi-CGSTAB) are essentially based on biorthogonal
bases Km(K; r0) and Km(KH ; r0) := Km(K̄T ; r0). The IDR method is based on forcing
the residuals rn in subspace Gj which is of decreasing dimension.

The original IDR method was published in Wesseling et al. [50]. Any IDR(s) method is
based on this idea of IDR and its generalization is given in Sonneveld et al. [38].

Theorem 10. Let K be any matrix in CN×N , let v0 be any nonzero vector in CN , and let
G0 be the full Krylov space KN (K, v0). Let S denote any proper subspace of CN such that
S and G0 do not share a nontrivial invariant subspace of K, and define the sequence Gj,
j = 1, 2, . . . as

Gj = (I − ωjK)(Gj−1 ∩ S),

where the ωj’s are nonzero scalars. Then
(i) Gj ⊂ Gj−1 ∀j > 0,
(ii) Gj = {0} for some j ≤ N .

For the proof please refer to Sonneveld et al. [38]. The IDR(s) method assumes the space
S to be the left null space of some full rank N × s matrix P = (p1 p2 · · · ps), shortly
noted by S = N (PH).

The residuals rn are in the Krylov subspaces Kn(K; r0) and therefore, rn can be written
as qn−1(K)r0, where qn−1 is a certain polynomial of degree n− 1. If we are able to find a
recursion for rn, then it should also be possible to find a recursion for un, since

K∆un = −∆rn = (qn(K)− qn+1(K))r0,

where the operator ∆ is defined by ∆xj := xj+1−xj . Therefore, the general Krylov method
can be described in the following form [38]:

75

rn+1 = rn − αKvn −
l̂∑
l=1

γl∆rn−l,

un+1 = un + αvn −
l̂∑
l=1

γl∆un−l,

(D.1)

with vn ∈ Kn(K; r0) \ Kn−1(K; r0). The integer l̂ is the depth of the recursion, e.g., using
l̂ = n is a long recurrence. If we force the residual rn+1 into Gj+1 then

rn+1 = (I − ωj+1K)vn, with vn ∈ Gj ∩ S. (D.2)

If we choose

vn = rn −
l̂∑
l=1

γl∆rn−l, (D.3)

then we obtain the recursion of rn+1 in Equation (D.1) with α = ωj+1.

Now suppose rn,∆rn−l ∈ Gj , l = 1, . . . , l̂. This implies that vn ∈ Gj by Equation (D.3). If
we choose γl such that vn ∈ S by Equation (D.2), then by Theorem 10 we have rn+1 ∈ Gj+1.

To satisfy this we need to find the correct γl. Taking l̂ = s yields a unique solution for γl
in solving the s-by-s linear system.

Defining the matrices

∆Rn = (∆rn−1 ∆rn−2 · · · ∆rn−s),

∆Xn = (∆xn−1 ∆xj−2 · · · ∆xn−s),

then we can calculate rn+1 ∈ Gj+1 as follows:

Algorithm 9. IDR update residual
1 Solve: c ∈ Cs from (PH∆Rn)c = PHrn
2 v = rn −∆Rnc
3 rn+1 = v − ωj+1Kv

The choice for ωj+1 is unspecified and is typically chosen to minimize the residual norm,
provided that ωj+1 does not become very small (a threshold can be used).

A suitable IDR(s) algorithm for Diana could be IDR(s)-biortho, described in Van Gijzen
et al. [45].

76

References

[1] Auzinger, W., and Melenk, J. Iterative Solution of Large Linear Systems. Vienna
University of Technology (2011).

[2] Bathe, K.-J. Finite element procedures. Prentice Hall, 1996.

[3] Brown, P., and Walker, H. GMRES On (Nearly) Singular Systems. SIAM J.
Matrix Anal. Appl. 18, 1 (Jan. 1997), 37–51.

[4] Broyden, C. G. The convergence of a class of double-rank minimization algorithms:
2. the new algorithm. IMA Journal of Applied Mathematics 6, 3 (1970), 222–231.

[5] Butenhof, D. R. Programming with POSIX threads, third ed. Addison-Wesley
Longman, Inc., Jan 1998.

[6] Crisfield, M. A. Non-linear Finite Element Analysis of Solids and Structures, vol. 1.
John Wiley & Sons, 1991.

[7] Dagum, L., and Menon, R. OpenMP: an industry-standard API for shared-memory
programming. IEEE Computational Science & Engineering 5, 1 (Jan 1998), 46–55.

[8] Dostál, Z. Conjugate gradient method with preconditioning by projector. Interna-
tional Journal of Computer Mathematics 23, 3 (1988), 315–323.

[9] Erhel, J., Burrage, K., and Pohl, B. Restarted GMRES preconditioned by
deflation. Journal of Computational and Applied Mathematics 69 (1995), 303–318.

[10] Foster, I. Designing and building parallel programs. Addison-Wesley, Inc., 1995.

[11] Francis, J. G. F. The QR Transformation A Unitary Analogue to the LR Transfor-
mationPart 1. The Computer Journal 4, 3 (1961), 265–271.

[12] Frank, J., and Vuik, C. On the construction of deflation-based preconditioners.
SIAM Journal on Scientific Computing 23 (2001), 442–462.

[13] Golub, G. H., and Loan, C. F. V. Matrix Computations (3rd Ed.). Johns Hopkins
University Press, Baltimore, MD, USA, 1996.

[14] Gosselet, P., and Rey, C. On a selective reuse of krylov subspaces in newton-
krylov approaches for nonlinear elasticity. Proceedings of the fourteenth international
conference on domain decomposition methods (2003), 419–426.

[15] Gosselet, P., Rey, C., and Pebrel, J. Total and selective reuse of krylov
subspaces for the resolution of sequences of nonlinear structural problems. CoRR
abs/1301.7530 (2013).

[16] Haase, M. Lectures on Functional Analysis. Delft Institute of Applied Mathematics,
2012.

[17] Hestenes, M. R., and Stiefel, E. Methods of conjugate gradients for solving linear
systems. Journal of research of the National Bureau of Standards 49 (1952), 409–436.

[18] Horn, R., and Johnson, C. Matrix Analysis. Cambridge University Press, Cam-
bridge, UK, 1985.

77

[19] Hunter, J. K. Notes on Partial Differential Equations. Department of Mathematics,
2010.

[20] Jönsthövel, T. The Deflated Preconditioned Conjugate Gradient Method Applied to
Composite Materials. PhD thesis, Delft University of Technology, 2012.

[21] Jönsthövel, T., van Gijzen, M., Kasbergen, C., and Scarpas, A. Precondi-
tioned conjugate gradient method enhanced by deflation of rigid body modes applied
to composite materials. Computer Modeling in Engineering and Sciences 47 (2009),
97–118.

[22] Jönsthövel, T., van Gijzen, M., MacLachlan, S., C.Vuik, and Scarpas, A.
Comparison of the deflated preconditioned conjugate gradient method and algebraic
multigrid for composite materials. Computational Mechanics 50 (2012), 321–333.

[23] Jönsthövel, T., van Gijzen, M., Vuik, C., and Scarpas, A. On the use of rigid
body modes in the deflated preconditioned conjugate gradient method. Report 11-04,
Delft University of Technology, Delft Institute of Applied Mathematics, 2011.

[24] Kaasschieter, E. Preconditioned conjugate gradients for solving singular systems.
Journal of Computational and Applied Mathematics 24, 12 (1988), 265 – 275.

[25] Kahl, K., and Rittich, H. Analysis of the deflated conjugate gradient method
based on symmetric multigrid theory.

[26] Karypis, G., and Kumar, V. Metis. a software package for partitioning unstruc-
tured graphs, partitioning meshes, and computing fill-reducing orderings of sparse
matrices. Tech. rep., University of Minnesota, September 1998.

[27] Lingen, F. Design of an object oriented finite element package for parallel computers.
PhD thesis, Delft University of Technology, 2000.

[28] Lingen, F., Bonnier, P., Brinkgreve, R., van Gijzen, M., and Vuik, C. A
parallel linear solver exploiting the physical properties of the underlying mechanical
problem. Report 12-12, Delft University of Technology, Delft Institute of Applied
Mathematics, 2012.

[29] Morgan, R. GMRES with Deflated Restarting. SIAM J. Sci. Comput. 24, 1 (January
2002), 20–37.

[30] Nabben, R., and Vuik, C. A comparison of Deflation and Coarse Grid Correction
applied to porous media flow. SIAM J. Numer. Anal. 42 (2004), 1631–1647.

[31] Nabben, R., and Vuik, C. Domain decomposition methods and deflated Krylov
subspace iterations. In European Conference on Computational Fluid Dynamics EC-
COMAS CFD 2006 (2006), TU Delft.

[32] Nicolaides, R. A. Deflation of conjugate gradients with applications to boundary
value problems. SIAM Journal on Numerical Analysis 24, 2 (Apr. 1987), 355–365.

[33] Notay, Y. An aggregation-based algebraic multigrid method. ETNA 37 (2010),
123–146.

[34] Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2003.

78

[35] Saad, Y., and Schultz, M. GMRES: A generalized minimal residual algorithm
for solving non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 3 (1986),
856–869.

[36] Schenk, O., Gärtner, K., and Fichtner, W. Efficient Sparse LU Factorization
with Left-Right Looking Strategy on Shared Memory Multiprocessors. BIT Numerical
Mathematics 40, 1 (2000), 158–176.

[37] Smith, B. Domain decomposition methods for partial differential equations. Tech.
rep., 1990.

[38] Sonneveld, P., and van Gijzen, M. IDR(s): A family of simple and fast algorithms
for solving large nonsymmetric systems of linear equations. SIAM Journal on Scientific
Computing 31, 2 (2008), 1035–1062.

[39] Tang, J., Nabben, R., Vuik, C., and Erlangga, Y. Comparison of Two-Level
Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Meth-
ods . Journal of Scientific Computing 39 (2009), 340–370.

[40] TNO DIANA. Diana 9.5 Finite Element Analysis, User’s Manual, Analysis Proce-
dures, first ed., 2014.

[41] TNO DIANA. Diana 9.5 Finite Element Analysis, User’s Manual, Element Library,
first ed., 2014.

[42] TNO DIANA. Diana 9.5 Finite Element Analysis, User’s Manual, Material Library,
first ed., 2014.

[43] van der Linden, J. Development of a deflation-based linear solver in reservoir
simulation. PhD thesis, Delft University of Technology, 2013.

[44] van der Vorst, H. Iterative Krylov methods for large linear systems. Cambridge
University Press (2003).

[45] van Gijzen, M., and Sonneveld, P. Algorithm 913: An elegant IDR(s) variant that
efficiently exploits bi-orthogonality properties. ACM Transactions on Mathematical
Software 38, 1 (November 2011), 5:1–5:19.

[46] van Kan, J., Segal, A., and Vermolen, F. Numerical Methods in Scientific
Computing, 1st ed. VSSD, Delft, The Netherlands, 2005.

[47] Vermolen, F., Vuik, C., and Segal, A. Deflation in preconditioned conjugate gra-
dient methods for finite element problems. In Conjugate Gradient and Finite Element
Methods. Springer, 2004, pp. 103–129.

[48] Vuik, C., and Lahaye, D. Scientific computing (wi4201). Lecture notes for wi4201,
2012.

[49] Wells, G. N. The finite element method: An introduction. Lecture notes for CT5142,
January 2011.

[50] Wesseling, P., and Sonneveld, P. Numerical experiments with a multiple grid and
a preconditioned Lanczos type method. In Approximation Methods for Navier-Stokes
Problems, R. Rautmann, Ed., vol. 771 of Lecture Notes in Mathematics. Springer Berlin
Heidelberg, 1980, pp. 543–562.

79

[51] Yeung, M., Tang, J., and Vuik, C. On the convergence of GMRES with invariant-
subspace deflation. Reports of the Department of Applied Mathematical Analysis,
2010.

[52] Zienkiewicz, O. The Finite Element Method, 3rd ed. McGRAW-HILL Book Com-
pany (UK) Limited, Maidenhead, England, 1977.

80

	Abstract
	Notation and definitions
	Acknowledgments
	Introduction
	The finite element method
	The weak formulation
	Solving the weak formulation
	Application of the finite element method to structural problems
	Elements
	Element integration
	Nonlinear analysis

	Iterative solution methods for linear systems
	Krylov subspace methods
	Preconditioning
	Multigrid

	Domain decompositions
	Partitioning
	Substructuring
	Schwarz domain decomposition
	Substructuring versus parallel domain decomposition

	Deflation
	Convergence of deflation
	Robustness
	Eigenvector deflation
	Subdomain deflation
	Rigid body modes deflation

	Identifying rigid bodies
	Motivation
	The coloring algorithm
	Generalizing the coloring algorithm
	Limitation of rigid bodies
	Reusing rigid bodies in nonlinear iterations

	Rigid bodies within the solution method
	The rigid body modes
	Deflation versus coarse grid correction

	Implementation
	Parallel computers
	Parallel computations
	The condition number of the coarse matrix

	Results
	General applicability
	Case descriptions
	Numerical experiments

	Conclusions
	Summary of theory
	Conclusions from the results
	Future research

	DIANA
	The DIANA user
	HENDRIKS machine

	Performance and memory considerations
	Approximate null space matrix
	Pre-computing KZ versus not pre-computing KZ

	Stiffness range as generalization of the coloring algorithm
	Induced dimension reduction

