Abstract

“Enhancing iterative solution methods for general FEM
computations using rigid body modes.”

Alex Sangers - June 27, 2014 at 15:30 in EEMCS LB 01.010

DIANA is a general finite element software package that can be used to
analyze a wide range of problems arising in Civil engineering. The solution
of one or more systems of linear equations is a computational intensive
part of a finite element analysis.

Iterative solvers have proved to be efficient for solving these systems of
equations. However, the convergence of iterative solvers stagnates if there
are large stiffness jumps in the underlying model.

The considered remedy is based on the approximate rigid body modes of
the model. To identify the approximate rigid body modes in a finite
element application we propose a generally applicable method based on
element stiffness matrices. These rigid body modes can be used for
deflation and coarse grid correction.
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Finite element analysis

1. Real-life application
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Finite element analysis

1. Real-life application 2. Model with elements
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Finite elements applications

» Structures
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Finite elements applications

Structures
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Geomechanics
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Finite elements applications

» Structures

Geomechanics

v

Dams and dikes

v

v

Tunneling

v

Oil and gas industry
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One-dimensional Poisson problem
A 1D problem consisting of soft clay and granite:

d du
—% (C %) :f, IE(O,QO)

u=0, ze€{0,20}.
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Finite elements for Poisson problem

1. Mesh the model into 40 equal-sized elements
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Finite elements for Poisson problem

1. Mesh the model into 40 equal-sized elements

| | | |
1 T 1 111 1
Lo &Iy I10 €15 20 25 €30 I35 T40
soft clay i granite soft clay

2. Compute each element stiffness matrix and vector:

O A s B I L)

—c(xm)  (Tmt1) f(Tmy1)

Jumps in ¢(z29) and ¢(z25).

5
TUDelft Enhancing iterative solvers in DIANA  June 27, 2014



Finite elements for Poisson problem

1. Mesh the model into 40 equal-sized elements

| | |
1 1 1
Lo &Iy I10 €15 20 25 €30 I35 T40
i soft clay i granite soft clay

2. Compute each element stiffness matrix and vector:

O A s B I L)

—c(@m)  c(@mt1) f(@m41)
Jumps in ¢(z29) and ¢(z25).

3. Assemble the stiffness matrix and vector:

K:Ufr?ﬂKema f:Ui?ﬂfem-
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Finite elements for Poisson problem

1. Mesh the model into 40 equal-sized elements

I Y |
T 1T Tt ittt rrrrrd
o L5 10 Ty 20 T2y T30 I35 T40

soft clay i granite soft clay

2. Compute each element stiffness matrix and vector:

O A s B I L)

_C(xm) C(mm-I-l) f(l"m-i-l)
Jumps in ¢(z29) and ¢(z25).
3. Assemble the stiffness matrix and vector:
K:Ufr?ﬂKema f:Ui?ﬂfem-
4. Solve Ku = f.
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Iterative solvers

Solve Ku = f step by step.
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Iterative solvers

Solve Ku = f step by step.

» Popular algorithms:

» Conjugate Gradient (CG) for symmetric K
> Restarted GMRES (GMRES(s))  for non-symmetric K
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Iterative solvers
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» Popular algorithms:
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» Clustered eigenvalues = fast convergence
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Iterative solvers

Solve Ku = f step by step.

» Popular algorithms:

» Conjugate Gradient (CG) for symmetric K
> Restarted GMRES (GMRES(s))  for non-symmetric K

» Convergence speed depends on eigensystem of K
» Clustered eigenvalues = fast convergence

» Preconditioning may improve convergence
» P7lKy=P-1f
» P K
» Px =y is easy to solve

5
TUDelft Enhancing iterative solvers in DIANA  June 27, 2014




Solving the Poisson problem
Solve the Jacobi preconditioned system:
P 'Ku=Plf

The convergence of Preconditioned CG depends on A\(P~!K):

Value
1,00E+01

X

1,00E+00 S ROORROEOOOEOEECCCCCCCS,  Eigenvalue ID
1 00E-01 . o X40° 20 30 40

xX

1,00E-02
1,00E-03
1,00E-04
1,00E-05
1,00E-06
1,00E-07
1,00E-08
1,00E-09
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Solving the Poisson problem
Solve the Jacobi preconditioned system:
P 'Ku=Plf

The convergence of Preconditioned CG:
Residual
1,00E+02
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1,00E+00 == R Mdaaaaar Feeeeees T T T T Iterations
1,00E-01 1 6 11 16 2170 2600 31 36

1,00€-02 o
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1,00E-04
1,00E-05 :
1,00E-06
1,00E-07
1,00E-08
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Stiffness matrix of Poisson problem

10
~ 20

~ 10
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Solving the Poisson problem

CG
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Solving the Poisson problem

CG and Deflation
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Solving the deflated Poisson problem

Solve the deflated Jacobi preconditioned system:

P UI'Ku=P It f

The convergence of Deflated PCG depends on A\(P~'IIK):

Value

1,00E+01
1,00E+00
1,00E-01
1,00E-02
1,00E-03
1,00E-04
1,00E-05
1,00E-06
1,00E-07
1,00E-08

1,00E-09
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Solving the deflated Poisson problem
Solve the deflated Jacobi preconditioned system:
P UI'Ku=P It f

The convergence of Deflated PCG:

Residual
1,00E+02

1,00E+01
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1,00E-01
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1,00E-08
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Approximate rigid bodies

True rigid bodies

Kz =0 for some z # 0.
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Approximate rigid bodies

True rigid bodies

Kz =0 for some z # 0.

Approximate rigid bodies

Represents “weak coupling” in the model.
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Identifying approximate rigid bodies

» DIANA is general FE software

» Wide range of elements
» Wide range of materials
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Identifying approximate rigid bodies

» DIANA is general FE software

» Wide range of elements
» Wide range of materials

» Element matrices!

> Always present
» Fair comparison
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Identifying approximate rigid bodies

» DIANA is general FE software

» Wide range of elements
» Wide range of materials

» Element matrices!

> Always present
» Fair comparison

1 1
ﬁtr(Kem) = E ZKZM
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Coloring algorithm

Consider this two-dimensional finite element mesh
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Coloring algorithm

Consider this two-dimensional finite element mesh
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Coloring algorithm

Consider this two-dimensional finite element mesh

Nonlinear iteration loop
> Reuse the coloring if 1tr(K®) changes less than 50%.
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Coloring algorithm

Consider this two-dimensional finite element mesh

@: :

O -

Nonlinear iteration loop
> Reuse the coloring if 1tr(K®) changes less than 50%.
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Coloring algorithm

Consider this two-dimensional finite element mesh

@: -

ON :

Nonlinear iteration loop
> Reuse the coloring if 1tr(K®) changes less than 50%.
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Deflation

Define

N =1-22z"Kk2)"'Z"K,
It =1-Kzz"kz)~127,

so that [Tt K = KTIE.
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Deflation
Define

N =1-22z"Kk2)"'Z"K,
It =1-Kzz"kz)~127,

so that [Tt K = KTIE.

Split u by
u=ut +u€
= (I —I%)u + I€u.
<3 - ) .
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Deflation
Define
N€=1-2(Z"KzZ)"'Z"K,
It =1-Kzz"kz)~127,
so that II* K = KTI€.
Split u by
w=ut +u€

= (I —I%)u + I€u.

First part ut:  wt = (I -Ou=Z(ZTKZ)"'Z"f.
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Deflation
Define
N€=1-2(Z"KzZ)"'Z"K,
It =1-Kzz"kz)~127,
so that II* K = KTI€.
Split u by
w=ut +u€

= (I —I%)u + I€u.

First part ut:  wt = (I -Ou=Z(ZTKZ)"'Z"f. QD
Second part u€: Ku€ = KII€u = I+ K.
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Deflation
Define
N€=1-2(Z"KzZ)"'Z"K,
It =1-Kzz"kz)~127,
so that II* K = KTI€.
Split u by
w=ut +u€

= (I —I%)u + I€u.

First part ut:  wt = (I -Ou=Z(ZTKZ)"'Z"f. QD
Second part u€: Ku€ = KII€u = I+ K.

= [T+ Ku =TIt f.
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Deflation
Define
N€=1-2(Z"KzZ)"'Z"K,
It =1-Kzz"kz)~127,
so that II* K = KTI€.
Split u by
w=ut +u€

= (I —I%)u + I€u.

First part ut:  wt = (I -Ou=Z(ZTKZ)"'Z"f. QD
Second part u€: Ku€ = KII€u = I+ K.
= It Ku =TI f. Q
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Coarse grid correction

The coarse grid correction
Po=1+2(Z"Kz)"*Z%

corrects the solution during the iteration process:

Upyr = up + Z(ZTKZ) 1 27,
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Coarse grid correction
The coarse grid correction
Po=1+2(Z"Kz)"*Z%
corrects the solution during the iteration process:
Uppr = up + Z(ZVK2)" 1271y,
In two-level Additive Schwarz form (dual preconditioning):

Popr=P '+ 2(Z"KZ)'Z".
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Deflation vs. coarse grid correction
Define the coarse matrix

E=7TK2Z.

Deflation Coarse grid
correction
Nt =71-KZE'ZT | Po =14 ZE'Z7T
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Deflation vs. coarse grid correction

Define the coarse matrix

E=Z7TKZ.
Deflation Coarse grid
correction
Nt =71-KZE'ZT | Po =14 ZE'Z7T
Cost per iteration + +
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Define the coarse matrix

E=Z7TKZ.
Deflation Coarse grid
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Nt =71-KZE'ZT | Po =14 ZE'Z7T

Cost per iteration + +

Parallelizability - +
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Deflation vs. coarse grid correction

Define the coarse matrix

E=7TK2Z.

Deflation Coarse grid
correction

Nt =71-KZE'ZT | Po =14 ZE'Z7T

Cost per iteration + +

Parallelizability - 4

Effectiveness + -
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Deflation vs. coarse grid correction
Define the coarse matrix

E=7TK2Z.

Deflation Coarse grid
correction
Nt =71-KZE'ZT | Po =14 ZE'Z7T

Cost per iteration + +
Parallelizability - 4
Effectiveness + -
Numerical sensitivity - +
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Deflation vs. coarse grid correction
Define the coarse matrix

E=7TK2Z.

Deflation Coarse grid
correction
Nt =71-KZE'ZT | Po =14 ZE'Z7T

Cost per iteration + +
Parallelizability - 4
Effectiveness + _
Numerical sensitivity - +

Note: Z needs to have linearly independent vectors
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Domain decomposition

Consider model © with two rigid bodies Q¢ and Q°.

Q [o8 Qb
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Domain decomposition

Consider model © with two rigid bodies Q¢ and Q°.

Q o 0b
Z(l
Z = zb
Za
5 N ) .
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Domain decomposition

Consider model © with two rigid bodies Q¢ and Q°.

Xj Qa
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Domain decomposition

Consider model © with two rigid bodies Q¢ and Q°.

Xj Qa

Qb = Qb
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Domain decomposition

Consider model © with two rigid bodies Q¢ and Q°.

[¢) [o8 Qb

Z1

)

Qb = Qb
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Domain decomposition

Consider model © with two rigid bodies Q¢ and Q°.

[¢) [o8 Qb
a
l .
Z3
of Q! Z = Zf Zg
a
Q) Zl
Z3
fo): 0
b _ Ob
Qb = Qb1
Oy
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Domain decomposition

Consider model © with two rigid bodies Q¢ and Q°.

Q aQ° Qb
| 8
Z
o M Z = z8 A
a
Q) Zl
Z3
fo): 0
b _ Ob
Q7 = Q3! . , \
o Linear dependent columns Z7 and Z;!
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Measures concerning the coarse matrix
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Measures concerning the coarse matrix

» Remove small overlapping bodies
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Measures concerning the coarse matrix

» Remove small overlapping bodies

Zi Z3
Z3 Z3
Z = A Z8 = Z = Z
Zi Zi
4 Z3

» Switch from deflation to coarse grid correction if

K(E) > 1.
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The SplittedCube case

o
X3
0
5

"
5

00
.
o

> Layer of interface elements splits a cube = two bodies

» 161.711 degrees of freedom

» Constraints at three planes

» Uniform load on top

June 27, 2014
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Results for SplittedCube case

Residual
1,00E+04
1,00E+03 -

1,00E+02 Z R

1,00E+01 / \

1,00E+00 = ; : AN : —— Iterations
1,00E-01 41 81 121 ‘3‘51 201 241

\ N eeeeees 1
1,00E-02 0
1,00E-03 \\ K 5
1,00E-04 \ \Y

R - =4
1,00E-05 \\ N

1,00E-06 I
1,00E-07 \

1,00E-08 \\\

1,00E-09

Figure: Preconditioned Conjugate Gradient (PCG)

5
TUDelft Enhancing iterative solvers in DIANA  June 27, 2014
- B




Results for SplittedCube case

Residual
1,00E+01
1,00E+00 T T T T T Iterations
1,00E-01 81 121 161 1 241
/ - w(E)
1,00E-02 ) 4 <
'."\ / \/ ....... 113.108
1,00E-03 2 7 N\ .
N\ /] — | 6 10
1,00E-04 .
N/ I\ / i e
1,00E-05 N
XS — Lo
1,00E-06 \o
1,00E-07
1,00E-08
1,00E-09
Figure: Deflated PCG
5 - . .
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Results for SplittedCube case

Residual
1,00E+01
1,00E+00 T T T T Iterations
1,00E-01 L 121 161 201 241
1,00E-02
1,00E-03
2
1,00E-04 -
'-.\ - - 4
1,00E-05 5
\ ——38
1,00E-06 %\
\
1,00E-07 \
5\
1,00E-08
1,00E-09
Figure: Coarse grid correction PCG
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The Geo case

v

Eight layers of different materials = two bodies
73.336 degrees of freedom

» Constraints at two planes and all edges

v

» Pressure load at center
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Results for Geo case

Residual
1,00E+00 T T T T T T T Iterations
121 161 201 241 281
1,00E-01
1,00E-02
1,00E-03
\ cessse PCG
1,00E-04 “ur
DPCG
1,00E-05 “ters
— = PPCG

1,00E-06 \\:..,
1,00E-07 \
1,00E-08

1,00E-09

Figure: Computation with one domain
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Conclusions

Enhancements

v

Identify rigid bodies based on element matrices

» Reuse of rigid bodies

> Remove significantly overlapping rigid bodies
» Switch from deflation to coarse grid correction
> Tested on 2572 test problems
» Great advantage for stiffness jumps of 10% or larger
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Conclusions

Enhancements

v

Identify rigid bodies based on element matrices

» Reuse of rigid bodies

v

Remove significantly overlapping rigid bodies

v

Switch from deflation to coarse grid correction
Tested on 2572 test problems

v

» Great advantage for stiffness jumps of 10% or larger

Future research

» (Physics-based) preconditioner for elements with scalar
degrees of freedom

> |dentify rigid bodies before domain decomposition

» Alternative non-symmetric solver: IDR(s)
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Additional slides
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Approximate rigid bodies

» Stiffness jumps in the underlying model
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Approximate rigid bodies

» Stiffness jumps in the underlying model

5

» Domain decomposition

1. Divide domain €2 into subdomains ;.
2. Compute the local solutions of subdomains €2;.
3. Compute the global solution.
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Choosing 7

» Eigenvectors:
Z:(m vk).

» Subdomains:

L 1 ifieq,
Y71 0 otherwise.

» Rigid body modes:
Z is the rigid body modes of the approximate rigid bodies.
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Rigid body modes

Consider a one-element rigid body with nodes z; = (z1,y1, 21)
and z, = (22,2, 22).

0
1 1 00 0 —Z21 U1
T2 1 00 0 —Z9 Y2
Y1 7 - 010 =~ 0 -z
w2 =l o010 2 0 -
z1 0 0 1 —U1 Tl 0
z2 0 0 1 —Y2 i) 0
0
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The coarse matrix

Recall the coarse matrix
E=7"KZ.
» Deflation: nt=1-KZE'Z7T,

» Coarse grid correction: Po =1+ ZE'Z7.

The condition (quality) of E is
K(E) = | B|| - | E7H.

» K(E)~1 Q
» k(F) =~ 106 (%

> Z needs to have linearly independent vectors

5
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Condition number of the coarse matrix

The inverse of E is computed by a () R-decomposition:
E*l — R*lQT

where R™1 is explicitly computed.

The condition number k5(F) is bounded by:

RQ(E) < HF(E),

with
ke (E) = [|E||r|E7|r
= |QRIlr|R7'Q" |l
= |RllFIR|r.
'i"UDeH’t Enhancing iterative solvers in DIANA June 27, 2014




Results for SplittedCube case

r(E) PCG PARDISO DPCG PPCG
iter CPU(s) |iter CPU(s) || iter CPU(s) | iter CPU(s)

1]/3-10% (248 662 | 1 1320 [ 122 378 |126 387
2 6-10% 229 431 |1 780 |n/a n/a |144 307
4109-10% 255 354 | 1 471 |n/a n/a |151 233
8(3-10% 248 375 | 1 479 |n/a n/a |128 234
-ifU Delft Enhancing iterative solvers in DIANA  June 27, 2014



Results for Geo case

K(E) PCG PARDISO DPCG PPCG
iter CPU(s) |iter CPU(s) || iter CPU(s) | iter CPU(s)
1(2-10*]|289 175 1 186 |[248 16.6 [251 16.7
2 7-10*||255 10.3 1 11.1 255 109 |258 10.8
4(1-10°||284 9.2 1 7.1 279 10.1 |283 9.8
8|4-10° |25 9.2 1 6.5 |[251 10.6 [255 9.9
'FU Delft Enhancing iterative solvers in DIANA  June 27, 2014



Future research

v

Identify rigid bodies before the partitioning

v

Specialize the rigid body modes
Better reuse information in nonlinear iteration loop

» Eigenvector deflation
» Optimize the parameter for rigid body reuse

v

v

(Physics-based) preconditioner for models with
temperature or pressure

» The non-symmetric iterative solver IDR(s)
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