
Abstract

“Enhancing iterative solution methods for general FEM
computations using rigid body modes.”

Alex Sangers - June 27, 2014 at 15:30 in EEMCS LB 01.010

Diana is a general finite element software package that can be used to
analyze a wide range of problems arising in Civil engineering. The solution
of one or more systems of linear equations is a computational intensive
part of a finite element analysis.

Iterative solvers have proved to be efficient for solving these systems of
equations. However, the convergence of iterative solvers stagnates if there
are large stiffness jumps in the underlying model.

The considered remedy is based on the approximate rigid body modes of
the model. To identify the approximate rigid body modes in a finite
element application we propose a generally applicable method based on
element stiffness matrices. These rigid body modes can be used for
deflation and coarse grid correction.

Enhancing iterative solvers in Diana
Enhancing iterative solution methods for general FEM

computations using rigid body modes.

Alex Sangers

Delft Institute of Applied Mathematics
TNO DIANA

June 27, 2014

Enhancing iterative solvers in Diana June 27, 2014

2

Content

Finite element analysis at DIANA

Motivation

Iterative solvers

Approximate rigid bodies

Applying rigid body modes

Domain decomposition

Results

Conclusions

Enhancing iterative solvers in Diana June 27, 2014

3

Finite element analysis

1. Real-life application

⇒

2. Model with elements

⇓

3. Assign properties

⇐

4. Analysis

Enhancing iterative solvers in Diana June 27, 2014

4

Finite element analysis

1. Real-life application

⇒

2. Model with elements

⇓

3. Assign properties

⇐

4. Analysis

Enhancing iterative solvers in Diana June 27, 2014

4

Finite element analysis

1. Real-life application

⇒

2. Model with elements

⇓

3. Assign properties

⇐

4. Analysis

Enhancing iterative solvers in Diana June 27, 2014

4

Finite element analysis

1. Real-life application

⇒

2. Model with elements

⇓

3. Assign properties

⇐

4. Analysis

Enhancing iterative solvers in Diana June 27, 2014

4

Finite elements applications

I Structures

I Geomechanics

I Dams and dikes

I Tunneling

I Oil and gas industry

Enhancing iterative solvers in Diana June 27, 2014

5

Finite elements applications

I Structures

I Geomechanics

I Dams and dikes

I Tunneling

I Oil and gas industry

Enhancing iterative solvers in Diana June 27, 2014

5

Finite elements applications

I Structures

I Geomechanics

I Dams and dikes

I Tunneling

I Oil and gas industry

Enhancing iterative solvers in Diana June 27, 2014

5

Finite elements applications

I Structures

I Geomechanics

I Dams and dikes

I Tunneling

I Oil and gas industry

Enhancing iterative solvers in Diana June 27, 2014

5

Finite elements applications

I Structures

I Geomechanics

I Dams and dikes

I Tunneling

I Oil and gas industry

Enhancing iterative solvers in Diana June 27, 2014

5

One-dimensional Poisson problem

A 1D problem consisting of soft clay and granite:

− d

dx

(
c
du

dx

)
= f, x ∈ (0, 20)

u = 0, x ∈ {0, 20}.

Enhancing iterative solvers in Diana June 27, 2014

6

One-dimensional Poisson problem

A 1D problem consisting of soft clay and granite:

− d

dx

(
c
du

dx

)
= f, x ∈ (0, 20)

u = 0, x ∈ {0, 20}.

Enhancing iterative solvers in Diana June 27, 2014

6

Finite elements for Poisson problem

1. Mesh the model into 40 equal-sized elements

2. Compute each element stiffness matrix and vector:

Kem =

(
c(xm) −c(xm+1)
−c(xm) c(xm+1)

)
, fem =

(
f(xm)
f(xm+1)

)
.

Jumps in c(x20) and c(x25).

3. Assemble the stiffness matrix and vector:

K =
⋃40

m=1K
em , f =

⋃40
m=1 f

em .

4. Solve Ku = f .

Enhancing iterative solvers in Diana June 27, 2014

7

Finite elements for Poisson problem

1. Mesh the model into 40 equal-sized elements

2. Compute each element stiffness matrix and vector:

Kem =

(
c(xm) −c(xm+1)
−c(xm) c(xm+1)

)
, fem =

(
f(xm)
f(xm+1)

)
.

Jumps in c(x20) and c(x25).

3. Assemble the stiffness matrix and vector:

K =
⋃40

m=1K
em , f =

⋃40
m=1 f

em .

4. Solve Ku = f .

Enhancing iterative solvers in Diana June 27, 2014

7

Finite elements for Poisson problem

1. Mesh the model into 40 equal-sized elements

2. Compute each element stiffness matrix and vector:

Kem =

(
c(xm) −c(xm+1)
−c(xm) c(xm+1)

)
, fem =

(
f(xm)
f(xm+1)

)
.

Jumps in c(x20) and c(x25).

3. Assemble the stiffness matrix and vector:

K =
⋃40

m=1K
em , f =

⋃40
m=1 f

em .

4. Solve Ku = f .

Enhancing iterative solvers in Diana June 27, 2014

7

Finite elements for Poisson problem

1. Mesh the model into 40 equal-sized elements

2. Compute each element stiffness matrix and vector:

Kem =

(
c(xm) −c(xm+1)
−c(xm) c(xm+1)

)
, fem =

(
f(xm)
f(xm+1)

)
.

Jumps in c(x20) and c(x25).

3. Assemble the stiffness matrix and vector:

K =
⋃40

m=1K
em , f =

⋃40
m=1 f

em .

4. Solve Ku = f .

Enhancing iterative solvers in Diana June 27, 2014

7

Iterative solvers

Solve Ku = f step by step.

I Popular algorithms:

I Conjugate Gradient (CG) for symmetric K

I Restarted GMRES (GMRES(s)) for non-symmetric K

I Convergence speed depends on eigensystem of K
I Clustered eigenvalues ⇒ fast convergence

I Preconditioning may improve convergence

I P−1Ku = P−1f

I P ≈ K
I Px = y is easy to solve

Enhancing iterative solvers in Diana June 27, 2014

8

Iterative solvers

Solve Ku = f step by step.

I Popular algorithms:

I Conjugate Gradient (CG) for symmetric K

I Restarted GMRES (GMRES(s)) for non-symmetric K

I Convergence speed depends on eigensystem of K
I Clustered eigenvalues ⇒ fast convergence

I Preconditioning may improve convergence

I P−1Ku = P−1f

I P ≈ K
I Px = y is easy to solve

Enhancing iterative solvers in Diana June 27, 2014

8

Iterative solvers

Solve Ku = f step by step.

I Popular algorithms:

I Conjugate Gradient (CG) for symmetric K

I Restarted GMRES (GMRES(s)) for non-symmetric K

I Convergence speed depends on eigensystem of K
I Clustered eigenvalues ⇒ fast convergence

I Preconditioning may improve convergence

I P−1Ku = P−1f

I P ≈ K
I Px = y is easy to solve

Enhancing iterative solvers in Diana June 27, 2014

8

Iterative solvers

Solve Ku = f step by step.

I Popular algorithms:

I Conjugate Gradient (CG) for symmetric K

I Restarted GMRES (GMRES(s)) for non-symmetric K

I Convergence speed depends on eigensystem of K
I Clustered eigenvalues ⇒ fast convergence

I Preconditioning may improve convergence

I P−1Ku = P−1f

I P ≈ K
I Px = y is easy to solve

Enhancing iterative solvers in Diana June 27, 2014

8

Solving the Poisson problem

Solve the Jacobi preconditioned system:

P−1Ku = P−1f

The convergence of Preconditioned CG depends on λ(P−1K):

Enhancing iterative solvers in Diana June 27, 2014

9

Solving the Poisson problem

Solve the Jacobi preconditioned system:

P−1Ku = P−1f

The convergence of Preconditioned CG:

Enhancing iterative solvers in Diana June 27, 2014

9

Stiffness matrix of Poisson problem

|K| =

Enhancing iterative solvers in Diana June 27, 2014

10

Solving the Poisson problem

Deflation: Apply Π⊥

Enhancing iterative solvers in Diana June 27, 2014

11

Solving the Poisson problem

Deflation: Apply Π⊥

Enhancing iterative solvers in Diana June 27, 2014

11

Solving the deflated Poisson problem

Solve the deflated Jacobi preconditioned system:

P−1Π⊥Ku = P−1Π⊥f

The convergence of Deflated PCG depends on λ(P−1Π⊥K):

Enhancing iterative solvers in Diana June 27, 2014

12

Solving the deflated Poisson problem

Solve the deflated Jacobi preconditioned system:

P−1Π⊥Ku = P−1Π⊥f

The convergence of Deflated PCG:

Enhancing iterative solvers in Diana June 27, 2014

12

Approximate rigid bodies

True rigid bodies

Kx = 0 for some x 6= 0.

Approximate rigid bodies

Represents “weak coupling” in the model.

Enhancing iterative solvers in Diana June 27, 2014

13

Approximate rigid bodies

True rigid bodies

Kx = 0 for some x 6= 0.

Approximate rigid bodies

Represents “weak coupling” in the model.

Enhancing iterative solvers in Diana June 27, 2014

13

Identifying approximate rigid bodies

I Diana is general FE software
I Wide range of elements
I Wide range of materials

I Element matrices!
I Always present
I Fair comparison

1

n
tr(Kem) =

1

n

n∑
i=1

Kem
ii

Enhancing iterative solvers in Diana June 27, 2014

14

Identifying approximate rigid bodies

I Diana is general FE software
I Wide range of elements
I Wide range of materials

I Element matrices!
I Always present
I Fair comparison

1

n
tr(Kem) =

1

n

n∑
i=1

Kem
ii

Enhancing iterative solvers in Diana June 27, 2014

14

Identifying approximate rigid bodies

I Diana is general FE software
I Wide range of elements
I Wide range of materials

I Element matrices!
I Always present
I Fair comparison

1

n
tr(Kem) =

1

n

n∑
i=1

Kem
ii

Enhancing iterative solvers in Diana June 27, 2014

14

Coloring algorithm

Consider this two-dimensional finite element mesh

Nonlinear iteration loop

I Reuse the coloring if 1
n tr(Kem) changes less than 50%.

Enhancing iterative solvers in Diana June 27, 2014

15

Coloring algorithm

Consider this two-dimensional finite element mesh

Nonlinear iteration loop

I Reuse the coloring if 1
n tr(Kem) changes less than 50%.

Enhancing iterative solvers in Diana June 27, 2014

15

Coloring algorithm

Consider this two-dimensional finite element mesh

Nonlinear iteration loop

I Reuse the coloring if 1
n tr(Kem) changes less than 50%.

Enhancing iterative solvers in Diana June 27, 2014

15

Coloring algorithm

Consider this two-dimensional finite element mesh

Nonlinear iteration loop

I Reuse the coloring if 1
n tr(Kem) changes less than 50%.

Enhancing iterative solvers in Diana June 27, 2014

15

Coloring algorithm

Consider this two-dimensional finite element mesh

Nonlinear iteration loop

I Reuse the coloring if 1
n tr(Kem) changes less than 50%.

Enhancing iterative solvers in Diana June 27, 2014

15

Coloring algorithm

Consider this two-dimensional finite element mesh

Nonlinear iteration loop

I Reuse the coloring if 1
n tr(Kem) changes less than 50%.

Enhancing iterative solvers in Diana June 27, 2014

15

Coloring algorithm

Consider this two-dimensional finite element mesh

Nonlinear iteration loop

I Reuse the coloring if 1
n tr(Kem) changes less than 50%.

Enhancing iterative solvers in Diana June 27, 2014

15

Coloring algorithm

Consider this two-dimensional finite element mesh

Nonlinear iteration loop

I Reuse the coloring if 1
n tr(Kem) changes less than 50%.

Enhancing iterative solvers in Diana June 27, 2014

15

Coloring algorithm

Consider this two-dimensional finite element mesh

Nonlinear iteration loop

I Reuse the coloring if 1
n tr(Kem) changes less than 50%.

Enhancing iterative solvers in Diana June 27, 2014

15

Coloring algorithm

Consider this two-dimensional finite element mesh

Nonlinear iteration loop

I Reuse the coloring if 1
n tr(Kem) changes less than 50%.

Enhancing iterative solvers in Diana June 27, 2014

15

Coloring algorithm

Consider this two-dimensional finite element mesh

Nonlinear iteration loop

I Reuse the coloring if 1
n tr(Kem) changes less than 50%.

Enhancing iterative solvers in Diana June 27, 2014

15

Deflation

Define

Π∈ = I − Z(ZTKZ)−1ZTK,

Π⊥ = I −KZ(ZTKZ)−1ZT ,

so that Π⊥K = KΠ∈.

Split u by

u = u⊥ + u∈

= (I −Π∈)u+ Π∈u.

First part u⊥: u⊥ = (I −Π∈)u = Z(ZTKZ)−1ZT f.
Second part u∈: Ku∈ = KΠ∈u = Π⊥Ku.

⇒ Π⊥Ku = Π⊥f.

Enhancing iterative solvers in Diana June 27, 2014

16

Deflation

Define

Π∈ = I − Z(ZTKZ)−1ZTK,

Π⊥ = I −KZ(ZTKZ)−1ZT ,

so that Π⊥K = KΠ∈.

Split u by

u = u⊥ + u∈

= (I −Π∈)u+ Π∈u.

First part u⊥: u⊥ = (I −Π∈)u = Z(ZTKZ)−1ZT f.
Second part u∈: Ku∈ = KΠ∈u = Π⊥Ku.

⇒ Π⊥Ku = Π⊥f.

Enhancing iterative solvers in Diana June 27, 2014

16

Deflation

Define

Π∈ = I − Z(ZTKZ)−1ZTK,

Π⊥ = I −KZ(ZTKZ)−1ZT ,

so that Π⊥K = KΠ∈.

Split u by

u = u⊥ + u∈

= (I −Π∈)u+ Π∈u.

First part u⊥: u⊥ = (I −Π∈)u = Z(ZTKZ)−1ZT f.

Second part u∈: Ku∈ = KΠ∈u = Π⊥Ku.

⇒ Π⊥Ku = Π⊥f.

Enhancing iterative solvers in Diana June 27, 2014

16

Deflation

Define

Π∈ = I − Z(ZTKZ)−1ZTK,

Π⊥ = I −KZ(ZTKZ)−1ZT ,

so that Π⊥K = KΠ∈.

Split u by

u = u⊥ + u∈

= (I −Π∈)u+ Π∈u.

First part u⊥: u⊥ = (I −Π∈)u = Z(ZTKZ)−1ZT f.

Second part u∈: Ku∈ = KΠ∈u = Π⊥Ku.

⇒ Π⊥Ku = Π⊥f.

Enhancing iterative solvers in Diana June 27, 2014

16

Deflation

Define

Π∈ = I − Z(ZTKZ)−1ZTK,

Π⊥ = I −KZ(ZTKZ)−1ZT ,

so that Π⊥K = KΠ∈.

Split u by

u = u⊥ + u∈

= (I −Π∈)u+ Π∈u.

First part u⊥: u⊥ = (I −Π∈)u = Z(ZTKZ)−1ZT f.
Second part u∈: Ku∈ = KΠ∈u = Π⊥Ku.

⇒ Π⊥Ku = Π⊥f.

Enhancing iterative solvers in Diana June 27, 2014

16

Deflation

Define

Π∈ = I − Z(ZTKZ)−1ZTK,

Π⊥ = I −KZ(ZTKZ)−1ZT ,

so that Π⊥K = KΠ∈.

Split u by

u = u⊥ + u∈

= (I −Π∈)u+ Π∈u.

First part u⊥: u⊥ = (I −Π∈)u = Z(ZTKZ)−1ZT f.
Second part u∈: Ku∈ = KΠ∈u = Π⊥Ku.

⇒ Π⊥Ku = Π⊥f.

Enhancing iterative solvers in Diana June 27, 2014

16

Deflation

Define

Π∈ = I − Z(ZTKZ)−1ZTK,

Π⊥ = I −KZ(ZTKZ)−1ZT ,

so that Π⊥K = KΠ∈.

Split u by

u = u⊥ + u∈

= (I −Π∈)u+ Π∈u.

First part u⊥: u⊥ = (I −Π∈)u = Z(ZTKZ)−1ZT f.
Second part u∈: Ku∈ = KΠ∈u = Π⊥Ku.

⇒ Π⊥Ku = Π⊥f.

Enhancing iterative solvers in Diana June 27, 2014

16

Coarse grid correction

The coarse grid correction

PC = I + Z(ZTKZ)−1ZT

corrects the solution during the iteration process:

uk+1 = uk + Z(ZTKZ)−1ZT r0.

In two-level Additive Schwarz form (dual preconditioning):

PC,P−1 = P−1 + Z(ZTKZ)−1ZT .

Enhancing iterative solvers in Diana June 27, 2014

17

Coarse grid correction

The coarse grid correction

PC = I + Z(ZTKZ)−1ZT

corrects the solution during the iteration process:

uk+1 = uk + Z(ZTKZ)−1ZT r0.

In two-level Additive Schwarz form (dual preconditioning):

PC,P−1 = P−1 + Z(ZTKZ)−1ZT .

Enhancing iterative solvers in Diana June 27, 2014

17

Deflation vs. coarse grid correction

Define the coarse matrix

E = ZTKZ.

Deflation Coarse grid

correction

Π⊥ = I −KZE−1ZT PC = I + ZE−1ZT

Cost per iteration + +

Parallelizability – +

Effectiveness + –

Numerical sensitivity – +

Note: Z needs to have linearly independent vectors

Enhancing iterative solvers in Diana June 27, 2014

18

Deflation vs. coarse grid correction

Define the coarse matrix

E = ZTKZ.

Deflation Coarse grid

correction

Π⊥ = I −KZE−1ZT PC = I + ZE−1ZT

Cost per iteration + +

Parallelizability – +

Effectiveness + –

Numerical sensitivity – +

Note: Z needs to have linearly independent vectors

Enhancing iterative solvers in Diana June 27, 2014

18

Deflation vs. coarse grid correction

Define the coarse matrix

E = ZTKZ.

Deflation Coarse grid

correction

Π⊥ = I −KZE−1ZT PC = I + ZE−1ZT

Cost per iteration + +

Parallelizability – +

Effectiveness + –

Numerical sensitivity – +

Note: Z needs to have linearly independent vectors

Enhancing iterative solvers in Diana June 27, 2014

18

Deflation vs. coarse grid correction

Define the coarse matrix

E = ZTKZ.

Deflation Coarse grid

correction

Π⊥ = I −KZE−1ZT PC = I + ZE−1ZT

Cost per iteration + +

Parallelizability – +

Effectiveness + –

Numerical sensitivity – +

Note: Z needs to have linearly independent vectors

Enhancing iterative solvers in Diana June 27, 2014

18

Deflation vs. coarse grid correction

Define the coarse matrix

E = ZTKZ.

Deflation Coarse grid

correction

Π⊥ = I −KZE−1ZT PC = I + ZE−1ZT

Cost per iteration + +

Parallelizability – +

Effectiveness + –

Numerical sensitivity – +

Note: Z needs to have linearly independent vectors

Enhancing iterative solvers in Diana June 27, 2014

18

Deflation vs. coarse grid correction

Define the coarse matrix

E = ZTKZ.

Deflation Coarse grid

correction

Π⊥ = I −KZE−1ZT PC = I + ZE−1ZT

Cost per iteration + +

Parallelizability – +

Effectiveness + –

Numerical sensitivity – +

Note: Z needs to have linearly independent vectors

Enhancing iterative solvers in Diana June 27, 2014

18

Domain decomposition

Consider model Ω with two rigid bodies Ωa and Ωb.

Ωb
1 = Ωb

2!
Linear dependent columns Zb

1 and Zb
2!

Enhancing iterative solvers in Diana June 27, 2014

19

Domain decomposition

Consider model Ω with two rigid bodies Ωa and Ωb.

Z =



Za

Zb

Za



Ωb
1 = Ωb

2!
Linear dependent columns Zb

1 and Zb
2!

Enhancing iterative solvers in Diana June 27, 2014

19

Domain decomposition

Consider model Ω with two rigid bodies Ωa and Ωb.

Ωb
1 = Ωb

2!
Linear dependent columns Zb

1 and Zb
2!

Enhancing iterative solvers in Diana June 27, 2014

19

Domain decomposition

Consider model Ω with two rigid bodies Ωa and Ωb.

Ωb
1 = Ωb

2!

Linear dependent columns Zb
1 and Zb

2!

Enhancing iterative solvers in Diana June 27, 2014

19

Domain decomposition

Consider model Ω with two rigid bodies Ωa and Ωb.

Z =



Z1

Z2


Ωb
1 = Ωb

2!

Linear dependent columns Zb
1 and Zb

2!

Enhancing iterative solvers in Diana June 27, 2014

19

Domain decomposition

Consider model Ω with two rigid bodies Ωa and Ωb.

Z =



Za
1

Za
2

Zb
1 Zb

2

Za
1

Za
2


Ωb
1 = Ωb

2!

Linear dependent columns Zb
1 and Zb

2!

Enhancing iterative solvers in Diana June 27, 2014

19

Domain decomposition

Consider model Ω with two rigid bodies Ωa and Ωb.

Z =



Za
1

Za
2

Zb
1 Zb

2

Za
1

Za
2


Ωb
1 = Ωb

2!
Linear dependent columns Zb

1 and Zb
2!

Enhancing iterative solvers in Diana June 27, 2014

19

Measures concerning the coarse matrix

I Remove small overlapping bodies

Z =



Za
1

Za
2

Zb
1 Zb

2

Za
1

Za
2


⇒ Z =



Za
1

Za
2

Zb
1

Za
1

Za
2


I Switch from deflation to coarse grid correction if

κ(E)� 1.

Enhancing iterative solvers in Diana June 27, 2014

20

Measures concerning the coarse matrix

I Remove small overlapping bodies

Z =



Za
1

Za
2

Zb
1 Zb

2

Za
1

Za
2


⇒ Z =



Za
1

Za
2

Zb
1

Za
1

Za
2



I Switch from deflation to coarse grid correction if

κ(E)� 1.

Enhancing iterative solvers in Diana June 27, 2014

20

Measures concerning the coarse matrix

I Remove small overlapping bodies

Z =



Za
1

Za
2

Zb
1 Zb

2

Za
1

Za
2


⇒ Z =



Za
1

Za
2

Zb
1

Za
1

Za
2


I Switch from deflation to coarse grid correction if

κ(E)� 1.

Enhancing iterative solvers in Diana June 27, 2014

20

The SplittedCube case

I Layer of interface elements splits a cube ⇒ two bodies

I 161.711 degrees of freedom

I Constraints at three planes

I Uniform load on top

Enhancing iterative solvers in Diana June 27, 2014

21

Results for SplittedCube case

Figure: Preconditioned Conjugate Gradient (PCG)

Enhancing iterative solvers in Diana June 27, 2014

22

Results for SplittedCube case

Figure: Deflated PCG

Enhancing iterative solvers in Diana June 27, 2014

22

Results for SplittedCube case

Figure: Coarse grid correction PCG

Enhancing iterative solvers in Diana June 27, 2014

22

The Geo case

I Eight layers of different materials ⇒ two bodies

I 73.336 degrees of freedom

I Constraints at two planes and all edges

I Pressure load at center

Enhancing iterative solvers in Diana June 27, 2014

23

Results for Geo case

Figure: Computation with one domain

Enhancing iterative solvers in Diana June 27, 2014

24

Conclusions

Enhancements

I Identify rigid bodies based on element matrices

I Reuse of rigid bodies

I Remove significantly overlapping rigid bodies

I Switch from deflation to coarse grid correction

I Tested on 2572 test problems

I Great advantage for stiffness jumps of 103 or larger

Future research

I (Physics-based) preconditioner for elements with scalar
degrees of freedom

I Identify rigid bodies before domain decomposition

I Alternative non-symmetric solver: IDR(s)

Enhancing iterative solvers in Diana June 27, 2014

25

Conclusions

Enhancements

I Identify rigid bodies based on element matrices

I Reuse of rigid bodies

I Remove significantly overlapping rigid bodies

I Switch from deflation to coarse grid correction

I Tested on 2572 test problems

I Great advantage for stiffness jumps of 103 or larger

Future research

I (Physics-based) preconditioner for elements with scalar
degrees of freedom

I Identify rigid bodies before domain decomposition

I Alternative non-symmetric solver: IDR(s)

Enhancing iterative solvers in Diana June 27, 2014

25

Enhancing iterative solvers in Diana
Enhancing iterative solution methods for general FEM

computations using rigid body modes.

Alex Sangers

Delft Institute of Applied Mathematics
TNO DIANA

June 27, 2014

Enhancing iterative solvers in Diana June 27, 2014

26

Additional slides

Enhancing iterative solvers in Diana June 27, 2014

1

Approximate rigid bodies

I Stiffness jumps in the underlying model

I Domain decomposition

1. Divide domain Ω into subdomains Ωi.
2. Compute the local solutions of subdomains Ωi.
3. Compute the global solution.

Enhancing iterative solvers in Diana June 27, 2014

2

Approximate rigid bodies

I Stiffness jumps in the underlying model

I Domain decomposition

1. Divide domain Ω into subdomains Ωi.
2. Compute the local solutions of subdomains Ωi.
3. Compute the global solution.

Enhancing iterative solvers in Diana June 27, 2014

2

Choosing Z

I Eigenvectors:
Z =

(
v1 . . . vk

)
.

I Subdomains:

Zij =

{
1 if i ∈ Ωj ,
0 otherwise.

I Rigid body modes:
Z is the rigid body modes of the approximate rigid bodies.

Enhancing iterative solvers in Diana June 27, 2014

3

Rigid body modes

Consider a one-element rigid body with nodes x1 = (x1, y1, z1)
and x2 = (x2, y2, z2).

x1

x2

y1

y2

z1

z2

Z =



∅

1 0 0 0 −z1 y1
1 0 0 0 −z2 y2
0 1 0 z1 0 −x1
0 1 0 z2 0 −x2
0 0 1 −y1 x1 0
0 0 1 −y2 x2 0

∅



Enhancing iterative solvers in Diana June 27, 2014

4

The coarse matrix

Recall the coarse matrix

E = ZTKZ.

I Deflation: Π⊥ = I −KZE−1ZT ,

I Coarse grid correction: PC = I + ZE−1ZT .

The condition (quality) of E is

κ(E) = ‖E‖ · ‖E−1‖.

I κ(E) ≈ 1

I κ(E) ≈ 1016

I Z needs to have linearly independent vectors

Enhancing iterative solvers in Diana June 27, 2014

5

Condition number of the coarse matrix

The inverse of E is computed by a QR-decomposition:

E−1 = R−1QT ,

where R−1 is explicitly computed.

The condition number κ2(E) is bounded by:

κ2(E) ≤ κF (E),

with

κF (E) = ‖E‖F ‖E−1‖F
= ‖QR‖F ‖R−1QT ‖F
= ‖R‖F ‖R−1‖F .

Enhancing iterative solvers in Diana June 27, 2014

6

Results for SplittedCube case

κ(E) PCG PARDISO DPCG PPCG
iter CPU(s) iter CPU(s) iter CPU(s) iter CPU(s)

1 3 · 108 248 66.2 1 132.0 122 37.8 126 38.7
2 6 · 108 229 43.1 1 78.0 n/a n/a 144 30.7
4 9 · 108 255 35.4 1 47.1 n/a n/a 151 23.3
8 3 · 1019 248 37.5 1 47.9 n/a n/a 128 23.4

Enhancing iterative solvers in Diana June 27, 2014

7

Results for Geo case

κ(E) PCG PARDISO DPCG PPCG
iter CPU(s) iter CPU(s) iter CPU(s) iter CPU(s)

1 2 · 104 289 17.5 1 18.6 248 16.6 251 16.7
2 7 · 104 255 10.3 1 11.1 255 10.9 258 10.8
4 1 · 105 284 9.2 1 7.1 279 10.1 283 9.8
8 4 · 105 256 9.2 1 6.5 251 10.6 255 9.9

Enhancing iterative solvers in Diana June 27, 2014

8

Future research

I Identify rigid bodies before the partitioning

I Specialize the rigid body modes
I Better reuse information in nonlinear iteration loop

I Eigenvector deflation
I Optimize the parameter for rigid body reuse

I (Physics-based) preconditioner for models with
temperature or pressure

I The non-symmetric iterative solver IDR(s)

Enhancing iterative solvers in Diana June 27, 2014

9

	Finite element analysis at DIANA
	Motivation
	Iterative solvers
	Approximate rigid bodies
	Applying rigid body modes
	Domain decomposition
	Results
	Conclusions

