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the problem, by investing a lot on Fourier analysis, a tidy and simple-to-implement
multilevel method has been presented. I have tried to keep my thesis self-explanatory.
Even an appendix is dedicated to the implementation of solver. Considering the size
of thesis, however it is always possible to miss out many bits. Still I will be reachable
via email for help to understand thesis.

In brief, I have tried to address the difficult problems which encounters eigenvalues
on both sides the axis, positive and negative. Solvers proposed are well justified by
extensive Fourier analysis and its results. In addition, few variants are also discussed
and compared. They also lead to new avenues of research. I truly would not have been
able to finish this thesis, without help of many people.

Special thanks to Domenico Lahaye I wish to present sincere gratitude to Domenico
for every thing he has done during my PhD candidacy. Yes! Every thing. His ded-
ication can be thought of this that he never said no when I visit his office without
any appointment. His progressive criticism has furnished me a lot made me to think
critically, which is necessary for a researcher. With this jolly reply, “no question are
simple”, he attended my tiny and simple questions with enthusiasm. He even took
care of scientific relation, marketing of your research etc. I thank Domenico Lahaye
for all his personal help and professional supervision.

More special thanks to Kees Vuik I wish to express my profound thanks to Kees
for providing me the opportunity to work at Delft in numerical analysis group under
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Summary

The Helmholtz equation is the simplest possible model for the wave propagation. Per-
haps this is the reason, despite denying traditional iterative methods like Krylov sub-
space methods, Multigrids, etcetera, numerical solution of the Helmholtz equation has
been an interesting and abundant problem to researchers since years. The work in this
dissertation is also classified as an attempt to develop fast and robust iterative methods
for the solution of the Helmholtz equation. This works is specified for applications in
seismic imaging-Geophysics, where usually high frequency are used. Thus we will be
targeting large wavenumber Helmholtz problems.

The finite difference discretization of the Helmholtz equation with typically given
Absorbing (Sommerfeld) boundary conditions gives rise to symmetric, non-Hermitian,
indefinite linear systems. Resolution of large wavenumber requires larger number of
grid points, thus large linear systems. Many (sparse) direct solvers and hybrid (direct
and iterative) solvers have been proposed, but it is quite obvious for very large prob-
lems that (sparse) direct solvers have been too much depending upon memory, which
makes them less acceptable. Quite a lot of work has been invested in researching
iterative solution methods for the Helmholtz equation since many decades. The indef-
initeness, which increases with respect to an increase in the wavenumber, poses extra
problems for iterative solvers and robust solution of indefinite (large) linear system
forms an important research activity. Many iterative techniques like domain decompo-
sition methods, multigrid methods and preconditioners for Krylov subspace methods
have been proposed but non of them has been quite robust.

For multigrid methods, indefiniteness arises difficulties in having both good smooth-
ing property and constructing appropriate coarse-grid approximations of the problem,
which are responsible for further reduction of low frequency errors. Many attempts
have been spent in algebraic variants of multigrid methods. Some of them works
well with limitation of homogeneity. Most of them fails to show satisfactory con-
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vergence. The same holds for Krylov subspace methods. One of the difficulties for
Krylov methods is to find a cheap and performing preconditioner for the indefinite
Helmholtz equation. An overview of preconditioners, ranging from classical to matrix
based, for indefinite Helmholtz linear system has been give in this thesis. A matrix-
based complex shifted Laplace preconditioner (CSLP) has been seen as best in the
available ones. However, with increasing wavenumbers CSLP shows a slow conver-
gence behavior. We address this issue continuing using CSLP while taking care of its
requirement of specific complex shifts.

The projection-type preconditioners have been widely investigated by researchers
in numerical analysis community. We propose the projection-type deflation precon-
ditioner to tackle the near-singular nodes, which are the cause of the decay the con-
vergence of, this otherwise well performing, CSLP. Like multigrid, this deflation pre-
conditioner, named as ADEF1, requires to solve coarse problems at different coarser
levels. An optimized algorithm has been tested and proposed suggesting iterative
solution of coarse problems at different levels. This finalizes as a multilevel precon-
ditioner. The re-discretization coarsening strategy that we propose and investigate in
this thesis is aimed at reducing the memory size and maintaining stencil size. The
multilevel Krylov method (MLKM) has also been investigated and compared with its
counterpart ADEF1.

The rigorous Fourier analysis (RFA) to investigate the convergence of iterative
methods forms a separate research theme, which is included in the thesis. We analyse
the proposed multilevel preconditioners ADEF1 and MLKM for two-levels. Analysis
shows spectral behavior of the preconditioner, which can be taken as favorable for
Krylov methods. RFA points out near-singular modes and highlights their contribu-
tion in prevailing stagnation. Further the convergence can be enhanced by adapting
coarse grid operator at different levels.

The proposed preconditioners have been tested on academic as well as the bench
mark Marmousi problem. A huge reduction in number of iterations can be noticed. A
comparison in the amount of iterations and solve time, specially for three-dimensional
problem, shows that the invested work has paid-off. Proposed preconditioners has
been uniformly performing for one- to three-dimensions as well as for heterogeneous
medium problems.



Samenvatting

De Helmholtzvergelijking is het meest eenvoudige model voor het transport van gol-
ven. Wellicht is dit de reden dat, ondanks het uitsluiten van traditionele iteratieve
oplossingsmethoden als Krylovdeelruimtemethodes, multigridmethodes, enzovoorts,
het numeriek oplossen van de Helmholtzvergelijking al jarenlang een interessant en
veelvoorkomend probleem voor onderzoekers is. Dit werk is ook een poging om snelle
en robuuste iteratieve methodes te ontwikkelen voor het oplossen van de Helmholtzvergeli-
jking. Dit werk richt zich op toepassingen in seismische beeldvorming in geofysica,
waar doorgaans hoge frequenties worden toegepast. Daarom zullen wij ons richten op
Helmholtzproblemen met een hoog golfgetal.

De eindige differentie discretisatie van de Helmholtzvergelijking met absorberende
(Sommerfeld) randvoorwaarden leidt tot symmetrische, niet-Hermitische, indefiniete
stelsels lineaire vergelijkingen. Het werken met grote golfgetallen vereist een groter
aantal roosterpunten, en dus grotere lineaire stelsels. Vele directe solvers (voor ijle
matrices) en hybride solvers (direct en iteratief) zijn voorgesteld, maar het is duidelijk
dat voor zeer grote problemen directe solvers te veel geheugen vereisen, waardoor
zij ongeschikt zijn. Al meerdere decennia lang wordt er veel tijd besteed aan on-
derzoek naar iteratieve oplossingsmethodes voor de Helmholtzvergelijking. De mate
van indefinietheid, die toeneemt bij een toename van het golfgetal, geeft extra prob-
lemen voor iteratieve solvers. Robuuste oplossingsmethodes voor (grote) indefini-
ete lineaire stelsels is een belangrijk onderzoeksonderwerp. Veel iteratieve methodes
zijn voorgesteld: domeindecompositiemethodes, multigridmethodes en precondition-
ers voor Krylovdeelruimtemethodes. Geen van deze methodes is robuust genoeg.

Voor multigridmethodes geeft indefinietheid problemen, zowel in het hebben van
goede damping van snelle comonente, als bij het construeren van grofroosterbenaderin-
gen van het probleem, die verantwoordelijk zijn voor het verder verminderen van
lagefrequentiefouten. Veel pogingen zijn gedaan met een algebraı̈sche variant van de
multigridmethode. Enkele hiervan werken goed onder de restrictie van homogeniteit,
maar de meeste convergeren niet snel genoeg. Dit is ook het geval bij Krylovdeel-
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ruimtemethodes. Eén van de moeilijkheden is het vinden van een werkende, goedkope
preconditioner voor de indefiniete Helmholtzvergelijking. Een overzicht van precon-
ditioners voor de indefiniete Helmholtzvergelijking, variërend van klassieke tot op
matrix gebaseerde methodes, is gegeven in dit proefschrift. Een op matrix gebaseerde
complex shifted Laplace preconditioner (CSLP) wordt gezien als de beste beschik-
bare methode. Echter, met een toename in het golfgetal, vertraagt de convergentie van
CLSP. We behandelen dit probleem door CLSP te gebruiken en extra aandacht aan de
voorwaarden voor specifieke complexe verschuivingen te geven.

De op projecties gebaseerde preconditioners zijn uitgebreid onderzocht door de
onderzoekers uit de numerieke analyse. Wij stellen een op projecties gebaseerde de-
flatiepreconditioner voor om de bijna singuliere punten aan te pakken, die de oorzaak
zijn van de teruglopende convergentie van de normaal gesproken goed werkende CSLP.
Zoals in multigridmethodes, worden bij deze deflatiepreconditioner, genaamd ADEF1,
problemen op verschillende, grovere roosters opgelost. Een geoptimaliseerd algo-
ritme, waarbij het probleem iteratief op verschillende niveaus wordt opgelost, is getest
en voorgesteld. De herdiscretisatie-vergroffingsstrategie die we voorstellen en on-
derzoeken in dit proefschrift is gericht op het verminderen van het geheugengebruik
en het behoud van de stencilgrootte. Ook hebben wij de multilevel Krylov method
(MLKM) onderzocht en vergeleken met ADEF1.

De rigorous Fourier analysis (RFA), om de convergentie van iteratieve methodes
te onderzoeken, vormt een afzonderlijk onderzoeksthema en is ook behandeld in dit
proefschrift. We analyseren de voorgestelde multilevel preconditioners, ADEF1 en
MLKM, op twee niveaus. Analyse laat spectraal gedrag zien, dat als voordelig voor
Krylov methodes gezien kan worden. RFA wijst de bijna singuliere eigenwaarde aan
en geeft hun bijdrage weer aan de aanhoudende stagnatie. De convergentie kan verder
verbeterd worden door een grofroosteroperator toe te passen op verschillende niveaus.

De voorgestelde preconditioners zijn getest op zowel academische problemen als
het Marmousi-testprobleem. Een zeer grote vermindering in het aantal iteraties is te
zien. Een vergelijking van het aantal benodigde iteraties en oplossingstijden, specifiek
voor driedimensionale problemen, toont aan dat ons werk zijn vruchten heeft afgewor-
pen. De voorgestelde preconditioner presteert uniform voor een- tot driedimensionale
problemen, en voor problemen met een heterogeen medium.
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Chapter 1
Introduction

This chapter serves as an introduction to the work presented in this thesis, which deals
with the numerical solution of the Helmholtz equation. The efficient computational
modeling of wave scattering is important for many practical problems. Time har-
monic wave scattering phenomena finds applications in various scientific fields like
acoustics, electromagnetism, atomic spectroscopy [16], radar and sonar technology,
seismics [26] and recently it has got attention in medical imaging. The scattering prob-
lem treated in this thesis is a crucial part of the inverse problem, which is of greater
importance in energy industry (seismic exploration) and is mathematically more chal-
lenging. The time harmonic wave scattering phenomena are modeled by means of
Helmholtz equation in the frequency domain. Many applications of the Helmholtz
equations involve unbounded domains. Dirichlet and Neumann boundary conditions
are often used. However, Dirichlet boundary conditions truncates the physical domain
and causes wave reflections. Numerical treatment of the Helmholtz equation requires
that these wave reflections should be avoided. Also if Neumann boundary conditions
are posed on all boundaries, the problem is not well posed and have non-unique so-
lutions [67]. In order to make the problem well-posed, Sommerfeld boundary condi-
tions are imposed, which were introduced in [38]. An alternative boundary condition:
perfectly matched layers (PML) has been proposed in [12]. Methods for modeling
time-harmonic wave scattering (in an inhomogeneous medium) typically involve ap-
plying finite difference or finite element techniques to the Helmholtz equation. These
techniques give rise to the linear systems, where the coefficient matrix is sparse, sym-
metric, often complex valued non-Hermitian and large. For small wave numbers, the
coefficient matrix is close to the matrix for the Laplace equation. For large wave num-
bers, the linear system is indefinite in a way that the coefficient matrix bears negative
eigenvalues. The coefficient matrix of the linear system shows poor conditioning as
the discretization is refined.

1
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1.1 Background and Related Work

During the past few decades, the numerical methods for Helmholtz have been sub-
ject of active research. These methods involve solution of large and indefinite linear
systems arising from a discretization of Helmholtz equation. Methods to solve linear
systems can be classified as direct and iterative methods.

Direct methods can handle the linear system efficiently till a certain size. How-
ever they are not favorable for sparse linear systems. The zero elements in the matrix
might be filled with non-zero elements in the elimination process. There are few di-
rect methods, which take care of the sparsity [34, 32, 72]. They are also limited to
sizes of the problem. For the indefinite and non symmetric matrices, pre-processing
(pivoting, permutation and scaling) can be performed before the factorization in or-
der to minimize the fill-in and improve the accuracy of the factorization [35]. These
methods perform well in the one dimensional and two dimensional case [66]. How-
ever their memory requirements increase with the size of the problem, dropping-off

their efficiency for three dimensional Helmholtz problems. A parallelization of sparse
direct solver have also been tried. In [86], a three dimensional Helmholtz problem
was numerical solved using MUMPS [5, 4]. It is reported that the solver requires too
much memory.

Iterative methods are memory efficient, in general. They are attractive for sparse
linear systems in an obvious way as they are designed for sparse matrices. Krylov
methods are robust iterative methods. There are many Krylov methods specified by
properties of the linear system. Indefiniteness limits the choice of Krylov methods for
the Helmholtz equation. GMRES [99] and Bi-CGSTAB [115] are suitable choices for
this system. Also the IDR [106] has been used recently in [10]. The performance of
Krylov methods depends upon the well conditioning of the matrices. Usually precon-
ditioners are applied in order to condition the matrices and to transform the spectrum
of the linear system into a favorable one for Krylov methods. First, we describe some
preconditioning techniques described in the literature for Helmholtz problems.

Incomplete factorizations (ILU) of the coefficient matrix (in a linear system) are
simple and popular preconditioning techniques. A factorization preconditioner may
however lead to unstable, highly ill-conditioned incomplete factors in the indefinite
case. Some remedies have been proposed to treat the instability in context of the
Helmholtz equation. In [56] a specific factorization is designed that aims at per-
forming an analytic incomplete factorization (AILU). This approach has limitations
to extend to the heterogeneous medium problem. Incomplete LU factorization with
a threshold, which is introduced in [96], is recommended in [70] along with a finite
element discretization of the Helmholtz operator. Finally, an other approach consists
in performing an incomplete factorization of a complex shifted Helmholtz operator
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as a preconditioner for the original Helmholtz problem [77]. However, the conver-
gence of ILU preconditioned Krylov methods is found to be generally slow at high
wavenumbers and storing the ILU factors may not be always affordable. Factorization
based preconditioners depends on the wave number as well as mesh size [102]. Fur-
thermore it is recognized that ILU methods are difficult to parallelize [65]. Another
important class of preconditioners relies on domain decomposition techniques which
are proposed in [13, 51, 58, 8, 50, 51]. These methods solve the original problem by
splitting the physical domain into smaller sub-domains where the solution of the local
problems is affordable with direct methods. The correction in the coarse problem ( in
sub-domain) give a convergence rate independent of the number of sub-domains. Due
to the indefiniteness at high wavenumbers, Helmholtz type problems are challenging
for domain decomposition methods for some reasons. First in order to be effective,
a large number of coarse problems has to be considered. Secondly local problems
may be close to singular. Further details on domain decomposition for Helmholtz are
discussed in [58, 119]. Recent work on domain decomposition for Heolmhotlz can be
found in [117, 28].

Multigrid methods [18, 22, 63, 107, 113] have also been considered as solvers
as well as preconditioners for Helmholtz problems. Nevertheless they also encounter
difficulties to cope with highly indefinite problems. Regarding Helmholtz problems,
classical multigrid ingredients such as standard smoothing and coarse grid correction
are found to be ineffective [21, 37, 46, 48]. First, smoothers cannot smooth error com-
ponents on the intermediate grids. Second, the wavenumber in the discrete Helmholtz
operator makes its approximations poor on coarse meshes, the effect of the coarse grid
correction being then deteriorated. In [33, 76, 71], strategies have been proposed to
adapt the multigrid technique for the solution of Helmholtz problems. A first strategy
consists of the use of few grids in the hierarchy of the multigrid preconditioner [33, 71]
such that the grid approximation is effective on the considered grids. If more than two
grids are considered, non-standard smoothers (Krylov based such as GMRES) on the
coarser levels can be used to avoid the ineffectiveness of the standard smoothers on in-
termediate grids [37]. However, in three dimensions, a reduced number of grids in the
multigrid hierarchy could lead to a coarse problem whose factorization can be prob-
lematic in terms of computational resources. A second approach is to solve Helmholtz
problems with a wave-ray multigrid algorithm [19]. These methods are based on two
representations of the error on the coarse grids of the hierarchy. These representa-
tions enable then both the smoother and coarse grid corrections to be efficient. Further
developments have been reported in [75]. This method performs well in the homoge-
neous case, but in the case of heterogeneous medium, ray functions must be computed.
This has been reported in [74]. The method yet has been performed on one dimen-
sional problem. Few alternative methods can be found in [9, 85, 37, 62, 39, 49].
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Operator based multigrid-preconditioners also has been in use since long for the
indefinite Helmholtz problem. Earlier presentation of these preconditioners can be
found in [11] and [73] in which a Laplace operator and a Laplace operator with a
real shift, respectively, are proposed. Both preconditioners lead to good results for
medium size wave numbers. For large wave numbers numerical results on the con-
trary show a steep increase in the number of iterations. The paper [77] can bee seen
as pioneering paper on shifted Laplace preconditioners, in which incomplete LU de-
compositions of a shifted Laplace operator are used as a preconditioner. However for
the first time, a preconditioner based on original with a complex shift has been re-
ported in [43]. This class of Laplace preconditioners with a complex shift proposed
and further studied in [43, 46, 47], where the solver requires a number of iterations
that grows only linearly as the wave number increases. Inspired by this work, a num-
ber of generalizations appeared shortly afterwards in [42, 93, 17, 1, 44] together with
applications in different industrial contexts in [120, 3, 94, 89, 90, 114, 2, 87]. The real
and imaginary shifts in these type of preconditioners determine the performance of the
solver heavily. Therefore this attracts people to work on optimal choice of the shifts in
preconditioner. Related work is reported in [30, 54]Some more developments about
complex shifted Laplace preconditioners are given in [93, 24, 23]. The convergence
of the shifted Laplace preconditioners is spectrally analyzed in [59, 29] extensively.
This analysis shows that the smallest eigenvalues of the preconditioned operator rush
to zero as the wave number increases. This explains the non-scalability of the complex
shifted Laplace preconditioner (CSLP). Despite of the drawback reveled via analysis
in [59], CSLP has outperformed the existing preconditioners (for the Helmholtz )of
the era.

1.2 Aim of Research

The basic approach of isolating the troublesome aspects of the complicated problems
into small and easier ones, solve the latter, and then using these solutions in various
ways to solve the original complicated problem, has been employed since early times.
No doubt the CSLP preconditioner shows robustness. However it tends to encounter
small eigenvalues, which stagnates the convergence. Inspired of the robustness of
CSLP, it is naturally to attend the local issue of small eigenvalues in CSLP precondi-
tioned Helmholtz. Deflation has been used to treat a bunch of unwanted eigenvalues.
Deflation type methods have been reported for many problems in literature. Specific
for Helmholtz , in [45, 42], deflation has been proposed in combination with CSLP. As
deflation vectors the columns of the bilinear interpolation operator from coarse to fine
grid are used. The deflation can be seen as a second level preconditioner that attempts
to remove small eigenvalues. The resulting method is quite involved and somewhat
complicated to implement.
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The aim of this work is to design an attractive and simple to implement multilevel
deflation based solver, utilizing the robustness of CSLP. Analysis of this solver is
also performed. The ADEF1 preconditioner has been proposed. ADEF1 is a simple
deflation based preconditioner, which is constructed using the Helmholtz operator.
It is also combined with a CSLP preconditioner. ADEF1 allows flexible shifts in
CSLP, which further renders a better approximation of CSLP preconditioner with the
standard multigrid components. An acceptable and competitive numerical solution to
indefinite Helmholtz equation has been accomplished with the ADEF1 preconidtioner.

1.3 ADEF1 preconditioner

In order to solve large linear systems, it is necessary to accumulate all factors like
solver, preconditioning, implementation of algorithms on commonly available hard-
ware (computational resources) etc. The ADEF1 preconditioner is used as a multi-
level preconditioner in practice. It involves the hierarchy of meshes like multigrid.
Implementation has been simplified. Despite of the complexity of this multilevel pre-
conditioner, it is justified by its performance demonstration. In number of iterations,
it seems parameter independent, which favors the solve time in comparison with other
preconditioner(s).

1.4 Principal Findings

We also analyze the proposed ADEF1 preconditioner via rigorous Fourier analysis. In
order to present conclusive findings from analysis, we also analyze the variants of de-
flation preconditioner defined in [44] and other, which involve a re-discretized coarse
grid operator and shifted coarse grid operator. Spectral formulae are derived which
helps to consider the performance behavior of ADEF1. Graphical presentation high-
lights pros and cons of CSLP, ADEF1, and other deflation preconditioners. ADEF1
transforms the spectrum of the Helmholtz operator into a cluster around 1. Special
care has been recommended to be taken for dealing with the coarse grid operator.

1.5 Thesis Organization

The thesis is divided into the following chapters.

• In Chapter 2, the model problems and its importance in scientific fields are
discussed. Finite difference discretization for the Helmholtz equation in one,
two and three dimensions is detailed. In the final part of this chapter, spectral
properties of the discretized Helmholtz operator are given.
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• The solvers for Helmholtz, history of preconditioners for Helmholtz, multigrid
approximation of CSLP preconditioners are discussed in Chapter 3. Chapter 3
also includes a discussion about a number of drawbacks of CSLP.

• Chapter 4 gives details about deflation. It starts to define deflation in general
and later specific for the Helmholtz operator. Deflation related topics covered
in this chapter are deflation vectors, deflation vectors for Helmholtz, deflation in
combination with CSLP, variants of deflation for Helmholtz, need of multilevel
approach etc. Implementation has been explored in this chapter too.

• Chapter 5 deals with the analysis of the deflation variants presented in the earlier
chapter. Graphical presentation of the analysis results as well as theoretical
formulae makes the chapter worthwhile.

• The findings from analysis of our proposed ADEF1 preconditioner are con-
firmed by numerical results, which are presented in Chapter 6. Numerical ex-
periments include one, two, and three dimensional problems. Results are also
compared with various solver types.

• Chapter 7 is devoted to conclusions of the work with a recommendation of fu-
ture research.



Chapter 2
Model Problems and Their
Discretization

The simulation of waves are of great importance in various engineering areas like
acoustics, electromagnetic, wireless technology and geophysical seismic imaging.
The physical phenomenon of steady-state wave propagation over a physical domain
Ω is modeled by means of the Helmholtz equation

− ∆u(x) − k2(x) = f (x), (2.1)

where u(x) is the wave field, k(x) the wave number and x the spatial variable. The
wave number can be related with wavelength λ by following expression

k(x) =
2π
λ
, (2.2)

where λ = ω
c(x) with ω = 2π f the angular frequency and c(x) the phase velocity. The

wave number k(x) can be written as k(x) =
2π f
c(x) .

Equation (2.1) has to be provided with boundary conditions on the boundary ∂Ω to
ensure its well-posedness. Physically, either the wave propagates till an indefinite dis-
tance or is scattered by obstacles in the medium. The boundary conditions, vanishing
the wave field at boundaries, can be described by homogeneous Dirichlet conditions

u(x) = 0, (2.3)

and the reflecting ones by Neumann conditions

∂u
∂η

= 0, (2.4)

7
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where η is the outward directional normal.

This thesis aims to target the application in seismic wave migration in subsoil, in
which a source emits the waves from a certain point on the surface of the Earth with
given frequencies. The pressure wave then travels through the layers of earth and prop-
agates back to the surface due to heterogeneity in the physical domain. The pressure
wave is recorded by several receivers. This simulation is used to reproduce the wave
propagation through the heterogeneous medium. This helps to generate an expository
map of the bed of earth. Thus location and layers’ thickness can be detected. This
frequency domain problem needs to be solved and is of our interest. Subsequently,
Fourier transformation converts the frequency domain solution to time domain solu-
tion. Time domain solution predicts the structure of the earth for oil exploration.

The wave scattering occurs in many applications in a medium with an unbounded
domain. To ensure the numerical solution on a finite domain, the computations on
an unbounded domain are avoided by imposing artificial boundary conditions. Non-
homogeneous Neumann boundary conditions of the type

∂u(x)
∂η

= ιku(x), (2.5)

models the absorbing layers on the boundary of domain. These boundary conditions
are also called Sommerfeld radiation boundary conditions [38]. In [14], the perfectly
matched layer (PML) method is reported for electromagnetic waves. In the application
mentioned, the harmonic point source located at xs is described by the standard delta
function f (x)

f (x) = δ(x − xs). (2.6)

The problems used throughout this thesis and their motivation is given in the next
sections.

2.1 One-Dimensional Problem

On the standard unit domain (0, 1), the Helmholtz equation in 1D with constant wave
number k reads as

− ∆u(x) − k2u(x) = f (x) , (2.7)

equipped with Dirichlet boundary conditions at both ends of the domain

u(x) = 0 , (2.8)

or Sommerfeld radiation boundary conditions at both ends of the domain i.e. at bound-
ary ∂Ω

∂u(x)
∂η

− ιk(x)u = 0. (2.9)
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The one-dimensional problem with earlier boundary conditions serves as the model
to get theoretical insights into the solvers using rigorous Fourier analysis (RFA). We
refer to Section 5.2. While the large wave number one dimensional problem with
Sommerfeld boundary conditions 2.9 is used as test problem for different solvers.

2.2 Two-Dimensional Constant Wave Number Problem

The Helmholtz equation on domain Ω = (0, 1) × (0, 1) reads,

− ∆u(x, y) − k2u(x, y) = f (x, y). (2.10)

We assume constant k and the domain to be bounded by the absorbing layers modeled
by Sommerfeld boundary conditions on boundary ∂Ω

∂u(x, y)
∂η

− ιku(x, y) = 0. (2.11)

For this problem, the source functions f (x, y) is chosen as

f (x, y) = δ(x −
1
2
, y −

1
2

), (2.12)

meaning that the waves propagate from the center of the domain outwards. This prob-
lem with a very large wave number is used as a test problem for numerical experi-
ments.

Equation (2.10) along with the source function defined in Equation (2.12) supplied
with homogeneous Dirichlet boundary conditions

u(x, y) = 0 (2.13)

on boundary ∂Ω, is considered for analysis purposes.

2.3 Two-Dimensional Non-Constant Wave Number Prob-
lem

In physical problems from geophysical seismic imaging, heterogeneity appears. This
leads to a contrast in wave number. The first problem with an inhomogeneous medium
is a three layered so-called Wedge problem introduced in [91], in which the domain
Ω = (0, 600) × (0, 1000) is subdivided into three layers with different velocity hence
difference wave number. Velocity distribution over layers is shown in Figure 2.1(a).
In each layer, the velocity c is constant with the value shown. A point source defined
by Equation (2.6) is located at xs = 300 and ys = 0, the resulting wave diffraction
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pattern is shown in Figure 2.1(b).

With the Sommerfeld radiation boundary conditions Equation (2.5), the problem
reads

−∆u(x, y) − k(x, y)2u(x, y) = f (x, y), on Ω = (0, 600) × (0, 1000)

f (x, y) = δ(x − 300, y) x, y ∈ Ω,

 (2.14)

where k(x, y) =
2π f req
c(x,y) is given in terms of velocity as shown in Figure 2.1(a). In

this thesis, a set of five different frequencies 10, 20, 40 and 80 Hz is considered for
numerical tests.
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Figure 2.1: The wedge problem introduced in [91].

The next problem mimics an industrial model problem and is called a Marmousi
problem. This is a well known benchmark problem, used in many papers. The ge-
ometry of the problem is based on a profile through the North Quenguela through in
Cuanza basin. It is an in-depth-image of the earth with 158 horizontal layers, making
it highly heterogeneous. The original Marmousi data-set [116] is used for a two-
dimensional Helmholtz problem with a range of velocities from 1500 m/s to 5500 m/s
distributed over 158 layers in a rectangular domain Ω = (0, 9200) × (0, 3000).



2.4. Three-Dimensional Constant and Non-Constant
Helmholtz Problem 11

Conveniently, we consider some adaptation in the original problem; the original
domain (3000 × 9200) has been trimmed into Ωh = (2048 × 8192) allowing geomet-
rical coarsening of the discrete velocity data in an uncomplicated way, as the domain
remains in powers of 2. The original velocity has also been adapted to make it less
contrasted and the velocity c(x, y) range is 2587.5 ≤ c ≤ 3325.

Grid is resolved for different frequencies such that for maximum wavenumber k,
kh ≤ 0.039 for f req = 1 and kh ≤ 0.39 for f req = 10, 20, and 40. Thus we
have unnecessarily large number of grid points per wave length for the problem with
f req = 1 and approximately 15 grid points per wave length for the rest of frequencies
f req = 10, 20, and 40.
With the description given above, the problem reads

−∆u(x, y) − k(x, y)2u(x, y) = f (x, y), on Ω = (0, 8192) × (0, 2048)

f (x, y) = δ(x − 4000, y) x, y ∈ Ω,

 (2.15)

where k(x, y) =
2π f

c(x,y) is generated in terms of the velocity function c(x, y) over the
domain Ω. The numerical experiments has been performed with all four different
frequencies f = 1,10, 20, and 40 Hz. The range of velocities is shown in Figure
2.3(a). The Sommerfeld radiation boundary condition, given in Equation (2.5), is
supplied on all sides of the domain.

2.4 Three-Dimensional Constant and Non-Constant
Helmholtz Problem

Three-dimensional problems are mimic industrial problems. We will also solve these
practical problems with our proposed solvers. For this, we consider the Helmholtz
equation in a simple three-dimensional domain; the unit cube Ω = (0, 1)3 given by

−∆u(x, y, z) − k(x, y, z)2u(x, y, z) = f (x, y, z), on Ω = (0, 1)3

f (x, y) = δ(x −
1
2
, y −

1
2
, z −

1
2

) x, y, z ∈ Ω,

 (2.16)

Firstly, we consider a constant wave number throughout the domain.

Next the wave number is contrasted in three layers over the domain as shown in
Figure (2.4). Wave numbers in bottom and top layers are scaled by a = 1.2 and
b = 1.5 respectively. The point source location is set at ( 1

2 ,
1
2 , 1) which allows wave

propagation throughout the layers. For the space discretization, the step size h must
satisfy the relation k2h ≤ 0.625. The Sommerfeld boundary condition, presented in
Equation (2.5), is imposed on all faces of the cube.
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Figure 2.2: The Marmousi problem introduced in [116].

Remark 1. Few applications involve (acoustic) attenuation. For these type of appli-
cations, the Helmholtz equation is written as

− ∆u(x) − (1 − αi)k2(x)u(x) = f (x), (2.17)

where 0 ≤ α � 1 indicates the fraction of damping in the medium.

The “damped” Helmholtz equation (2.17) is generalized. Generally we will use
the Helmholtz equation without damping as defined in perspective sections, however
it will be mentioned exclusively if the damping term is incorporated.

2.5 Discretization and Pollution in Wave Propagation

A numerical solution of any (partial differential) equation involves the step of getting a
discrete analogue of the given equation. The problem under consideration can be dis-
cretized by many methods including finite element methods (FEM), finite difference
methods (FDM) and others. FEM methods with a discussion of the discretization ac-
curacy are reported in [68, 6, 12]. The references [114, 53, 105] exploits a variety of
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Figure 2.3: The Marmousi problem introduced in [116].

FDM discretizations. The problems with complex physical domains are commonly
dealt with FEM, whereas FDM is well known for effortless discretization of simple
geometries. The two important challenges faced by any discretization scheme for the
Helmholtz problem are :

• Problems with large wave numbers have highly oscillatory solutions. Resolu-
tion immediately requires high refinement of the grid or the use of a higher order
discretization method.

• In order to ensure the accuracy of the computed solution at very high wave
numbers, as this solution is highly oscillatory, the grid is required to be more
refined to capture oscillations. Suppose if “h“ is the mesh size of discretization,
this can be done by keeping kh to be small. However it has been observed in
literature [12] and experiments that an increase in k deteriorates the accuracy
even if kh is kept small enough. This indicates that the increase in grid size
should be proportional to the characteristic of Helmholtz equation called wave
number. To reduce the discretization error acceptably, the discretization should
meet the stringent conditions such as imposing the condition k3h2 ≤ ε [12].
This problem is termed as pollution or nuisance in wave propagation.
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Figure 2.4: Layered wave number distribution and point source location in three di-
mensional unit cube domain.

The rule of thumb for the second order accurate O(h2) finite difference and linear
FEM discretization is that at least 10 nodes per wavelength λ = 2π

k should be
employed, which leads the restriction

kh ≈
2π
10
≈ 0.628 . (2.18)

However higher values of k imply shorter wavelengths and thus a fine grid to
capture short wavelengths. If a certain domain encounters more wavelengths,
the so-called pollution error accumulates. In some class of problems the accu-
racy might require more refined grids, say 20 or 30 grid points per wavelength
(gp/wl) to overcome the pollution error [12]. For a given wave number k, we
choose grid size h according to Condition (2.18) throughout this work, unless
mentioned explicitly.

Having simple geometries in geophysical seismic imaging applications, second
order FDM is used in this thesis. The discretization of the test problem with con-
stant wave number Equation (2.10) in a unit square domain is explicated. Sommerfeld
boundary conditions (2.11) are incorporated.
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The finite difference discretization of the two dimensional problem with constant
wave number

−∆u(x, y) − k2u(x, y) = f (x, y), on Ω = (0, 1) × (0, 1)

f (x, y) = δ(x −
1
2
, y −

1
2

) x, y ∈ Ω,

 (2.19)

on a uniform mesh with mesh width hx = hy = h in both x and y-direction yields the
five point stencil

[Ah] =
1
h2


−1

−1 4 − k2h2 −1
−1

 , (2.20)

and vertex-center boundary elimination yields the stencil for lower-left grid point

[Ah] =
1
h2


−2

0 4 − k2h2 −2
0

 . (2.21)

If the grid is ordered lexicographically, the above stencil leads to a system of linear
equations

Ahuh = fh, (2.22)

where the discrete Helmholtz operator Ah is the sum of a stiffness matrix −∆h, mass
matrix −k2Ih and boundary conditions matrix −ιkBh

Ah = −∆h − k2Ih − ιkBh . (2.23)

The FDM discretization of a three dimensional problem does not carry any complexi-
ties and is analogous to that of the two dimensional problem. It comes up as a 7-point
stencil, as it is 5-point in the two dimensional case. The matrix in linear system (2.22)
is complex-valued because of the Sommerfeld boundary conditions, indefinite in terms
that eigenvalues of the matrix lies on both sides of the imaginary axis in the complex
plane, symmetric but non-Hermitian, and ill conditioned.

Remark 2. Assume that the physical domain has a characteristic length l̄ and con-
sider a non-dimensional domain [0, 1]3. The non-dimensional length is determined as
x̃ = x/l̄, ỹ = y/l̄ and z̃ = z/l̄. Thus

∂

∂x
=

1
l̄
∂

∂x̃
,

∂

∂y
=

1
l̄
∂

∂ỹ
, and so on.

Substituting these relations into Equation (2.17) results in

−∆̃u(x̃) − (1 − αi)k̄2(x)u(x̃) = f (x̃), x̃ = (x̃, ỹ, z̃), in Ω = (0, 1)3,

with the wavenumber in the non-dimensional domain, denoted by k̄, can be related to
the physical quantities in the physical domain by the relation

k̄ = 2π f l̄/c. (2.24)
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Throughout this thesis, we will use the notation k for the wavenumber regardless of the
domain we are considering. However, the meaning should be clear from the context.
The wavenumber would be dimensionless if considered domain is unit.

2.6 Spectrum of the Helmholtz operator

An eigenvalue problem for operator L is, finding a pair (φ, λ) of eigenfunctions and
eigenvalues respectively, such that

Lφ = λφ

and φ is not a zero function. The one-dimensional discrete eigenvalue problem for the
given Helmholtz operator (2.23) with homogeneous Dirichlet boundary conditions
(2.8) in a unit domain will read as(

−∆h − k2Ih

)
φh = λhφh (2.25)

If Ωh is a given discrete domain with grid-size h = 1
n and x = [x j] for 1 ≤ j ≤ n − 1

is the grid vector, then a simple derivation brings out the discrete eigenfunctions

φ`h = sin(`πx) for 1 ≤ ` ≤ n − 1 (2.26)

and the corresponding eigenvalues

λ`h =
1
h2 (2 − 2 cos(`πh) − k2h2) . (2.27)

Similarly, with a step-size h = 1
n in both x- and y-directions on a unit square

domain, the discrete eigen functions of a two-dimensional Helmholtz problem with
Dirichlet boundary conditions given in Equation (2.13) are

φ`1,`2
h = sin(`1πx) sin(`2πy) for 1 ≤ `1, `2 ≤ n − 1 (2.28)

where x and y are grid vectors in x- and y-direction. corresponding to the eigenvalues

λ`1,`2
h =

1
h2 (4 − 2 cos(`1πh) − 2 cos(`2πh) − k2h2) . (2.29)

By graphical interpretation of the above given discrete spectrum, it can easily be
shown that the increasing wave number k causes severe indefiniteness i n the prob-
lem i.e. more negative eigenvalues occur in the spectrum. The negative eigenvalues
of the two dimensional Helmholtz problem from the Equation (2.29) are quantified
in Figure 2.5(a), which shows the increasing number of negative eigenvalues against
the increasing wave number k. The eigenvalues are plotted on a grid which takes ap-
proximately 20 grid-points to resolve one wavelength. It is also important to make
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the observation that for a fixed wave number, making the grid step smaller does not
influence this characteristic of the spectrum. This means that the number of negative
eigenvalues does not increase when the grid is more refined for a fixed wave number,
and the number of negative eigenvalues solely depends upon the wavenumber. How-
ever the the ratio of the negative eigenvalues to the total number of eigenvalues, which
is defined as

ratio =
Number o f negative eigenvalues

Number o f total eigenvalues
,

remains exactly the same for wave numbers k > 100 as long as kh is constant. This is
evident in Figure 2.5(b).
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Figure 2.5: The trend of the increasing number of negative eigenvalues for the two-
dimensional Helmholtz against the wavenumber. The Grid resolution is set such that
there are 20 grid-points per wavelength. On the right, the ratio of the negative eigen-
values to the total eigenvalues is plotted.
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Chapter 3
Preconditioner Survey

3.1 Preconditioners for Helmholtz: Survey

The efficient numerical solution of the discrete Helmholtz equation has long been an
open problem. The Helmholtz system arising from a FDM discretization appears to be
sparse, complex valued due to the Sommerfeld absorbing boundary conditions, sym-
metric but not Hermitian and carries negative eigenvalues, keeping it into the class of
indefinite systems. Further, the elimination of the Sommerfeld (Neumann) boundary
conditions makes it non-symmetric. Earlier, direct methods had been used for these
problems. But since most practical problems are modeled from a three dimensional
geometry and also certain physical constraints require a tight grid refinement, this
leads to a very large discrete problem. Thus direct methods became of no use. Two
classes of iterative methods were attractive. The first one is multigrid, the second one
is a Krylov method.

Multigrid methods are considered efficient for elliptic problems [113, 63, 118, 22,
20]. A careful construction of the multigrid components, which are smoother and
coarse grid correction, leads to convergence often independent of grid size h. The tra-
ditional smoothers like Jacobi and Gauss-Seidel do not perform well when applied to
indefinite problems, particularly the Helmholtz equation with increasing wave num-
ber k [64, 113]. The coarse grid grid correction process may change the sign of the
eigenvalues close to origin [48]. In this case, rather than giving convergence accelera-
tion, coarse grid correction may cause divergence [61]. For more details, the reader is
referred to Section 3.4.

The second class consists of Krylov subspace methods [98]. Krylov subspace
methods are attractive for sparse linear systems. There are various types of Krylov

19
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subspace methods and the different variants are classified for different systems with
certain characteristics [97]. The ill conditioned systems, in particular an indefinite
linear system, restrict the choice of Krylov subspace method. For a non-symmetric,
indefinite system, well established GMRES [99] and Bi-CGSTAB [115] are the meth-
ods of choice. The convergence analysis have been explored significantly for GMRES
but the method uses long recursions, which lead to huge memory and CPU time if the
number of iterations is large. Bi-CGSTAB has been preferred for using short recur-
sions. The recently proposed IDR(s) method [106] can also be employed. In general,
the convergence of Krylov subspace methods depends upon the spectrum of the coef-
ficient matrix. Thus it is necessary for any Krylov subspace method to have a system
with a favorable spectrum of the matrix in order to converge fast [98]. The linear
system is typically preconditioned to have a favorable spectrum for respective Krylov
iterations. Preconditioning means, a Krylov subspace method is applied to the left
preconditioned system

M−1
h Ahūh = M−1

h bh (3.1)

instead of the system given in Equation 2.22. The preconditioning matrix Mh is chosen
such that spectrum of the preconditioned matrix M−1

h Ah has a more favorable spectrum
than Ah in order to reduce the number of Krylov iterations. If we take Mh = Ah as
preconditioner, this would be the ideal preconditioner as a Krylov method will need
only one iteration for the identity matrix. An instant and rough approximation of
coefficient matrix Ah can be obtained by picking diagonal entries of Ah, and is called
a diagonal preconditioner. Many other preconditioners have been developed and used
for various problems depending upon the properties of coefficient matrix Ah. For
certain problems, a preconditioner arised from a continuous operator, instead of the
coefficient matrix can be used. In the subsequent section, we discuss preconditioners
used for the Helmholtz problem particularly.

3.2 Standard Preconditioners for Helmholtz

As we know, the performance of Krylov solvers typically depends upon the choice of
the preconditioner. Therefore, many preconditioners have been proposed for Helmholtz,
both matrix based and operator based. A class of preconditioners is based upon the
factorization of the system matrix. This class of preconditioners for Helmholtz is
obtained by Incomplete LU factorization of matrix Ah. An incomplete LU factoriza-
tion preconditioner (ILU) has been examined in [102, 40] with a variation in fill in.
Approximation of LU depends upon the fill-in allowed in the factors L and U. More
fill-in produces a better accuracy. The incomplete LU factors are obtained by Gaus-
sian elimination and then adapting fill-in. Most well known type of fill-in is keeping
the same sparsity pattern of Ah. This is generally denoted as ILU(0). Accuracy can be
increased by allowing more fill-in. ILU(tol) is a variant where the entries in factors
L and U valued less than the defined tolerance tol are dropped. For more variants,



3.3. Historic Development of the Shifted Laplace Preconditioner 21

the reader is referred to [96, 98]. Since the matrix obtained from the problem of our
interest, the Helmholtz problem, is an indefinite one, not all factorizations may be
stable. This can be evident in the experiments performed with ILU(0) and ILU(tol)
preconditioners. A brief performance of ILU(0) and ILU(0.01) has been presented
in Table 3.1, where the number of iterations taken by GMRES without preconditioner
and GMRES preconditioned by ILU(0) and ILU(0.01) are compared. These two pre-
conditioners reduced the number of Krylov iterations, particularly ILU(0.01). Though
it can be deduced that for large wave number problem, ILU type preconditioners are
not practical since ILU(tol) will have a more dense pattern. Conclusively, ILU type
preconditioners have only been a good choice for the Helmholtz problem with small
wave number.

k No Prec. ILU(0) ILU(0.01)

10 36 21 8
20 82 43 16
30 143 71 24
40 231 99 38
50 341 120 52

Table 3.1: Number of GMRES iterations without preconditioner, with ILU(0) and
ILU(0.01) preconditioners.

An analytical approach is considered in [57] for obtaining a factorization precon-
ditioner AILU. The references [56, 55] show the application of AILU for Helmholtz
problem. An approximate factorization preconditioner has been obtained by separa-
tion of variable technique in [91]. This preconditioner is constrained to constant wave
number problems and diverges for non-constant wave number problems.

Operator based preconditioners are more problem specific and appear to be more
efficient. The early work on operator dependent preconditioners for Helmholtz has
been reported in [11, 73] in which a Laplace operator and a Laplace operator with
a positive real shift, respectively, are proposed. Both preconditioners lead to good
results for medium size wave numbers. For large wave numbers numerical results on
the contrary show a steep increase in the number of iterations.

3.3 Historic Development of the Shifted Laplace Pre-
conditioner

Laplace preconditioners for Helmholtz problems were extended with an incorporation
of a complex shift in [43]. Later a generalized complex shift has been proposed and
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studied in [46, 47]. For β1, β2 ∈ R the complex shifted Laplace preconditioner (CSLP),
denoted by Mh(β1, β2), can be constructed by discretization of the operator

M(β1, β2) = −∆ − (β1 − ιβ2)k2 , (3.2)

where β1 and β2 are real and imaginary shifts respectively. Usually, the operator is
obtained by a discretization with the same boundary conditions provided for the orig-
inal problem. Development of CSLP has been a breakthrough in preconditioning for
Helmholtz problem. The Krylov solver preconditioned by CSLP requires a number
of iterations that grows only linearly as the wave number increases. Further, with
the appearance of the complex shift in CSLP, a computationally feasible solution has
become available. As the complex shift introduces damping and renders the precon-
ditioned system amenable to approximate inversion using multigrid or modified fac-
torization methods [77]. More recently algebraic multigrid has been used to invert the
preconditioner [17, 1]. Inspired by advances in CSLP, a number of generalizations of
the work appeared shortly afterwards in [42, 93, 17, 1, 44] together with applications
in different industrial contexts in [120, 3, 94, 89, 90, 114, 2, 87]. Along-with its vari-
ations, CSLP preconditioner has been observed as most effective and robust one for
Helmholtz.

The 2D constant wavenumber problem defined in Section 2.2 has been solved in
Matlab to make a comparison between the ILU and CSLP with different shifts. Table
3.2 presents the number of iterations taken by GMRES preconditioned by ILU(0), ILU
with 0.01 fill-in tolerance i.e. ILU(0.01) and various CSLP preconditioners. All pre-
conditioners are inverted exactly. The CSLP preconditioner Mh(1, 0.5) is apparently
more close to the original operator and is the optimal one in the list of preconditioners
given in Table 3.2. M(1, 1) is also a competitor and can be more useful when approx-
imation of preconditioner is taken into considerations instead of exact inversion.

K ILU(0) ILU(0.01) Mh(0, 0) Mh(−1, 0) Mh(0, 1) Mh(1, 1) Mh(1, 0.5)

10 21 8 9 12 10 10 8
20 43 16 19 22 19 18 13
30 71 24 37 38 30 26 17
40 99 38 62 58 40 30 19
50 120 52 96 84 51 33 21
60 143 76 136 107 59 37 23

Table 3.2: A comparison of the number of iterations for ILU type preconditioners and
CSLP preconditioners using different shifts for various wave numbers.
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3.4 Multigrid approximation of CSLP

Linear systems with a CSLP-like coefficient matrix can be solved with many methods
including Krylov subspace and multigrid methods. Multigrid methods are well known
to be efficient solvers for elliptic problems. Further, with the appearance of the imag-
inary shift (β1, β2) in CSLP, CSLP becomes more attractive for the multigrid method.
The imaginary shift introduces damping and renders preconditioned system amenable
to approximate inverse using multigrid [40].

Our focus application are of Geophysical wave imaging, in which usually the do-
main is either a square or a rectangle. Therefore, the following discussion of multigrid
is limited to the geometric multigrid approximation of CSLP, whereas AMG has been
reported to approximate CSLP for more complicated geometries in [17, 1].

Multigrid methods combine two basic techniques, a smoother and a coarse grid
correction. Since basic iterative methods are observed to have good smoothing char-
acteristics in general, therefore, the high-frequency modes of the error are smoothed
by application of basic iterative methods like Jacobi or Gauss Seidel iteration. The
process is known as pre-smoothing. Whereas the low-frequency modes needs more
attention. These low frequency modes can be expressed better on a coarse grid. Thus
they are transformed to a coarse grid, smoothed there and then subsequently interpo-
lated back to the fine grid. The fine grid approximation is updated by interpolated
error components. The process is known as a coarse grid correction. The fine grid
approximation encounters the high-frequency error due to the prolongation procedure
used to transfer the correction. Therefore, a corrected solution on the fine grid is
smoothed, which is called post-smoothing. This gives a two-grid method. The size of
the coarse problem is substantially smaller than the size of the fine grid problem, still
the coarse problem is too large to solve directly. However the coarse problem has the
same form as of the fine level. Therefore, the coarse problem can further be iterated
by an other two-grid cycle, thus introducing an other coarser problem. This process
can be repeated recursively until a coarsest level problem with a very few grid-points
is reached. This comes up as a multigrid cycle [107, 113]. Different cycle strategies
can be implemented for various problems.

In the start of the development of CSLP, only an imaginary shift was incorporated
with a Laplace operator, which was reported in [43]. The convergence factor of multi-
grid methods with V-cycle and W-cycle and with different smoothing strategies are
presented in Figures (3.1) and (3.2). The CSLP defined in Equation (3.2) along with
Sommerfeld boundary Conditions (2.5) is used for the experiment, for wave number
k = 40 and β1 = 0 and with a range of 0 ≤ β2 ≤ 1. The discretized unit square
domain turns up a grid of size 64 × 64 abiding Condition (2.18). Figure (3.1(a)) gives
the convergence factor (CF) for a multigrid V-cycle. Figure 3.1(b) shows the CF for
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a multigrid W-cycle. In both methods, Gauss-Seidel has been used as smoother. Ap-
proximation of CSLP is comparable with both multigrid V- and W-cycles. However
a W-cycle is computationally expensive. Next Figures (3.2(a)) and (3.2(b)) show the
convergence factor for V- and W-cycles respectively, whereas Jacobi iterations are
used as smoothers. The figures show different number of pre- and post-smoothing.
For e.g. V(v1, v2) = V(1, 1) is a V-cycle with one pre- and one post-smoothing step.
One can observe that a multigrid approximation of CSLP is efficient when the real
part of the shift is zero i.e. β1 = 0.

Later on, generalized complex shifts are proposed in [106, 46]. It has been shown
that inclusion of the real shift β1 = 1 reduces the efficiency of multigrid approxima-
tion, however the CSLP with both real and imaginary shifts decreases the number
of iterations of the global method. It is straightforward to see that by increasing the
imaginary part, CSLP become more favorable for multigrid approximation. Tis may
deteriorate the global convergence of Krylov iterations, as an increase in the imagi-
nary shift makes CSLP less resembling to the original operator, but inclusion of real
shift is still perfered since it causes significant reduction in global number of iteration.

An advancement in this regard has been proposed in [24], where different relax-
ation parameters have been used at different levels. Briefly, the choice of shifts is
sensitive and multigrid approximation is efficient if the imaginary shift is increased
however the global convergence is slower because the preconditioner is a worse ap-
proximation of the original matrix. An analysis on the choice of shift for CSLP has
been performed in [30]. The issue of a flexible imaginary shift is further discussed
in Chapter 4 where the possibilities of an increasing imaginary shift are suggested, in
order to have a better approximation of CSLP.

3.5 Spectrum of the CSLP/Convergence Obstacles

Generally, preconditioners are used to cluster the spectrum of the coefficient matrix
from the system-to-be-solved. Applying CSLP M−1

h,(β1,β2) to the Helmholtz operator
Ah, the spectrum of M−1

h,(β1,β2)Ah becomes clustered in the complex plane near one and
bounded above by 1 in absolute value [59]. Further spectral properties of CSLP are
also elaborated in [59, 100, 79]. Analysis also shows that the smallest eigenvalues of
the preconditioned operator rush to zero as the wave number increases. This has been
shown in Figure (3.3). This figures illustrates that the spectral radius is bounded by
1 and that the spectrum has more eigenvalues around the origin as the wave number
increases, as the left-hand side figure shows few eigenvalues near zero, where more
eigenvalues occur to be around the origin in the right-hand side figure where the wave
number increases from k = 30 to k = 120
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Figure 3.1: Convergence factor for Mh(0, β2) with the Gauss Seidel smoother versus
imaginary shift β2
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Figure 3.2: Convergence factor for Mh(0, β2) with the Jacobi smoother versus imagi-
nary shift β2 .

3.6 Down-sides: Need of Projection

The increasing wave number makes the smallest eigenvalues in the spectrum of M−1
h Ah

to rush to the origin in complex plane. For certain large wave numbers, it is even in-
conceivable to apply CSLP. The small eigenvalues need to be taken care of. Deflation
is a technique commonly used to get rid of a certain part of the spectrum, and to force
the “bad” eigenvalues not to participate in the Krylov iterations. This technique has
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Figure 3.3: Spectrum of the M−1
h,(1,0.5)Ah for different values of the wave number k.

been used for many problems [109, 25, 69]. For Helmholtz problems, deflation has
been proposed in combination with the shifted Laplace preconditioner in [45, 42].
This can be seen as a second level preconditioner that removes small eigenvalues.

The next chapter details more about deflation in general, and deflation for Helmholtz
problem followed by the analysis of the deflation.
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Deflation

Convergence of the Krylov subspace method are typically adversely affected by small
eigenvalues. Deflation is the technique that aims at dealing with the undesired part of
spectrum in the (un)preconditioned linear system. Deflation on a system-to-be-iterated
can be performed either by projecting the spectrum by applying the projection pre-
conditioner P [84] or by augmenting eigenvectors corresponding to the convergence-
hampering eigenvalues into the Krylov subspace [80, 81]. As eigenvectors are usually
costly to construct, therefore the projection preconditioner has often been used to de-
flate unwanted eigenvalues to make its influence void on Krylov subspace [52, 111].
Usually, but not necessarily, the stagnated convergence is caused by eigenvalues of
small absolute value. The next sections elaborate on projection deflation. Develop-
ment of a projection preconditioner (deflation) can be considered the same as of the
coarse grid correction of standard multigrid method [103] while multigrid inter-grid
operator are taken as deflation matrices.

In the next section, the deflation is explained, the subsequent sections detail the
characteristics of the deflation preconditioner. In the final sections, we discuss the
deflation preconditioner in context of the Helmholtz problem.

4.1 Deflation as Preconditioner

The basic idea of deflation is, by means of the projection preconditioner, to bring
eigenvalues of small absolute value to zero, in general for complex valued linear sys-
tems. The deflation preconditioner can be defined as

P = I − AQ where Q = ZE−1ZT and E = ZT AZ (4.1)

where Z ∈ Rn×r is introduced as a deflation matrix whose r < n columns are called
deflation vectors.

27
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The deflation preconditioner 4.1 can be characterized based on the method it is
constructed, and the choice of deflation vectors. We discuss these characteristics of the
deflation preconditioner later on in subsequent sections in details. The characteristics
are :

• Construction method

• Shifting (deflated spectrum) to 1

• Choice of deflation vectors i.e. Z

• Implementation/Parallel Implementation

Essentially, the construction method is base to differentiate the types of preconditioner.
Where as the choice of deflation vectors influences the effectiveness of deflation pre-
conditioner. Subsequent sections discuss the above listed characteristics respectively.

4.2 Variants of Deflation Preconditioner

Due to different choices in the deflation vectors, there are many types of deflation pre-
conditioners. Though in context of our target application Helmholtz, we will consider
five deflation variants. We subdivide those into two groups. The first group consists
of two members and performs deflation based on the CSLP preconditioned Helmholtz
operator, instead of the un-preconditioned one. This group gives rise to complicated
preconditioners. They have been used in [42, 45]. The second group consists of three
members and performs deflation based on the un-preconditioned Helmholtz operator.
The distinguishment of these variants in both groups is based on the construction of
the operator E.

To cast five deflation variants into the same framework we will introduce the fol-
lowing notation. We use this notation only in the current section. We will denote
by Ah the system matrix to which deflation will be applied. In the following Ah

will be set equal to Ah as defined in 2.23 or to (some approximation of) M−1
h,(β1,β2) Ah,

where Mh,(β1,β2) is defined by 3.2. Let n denoted the size of Ah. We define the ma-
trix Zh ∈ R

n×r whose r < n columns are the deflation vectors. These vectors should
be chosen such that the matrix Zh has full rank. Given a choice for Ah, we will de-
note by E2h ∈ C

r×r its approximation on the coarser grid. In the following E2h will
be constructed by either Galerkin coarsening, approximate Galerkin coarsening or re-
discretization. Construction of operator E2h will be the defining factor for the different
variants. With the notation defined, the deflation preconditioner 4.1 can be written as

Ph = I −AhQh where Qh = ZhE−1
2h ZT

h and E2h = ZT
hAhZh (4.2)

In the following sections, we describe the five deflation variants in more detail.
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4.2.1 Deflation using the CSLP Preconditioned Operator: Ideal-
ized Variant (V1)

In the first of the five deflation variants that we consider in this thesis, the coarse grid
operator E2h is defined by Galerkin coarsening of the CSLP preconditioned Helmholtz
operator, i.e., we set

Ah = M−1
h,(β1,β2) Ah and E2h = ZT

hAhZh . (4.3)

One can observe that for every coarse grid iteration, an application of M−1
h,(β1,β2) is

needed. This makes the method infeasible and impractical to implement. Since merely
construction of E2h costs the inversion of Mh,(β1,β2). Application of this deflation vari-
ant is performed on Ah, which is the CSLP preconditioned Helmholtz operator. The
spectral properties for the variant are explored in the Chapter 5. Later in this chapter,
the complexity of the implementation for this variant is discussed.

4.2.2 Deflation using the CSLP Preconditioned Operator: Practi-
cal Variant (V2)

The first variant is too expensive to use. It costs inversion of CSLP at the fine grid
for construction of operator E2h on the coarse grid. The second deflation variant ren-
ders the first variant computationally feasible by introducing an approximation. We
define the coarse grid operators M2h,(β1,β2) and A2h as M2h,(β1,β2) = ZT

h Mh,(β1,β2)Zh and
A2h = ZT

h AhZh respectively. The approximation of the Galerkin coarse grid operator
is computed as follows. For sake of simplified derivation, we consider the deflation
matrices Xh and XT

h and we assume matrices Xh ∈ R
n×n and XT

h are invertible. Then
the approximation of the coarse grid operator follows as:

E2h = XT
hAhXh

= XT
h (M−1

h(β1,β2) Ah)Xh

= XT
h Xh

(
X−1

h M−1
h(β1,β2)(X

T
h )−1XT

h Ah

)
Xh

= XT
h Xh

(
X−1

h M−1
h(β1,β2)(X

T
h )−1

) (
XT

h AhXh

)
= ΘhM−1

2h,(β1,β2) A2h . (4.4)

Though our deflation matrices Zh and ZT
h are not invertible in general. However in

consideration of above derivations, the approximation of the coarse grid operator can
be done as

E2h = ZT
hAhZh ≈ ΘhM−1

2h,(β1,β2)A2h (4.5)

where Θh = ZT
h Z is an approximation term. This approximation makes the precon-

ditioner feasible to use, however the resulting convergence can be slower than the
convergence for the ideal variant. We will discuss this in Chapter 5 with analysis.
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Apart from using operator Ah for construction of the deflation preconditioner, this
variant of deflation is also supposed to be applied on Ah straightforwardly. Further
implementation-related issues are discussed in Section 4.7 and 4.7.1.

4.2.3 Deflation using the Helmholtz Operator (V3)

The third deflation variant deflates the Helmholtz operator, i.e., we set

Ah = Ah and E2h = ZT
hAhZh . (4.6)

Here E2h is the natural Galerkin operator. This variant is most elegant and refined one
amongst all the variants, which are discussed in this document. The development of
this variant of deflation is based on the Helmholtz operator Ah. The preconditioner can
be applied with combination of standard preconditioner. For the Helmholtz operator,
application of this variant is performed in combination with CSLP Mh(β1,β2). We will
elaborate the implementation and approach to multilevel extension of this variant in
Sections 4.6 and 4.6.1. Similar to earlier variants, an extensive spectral analysis shall
be performed in Chapter 5.

4.2.4 Deflation using the Complex Shifted Helmholtz Operator
(V4)

The fourth variant deflates the complex shifted Helmholtz operator, i.e., we set

Ah := ∆h − (β̂1 − ιβ̂2)k2I and E2h = ZT
hAhZh . (4.7)

This variant can been seen as a follow-up of the third variant. Where for multilevel ap-
plication of the third variant requires the iterative solution of the coarse grid operator.
The motivation comes from the results of spectral analysis, which indicates instability
in the iterative coarse grid solve in the third variant. In this variant the coarse grid
solve is stabilized by incorporating real and imaginary shifts. Immediate consequence
of these shifts is that this variant is not a projection. Analysis verifies this fact. As
the third variant, this variant of deflation can also be applied in combination with a
standard preconditioner, which in case of Helmholtz we consider CSLP. Naturally
the shifts used in development of this variant (β̂1, β̂2) are different from those used in
CSLP. For further analysis, we refer to Chapter 5.

4.2.5 Deflation using Re-discretization (V5)

In all previous defined variants of the deflation preconditioner, we use the Galerkin
coarse grid operator. In a two dimensional problem, in contrast to the five-point sten-
cil, the Galerkin coarse grid operator turns out to be a nine-point stencil. Similarly
the Galerkin CSLP has also a nine-point stencil. Re-discretization of the coarse grid
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avoids the stencil growth. The fifth variant defines a non-deflation operator by defin-
ing the coarse grid operator E2h by a re-discretization approach. We will consider
re-discretizing the Helmholtz operator, i.e., we set

E2h = re-discretization(Ah) . (4.8)

This choice is motivated by the wish to preserve the sparsity pattern of the fine grid
operator on the coarser grids. Details are discussed via analysis in Chapter 5.

Typically, the standard deflation preconditioner defined in Equation 4.1 projects a
certain part of the spectrum to zero. For many application, one might need to project
at other values, rather than to zero. Essentially, for multilevel approaches of deflation,
deflation to zero might cause serious problems of scattering eigenvalues around zero,
as the coarse grid operator is approximated in multilevel approaches. We discuss this
is in the next section, how one can shift the deflated eigenvalues to a certain value not
equal to zero.

4.3 Shifting Deflated Spectrum

The deflation, described above, shifts troublesome eigenvalues to zero unlike multi-
grid methods that push such eigenvalues to unity. Also we note that in the deflation
preconditioner, the operator A2h appears to be inverted. The choice of deflation matri-
ces decides the sparsity pattern of A2h. If the columns of the deflation matrix are the
eigenvectors of Ah, then A2h simply is a diagonal matrix of eigenvalues and is easy
to invert. But eigenvectors are not usually used as deflation vectors, as they are ex-
pensive to compute. Some sparse vectors, which span, approximate the span of the
“bad eigenvectors” can be used. As in the case of Helmholtz, the prolongation matrix
4.13 of multigrid has been used as deflation matrix, which is sparse. Even with this
choice of sparse deflation matrix, which results in a relatively sparse A2h, the exact
inversion of A2h is impractical for large problems and one has to resort to approxi-
mate solvers instead. Without proper care, this will however lead to the occurrence
of close-to-zero eigenvalues in the preconditioned systems, resulting in slow Krylov
convergence. This is evident in Figure 4.1, where the exact eigenvalues of the deflated
preconditioned one-dimensional operator M−1

h,(β1,β2)Ph,2hAh, with parameters wavenum-
ber k, grid-size h and (β1, β2) valued at 100, 1

160 and (1, 0.5) respectively, are plotted
with exact and in-exact inversion of the coarse grid operator A2h respectively. The
in-exact inversion of A2h is meant by approximation of A−1

2h by few GMRES iterations.
Figure 4.1(a) shows the eigenvalues which involves exact inversion of the coarse grid
operator A2h where we see that the eigenvalues are nicely projected to the origin. On
the other hand, in Figure 4.1(b) in the highlighted box, we see a spread of eigenvalues
around 0 caused by in-exact inversion of A2h. The CSLP has been inverted exactly in
both figures.
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Figure 4.1: Approximation of the coarse grid operator in Equation 4.1 disperse the
eigenvalues in the vicinity of origin in the spectrum of the deflated preconditioned
Helmholtz operator given on the left-hand side of Equation 4.17 .

This indicates the sensitivity of approximate solve of A2h. This can be avoided by
deflating to the largest eigenvalue (or certain value, where the spectrum is expected to
be clustered) of the preconditioned system, instead of deflating to zero. The disperse of
the eigenvalues near the clusters away from the origin would be more favorable than
that around origin. This can performed by adding a term, which shifts the deflated
eigenvalues from the origin to the value γ [83, 52]. With this additive term in 4.16, we
obtain the preconditioner of the type

Ph,γ = Ph + γQh = (Ih − AhQh) + γQh. (4.9)

Some deflation preconditioner shifts the deflated spectrum without any trouble to
the value assigned. Whereas other deflation preconditioners, particularly those con-
structed for certain applications, are reluctant to shift the deflated spectrum in a un-
complicated way. One of the examples is variant V2 deflation preconditioner which is
elaborated in Section 4.7.1.

In the next section, we discuss the choice of deflation vectors for Helmholtz equa-
tion.

4.4 Choice of Deflation Vectors

Deflation vectors can be seen as basic ingredients of the deflation preconditioner. The
choice of the deflation matrix Z is related with the invertibility of the matrix E there-
fore the deflation matrix Z should at least be a full rank matrix. Zero and one are the
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only eigenvalues of the deflation preconditioner 4.1, assuring it to be a projection. The
choice of deflation vectors is an open question for different problems. Relative in terms
of the background of the problem. For e.g. in [69], the approximations to rigid body
modes of composites has been chosen as deflation vectors. Also in the problems with
a linear system with multiple right-hand sides can benefit by using extracted resid-
uals from one right-hand side as deflation vectors for subsequent right-hand sides.
These strategies for symmetric as well as non-symmetric matrices have been reported
in [104, 31]. Generally, by taking eigenvectors of matrix A as the deflation vectors,
i.e. say;

Z = [v1v2 . . . vr] (4.10)

are the eigenvectors corresponding to eigenvalues {λ1λ1 . . . λr} of A, whereas the spec-
trum of A is given by

φ (A) = {λi} where 1 ≤ i ≤ n (4.11)

then it can be easily verified [111] that the eigenvalues of the deflated operator PA will
be

φ (PA) = {0 . . . 0 λr+1λr+1 . . . λn} (4.12)

In this case, the deflation preconditioner P simply deflates eigenvalues correspond-
ing to those eigenvectors to 0. The eigenvectors are often computationally expensive.
Therefore, it is impractical to construct the deflation preconditioner using eigenvec-
tors as deflation vectors. Subject to availability of eigenvectors Z, Z is a dense matrix,
and subsequently the whole deflation preconditioner will also be dense. This may be
computationally expensive. Approximation of the eigenvectors corresponding to (un-
wanted) eigenvalues can be considered. We notice that the deflation preconditioner
involves the inversion of operator E. The dense deflation leads to a dense E and ulti-
mately a dense the deflation preconditioner 4.1. Therefore the dense (approximation
of eigenvectors) deflation vectors are avoided in practice. The approximations of the
eigenvectors can be useful where sparsity is taken into consideration, as the sparsity of
deflation vectors plays a vital role in construction of the deflation operator. For details
of possible choices of deflation vectors, the reader is referred to [109, 108].

4.4.1 Deflation Vectors for Helmholtz

In this section we concentrate on the construction of the deflation preconditioner par-
ticularly for the linear system arising from the Helmholtz equation. The base com-
ponent in the deflation preconditioner is the deflation matrix Z. As there is no es-
tablished theory to choose deflation vectors, however a better and necessarily sparse
approximation of the eigenvectors would be theoretically preferred. The dense de-
flation vectors lead to a dense deflation preconditioner and this might not be com-
putationally acceptable. Talking particularly about deflation vectors for Helmholtz
system, we noticed that the analysis of the Helmholtz matrix preconditioned by CSLP
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shows that the preconditioned operator contains many small eigenvalues particularly
when the wavenumber is increased. Thus we perform deflation with geometrically
constructed multigrid vectors. This idea originated from multigrid framework. As it is
well known that the multigrid inter-grid operators highlight the small frequencies and
projects them on coarser levels, which is helpful to treat them on coarser levels. They
are also sparse, hence computationally cheap to implement. For clarity, before setting
up the deflation subspace matrix, we assume that p is a non-zero natural number and
the given domain Ω is discretized on an uniform mesh with n = 2p elements and mesh
width h = 1/n, in each direction for the two- and three-dimensions.
We also consider the Helmholtz system given in Equation 2.22, assumed to be of size
n. Now in a follow-up of the notation defined in an earlier section, for the Helmholtz
problem we set the deflation subspace in 4.1 equal to the coarse to fine grid interpola-
tion operator i.e.

Z = Ih
2h (4.13)

with the standard coarsening strategy h → 2h. Here we symbolize the things in con-
text of a two-dimensional problem. Corresponding equivalents for one-dimensional as
well as three dimensional problems will be used. Comprehensively for two-dimensional
setting, the bilinear interpolation operator such that for fine grid points not belonging
to the coarse grid has the stencil

[Ih
2h] =

1
4


1 2 1
2 4 2
1 2 1


h

2h

. (4.14)

With the choice Z = Ih
2h, the ZT will be full-weighting restriction operator

I2h
h = c(Ih

2h)T (4.15)

with c a constant scalar. With this choice, the deflation preconditioner Equation 4.1
can be rewritten as

Ph = Ih − Ah Qh where Qh = Ih
2hA−1

2h I2h
h and A2h = I2h

h AhIh
2h . (4.16)

With this choice the deflation operator Ph defined by (4.16) coincides with the trans-
pose of the two-grid correction operator (in multigrid terminology) with a coarse grid
operator A2h build by Galerkin coarsening.

The operator Qh in Equation 4.16 inherits the complex symmetry from Ah, which
is proved in Lemma 1.

Lemma 1. If Ah be a symmetric matrix, I2h
h and Ih

2h as defined in Equation 4.14 and
4.15 then A2h and Qh as given in Equation 4.16 are also symmetric.
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Proof. (A2h)T =
(
Ih
2hAhIh

2h

)T
= (Ih

2h)T (Ah)T (I2h
h )T = I2h

h (Ah)Ih
2h

and
QT

h =
(
Ih
2hA−1

2h I2h
h

)T
= (Ih

2h)T (A−1
2h )T (I2h

h )T = I2h
h (A−1

2h )Ih
2h. �

It is also easy to verify that Ph is a projection and thus the spectrum of Ph,2h

consists of 0 and 1. If it is assured that the Helmholtz operator Ah is non-singular, then
the choice of restriction and prolongation operators as deflation matrix also assures
the non-singularity of matrix A2h.

4.5 Implementation

In this section, we discuss the pros and cons of the implementation of deflation precon-
ditioner. The development of the deflation preconditioner is motivated by the spectrum
of the ( preconditioned ) operator The deflation operator can be applied along-with a
standard preconditioner. The deflation preconditioner can be considered as second
level preconditioner, where the deflation preconditioner is used to transform the spec-
trum of a system preconditioned by some trendy preconditioner more favorable for a
Krylov subspace method. Suppose for a given linear system

Au = b,

which is preconditioned by some stereotype preconditioner, denoted by Mh, then the
deflation operator can be considered as second level preconditioner and the linear
system preconditioned by two preconditioners can be written as

M−1PAu = M−1P.

In our case the linear system is the Helmholtz system Ahuh = bh, the first level pre-
conditioner is CSLP, as defined in Equation (3.2). Also the motivation comes from
the spectrum of the Helmholtz operator preconditioned by CSLP. Therefore, we ex-
plain the procedure of the application of the deflation preconditioner on the CSLP
preconditioned Helmholtz operator Mh

M−1
h Ahuh = M−1

h bh

and it reads as
M−1

h PhAhuh = M−1
h Phbh (4.17)

It is worth to mention here that the preconditioned System (4.17) is equivalent of
solving the system

PT
h M−1

h,(β1,β2)Ahuh = PT
h M−1

h,(β1,β2)bh (4.18)

The same has been discussed in [112, 110] and subsequently has been proved [111]
that both systems have the same spectrum, i.e.

σ(PT
h M−1

h,(β1,β2)Ah) = σ(M−1
h,(β1,β2)PhAh) (4.19)
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The implementation of 4.18 limits to choose the starting vector as Qhbh + PT
h xo, where

xo is an arbitrary starting vector. Where with the implementation of 4.17, the approx-
imated solutions x j+1 at iteration ( j + 1)th is suggested to be updated i.e.

x j+1 = Qhbh + PT x j+1

However the deflation preconditioner combined with ”shifting term” Qh avoids this
complexity. We discuss this later in Section 4.6.1. We perform the application of
the deflation, the way it is defined in 4.17. For sake for elaboration, we present it in
Algorithm 1 where the deflation preconditioner in combination with CSLP is applied
on the Helmholtz system and solved by GMRES. In short, Algorithm 1 shows how
GMRES is employed to solve the two level preconditioned system 4.17. One can
notice at the end that the iterated solution is updated as discussed above. It is necessary
to mention that it becomes more convenient to analyze 4.18, it allows to perform
analysis in framework of multigrid fashion. Therefore, we use the 4.18 for analysis.
We explore further about this in the next chapter.

Algorithm 1 Preconditioned Deflated GMRES for system Au = b
1: Choose u0 and compute r0 = bAu0, b0 = ||r0|| and v1 = r0/b0

2: for j:=1,2,... k or until convergence do
3: ṽ j = Pv j

4: w = M−1Aṽ j

5: for i:=,1,2,... j do
6: hi, j := wT vi

7: w := w − hi, jvi

8: end for
9: h j+1, j := ||w||

10: v j+1 := w/h j+1, j

11: end for
12: Store Vk = [ṽ1, ..., ṽk]; Hk = {hi, j}, 1 ≤ i ≤ j + 1, 1 ≤ j ≤ m
13: Compute yk = argminy||b0 − Hky|| and uk = u0 + Vkyk

14: The entries of upperk + 1, k Hessenberg matrix Hk are the scalars hi, j

15: Update approximated solution uk = Qb + PTuk.

In next part of the chapter, we choose the deflation variants, discussed earlier,
which are more suitable for Helmholtz systems. We elaborate these variants to the
extent of multilevel extensions.

4.6 ADEF1 preconditioner

The term ADEF1 was first coined in [82, 83] for the preconditioner which is primarily
the third variant V3 but it also combines the shifting term, which is defined in Sec-
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tion 4.3. As the deflation preconditioner is set to be applied to the preconditioned
Helmholtz problem, and recalling the shift-preconditioner from Section 4.3, we get
the preconditioner

Ph,ADEF1 = M−1
h,(β1,β2)Ph + γQh,

which is called ADEF1. We note that the basic deflation preconditioner Ph is applied
to the preconditioned Helmholtz and we also know from [59] that the spectrum of
preconditioned Helmholtz by CSLP is known to be bounded above by 1 . Thus for
case of the Helmholtz probelm, this helps in choosing that particular value of γ as
1. Thus this two level preconditioner ADEF1, a combination of the CSLP and the
deflation preconditioner with shift-of-spectrum is written as

Ph,ADEF1 = M−1
h,(β1,β2)Ph + Qh (4.20)

As we mentioned earlier that this preconditioner shifts the corrected or “deflated low
eigen frequencies of the spectrum” to the value γ = 1. This technique immediately tol-
erates the approximation of coarse grid operator A2h, as the deflated part of spectrum is
merely shifted to the value γ = 1 without affecting the remaining part of the spectrum.
Approximate solve of the coarse grid operator is not possible, when the shifting-of-
spectrum strategy is not adapted. In the earlier case, the spectrum is deflated to 0 and
the approximate solve of A2h could have caused the dispersion of the small eigen val-
ues around zero. The linear system preconditioned by ADEF1 preconditioner reads
as

Ph,ADEF1Ahuh = Ph,ADEF1bh (4.21)

The issue of controlling the approximate solve with A2h are further discussed in the
next section.

4.6.1 ADEF1 Multilevel

The algorithm described in the previous section can be viewed as a two-level precon-
ditioner for an outer Krylov iteration in which the CSLP preconditioner 3.2 acting on
the first level is combined with the deflation algorithm (4.16) acting on the second
and in addition with the scaling of the deflated spectrum. Figure 4.2 also explains
this application of two-level preconditioner excluding the scaling part of the deflated
spectrum. Conventionally, the first level preconditioner, CSLP preconditioner can
be approximated by using standard multigrid cycle [47] or with some adaptation of
multigrid cycle ingredients as required by problems with heterogeneity. The deflation
part of the ADEF1 requires the solution of a coarse grid problem with A2h as coeffi-
cient matrix. Of course A2h is impractical to invert explicitly, specially for large wave
number problem. To solve A2h iteratively, a Krylov subspace method can be used.
To understand this, we consider the preconditioned step inside the Krylov subspace
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method, i.e.

z =
(
M−1

h,(β1,β2)Ph + Qh

)
υ

=
(
M−1

h,(β1,β2)(I − AhQh) + Qh

)
υ,

= M−1
h,(β1,β2) (υ − AhQhυ) + Qhυ,

= M−1
h,(β1,β2)

(
υ − Ahυ

′) + υ′, (4.22)

where

υ′ = Qhυ =
(
Ih
2hA−1

2h I2h
h

)
υ (4.23)

The vector υ is the vector to be preconditioned at every iteration of the Krylov sub-
space method. We get the vector υ′ by the matrix-vector product in 4.23. The vector
υ is restricted by I2h

h , as seen in 4.22,

υR = I2h
h υ. (4.24)

With υR, now we have the Galerkin system with coefficient matrix A2h given in 4.22,
and that can be written as

υ′R = A−1
2hυR ⇐⇒ A2hυ

′
R = υR (solve for υ′R) (4.25)

The system A2hυ
′
R = υR given in Equation 4.25 can be solved iteratively. The ap-

proximate solve of A2h does not influence the effectiveness of the preconditioner at
large, as we deflate to 1 instead of 0. However this solve can be sensitive for global
convergence and may need tight accuracy. To achieve acceptable accuracy, the Krylov
solve on A2h may be proven more costly in terms of iterations. We know that this
coarse matrix has the same properties of the original Helmholtz operator. This im-
mediately suggests that the coarse grid problem can be preconditioned by CSLP. This
will substantially reduces the number of iteration for coarse grid Krylov solve. Also
the deflation preconditioner 4.1 can be applied to this Galerkin system. Precisely, the
ADEF1 preconditioner can be applied to Galerkin system with matrix A2h, while being
iteratively solved by Krylov subspace method. This application of ADEF1 at coarse
level 2h will require solving an other coarser system at level 4h. The Krylov method
preconditioned by ADEF1 can be applied recursively on subsequent Galerkin systems.
By doing this, we will have a variable preconditioner at each iteration of outer Krylov
method. A flexible outer subspace Krylov method will be required in order to precon-
dition the vector at each iteration with a variable preconditioner. Krylov methods such
as Flexible-GMRES [95], GCR [36] and flexible IDR [60] can be employed. Note
however that the convergence of the outer Krylov method critically depends on the
accuracy to which the linear system with A2h as coefficient matrix is solved. We will
further discuss the issue of accuracy requirement for approximate solve of different
level Galerkin systems while presenting numerical experiments in Chapter 6.
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Figure 4.2: A schematic representation of the two level ADEF1 algorithm considered.

4.6.2 ADEF1 Multilevel Algorithm Implementation

Though the implementation of ADEF1 preconditioner involves a complex procedure
of approximating Galerkin operator while using ADEF1 preconditioner at subsequent
coarser levels. To understand this vital part of multilevel algorithm we present the
implementation multilevel preconditioner in Algorithm 2. One can observe that it is
indeed possible to implement ADEF1 preconditioner in simplified way. To present the
Algorithm, we introduce some symbols for the involved operators as follows:

• The (Galerkin, except on level j = 1) Helmholtz operator on all possible levels
j = 1, 2, ..., A jh is denoted by A( j).

• The (Galerkin, except on level j = 1) CSLP preconditioner on all possible levels
j = 1, 2, ..., M jh is denoted by M( j).

• The deflation subspace matrices I2h
h and Ih

2h operators are denoted by Z(1,2) and
Z(1,2)T

on level j = 1. And for the rest of levels, j = 2, 3, ..., they are denoted by
Z(2,3) & Z(2,3)T

, Z(3,4) & Z(3,4)T
,...

• The ADEF1 preconditioner Ph,ADEF1 is denoted by P j where subscript distin-
guishes the level at which preconditioner is applied.

• For rest of the operators and vectors, the subscript identifies the level of them.
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Making use of these simplified notations for the operators involved in ADEF1 pre-
conditioner, we now write the multilevel implementation of ADEF1 as Algorithm 2.

4.7 Two-Level Krylov Method (TLKM)

Theoretically, the deflation preconditioner should be based on the linear system whose
coefficient matrix carries unfavorable eigenvalues, which cause slow convergence. Be-
fore focusing on such a type of preconditioner, which is reported in [42, 41], we con-
sider the preconditioned Helmholtz operator, the problem of our interest,

Ãh = M−1
h,(β1,β2)Ah. (4.26)

Recalling from the previous chapter, we observed that the spectrum of M−1
h,(β1,β2)Ah en-

counters small eigenvalues around origin particularly for large wave numbers. The
deflation preconditioner is meant to treat those small eigenvalues. In view of theoreti-
cal characteristics of the deflation preconditioner, theoretically the deflation precondi-
tioner should be based on preconditioned operator M−1

h,(β1,β2)Ah instead of the operator
Ah. The development of this type of preconditioner can be seen by replacing Ah by Ãh

in the ADEF1 preconditioner 4.20. The resulting preconditioner looks like

P̃h = Ih − ÃhQ̃h where Q̃h = I2h
h Ã−1

2h Ih
2h and Ã2h = I2h

h ÃhIh
2h. (4.27)

The preconditioner (4.27) deflates the the troublesome eigenvalues to 0 effectively.
But the need of shifting of deflated-spectrum from the origin to a certain value γ, as
discussed in previous sections, is inevitable for large problems. Therefore, we perform
a shift of the deflated spectrum. With the shifting term, the preconditioner is given by

P̃h,λn = P̃h + γQ̃h = (Ih − ÃhQ̃h) + γQ̃h (4.28)

As the construction of preconditioner (4.28) suggests, it is intended to be applied on
Helmholtz system already preconditioned by CSLP i.e.

P̃h,λn Ãhuh = P̃h,λn b̃h (4.29)

where b̃h = M−1
h,(β1,β2)bh. If we look exclusively at the original Helmholtz system, the

preconditioner application will be read as

Ph,T LKM = P̃h,λn M−1
h,(β1,β2) (4.30)

Essentially, this is the first variant V1 as briefly defined earlier. From here onwards, we
will call this preconditioner as the two level Krylov method (TLKM) preconditioner.
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Algorithm 2 Implementation ADEF1 Preconditioner Ph,ADEF1 = M−1
h,(β1,β2)Ph + Qh

1: Construct A(1), M(1)

2: for i:=1,2,... m, the coarsest level do • m is number of levels

3: Construct Z(i,i+1) and Z(i,i+1)T
,

4: Compute A(i+1) = Z(i,i+1)A(i)Z(i,i+1)T

5: Compute M(i+1) = Z(i,i+1)M(i)Z(i,i+1)T

6: end for
7: Start: i = 1;
8: Solve: A(1)u(1) = b(1) with Krylov preconditioned by P(1)

• P(i) = (M(i))−1(I−A(i)Q(i))+Q(i)

9: • Q(i) = Z(i,i+1)(A(i))−1Z(i,i+1)T

10: u(1), vector to be preconditioned
11: Restriction: û(2) = Z(1,2)T

u(1)

12: if m =1 then
13: u(2) = (A(2))−1û(2) with direct solver
14: else
15: i=2
16: Solve: A(2)u(2) = û(2) with Krylov preconditioned byP(2)

17: u(2), vector to be preconditioned
18: Restriction: û(3) = Z(2,3)T

u(2)

19: if m = 2 then
20: u(3) = (A(3))−1û(3) with direct solver
21: else
22: i=3
23: Solve: A(3)u(3) = û(3) with Krylov preconditioned byP(3)

24: . . .

25: . . .

26: . . .

27: end if
28: Interpolation:q(2) = Z(2,3)u(3)

29: t̂(2) = u(2) − A(2)q(2)

30: t(2) = (M(2))−1 t̂(2) by multigrid
31: w(2) = t(2) + q(2)

32: p(2) = A(2)w(2)

33: end if
34: Interpolation:q(1) = Z(1,2)u(2)

35: t̂(1) = u(1) − A(1)q(1)

36: t(1) = (M(1))−1 t̂(1) by multigrid
37: w(1) = t(1) + q(1)

38: p(1) = A(1)w(1)

39: End
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4.7.1 Multi-Level Krylov Method (MLKM)

With the same set of arguments used while extending the ADEF1 preconditioner to
multilevel, the TLKM preconditioner can also be extended to multilevel. Unfortu-
nately, unlike the extension of ADEF1 to multilevel, the extension of the TLKM is
more complicated. The idea of using CSLP preconditioned Helmholtz Ãh instead
of Ah for the development of the MLKM preconditioner, particularly for Galerkin
coarse grid operator Ã2h, increases its complexity. To get insights of how the operator
Ã2h = I2h

h ÃhIh
2h is applied on a vector, we will consider the application of the entire

MLKM preconditioner on the (Arnoldi) vector inside Krylov method by considering
the preconditioning step;

w̃ = P̃h,γυ̃

=
(
I − ÃhIh

2hÃ−1
2h I2h

h + γIh
2hÃ−1

2h I2h
h

)
υ̃,

=
(
υ̃ − (Ãh − γI)υ̃′

)
, (4.31)

where
υ̃′ =

(
Ih
2hA−1

2h I2h
h

)
υ̃ (4.32)

Vector υ̃ is the vector to be preconditioned at every iteration of the Krylov subspace
method. We get vector υ̃′ by application of matrix Q̃h = Ih

2hA−1
2h I2h

h in 4.32. Initially,
vector υ̃ is restricted by I2h

h , as seen in Equation (4.31),

υ̃R = I2h
h υ̃. (4.33)

With υ̃R, we have to solve the Galerkin system with coefficient matrix Ã2h as given in
(4.32), and that can be written as

υ′R = Ã−1
2hυR ⇐⇒ Ã2hυ

′
R = υ̃R (solve for υ′R) (4.34)

4.7.2 Coarse Grid Operator Complexity

To solve υ′R from the coarse system

Ã2hυ
′
R = υR

the coefficient matrix Ã2h is required, which is obtained by the Galerkin method using
the preconditioned Helmholtz matrix Ãh i.e.

Ã2h = I2h
h ÃhIh

2h (4.35)

It is apparent to observe that the explicit construction of Ã2h requires the action of
M−1

h,(β1,β2) on each column of Ah, which is computationally not practical. The inverse
matrix M−1

h,(β1,β2) is implicitly available via a multigrid cycle. This can be utilized while
employing a Krylov subspace method to solve υ′R from the coarse system(

I2h
h M−1

h,(β1,β2)AhIh
2h

)
υ′R = υR,
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where I2h
h M−1

h,(β1,β2)AhIh
2h is considered as coefficient matrix. In this way, we can achieve

the multilevel algorithm but at every Krylov iteration, the coarse solve will cost the
approximation of M−1

h,(β1,β2), which is again impractical to use. Both approaches to con-
struct Ã2h make use of the inverse M−1

h,(β1,β2) implicitly or explicitly. With this choice of
construction of Ã2h, the computational complexity suggests that multilevel implemen-
tation is simply impractical in terms of cost per Krylov iteration. We call the TLKM
preconditioner, which make use of Ã2h, the ideal variant of the TLKM preconditioner.

In order to make the multilevel implementation suitable, an approximation of the
inverse of CSLP operator M−1

h,(β1,β2) has been suggested in [42], M−1
h,(β1,β2) can be ap-

proximated by Ih
2h

(
I2h
h Mh,(β1,β2)Ih

2h

)−1
I2h
h . This results in an adaptation of the coarse

grid matrix as follows

Ã2h = I2h
h ÃhIh

2h

= I2h
h M−1

h AhIh
2h

≈ I2h
h Ih

2h(I2h
h MhIh

2h)−1I2h
h AhIh

2h

= I2h
h Ih

2hM−1
2h A2h

= I2h
h Ih

2hÂ2h = ΘhÂ2h. (4.36)

where Θh = I2h
h Ih

2h is an approximation term. Replacing Ã2h with this approximation,
the coarse system can be written as

ΘhM−1
2h A2hυ

′
R = υR, (4.37)

where A2h, M2h andΘh are the Galerkin matrices associated with matrices Ah, Mh,(β1,β2)

and Ih the identity matrix. One can notice that the approximation of the coarse grid
operator in Preconditioner 4.30 as

Â2h = I2h
h ÃhIh

2h ≈ I2h
h Ih

2hM−1
2h A2h

turns the preconditioner practical to use and coincides with third variant V3

4.7.3 MLKM: Multilevel Implementation

The Krylov subspace method of choice can be used to solve the adapted coarse sys-
tem given in Equation 4.37. Though the coefficient matrix in the coarse system is the
Galerkin matrix A2h preconditioned by Galerkin CSLP operator M2h but it also in-
volves the approximation term Θh. Thus, it does not necessarily have favorable spec-
trum for a Krylov method. To aim for fast Krylov convergence, the MLKM precondi-
tioner 4.28 is applied. Which will give rise to an other coarse system at level Ω4h. A
recursive application of the deflation Preconditioner 4.28 at subsequent coarser levels
immediately results in a practical variant of MLKM preconditioner. Implementation
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of this MLKM Practical (MLKM-P) preconditioner is explained in Algorithm 3. For
the archetype of the algorithm, the reader is referred to [42].

Comparatively, the MLKM preconditioner is more expensive and complex to im-
plement than the ADEF1 preconditioner from Equation (4.20). We will explore how
effective this approximation is by the analysis of the TLKM in the next chapter.

4.8 Complexity Analysis

In this section, we give a brief comparison of the deflation variants defined above. We
claim that the ADEF1 preconditioner is relatively simple to implement when com-
pared to both TLKM deflation variants; ideal and practical. In Table 4.8, we present
an overview of the operations of an application of ADEF1 and TLKM ideal (TLKM-I)
and practical (TLKM-P) preconditioners. A two-level application of these precondi-
tioners is considered. The inverse of the CSLP operator Mh can be obtained by any
means; say by multigrid or by a direct solver. Purpose is to highlight the costs of the
operations for different variants of two-level applications. Apparently, the TLKM-I
preconditioner costs three applications of M−1

h . This also indicates that it is not feasi-
ble for multilevel extension, as for every coarse grid iteration, it is required to apply
M−1

h . The TLKM-P variant costs two applications of M−1
h , which is a significant dif-

ference with ADEF1, which costs only one such application. Approximation of the
coarse grid operator in TLKM-P also costs two operations as given in Table 4.8 and
this can be more complicated while moving to a multilevel implementation. The ad-
ditional costs for the two-level application of ADEF1, when comparing with the costs
of the CSLP preconditioner, is justified with the results presented in Chapter 6. Mean-
while, we can say that the ADEF1 preconditioner is favorable one among the deflation
variants in context of the application costs at two-levels. This is further illustrated in
Figure 4.8. Iterations taken to solve a one dimensional Helmholtz problem are com-
pared for three different deflation variants. TLKM-I takes less iterations, but as we
stated this is only useful for theoretical purposes. For large problems, the two-level
preconditioner is not feasible and multilevel extension is required. TLKM-I is not
suitable for a multilevel extension where as TLKM-P can be extended to multilevel
easily. The TLKM-P and ADEF1 preconditioners are fairly compared, while the latter
is computationally cheaper than the earlier.

4.9 Concluding Remarks

In the earlier sections, the ADEF1 preconditioner is introduced for the Helmholtz
problem. ADEF1 is a simple and user-friendly preconditioner. We have shown via
Algorithm 2 that it is easy to implement. It is solely based on the Helmholtz operator
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Operation CSLP
CSLP with Deflation

ADEF1 TLKM-I TLKM-P

Vector Sum 0 2 2 2
Ahvh 0 1 1 1
M−1

h vh 1 1 3 2
Qhvh I2h

h vh 0 1 1 1
Ih
2hv2h 0 1 1 1

A−1
2h /M

−1
2h 0 1 0 1

A2hv2h 0 0 0 1
Ih
2hI2h

h vh 0 0 0 1

Table 4.1: Costs per application of a two-level preconditioner in one Krylov iteration.

Ah. It can be considered as a second level preconditioner, as it is applied in combina-
tion with CSLP. Later, the TLKM ideal variant preconditioner is introduced which is
based on the preconditioned Helmholtz operator Ãh, rather than Ah. The TLKM pre-
conditioner is more extensive and complicated to implement. Indeed the ideal TLKM
involves

Ã2h = I2h
h

(
M−1

h,(β1,β2)Ah

)
Ih
2h

Explicit unavailability of M−1 makes it nearly impossible to implement the ideal vari-
ant. Every application of Ã2h costs the implicit inversion of Mh,(β1,β2), which can not be
justified. With this costs, it is not a practical to implement. The coarse grid operator
Ã2h has been adapted with an approximation term

Ã2h = I2h
h Ih

2hM−1
2h A2h.

with this approximation, it is likely to extend the application of TLKM in a multilevel
fashion.

In the next chapter, the performance analysis has be performed for these deflation
preconditioners.
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Figure 4.3: Comparing iterations to solve one dimensional Helmholtz with two-level
solvers ADEF1 and TLKM ideal and practical variants.
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Algorithm 3 Implementation MLKM-P Preconditioner Ph,T LKM = M−1
h,(β1,β2)Ph + Qh

1: Construct A(1), M(1) and Θ(1) = I
2: Precondition matrix Ã(1) = (M(1))−1A(1), and right-hand side vector b̃(1) =

(M(1))−1b(1)

3: for i:=1,2,... m, the coarsest level do • m is number of levels

4: Construct Z(i,i+1) and Z(i,i+1)T
,

5: Compute A(i+1) = Z(i,i+1)A(i)Z(i,i+1)T

6: Compute M(i+1) = Z(i,i+1)M(i)Z(i,i+1)T

7: Compute Θ(i+1) = Z(i,i+1)Z(i,i+1)T

8: end for
9: Compute Ã(m) = Θ(m)(M(m))−1A(m)

10: Start: i = 1;
11: Θh

12: Solve: Ã(1)u(1) = b̃(1) with Krylov preconditioned by P̃(1)
• P̃(i) = (I − Ã(i)Q̃(i)) + Q̃(i)

13: • Q̃(i) = Z(i,i+1)(Ã(i))−1Z(i,i+1)T

14: u(1), vector to be preconditioned
15:

16: Restriction: b(2) = Z(1,2)T
u(1)

17: if m =2 then
18: u(2)

c = (Ã(2))−1b(2) with direct solver
19: else
20: i=2
21: Solve: Ã(2)u(2)

c = b(2) with Krylov preconditioned byP(2)

22: u(2), vector to be preconditioned
23: Restriction: b(3) = Z(2,3)T

u(2)

24: if m = 3 then
25: u(3) = (Ã(3))−1b(3) with direct solver
26: else
27: i=3
28: Solve: Ã(3)u(3) = û(3) with Krylov preconditioned byP(3)

29: . . . . . . . . . . . . . . .

30: end if
31: Interpolation: q(2) = Z(2,3)u(3)

32: t̂(2) = u(2) − A(2)q(2)

33: t(2) = (M(2))−1 t̂(2) by multigrid
34: w(2) = t(2) + q(2)

35: p(2) = A(2)w(2)

36: end if
37: Interpolation:t(1) = Z(1,2)u(2)

c

38: s(1) = v(1) − t(1)
M + γt(1)

• t(1)
M = (M(1))−1t(1)

A = (M(1))−1
(
A(1)t(1)

)
39: w(1) = (M(1))−1s(1) by multigrid
40: p(1) = A(1)w(1)

41: End
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Chapter 5
Spectral Analysis

In this chapter we perform the rigorous Fourier analysis of the Helmholtz operator
preconditioned by CSLP in combination with variants of the deflation preconditioner
defined in earlier chapter. Recall that base deflation preconditioner is P = I − AQ,
where Q = ZE−1ZT and Z is the deflation matrix. The preconditioner projects the
eigenvalues, related with the columns of the deflation matrix, to 0. Multilevel im-
plementation of deflation preconditioner (in-exact inverse of matrix E) might cause
a number of eigenvalues around 0. In order to make multilevel implementation pos-
sible, a shift term Q was introduced and the deflation preconditioner was integrated
with that shift term as P = I − AQ + Q. This shift term is expected to shift the deflated
part of the spectrum to 1 by another number. This shift can be adapted by replacing
1. We disregard the shift for analysis purpose. We perform analysis without including
shift term unless mention explicitly, which we shall discuss to confirm the action of
the shift term Q in later sections. Further, we discuss the variants ADEF1 and TLKM
in details, where as in the end, we will highlight the rest of variants broadly.

5.1 Rigorous Fourier Analysis Framework

Traditionally Fourier analysis has been used to analyse the performance of multigrid
methods. The deflation preconditioner

Ph = I −AhQh where Qh = ZhE−1ZT
h and E = ZT

hAhZh

defined in 4.2, coincides with the coarse correction operator of multigrid, i.e.

Ph,2h = Ih − AhQh where Qh = I2h
h A−1

2h Ih
2h and A2h = I2h

h AhIh
2h (5.1)

49
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if on a two-dimensional discrete domain Ωh with a grid-step h in each direction, the
deflation matrix Zh is set as the prolongation operator I2h

h , which is obtained from
interpolation from grid Ω2h to Ωh. Application of this deflation preconditioner along-
with CSLP Mh,(β1,β2) defined in Equation 3.2 results in a two-grid method. The re-
semblance of the two-grid method with a two-grid cycle motivates us to use Fourier
mode analysis to analyze our CSLP and deflation preconditioners in terms of spec-
trum. Applying CSLP (3.2) to the deflated linear system requires solving a system
with M−1

h,(β1,β2)Ph,2hAh as coefficient matrix. Applying the deflation operator (5.1) to
the CSLP-preconditioned system instead leads to a system with PT

h,2hM−1
h,(β1,β2)Ah as

coefficient matrix. The sequence of application of two preconditioners is not sensitive
in the terms that two aforementioned coefficient matrices have the same spectrum i.e.
,

σ
(
M−1

h,(β1,β2)Ph,2hAh

)
= σ

(
PT

h,2hM−1
h,(β1,β2)Ah

)
. (5.2)

The ordering of the operators in the left-hand side is typically chosen in implementa-
tion in practical codes. In Fourier analysis, however, ordering, as appears in right-hand
side, is used. For the proof of identity 5.2, the reader is referred to [111]. In this anal-
ysis, the deflated-preconditioned operator is denoted as

Bh,2h,(β1,β2) = PT
h,2hM−1

h,(β1,β2)Ah. (5.3)

The analysis of the operator Bh,2h,(β1,β2) can be seen as an analysis of a two-grid op-
erator, where Mh,(β1,β2) is considered as smoother and PT

h,2h as coarse grid correction.
The rigorous Fourier analysis in sequel of this chapter shows that, in case that both
the CSLP Mh,(β1,β2) and the coarse grid operator A2h are inverted exactly, a basis of
discrete sine modes exists that allows us to diagonalize both Ah and Mh,(β1,β2) and to
block diagonalize Ph,2h. We will also make use of the following notations

diag
[
d1

d2

]
=

[
d1 0
0 d2

]
(5.4)

and

diag


d1

d2

d3

d4

 =


d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4

 . (5.5)

5.2 One-Dimensional Rigorous Two-Grid Analysis of
ADEF1

In this section we perform a rigorous two-grid Fourier analysis of the solver proposed
above in a one-dimensional setting. We therefore consider the Helmholtz equation
(2.8) supplied with homogeneous Dirichlet boundary conditions defined in 2.8 dis-
cretized on Ωh = {0, h, 2h, . . . , 1}, where the step-size h = 1

n . For sake of convenience,
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we will limit n as even integer. Dirichlet boundary conditions are easy to analyze.
Further motivation is, as these boundary conditions do not introduce any damping, the
analysis that follows can be considered to be a worst case analysis for the problem
with Sommerfeld boundary conditions. For sake of the analysis, the discretization
of the Helmholtz equation is done on a uniform mesh Ωh ⊂ (0, 1) with mesh width
h = 1/n using the second order accurate stencil

[Ah] =
1
h2

[
−1 2 − κ2 −1

]
where κ = k h , (5.6)

results after elimination of the boundary conditions in the linear system

Ahxh = bh ,

where Ah ∈ C
(n−1)×(n−1). Given the preconditioner Mh,(β1,β2) defined in (3.2) and the

multigrid deflation operator Ph,2h defined in (5.1), the goal of our analysis is to find
all eigenvalues of the deflated preconditioned operator Bh,2h,(β1,β2). In this analysis, it
is assumed that both the preconditioner Mh,(β1,β2) as well as the coarse grid matrix A2h

are inverted exactly.
If the vector x ∈ Rn−1 carries the components xi = i h, then one can easily observe

that the grid vectors
φ`h = sin(`πx) for 1 ≤ ` ≤ n − 1 (5.7)

are eigenvectors of Ah corresponding to the eigenvalues

λ`(Ah) =
1
h2 (2 − 2 c` − κ2) , (5.8)

where c` = cos(`πh).

5.2.1 Basis Diagonalization

The eigenvectors {φ`h = sin(`πx) for 1 ≤ ` ≤ n − 1} form a set of orthonormal vectors.
The matrix Vh with these orthonormal vectors as its columns satisfies the relation
VT

h = V−1
h . This orthonormal basis diagonalizes the operator 5.3 i.e. Bh,2h,(β1,β2) and

transforms it into block diagonal matrix as follows

Bh,2h,(β1,β2) Diagonalization
−−−−−−−−−−−−−−→

[B`h,2h,(β1,β2)]1≤n/2 (5.9)

where each block [B`h,2h,(β1,β2)]1≤n/2 is a combination of blocks of all involved matrices
i.e.

B`h,2h,(β1,β2) = (PT
h,2h)`(S h)`

where S `
h is conveniently denotes the blocks of M−1

h,(β1,β2)Ah and are given by

S `
h = (M−1

h,(β1,β2)Ah)` . (5.10)
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It is worth to mention that the operator Bh,2h,(β1,β2) and blocks [B`h,2h,(β1,β2)]1≤n/2 have
the same spectrum i.e.

σ(Bh,2h,(β1,β2)) = σ
(
[B`h,2h,(β1,β2)]1≤n/2

)
(5.11)

Diagonalization of Ah: In what follows we will start diagonalizing the Helmholtz
operator Ah, CSLP Mh,(β1,β2) and deflation operator Ph,2h defined by (2.22), (3.2) and
(5.1), respectively. The derivation of blocks will lead to closed form expressions for
the eigenvalues of the two-grid preconditioner Bh,2h,(β1,β2) defined by 5.3. We therefore
proceed in the standard way [113] and reorder the eigenvectors according to

Vh = [φ1
h, φ

n−1
h , φ2

h, φ
n−2
h , ..., φn/2−1

h , φn/2
h ]. (5.12)

This basis brings Ah into a block diagonal form that can be written as

Ah =
[
A`

h

]
1≤`≤n/2

, (5.13)

where for 1 ≤ ` ≤ n/2 − 1 , A`
h is the 2 × 2 diagonal block

A`
h =

[ 1
h2 (2 − 2 c`1 − κ

2) 0
0 1

h2 (2 + 2 c`1 − κ
2)

]
, (5.14)

and An/2
h is the 1 × 1 block

An/2
h =

2
h2 − k2 . (5.15)

Diagonalization of Mh,(β1,β2) and S h,(β1,β2): The re-ordered grid vectors 5.12 are also
the eigenvectors of the preconditioner Mh,(β1,β2) and subsequently of the preconditioned
operator (or smoother) S h,(β1,β2). As we already know the eigenvalues of Helmholtz
operator Ah, the corresponding eigenvalues of the operator Mh,(β1,β2) and S h,(β1,β2) will
be

λ`(Mh,(β1,β2)) =
1
h2

(
2 − 2 c` − κ2(β1 − ιβ2)

)
, (5.16)

and

λ`(S h,(β1,β2)) =
2 − 2 c` − κ2

2 − 2 c` − κ2(β1 − ιβ2)
, (5.17)

respectively.

The diagonalization of Mh,(β1,β2) and S h,(β1,β2) with basis vectors given in 5.12 im-
mediately resulted in blocks

Mh,(β1,β2) Diagonalization
−−−−−−−−−−−−−−→

[
M`

h,(β1,β2)

]
1≤`≤n/2

, (5.18)

and
S h,(β1,β2) Diagonalization

−−−−−−−−−−−−−−→

[
S `

h,(β1,β2)

]
1≤`≤n/2

. (5.19)
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The spectrum of operators Mh,(β1,β2) and S h,(β1,β2) and their respective block represen-
tation in Equations 5.18 and 5.19 is same.

For 1 ≤ ` ≤ n/2 − 1 , the respective blocks are given by

M`
h,(β1,β2) =

1
h2

[ 1
h2 (2 − 2 c` − (β1 − ιβ2)κ2) 0

0 1
h2 (2 + 2 c` − (β1 − ιβ2)κ2)

]
, (5.20)

and

S `
h,(β1,β2) =

 2−2 c`−κ2

2−2 c`−(β1−ιβ2)κ2 0

0 2+2 c`−κ2

2+2 c`−(β1−ιβ2)κ2

. (5.21)

For the value of ` = n/2, the 1 × 1 blocks of Mh,(β1,β2) and Âh are

Mn/2
h =

2
h2 − (β1 − ιβ2)k2

and

S n/2
h =

2 − k2

2 − (β1 − ιβ2)k2 .

Diagonalization of inter-grid operators and coarse grid operator: We have made
a choice for the deflation matrix. The prolongation operator, from the multigrid meth-
ods, defined in a stencil 4.14 in the previous chapter are considered. For a one dimen-
sional problem, the prolongation operator Ih

2h will be linear interpolation and for the
restriction operator I2h

h we will use the full weighting operator, which is defined by the
stencil

[I2h
h ] =

[
1
4

1
2

1
4

]
, (5.22)

Given the fact that the basis (5.12) diagonalizes the linear interpolation operator I2h
h ∈

Rn×( n
2−1) into blocks

(I2h
h )` =

[
1
2 (1 + c`) − 1

2 (1 − c`)
]
, (5.23)

for 1 ≤ ` ≤ n/2 − 1 and (I2h
h )n/2 = 0, and that the inter-grid transfer operators are

related by Ih
2h = (I2h

h )T , the 1 × 1 diagonal blocks of the Galerkin coarse grid operator
A2h and M2h can shown to be equal to

A`
2h = (I2h

h )`A`
h(Ih

2h)` =
2(1 − c2

` ) − κ
2(1 + c2

` )
2h2 , (5.24)

and

M`
2h = (I2h

h )`M`
h(Ih

2h)` =
2(1 − c2

` ) − (β1 − ιβ2)κ2(1 + c2
` )

2h2 , (5.25)

for 1 ≤ ` ≤ n/2 − 1 and (A2h)n/2 = 2−κ2

2h2 .
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Subsequently the 1 × 1 block for M−1
2h A2h will be

(M−1
2h A2h)` =

2(1 − c2
` ) − κ

2(1 + c2
` )

2(1 − c2
`
) − (β1 − ιβ2)κ2(1 + c2

`
)
, (5.26)

for 1 ≤ ` ≤ n/2 − 1 and (M−1
2h A2h)n/2 =

2 − κ2

2 − κ2 (β1 − ιβ2)
.

Also the 1 × 1 block for the approximation term Bh = I2h
h Ih

2h can be simplified as

B`h = (I2h
h Ih

2h)` = (1 + c2
` ), (5.27)

for 1 ≤ ` ≤ n/2.

The ADEF1 deflation (or coarse grid correction) operator PT
h,2h employs a coarser

grid with mesh width H = 2h with as inter-grid transfer and coarser operators the
one-dimensional variants of those described above. By reordering the eigenvectors of
Ah in a standard way in (`, n − `) pairs [113], we obtain the basis

Vh = {(φ`h, φ
n−`
h ) | ` = 1, . . . , n/2 − 1} ∪ {φn/2

h } (5.28)

in which PT
h,2h can be written in a block diagonal form, i.e., can be written

PT
h,2h Diagonalization
−−−−−−−−−−−−−−→

[
(P`

h,2h)T ]
1≤`≤n/2 , (5.29)

where the individual blocks are given by

P`
h,2h = I − (Ih

2h)`(A`
2h)−1(I2h

h )`A`
h . (5.30)

A standard computation gives the 2 × 1 blocks of the bilinear interpolation where for
1 ≤ ` ≤ n/2 − 1

(Ih
2h)` =

1
2

[
(1 + c`)
−(1 − c`)

]
, (5.31)

and where
(Ih

2h)n/2 = 0 . (5.32)

The Galerkin coarsening then results in the 1 × 1 blocks where for 1 ≤ ` ≤ n/2 − 1

A`
2h = (I2h

h )`A`
h(Ih

2h)` =
1

2h2 [2(1 − c2
` ) − κ

2(1 + c2
` )] (5.33)

and where
An/2

2h = 0 . (5.34)

A straightforward computation subsequently allows to obtain for 1 ≤ ` ≤ n/2 − 1 the
following 2 × 2 blocks of (P`

h,2h)T

(P`
h,2h)T =

1
Ç

−( c` + 1)( c2
` − 1) +

1
2
κ2( c2

`2
− 1) 1

2 ( c2
` − 1)(2 + 2 c` − κ2)

1
2 ( c2

` − 1)(−2 + 2 c` + κ2) ( c2
` − 1)(3 + c`) +

1
2
κ2( c2

` + 3)
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where Ç =
1

2(1 − c2
`
) + κ2( c2

`
+ 1)

,

and 1 × 1 block
(Pn/2

h,2h)T = 1 . (5.35)

5.2.2 Closed-form Expression for Eigenvalues

The basis Vh (5.28) can therefore be used to block diagonalize the deflated precondi-
tioned operator, i.e., we can write

Bh,2h,(β1,β2) =
[
B`h,2h,(β1,β2)

]
1≤`≤n/2 (5.36)

where for 1 ≤ ` ≤ n/2 − 1, B`h,2h,(β1,β2) is the 2 × 2 matrix

B`h,2h,(β1,β2) = (P`
h,2h)T diag

[
λ`

(
S h,(β1,β2)

)
λn−`(S h,(β1,β2)

)] , (5.37)

and where

Bn/2
h,2h,(β1,β2) = λn/2(S h,(β1,β2)

)
=

2 − κ2

2 − κ2(β1 − ιβ2)
. (5.38)

This block diagonal form renders an analytical computation of the eigenvalues of
Bh,2h,(β1,β2) feasible and results in the conclusion that Bh,2h,(β1,β2) has a zero eigenvalue
of multiplicity n/2 − 1, the eigenvalue (5.38) and n/2 − 1 eigenvalues of the form

λ`(Bh,2h,(β1,β2)) =
a` + ιb`
c` + ιd`

for 1 ≤ ` ≤ n/2 − 1, (5.39)

where a`, b`, c` and d` are third order polynomials in κ2 and given by

a` = (−1 − c`2)β1κ
6 + (4β1 + 2 − 2 c`2 + 4 c`2β1)κ4

+(8 c`2 − 4β1 − 8 + 4 c`4β1)κ2 + (8 − 16 c`2 + 8 c`4)

b` = (1 + c`2)β2κ
6 + (−4 c`2β2 − 4β2)κ4 + (4β2 − 4 c`4β2)κ2

c` = (β2
2 − β1

2 + c`2β2
2 − c`2β1

2)κ6

+(4β1 − 2 c`2β1
2 + 2 c`2β2

2 + 2β1
2 − 2β2

2 + 4 c`2β1)κ4

+(8β1 c`2 − 8β1 − 4 + 4 c`4)κ2 + 8 c`4 + 8 − 16 c`2

d` = (2β1β2 + 2 c`2β1β2)κ6 + (4 c`2β1β2 − 4β1β2 − 4β2 − 4 c`2β2)κ4

+(8β2 − 8 c`2β2)κ2.

In the remainder of the section, the above expressions will be used to investigate the
behavior of the spectrum of Bh,2h,(β1,β2) in three parameter studies: varying wave num-
ber, varying the number of grid points per wavelength and varying the imaginary part
in the shift β2. We observe that the zero eigenvalue of Bh,2h,(β1,β2) does not influence
the convergence of the outer Krylov subspace acceleration, and is therefore left out of
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Figure 5.1: Non-zero part of σ(Bh,2h,(1,1)) in the one-dimensional problem for various
wavenumbers k satisfying κ = 0.3215.

our considerations below.

Analysis is performed on a unit domain either in one dimension or two dimen-
sions, where wavenumber k is dimensionless. However, the industrial problems use
the parameter frequency f in certain dimensions. The dimensionless wave number k̄
is related with the frequency f through the relation defined in Equation 2.24 which is

k̄ = 2π f l̄/c

where l̄ is the characteristic length, c is the speed of sound. The characteristic length
of the physical domain considered for analysis is 1. The presentation of results in
wavenumber should be clear to understand. For example if we consider the problem
with unit domain and k = 1000, then this can convincingly be seen as equivalent to the
benchmark Marmousi problem on physical domain of length l = 9000 with maximum
frequency f = 100. In order to clear all ambiguities, we also look into the spectrum
for wavenumbers higher than 1000.

Figure (5.1) shows the non-zero part of the spectrum of Bh,2h,(β1=1,β2=1) for k = 100,
k = 1000 and k = 10, 000 using 20 grid points per wavelength (and thus κ = 0.3215).
This figure shows that the spectrum is clustered around one and that the number of
small eigenvalues increases as the wavenumber increases. While such a spectrum is
favorable for the convergence of an outer Krylov subspace acceleration [88], the in-
creasing number of small eigenvalues prevents the solver from being scalable. This
non-scalability becomes even more pronounced in two dimensions as will be con-
firmed by further analysis and numerical experiments.

Figure (5.2) shows the non-zero spectrum of Bh,2h,(β1=1,β2=1) for k = 2000 and for
κ = 0.625, κ = 0.312, and κ = 0.2015. This figures shows that the number of small
eigenvalues decreases, that the spectrum becomes more clustered and the deflated
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preconditioned system becomes easier to solve by Krylov subspace methods as the
number of grid points per wavelength is increased.
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Figure 5.2: Non-zero part ofσ(Bh,2h,(1,1)) in the one-dimensional problem for k = 2000
and for various values of κ.

Figure (5.3) shows the non-zero spectrum of Bh,2h,(β1=1,β2) for κ = 0.625, for k =

2000, and for β2 = .5, β2 = .75 and β2 = 1. This figure shows that the spectrum
remains virtually unchanged as β2 increases. As the CSLP preconditioner becomes
more diagonally dominant as β2 increases, this result opens promising perspectives on
obtaining a very good approximation of the preconditioner at low cost.

Figure 5.4 finally shows a bar plot of the modulus of non-zero eigenvalues of
Bh,2h,(β1=1,β2=1) for κ = 0.625 and κ = 0.3215 and for various values of k. Figures
does not present all the eigenvalue but part of the eigenvalues which are close to zero
in magnitude. These figures clearly show that the number of small eigenvalues grows
with k and that this effect is more pronounced in case if a smaller number of grid points
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Figure 5.3: Non-zero part of σ(Bh,2h,(1,β2)) in the one-dimensional problem for k =

2000 and for various values of β2 satisfying κ = 0.625.



58 Chapter 5. Spectral Analysis

32 36 40 44 4850
0

0.2

0.4

0.6

0.8

1

k = 100
M

od
ul

us
 o

f E
ig

en
va

lu
e

320 340 360 380

k = 1000

Index of Eigenvalues

3200 3400 3600

k = 10000

(a) κ = 0.625

32 36 40 44 4850
0

0.2

0.4
0.6
0.8

1

k = 100

M
od

ul
us

 o
f E

ig
en

va
lu

e

320 340 360 380

k = 1000

Index of Eigenvalues

3200 3400 3600

k = 10000

(b) κ = 0.3215

Figure 5.4: Magnitude of non-zero part of σ(Bh,2h,(1,1)) in the one-dimensional prob-
lem for κ = 0.625 and κ = 0.3215 and various values of k.

per wavelength is used (which corresponds to a larger value of κ). However Figure
5.4 also signify the fact that the ratio of small eigenvalues to the large ones remains
constant. This can be noticed while considering spread of the x-axis for different wave
numbers k in the same Figure.

5.3 ADEF1 Simplified Analysis

We have broadly analyzed the effect of the CSLP exclusively and along with deflation
preconditioner. Now we make a simplification in the analysis in order to emphasize
the exclusive influence of deflation preconditioner on the spectrum of the Helmholtz
operator. The simplified analysis can also be seen as a complement of the analysis
above and also of the analysis in [101]. We study here the spectrum of the deflated
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preconditioned operator, i.e., the spectrum of the operator

B̂h,2h,(β1,β2) = PT
h,2h Ah . (5.40)

It appears that B̂h,2h,(β1,β2) has the essential features of the spectrum ofBh,2h,(β1,β2), specif-
ically the eigenvalues near null space behave similar in both. The application of the
CSLP preconditioner does not alter the spectrum in a significant manner. Vital effect of
CSLP, while applied in combination with deflation preconditioner, can be concluded
as it reduces the magnitude of the eigenvalues and it gathers the spectrum in a circle
with small radius(≈ 1). However CSLP is not well suited to eliminate the near kernel
nodes.

A Rigorous Fourier analysis yields that the eigenvalues of this operator are given
by

λ`
(
B̂h.H,(β1,β2)

)
= −

(
c`2 + 1

)
κ4 +

(
−4 c`2 − 4

)
κ2 − 4

(
c`4 − 1

)
(
( c`2 + 1)κ2 + 2 ( c`2 − 1)

)
h2 . (5.41)

The denominator of this expression is the constant factor of the `-th eigenvalue of the
coarse grid operator A2h defined by (5.24) also shown by Equation (5.12) in [101].
Since the Galerkin operator A2h inherits the characteristic of yielding the near-null
space modes from the Helmholtz operator, therefore eigenvalues λ`

(
B̂h.H,(β1,β2)

)
can

be expected to be large in magnitude for indexes ` corresponding to the those near-
null space modes of A2h.

In Figure (5.5) we plot the real part of the eigenvalues of B̂h,2h,(β1,β2) versus the
index `. In the top and bottom row of this figure we plotted the whole range of indices
and those close to the near-kernel, respectively. This figure confirms that the scattering
of the eigenvalues to the left and right of (1, 0) in the complex plane is caused by the
instability of the coarse grid solve.

It is important to clarify that the above expressions for eigenvalues do not include
the “ shift term ” Qh. Another important aspect which we want to investigate is that
how smoothly adding Qh shifts the “deflated spectrum ”. Figure 5.6 demonstrates the
exclusive effect of the shift term Qh, which we have been discussed in the start of this
chapter. Figures 5.6(a) and 5.6(b) present the spectrum of B̂h,2h,(β1,β2) and PT

h,2h Ah +

QhAh. The difference in these two figures is that the later includes the shift term,
thus one can notice that the deflated part of the spectrum (which is 0) is shifted to
1. The real part of the eigenvalues of operators B̂h,2h,(β1,β2) and PT

h,2h Ah + QhAh has a
large magnitude without CSLP hence one can not distinguish with the current axis.
Including CSLP highlights this fact. In Figures 5.6(c) and 5.6(d) we plot the spectrum
from Equation (5.39) and the same with addition of the shift term. In these two, one
can observe the shifting of the deflated spectrum from 0 to 1 .



60 Chapter 5. Spectral Analysis

0 100 200 300 400
−2

0

2

4

6

8
x 10

5

Index "\ell"

R
e
a
l 
(λ

)

(a) k = 100

0 1000 2000 3000 4000
−10

−5

0

5
x 10

8

Index  "\ell"

R
e

a
l 
(λ

)

(b) k = 1000

0 1 2 3 4

x 10
4

−4

−2

0

2

4
x 10

11

Index "\ell"

R
e

a
l 
(λ

)

(c) k = 10, 000

50 100 150
0

1

2

3

4

5

6

x 10
5

Index "\ell"

R
e

a
l 
(λ

)

(d) k = 100

200 250 300 350 400
−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

8

Index "\ell"

R
e
a
l 
(λ

)

(e) k = 1000

2000 4000 6000

−1

−0.5

0

0.5

1

x 10
11

Index "\ell"

R
e
a
l 
(λ

)

(f) k = 10, 000

Figure 5.5: Real part of eigenvalues of the deflated unpreconditioned operator
B̂h,2h,(β1,β2) versus the index ` for various values of the wavenumber. The top and
bottom show all and a selection of indexes ` close to the near-null space, respectively.
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Figure 5.6: Real part of spectrum; ADEF1 preconditioner applied at Ah. Wavenumber
considered is k = 10000 with grid size is set such that there are 20 grid points per
wavelength
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5.4 Two-Dimensional Rigorous Two-Grid Analysis of
ADEF1

In this section we extend the analysis of the previous section to two dimensional ge-
ometries. We therefore consider the Helmholtz equation (2.22) supplied with homoge-
neous Dirichlet boundary conditions discretized on Ωh = (0, 1) × (0, 1). As before we
assume the preconditioner Mh,(β1,β2) and the coarse grid operator A2h to be inverted ex-
actly. The second order finite difference discretization using the stencil (2.20) results
after elimination of the boundary conditions in the linear system

Ahxh = bh

where Ah ∈ C
(n−1)2×(n−1)2

.
We denote by x, y ∈ Rn−1 the vectors with components xi = i h and yi = i h and observe
that the grid vectors

φ`1,`2
h = sin(`1πx) sin(`2πy) for 1 ≤ `1, `2 ≤ n − 1 (5.42)

are eigenvectors of Ah corresponding to the eigenvalues

λ`1,`2
(
Ah

)
=

1
h2 (4 − 2 c`1 − 2 c`2 − κ

2) , (5.43)

where c`1 = cos(`1πh) and c`2 = cos(`2πh). The eigenvalues of the preconditioner
Mh,(β1,β2) and the preconditioned operator S h,(β1,β2) = M−1

h,(β1,β2)Ah are therefore given
by

λ`1,`2
(
Mh,(β1,β2)

)
=

1
h2 [4 − 2 c`1 − 2 c`2 − (β1 − ιβ2)κ2] , (5.44)

and

λ`1,`2
(
S h,(β1,β2)

)
=

4 − 2 c`1 − 2 c`2 − κ
2

4 − 2 c`1 − 2 c`2 − κ
2(β1 − ιβ2)

, (5.45)

respectively.

5.4.1 Basis Diagonalization

To block-diagonalize the multigrid deflation operator PT
h,2h, we again reorder the basis

of eigenvectors of Ah in a standard way in
((`1, `2), (n − `1, n − `2), (`1, n − `2), (n − `1, `2)) 4-tuples [113] to obtain the basis

Vh = {(φ`1,`2
h , φn−`1,n−`2

h , φ`1,n−`2
h , φ`1,n−`2

h ) | `1, `2 = 1, . . . , n/2 − 1} (5.46)

∪{(φ`1,n/2
h , φn−`1,n/2

h ) | `1 = 1, . . . , n/2 − 1}

∪{(φn/2,`2
h , φn/2,n−`2

h ) | `2 = 1, . . . , n/2 − 1} ∪ {φn/2,n/2
h }

In this basis, PT
h,2h can be written in a block diagonal form, i.e., we can write

PT
h,2h =

[
(P`1,`2

h,2h )T ]
1≤`1,`2≤n/2 , (5.47)
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where the individual blocks are given by

(P`1,`2
h,2h )T = I − (Ih

2h)`1,`2 (A`1,`2
2h )−1(I2h

h )`1,`2 A`1,`2
h . (5.48)

A standard computation results in the 4 × 1 blocks of the bilinear interpolation Ih
2h

where for 1 ≤ `1, `2 ≤ n/2 − 1

(Ih
2h)`1,`2 =

1
4


(1 + c`1 )(1 + c`2 )
(1 − c`1 )(1 − c`2 )
(1 + c`1 )(1 − c`2 )
(1 − c`1 )(1 + c`2 )

 (5.49)

and for other values of `1 and `2

(Ih
2h)`1,`2 = 0 . (5.50)

The Galerkin coarsening gives the 1 × 1 blocks where for 1 ≤ `1, `2 ≤ n/2 − 1

A`1,`2
2h =

1
h2

[
4
(
1 − 2 c`1 c`2 + c2

`1
+ c2

`2
+ c2

`1
c2
`2
− c3

`1
c`2 − c`1 c3

`2

)
−κ2

(
1 + c2

`1
+ c2

`2
+ c2

`1
c2
`2

)]
(5.51)

and for other values of `1 and `2

A`1,`2
2h = 0 . (5.52)

The 4 × 4 blocks of the multigrid deflation operator PT
h,2h can subsequently be com-

puted for 1 ≤ `1, `2 ≤ n/2 − 1. For others values of `1 and `2, these blocks are of size
either 2 × 2 or 1 × 1 and equal to the identity.
The basis Vh (5.46) can therefore be used to block-diagonalize the deflated precondi-
tioned operator, i.e., we can write

Bh,2h,(β1,β2) =
[
B`1,`2

h,2h,(β1,β2)
]
1≤`1,`2≤n/2 (5.53)

where for 1 ≤ `1, `2 ≤ n/2 − 1, B`h,2h,(β1,β2) is the 4 × 4 block

B`1,`2
h,2h,(β1,β2) = (P`1,`2

h,2h )T diag


λ`1,`2

(
S h,(β1,β2)

)
λn−`1,n−`2

(
S h,(β1,β2)

)
λn−`1,`2

(
S h,(β1,β2)

)
λ`1,n−`2

(
S h,(β1,β2)

)
 , (5.54)

and where for other values of `1 and `2, B`1,`2
h,2h,(β1,β2) is either a 2 × 2 block, e.g.,

B`1,n/2
h,2h,(β1,β2) = diag

[
λ`1,n/2

(
S h,(β1,β2)

)
λn−`1,n/2

(
S h,(β1,β2)

)] (5.55)

or the 1 × 1 block

Bn/2,n/2
h,2h,(β1,β2) = λn/2,n/2(S h,(β1,β2)

)
=

4 − κ2

4 − κ2(β1 − ιβ2)
. (5.56)
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Figure 5.7: Non-zero part of σ(Bh,2h,(1,1)) for the two-dimensional problem for various
values of k satisfying κ = 0.625.

The eigenvalues of Bh,2h,(β1,β2) can therefore be computed numerically as the eigenval-
ues of separate blocks. In the remainder of this section we will present results of such
computations that confirm properties of the solver revealed in the previous section.
Figure (5.7) shows the non-zero part of the spectrum of Bh,2h,(β1=1,β2=1) for k = 30,
k = 60 and k = 120 using 10 grid points per wavelength (and thus κ = 0.625). As in
the one-dimensional problem, the spectrum is clustered around one and the number
of small eigenvalues increases as the wavenumber increases. The number of unre-
solved near null-space eigen-modes grows however substantially faster than in the
one-dimensional case. These unresolved modes hamper the solver from being scal-
able.

Figure (5.8) shows the magnitude of the five eigenvalues of σ(Bh,H,(1,1)), smallest
in size, versus the wave number for κ = 0.625 (left) and κ = 0.3215 (right) on a
logarithmic scale. This figures serves to further illustrate the observation made earlier
for Figure (5.7). From this figure, one can deduce that the magnitude of the smallest
eigenvalues (5, in case of this figure) reduces when the wave number is increased and
eigenvalues come closer to origin as the wave number increases. This effect is more
pronounced in case when a small number of grid points per wavelength is used.

Figure (5.9) shows a bar plot of part of the eigenvalues of Bh,2h,(β1=1,β2=1) for
κ = 0.625 and κ = 0.3215 and for various values of k. These bar plots are aimed
to highlight the frequency of eigenvalues close to zero in modulus. The frequency
of eigenvalues close to 1 is higher in Figure 5.9(b) than that in Figure 5.9(a), as the
mesh size is halved in the earlier figure. The y-axis are kept the same in both Fig-
ures 5.9(a) and Figure 5.9(b), in order to compare the frequency of near-zero part of
the eigenvalues while considering different number of grid points. Therefore the bar
corresponding t eigenvalues 1 or close to 1 are trimmed. These figures confirm earlier
findings that the number of small eigenvalues grows with k and that this effect is more
pronounced if a smaller number of grid points per wavelength is used.
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Figure 5.8: Magnitude of the five eigenvalues smallest in size of σ(Bh,H,(1,1)) versus
the wave number in the two-dimensional problem for κ = 0.625 (left) and κ = 0.3215
(right).

5.5 One-Dimensional Rigorous Two-Grid Analysis of
TLKM

In this section, we advance to the TLKM deflation preconditioner. TLKM deflation is
classified into the ideal (some times referred as theoretical) and the practical versions.
The two versions are significantly different in the choice of the coarse grid operator.
Details can be found in Chapter 4. First of all, we will perform a two-grid Fourier
analysis of the ideal version of the TLKM deflation preconditioner. An aspect of the
analysis of the ideal variant can also be found in [92]. In the subsequent section, we
will discuss the analysis of the corresponding practical version.

Helmholtz and CSLP: Alike in case of ADEF1, we make use of Dirichlet’s bound-
ary conditions, for convenience and as they can been seen as the worst case since they
lack damping. We consider a one dimensional Helmholtz problem on the unit domain
Ωh = (0, 1). The stencil of the Helmholtz is given by

[Ah] =
1
h2

[
−1 2 − κ2 −1

]
where κ = k h . (5.57)

From previous sections, it is straightforward to write the eigenvectors and eigenvalues
of the discrete Helmholtz equation as

φ`h = sin(`πx) for 1 ≤ ` ≤ n − 1 (5.58)
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and
λ`(Ah) =

1
h2 (2 − 2 c` − κ2) , (5.59)

where c` = cos(`πh), as defined in previous sections.
As we know, the Helmholtz operator Ah and CSLP Mh,(β1,β2) carry the same eigenvec-
tors, the eigenvalue of Mh,(β1,β2) are

λ`(Mh,(β1,β2)) =
1
h2

(
2 − 2 c` − κ2(β1 − ιβ2)

)
. (5.60)

We know that the TLKM preconditioner is applied to Âh = M−1
h,(β1,β2)Ah instead of Ah.

Thus we present the spectrum of Âh as

λ`(Âh) =
2 − 2 c` − κ2

2 − 2 c` − κ2(β1 − ιβ2)
. (5.61)

5.5.1 Basis Diagonalization

By making use of basis Vh defined in Equation 5.12, which is obtained by reordering
the eigenvectors of Ah in the standard way (`, n − `) pairs [113], the eigenvalues of P̂h

can be transformed into block diagonal formulated as

P̂h = [P̂`
h]1≤n/2 (5.62)

where each 2×2 block P̂`
h is algebraic combination of blocks (of all operators forming

P̂h);

P̂`
h = I − Â`

hQ̂`
h + Q̂`

h

= I − Â`
h

(
Ih
2h(Â`

2h)−1I2h
h

)
+ Ih

2h(Â`
2h)−1I2h

h Q̂`
h (5.63)

where Â`
2h is 1 × 1 block and has been approximated as

Â`
2h = (M−1

2h A2hBh)` (5.64)

where Bh = Ih
2hI2h

h and thus the above block-equation can be rewritten as

P̂`
h = I − (M−1

h )`A`
h

(
M−1

2h A2hBh

)` (
(Ih

2h)`(I2h
h )`

)
+ Â`

h

(
M−1

2h A2hBh

)` (
(Ih

2h)`(I2h
h )`

)
(5.65)

Diagonalization of Ah, Mh,( (β1−ιβ2)) and Âh The diagonalization of Ah, Mh,(β1,β2) and
Âh with basis vectors given in 5.12 immediately results in:

Ah Diagonalization
−−−−−−−−−−−−−−→

[
A`

h

]
1≤`≤n/2

, (5.66)

Mh Diagonalization
−−−−−−−−−−−−−−→

[
M`

h

]
1≤`≤n/2

, (5.67)
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and

Âh Diagonalization
−−−−−−−−−−−−−−→

[
Â`

h

]
1≤`≤n/2

, (5.68)

where for 1 ≤ ` ≤ n/2 − 1 , the respective blocks are

A`
h =

1
h2

[
(2 − 2 c` − κ2) 0

0 (2 + 2 c` − κ2)

]
, (5.69)

M`
h,(β1,β2) =

1
h2

[ 1
h2 (2 − 2 c` − (β1 − ιβ2)κ2) 0

0 1
h2 (2 + 2 c` − (β1 − ιβ2)κ2)

]
, (5.70)

and

Â`
h =

 2−2 c`−κ2

2−2 c`−(β1−ιβ2)κ2 0

0 2+2 c`−κ2

2+2 c`−(β1−ιβ2)κ2

. (5.71)

For value of ` = n/2, the 1 × 1 blocks of Ah, Mh,(β1,β2) and Âh are An/2
h =

2
h2 − k2,

Mn/2
h =

2
h2 − (β1 − ιβ2)k2 and Ân/2

h =
2 − k2

2 − (β1 − ιβ2)k2 .

A`
2h = (I2h

h )`A`
h(Ih

2h)` =
2(1 − c2

` ) − κ
2(1 + c2

` )
2h2 , (5.72)

Diagonalization of grid transfer operators and coarse grid operator For restric-
tion operator I2h

h we will use the full weighting operator with stencil

[I2h
h ] =

[
1
4

1
2

1
4

]
, (5.73)

and as prolongation operator, we use the linear interpolation Ih
2h. Recalling from pre-

vious section that by diagonalization, the restriction operator with this stencil can be
transpoformed in into 1 × 2 blocks

(I2h
h )` =

[
1
2 (1 + c`) − 1

2 (1 − c`)
]
, (5.74)

for 1 ≤ ` ≤ n/2 − 1 and (I2h
h )n/2 = 0. Since the inter-grid transfer operators are related

by Ih
2h = (I2h

h )T , therefore the linear interpolation operator I2h
h ∈ R

n×( n
2−1) would be

read as, for 1 ≤ ` ≤ n/2 − 1

(Ih
2h)` =

1
2

[
(1 + c`)
−(1 − c`)

]
, (5.75)

while evaluating (Ih
2h)` at ` = n/2, we have

(Ih
2h)n/2 = 0 . (5.76)
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The 1 × 1 diagonal blocks of the Galerkin coarse grid operator Â2h can shown to be
equal to

Â`
2h = (I2h

h )`Â`
h(Ih

2h)`

= (I2h
h )`(M−1

h )`A`
h(Ih

2h)` (5.77)

which, after few derivations, will be read as

Â`
2h =

[
(2−2 c`−κ2)(1/2+1/2 c`)2

2−2 c`−κ2β1+iκ2β2
+

(2+2 c`−κ2)(−1/2+1/2 c`)2

2+2 c`−κ2β1+iκ2β2

]
(5.78)

for 1 ≤ ` ≤ n/2 − 1 and Â`
2h valued at ` = n/2 is given by

(Â2h)n/2 =
2 − κ2

2(2 − (1 − ι)κ2)

5.5.2 Closed-form Expression for Eigenvalues

The TLKM ideal variant turns up a deflation operator which is still a projection.
Therefore deflated preconditioned operator i.e. two-grid operator Bh,2h,(β1,β2) devel-
oped by using this variant of deflation has a multiple of zero eigenvalues. The above
rigorous Fourier analysis yields that the zero eigenvalue has multiplicity n/2 − 1. The
rest of the eigenvalues can be represented in the formula

λ`
(
Bh,2h,(β1,β2)

)
=

D`(c`, κ2, β1, β2)
F`(c`, κ2, β1, β2) + ιG`(c`, κ2, β1, β2)

for ` = 1, . . . , n/2 − 1 , (5.79)

where D`, F` and G` are second order polynomials in κ2 given by

D`(c`, κ2, β1, β2) = (1 + c2
` )κ

4 − 4(1 + c2
` )κ

2 + 4(1 − c4
` ) (5.80)

F`(c`, κ2, β1, β2) = −β1(1 + c2
` )κ

4 + 2(1 + β1 − β1 c2
` + 3 c2

` )κ
2 − 4(1 − c4

` )

G`(c`, κ2, β1, β2) = β2(1 − c2
` )κ

4 − 2β2(1 − c2
` )κ

4 ,

and eigenvalue for ` = n/2 is given by

λn/2(Bh,2h,(β1,β2)
)

=
2 − κ2

2 − (β1 − ιβ2)κ2 . (5.81)

In Figure 5.10, we plot the spectrum from Formula 5.79 for various values of the
wavenumber, i.e. k = 100, k = 1000 and k = 10000. The value of κ is chosen as
κ = 0.3125 representing one wavelength of the wave over 20 grid points. This ideal
variant of TLKM is remarkably good for low wavenumbers, as the spectrum of the
two grid operator for wave number k = 100 and k = 1000 can be seen well clustered
around 1 in the complex plane. But for large wavenumbers, it is not that efficient
and seems to fail to justify the implementation cost. Figure 5.10(c) specifies this fact
where scattering of eigenvalues from the cluster around 1 can be noticed, when k is
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Figure 5.10: Spectrum of the TLKM ideal variant with CSLP for various wave num-
bers resolved over a grid with 20 gridpoint per wavelength.

increased to k = 10000. It is illustrative to look into the real and imaginary part of
these eigenvalues denoted by Re

[
λ`

(
Bh,2h,(β1,β2)

)]
and Im

[
λ`

(
Bh,2h,(β1,β2)

)]
, respectively.

We have that for ` = 1, . . . , n/2 − 1

Re
[
λ`

(
Bh,2h,(β1,β2)

)]
=

p( c`, κ2, β1, β2)
q( c`, κ2, β1, β2)

(5.82)

Im
[
λ`

(
Bh,2h,(β1,β2)

)]
=

r( c`, κ2, β1, β2)
q( c`, κ2, β1, β2)

(5.83)
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where p( c`, κ2, β1, β2), q( c`, κ2, β1, β2) and s( c`, κ2, β1, β2) are fourth order polynomi-
als in κ2 given by

p( c`, κ) =
(
2 β1 c`2 + c`4β1 + β1

)
κ8

+
(
−8 β1 c`2 − 2 c`4β1 − 6 β1 − 6 c`4 − 8 c`2 − 2

)
κ6

+
(
12 β1 + 4 β1 c`2 − 12 c`4β1 − 4 c`6β1 + 20 c`4 + 36 c`2 + 12 − 4 c`6

)
κ4

+
(
−24 − 40 c`2 + 40 c`6 − 8 β1 − 8 c`6β1 + 24 c`4 + 8 c`4β1 + 8 β1 c`2

)
κ2

+16 − 32 c`4 + 16 c`8

q( c`, κ) =
(
β2

2 + β1
2 + 2 β1

2 c`2 + 2 c`2β2
2 + c`4β1

2 + c`4β2
2
)
κ8

+
(
4 c`4β2

2 − 4 β1 − 4 β2
2 − 12 c`4β1 + 4 c`4β1

2 − 16 β1 c`2 − 4 β1
2
)
κ6

+(4 c`4β2
2 + 36 c`4 + 24 c`2 − 8 c`2β2

2 + 4 β2
2 + 16 β1 + 4 + 4 β1

2 . . .

+4 c`4β1
2 − 8 c`6β1 − 32 c`4β1 − 8 β1

2 c`2 + 24 β1 c`2)κ4

+
(
−16 + 16 β1 c`2 − 48 c`2 − 16 β1 + 48 c`6 + 16 c`4β1 + 16 c`4 − 16 c`6β1

)
κ2

+16 − 32 c`4 + 16 c`8

r( c`, κ) =
(
2 c`2β2 + β2 c`4 + β2

)
κ8 +

(
−6 β2 − 8 c`2β2 − 2 β2 c`4

)
κ6

+
(
12 β2 + 4 c`2β2 − 4 β2 c`6 − 12 β2 c`4

)
κ4

+
(
−8 β2 + 8 c`2β2 + 8 β2 c`4 − 8 β2 c`6

)
κ2

In addition to the illustration of the spectrum in the complex plane, we take an
alternative approach in Figure 5.11, where we plot the real part of the non-zero eigen-
values i.e. Re

[
λ`

(
Bh,2h,(β1,β2)

)]
versus the index ` for three values of the wavenumber

k, namely k = 100, k = 1000 and k = 10, 000. The formulae of Re
[
λ`

(
Bh,2h,(β1,β2)

)]
as well as Im

[
λ`

(
Bh,2h,(β1,β2)

)]
are given in Equations (5.82) and (5.83) respectively.

These figures shows that the real part of the eigenvalues is close to 1 for k = 100 and
for k = 1000. However, for k = 10, 000, the near-kernel eigenvalues tend to shift
towards the origin. We therefore expect the TLKM ideal variant ceases to be scalable
for such high wavenumbers despite its high computational cost. Figure 5.10 clearly
demonstrate this difference, where increasing the wave number k from 1000 to 10000
shows severance of eigenvalues from the cluster. To gain insights into this distribution
of non-zero eigenvalues with respect to increase in wavenumber, we consider a par-
ticular case where the parameters are specified as κ = 0.625, β1 = 1 and β2 = 1. The
expressions for Re

[
λ`

(
Bh,2h,(β1,β2)

)]
and Im

[
λ`

(
Bh,2h,(β1,β2)

)]
for ` = 1, ..., n/2 − 1 then

reduce to the following rational expressions in c2
`

Re
[
λ`

(
Bh,2h,(1,1)

)]
=

16 c8
`

+ 11.2792 c6
`
− 18.7327 c4

` − 7.3036 c2
` + 6.7086

16 c8
`

+ 11.2793 c6
`
− 17.8608 c4

`
− 8.4778 c2

`
+ 7.1038

(5.84)

Im
[
λ`

(
Bh,2h,(1,1)

)]
=

−3.7354 c6
`

+ 1.198 c4
` + 3.3051 c2

` − 1.6283

16 c8
`

+ 11.2793 c6
`
− 17.8608 c4

`
− 8.4778 c2

`
+ 7.1038

(5.85)
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Figure 5.11: Real part of the non-zero eigenvalues of Bh,2h,(β1,β2) versus the index ` for
TLKM ideal variant.
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Figure 5.12: Real part of the non-zero eigenvalues of Bh,2h,(β1,β2) versus the index ` for
TLKM ideal variant.

Since c` = cos(`πh), therefore formula Re
[
λ`

(
Bh,2h,(1,1)

)]
can be seen as polynomial

in index `, say f (`). The numerator and denominator of Re
[
λ`

(
Bh,2h,(β1,β2)

)]
slightly

differ in the low order terms of c` only. The zeroth order is profoundly different in
numerator and denominator. Thus the function f (`) can be seen as an approxima-
tion of constant function with range 1 for almost every index `, except the certain
indexes corresponding to which (real part of ) eigenvalues tends to be near zero. Such
behavior is confirmed by Figure 5.13, where the real part of the eigenvalues from Fro-
mula 5.84 are plotted against index `. We also plot the log10 of the real part given in
Equation 5.84 versus the index ` = 1, . . . , n/2 − 1 values of wave number k = 100,
k = 1000 and k = 10000 in solid line. The dashed line represents the real part of
non-zero eigenvalues of the CSLP preconditioner operator Re

[
λ`

(
M−1

h(β1,β2)Ah
)]

. Fig-
ure 5.13 thus highlights the action of the deflation preconditioner on the spectrum of
CSLP preconditioned operator. The near-null space modes has sustained the deflation
preconditioner and occur in the same indexes. The deflation reduces the adverse effect
of the near-null space modes.
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Figure 5.13: Real part of the non-zero eigenvalues of Bh,2h,(β1,β2) versus the index ` for
TLKM ideal variant.

5.6 TLKM Simplified Analysis

In this sections, simplification has been designated for the analysis of the TLKM ideal
variant. We derive the formulae for eigenvalues without incorporating the CSLP. The
CSLP preconditioner is excluded only on the fine level, but on coarser levels it is
included as the coarser operator is part of the deflation preconditioner. The TLKM de-
flation preconditioner makes use of the CSLP preconditioned operator at fine as well
as coarse level as usual. We will apply only the deflation preconditioner TLKM ideal
variant to the Helmholtz operator instead of the CSLP preconditioned Helmholtz op-
erator. This simplification of analysis will show the exclusive influence of the TLKM
ideal preconditioner on the Helmholtz operator. Recall that the TLKM deflation pre-
conditioner ideal variant is given by

P̂`
h = I − ÂhQ̂h, (5.86)

where Âh = M−1
h Ah and Q̂h = I2h

h Â2hIh
2h are the same as earlier defined. As of now, we

are interested in the spectrum of the operator

B̂h,2h,(β1,β2) = P̂`
hAh. (5.87)

Adapting the analysis presented in earlier sections and some standard derivations will
give the spectral formula for B̂h,2h,(β1,β2) which is

λ
(
B̂h,2h,(β1,β2)

)
= −

a( c`, κ) + ιb( c`, κ)
c( c`, κ) + ιd( c`, κ)

(5.88)
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where

a( c`, κ) =
(
β1 + β1 c`2

)
κ6 +

(
−2 − 6 c`2 − 4 β1 − 4 β1 c`2

)
κ4

+
(
8 + 24 c`2 + 4 β1 − 4 β1 c`4

)
κ2 −

(
8 + 16 c`2 − 24 c`4

)
b( c`, κ) =

(
− c`2β2 − β2

)
κ6 +

(
4 β2 + 4 c`2β2

)
κ4 +

(
4 c`4β2 − 4 β2

)
κ2

c( c`, κ) =
(
−h2β1 − h2β1 c`2

)
κ4 +

(
2 h2 + 2 h2β1 + 6 h2 c`2 − 2 h2β1 c`2

)
κ2 −

(
4 h2 − 4 h2 c`4

)
d( c`, κ) =

(
h2β2 + h2 c`2β2

)
κ4 +

(
−2 h2β2 + 2 h2 c`2β2

)
κ2.

Note that because of using Âh (instead of Ah) for constructing P̂`
h, we end up with the

expression containing complex values. Also the coarse grid operator Â2h carries out
complex valued terms.

Further we like to explore the shifting process, as we did in case of analysis of the
ADEF1 preconditioner. For this purpose, we look into the real part of the spectrum
of B̂h,2h,(β1,β2), which is given in Equation 5.88 and the real part of the spectrum of
B̂h,2h,(β1,β2) + Q̂hAh. In Figure 5.14(a), real part of the spectrum of B̂h,2h,(1,1) is plotted.
The same is compared with the spectrum of B̂h,2h,(1,1) + Q̂hAh plotted in Figure 5.14(b)
where the deflated spectrum is shifted to 1 by applying the shift-term Q̂h. These figures
indicate that shift term Q̂h does not perform a clear shifting of the zero eigenvalues
(deflated eigenvalues) alike the case when we incorporate CSLP where shifting of the
deflated eigenvalues is carried on without causing noise in the rest of the eigenvalues.
This is made apparent in Figures 5.14(c) and 5.14(d), where the spectrum from For-
mula 5.82 is plotted. In these two figures, one can observe that zero eigenvalues are
distinctly shifted to the maximum eigenvalue i.e. 1.

5.7 TLKM Practical Variant

In this section, we discuss the practical variant of TLKM preconditioner. If we recall
the coarse grid operatorÂ2h used to construct the TLKM operator earlier, it is

Â`
2h = (I2h

h )`Â`
h(Ih

2h)`

= (I2h
h )`(M−1

h )`A`
h(Ih

2h)` (5.89)

In Chapter 4, while exploring implementation possibilities, we discussed the approxi-
mation for the coarse grid operator Â2h in Equation 4.36 which can be denoted by

Â2h = ΘhÃ2h, (5.90)

where Ã2h = M−1
2h A2h and Θh is an approximation matrix. Now we know that A2h

and M2h are simply the Galerkin operators therefore, eigenvalues are given below for
certain indexes `

A`
2h = (I2h

h )`Â`
h(Ih

2h)` =
2(1 − c2

` ) − κ
2(1 + c2

` )
2h2 , (5.91)
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Figure 5.14: Real part of the spectrum; The TLKM ideal preconditioner applied to
Ah. Wavenumber considered is k = 10000 with grid size is set such that there are 20
grid points per wavelength
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and

M`
2h = (I2h

h )`M`
h(Ih

2h)` =
2(1 − c2

` ) − (β1 − ιβ2)κ2(1 + c2
` )

2h2 , (5.92)

for 1 ≤ ` ≤ n/2 − 1 and (A2h)n/2 = 2−κ2

2h2 . Subsequently 1 × 1 block for M−1
2h A2h will be

(M−1
2h A2h)` =

2(1 − c2
` ) − κ

2(1 + c2
` )

2(1 − c2
`
) − (β1 − ιβ2)κ2(1 + c2

`
)
, (5.93)

for 1 ≤ ` ≤ n/2 − 1 and (M−1
2h A2h)n/2 =

2 − κ2

2 − κ2 (β1 − ιβ2)
. Also the 1 × 1 block for

approximation term Θh = I2h
h Ih

2h can be simplified as

Θ`
h = (I2h

h Ih
2h)` = (1 + c2

` ), (5.94)

for 1 ≤ ` ≤ n/2. The algebraic combination of basis-diagonalized blocks of each of
the corresponding operator given in Equation 5.65 can be written as

P̂`h =

[
1 0
0 1

]
−


2−2 c`−κ

2

2−2 c`−(β1−ιβ2)κ2
0

0 2+2 c`−κ
2

2+2 c`−(β1−ιβ2)κ2


 2(1 − c2

` ) − κ2(1 + c2
` )

2(1 − c2
`
) − (β1 − ιβ2)κ2(1 + c2

`
)

 [ 1
1 + c2

`

] [
(1 + c`)2 −(1 − c2

` )
−(1 − c2

` ) (1 − c`)2

]
(5.95)

Unfortunately, we do not have a closed-form formula for the spectrum of Bh,2h,(β1,β2).
Nevertheless, these algebraic combination of blocks can be considered as a reference
to the figures and we can illustrate the spectral behavior graphically. It is also im-
portant to highlight that this variant defines a deflation operator that is no longer a
projection. This is because of the approximation of Âh as ΘhÃ2h. This is further dis-
cussed below.

Recall that P̂h = Ih−ÂhQ̂h. We want to prove that P̂h is projection with assumption
that Q̂h = Ih

2hÂ2hI2h
h and Â2h = I2h

h M−1
h AhIh

2h = I2h
h ÂhIh

2h. For this proof, we only need
to establish the identity P̂2

h = P̂h .

P̂2
h =

(
Ih − ÂhQ̂h

) (
Ih − ÂhQ̂h

)
= Ih − ÂhQ̂h − ÂhQ̂h + ÂhQ̂hÂhQ̂h

= Ih − 2ÂhQ̂h + ÂhQ̂h

where Q̂hÂhQ̂h = Ih
2hÂ−1

2h I2h
h ÂhIh

2hÂ−1
2h I2h

h = Ih
2hÂ−1

2h Â2hÂ−1
2h I2h

h = Ih
2hÂ−1

2h I2h
h = Q̂h.

This is the case when Â2h = I2h
h ÂhIh

2h, i.e. for the TLKM ideal variant. However if
we approximate Â2h = ΘhÃ2h, then we no longer have the equality Q̂hÂhQ̂h = Q̂h.
Subsequently in this case, P̂2

h , P̂h.
It appears that therefore adding the shift, i.e., the third term involving Qh in the

Expression (5.63) for Ph,2h,λn , has a strong influence on the spectrum of the deflated
preconditioned operator. To illustrate this claim, we will consider two sub-variants,
one with and the other without the shift term Qh. The analytical expressions resulting
from the Fourier analysis of the TLKM practical variant is too complex to be reported
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Figure 5.15: Eigenvalues of Bh,2h,(β1,β2) in the complex plane considering TLKM prac-
tical variant without shift term Qh for various values of the wavenumber.

here. We therefore resort to numerical computations. Numerical results showing the
spectrum are given in Figure 5.15 and Figure 5.16.

In Figure 5.15 we plot the spectrum of Bh,2h,(β1,β2) with λn = 0 in (5.63) in the
complex plane for various values of the wavenumber k. This figure shows a spectrum
consisting of two clusters, the first around the origin and the second around (1, 0). The
spread of both clusters appear to grow with the wavenumber k.

Figure 5.16 shows the real part of the eigenvalues of Bh,2h,(β1,β2) while shifting the
deflated spectrum to 1 in (5.63) versus the index `. The top and bottom row of figures
show all indexes ` and those close to the near-kernel, respectively. These figures show
that the inclusion of the shift in the deflation operator causes the eigenvalues to be
shifted both to the left and the right of (1, 0) in the complex plane. This effect is
caused by the coarse grid solve with A2h in the matrix-vector multiplication with the
matrix Qh.

5.8 A Comparison: ADEF1 and TLKM

A global comparison of the three prominent variants of deflation analyzed above
is presented in this Section. In Figures 5.17, 5.18 and 5.19, the spectrum of the
Helmholtz operator preconditioned by ADEF1, TLKM Practical and TLKM ideal
variant preconditioners is plotted in the complex plane respectively. The first two
figures illustrate the idea that ADEF1 preconditioner is fairly comparable with TLKM
practical preconditioner in context of spectrum. The TLKM ideal variant produces a
nice spectrum, but it is impractical to use in a multilevel style, hence it remains not
practical to use for large problems.
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Figure 5.16: Real part of the eigenvalues of Bh,2h,(β1,β2) versus the index ` using the
TLKM practical variant with shift term Qh for various values of the wavenumber.
The top and bottom show all and selection of indices ` close to the near-null space,
respectively.
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Figure 5.17: ADEF1; κ = 0.3215.
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Figure 5.18: MLKM Practical: κ = 0.3215.
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Figure 5.19: MLKM Ideal; κ = 0.3215.

5.9 Re-Discretized Coarse Grid Operator

In the deflation variants discussed so far, we have used the Galerkin coarse grid op-
erator. Re-discretization has been an alternative to the Galerkin coarse grid operator.
We will discuss the deflation variant which uses the re-discretized coarse grid oper-
ator. In multilevel algorithms, re-discretization addresses the problem of the stencil



80 Chapter 5. Spectral Analysis

growth at coarser levels in the Galerkin coarsening. It also allows to eliminate all
matrices in coarser levels, which helps in reducing memory storage. The spectrum of
re-discretized coarse grid operator can be written as

λh(A2h) =
1 − cos(2lπh) − 2k2

2h2 =
sin(lπh) − k2

h2 . (5.96)

Below we summarize a number of properties obtained from analysis of this variant of
deflation:

• This deflation variant is not a projection. Hence the analysis produces two
eigenvalues, which are too involved to be interpreted. Hence we rely upon the
graphical interpretation of the analysis.

• The spectrum of the deflated preconditioned operator Bh,2h,(β1,β2) = PhM−1
h,(β1,β2)Ah

does not seem so convincing as shown in Figure (5.20(a)). However when a shift
term Qh is included, the spectrum is fairly comparable with that of ADEF1,
which is shown in Figure (5.20(b)). This shows a prospective of using the
re-discretized coarse grid operator for large problems in order to avoid large
memory storage for the Galerkin coarse grid operator.

• The above discussed figures show the spectrum from analysis, where Dirich-
let boundary conditions are used. However, inclusion of Sommerfeld boundary
conditions visibly changes the spectrum, which is given in Figures (5.20(c)) and
(5.20(c)).
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Figure 5.20: Spectrum of deflated operators using re-discretized coarse grid
operator(a-d) and Galerkin coarse grid operator (e-f).
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Chapter 6
Numerical Experiments

This chapter is dedicated to numerical results for the problems defined in Chapter
2, which ranges from a one dimensional to three dimensional Helmholtz problems
with simple heterogeneity. These numerical results will justify most of the theoreti-
cal findings presented in earlier chapters of this thesis. The numerical results give a
detailed comparison of solvers with and without deflation. The details of solvers and
corresponding results are presented in tables and figures in respective sections. Exper-
iments have been performed in MATLAB and PETSc and are mentioned individually.
With every choice of (flexible) Krylov method, a zero initial guess is used in all exper-
iments. Krylov iterations are stopped if the scaled residual ||r

n
h ||

||bh ||
is reduced by a factor

of 107, except an exclusive mention is given.

6.1 One-Dimensional Constant Wave Number Problem

For discretization of wave scattering phenomena, it is often required to increase the
grid size with increasing wave number. In other words the mesh size is kept as an
increasing function of the wave number instead of constant function. Table 6.1 aims at
testing the ADEF1 preconditioner at two levels for increasing wavenumber problems,
where the grid size is such that k3h2 is kept constant, as recommended in [12]. The
numerical experiment is carried out on one dimensional problem 2.7 with Sommerfeld
boundary conditions 2.9, with a two-level ADEF1 preconditioner, where the coarse
problem as well as CSLP are inverted exactly. Full GMRES has been chosen as Krylov
solver. The shifts (β1, β2) = (1, 0.5) are used. In Table 6.1, the difference is made
clear between the choices of grid resolutions; k3h2 ≤ 0.625 and kh ≤ 0.625. Table
6.1 immediately shows constant number of iterations where as wave number ranges
from 10 to 1000 while choosing criteria k3h2 ≤ 0.625 and an increase in number of
iterations has been observed while kh ≤ 0.625.

83
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k N(k3h2 ≤ 0.625) iter N(kh ≤ 0.625) iter

10 44 4 16 4
20 116 4 32 5
40 320 4 64 5
80 800 4 128 6
100 1268 4 160 7
200 3572 4 320 8
400 10124 4 340 10
500 14144 4 800 12
600 18596 4 960 13
800 28628 4 1280 15
1000 40004 4 1600 17

Table 6.1: GMRES iterations preconditioned by Two-Level deflation preconditioner
applied on one a dimensional Helmholtz problem with Sommerfeld boundary condi-
tions.

Next we like to see how ADEF1 preconditioner performs for very large wavenum-
ber problems. For the purpose, we choose one dimensional Helmholtz on interval
(0, 1) supplied with Sommerfeld boundary conditions. We use the shift (β1, β2) =

(1, 1) and 20 grid points per wavelength i.e. kh = 0.3125. Two-level deflation has
been opted where coarse grid operator as well as CSLP has been inverted exactly. A
comparison of the number of GMRES iterations preconditioned by CSLP and ADEF1
two-level preconditioner is given in Figure (6.1). In Figure (6.1(a)) and Figure (6.1(b))
we consider the wave number in the range of 0 ≤ k ≤ 800 and 1000 ≤ k ≤ 20, 000,
respectively. These figures show that in the wavenumbers range up to k = 800, the
number of iterations is almost independent of k. Starting at k = 1000 however, we
observe an increasing dependence of number of iterations on the wavenumber.

6.2 Two-Dimensional Constant Wave Number Problem

In this section, first we test our ADEF1 preconditioner at two-levels for a two di-
mensional problem with constant wave number. CSLP preconditioner involves shifts
(1, 0.5) and ADEF1 deflation is used at two-levels. In Table 6.2 and 6.3, we give the
number of GMRES iterations required to solve the problem with Dirichlet and Som-
merfeld boundary conditions for a range of wavenumbers and number of elements
(for a fixed wavenumber) respectively. We compare the variants with and without
deflation. In both tables, only the number of elements on and below the diagonal
highlighted in bold suffice to meet the requirement of 20 grid points per wavelength,
corresponding to the condition kh = 0.3125. The number of iterations with and with-
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Figure 6.1: Number of Mh,(1,1) preconditioned GMRES iterations with and without de-
flation for the one-dimensional constant wave number problem for k ranging between
10 and 800 (left) and between 1, 000 and 20, 000 (right).

k = 10 k = 20 k = 30 k = 40 k = 50 k = 100

n = 32 3/10 8/17 17/31 35/50 52/80 13/14
n = 64 3/10 6/17 10/30 17/47 24/63 221/252
n = 96 3/10 5/17 7/30 11/46 15/62 209/220

n = 128 3/10 5/17 6/30 10/45 11/62 90/196
n = 160 3/10 4/17 5/30 8/45 9/62 65/194
n = 320 2/10 3/17 4/30 5/45 6/61 24/193

Table 6.2: Number of GMRES iterations for two dimensional constant wavenumber
problem with Dirichlet boundary conditions for various wave numbers and grid reso-
lutions using the SLP preconditioner Mh,(1,0.5) with and without deflation.

out deflation are separated by the symbol “/” on left and right respectively. For both
Dirichlet and Sommerfeld boundary conditions, the number of iterations for fixed k
decreases with increasing grid points n, and thus increasing number of grid points
per wavelength. This confirms findings from our Fourier analysis. The diagonal just
above the highlighted one corresponds to kh = 0.625, which is 10 grid point per
wavelength. For this often used discretization, the growth in the number of iterations
is larger than for the case that kh = 0.3125. These tables are also aimed to compare
with inclusion of damping term due to Sommerfeld boundary conditions. Comparing
both tables confirms the claim that the problem with Dirichlet boundary conditions
acts as a worst case for the problem with Sommerfeld boundary condition .
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k = 10 k = 20 k = 30 k = 40 k = 50 k = 100

n = 32 5/10 8/17 14/28 26/44 42/70 13/14
n = 64 4/10 6/17 8/28 12/36 18/45 173/163
n = 96 3/10 5/17 7/27 9/35 12/43 36/97
n = 128 3/10 4/17 6/27 7/35 9/43 36/85
n = 160 3/10 4/17 5/27 6/35 8/43 25/82
n = 320 3/10 4/17 4/27 5/35 5/42 10/80

Table 6.3: Number of GMRES iterations for two dimensional constant wavenumber
problem with Sommerfeld boundary conditions for various wave numbers and grid
resolutions using the SLP preconditioner Mh,(1,0.5) with and without deflation.

In Table 6.4 we give the number of outer GCR [36] iterations required to solve the
problem discussed using the multilevel algorithm with ADEF1 for various values of
the wavenumber using 20 grid points per wavelength. Implementation of the ADEF1
preconditioner at multilevel requires to choose a flexible Krylov method, since we
approximate the solution of the coarser problem at every level. We recursively apply
coarsening until we obtain a single grid point on the coarsest level. The algorithm has
been implemented in MATLAB [78]. In Table 6.4 the abbreviation TL stands for the
two-level algorithm considered before while the indices n1, n2 and n3 in the notation
ADEF1 (n1, n2, n3) denote the number of GCR iterations on the first, second and third
coarser levels, respectively. On the next coarser levels a single GCR iteration is used,
except for the coarsest level where a direct solver is employed. A single standard
V(1,1)-cycle with damped Jacobi using as damping parameter ω = 2/3 as a smoother
was used to approximate the CSLP preconditioner, which uses the shifts (β1, β2) =

(1, 1). Table 6.4 aims to discuss the number of iterations required at different coarser
levels in order to achieve an optimized algorithm. Table 6.4 shows that reducing
outer iterations for the range of wave numbers considered requires increasing n1 (the
number of GMRES iterations on the first coarser level). The number of iterations at
subsequence coarse levels (other than n1) are not as such sensitive as on finest level.
The combination (n1, n2, n3) = (10, 2, 1) seems to be attractive however (8, 2, 1) is a
fair competitor, as 2 iterations might reduce more computations cost than the gain in
global Krylov iterations.

6.3 Shifts in SLP

A good choice of the shifts (β1, β2) in CSLP is important, since it defined globally
the convergence of preconditioned Krylov solver. The smaller the imaginary shift
β2, the better the CSLP preconditioner resembles the original operator. However the
proposed preconditioner solver (i.e. multigrid) does not approximate good enough for
smaller β2. Optimal choice of the shifts has also been discussed in [30, 29]. How does
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k = 10 k = 20 k = 40 k = 80 k = 160

TL 6 7 11 15 25
ADEF1(4,2,1) 9 11 16 27 100+

ADEF1(6,2,1) 9 10 14 21 47
ADEF1(8,2,1) 9 10 13 20 38
ADEF1(8,3,2) 9 10 13 19 37
ADEF1(10,2,1) 9 10 14 19 32

Table 6.4: Number of outer GCR iterations preconditioner by ADEF-1 for the two-
dimensional problem with Sommerfeld boundary conditions for various wave num-
bers and kh = 0.3125 using the shifts (β1, β2) = (1, 1).

deflation influence the choice of shifts for CSLP? In order to see this, in Figure (6.2)
we plot the required number of GMRES iterations to solve a two dimensional constant
wavenumber and wedge problem with first order Sommerfeld boundary conditions as
a function of the imaginary shift β2. In constant wavenumber and wedge problem,
we used wavenumber k = 50 and frequency f = 30, respectively, and employed 10
grid points per wavelength. We have chosen β1 = 1 and allowed β2 to vary between
0 and 1. For β2 = 0, the CSLP preconditioner coincides with the discrete Helmholtz
operator, and the algorithm converges in a single iteration. The figures show that
without deflation, the number of GMRES iterations increases with β2. This is due to
the fact that the CSLP preconditioner differs more from the discrete operator as β2

increases as observed in, e.g., [40]. More interestingly, the figures shows that with
deflation, the required number of GMRES iterations initially increases but remains
constant for β2 ≥ 0.1. These results confirm the Fourier analysis spectrum in Section
(5.4) and opens promising perspectives on obtaining a good preconditioner at low cost.

6.4 Two-Dimensional Non-Constant Wave Number Prob-
lem

6.4.1 Wedge Problem

In this subsection we consider the two-dimensional wedge problem as defined in
Chapter 2, where the frequency is a function of speed which is different in the three
wedges ranging from 1500 m/s to 3000 m/s. Similar to Tables given in the Section
6.2, in Table 6.5 we give the required number of GMRES iterations for various fre-
quencies and various mesh sizes with and without two-level deflation. We follow the
same pattern and same solver type which is Krylov method GMRES is preconditioned
with CSLP and deflation at two levels. CSLP is inverted exactly as well as the coarse
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Figure 6.2: Number of Mh,(1,β2) preconditioned GMRES iterations with and without
deflation versus β2 for Problem (1) for k = 50 and Problem (2) for f = 30, both
problems with Sommerfeld boundary conditions.

f req = 10 f req = 20 f req = 30 f req = 40 f req = 50

74 × 124 7/33 20/60 79/95 267/156 490/292
148 × 248 5/33 9/57 17/83 42/112 105/144
232 × 386 5/33 7/57 10/81 25/108 18/129
300 × 500 4/33 6/57 8/81 12/105 18/129
374 × 624 4/33 5/57 7/80 9/104 13/128

Table 6.5: Number of Mh,(1,0.5) preconditioned GMRES iterations with and without
deflation for Problem (2) for various wave numbers and grid resolutions.

problem. CSLP uses shifts (β1, β2) = (1, 0.5). MATLAB is used to perform exper-
iments here. In this table the leftmost column indicates the number of grid points
used in each coordinate direction. This table shows that while deflation is effective
in reducing the number of iterations even in the case of non-constant wave numbers,
not all near-null space of the system are sufficiently removed in order to obtain a fully
scalable algorithm. But gain in number of iterations is attractive with the two-level de-
flation. In the next section, we will see if the sufficient reduction in number of iteration
with deflation pays off the solve time.

6.4.2 Marmousi Problem

Next considered is the adapted Marmousi problem; i.e. the original domain (3000 ×
9200) in meters has been trimmed into Ωh = (2048 × 8192) where the discrete ve-



6.4. Two-Dimensional Non-Constant Wave Number Problem 89

Frequency
Solve Time Iterations

CSLP-F ADEF1-F CSLP-F ADEF1-F
1 1.22 5.07 13 7
10 10.18 9.43 112 13
20 72.16 60.32 189 22
40 550.20 426.79 354 39

Table 6.6: CSLP and ADEF1 performance comparison for Marmousi problem with-
out damping i.e. α = 0.

locity data can be coarsened geometrically and conveniently. The original veloc-
ity has also been adapted to make it less contrasted and the velocity c(x, y) range
is 2587.5 ≤ c ≤ 3325. The grid is resolved for different frequencies such that
for the maximum wavenumber k, kh ≤ 0.039 for f = 1 and kh ≤ 0.39 for f =

10, 20 and 40. This scheme guarantees that one wavelength is resolved into more
than 10 grid points. Without deflation, the Krylov method of choice is Bi-CGSTAB,
where as multilevel implementation of ADEF1 deflation requires to choose flexible
Krylov, therefore FGMRES has been used. The combination of number of FGMRES
iterations at second, third and subsequent coarser levels is (8, 2, 1, ...) respectively. We
choose two competitors in preconditioners i.e. CSLP and ADEF1. In both cases, a
multigrid full cycle approximates the CSLP with standard coarsening in each direction
and using weighted Jacobi smoother with ω = 2/3. Also in both cases, the shifts in
CSLP are such that Mh(1, 1). Since we use standard multigrid components, therefore
the CSLP with shifts (1, 1) is more accurately approximated than with shifts (1, 0.5).
However if one adapt the multigrid, say to semi-coarsening then the CSLP with shifts
(1, 0.5) should be preferred. Numerical experiments are performed in the C++ based
tool PETSc [7] on Dell Precision machine with processor E8400 at 3.00GHz. Table
6.6 presents a comparison between iterations taken by CSLP and ADEF1 precondi-
tioned Krylov, which confirms the trend that the use of ADEF1 deflation lowers the
number of iterations significantly specially for high wavenumbers. And that reduced
iteration count for ADEF1 results in a speedup at sufficient high wavenumber. This
fact is concluded from the numbers showing solve time using both CSLP and ADEF1
preconditioner in the table under discussion.

In Table 6.7, we repeat the same but here we include the damping parameter α =

0.05. Damping renders the diagonal dominance in obvious way. Therefore, one can
note a reduction in number of iterations and subsequently in time.

Considering more grid points for a fixed frequency, the Krylov method takes less
number of iterations with both preconditioners CSLP and ADEF1. This is evident in
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Frequency
Solve Time Iterations

CSLP-F ADEF1-F CSLP-F ADEF1-F
1 1.27 5.76 13 7

10 9.85 10.36 96 13
20 68.6 65.34 175 19
40 984.7 369.7 332 33

Table 6.7: CSLP and ADEF1 performance comparison for Marmousi problem with-
out damping i.e. α = 0.05.

Frequency
Solve Time Iterations

CSLP-F ADEF1-F CSLP-F ADEF1-F
f = 1 1.23 5.08 13 7

f = 10 40.01 21.83 106 8
f = 20 280.08 131.30 177 12
f = 40 20232.6 3997.7 340 21

Table 6.8: CSLP and ADEF-1 performance comparison for Marmousi problem with-
out damping i.e. α = 0 for Marmousi problem discretized with a mesh size equivalent
of 20 grid points per wavelength.

Table 6.8, where the number of iterations as well as solve time respective of these num-
ber of iterations are compared. Mesh size is settled such that more than 20 grid points
are assured for one wavelength. As the Marmousi problem involves heterogeneity,
thus attentive choice of multigrid ingredients for CSLP preconditioner solve can pro-
duce better results. An example of which is given in [40], where two smoothing steps
are suggested to perform in order to get relatively more accurate CSLP preconditioner
solve. Also semi-coarsening scheme can be performed for more accurate precondi-
tioner solve [15]. However we continue with the multigrid full cycle with standard
coarsening and 1 pre- and post-smoothing steps. This can be seen as a worst case
scenario.

6.5 Three-Dimensional Constant Wave Number Prob-
lem

Not all the algorithms developed for and tested on two dimensional problems show
similar performance behavior for three dimensional problem. In order to assure the
functioning of our proposed deflation operator ADEF1, we present a test on three di-
mensional constant as well as non-constant wavenumber problem as follow.
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Wave number k Solve Time Iterations
SLP-F ADEF1-F SLP-F ADEF1-F

5 0.007 0.055 7 9
10 0.06 0.46 9 10
20 1.07 3.2 21 11
40 21.79 31.99 58 16
60 113.19 165.2 90 23
80 511.80 501.9 159 29

120 2832.7 2056.7 254 39

Table 6.9: PETSc Solve time and iteration comparison between Bi-CGSTAB precon-
ditioned with CSLP-F and FGMRES(20) preconditioned with ADEF1-F

A three dimensional Helmholtz in a unit cube domain with constant wavenumber
is considered. We intend to analyse that at what factor, the number of iterations re-
duces when we use ADEF1 preconditioner in comparison with CSLP preconditioner.
Further we will see if there is any gain in solve time with preconditioner ADEF1.

Table 6.9 and Table 6.10 present the FGMRES iteration count using 10 and 20
grid points per wavelength respectively. These tables list the number of outer Krylov
iterations and CPU-time for various values of the wavenumber. CSLP as solely pre-
conditioner involves the shift (1, 0.5), where as as a part of ADEF1 preconditioner,
the shift (1, 1) is preferred. The number of Krylov iterations at second, third and
subsequent levels are settled as (8, 2, 1, ...). Both preconditioners are implemented in
PETSc. The solve time reported excludes the time required for the computation of the
Galerkin products in the set-up phase of the two algorithms. This set-up time is fairly
comparable for both algorithms. From these tables it is clear that the use of ADEF1
results in a reduction in the number of iterations that increases with the wave number.
Table 6.9 in particular shows that without the ADEF1 preconditioner, the number of
iterations increases more than linearly with the wavenumber. With the ADEF1 de-
flation preconditioner this increase is slower than linear. The CPU-time in this table
shows a cross-over point between k = 60 and k = 80. The use of a ADEF1 deflation
preconditioner also results in speed-up for sufficiently large wave numbers. For the
largest wave number reported, the use of the ADEF1 deflation preconditioner a thirty
percent reduction in solve time. Table 6.10 shows that with 20 grid points per wave-
length the number of ADEF-1 iterations remains almost constant in the range of wave
numbers considered. The ADEF-1 solvers outperforms the CSLP solver in CPU-time
starting at wave number k = 40. For the largest wave number, a speed-up of forty
percent is reported.

CSLP preconditioned Krylov proves to be computationally costly for large wavenum-
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Wave number Solve Time Iterations
k SLP-F ADEF1-F SLP-F ADEF1-F

5 0.04 0.32 7 8
10 0.48 2.32 9 9
20 8.14 17.28 20 9
40 228.29 155.52 70 10
60 1079.99 607.45 97 11

Table 6.10: PETSc Solve time and iterations for three dimensional problem with
wavelength resolved over 20 grid-points. Bi-CGSTAB has been preconditioned by
CSLP-F, where flexible GMRES is preconditioned by ADEF1.
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Figure 6.3: CPU time per grid point in constant wavenumber problem using 10 (left)
and 20 (right) grid points per wavenumber .

ber problems, than that of Krylov preconditioned by ADEF1. Figure 6.3 shows the
crossover. The CPU-time per grid point for both solvers using 10 and 20 grid points
per wavelength is plotted versus the wavenumber in the left and right part of Fig-
ure 6.3, respectively. These figures show how the CPU time using the solver variant
with deflation increases at a slower rate and is therefore more attractive to use at a
given wavenumber. This wavenumber is equal to k = 80 and k = 30 in case that 10
and 20 grid points per wavelength are used, respectively.

6.6 Three-Dimensional Non-Constant Wave Number Prob-
lem

In this section, we perform experiments on three dimensional layered problem as de-
fined in Section 2.4 and domain of interest is layered as seen in Figure 2.4. Numerical
results for this problem using 10 and 20 grid point per wave length are given in Ta-
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Figure 6.4: Comparison of convergence history of CSLP and ADEF1 preconditioners
for three dimensional problem with wave number k = 20 and k = 40 on left and right
figures respectively.

Wave number k Solve Time Iterations
SLP-F ADEF1-F SLP-F ADEF1-F

5 0.09 0.24 9 11
10 1.07 1.94 15 12
20 16.70 18.89 32 16
30 73.82 78.04 43 21
40 1304.2 214.7 331 24
60 xx 989.5 xx 34

Table 6.11: PETSc Solve time comparison between BiCGSTAB preconditioned with
SLP-F and FGMRES(20) preconditioned with ADEF1-F. Discretization satisfies the
relation kh ≤ 0.625 i.e. 10 gp/wl

ble 6.11 and Table 6.12, respectively. The layered heterogeneity is reflected in an
increase in the required number of outer Krylov iterations of both solvers. The prob-
lem for k = 60 in particular could not be solved using the CSLP solver. The use of
ADEF-1 is again seen to result in a reduction in number of iterations and to lower the
increase in number of iterations in case that 10 grid points per wave length are used.
The use of ADEF-1 results in a six-fold reduction in CPU-time for k = 40 and in a
converged solution for k = 60. In case that 20 grid points per wave length are used,
ADEF-1 renders the iteration count almost constant in the range of wave numbers
considered. For the largest wave number k = 30, the use of ADEF-1 results in a more
than ten-fold reduction
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Wave number k Solve Time Iterations
SLP-F ADEF1-F SLP-F ADEF1-F

5 0.6 1.4 9 9
10 7.5 10.04 14 9
20 324.1 79.2 72 9
30 3810.9 361.7 285 11

Table 6.12: PETSc Solve time comparison between BiCGSTAB preconditioned with
CSLP-F and FGMRES(20) preconditioned with ADEF1-F. Grid resolution is such that
there are 20 gp/wl.

6.7 Finite Element Discretization

In this section, we discuss the finite element method (FEM) discretization for the
Helmholtz equation. For this purpose, we take the example of a two-dimensional
Helmholtz equation defined on unit square domain. For complete description for the
problems, the reader is referred to Chapter 2. Comsol [27] has been used to discretize
the problem with standard FEM. The given geometry is discretized into a uniform
mesh with triangular elements. A mesh with triangular elements assures a better imi-
tation of finite difference discretization. However the mass matrix is not diagonal.

6.7.1 Algebraic Deflation Vectors

The necessity of FEM discretization is mostly derived by the irregular domains. The
Helmholtz equation also finds applications in many fields with such irregular domains.
In order to apply our deflation preconditioner, we need to have deflation vectors. Re-
call that our deflation vectors are simply grid transfer vectors, typically used in multi-
grid. For the irregular domains and irregular grid, one has to resort to algebraically
constructed grid transfer operators conveniently, in the same way where algebraic
multigrid is used for problems on irregular domains. For this reason, we also construct
the algebraic grid transfer operators. We obtain deflation vectors by an application of
the algebraic multigrid to the Poisson equation. The algebraic grid transfer operators
extracted during the application of Algebraic multigrid (AMG) to the two dimension
Helmholtz equation, while keeping the wave number k = 0. In other words we make
use of the stiffness matrix from the Helmholtz operator to construct the deflation vec-
tors. It is important to mention that keeping k = 0, the stiffness matrix is real valued.

6.7.2 Performance of Algebraically coarsened FEM discretization

The performance of different solvers based on the CSLP for FEM discretization and
in combination with deflation preconditioner ADEF1 is discussed. ADEF1 precon-
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ditioner is constructed using algebraic deflation vectors. The Helmholtz as well as
CSLP are FEM discretized. We present the results for the two dimensional constant
wave number Helmholtz defined on a unit square domain, where Sommerfeld bound-
ary conditions are used. In FEM discretization, the degrees of freedom are such that
at least 10 grid points are taken for one wavelength. The algorithms for both pre-
conditioners are implemented in PETSc [7]. It is important to mention that algebraic
coarsening is slower than geometric coarsening. Particularly at the first coarser level.
For example, for the two dimensional problem, the coarse matrix at first coarse level
is coarsened at factor of 2, whereas the same is typically coarsened at factor of 4 in
standard geometric coarsening.

Flexible GMRES [95] has been chosen as outer Krylov as well as inner Krylov
method. The iterations are stopped once the residual meets the tolerance 10−6. The
numbers representing iteration count along with solve time in seconds are presented in
comprehensive Table 6.13. The solve time can be read in brackets, where as the num-
ber out of bracket shows global iterations. The ADEF1 preconditioner is implemented
in a multilevel fashion, where the first and second coarser problems are allowed 8 and
2 Krylov iterations respectively. The rest of the coarser problems are given 1 iteration
each. Numbers are given for different wavenumber ranging from k = 10 to k = 200.
Different variation in preconditioner type is described below.

CSLP-D : CSLP M(1, 1) inverted by LU
CSLP-F : CSLP M(1, 1) approximated by full multigrid
Two-Lev : Two Level variant of ADEF1 preconditioner.
ADEF1-V : ADEF1, with M(1, 1) approximated by multigrid VCycle.
ADEF1-F : ADEF1, with M(1, 1) approximated by multigrid full cycle.
ADEF1-D : ADEF1, with M(1, 1) inverted by LU.

Furthermore, the FEM discretization in combination with algebraically constructed
ADEF1 preconditioner is compared with FDM discretization with geometrically con-
structed ADEF1 preconditioner. The results from two Tables 6.13 and 6.14 are dis-
cussed as follows:

• FEM based CSLP does not perform good. This is because of the deterioration
in the CSLP preconditioner. We have noticed non-negative off-diagonal entries
in the CSLP matrix. Even inverting CSLP directly does not show any speed up.

• The FEM discretized and algebraically constructed ADEF1-F preconditioner
takes less iterations when compared with counterpart FDM and geometrically
constructed ADEF1-F. However, the FEM solver costs more computational time.
It is apparent, as the algebraic coarsening is slower, particularly at first coarse
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level and this results in coarse meshes with more degrees of freedom than geo-
metric variants. This produces more deflation vectors.

• Approximation of CSLP is sensitive while used in combination with the ADEF1
preconditioner. The difference can be seen, when CSLP is approximated by a
multigrid V-Cycle or F-Cycle. More accurate approximation with multigrid F-
cycle reduces the global number of iterations significantly.

• With FEM, the two-level ADEF1 preconditioner performs better than in the
FDM case. This is again because of more deflation vectors.

• With FEM discretization and algebraic ADEF1 preconditioner, the ADEF1 pre-
conditioner rules out CSLP in terms of number of iterations, however it is costly
in terms of computational time.
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Solver
FEM/
FDM

k=10 20 40 80 120 160 200

CSLP-D FEM 15 30 57 108 157 204 252
CSLP-F FEM 22 43 72 128 178 232 278

ADEF1-F
FEM 7 8 10 16 19 24 27
FDM 10 11 15 24 32 41 51

Two-Lev
FEM 6 8 10 15 20 26 32
FDM 7 10 14 23 37 61 87

ADEF1-V
FEM 22 40 66 118 166 214 258
FDM 16 27 58 116 177 235 292

ADEF1-D
FEM 6 8 10 15 19 24 27
FDM 7 10 14 21 29 36 43

Table 6.13: Comprehensive iteration count; FEM compared with FDM discretization
with different solver types and difference wave numbers.

Solver
FEM/
FDM

k=10 20 40 80 120 160 200

CSLP-D FEM 0.02 0.07 0.57 5.8 22.6 59.6 130.5
CSLP-F FEM 0.05 0.16 0.85 6.33 21.81 55.7 115.9

ADEF1-F
FEM 0.25 0.85 2.4 15.2 38.3 81.47 144.5
FDM 0.6 1.6 4.5 15.7 28.2 70.1 103.9

Two-Lev
FEM 0.02 0.05 0.32 2.46 8.4 21.4 43.8
FDM 0.00 0.03 0.27 2.17 8.8 27.9 67.8

ADEF1-V
FEM 0.27 1.27 5.4 32.8 110.8 240.6 447.0
FDM 0.25 0.8 3.6 18.4 50.3 125.2 233.1

ADEF1-D
FEM 0.07 0.5 2.9 23.68 80.40 191.84 387.30
FDM 0.05 0.2 1.26 9.04 31.6 76.3 149.8

Table 6.14: Comprehensive solve time; FEM compared with FDM discretization with
different solver types and difference wave numbers.
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Chapter 7
Conclusions and Future Work

7.1 Conclusions

This thesis is attributed to preconditioners for the indefinite Helmholtz equation, which
has defied the iterations solution techniques for a long time. Work presented here is
aimed at obtaining the solvers which are robust and computational cost affordable. It
has been hard to develop optimal solvers independent of the parameters in the equa-
tion in general and in particular for Helmholtz with large wavenumber k (or frequency
f ) as parameter wavenumber k (or frequency f ) induces the indefiniteness. Multigrid
and Krylov methods have been appealing for large sparse linear system arising partic-
ularly from elliptic-type equations. The performance of later one depends on a good
preconditioner in most cases. The vital theme discussed here is also deflation type pre-
conditioners for the Helmholtz equation to precondition a Krylov method. Multigrid
is also used, to approximate the complex shifted Laplace preconditioner (CSLP). Im-
plementation complications were elaborated and spectral insights were discussed via
rigorous Fourier analysis (RFA). There are a number of conclusions from this work
which are summarily presented below.

In Chapter 3 we presented the classical preconditioners comprehensively followed
by a class of (complex) shifted Laplace preconditioners CSLP. Shifts in CSLP are im-
portant to determine the efficiency of CSLP. Shifts has been settled as (1, 0.5) to (1, 1)
in order to get an acceptable approximation of CSLP. Suggested by results, CSLP has
been considered as base method to compare performance with our proposed deflation
preconditioner which is called ADEF1. CSLP is combined with the ADEF1 precon-
ditioner.

Generally, the Krylov solver suffers from stagnation due to few bad eigenvalues.
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The deflation preconditioner has gained popularity due to its simple approach to tackle
”a few bad eigenvalues”. However there is no established theory about deflation vec-
tors for non-symmetric (non Hermitian) matrices. An important issue of a deflation
preconditioner is how to choose suitable deflation vectors. In Chapter 4, deflation is
explained in general and in the context of the Helmholtz equation. Choices of deflation
vectors for the Helmholtz problem have been discussed. The CSLP preconditioned
Helmholtz preconditioner encounters small eigenvalues in modulus. The multigrid
inter-grid transfer operators have been chosen as deflation vectors, as the ”bad” eigen-
values correspond to ”small” frequency nodes. The choice is justified theoretically as
they are typically used in multigrid to resolve the small frequency nodes by restrict-
ing them on coarser grids, solving the coarse grid problem and then interpolating the
corrections.

Variations of the deflation preconditioner are considered. They are mainly dis-
tinguished by the choice of coarse grid operator, which is a Galerkin operator in
most variants. The deflation preconditioner based on the Helmholtz operator is called
ADEF1 preconditioner, nevertheless it is implemented in combination with the CSLP
preconditioner. The TLKM deflation preconditioner is the one which is constructed
using the CSLP preconditioned Helmholtz operator. Large problems produces large
(enough) coarse grid problems, which are still impractical to solve exactly. An iter-
ation scheme for the inverse of the coarse grid operator is considered. The Galerkin
coarse grid system inherits the characteristics of the Helmholtz operator, hence the
coarse grid operator is preconditioned by CSLP and a deflation preconditioner at a
coarser level. Recursively solving deflated and preconditioned operators at subsequent
coarser levels gives rise to a multilevel deflation preconditioner in both case; ADEF1
and MLKM. The coarse grid operator in MLKM is difficult to implement in multilevel
fashion. An approximation to the coarse grid operator has been suggested in order to
make the multilevel implementation possible and to make it computationally feasi-
ble. This approximation gives rise to the ideal and practical variant of MLKM. The
deflated eigenvalues are supposed to be projected to zero, however the approximate
coarse system solve disturbs of deflated eigenvalues around zero. This dispersion of
eigenvalues around zero caused by approximate coarse system solve effects Krylov
convergence in a bad way. As a remedy, the shifting of deflated spectrum was per-
formed by including a shift term in both deflation preconditioners.

All the claims and facts are well elaborated and justified by RFA, which is pre-
sented in Chapter 5. One dimensional and two dimensional problems are used to
analyze. Dirichlet boundary conditions are employed, as they lack the damping term
thus are considered the worst with respect to other boundary conditions. RFA possi-
bly explores all the variations of the deflation preconditioner and lists the findings and
gives a comparison between them. The bottom line of the RFA of TLKM, both ideal
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and practical variants, is that the ideal variant produces an attractive spectrum which
is well clustered around 1 in the complex plane, however this is near-impossible to
implement, especially in multilevel fashion. Even in the two-level case, it is not com-
putationally attractive. The TLKM practical variant has been an alternative to ideal
variant. However, this approximation of the coarse grid operator disturbs the spec-
trum in a severe way, when compared to the TLKM ideal variant. The spectrum is
fairly comparable with that of the ADEF1 preconditioner, which is more cost efficient
in implementation. This can be summarized as follows: ADEF1 is the best method
compared to all variants presented in this chapter. The coarse grid operator, being the
Galerkin operator of the (preconditioned) Helmholtz operator, carries on the near-null
space modes. Inverting the coarse grid operator in all deflation preconditioners shoot
out some of eigenvalues to large values in modulus.

The Helmholtz equation represents wave phenomena in many physical applica-
tions. In Chapter 6, we perform numerical experiments for the model problem defined
in Chapter 2. Results are presented in order of varying difficulties of the problem.
Also the constant as well as spatially dependent wavenumber problems are used in the
experiments. Numerical results shows efficiency of the deflation preconditioner. Con-
vergence is nearly independent of the wavenumber (or frequency), particularly for the
case when smaller grid sizes are considered for a fixed wavenumber. The ADEF1 pre-
conditioner continues to show robustness on problems with heterogeneities. A simple
and unambiguous performance behavior has been seen while moving from two di-
mensional problems to three dimensional problems.

A FEM discretization has been discussed in the later part of the chapter. Also
based on the FEM discretized Helmholtz equation, possibilities of algebraically con-
structed deflation vectors has been discussed. Instant results in this regard show an
pleasant course to follow in this way.

7.2 Further Implications

The proposal of deflation type preconditioners and its rigorous Fourier analysis im-
plies a number of things. One of the important implication of the deflation precondi-
tioner is its distinct feature of the deflating near-kernel modes. Linear systems suffer-
ing the same problem can be worth to apply on. Besides its own influence on spectrum,
the deflation preconditioner also allows the shifted Laplace preconditioner to make it
more diagonally dominant by increasing the imaginary part of the shift without paying
any penalty in the number of Krylov iterations.
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7.3 Future Work/Outlook

• Different shifts in different levels of CSLP. Its diagonally dominance at differ-
ence levels.

• Re-using deflation vectors once extracted from Krylov method, as usually it is
required to solve with many frequencies.

• The coarse grid operator in every variant of deflation preconditioner seems prob-
lematic. An intensive care to remove the near-null space in coarse grid operator
might be an lucrative option, as it would be relatively easy to deal at coarser
levels.

• An important area which offers opportunity for development is parallelization of
many sequential numerical algorithms. Parallelization of multigrid customized
for any application at hand, is both important as well as non-trivial. With
the advent of desktop super-computing facilities, such as offered by Field Pro-
grammable Gate Arrays (FPGAs) and Graphical Processing Units (GPUs), par-
allel computing is more widely accessible than it was before and forms a very
interesting and potentially rewarding field of research.



Appendix A
ADEF1 Implementation

A.1 Introduction

The ADEF1 solver software is divided into two parts. Multilevel implementation
requires matrices at all levels from finest to coarsest. The data files are constructed in
Matlab and subsequently are written into .dat files. An important part of the ADEF1
solver software is the part which implements the multilevel preconditioner. This is
implemented in PETSc, which calls the .dat files on run time.

Structure Main directory Adef1 Software, which contains two sub-subdirectories;
ConstructDatFiles and PetscSolver.
The codes in directory ConstructDatFiles are used to construct data files, and the
directory PetscSolver contains subroutines to solve the resulting problem.

A.2 Constructing DATA files

Add path of the directory ConstructDatFiles to the Matlab session, also add path
of your PETSC bin/matlab directory in the Matlab session or adapt the path in pro-
gram MainMarmousi.m.

Run the program MainMarmousi.m. It will ask for options in an input dialogue
box. The program constructs coefficient matrices according to the provided options.
Those options are as following;

Recommended: First make a test run with default options in order to check if it runs
smoothly. Subsequently customize with other options.
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Frequency f Give values f = 1, 10, 20 or 40
Mesh size In terms of grid points per wavelength. Choose 10 or 20.
Real shift Real shift in complex shifted Laplace preconditioner CSLP,

choose whatever you want to use as CSLP.
Imag. shift Imaginary shift in complex shifted Laplace preconditioner CSLP,

choose whatever you want to use as CSLP.
Damping Damping parameter in the Helmholtz operator.

Output file will be a .dat file and will be saved in the directory ../DataFiles/ with
customized name fN1gpWLN2aN3.dat where f,gpWL,and a are constant where N1,
N2 and N3 will be customized according to the options. For example f1gpWL10a0.05.dat,
is data set with frequency f = 1, number of gp/wl = 10 and damping parameter
a = 0.05.

A.2.1 How to adapt

Reading the FILENAME.dat file in PETSc is sensible in terms of order of data types
(matrices and vectors) written in the .dat file. Adapting the writing (.dat files) part of
the solver, necessitates adapting the reading part in PETSc. Care of the order should
be taken. Same order in writing and reading should be persisted.

The directory PetscSolver implements the ADEF1 solver.

A.3 Solving part of the software

In the terminal, go to the target directory; Compile the program as follows

> make GMGcycle.o; make MLadef.o; make MainSolver

subsequntly execute the executable program and provide with a data file with “-f”
as follows:

> ./MainSolver -f /your/path/to/datafile.dat.

In order to restrict the ADEF1 multilevel solver to a two-level solver, runtime op-
tion -coarselevel can be used. For example to apply a two-level solver, one needs
to run
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> ./MainSolver -f /your/path/to/datafile.dat -coarselevel 1.

This execution accepts all the possible runtime PETSc options. All these options
can be listed by executing the program with “-help”.
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Appendix B
Investigation of the behavior of
small eigenvalues of ADEF1 with
perturbed eigenvectors

B.1 Introduction

During the application of the ADEF1 deflation method combined with the Complex
Shifted Laplace Preconditioner (CSLP) to the discretized Helmholtz operator, it ap-
pears that the near null eigenvalue components can lead to eigenvalues which are not
close to one as it should be when unperturbed eigenvectors are used. The coming
forth analysis illustrates the idea that the small eigenvalues (near singular coarse grid
operator) combined with a perturbation of the corresponding eigenvectors lead to bad
results. These eigenvalues and eigenvectors can also been interpreted as the near null-
space of the fine grid operator.

B.2 Definition of the problem

We consider a very simple test problem where the matrix A is only a 2 × 2 diagonal
matrix, given by the following expression:

A =

(
ε 0
0 1

)
,

where ε ∈ R has a small value. Since small eigenvalues lead to bad convergence
of Krylov methods, the aim of Deflation type methods is to remove or shift these
eigenvalues from the resulting iteration matrix.
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B.3 ADEF1 deflation method

In order to define ADEF1 we first give a number of expressions which are used
as building blocks. Suppose that the matrix Z contains the deflation vectors in its
columns. These vectors are approximation vectors of bad eigenvalue components
(eigenvectors corresponding to small eigenvalues). Then we define the coarse grid
matrix (Galerkin matrix) as follows: E = ZT AZ. The coarse grid correction operator
is now defined as

Q = ZT E−1Z.

Finally the ADEF1 deflation operator is given by:

PADEF1 = σQ + (I − AQ) for some σ ∈ R.

In the remainder of this work we take σ = 1. If A is a symmetric matrix and Z
consists of eigenvectors, then the eigenvalues of PADEF1A are equal the eigenvalues of
the eigenvectors not contained in Z, whereas the other eigenvalues are transformed to
the value 1.

B.4 Analysis

In this section we compute the matrix PADEF1A and compute the eigenvalues of this
matrix. We start by using the following A, and Z:

A =

(
ε 0
0 1

)
and Z =

(
1
δ

)
.

Now we compute matrix E = ZT AZ = ε + δ2. Note that E is a scalar. Furthermore
if ε = −δ2 the value of E is equal to zero. This means that E is only non-singular if
ε , −δ2 and E−1 = 1

ε+δ2 . The matrix Q = ZE−1ZT can now be calculated:

Q =
1

ε + δ2

(
1 δ

δ δ2

)
.

The standard deflation operator is given by P = I − AQ, which leads to

P =
1

ε + δ2

(
δ2 −εδ

−δ ε

)
.

Including a shift in order to obtain PADEF1 = Q + P we obtain:

PADEF1 =
1

ε + δ2

(
1 + δ2 δ(1 − ε)

0 ε + δ2

)
.

This combined with the matrix A yields:

PADEF1A =
1

ε + δ2

(
ε(1 + δ2) δ(1 − ε)

0 ε + δ2

)
,



B.5. Numerical experiments 109

so the eigenvalues are {λ1, λ2} = {
ε(1+δ2)
ε+δ2 , 1}. Note that we can make the following

choices for the perturbation δ

δ = 0 ⇒ λ1 = 0

δ =
√
ε ⇒ λ1 = 1+ε

2

δ = 1 ⇒ λ1 = 2ε
1+ε
≈ 2ε

Finally if ε ↓ −δ2 then λ1 → −∞ and if ε ↑ −δ2 then λ1 → ∞.

B.5 Numerical experiments

For the given matrix A it is clear that the eigenvalues are {ε, 1} and the corresponding
eigenvectors are: (

1
0

)
and

(
0
1

)
.

We choose only one deflation vector so Z is given by:

Z =

(
1
δ

)
.

Note that if δ = 0 the deflation vector is equal to the eigenvector corresponding to the
small eigenvalue ε. If δ , 0 it can be seen as a perturbation of the first eigenvector
by the second eigenvector. In Figure B.1 we give a number of results of the smallest
eigenvalue of PADEF1A. Note that for small values of δ the smallest eigenvalue is close
to one, however for larger values of δ the smallest eigenvalue become again small.
This shows that eigenvectors corresponding to small eigenvalues are only removed
if the deflation vector is a close approximation of the corresponding eigenvector. It
appears that the change occurs around the value δ =

√
ε.

From the analysis it appears that problems can occur when ε = −δ2. For this reason
we take ε = −10−4(1−10−4) so we expect a problem for δ = 10−2. The result of this is
given in Figure B.2. Note that indeed in the vicinity of δ = 10−2 one of the eigenvalues
becomes very large. The reason for this is that the matrix E is nearly singular.
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Figure B.1: Smallest eigenvalue of PADEF1A as function of δ for various values of ε

Figure B.2: The absolute value of the smallest eigenvalue of PADEF1A as function of
δ for various values of ε = −0.999910−4
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B.6 Matlab Code

clear all clc

eps = 10ˆ(-4);

for iter = 1 : 10

delta = 10ˆ(-iter);

A = [eps 0 ; 0 1];

[n m] = size(A);

S = [1 0 ; 0 1];

Z(:,1) = S(:,1) + delta * S(:,2);

E = Z’*A*Z;

Q = Z*inv(E)*Z’;

P = eye(n) - A*Q;

PADEF = Q + P;

eig(PADEF*A);

plotdelta(iter) = delta;

ploteig(iter) = min(eig(PADEF*A));

end

clf

loglog(plotdelta, ploteig)

xlabel(’\delta’)

ylabel(’smallest eigenvalue’)

title([’\epsilon = ’ num2str(eps)])
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Propositions
belonging to the dissertation

Development of the Helmholtz Solver
based on

a Shifted Laplace Preconditioner and a Multigrid Deflation technique

by Abdul Hanan Sheikh

1. Ritz value analysis does not always give a good prediction of the convergence of Krylov
methods.

2. Some way to extract the null-space, in an efficient manner, would give a better Helmholtz
preconditioner than the ones that are currently available (H. Bin Zubair, TU Delft
2010).

3. Hybrid methods, a combination of direct and iterative methods, are fairly comparable
with direct methods with respect to memory consumption.

4. Isolating various numerical solution techniques causes great loss to scientific computing
research.

5. In a multi-factor analysis, understanding results are as difficult as presenting results.

6. In numerical solution methods, finding the sources of error is more difficult than propos-
ing/developing a new solution method.

7. Parameter tuning in any multilevel method (preconditioner) is as essential as the
method itself.

8. Despite all the scientific and technical prowess of mankind, the modern man is as far
from humanity- and as prone and vulnerable to the call of the wild, as the cave man.

9. Many religions have many common decrees which are almost inevitable in a civilized
society.

10. There should be subsidy on food for students, like travel and accomodation.

These propositions are considered defendable and as such have been approved by the super-

visor Prof.dr.ir C. Vuik.



Stellingen
behorende bij het proefschrift

Development of the Helmholtz Solver
based on

a Shifted Laplace Preconditioner and a Multigrid Deflation technique

door Abdul Hanan Sheikh

1. Analyse van Ritzwaardes geeft niet altijd een goede voorspelling van de convergentie
van Krylovmethodes.

2. Als de nulruimte op een efficiënte manier bepaald kan worden, dan zou dit leiden tot
een betere Helmhotzpreconditioner dan op dit moment beschikbaar is (H. Bin Zubair,
TU Delft 2010).

3. Hybride methodes, combinaties van directe en iteratieve methodes, zijn wat betreft
geheugengebruik vergelijkbaar met directe methodes.

4. Het isoleren van verschillende numerieke oplossingsmethodes beperkt sterk het onder-
zoek in Scientific Computing.

5. Het begrijpen van de resultaten van een multicomponentsanalyse is net zo ingewikkeld
als het presenteren ervan.

6. Bij numerieke oplossingsmethodes is het vinden van de oorzaak van een fout moeilijker
dan het voorstellen/ontwikkelen van een nieuwe oplossingsmethode.

7. Het afstellen van een parameter in een willekeurige multilevelmethode (preconditioner)
is even essentieel als de methode zelf.

8. Ondanks alle wetenschappelijke en technische kunde van de moderne man, staat hij net
zo ver van de mensheid- en is even gevoelig en kwetsbaar voor de roep van de wildernis,
als een holbewoner.

9. Veel religies hebben vele gemeenschappelijke decreten die nagenoeg onvermijdelijk zijn
in een gecivisileerde maatschappij.

10. Voedsel zou voor studenten gesubsidieerd moeten zijn, net als vervoer en onderdak.

Deze stellingen worden verdedigbaar geacht en zijn als zodanig goedgekeurd door de promotor

Prof.dr.ir. C.Vuik.


