
Implementations of
Quantum Algorithms
for Solving Linear
Systems

Sigurdur Ag. Sigurdsson

MSc Thesis

Implementations
of Quantum
Algorithms for
Solving Linear

Systems
by

Sigurdur Ag. Sigurdsson

To obtain the degree of Master of Science
at TU Delft & TU Berlin as part of the COSSE program,

to be defended publicly on January 26th, 2021.

Student number TU Delft: 5162599
Matrikelnummer TU Berlin: 405725
Project duration: September 1st 2019 – January 5th 2021
Thesis committee: Dr. M. Möller, TU Delft, supervisor

Prof. dr. ir. C. Vuik, TU Delft, responsible professor
Dr. D. de Laat TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Contents

List of Figures v

1 Introduction 3
1.1 Computational Perspective . 3
1.2 Information . 4
1.3 Universal Computers . 4
1.4 Quantum Mechanics . 5
1.5 Quantum Computers . 7
1.6 Example of a Quantum Algorithm . 9

2 Quantum Linear Solvers 11
2.1 Solving Linear Systems . 11
2.2 Quantum Algorithm for Linear Systems of Equations. 12
2.3 Variational Quantum Linear Solver . 14
2.4 Summary of Quantum Linear Solvers . 16

3 Method 17
3.1 IBM’s Quantum Network . 17
3.2 Simulators . 18

4 Experiments and Results 21
4.1 Procedure of HHL . 21
4.2 Perfect Simulation of HHL . 22
4.3 Noise Simulation of HHL . 24
4.4 Procedure of VQLS. 26
4.5 Perfect Simulation of VQLS . 27
4.6 Noise Simulation of VQLS . 29
4.7 Additional Tests for HHL . 31

5 Discussion 33
5.1 Comparison . 33
5.2 Future Work. 35
5.3 Conclusion . 36

A Quantum Hello World 39

B Gate Glossary 41

C Implementations of HHL and VQLS 43
C.1 HHL . 43
C.2 VQLS . 46

D Test Matrices 55

E Trials for Experimental Setup 59
E.1 Varying Number of Shots. 59
E.2 Lloyd’s Method Trial . 60

Bibliography 61

iii

List of Figures

1.1 A replica of Gaudì’s rope and sandbag model from La Sagrada Familia [22]. 4
1.2 Bloch sphere with the bases |0⟩ and |1⟩ drawn on top and bottom respectively. 8
1.3 Bloch sphere with a half state vector 𝜓, where |𝜓⟩ = 1

√2
|0⟩ + 1

√2
|1⟩. 8

1.4 A simple circuit with a Hadamard gate, 𝐻, on |𝑞1⟩ and a conditional not gate, 𝐶𝑋, on |𝑞0⟩,
conditioned on |𝑞1⟩. This circuit and its purpose are further explained in Appendix A. . . 9

1.5 Deutsch­Jozsa circuit. The first register |𝑞⟩ is of size 𝑛 and is the input into the function.
The second register is |𝑎⟩ which is the ancilla register and will represent the output. Here
𝐻 is the Hadamard gate where 𝐻 |0⟩ = |0⟩+|1⟩

√2 and𝐻 |1⟩ = |0⟩−|1⟩
√2 , 𝑋 is the not gate, where

𝑋 |0⟩ = |1⟩ and 𝑋 |1⟩ = |0⟩, and 𝑈 is the unitary that represents the constant or balanced
function 𝑓 𝑈𝑓 |𝑞⟩ |𝑎⟩ = |𝑞⟩ |𝑓(𝑞) ⊕ 𝑎⟩, cf. Appendix B. 10

2.1 Circuit model of the algorithm proposed by Harrow, Hassim and Lloyd [28]. 12
2.2 Chronological improvements of the HHL, starting with Harrow, Hassim, and Lloyd in 2009

[17] then Andris Ambainis work in 2010 [3], followed by Childs et al. in 2017 [9], and lastly
the work of Wossnig, Zhao, and Prakash [41]. 14

2.3 A diagram representing the VQLSmethod, from Bravo et al. [5]. 𝐻 is the Hadamard gate,
𝑉(𝛼) is the ansatz function, 𝑈 is the unitary that prepares |𝑏⟩ from |0⟩, 𝐹(𝐴) is the cost
function, 𝐶(𝛼) is the cost given the parameter 𝛼, which is the optimization parameter. To
obtain the output the ansatz 𝑉(𝛼) is repeated with the now optimal 𝛼 which yields |𝑥⟩, cf.
Appendix B. 15

3.1 The structure of IBM’s elemental components [29]. 18
3.2 The topology of the ibmqx2 5 qubit machine, one of the machines available through the

IBM Q experience. 20

4.1 Experiments with 2 × 2 matrices, state vector simulations. 23
4.2 Experiments with 4 × 4 matrices, state vector simulations. 23
4.3 Experiments with 8 × 8 matrices, state vector simulations. 24
4.4 The topology of the Melbourne 15 qubit computer. Nodes represent qubits and edges

represent qubits’ ability to entangle. 24
4.5 Experiments with 2 × 2 matrices, noisy simulations. 25
4.6 Experiments with 4 × 4 matrices, noisy simulations. 25
4.7 Experiments with 8 × 8 matrices, noisy simulations. 26
4.8 Ansatz circuit for the three experimental sizes used. 27
4.9 Control ansatz for an 8 × 8 matrix. 27
4.10 Experiments with 2 × 2 matrices, state vector simulations. 28
4.11 Experiments with 4 × 4 matrices, state vector simulations. 28
4.12 Experiments with 8 × 8 matrices, state vector simulations. 29
4.13 Experiments with 2 × 2 matrices, noisy simulations. 30
4.14 Experiments with 4 × 4 matrices, noisy simulations. 30
4.15 Experiments with 8 × 8 matrices, noisy simulations. 31
4.16 Experiments with 4 × 4 matrices using varying number of Ancilla. 32
4.17 Experiments with 4×4matrices in state vector simulation of HHL with varying expansion

order. 32

5.1 Runtime comparison as a factor of size compared in the state vector simulations of HHL
and VQLS, time (𝑦­axis) is in logarithmic scale. 34

5.2 Runtime comparison of HHL and VQLS. Time is set in logarithmic scale and the identity
matrices have been taken out. 34

v

vi List of Figures

5.3 Fidelity comparison of HHL and VQLS. 35
5.4 Runtime in relation to fidelity, comparison of HHL and VQLS in both a perfect and a noisy

setting. 35
5.5 All 4 × 4 HHL runtimes. 36

A.1 A circuit of two qubits and one classical bit. q[0] first has a Hadamard gate giving it the
position |0⟩+|1⟩

√2 , then q[1] is flipped conditioned on q[0]; after these two gates both qubits
are measured and the results put into the classical bit. 39

E.1 Experiments with 2 × 2 matrices, state vector simulations. 59
E.2 Lloyd’s method experiments using 4 × 4 matrices in state vector simulations. 60

Preface

I am not a physicist nor am I a computer scientist, I studied mechanical engineering at Reykjavik Uni­
versity and worked in mechanical design before starting the master’s program that led to this thesis.
Therefore my interest in the topic of quantum computers does not come from theorizing better algo­
rithms, but from getting better ways to solve practical problems. For the introduction of this thesis, I
will assume that the reader has a good understanding of linear algebra and the basics of computer
science. That is why details of the topics of quantum physics and quantum computation are out of the
scope of this thesis. However, if the reader is interested in these topics, I recommend the lecture series
from Richard Feynman, published online by the California Institute of Technology [14], as well as the
book Quantum Computing: a gentle introduction by Eleanor Rieffel and Wolfgang Polak [33].
Front cover image courtesy of IBM image gallery [7].

In this thesis, I will make a comparison of two quantum algorithms for solving systems of linear
equations. The two approaches are tested using both simulations of quantum processes and simu­
lations of noisy intermediary­scale quantum computers, i.e., NISQ [31]. Both methods are tested on
the same problems to compare sensitivity and runtime efficiency, varying the tests along with different
levels of condition numbers, sparsity and regularity.

The first of the two methods compared here is a method introduced by Harrow, Hassim and Lloyd
referred to as the HHL method, after the author’s initials [17]. The second method is by a research
team at Los Alamos National Laboratory called the variational quantum linear solver, or VQLS for short
[5]. The first method, HHL, was the original discovery of solving linear systems using quantum comput­
ing methods and so has served as the backdrop and benchmark for other algorithms doing the same
thing. The HHL method showed that an advantage can be had when using quantum computing to
solve linear systems, in fact they show that this quantum method can have exponential speed up over
the commonly used classical method.

Quantum algorithms themselves are rather new and as the reader may not be very familiar with
them I offer a brief introduction in the next chapter along with the physics behind it and the notation,
which will be used throughout this work. In short, quantum algorithms seek to use the peculiar physics
and mathematics tied to the behavior of quantum particles. A quantum algorithm does this by lever­
aging the extra information a quantum superposition provides and by using this information it can in
certain problems arrive at an answer in fewer steps than it is possible by classical methods.

These novel algorithms are then realized using a quantum device known as a quantum computer.
A quantum computer is simply a computer that runs on the principles of quantum mechanics. These
machines have been a long time in the making as it is notoriously tricky to manipulate elements on the
quantum scale. Today, we have reached a point where these machines are starting to be possible, but
the current generation of hardware only glimpses at what is feasible and does not reach the ideals of
the theory. This is why the current generation of quantum computers have been called NISQ devices
as they exhibit noisy behavior in the measurement of the computation and are small in scale compared
to modern classical computers.

1

2 Preface

In this thesis, I want to explore the functionality of the quantum linear solvers, specifically HHL
and VQLS, using the IBM Qiskit platform. I will test these implementations in both perfect simulations
and noisy conditions. The experiments will focus on matrices that test varying sparsity and condition
numbers. The general aim is to answer the following questions.

1. Which approaches exist to solve linear systems on quantum computers?

2. How do the implementations of these approaches scale with problems?

3. Can these approaches get to quantum advantage in the near term?

4. Can one use these approaches within a larger algorithm?

Sigurdur Ag. Sigurdsson
Oxford, January 2021

1
Introduction

This chapter gives an overview of the background necessary for understanding the implementations
and algorithms covered. We will go over the shift in perspective needed to approach quantum com­
putation and how information as a core physical concept is key to that shift. Then we explore what
is needed to make any computation through the theorem of universal computers and how a quantum
system can achieve this universality. Before we look at the quantum system we will take a brief look
at the mathematics behind quantum mechanics to understand the underlying parts of a quantum com­
puter. We conclude with an example of a quantum algorithm to demonstrate the concepts explored
previously and show how a quantum algorithm can be computationally faster than a classical one.

1.1. Computational Perspective
In 1883 Antoni Gaudì was designing his masterpiece La Sagrada Familia. During the design process,
Gaudì envisioned arches and columns so complex that there was no simple way of calculating the load
of the structure. Today we can set this up on a computer and analyze complex structures with, e.g.
the Finite Element method, then compute the model and quickly resolve any issues in the design. As
Gaudì could not wait for the computer to be invented he had to devise another way of calculating his
dream structure.

So how did Gaudì solve this? He was using an old building style where the entire structure is kept
under compression, therefore there is no need for steel for structural support, and only his chosen
material of Catalonian sandstone was used. He devised a way of hanging ropes from the ceiling and
connecting them in such a way that they formed the building he wanted. He then hung weights on
the ropes where they would be supporting the roof of the building. As he hung the ropes and weights
the calculations for the archways and columns were instantly done as the rope itself solves the ideal
arch, this was shown by Robert Hooke [20]. This tension model using ropes and weights under gravity
becomes a model of the building under compression when turned upside down. So this completes the
structural calculations needed for the building. This way Gaudì was able to measure the archways on
his model and scale them up to the real size of the model. A replica of his model stands in the Sagrada
Familia today, cf. Figure 1.1, [2].

This story is to illustrate the way an analog computer functions and to set the mindset that a com­
plex computation does not necessarily need the machines which we so often use today. In a more
abstract notion of computation, the information contained in numbers is like currency, i.e., numbers are
the medium we use to exchange information between systems in the same way we exchange currency
for goods and services. In Gaudì’s system a hanging rope was used to represent an archway and
a sandbag the weight it would need to support, then gravity did the calculations for him. With mea­
surements of the model he then turned it into numbers and scaled them properly to represent the real
version. There is something canonical in the model and how we move it into the real world, this we call
information.

3

4 1. Introduction

Figure 1.1: A replica of Gaudì’s rope and sandbag model from La Sagrada Familia [22].

1.2. Information
Information as a fundamental part of Information theory came about in the late 1940s. It was first in­
troduced by Claude Shannon [35], mainly in relation to communication and computation. It has now
grown from its origin into a fundamental part of physics as we can say that every microscopic state of
a physical system can be characterized by how much information is needed to define that microscopic
state. Perhaps it was this definition that led the physicist John Wheeler say ”Information is the most
fundamental building block of reality” [21].

Shannon’s information theory focuses on information as an abstraction and a distinction between
possible alternative messages, not the meaning of the message. This means that a message rep­
resents one out of many alternative possible messages and the information of the message is to be
able to reliably distinguish between the alternatives. Shannon theorized the smallest possible level
of distinction of information was a binary one, 0 and 1, and he called this a bit. To then capture the
information in a message we can try to think of it as how many yes or no questions you would need to
ask to determine the message, this is also known as the message entropy. With bits, we can build and
send any message by stringing them together. We can also create new messages by transforming the
information and performing calculations.

Classical computers use bits as the basis for their calculations and are representing information by
strings of bits. Calculations on the bits themselves are performed with logic gates. The informational
value of an 8­bit number is straightforward, it is simply 8 bits. This is not true for quantum information. As
we will discuss in later chapters, quantum information is represented by a quantum bit, i.e., a qubit, and
each qubit can represent more than one bit of information at a time using the natural effects of quantum
mechanics. As opposed to the classical case where an 8­bit string can have 8 bits of information an
8­qubit string can contain 28 bits of information.

1.3. Universal Computers
Alan Turing, one of the fathers of modern computing, reasoned that all sufficiently sophisticated com­
puters are equivalent. That is once a computer is able to simulate another computer all computations
done on the second one can be done on the first. In this way, Turing tried to capture the concept of
a universal computer, i.e., that is a computer that is equivalent to all others. Turing set to design the
simplest possible computer with this property and this came to be known as the Turing machine.

Turing’s model consists of a machine that had infinite tape to read from and write to, a head that
executes reading and writing. The Turing machine has finitely many states (memory), and a transition
function 𝛿. The transition function determines what the machine will do at time 𝑡, given the current state
it is in and what is read at time 𝑡. The output of the transition function 𝛿 is a triple consisting of what
will be written on the tape, what direction the head will move, and what will be the state of the machine

1.4. Quantum Mechanics 5

at time 𝑡 + 1. It is a common belief that such a simple computer represents a universal computer, this
is phrased as the Church­Turing thesis [39].

Church­Turing Thesis [2] A Turing machine can compute any function computable by a reasonable
physical device.

The thesis then says that all complete computers are the same. However, this only means that
they can do the same calculations, but the important factor when doing computation is time, i.e., how
long does it take to finish the calculation. This is called the time complexity of an algorithm and we
categorize problems according to how the computation time scales with the input size of the problem.
In computational theory, this is often analyzed as the number of operations a computer must perform
to do the calculation. Simple problems such as addition and multiplication have polynomial complexity,
i.e., they belong to the class P. A problem is in the class P if there exists an algorithm which takes at
most a polynomial number of steps to solve the problem with respect to the input size. But for quite
some problems we do not know whether a polynomial algorithm exists. Problems for which, given an
answer, we can verify whether the given answer is a solution in polynomial time, belong to the nonde­
terministic polynomial class, i.e., the class NP. For researchers, the latter class is the most interesting
as even though a problem is classed as NP now it does not prove that there can not be a polynomial
algorithm just that we do not have one yet.

Quantum computers have been shown to be able to solve some of these class NP problems within a
(deterministic) polynomial time and so have broken a barrier thought by many to be impregnable. They
do so by utilizing quantum information and by forming a universal computer out of quantum systems.
To be clear, a quantum computer can not calculate anything more than classical computers can. That
is, any Turing machine can calculate any problem and they are just Turing machines like any classical
computer. Their benefit is in re­framing problems so that they can be solved faster than using classical
physics. Like Gaudì’s ropes, they are just better suited to some types of problems than others. Before
we go into more details about how quantum computers work we need to familiarize ourselves with the
notations and conventions of quantum mechanics.

1.4. Quantum Mechanics
Quantum mechanics is a theory of physics that was set out in the early 20th century to explain the be­
havior of matter on the smallest scales. Out of these developments came the essential mathematical
framework used to describe this quantum world. Although this branch of physics has a notoriety for
being incomprehensible, that perception applies more to the structure of the fundamental particles that
make up the quantum world and not the mathematics behind it. Luckily we only require the mathematic
side to understand the topics covered in this thesis. These concepts mainly depend on a good under­
stating of linear algebra and calculus, nothing more.

Even though our main focus is on the mathematic side of quantum mechanics let us review some of
the basic postulates of quantum mechanics. This is a good way to grasp the notation and vocabulary
used with quantum mechanics. All this can be found in any good textbook on quantum mechanics
or quantum computing, e.g. Quantum Computation and Quantum Information by Nielsen and Chuang
[27].
Starting with the postulate of the vector spaces of quantum mechanics;

Postulate I [27] Associated to any isolated physical system is a complex vector space with inner prod­
uct (that is, a Hilbert space which is also a complete space) known as the state space of the system.
The system is completely described by its state vector, which is a unit vector in the system’s state
space.

Postulate one is why linear algebra is so prevalent in quantum, as each quantum state can be
completely described by a vector and so the common rules of linear algebra apply when we start ma­
nipulating that vector,i.e. that state. Next, we look at how our quantum system evolves in time, as we

6 1. Introduction

look at the second postulate.

Postulate II [27] The evolution of a closed quantum system is described by a unitary transformation.
That is, the state |𝜙⟩ of the system at time 𝑡1 is related to the |𝜙⟩′ state of the system at time 𝑡2 by a
unitary operator U which depends only on the times 𝑡1 and 𝑡2,

|𝜓⟩′ = 𝑈 |𝜓⟩ .

Secondly, the time evolution of a closed quantum system is described by the Schrödinger equation

𝑖ℏ 𝑑𝑑𝑡 |𝜓(𝑡)⟩ = ℋ |𝜓(𝑡)⟩ . (1.1)

In this equation, ℏ is a physical constant known as Planck’s constant whose value must be experimen­
tally determined. The exact value is not important to us. In practice, it is common to absorb the factor
ℏ into ℋ, effectively setting ℏ = 1. ℋ is a fixed Hermitian operator known as the Hamiltonian of the
closed system.

With this, we know that any unitary operator 𝑈 applied to a quantum state can describe a new quan­
tum state, but that the natural behavior of a quantum system has to follow the Schrödinger equation.
In the next postulate, we look at measurements, i.e. the interaction in which we observe the quantum
state and in which we break open the system, meaning that afterward we can no longer consider the
system a closed quantum system.

Postulate III [27] Quantum measurement is a collection of measurement operators 𝑀𝑚, where 𝑚 is
the measurement outcome that may occur; these operators act on the state space of the system being
measured. The probability of measurement outcome 𝑚 is defined as follows,

ℙ(𝑚) = ⟨𝜓|𝑀∗𝑚𝑀𝑚 |𝜓⟩ . (1.2)

This in conjunction with the completeness equation,

∑
𝑚
𝑀∗𝑚𝑀𝑚 = 𝐼, (1.3)

forces the measurement operators to sum up to one, and so do the probabilities then. Then the state
of the system after measurement can be describe thus,

𝑀𝑚 |𝜓⟩
√⟨𝜓|𝑀∗𝑚𝑀𝑚 |𝜓⟩

. (1.4)

Linear algebra is the mathematical language used to describe quantum systems. A base set of
vectors is any set of vectors such that any vector in the span of the set can be written as a linear
combination of the base, so with a base {𝑏0, 𝑏1} any vector 𝑏 = 𝛼0𝑏0 + 𝛼1𝑏1, 𝛼0, 𝛼1 ∈ ℂ. For a quan­
tum base set we want to span a Hilbert space and so we describe each state using a two dimensional
vector of complex numbers in a Hilbert space, |𝜃⟩ ∈ ℂ2, the notation |𝜃⟩ is called a ket of 𝜃 and stands for

|𝜃⟩ = [𝛼𝛽] , ⟨𝜃| = [𝛼∗ 𝛽∗] ,

where 𝛼∗ is the conjugate of 𝛼, and similarly for 𝛽∗. This notation is commonly used in quantum physics
and is the one we will use for the remainder of this work. It is a compact notation that makes it easy
to write common operations such as inner product ⟨𝜙|𝜓⟩. A common base to choose is {|0⟩ , |1⟩} where,

|0⟩ = [10] , |1⟩ = [
0
1] .

An important operation using the bra­ket notation is the inner product. Here we take two vectors as

1.5. Quantum Computers 7

input and produce a complex number as an output. The notation for the inner product of a state vector
with itself is ⟨𝜙|𝜙⟩ = 𝜙∗ ⋅ 𝜙. Together with regular vector multiplication and inner products, we also use
the operation of tensor products on quantum systems. With it we connect two qubits in an operation,
we will explain more on this in the next chapter. An example of a tensor product on two qubit vectors
would be

|𝜃⟩ ⊗ |𝜓⟩ = [𝛼𝛽] ⊗ [𝛾𝛿] =
⎡
⎢
⎢
⎣

𝛼𝛾
𝛼𝛿
𝛽𝛾
𝛽𝛿

⎤
⎥
⎥
⎦
.

As a short­hand notation we often write |𝜙𝜓⟩ as the tensor product of |𝜙⟩ and |𝜓⟩. These operations
are needed for the last postulate.

Postulate IV The state space of a composite quantum system is the tensor product of the state spaces
of the component physical systems.

Further common concepts from linear algebra which are used are unitary matrices, linear indepen­
dence, and bases of vector spaces. These use a common notation and so should be familiar to anyone
who has studied them in any other context. These concepts will not be explored in depth here but we
will come back to them when we introduce quantum algorithms and how they function.

1.5. Quantum Computers
As discussed earlier, quantum computers can solve some classically hard problems faster, which is due
to the way quantum computers represent information, i.e. in the form of a qubit. In a quantum system
information is stored in a fundamental property of the particle, this is the qubit and it can be represented
e.g. by the spin of an electron. The spin can only be measured in two values, spin­up or spin­down, the
information stored in the electrons states are not the same as in the classical, 0 or 1 states. These two
state quantum systems come from the properties of the electron, i.e. it can be in a superposition of both
states. That is the key information we can use for calculations beyond what classical mechanics can do.

If we take an example of a two qubit system, we can describe it as a tensor product of two spaces,
which will then span a Hilbert space ℂ2⊗ℂ2. This space is spanned by the computational basis,

|00⟩ ∶= |0⟩ ⊗ |0⟩ ,
|01⟩ ∶= |0⟩ ⊗ |1⟩ ,
|10⟩ ∶= |1⟩ ⊗ |0⟩ ,
|11⟩ ∶= |1⟩ ⊗ |1⟩ .

In a sentence, a quantum computer is simply a computational device based around a quantum pro­
cess. Its benefits are inherent in these quantum processes, which can store more information than
any typical (classical) computer and thus solve more complicated problems with fewer processes. This
allows quantum computers to solve some problems faster than any classical computers.

To perform calculations on qubits we evolve our quantum system according to an operator 𝑈 such
that 𝑈 |𝑞1𝑞2⟩ = |𝑓(𝑞1, 𝑞2)⟩, where 𝑓 is the function we want to compute. We then look for a Hamiltonian
ℋ which generates this desired evolution 𝑈 according to the Schrödinger’s equation, (1.1). Such a
Hamiltonian exists as long as the linear operator 𝑈 is unitary [34].

To then convert our known problems to the quantum computer we need a way of using the extra
information and so we design special algorithms, the quantum algorithms. They are similar to classical
algorithms since they represent a series of steps that compute a solution to a given setup. A classical
computer uses bits while a quantum computer stores its data and programs in qubits. These qubits can
be put in a superposition, where 𝑛 qubits have information on both possible states giving a total infor­
mation capacity of 2𝑛 bits. A quantum algorithm is an algorithm that preserves these quantum states
and can use them to simultaneously do the calculation on all of its possibilities, giving it the ability to

8 1. Introduction

e.g. run a program with both 0 and 1 as input and evaluate both options.

As was talked about in Section 1.4 we can describe qubits using two dimensional vectors over the
field of complex numbers, ℂ. Further we can write those vectors as a linear combination of some base
vectors 𝛼0 |0⟩ + 𝛼1 |1⟩ . Here, we are using |0⟩, |1⟩ as our base where,

|0⟩ = [10] and |1⟩ = [01] .

Any linear combination, 𝛼0 |0⟩ + 𝛼1 |1⟩, 𝛼0, 𝛼1 ∈ ℂ, of these basis vectors is called a superposition if
|𝛼0|2 + |𝛼1|2 = 1. To draw this complex vector we use a three dimensional shell of a sphere, called
a Bloch sphere, where the third dimension comes from the complex numbers, in Figure 1.2 we see a
demonstration of this using a arbitrary state |𝜓⟩.

𝑥̂
̂𝑖

|0⟩

|1⟩

|𝜓⟩

Figure 1.2: Bloch sphere with the bases |0⟩ and |1⟩ drawn on top and bottom respectively.

While the qubit remains unobserved it is in any state on the surface of the Bloch sphere, but as
soon as it is measured it collapses to either |0⟩ or |1⟩, (or to another chosen measurement basis). Even
though this state is a real physical state of a quantum system it is hard to picture, therefore one often
only looks at the mathematical properties, which have been established during the last century. This is
because the mechanics in the quantum realm can be unintuitive and clashes with our regular experi­
encing of reality. Let us look at an example of a qubit in a state, |𝜓⟩, where it has a probability one half
of being measured in |0⟩ and a probability one half of being measured in |1⟩, i.e. |𝜓⟩ = 1

√2
|0⟩ + 1

√2
|1⟩.

See Figure 1.3 for and illustration of such |𝜓⟩ on a Bloch sphere.

𝑥̂
̂𝑖

|0⟩

|1⟩

|𝜓⟩

Figure 1.3: Bloch sphere with a half state vector 𝜓, where |𝜓⟩ = 1
√2
|0⟩ + 1

√2
|1⟩.

1.6. Example of a Quantum Algorithm 9

The basis chosen in the previous paragraph is often referred to as the Z­basis and the state |𝜓⟩ is
one of the other standard basis, the X­basis. More precisely,

Z­basis ∶ {|0⟩ , |1⟩} ,

X­basis ∶ {|+⟩ ∶= 1
√2

|0⟩ + 1
√2

|1⟩ , |−⟩ ∶= 1
√2

|0⟩ − 1
√2

|1⟩} .

There is also a lesser used Y­basis, {|𝑖⟩ , |−𝑖⟩}. Note that there is no measurable difference between
|+⟩ and |−⟩ if one measures a state in the Z­basis, they do however behave differently in quantum
algorithms and this is crucial [33].

Quantum algorithms are often represented in the form of circuits. Through the circuits we can easily
explain what is going on with each qubit, since it displays how gates are applied to particular qubit(s).
Each gate represents a matrix transformation on a single or multiple qubits. There are several standard
gates which frequently appear in quantum algorithms; a summary of the ones appearing in this thesis
can be found in Appendix B and an example of a circuit can be found in Figure 1.4.

|𝑞1⟩

|𝑞0⟩

𝐻

𝐶𝑋

Figure 1.4: A simple circuit with a Hadamard gate, 𝐻, on |𝑞1⟩ and a conditional not gate, 𝐶𝑋, on |𝑞0⟩, conditioned on |𝑞1⟩. This
circuit and its purpose are further explained in Appendix A.

1.6. Example of a Quantum Algorithm
By now we have covered how and why quantum algorithms work and the tools and notations we need
to understand quantum computing. But when is a quantum algorithm faster? The first example of
such an algorithm was Deutsch’s algorithm. That algorithm was later expanded to the Deutsch­Jozsa
algorithm, which we will exemplify here. The problem the Deutsch­Jozsa algorithm solves is defined
as follows.

Deutsch­Jozsa algorithm problem
Given a function

𝑓 ∶ {0, 1}𝑛 → {0, 1} ,
which is promised to be either constant or balanced, find out whether 𝑓 is a constant or a balanced
function [10].

Here, balanced means that 𝑓 returns 0 for exactly one half of the input values and 1 for the other
half; constant means that 𝑓 either returns 0 for all inputs or it returns 1 for all inputs.

A classical algorithm can solve this problem in 2𝑛−1 + 1 steps, since in the worst case we have to
check half of all possible inputs and then one more to determine whether 𝑓 is balanced or constant.
The quantum algorithm proposed to solve this, by David Deutsch and Richard Jozsa in 1992, can do it
in one single step [12].

The explanation of this method is as follows. We assume all registers are in the |0⟩ position, we
need that the register a is in the |1⟩ position so we flip it with a not gate (𝑋). Next we switch our basis
from 𝑍 to 𝑋 by using the Hadamard gate (𝐻) on all registers. Then our states are,

|𝑞𝑖⟩ =
|0⟩ + |1⟩
√2

, 𝑖 = 1,… , 𝑛 ,

|𝑎⟩ =
|0⟩ − |1⟩
√2

.

10 1. Introduction

|𝑞⟩

|𝑎⟩

𝐻
𝑈𝑓(𝑥)

𝐻 Measure

𝐻

𝑛

𝑋

Figure 1.5: Deutsch­Jozsa circuit. The first register |𝑞⟩ is of size 𝑛 and is the input into the function. The second register is |𝑎⟩
which is the ancilla register and will represent the output. Here 𝐻 is the Hadamard gate where 𝐻 |0⟩ = |0⟩+|1⟩

√2 and 𝐻 |1⟩ = |0⟩−|1⟩
√2 ,

𝑋 is the not gate, where 𝑋 |0⟩ = |1⟩ and 𝑋 |1⟩ = |0⟩, and 𝑈 is the unitary that represents the constant or balanced function 𝑓
𝑈𝑓 |𝑞⟩ |𝑎⟩ = |𝑞⟩ |𝑓(𝑞) ⊕ 𝑎⟩, cf. Appendix B.

In this state we apply the unitary operator that represents the oracle, i.e. a black box function that
knows our answer. We implement it separately by connecting a cnot gate where appropriate from the
values in the register 𝑞 and to the qubit 𝑎. This formulation allows for the final state of the 𝑞 to tell if
the function encoding the unitary is balanced or constant. This is because with a control in the 𝑍 basis
and with a target bit in |1⟩, phase kickback gives us the state

1
2𝑛

2𝑛−1

∑
𝑦=0

[
2𝑛−1

∑
𝑥=0

(−1)𝑓(𝑥)(−1)𝑥𝑦] |𝑦⟩ .

We convert the basis back by using the inverse of the Hadamard which is just the Hadamard itself and
measure the register |𝑞⟩. If it comes out 1, the function is constant or else balanced. So this result is
achieved in a single step when a classical method needs 2𝑛−1+1 steps. This full process is illustrated
in Figure 1.5. It should be pointed out that for this specific problem the advantage is by design; it was
the specific intent of Deutsch to find a problem that would have an advantage when formulated as a
quantum system. This advantage, going from 𝑂(𝑛) to 𝑂(1), is not restricted to such problems and it is
usually what researchers look for when developing new quantum algorithms. Such potential to lower
the complexity of a problem has been proved in a multitude of other practical problems, from factoring
numbers and optimization [16] to solving linear systems[17]. The algorithms that are of interest in this
work are a quantum solution to the problem of solving linear systems. These algorithms have been
shown to have better efficiency than any classical ones. We will explore some of them further in the
subsequent chapter.

2
Quantum Linear Solvers

In this chapter, we will briefly go over the classical definition of the problem of solving a linear system
before moving on to the quantum formulation of this same problem. We will then discuss the two
quantum linear solvers which are the focus of this thesis, the direct quantum method and the hybrid
quantum/classical method. For both methods, we will go in detail through the algorithmic process and
look at their algorithmic complexity. Finally, we will briefly look at experimental realizations that use
these methods and are already in use, together with their implications.

2.1. Solving Linear Systems

The problem of solving a linear system is a collection of problems where multiple equations involve the
same set of variable and the goal is to solve for those variables. A linear system commonly shows up
in most branches of science, such as design problems, signal processing, and homework. The general
definition of this problem is as follows.

Solving linear system
Given an invertible matrix 𝐴 ∈ ℂ𝑁×𝑁, and a vector 𝑏 ∈ ℂ𝑁 find a vector 𝑥 ∈ ℂ𝑁 such that

𝐴𝑥 = 𝑏. (2.1)

This problem is solved by finding, or approximating, an inverse of the matrix 𝐴 such that 𝑥 = 𝐴−1𝑏.
Many algorithms exist to solve this problem. An example of an efficient method that is widely used is
the method of Conjugate Gradients. It can solve this in 𝑂(𝑁√𝜅) time, but CG has the condition that 𝐴
is a Hermitian, positive­definite matrix.

11

12 2. Quantum Linear Solvers

For solving the linear system in a quantum setting a re­formulation is needed to reach the full ben­
efits of a quantum speedup. The quantum formulation is:

Quantum Linear Solver (QLS) [17]
Let 𝐴 be an 𝑁×𝑁 Hermitian matrix with a unit determinant. Let 𝑏 and 𝑥 be 𝑁­dimensional vectors such
that 𝑥 ∶= 𝐴−1𝑏. Let the quantum state on ⌈log(𝑁)⌉ qubits |𝑏⟩ be given by

∑𝑖 𝑏𝑖 |𝑖⟩
|| ∑𝑖 𝑏𝑖 |𝑖⟩ ||2

,

and for |𝑥⟩ by
∑𝑖 𝑥𝑖 |𝑖⟩

|| ∑𝑖 𝑥𝑖 |𝑖⟩ ||2
,

where 𝑏𝑖, and 𝑥𝑖 are the 𝑖­th components of 𝑏 and 𝑥 respectively. Given 𝐴 and |𝑏⟩, output a state |𝑥̃⟩
such that ||(|𝑥̃⟩ − |𝑥⟩)||2 ≤ 𝜖, with some probability larger than

1
2 that the following holds

|𝑥⟩ = 𝐴−1 |𝑏⟩ . (2.2)

The output |𝑥⟩ is a quantum state that represents 𝑥 and to read out all𝑁 values of 𝑥 would take 𝑂(𝑁)
runs of the algorithm. This is because even though |𝑥⟩ contains all the information of 𝑥 we can measure
only one value of it each time, so to use this solution we must remain in the quantum state. To use this
we do not simply look at a 𝐴𝑥 = 𝑏 problem but embed this as a subroutine in another problem. Then
for example one can calculate 𝑥𝑇𝑀𝑥, where 𝑀 is some linear operator, you can map 𝑀 to a quantum
operator and get ⟨𝑥|𝑀 |𝑥⟩[24].

2.2. Quantum Algorithm for Linear Systems of Equations
In 2009 Harrow, Hassim, and Lloyd introduced a quantum algorithm to solve the quantum variation of
the linear system 𝐴𝑥 = 𝑏 [17]. Their solution is built from previously established quantum algorithms.
The three main steps of the quantum algorithm for solving a linear system referred to as HHL after the
author’s initials, are the phase estimation, ancilla rotation and then uncomputing of the registers B and
C. These steps are shown in in the circuit model of the algorithm in Figure 2.1.

Ancilla |0⟩

Register C|0⟩

Register B|𝑏⟩

|𝛼𝑗⟩

|0⟩

|𝑥⟩

𝑅𝑦 (̄𝜃𝑗)

n 𝐻 𝑄𝐹𝑇 𝑄𝐹𝑇† 𝐻

n 𝑒𝑖𝐴𝑡 𝑒𝑖𝐴𝑡†

Phase estimation Undo phase estimation
Rotation

Hamiltonian simulation

Figure 2.1: Circuit model of the algorithm proposed by Harrow, Hassim and Lloyd [28].

In their paper Harrow, Hassim, and Lloyd use a detailed eight step procedure to describe their
algorithm (cf. Appendix B):

1. Convert 𝐴 into a unitary operator 𝑒𝑖𝐴𝑡.

2. Prepare the B register |𝑏⟩.

3. Compose |𝑏⟩ into the eigenvector basis of 𝑒𝑖𝐴𝑡 using phase estimation.

4. Apply the conditional Hamiltonian evolution, conditioned on register C in Figure 2.1.

5. Apply the Quantum Fourier Transform (QFT) on register C.

2.2. Quantum Algorithm for Linear Systems of Equations 13

6. Use an additional ancilla, 𝛼𝑗, with a rotation conditioned on register C.

7. Undo the phase estimation to uncompute everything except the last ancilla bit

8. Measure 𝛼𝑗, if it is 1 the computation was successful if not repeat.

Phase estimation
The first part of the algorithm is the phase estimation, i.e. QPE. This part estimates the eigenvalues of
𝐴 by taking the operator eigenstate of 𝐴 and estimating its phase 𝜃. Since our eigenvalues are complex
numbers we can write 𝜆 = 𝑒𝑖2𝜋𝜃, so our eigenvalue estimation in this form is 𝑈 |𝜙⟩ = 𝑒𝑖2𝜋𝜃. The method
of how to do this in a quantum circuit is broken into two major subroutines the, Hamiltonian simulation
and the quantum Fourier transform, describe below.

Hamiltonian Simulation
Converting 𝐴 into a unitary operator 𝑒𝑖𝐴𝑡 is only possible when 𝐴 is Hermitian and unitary. This has been
shown to be efficient through multiple different techniques, such as Trotter­Suzuki [36], graph­coloring,
and Szegedy’s quantum walk. All these techniques show that a Hamiltonian that acts on 𝑛 qubits can
be efficiently simulated by a quantum circuit 𝑈𝐻 if for 𝑂(𝑝𝑜𝑙𝑦(𝑛, 𝑡, 1/𝜖))­number of gates it holds that
||𝑈𝐻 − 𝑒𝑖𝐻𝑡|| < 𝜖. This however adds a dependency on time 𝑡, which is crucial since this time factor
can be used to show that any such simulation requires at least 𝑂(𝑡) time to run and so always acts as
a lower bound.

Quantum Fourier Transform
In a classical sense, the Fourier transform is a method that allows us to change into frequency space
and analyze a signal on its base frequencies. Given a square invertible matrix 𝐹 its discrete Fourier
transform is ℱ𝑛𝑚 =

1
√𝑁𝑒

(𝑖2𝜋𝑁)(𝑛𝑚). The columns of the new matrix are orthonormal so they can be used
as a basis known as the Fourier basis of the matrix 𝐹. Similarly to the classical Fourier transform the
quantum Fourier transform, QFT, takes a quantum state |𝑥⟩ to a new state 𝑓𝑥 thus,

|𝑥⟩ ↦ 1
√𝑁

𝑘=0

∑
𝑁−1

𝑒
𝑖2𝜋
𝑁 𝑥𝑘 |𝑘⟩ . (2.3)

Rotation
The purpose of the ancilla qubit is to check if the estimation of the eigenvalues was successful in
the phase estimation. Therefore we only need to measure the ancilla qubit at the end to know if we
should run everything again or whether we can continue with |𝑥⟩ into the next step. This check is
done using amplitude amplification, meaning we rotate the ancilla qubit based on the outcome of the
phase estimation while it is in the Fourier basis to amplify the correct amplitudes so that if the phase
estimation was successful it will rotate from |0⟩ position to |1⟩. This technique is based on Grover’s
search algorithm and lowers the error rate of the algorithm that is based on probabilistic success to be
arbitrarily close to 0 with 𝑂(1/√𝑠) repetitions, where 𝑠 is the success rate of the algorithm [16].

Uncomputing
The uncomputing step in its entirety is not strictly necessary for the mathematics of this method to work
out. This is because we only want the |𝑥⟩ register so we could focus only on getting that and leave the
rest be. If however we would want to continue the circuit forward into some new problem where we
use |𝑥⟩, we need to return register C to |0⟩. We do this by simply undoing the operations we performed
on it. More precisely, since gates in quantum circuits are matrix operations we invert the operations
already done by taking the inverse of those matrices; for the Hadamard gate this is just Hadamard itself
and for the QFT we use the inverse QFT†.

14 2. Quantum Linear Solvers

Completion
At completion, the HHL algorithm should have the ancilla qubit in state |1⟩, C register in state |0⟩, and
the B register in state |𝑥⟩. We only measure the ancilla qubit and it determines whether the algorithm
worked or not, however as the condition on the ancilla qubit is set before the undoing the phase any
failures in this step would not be detected by this method.

Improvements
After the work of Harrow, Hassim, and Lloyd improvements have been made both in the efficiency
of the algorithm and by relaxing the restrictions. In 2010, Andris Ambainis improved the efficiency
of the amplitude amplification and so reduced the overall runtime of HHL [3]. Ambainis generalize
amplitude amplification and used that to generalization to shorten the HHL runtime. In 2017, Childs et al.
further reduced the runtime of the original algorithm by bypassing the quantum phase estimation using
a technique for implementing operators suitable for Fourier series representation [9]. Lastly, Wossnig
et al. reduced the restrictions on sparsity by building on the singular value estimation subroutine, given
that a dense matrix 𝐴 has a spectral norm bounded by a constant [41]. The development of the HHL
runtime is depicted in Figure 2.2.

HHL 2009
𝑂 (𝑙𝑜𝑔(𝑁) 𝑠

2𝜅2
𝜖)

AA 2010
𝑂 (𝑙𝑜𝑔(𝑁) 𝑠

2𝜅
𝜖)

Childs 2017
𝑂 (𝑠𝜅𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑠𝜅𝜖))

WZP 2018
𝑂 (𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛) ‖𝐴‖𝐹

𝜅2
𝜖)

Figure 2.2: Chronological improvements of the HHL, starting with Harrow, Hassim, and Lloyd in 2009 [17] then Andris Ambainis
work in 2010 [3], followed by Childs et al. in 2017 [9], and lastly the work of Wossnig, Zhao, and Prakash [41].

Experimental realization of HHL
In 2011 Pan, Cao, et al. ran a proof of concept experiment using a 4­qubit nuclear magnetic resonance
quantum information processor to solve a 2 × 2 linear system using the HHL algorithm [28]. Their ex­
periment was successful and results showed a 96% fidelity. This was the first realization of the HHL
algorithm.

Similarly, in an article from 2013 by Cai, Weedbrook, et al. the simplest meaningful instance of the
HHL algorithm was tested on 2 × 2 matrices again in an experiment using a linear optical network with
four photon base qubits [6].

2.3. Variational Quantum Linear Solver
VQLS is a hybrid solution using both classical and quantum computing methods to solve the quan­
tum system of equations. This new algorithm, published in 2019, is not an iteration on the HHL but a
proposed intermediary solution to HHLs high demand of qubits and high quality of computation. This
method is designed to work on so called noisy intermediate scale quantum computers (NISQ) by re­
ducing the depth of the quantum circuit needed to solve the problem. It does this essentially by moving
parts of the algorithm back to a classical computer. This frees up qubits and creates stability as they do
not need to be in a quantum state for too long, therefore reducing the likelihood of de­coherence. The
authors of the article experimented with this new algorithm on hardware from Rigetti using a problem
size of 32 × 32 with successful results. This is a heuristic algorithmic approach and as such it is hard
to make rigorous complexity analysis but numerical simulations show that it is efficient in the condition
number 𝜅 and in the error 1/𝜖, but it can never have as good of a complexity as the HHL is supposed
to have on an ideal quantum computer [5].

The VQLS algorithm defines the cost function in terms of the overlap between the quantum states
|𝑏⟩ and 𝐴|𝑥⟩

√⟨𝑥|𝐴†𝐴|𝑥⟩
. To estimate this cost we use an efficient quantum circuit. The 𝛼 parameters are

determined classically and fed to the quantum computer. The quantum computer then prepares the
state |𝑥(𝛼)⟩ and with it efficiently estimates a cost function 𝐶(𝛼) which is then returned to the classical
computer. After this the classical computer minimizes the parameter 𝛼 over a cost function using a

2.3. Variational Quantum Linear Solver 15

classical optimization algorithm, e.g. COBYLA [30] or a gradient based optimization. The new 𝛼 is then
fed again into the quantum computer which again prepares the state |𝑥(𝛼)⟩. This loop repeats itself
until the desired minimal cost is reached, i.e. 𝐶(𝛼) ≤ 𝛾. The system then outputs the optimal 𝛼 which
can be used to prepare a state |𝑥⟩. This process is illustrated in Figure 2.3.

Figure 2.3: A diagram representing the VQLS method, from Bravo et al. [5]. 𝐻 is the Hadamard gate, 𝑉(𝛼) is the ansatz
function, 𝑈 is the unitary that prepares |𝑏⟩ from |0⟩, 𝐹(𝐴) is the cost function, 𝐶(𝛼) is the cost given the parameter 𝛼, which is the
optimization parameter. To obtain the output the ansatz 𝑉(𝛼) is repeated with the now optimal 𝛼 which yields |𝑥⟩, cf. Appendix
B.

Input
The system takes as input a decomposition of the matrix 𝐴 into a linear combination of unitaries with
complex coefficients, 𝐴 = ∑𝑛 𝑐𝑛𝐴𝑛, and a unitary matrix 𝑈 that prepares the state |𝑏⟩ from |0⟩. To
assume an 𝐴 can be given in such a form is the same as to assume that a Hamiltonian can be given
as a linear combination of Pauli operators 𝐻 = ∑𝐿𝑙 𝑐𝑙𝜎𝑙, see variational quantum eigensolver [8]. There
the assumption is that 𝐿 is polynomial in the number of qubits, 𝑛; in addition we need to assume that
the norm of 𝐴 is bounded by one, ||𝐴|| ≤ 1, and that the condition number is not infinite, 𝜅 < ∞.

Ansatz 𝑉(𝛼)
The ansatz prepares a potential solution |𝑥(𝛼)⟩ = 𝑉(𝛼) |0⟩, where 𝑉(𝛼) is a trainable gate sequence.
𝑉(𝛼) can be expressed as sequence of 𝐿 gates 𝑉(𝛼) = 𝐺𝑘𝐿(𝜃𝐿)…𝐺𝑘1(𝜃1), where 𝐺𝑘(𝜃) is the 𝑘th gate
with input 𝜃𝑘. Therefore, 𝛼 encompasses both 𝑘 and 𝜃, 𝛼 = (𝑘, 𝜃), where 𝑘 is a discrete parameter
determining the circuit layout, and 𝜃 are continuous parameters such as rotational angles of the gates
in question. There are many ways to prepare an ansatz but no way to know what is best in each case.
For example, we can choose to only vary one of the parameters, 𝑘 or 𝜃 and then have a variable­
structure ansatz, or a fixed­structure ansatz, respectively. These sorts of methods can be used to save
on computation as fewer parameters are needed to solve. In the classical optimization, the general
rule is only that your ansatz needs to be able to prepare your desired state of |𝑥⟩.

Cost function 𝐹(𝐴)
Like with the ansatz, a cost function can be defined in many ways. A simple cost function comprises
the overlap between a projector |𝜓⟩ ⟨𝜓| and the subspace orthogonal to |𝑏⟩, where |𝜓⟩ = 𝐴 |𝑥⟩. This
can be stated as follows,

𝐶̂𝐺 = Tr(|𝜓⟩ ⟨𝜓|(I− |𝑏⟩ ⟨𝑏|)) = ⟨𝑥|𝐻𝐺 |𝑥⟩ ,
where 𝐻𝐺 is the Hamiltonian, 𝐻𝐺 = 𝐴†(I − |𝑏⟩ ⟨𝑏|)𝐴. This cost function is small if |𝜓⟩ is proportional
to |𝑏⟩ or if the norm of |𝜓⟩ is small. To avoid the second situation, as it does not represent a proper
solution, we can normalize 𝐶̂𝐺 using the norm of |𝜓⟩, thus

𝐶𝐺 =
𝐶̂𝐺

⟨𝜓 |𝜓⟩ = 1 − |⟨𝑏 |Ψ⟩ |
2, |Ψ⟩ =

|𝜓⟩
√⟨𝜓|𝜓⟩

. (2.4)

Assuming that the condition number of 𝐴 is smaller than infinity and so the norm ⟨𝜓 |𝜓⟩ ≠ 0 this
function vanishes under the condition that |𝜓⟩ ∝ |𝑏⟩, which is exactly the case when our QLSP is solved.

16 2. Quantum Linear Solvers

Classical optimization
Classical optimization is a well studied field and there are multiple optimizers that can be used to train
the gate sequence 𝑉(𝛼). The choice of optimizer depends on the choice of ansatz as each ansatz
has different variables that need to be optimized and their connection to the classical optimization is
an ongoing research. For example, gradient based methods have been shown to be beneficial in
variational methods as the first­order gradient information can be directly accessed by measurement
of the quantum circuit [23].

Experiments
The original paper proposing VQLS conducted experiments with a real quantum computer. Their re­
sults indicated that VQLS scales efficiently in both the condition number, 𝜅 and the error, 1/𝜖. The tests
they ran using Rigetti’s quantum machine were implemented on problems of sizes 2 × 2, 4 × 4, 8 × 8,
and 32×32. This first experiment is already larger in size than any previous HHL experiment, in terms
of problem size, i.e. matrix dimensions.

As this article with VQLS was published in September 2019 it has been a short time to publish
experimental research, but as the algorithm has been implemented on IBM’s, Rigetti’s, and Pennylane’s
platforms more will undoubtedly follow.

2.4. Summary of Quantum Linear Solvers
Even though the quantum formulation of the linear systems is not the exact same as the classical linear
systems it has value and promise in advancing the computation. Both, the HHL algorithm and the VQLS
algorithm provide a better alternative to their classical counterparts in regards to their computational
complexity. In the next chapters we will look at the methods used in implementing these algorithms on
a modern platform.

3
Method

Implementations of a QLS have come far since Harrow, Hassidim, and Lloyd first published their al­
gorithm. Experiments have been performed and improvements have been made to the versions they
envisioned. In addition to algorithmic improvements, quantum computers themselves have become
more robust and readily available. Quantum computing experiments are no longer bound to laborato­
ries of large institutions as several companies have created online interfaces for their growing number
of quantum computers. One such is IBM; they have built a platform that can connect anyone to nine of
their working quantum computers. Coding for a quantum computer has been brought to a more acces­
sible level through the use of high­level language such as Python. IBM has created a Python package
called Qiskit that allows a user to write gate and circuit instructions directly in Python. This Python code
is then compiled into the machine code needed for IBM’s quantum computers by IBM’s system and can
be executed either using an online interface or directly from a Python console. In this Python package,
there is also a system to run quantum simulations locally or on the IBM cloud, the simulators are used
to test implementations on both a theoretical perfect quantum computer and a noisy model of a real
quantum computer.

The version of Qiskit and its packages I used for producing the results shown in this thesis can be
seen in Listing 3.1,

Listing 3.1: Qiskit versions used in this work.

’qiskit­terra’: 0.16.1,
’qiskit­aer’: 0.7.1,
’qiskit­ignis’: 0.5.1,
’qiskit­ibmq­provider’: 0.11.1,
’qiskit­aqua’: 0.8.1,
’qiskit’: 0.23.1

In this Chapter we introduce IBM’s quantum system by looking into the hardware and the software
of it, and how they are used in the implementation of the quantum linear solvers.

3.1. IBM’s Quantum Network
As the race to build a quantum computer is ongoing so is the race to create the software on which
quantum computers will run on. IBM has made it far on both fronts as they have built working quantum
computers and brought them online alongwith building a software platform based on theOpenQuantum
Assembly Language (OpenQASM) [11]. Building on the OpenQASM, IBM has made an open­source
framework for developing and testing quantum algorithms, called the Quantum Information Science Kit
(Qiskit) and the cloud computing platform IBM Q Experience. Qiskit is a Python package that allows
a high­level interface with the OpenQASM language and it can be run on and set up locally on any
machine, just like any other Python package. Qiskit lets one run quantum simulations locally as well
as provides a backend to IBM’s quantum­simulators and ­computers [4]. As Qiskit is an open platform

17

18 3. Method

many are developing algorithms with it and so both HHL and VQLS have already been implemented.
This implementation will be the basis of the next phase of experiments in this work. The main part of
this project uses both the simulators and hardware available through the IBM Q Experience, and is
developed on the Qiskit module.

The Qiskit framework has four main components:

• Terra is the foundational element which all others take from e.g. the circuit structure;

• Ignis handles noise and error correction for better performance and analysis;

• Aqua is a library of quantum algorithms;

• Aer provides the simulation backend allowing local simulation of quantum processes.

A demonstration algorithm could make use of all these packages by creating a circuit in Terra, ties
in an existing algorithm from Aqua into the circuit then optimize it using Ignis and finally simulate it in
Aer. This process is graphed in Figure 3.1 including the core scientific domains that already have the
first steps of quantum advantage ready. Furthermore, IBM provides an excellent documentation on the
whole framework on the Qiskit website [4].

Figure 3.1: The structure of IBM’s elemental components [29].

3.2. Simulators
While researchers are working on more reliable hardware the best way to test quantum algorithms is
by using classical simulations. As stated by the Church­Turing thesis all Turing machines can com­
pute the same functions so any classical computer, which is Turing complete, can simulate a quantum
computer. The purpose of any scientific simulation is to reproduce the actual function of a target event
inside of the given test conditions, and so a simulation of a quantum computer by a classical computer
mathematically reproduces the conditions of a quantum system. This reproduction can be used to test
algorithms without having to set up and program a full quantum computer. Importantly, these classical
simulations of quantum computation are not efficient and so often takes much longer to simulate a
quantum algorithm than it would take to run on a quantum computer. It is also worth noting that these
computations are perfect and thus represent the theoretical upper bound of what a quantum computer
can do. In the near term, we have NISQ computers which are far from this kind of perfection, however

3.2. Simulators 19

every year brings improvements in this field.

Qiskit module Aer gives a classical computer the ability to run quantum simulations, allowing the
user to quickly run and test quantum algorithms. As a part of this local simulator, it is also possible to
run noisy tests, that is trying to simulate the real quantum hardware which is in use today. This will
be important in the continuation of the development of quantum algorithms such as the VQLS as they
are designed for noisy hardware and should be tested on such. This implementation could also prove
useful if hardware tests are proving unsuccessful as the noise in the simulations can be calibrated, un­
like in the hardware devices. Simulations also offer a greater size than a quantum device, e.g., IBM’s
online simulator can do a 32­qubit simulation, which is double the number of qubits from the hardware
option. Note that simulators do not scale beyond 40–50 qubits since their memory consumption grows
exponentially with increasing qubit numbers.

The Aer component of Qiskit provides three main methods of simulations, the State vector method,
the Unitary method, and the Qasm method. Each method takes a quantum circuit as an input and
outputs a state­vector representing the final values of the experiment.

• State­vector method, is a single shot perfect simulation of a quantum circuit and it returns a vector
with the final state of each qubit of the circuit.

• Unitary method, turns a quantum circuit into a unitary matrix. This matrix is then applied to a
starting vector, returning the product as a new state­vector.

• Qasm method is designed to simulate a real device. It can simulate the noise and help to create
more noise resistant circuits. It can import real data from IBM’s quantum computers and use it
to simulate the noise present in each of the imported systems basis gates as well as the effects
of its topology. The simulation can also take into account the measurement error of each qubit.
This gives a quick way of seeing if an algorithm will function on a real device.

The three methods provided by Qiskit can be separated into two distinct categories, perfect simula­
tion, and noisy simulation. The State­vector and Unitary method are perfect simulations where a single
run of the circuit yields the desired results by mathematically perfect methods. However, the Qasm
method is a noisy simulation. An ideal circuit is simulated but controlled noise is added to the calcula­
tion and the model is run multiple times to achieve a statistical result. This is done to simulate the kind
of quantum computers we have today more accurately. The Qasm method can control the noise on
multiple levels, such as gate noise or measurement noise. Noise models can also be actively fetched
to represent a specific IBM quantum computer to accurately see how an algorithm would perform on
that device.

Aqua
The intent behind Aqua is to ease the access of researchers who want to experiment with quantum
computation in their work. The algorithms provided are core to much of the quantum advantage that
has been discovered so far; such as the HHL algorithm or variational methods. With this package, a re­
searcher can call on these methods, either as a single algorithm or as a part of a larger experiment, and
use them directly without having to write up all of the quantum circuits. This means that research with
quantum computers is not bound to a quantum computer scientist, but can be used e.g. in chemistry or
optimization research. To further accommodate such research, that is any research seeking quantum
advantage, specific domains have been identified where the quantum advantage is clear and special
methods have been added to allow researchers to use existing tools and techniques in conjunction
with Aqua without having to learn quantum specific skills [29]. Thus, the Aqua package allows conve­
nient use of existing quantum algorithms by providing a ready­built solution with a standard interface
for many researchers.

Aqua functions by giving the user direct access to the open­source software library of quantum
algorithms without any intermediary layer. This gives a user also the full power of classical computing
by giving him the ability to, e.g., create loops and logic checks whilst utilizing quantum components.
This is often much easier than accessing blocks of code through API or other indirect methods. The

20 3. Method

openness of the platform has also allowed errors to be quickly corrected and for users to submit their
work into the library, this increases the reliability and the scale of the whole system.

Hardware
Quantum computers are not really here yet. Even though the effort to develop them is growing and new
publications show improvements in this field every month, the truth remains we are not working with
perfect qubits. The qubits that we are working with are noisy and prone to errors, and also very small
scale systems, on the order of 10 qubits (which may soon become on the order of 100 qubits). These
systems we call noisy intermediary scale quantum computers or NISQ for short. NISQ systems are
good for testing small scale circuits that take a short time to run but are not taking over from classical
computers yet. However, if better techniques are developed it may very well be that NISQ quantum
computers are all we need to reach quantum advantage in some cases [31].

IBM uses superconducting qubits as the basis for all their quantum computers. Each computer
needs a complex cryogenic system to keep the quantum states for as long as possible and so that the
qubits remain undisturbed by heat. The control mechanism is a microwave pulse system that gives the
user precise control over their experiments. In total 28 machines have been put online for use eight
of which are in open access to anyone who signs up for IBMQ network, these open access machines
vary from a single qubit computer to a 15 qubit computer [26].

Complexities are a part of working with NISQ devices. When working with quantum computers you
need to not only consider noise in the circuits but also coherency time, i.e. time a quantum state can
be held, and connectivity of the qubits themselves, e.g. Figure 3.2. All of these factors can make a
difference in how your algorithm runs. Because of these factors and the complications around real
quantum computers this thesis is bound only to simulations not using real quantum hardware.

Figure 3.2: The topology of the ibmqx2 5 qubit machine, one of the machines available through the IBM Q experience.

To summarize, the IBM system offers open access to quantum computing simulators and hardware
through a Python interface. The platform offers varying methods for conduction experiments and eases
usage further with a pre­built quantum algorithm inside the core module Aqua. With these elements,
we build the experimental procedure and get our results in the following Chapter.

4
Experiments and Results

In this chapter, we will cover the procedure of each experiment and give their results. The procedure of
both HHL and VQLS followed the construction given in the IBM Qiskit textbook [4]; with augmentation
for the decomposition of 𝐴 and matrix size variations for VQLS, and noise accommodation with code
refactoring for HHL. For HHL, a single function was produced that handled all test runs; this function
can be found in Appendix C.1. In VQLS a separate function handled each size and noise configuration,
i.e., six functions in total; they can be found in Appendix C.2.

For experiments, both HHL and VQLS were tested with a perfect simulation and a noisy simulation,
and each of those tests was run on three sizes of matrices 2×2, 4×4, and 8×8. In selecting matrices
for testing I kept a similar structure of sparsity and condition numbers throughout varying sizes to be
able to compare results better. Note that due to the limited capabilities of the simulators larger and
more complex matrices were not able to be tested. All test matrices can be found in Appendix D.

The chapter is structured such that the procedure of each experimental setup proceeds the results
of those experiments. The procedure represents an implementation of the algorithms described in
chapter 2 and is based on the IBM Qiskit textbook [4]. The outputs of the experiments are mainly
circuit size, runtime data, and fidelity of the solution vector. After each section, we do a quick analysis
but reserve an in­depth discussion for Chapter 5.

4.1. Procedure of HHL
The procedure for the HHL algorithm used in the following experiments uses the Aqua implementation
of the HHL function. The input is comprised of an eigenvalue circuit, circuit size (including ancilla), a
matrix 𝐴, a vector 𝑏, and the size of the matrix, 𝑛. Since this implementation requires us to input the
circuit that handles the eigenvalues, i.e., the quantum phase estimation from Chapter 2.2, separately,
we first use a special Aqua function, EigsQPE. This extra input is needed as the solver has not been
fully implemented yet.

The EigsQPE function is a numerical approach to solving the quantum phase estimation, i.e., QPE,
meaning it is not an exact method. It uses an expansion method, either the method of Lloyd [19] or
Suzuki [36] and takes as input the order of expansion and the number of time slices. Experiments
varying the number of ancilla and order expansion can be found later in this chapter, cf. 4.7. The
expansion methods are both based on the Trotter expansion formula,

𝑒𝐴+𝐵 = lim
𝑛→∞

(𝑒𝐴/𝑛𝑒𝐵/𝑛)𝑛 , (4.1)

where 𝐴 and 𝐵 are operators, Equation (4.1) corresponds to formula (3.10) in [36]. In Lloyd’s method
it is used directly whilst in Suzuki the generalized form, called the Suzuki­Trotter formula, is used. This
adds the expansion order, 𝑝, where 𝑝 = 2 corresponds to the Trotter expansion,

lim
𝑛→∞

𝑓𝑛,1(𝐴𝑗) = 𝑒𝑥𝑝(
𝑝

∑
𝑗=1
𝐴𝑗) , (4.2)

21

22 4. Experiments and Results

where again 𝐴𝑗 is a bounded operator and 𝑝 is a positive integer, cf. formula (3.9) in [36].
To perform QPE we need a Hermitian matrix. If our matrix 𝐴 is not Hermitian, we expand it in the

following way.

𝐻 = [0 𝐴
𝐴𝐻 0] ,

and continue with 𝐻 in place of 𝐴. Evidently, this doubles the size of the matrix, which is quite costly.
Therefore, for experimental purposes, this situation was avoided.

After having checked that 𝐴 is valid and having the QPE circuit we can run the HHL algorithm with
the desired simulator, chosen by the user. This part has a timing loop around to measure how long the
run takes. When we have the results of the HHL experiment we run a classical linear solver to compare
the fidelity of the HHL solution. Fidelity is calculated simply as the state fidelity between the normalized
HHL solution and the normalized classical solution,

𝑥̃𝑛𝑜𝑟𝑚 =
𝑥̃

||𝑥̃||2
,

𝑥𝑛𝑜𝑟𝑚 =
𝑥

||𝑥||2
,

𝑓 = 𝑥̃𝑛𝑜𝑟𝑚
𝑥𝑛𝑜𝑟𝑚

,

where 𝑥̃ is the experimental solution, 𝑥 is the reference solution, and 𝑓 is fidelity. The function finishes
by writing all the relevant test data to a designated file.

4.2. Perfect Simulation of HHL
For the experiments with a state vector simulator, a perfect simulation, the Suzuki method was used
for the expansion, 3 ancilla, and a default vector of 𝑏 = 𝟙𝑛, Lloyd’s method was tested for reference
see further in Appendix E.2. For the Suzuki method the parameters were, order 1, and number of time
slices 50. Each test matrix was run three times and the results of time and fidelity were averaged over
those three runs. The runtime was measured over only the linear solver part of the script. In Table 4.1
we see the circuit size of matrices tested in this simulation. The circuit size did not vary for the different
test matrices in each size category as the expansion order remained the same for all tests.

Matrix size 2 × 2 4 × 4 8 × 8
Qubits 7 8 9
Depth 101 104 111

Table 4.1: Circuit sizes in HHL state vector experiments. Qubits represent the maximum amount qubits the circuit uses, and
depth is the maximum amount of gates any qubit passes through before conclusion.

Experiments of size 2 × 2
The matrices prefixed with 2 in Appendix D were all tested for the perfect simulation of HHL. In Figure
4.1a we can see the runtimes for each test matrix. The first matrix, 2.𝑎, is the identity and it took a
considerably shorter time to run. The general runtime was between 0.8 seconds and 1.2 seconds.
Fidelity of the 2 × 2 state vector simulation can be found in Figure 4.1b, there we see that the fidelity
was near 1, i.e., near perfect, except in two outlying cases, 2.𝑒 and 2.𝑓.

Experiments of size 4 × 4
The matrices used in the 4 × 4 experiments can be found in Appendix D prefixed with 4. Looking at
Figure 4.2a we can see that again the matrix 4.𝑎 is an outlier; again this is the identity matrix. The
results are generally steady up to 4.𝑔, with the matrices coming close to a runtime of 2.5 seconds. The
matrices from 4.𝑔 take longer going from 2.5 seconds up to 10 seconds, these matrices increase the

4.2. Perfect Simulation of HHL 23

(a) Runtimes for 2 × 2 matrices. (b) Fidelity for 2 × 2 matrices.

Figure 4.1: Experiments with 2 × 2 matrices, state vector simulations.

density from the first matrices which where all diagonal matrices. For fidelity we see that the solution
conforms to the classical solution nicely for most matrices, see Figure 4.2b. For the first three cases
the results are near perfect, but again 4.𝑒 and 4.𝑓 are outliers showing very poor fidelity, these matrices
where selected as they are ill­conditioned and so that undoubtedly plays a part in their poor fidelity.

(a) Runtimes for 4 × 4 matrices. (b) Fidelity for 4 × 4 matrices.

Figure 4.2: Experiments with 4 × 4 matrices, state vector simulations.

Experiments of size 8 × 8
Test matrices of size 8×8 for the state vector simulation of HHL can be found in Appendix D with prefix
8. This was the toughest to run and only eight matrices ran successfully. In Figure 4.3a we see that the
identity matrix, 8.𝑎 again has a shorter runtime similar to that of the identity of 2×2 and 4×4. The next
two, have a runtime of 3.9 and 1.1 seconds for 8.𝑏 and 8.𝑐, respectively. From 8.𝑑 onward the runtime
is closer to 7 seconds but peaks in 8.𝑒 at 14 seconds, correspondingly 8.𝑒 has the worst sparsity. The
fidelity of these solutions is near perfect for the first runs; 8.𝑎 is 1.0, 8.𝑏 is 0.996, and 8.𝑐 is at 0.999.
The 8.ℎ, 8.𝑔, and 8.ℎ represent the ill­conditioned matrices and again they show quite bad fidelity from
other results.

State Vector Simulation of HHL Analysis
In the state vector simulations of HHL we immediately saw that the quantum algorithm can produce
accurate results in a short test time frame. The circuits that come out of the runs were all in an expected
range but larger than the HHL theory sets it out; there qubit size for a 2 × 2 matrix is 5 not 7 [17]. The

24 4. Experiments and Results

(a) Runtimes for 8 × 8 matrices. (b) Fidelity for 8 × 8 matrices.

Figure 4.3: Experiments with 8 × 8 matrices, state vector simulations.

impression from these results point to the sparsity number of the matrices increase the runtime of the
algorithm while the condition number decreases the fidelity. Lastly, note a quick runtime for the identity
matrix, which was almost constant, i.e., independent of size. However, this may be due to some short
circuit in the simulator.

4.3. Noise Simulation of HHL
For experiments with a noisy simulation the same expansion and parameters were used as in the state
vector simulation. For a noisy simulation, a noise model must be chosen. There are a variety of pa­
rameters to alter for testing certain aspects of a circuit and its sensitivity to noise. As the goal here is to
show how these algorithms would perform on a real NISQ quantum computer. For this the best option
is to generate a noise model based on an existing machine.

Therefore we import data of the 15 qubits Melbourne computer of the IBM cloud services, the model
data can be found in Appendix C.1. The Melbourne computer has five basis gates, the Identity (I), the
Not gate (X), Conditional not gate (CX), Rotation on Z axis (RZ), and square root not gate (SX). The
computer connects its 16 qubits using the topology shown in Figure 4.4. This specific model was cho­
sen as it is the only real quantum machine available with enough qubits for our purposes, i.e., more
than 9. The test matrices used in the noisy experiments are the same as the ones used in the state
vector simulations, they are listed in Appendix D.

Figure 4.4: The topology of the Melbourne 15 qubit computer. Nodes represent qubits and edges represent qubits’ ability to
entangle.

The circuit sizes for all runs relative to the matrix input size is the same as it was in the state vector
simulation, see Table 4.1. One could try to mitigate the noise with additional changes to the circuit but
the point here is to test how the algorithm would perform as is on a NISQ device.

Experiments of size 2 × 2
In Figure 4.5a, we see the runtime results of the 2 × 2 test matrices. That the time it takes to execute
each run is considerably larger than in the state vector simulations; the average of the three runs is
now around 32 seconds, excluding 2.𝑎, the identity. In Figure 4.5b, the fidelity of the same test matrices

4.3. Noise Simulation of HHL 25

is presented. In comparison to Figure 4.1b, the no­noise run of the same size, we can see that the
spread is considerably wider and a similar low fidelity results can be found for 2.𝑒 and 2.𝑓.

(a) Runtimes for 2 × 2 matrices with noise. (b) Fidelity for 2 × 2 matrices with noise.

Figure 4.5: Experiments with 2 × 2 matrices, noisy simulations.

Experiments of size 4 × 4
Figure 4.6a presents the results of all matrices of size 4 × 4 tested in a noisy simulation of HHL. We
see that the general runtime for the diagonal matrices is around 110 seconds, except for the identity,
4.𝑎. The runtime again increases from 4.𝑔 on and peaks at 500 seconds, so a 5 fold increase going
from the general diagonal matrices to the dense random matrices. For fidelity of the solutions of each
test, depicted in Figure 4.6b, there is a slow decline in solution fidelity as we go trough the matrices
until 4.𝑔 where we jump back up. Again the ill­conditioned matrices perform near zero while a dense
random matrix, 4.𝑗, is at 0.3.

(a) Runtimes for 4 × 4 matrices noise. (b) Fidelity for 4 × 4 matrices noise.

Figure 4.6: Experiments with 4 × 4 matrices, noisy simulations.

Experiments of size 8 × 8
In Figure 4.7a we see the runtime of the tested matrices in the 8×8 category. Here we see the longest
runtime, 8.𝑒, took over 3.000 seconds and the runtime of 8.𝑓,8.𝑔,8.ℎ was around 1.700 seconds, all
being more than three times that of any 4 × 4 run. Again the identity stands out with a very short
runtime, around 10 seconds. This could be due to some optimization in the simulator. Fidelity, seen
in Figure 4.7b, is considerably weaker then without noise but shows similar results to the 4 × 4 case.
Two cases stand out with perfect fidelity, the identity 8.𝑎 and 8.𝑒 which is a tridiagonal matrix. The

26 4. Experiments and Results

ill­conditioned matrices, the last three, all perform near zero.

(a) Runtimes for 8 × 8 matrices with noise simulation. (b) Fidelity for 8 × 8 matrices with noise simulation.

Figure 4.7: Experiments with 8 × 8 matrices, noisy simulations.

Noise Simulation of HHL Analysis
The noise experiments overall took a significantly increased runtime compared to the state vector sim­
ulation. They also suffer from a loss in fidelity in almost all results. This is to be expected with no
change in the circuit for error correction as the noise is of course there to disturb the normal function
of the simulation. It is however clear that results can be achieved under certain conditions and that
if they had the capacity NISQ computers could produce passable results under these experimental
conditions.

4.4. Procedure of VQLS
The procedure of the VQLS follows the steps laid out in Chapter 2.3. Three different procedures were
used to run each of the different sizes of matrices as the function setup could not be generalized. These
three different procedures differ in the ansatz and the control tests as these are tailored to matrix sizes.

The VQLS algorithm takes in a matrix 𝐴, which needs to be decomposed into a linear combination
of unitaries 𝐴 = ∑𝑛 𝑐𝑛𝐴𝑛, where 𝑐𝑛 are complex coefficients. Secondly, it needs a unitary matrix 𝑈 such
that it takes a state |0⟩ to the state |𝑏⟩. After minimizing the cost function it outputs a normalized form
of the state |𝑥⟩. As a simplification, vector 𝑏 was chosen such that 𝑈 = 𝐻𝑛, that is a tensor product of
Hadamard gates.

The Ansatz of VQLS is a trainable gate sequence, 𝑉(𝛼), which prepares the state |𝑥⟩ from |0⟩.
There are many ways to make such a circuit but its implementation depends on its function. One can
vary both, the structure of the whole circuit, or the continuous parameters on rotational gates. It is hard
to say what is the best ansatz, but starting with an example of what worked for other researchers is
often a good practice. In the VQLS experiments, we chose a fixed­structure ansatz, that is it only varies
the continuous parameters of the rotational gates and not the structure of the circuit itself. For each of
the three sizes a different ansatz is used as the ansatz structure depends on the circuit structure. The
ansätze chosen can be seen in Figure 4.8 for details about gates see Appendix B. These particular
ansätze were chosen from the main sources of these algorithms [4, 5] as they proved successful in
their experiments.

At each iteration the rotation of the gates changes and this allows us to search the state space
of 𝐴. The rotational values in their corresponding gates can be found in Figure 4.8. This sort of im­
plementation can be further optimized by a so­called Hardware­Efficient Ansatz [18], where gates are
chosen to match the gates set of the quantum computer itself; this technique was not employed in the
experiments performed for this project.

4.5. Perfect Simulation of VQLS 27

(a) Ansatz for a 2 × 2 matrix. (b) Ansatz for a 4 × 4 matrix. (c) Ansatz for a 8 × 8 matrix.

Figure 4.8: Ansatz circuit for the three experimental sizes used.

Figure 4.9: Control ansatz for an 8 × 8 matrix.

Next, the procedure needs to perform a Hadamard test and a controlled test of the ansatz. In
the work of Bravo­Prieto et al. [5] this is done using a novel technique called the Hadamard Overlap
Experiments, which reduces the number of gates used at the cost of an extra ancilla qubit. Following
the example of the Qiskit textbook, this was not done, as the overlap test is hard to implement; however,
a more general VQLS function should include this. Instead of the overlap test we are using a control
Hadamard test. The control Hadamard test uses a control sequence on the gates of the decomposition
of 𝐴, followed by a control test of the ansatz where an ancilla qubit is used to control selected qubits.
This depends on the original ansatz and the first ancilla. We can see an illustration of this in Figure 4.9.
The control Hadamard test presents a problem when generalizing the procedure as the control­control­
not gates need an added control sequence for each additional qubit. Therefore a Hadamard­Overlap
test would be preferable.

Lastly, the procedure needs the main cost function, i.e., the function that returns 𝐶(𝛼) and is fed into
the classical training algorithm. The cost function creates the circuits of the ansatz and 𝑈, and runs the
simulation on them to output |⟨𝑏|𝜓⟩|

2

⟨𝜓|𝜓⟩ , as defined in (2.4). For all experiments, the COBYLA method was
used as a classical minimizer algorithm. To get out the vector 𝑥 we then need to run our ansatz one
more time with the input as the optimized parameters of the main loop. We do this by building a quick
new circuit with just the ansatz, no extra ancilla, and using the parameters recovered from the output
of the minimizer as the input. Finally, we simulate this circuit and measure the state to get the solution
vector 𝑥.

4.5. Perfect Simulation of VQLS
For experimenting with the state vector simulation we must run the state vector simulation in three
different locations, twice in the cost function and once after the optimization loop to determine 𝑥. The
size of the circuit is considerably smaller than in the HHL case as we can see in Table 4.2. Each circuit
uses fewer qubits and has much fewer gates. This however is fair in direct comparison to HHL as this
circuit requires multiple loops and samplings to complete the calculations, but it does provide better
usability on smaller scale quantum machines.

Matrix size 2 × 2 4 × 4 8 × 8
Qubits 3 4 5
Max Depth 8 10 26

Table 4.2: Circuit sizes in VQLS state vector experiments.

28 4. Experiments and Results

Experiments with the VQLS simulations use the same matrices as the HHL experiments, cf. Ap­
pendix D.

Experiments of size 2 × 2
The results of all 2 × 2 matrix tests can be found in Figure 4.10a. The runtime was mostly around 2.5
seconds with only two exceptions, 2.𝑗 and 2.𝑖 taking longer and one taking shorter, 2.𝑙. Fidelity results
can be seen in Figure 4.10b, the results show a near perfect fidelity for all matrices, with the exception
of 2.𝑙 which is very low.

(a) Runtimes for 2 × 2 matrices. (b) Fidelity for 2 × 2 matrices.

Figure 4.10: Experiments with 2 × 2 matrices, state vector simulations.

Experiments of size 4 × 4
In experiments with the 4×4matrices we have varied time results, as can be seen in the graph in Figure
4.11a. Timings where between 10 and 20 seconds for most tests but for the dense random matrices 4.𝑖
and 4.𝑗 the timing when up to 52 and 81 seconds respectively. The fidelity, as shown in Figure 4.11b,

(a) Runtimes for 4 × 4 matrices. (b) Fidelity for 4 × 4 matrices.

Figure 4.11: Experiments with 4 × 4 matrices, state vector simulations.

Experiments of size 8 × 8
The VQLS simulation can handle more complex 8×8matrices but as we mainly wanted to compare the
results to HHL it seemed redundant to test more matrices just for VQLS. The timing results are seen in
Figure 4.12a and the fidelity in Figure 4.12b. Timings are considerably longer than for the 4 × 4 case
with most runs being over 500 seconds long. The fidelity varies considerably but like in HHL 8.𝑎 and

4.6. Noise Simulation of VQLS 29

8.𝑒 perform near perfect, but 8.𝑑, 8.𝑔, and 8.ℎ are near zero. Those last three matrices listed all have
a poor condition number, all though 8.𝑑 was not designed to be ill­conditioned it has 𝜅 = 18.4

(a) Runtimes for 8 × 8 matrices. (b) Fidelity for 8 × 8 matrices.

Figure 4.12: Experiments with 8 × 8 matrices, state vector simulations.

State Vector Simulation of VQLS Analysis
Shortly, the state vector simulations of VQLS were a success for smaller matrices. They show a much
leaner circuit compared to HHL but take a longer time to show results under these perfect conditions.
The fidelity is good in the smallest matrices but is not favorable in the subsequent tests. Because of
the poorer fidelity it is hard to draw a strong conclusion but there again seems to be a link between
sparsity and runtime and also a link between condition number and fidelity

4.6. Noise Simulation of VQLS
We need to change the procedure for the noisy experiment of VQLS. In particular in the cost function,
where the circuits are sampled. Using the same noise model as in HHL, detailed in Appendix C.1, we
ran multiple shots of the quantum simulation to get a clear result, using the average of those runs as
our real result. For our experiment we use 10.000 shots, this number was determined by experiment,
see Appendix E.1. This is a rather high number of shots but to reach convergence with the classical
optimizer it is necessary to get more accurate results of the quantum simulation [4]. Again the noisy
simulation presents the same circuit results as the state vector one as the circuit does not change, see
Table 4.2.

Experiments of size 2 × 2
On the whole, the noisy configuration runtime, see Figure 4.13a takes a similar time as its non­noisy
counterpart, see Figure 4.10a. Two outliers are the identity and the matrix 2.𝑗, for which the entries
were chosen with a random number generator. The fidelity, however is poor, see Figure 4.13b; with a
lone value at 0.7 and the rest somewhere below 0.4.

Experiments of size 4 × 4
The Figure 4.14a shows us the runtimes of the 4 × 4 experiments, in a noisy configuration of VQLS.
We see, that the average time is mostly steady around 300 seconds for each test matrix, however like
in the state vector simulation the 4.𝑖 and 4.𝑗 take considerably longer. The 4.𝑖 and 4.𝑗 are the dense
matrices and they two take a longer runtime then the rest combined. Fidelity, seen in Figure 4.14b, has
a steady downwards trend with each tested matrix and is nowhere good; maximum value is only 0.7
and the lowest under 0.1.

Experiments of size 8 × 8
Unusually, the runtime of these 8 × 8 experiments was around similar values to the 4 × 4 cases and
very similar to the state vector simulation of 8 × 8. We can see from Figure 4.15a that the maximum

30 4. Experiments and Results

(a) Runtimes for 2 × 2 matrices with noise. (b) Fidelity for 2 × 2 matrices with noise.

Figure 4.13: Experiments with 2 × 2 matrices, noisy simulations.

(a) Runtimes for 4 × 4 matrices with noise. (b) Fidelity for 4 × 4 matrices with noise.

Figure 4.14: Experiments with 4 × 4 matrices, noisy simulations.

runtime was around 600 seconds, while most cases where around 300 seconds. Fidelity was worse
still than in the smaller sizes though, as the highest value doesn’t reach 0.16, see Figure 4.15b. These
fidelity results are on such a small scale as well that they display no structure or are counter intuitive.
For example from 8.𝑓 to 8.ℎ there is an increase in fidelity, while the condition number increases from
10 to 1000, with sparsity unchanged.

Noisy Simulation of VQLS Analysis

The runtime of the VQLS noisy simulations showed results in the 4 × 4 to take the longest. This could
relate to the ansatz or it may be due to the high number of shots needed to converge. In general, the
fidelity results for all experiments was poor, with not even the identity matrix showing a fidelity of 1 in
any test. It is hard to improve these results by tuning parameters as unlike HHL, VQLS does not rely
on approximations like the QPE. We will look at parameter tuning in the next chapter.

4.7. Additional Tests for HHL 31

(a) Runtimes for 8 × 8 matrices with noise. (b) Fidelity for 8 × 8 matrices with noise.

Figure 4.15: Experiments with 8 × 8 matrices, noisy simulations.

4.7. Additional Tests for HHL
The HHL algorithm has several variables to calibrate when running it. These variables include the
number of ancillae used in measurement and the expansion order of the expansion method. In the
following sections, we experiment with varying these two numbers, first the ancilla then the expansion
order. These additional tests were conducted using only the 4 × 4 matrices and perfect simulation
conditions.

Varying Ancilla
The number of ancillae determines the measurement accuracy of the final values. Increasing the num­
ber of ancillae is similar to increasing the number of bits in a float value. The general tests used 3
qubits as ancilla, this value was taken from previous experiments [4]. To further test the effects of the
ancilla on fidelity and runtime we performed the tests using 4, 5, and 6 ancillae in the HHL simulation.

Increasing the amount of ancilla naturally increases the circuit width used in the simulation. Fur­
thermore, the added qubit needs to fully connect to the rest of the circuit to work in measurement and
so these added ancilla qubits double the depth of the circuit in each step, see Table 4.3. This linear
growth in width and depth size increases the size of each circuit such that the simulations start to fail
in the most difficult cases. In the case of 5 ancilla, 4.𝑖 and 4.𝑗 cause a segmentation fault and when
using 6 ancilla 4.ℎ and 4.𝑔 fail in addition to 4.𝑖 and 4.𝑗. This simulation failure is representative of the
current capabilities and the limitations of HHL.

Ancillae 3 4 5 6
Qubits 8 9 10 11
Max Depth 104 208 402 802

Table 4.3: Circuit sizes in HHL state vector experiments with increased number of ancilla.

In Figure 4.16b we can see that there is not much to be gained from adding the extra ancilla for
fidelity in general. Only 4.𝑒 and 4.ℎ show growth in fidelity with an addition of ancilla. The case 4.𝑒 was
chosen as an example of an ill­conditioned matrix with 𝜅 = 100. It can be observed that this kind of an
ill­conditioned matrix benefits from the extra ancilla. But we can see from the case 4.𝑓 that the effects
of extra ancilla are not enough to bring up the fidelity there. The matrix 4.𝑓 is worse conditioned than
4.𝑒 with 𝜅 = 1000. So the case of an ill­conditioned matrix may benefit from the added ancilla but the
effect is quickly lost if the condition number is too large. The price in calculation time is also high. As
we see in Figure 4.16a, each added ancilla doubles the runtime. This is not surprising as we already
saw that the depth of the circuit doubles. The added time in the calculation for additional ancilla is not
rewarded with much greater fidelity. However, the results do show that a particular ill­conditioned case

32 4. Experiments and Results

does have great benefits, with fidelity going from near 0 to 0.7. This could indicate that matrices around
that particular condition number should use additional ancilla but this would have to be explored further,
perhaps in conjunction with preconditioning.

(a) Runtimes for 4 × 4 matrices with varying Ancilla. (b) Fidelity for 4 × 4 matrices with varying Ancilla.

Figure 4.16: Experiments with 4 × 4 matrices using varying number of Ancilla.

Varying Expansion Order
Expansion order in the Suzuki­Trotter equation, (4.2), can increase the accuracy of the solution by
approximating the phase estimation better. This accuracy comes at a cost of computational complexity,
even though neither the width nor the depth of the circuit increases. This increase in computational
complexity is visible in the runtime for expansion order 1 and 2 in Figure 4.17a, where all 4×4matrices
where attempted. It is also apparent in the case of matrices 4.𝑖 and 4.𝑗, since they cause a segmentation
fault in the run of the simulation with expansion order 2. The segmentation fault also happened for all
4 × 4 matrices, except 4.𝑎, for trials with expansion orders 3 and 4.

(a) Runtimes for 4 × 4 matrices with varying expansion order. (b) Fidelity for 4 × 4 with varying expansion order.

Figure 4.17: Experiments with 4 × 4 matrices in state vector simulation of HHL with varying expansion order.

5
Discussion

To review the results we will compare the data of VQLS and HHL as well as look at the effects that
noise had on the experiments. The noise experiment acts as a stand­in for real experiments ran on
quantum computers, since the quantum computers which were accessible at the time could not handle
the HHL algorithm. This is already a point in the favor of VQLS, which with its hybrid approach has
much smaller quantum circuits. However, VQLS needs to use those circuits more often and is still
relying on the robustness of the calculations. Looking at the data of the circuits for HHL and VQLS,
cf. Table 4.1 and 4.2, respectively, we see that they are similar in width. VQLS remains smaller but
optimization could get HHL to the same level. On the other hand, the depth is on a different scale; the
VQLS experiments have a maximum depth of 26 while the HHL algorithm starts at 101 and goes up to
111. This is especially important if one considers that the depth and width multiplied together to form
the complete gate count, which contributes to the error rate in noisy conditions immensely, as each
gate has some error.

5.1. Comparison
To compare the effects matrix size has on the runtime of each algorithm (under perfect simulation), let
us consider Figure 5.1, which shows all runtimes of HHL and VQLS on a logarithmic time scale. The
data seems to indicate exponential dependence with size because it appears to be linear under the
logarithmic scale. Notably, HHL has three clear outliers that perform under the average in every test,
these are the identity matrices. As was pointed out in the analysis of these results in Chapter 4, this
may be due to a short circuit or any other optimization in the simulation.

If we then compare HHL and VQLS together on runtime, cf. Figure 5.2, the HHL algorithm performed
faster in most cases both with and without noise. The only exceptions to this are the 2 × 2 cases in a
noisy setting which performed better on VQLS. This is not surprising as the theory of VQLS has shown
that it is not meant to perform faster than HHL but to be able to bring quantum advantage to linear
solvers sooner with smaller circuits, which as previously discussed, it does. It is then important to note
that the noise results in VQLS seem to indicate worse scaling than in HHL, but the limited number of
results restricts the conjectures possible from this data.

Let us now turn our attention to fidelity, cf. Figure 5.3. We can see there that the matrices ∗.𝑑, ∗.𝑒,
and ∗.𝑓 were specifically chosen to see what the effect the condition number of a matrix has on different
experiments. These matrices are not present in the 8×8 experiments as any deviation of this kind failed
to run in the HHL setup. If we view the fidelity of these solutions we see that the cases 𝜅 = 100 and
𝜅 = 1000, i.e. ∗.𝑒, and ∗.𝑓, respectively, are the single outliers in the state vector simulation of HHL
performing near 0 in both cases. For HHL this could be improved by increasing the expansion order in
the QPE, but this would come at a cost of circuit complexity. On the same matrices, the 2 × 2 VQLS
state vector model performed well in fidelity but lost it in a noisy scenario. Therefore we can conclude
that the condition number affects both algorithms to a high degree.

33

34 5. Discussion

(a) All runtimes of HHL with no noise, time in log scale. (b) All runtimes of VQLS with no noise, time in log scale.

Figure 5.1: Runtime comparison as a factor of size compared in the state vector simulations of HHL and VQLS, time (𝑦­axis) is
in logarithmic scale.

(a) Runtime comparison of HHL and VQLS, without noise. (b) Runtime comparison of HHL and VQLS, with noise.

Figure 5.2: Runtime comparison of HHL and VQLS. Time is set in logarithmic scale and the identity matrices have been taken
out.

Notably, the results of the experiments show no direct correlation between runtime and fidelity.
When we plot these together the fidelity seems independent of runtime, see Figure 5.4, where time is
again in logarithmic scale on the 𝑦­axis and fidelity on the 𝑥­axis.

When viewing the data of noisy simulations and comparing it to their no­noise counterparts, it is clear
that adding noise to the system changes the outcomes greatly, especially its runtime. The increase in
runtime can go from seconds to minutes, in both HHL and VQLS, see an example for the 4 × 4 cases
of HHL in Figure 5.5. The added time to the simulation is not a direct indication of poor performance
on a quantum computer, since a quantum computer naturally has such conditions, and the increase
in difficulty comes from the increased circuit size. However, the increased runtime of VQLS in a noisy
setting is not only due to increased simulation difficulty but also due to the fidelity of the cost function.
As VQLS runs an optimization loop, errors can cause the loop to run far more times than it did under
perfect conditions.

Viewing the fidelity in the same light, we see a considerable downgrade in terms of the accuracy of
the solution provided. This pushes the reality of using the current quantum computers for solving linear
systems a little further out since it is difficult to use these outputs in a real setting.

5.2. Future Work 35

(a) Fidelity comparison of HHL and VQLS, without noise. (b) Fidelity comparison of HHL and VQLS, with noise.

Figure 5.3: Fidelity comparison of HHL and VQLS.

(a) Runtime relation to fidelity in a perfect simulation. (b) Runtime relation to fidelity in a noisy simulation.

Figure 5.4: Runtime in relation to fidelity, comparison of HHL and VQLS in both a perfect and a noisy setting.

5.2. Future Work
From an experimental point of view, there are multiple avenues for future work; from improving the algo­
rithms themselves to using the algorithms in conjunction with other work. It is clear, that the groundwork
for better linear solvers has been laid out and that if we had perfect and large quantum computers we
could do much more with these algorithms.

Moreover, more and different experiments can be done with the algorithms provided. There are
unanswered questions in what causes difficulty in the noisy runs of VQLS and in the HHL additional
tests. This could be improved by different approaches to the circuit design or simply with better simula­
tors. A good example would be to run the implementation of real hardware. Real hardware experiments
have been performed with both examples [5] [28] [40] [6] but doing them on different implementations,
e.g. varying the ansatz for VQLS or the QPE for HHL, could yield good improvements in the scien­
tific knowledge needed before we can claim quantum advantage using QLS. In the line of algorith­
mic improvements, a full generalization of VQLS would be very desirable, especially if it includes the
Hadamard­Overlap test and a variable structure ansatz.

With improved algorithms designing a practical problem is often the next natural step. For exam­
ple, setting up a larger problem that uses the quantum linear solver. This would involve taking some
known problem that uses a linear solver, then converting it to a quantum setting so that |𝑥⟩ need not

36 5. Discussion

Figure 5.5: All 4 × 4 HHL runtimes.

be read classically but is used immediately in its quantum state, as already proposed in [24]. This sort
of implementation has already gained some traction in the field of machine learning, see [32] and [13].

5.3. Conclusion
In the preface of the thesis these four questions where proposed.

1. Which approaches exist to solve linear systems on quantum computers?

2. How do the implementations of these approaches scale with problems?

3. Can these approaches get to quantum advantage in the near term?

4. Can one use these approaches within a larger algorithm?

This thesis is developed around answering these questions and here is a summary of the answers.

1. There are two quantum algorithms that can solve a reframed problem of linear systems, the HHL
method and VQLS method. HHL is a full quantum solution while VQLS takes a hybrid approach
using both classical optimizers and quantum solutions. Both methods are a part of very active
ongoing research in the field of quantum computing.

2. HHL has a theoretical scaling of 𝑂(𝑠𝜅polylog(𝑠2𝜅2/𝜖)) while VQLS has heuristic scaling which
has been shown experimentally to be efficient in the condition number and error. Experiments
showed that simulations of the quantum implementations of these algorithms grow exponentially
with the size of the input matrix. This increase is likely a cause of complications experienced in
experiments where simulators were unable to complete varying calculations in larger test cases.
The experiments seem to show a correlation between the sparsity and the runtime and a cor­
relation between fidelity and the condition number. However, neither HHL nor VQLS showed
dependency between the fidelity of the solution and the size of the input. Neither was their de­
pendency shown between runtime and fidelity.

3. For these approaches to reach quantum advantage in the near term they both require the prob­
lem of quantum memory to be solved efficiently. Meaning, they need to store matrix 𝐴 and vector
𝑏 efficiently on quantum computers to use them as inputs to algorithms. HHL requires a circuit
of 2𝑛 + 1 qubits and has a deep gate structure. This gate structure requires HHL to have robust
quantum computers which are expected to be a reality in the near term. VQLS has the same
qubit size as HHL, 2𝑛 + 1, but a much shallower gate structure. This gate structure makes it

5.3. Conclusion 37

much more feasible to run VQLS on near term hardware. However, noisy experiments of VQLS
showed that VQLS still relies on robustness as the cost function output needs accuracy for the
minimization loop.

4. Embedding these linear solvers into a larger algorithm is feasible. Taking any classical problem
that requires a linear solver one can replace that classical solver with either of the quantum ap­
proaches. This method restricts the choice of problems to ones where 𝐴 is a square Hermitian
matrix but this is a common restriction and is adhered to in many physical problems, such as
boundary value problems. This switch has been tested in a finite element solver by Montanaro
and Pallister, where they found that the improved HHL algorithm from Childs et al. [9] can only
achieve a polynomial speed up but not exponential as previous work had stated [25]. The inherent
problem with any such experiment is that it does not capitalize on the full power of the quantum
linear solver as one reads out the solution vector 𝑥 which is rather inefficient. A better way to
design such a problem is to have a larger quantum algorithm that produces 𝐴 and |𝑏⟩ then runs
a quantum linear solver as a subroutine. It should then use the output solution 𝑥 in a quantum
setting before finishing its calculations. This kind of solution has been demonstrated in support
vector machines by Rebentrost et al. using the HHL algorithm [32].

There are still multiple routes left to explore when it comes to Quantum Linear Solvers. This work
has shown two approaches that can solve the quantum linear systems problem, and demonstrated
them in a variety of experiments spanning different sizes and complexity. It is hard to conclude that
a clear quantum advantage can be gained in the near­term use of these methods, but if sufficient
improvements in hardware are made either solution could prove to be a good algorithm of choice for
linear solvers in quantum environments.

A
Quantum Hello World

Hello World is often the first exercise a programmer will do when learning a new programming lan­
guage, it gets its name from its function of printing out the phrase “Hello World”. The compatible test in
the quantum computing world is testing a two qubit system with a Hadamard gate and a C­not gate so
that they produce either |00⟩ or |11⟩ with a half probability. A circuit representation of such a program
can be found in Figure A.1.

The a walk through of this introduction into quantum programming with the IBM Qiskit package can
be found as a Jupyter notebook in the Qiskit textbook [4].

Figure A.1: A circuit of two qubits and one classical bit. q[0] first has a Hadamard gate giving it the position |0⟩+|1⟩
√2 , then q[1] is

flipped conditioned on q[0]; after these two gates both qubits are measured and the results put into the classical bit.

39

B
Gate Glossary

Below is the summary of the standard gates used in the circuits in the thesis. For more details see
Qiskit documentation [37].

• The NOT­Gate (X­Gate): negates the input,

𝑋 = [0 1
1 0] .

• The Hadamard­Gate (H­Gate): changes the basis from 𝑋 to 𝑍 and vice versa,

𝐻 = 1
√2

[1 1
1 −1] .

• The Rotation Gate 𝑅𝑥(𝜃): represents rotation around the 𝑥­axis for 𝜃,

𝑅𝑥(𝜃) = [
cos 𝜃2 −𝑖 sin 𝜃

2

−𝑖 sin 𝜃
2 cos 𝜃2

] .

• The Rotation Gate 𝑅𝑦(𝜃): represents rotation around the 𝑦­axis for 𝜃,

𝑅𝑦(𝜃) = [
cos 𝜃2 − sin 𝜃

2

sin 𝜃
2 cos 𝜃2

] .

• The Rotation Gate 𝑅𝑧(𝜃): represents rotation around the 𝑧­axis for 𝜃,

𝑅𝑧(𝜃) = [
𝑒−𝑖

𝜃
2 0
0 𝑒𝑖

𝜃
2
] .

• The Controled­Not­Gate (CNOT­Gate, CX­Gate): represents controled negation, i.e. it flips the
target qubit if the control qubit is |1⟩,

𝐶𝑋 =
⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥
⎥
⎦
.

41

C
Implementations of HHL and VQLS

Initialization and Functions

Listing C.1: Imports and basic functions

from qiskit import Aer
from qiskit.circuit.library import QFT
from qiskit.aqua import QuantumInstance, aqua_globals
from qiskit.quantum_info import state_fidelity
from qiskit.aqua.algorithms import HHL, NumPyLSsolver
from qiskit.aqua.components.eigs import EigsQPE
from qiskit.aqua.components.reciprocals import LookupRotation
from qiskit.aqua.operators import MatrixOperator
from qiskit.aqua.components.initial_states import Custom
import numpy as np
import time

Data collection loop
def WritetoFile(f, data):

listToStr = ’ ’.join([str(elem) for elem in data])
file = open(f, ”a+”)
file.write(listToStr)
file.close()

def fidelity(hhl, ref):
solution_hhl_normed = hhl / np.linalg.norm(hhl)
solution_ref_normed = ref / np.linalg.norm(ref)
fidelity = state_fidelity(solution_hhl_normed, solution_ref_normed)
return fidelity

C.1. HHL
Running HHL

Listing C.2: Function to run HHL on any A

def HHLRUN(orig_size, matrixname, Amatrix, bvector, FileName,
noise = False,
Nmodel = [],
Bgates = [],
num_ancillae = 3,
negative_evals = False,
expansion_mode = ’suzuki’,
num_time_slices = 50,

43

44 C. Implementations of HHL and VQLS

order = 1):
’’’
Parameters
­­­­­­­­­­
orig_size : Size of matrix
matrixname : Name of matrix
Amatrix : Matrix A
bvector : Vector b
FileName : Filename to output too
noise : Boolian for running noisy model, optional, the default is False.
num_ancillae : Number of Ancillae bits, optional, the default is 3.
negative_evals : negative evaluations, optional The default is False.
expansion_mode : Expansiton method, optional, the default is ’suzuki’.
num_time_slices : Timeslices in expansion method, optional, default is 50.
order : Order of expansion, optional, the default is 1.

Returns
­­­­­­­
Text document with information on algorithm runtime and fidelity

’’’
Check if matrix is Hermitian, resize it if neccisary
Amatrix, vector, truncate_powerdim, truncate_hermitian =

HHL.matrix_resize(Amatrix, bvector)

Initialize eigenvalue finding module
Check for negative evaluation and add to the number of ancillae if there are

any
ne_qfts = [None, None]
if negative_evals:

num_ancillae += 1
ne_qfts = [QFT(num_ancillae ­ 1), QFT(num_ancillae ­ 1).inverse()]

eigs = EigsQPE(MatrixOperator(matrix=Amatrix),
QFT(num_ancillae).inverse(),
num_time_slices=num_time_slices,
num_ancillae=num_ancillae,
expansion_mode=’suzuki’,
expansion_order = order,
evo_time=None,
negative_evals=negative_evals,
ne_qfts=ne_qfts)

Get total number of qubtis and ancillae
num_q, num_a = eigs.get_register_sizes()

Initialize initial state module
init_state = Custom(num_q, state_vector=bvector)

Initialize reciprocal rotation module
reciprocal = LookupRotation(negative_evals=eigs._negative_evals,

evo_time=eigs._evo_time)

tic = time.perf_counter()
HHL_Setup = HHL(Amatrix, bvector, truncate_powerdim, truncate_hermitian,

eigs, init_state, reciprocal, num_q, num_a, orig_size)
if (noise):

HHL_Setup.set_backend(Aer.get_backend(’qasm_simulator’),
basis_gates=Bgates, noise_model=Nmodel)

else:
HHL_Setup.set_backend(Aer.get_backend(’statevector_simulator’))

C.1. HHL 45

HHL_output = HHL_Setup.run()
toc = time.perf_counter()
Calculate classical results and fidelity with quantum solution
result_classical = NumPyLSsolver(Amatrix, vector).run()
Fi = fidelity(HHL_output[’solution’], result_classical[’solution’])

Export results as a single string
INFO = [”\n ­­­­­­­­­­­­­­ \n n size,”, orig_size, ”\n”,

”A Matrix, ”, matrixname, ”\n”,
”solution,”, np.round(HHL_output[’solution’], 5).tolist(), ”\n”,
”classical solution, ”, np.round(result_classical[’solution’], 5), ”\n”,
”Fidelity,”, Fi ,”\n”,
”Time to process,”, toc ­ tic, ”\n”,
”circuit_width,”, HHL_output[’circuit_info’][’width’], ”\n”
”circuit_depth,”, HHL_output[’circuit_info’][’depth’]]

Write the information into a file
WritetoFile(FileName, INFO)

Noise Model
For making the noise version of this same code one needs to only define a noise model and set feed
it to the Qasm simulator; here I import the model from IBMQ of the Melbourne 16 qubit machine.

from qiskit.providers.aer.noise import NoiseModel
import qiskit.providers.aer.noise as noise
provider = IBMQ.load_account()
backend = provider.get_backend(’ibmq_16_melbourne’)
noise_model = NoiseModel.from_backend(backend)

Set coupling map from backend
coupling_map = backend.configuration().coupling_map

Set basis gates from noise model
basis_gates = noise_model.basis_gates

The resulting data from the noise model at the time of the experiments, 20.12.20, is listed in C.3

Listing C.3: Noise model

NoiseModel:
Basis gates: [’cx’, ’id’, ’sx’, ’u3’, ’x’]
Instructions with noise: [’sx’, ’x’, ’id’, ’measure’, ’cx’]
Qubits with noise: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
Specific qubit errors:
[(’id’, [0]), (’id’, [1]), (’id’, [2]), (’id’, [3]), (’id’, [4]), (’id’, [5]),

(’id’, [6]), (’id’, [7]), (’id’, [8]), (’id’, [9]), (’id’, [10]), (’id’,
[11]), (’id’, [12]), (’id’, [13]), (’id’, [14]), (’sx’, [0]), (’sx’, [1]),
(’sx’, [2]), (’sx’, [3]), (’sx’, [4]), (’sx’, [5]), (’sx’, [6]), (’sx’,
[7]), (’sx’, [8]), (’sx’, [9]), (’sx’, [10]), (’sx’, [11]), (’sx’, [12]),
(’sx’, [13]), (’sx’, [14]), (’x’, [0]), (’x’, [1]), (’x’, [2]), (’x’, [3]),
(’x’, [4]), (’x’, [5]), (’x’, [6]), (’x’, [7]), (’x’, [8]), (’x’, [9]),
(’x’, [10]), (’x’, [11]), (’x’, [12]), (’x’, [13]), (’x’, [14]), (’cx’,
[14, 0]), (’cx’, [0, 14]), (’cx’, [14, 13]), (’cx’, [13, 14]), (’cx’, [6,
8]), (’cx’, [8, 6]), (’cx’, [5, 9]), (’cx’, [9, 5]), (’cx’, [4, 10]),
(’cx’, [10, 4]), (’cx’, [11, 3]), (’cx’, [3, 11]), (’cx’, [12, 2]), (’cx’,
[2, 12]), (’cx’, [13, 1]), (’cx’, [1, 13]), (’cx’, [13, 12]), (’cx’, [12,
13]), (’cx’, [10, 11]), (’cx’, [11, 10]), (’cx’, [9, 10]), (’cx’, [10, 9]),
(’cx’, [9, 8]), (’cx’, [8, 9]), (’cx’, [7, 8]), (’cx’, [8, 7]), (’cx’, [5,
6]), (’cx’, [6, 5]), (’cx’, [5, 4]), (’cx’, [4, 5]), (’cx’, [4, 3]), (’cx’,

46 C. Implementations of HHL and VQLS

[3, 4]), (’cx’, [2, 3]), (’cx’, [3, 2]), (’cx’, [1, 2]), (’cx’, [2, 1]),
(’cx’, [1, 0]), (’cx’, [0, 1]), (’cx’, [11, 12]), (’cx’, [12, 11]),
(’measure’, [0]), (’measure’, [1]), (’measure’, [2]), (’measure’, [3]),
(’measure’, [4]), (’measure’, [5]), (’measure’, [6]), (’measure’, [7]),
(’measure’, [8]), (’measure’, [9]), (’measure’, [10]), (’measure’, [11]),
(’measure’, [12]), (’measure’, [13]), (’measure’, [14])]

C.2. VQLS
Decomposing 𝐴 into Pauli gates [15].

Listing C.4: decomposition into Pauli gates

def HS(M1, M2):
”””Hilbert­Schmidt­Product of two matrices M1, M2”””
return (np.dot(M1.conjugate().transpose(), M2)).trace()

def c2s(c):
”””Return a string representation of a complex number c”””
if c == 0.0:

return ”0”
if c.imag == 0:

return ”%g” % c.real
elif c.real == 0:

return ”%gj” % c.imag
else:

return ”%g+%gj” % (c.real, c.imag)

Listing C.5: 2x2 matrix decomposition into Pauli gates

def decompose2(H,qbit):
”””Decompose Hermitian 2x2 matrix H into Pauli Gates”””
if type(H) is np.ndarray:

W = H
else:

W = np.array(H)
size = W.shape[1]

gates = []
coef = []
Setup basis gates
X = np.array([[0, 1], [1, 0]], dtype=np.complex128)
Y = np.array([[0, ­1j],[1j, 0]], dtype=np.complex128)
Z = np.array([[1, 0], [0, ­1]], dtype=np.complex128)
I = np.array([[1, 0], [0, 1]], dtype=np.complex128)
S = [I, Z, X, Y,]
labels = [’I’, ’Z’, ’X’, ’Y’]

for i in range(4):
label = labels[i]
a_i = 0.5 * HS(S[i], W)
if a_i != 0:

coef.append(a_i)
gates.append([i])

return coef,gates

C.2. VQLS 47

Listing C.6: 4x4 matrix decomposition into Pauli gates

def decompose4(H):
”””Decompose Hermitian 4x4 matrix H into Pauli matrices”””

if type(H) is np.ndarray:
W = H

else:
W = np.array(H)

size = W.shape[1]
gates = []
coef = []
Setup basis gates
X = np.array([[0, 1], [1, 0]], dtype=np.complex128)
Y = np.array([[0, ­1j],[1j, 0]], dtype=np.complex128)
Z = np.array([[1, 0], [0, ­1]], dtype=np.complex128)
I = np.array([[1, 0], [0, 1]], dtype=np.complex128)
S = [I, Z, X, Y,]
#labels = [’I’, ’Z’, ’X’, ’Y’]
for i in range(4):

for j in range(4):
a_ij = 0.25 * HS(np.kron(S[i],S[j]), W)
if a_ij != 0:

coef.append(a_ij)
gates.append([i,j])

return coef,gates

Listing C.7: 8x8 matrix decomposition into Pauli gates

def decompose8(H):
”””Decompose Hermitian 8x8 matrix H into Pauli matrices”””
if type(H) is np.ndarray:

W = H
else:

W = np.array(H)

gates = []
coef = []
Setup basis gates
X = np.array([[0, 1], [1, 0]], dtype=np.complex128)
Y = np.array([[0, ­1j],[1j, 0]], dtype=np.complex128)
Z = np.array([[1, 0], [0, ­1]], dtype=np.complex128)
I = np.array([[1, 0], [0, 1]], dtype=np.complex128)
S = [I, Z, X, Y,]
labels = [’I’, ’Z’, ’X’, ’Y’]
for i in range(4):

for j in range(4):
for k in range(4):

label = labels[i]+labels[j]+labels[k]
a_ij = 1/8 * HS(np.kron(np.kron(S[i],S[j]),S[k]), W)
if a_ij != 0:

coef.append(a_ij)
gates.append([i,j,k])

return coef,gates

Vector 𝑏
Making the unitary 𝑈 from the vector 𝑏 using a conditional Hadamard gate; this function is the same
for all sizes of 𝐴.

48 C. Implementations of HHL and VQLS

Listing C.8: Control function for making b

def control_b(ancilla, qubits):
for ia in qubits:

circ.ch(ancilla, ia)

Ansatz
A fixed hardware ansatz was used for all cases. Each size category needed a tailored ansatz, cf.
Chapter 4.4.

Listing C.9: Ansatz for 2x2 cases.

def apply_fixed_ansatz2(circ, qubits, parameters):
circ.ry(parameters[0][0], qubits[0])

Listing C.10: Ansatz for 4x4 cases.

def apply_fixed_ansatz4(circ, qubits, parameters):
#print(parameters)
for iz in range(len(qubits)):

circ.ry(parameters[0][iz], qubits[iz])

circ.cz(qubits[0], qubits[1])

for iz in range(len(qubits)):
circ.ry(parameters[1][iz], qubits[iz])

Listing C.11: Ansatz for 8x8 cases.

def apply_fixed_ansatz8(circ,qubits, parameters):

for iz in range(0, len(qubits)):
circ.ry(parameters[0][iz], qubits[iz])

circ.cz(qubits[0], qubits[1])
circ.cz(qubits[2], qubits[0])

for iz in range(0, len(qubits)):
circ.ry(parameters[1][iz], qubits[iz])

circ.cz(qubits[1], qubits[2])
circ.cz(qubits[2], qubits[0])

for iz in range(0, len(qubits)):
circ.ry(parameters[2][iz], qubits[iz])

Control ansatz

Listing C.12: Control Ansatz for 2x2 cases.

def control_fixed_ansatz2(circ, qubits, parameters, ancilla, reg):
nrqubits = len(qubits)
circ.cry(parameters[0][0], qiskit.circuit.Qubit(reg, ancilla),

qiskit.circuit.Qubit(reg, qubits[0]))
circ.ccx(ancilla, qubits[0], nrqubits+1)
circ.cz(qubits[0], nrqubits+1)
circ.ccx(ancilla, qubits[0], nrqubits+1)

C.2. VQLS 49

Listing C.13: Control Ansatz for 4x4 cases.

def control_fixed_ansatz4(circ, qubits, parameters, ancilla):
nrqubits = len(qubits)
for i in range(nrqubits):

circ.cry(parameters[0][i], ancilla, qubits[i])
circ.ccx(ancilla, qubits[1], nrqubits+1)
circ.cz(qubits[0], nrqubits+1)
circ.ccx(ancilla, qubits[1], nrqubits+1)
for i in range(nrqubits):

circ.cry(parameters[1][i], ancilla, qubits[i])

Listing C.14: Control Ansatz for 8x8 cases.

def control_fixed_ansatz8(circ,qubits, parameters, ancilla, reg):

for i in range(0, len(qubits)):
circ.cry(parameters[0][i], qiskit.circuit.Qubit(reg, ancilla),

qiskit.circuit.Qubit(reg, qubits[i]))
circ.ccx(ancilla, qubits[1], 4)
circ.cz(qubits[0], 4)
circ.ccx(ancilla, qubits[1], 4)
circ.ccx(ancilla, qubits[0], 4)
circ.cz(qubits[2], 4)
circ.ccx(ancilla, qubits[0], 4)
for i in range(0, len(qubits)):

circ.cry(parameters[1][i], qiskit.circuit.Qubit(reg, ancilla),
qiskit.circuit.Qubit(reg, qubits[i]))

circ.ccx(ancilla, qubits[2], 4)
circ.cz(qubits[1], 4)
circ.ccx(ancilla, qubits[2], 4)
circ.ccx(ancilla, qubits[0], 4)
circ.cz(qubits[2], 4)
circ.ccx(ancilla, qubits[0], 4)
for i in range(0, len(qubits)):

circ.cry(parameters[2][i], qiskit.circuit.Qubit(reg, ancilla),
qiskit.circuit.Qubit(reg, qubits[i]))

Hadamard tests
Hadamard tests and the control Hadamard test, which uses a control sequence on the ansatz, are not
size depended except for needing the correct fixed ansatz functions to work correctly for each size.

Listing C.15: Hadamard tests for all cases.

def had_test(circ,gate_type, qubits, ancilla_index, parameters):
circ.h(ancilla_index)
apply_fixed_ansatz(circ, qubits, parameters)
for ie in range (0, len(gate_type[0])):

if (gate_type[0][ie] == 1):
circ.cz(ancilla_index, qubits[ie])

for ie in range (0, len(gate_type[1])):
if (gate_type[1][ie] == 1):

circ.cz(ancilla_index, qubits[ie])
circ.h(ancilla_index)

def special_had_test(circ, gate_type, qubits, ancilla_index, parameters, reg):
circ.h(ancilla_index)
control_fixed_ansatz(circ,qubits, parameters, ancilla_index, reg)
for ty in range (0, len(gate_type)):

if (gate_type[ty] == 1):

50 C. Implementations of HHL and VQLS

circ.cz(ancilla_index, qubits[ty])
control_b(circ,ancilla_index, qubits)
circ.h(ancilla_index)

Cost function
The cost function is the function that the classical minimizer calls in order to run a loop. Each different
size model needs a different function because we built the circuits differently and therefore require a
different number of input parameters for each different ansatz.

Listing C.16: Cost function for 2x2 cases.

global opt
overall_sum_1 = 0
parameters = [inparameters[0:2]]
for i in range(0, len(gate_set)):

for j in range(0, len(gate_set)):
global circ
qctl = QuantumRegister(3)
qc = ClassicalRegister(3)
circ = QuantumCircuit(qctl, qc)
backend = Aer.get_backend(’statevector_simulator’)

multiply = coefficient_set[i]*coefficient_set[j]
had_test2(circ,[gate_set[i], gate_set[j]], [1], 0, parameters)
job = execute(circ, backend)
result = job.result()
outputstate = np.real(result.get_statevector(circ, decimals=100))
o = outputstate
m_sum = 0
for l in range (0, len(o)):

if (l%2 == 1):
n = o[l]**2
m_sum+=n

overall_sum_1+=multiply*(1­(2*m_sum))
overall_sum_2 = 0

for i in range(0, len(gate_set)):
for j in range(0, len(gate_set)):

multiply = coefficient_set[i]*coefficient_set[j]
mult = 1

for extra in range(0, len(gate_set)):
qctl = QuantumRegister(3)
qc = ClassicalRegister(3)
circ = QuantumCircuit(qctl, qc)
backend = Aer.get_backend(’statevector_simulator’)

if (extra == 0):
special_had_test2(circ, gate_set[i], [1], 0, parameters, qctl)

if (extra == 1):
special_had_test2(circ, gate_set[j], [1], 0, parameters, qctl)

job = execute(circ, backend)
result = job.result()
outputstate = np.real(result.get_statevector(circ, decimals=100))
o = outputstate

m_sum = 0
for l in range (0, len(o)):

if (l%2 == 1):

C.2. VQLS 51

n = o[l]**2
m_sum+=n

mult = mult*(1­(2*m_sum))
overall_sum_2+=multiply*mult

return 1­float(overall_sum_2/overall_sum_1)

Listing C.17: Cost function for 4x4 cases.

def calculate_cost_function4(inparameters, gate_set, coefficient_set):
psi_psi = 0
parameters = [inparameters[0:2], inparameters[2:4]]

for i in range(0,len(gate_set)):
for j in range(0,len(gate_set)):

global circ
qctl = QuantumRegister(4)
qc = ClassicalRegister(4)
circ = QuantumCircuit(qctl, qc)
backend = Aer.get_backend(’statevector_simulator’)
multiply = coefficient_set[i]*coefficient_set[j]
mult = 1
had_test4(circ, [gate_set[i], gate_set[j]], [1, 2], 0, parameters)
job = execute(circ, backend)
result = job.result()
output = np.real(result.get_statevector(circ, decimals=100))
out_beta_ll = output
m_sum = 0
for l in range(len(out_beta_ll)):

if (l % 2 == 1):
n = out_beta_ll[l]**2
m_sum += n

mult = mult*(1­(2*m_sum))
psi_psi += multiply*mult

b_psi_qure = 0

for i in range(len(gate_set)):
for j in range(len(gate_set)):

multiply = coefficient_set[i]*coefficient_set[j]
mult = 1
for extra in range(0, len(gate_set)):

qctl = QuantumRegister(4)
qc = ClassicalRegister(4)
circ = QuantumCircuit(qctl, qc)
backend = Aer.get_backend(’statevector_simulator’)

if (extra == 0):
special_had_test4(circ, gate_set[i], [1, 2], 0, parameters)

if (extra == 1):
special_had_test4(circ, gate_set[j], [1, 2], 0, parameters)

job = execute(circ, backend)
result = job.result()
output = np.real(result.get_statevector(circ, decimals=100))
out_gamma_ll = output

m_sum = 0
for l in range(len(out_gamma_ll)):

if (l % 2 == 1):
n = out_gamma_ll[l]**2

52 C. Implementations of HHL and VQLS

m_sum+=n
mult = mult*(1­(2*m_sum))

b_psi_qure += multiply*mult
return 1­float(b_psi_qure/psi_psi)

Listing C.18: Cost function for 8x8 cases.

def calculate_cost_function8(parameters,gate_set, coefficient_set):
global opt
overall_sum_1 = 0
parameters = [parameters[0:3], parameters[3:6], parameters[6:9]]
for i in range(len(gate_set)):

for j in range(len(gate_set)):
global circ
qctl = QuantumRegister(5)
qc = ClassicalRegister(5)
circ = QuantumCircuit(qctl, qc)
backend = Aer.get_backend(’statevector_simulator’)
multiply = coefficient_set[i]*coefficient_set[j]
had_test8(circ,[gate_set[i], gate_set[j]], [1, 2, 3], 0, parameters)
job = execute(circ, backend)
result = job.result()
outputstate = np.real(result.get_statevector(circ, decimals=100))
o = outputstate
m_sum = 0
for l in range(0, len(o)):

if (l % 2 == 1):
n = o[l]**2
m_sum += n

overall_sum_1 += multiply*(1­(2*m_sum))
overall_sum_2 = 0

for i in range(len(gate_set)):
for j in range(len(gate_set)):

multiply = coefficient_set[i]*coefficient_set[j]
mult = 1
for extra in range(0,2):

qctl = QuantumRegister(5)
qc = ClassicalRegister(5)
circ = QuantumCircuit(qctl, qc)
backend = Aer.get_backend(’statevector_simulator’)
if (extra == 0):

special_had_test8(circ,gate_set[i], [1, 2, 3], 0,
parameters, qctl)

if (extra == 1):
special_had_test8(circ,gate_set[j], [1, 2, 3], 0,

parameters, qctl)
job = execute(circ, backend)
result = job.result()
outputstate = np.real(result.get_statevector(circ, decimals=100))
o = outputstate
m_sum = 0
for l in range(0,len(o)):

if (l % 2 == 1):
n = o[l]**2
m_sum += n

mult = mult*(1­(2*m_sum))
overall_sum_2 += multiply*mult

return 1­float(overall_sum_2/overall_sum_1)

C.2. VQLS 53

Cost function in a noisy setting
As the cost function sets up the quantum circuits it is the only function we need to change to apply a
noise simulation. In Listing C.19 we see an example of such a change for the 2 × 2 case, each case
requires the same change to its cost function. This mainly involves the sampling of multiple test shots
and averaging the results.

Listing C.19: Cost function for 8x8 cases.

def calculate_cost_function2(inparameters, gate_set, coefficient_set,Nmodel,
Bgates):
global opt
overall_sum_1 = 0
parameters = [inparameters[0:2]]
backend = Aer.get_backend(’qasm_simulator’, basis_gates=Bgates,

noise_model=Nmodel)
for i in range(0, len(gate_set)):

for j in range(0, len(gate_set)):
global circ
qctl = QuantumRegister(3)
qc = ClassicalRegister(3)
circ = QuantumCircuit(qctl, qc)
multiply = coefficient_set[i]*coefficient_set[j]
had_test2(circ,[gate_set[i], gate_set[j]], [1], 0, parameters)
circ.measure(0, 0)
job = execute(circ, backend, shots=10000)
result = job.result()
outputstate = result.get_counts(circ)
m_sum = 0
if (’1’ in outputstate.keys()):

m_sum = float(outputstate[”1”])/100000
else:

m_sum = 0

overall_sum_1+=multiply*(1­(2*m_sum))

overall_sum_2 = 0
for i in range(0, len(gate_set)):

for j in range(0, len(gate_set)):
multiply = coefficient_set[i]*coefficient_set[j]
mult = 1
for extra in range(0, len(gate_set)):

qctl = QuantumRegister(3)
qc = ClassicalRegister(3)
circ = QuantumCircuit(qctl, qc)
if (extra == 0):

special_had_test2(circ, gate_set[i], [1], 0, parameters, qctl)
if (extra == 1):

special_had_test2(circ, gate_set[j], [1], 0, parameters, qctl)
circ.measure(0,0)
job = execute(circ, backend, shots=10000)
result = job.result()
outputstate = result.get_counts(circ)
if (’1’ in outputstate.keys()):

m_sum = float(outputstate[”1”])/10000
else:

m_sum = 0
mult = mult*(1­(2*m_sum))

overall_sum_2+=multiply*mult
return 1­float(overall_sum_2/overall_sum_1)

54 C. Implementations of HHL and VQLS

Running VQLS
To run the full VQLS algorithm, a function is used that handles calling the minimizer, COBYLA, and
exporting time and resulting data to a text file.

Listing C.20: A function which runs the full VQLS algorithm on a given matrix A and vector b.

def VQLSfun_8(inputmatrix, matrixname, b, FileName):
Set the input matrix as an np array
Amatrix = np.array(inputmatrix)

#Decompose A into Pauli gates
coefficients,gates = decompose8(Amatrix)

Run the classical minimizer with the cost function circuit as an input
function

tic = time.perf_counter()
out = minimize(calculate_cost_function8,

x0=[float(random.randint(0, 3000))/1000 for i in range(9)],
args=(gates, coefficients), method=”COBYLA”, options={’maxiter’:

200})
toc = time.perf_counter()

out_f = [out[’x’][0:3], out[’x’][3:6], out[’x’][6:9]]
circ2 = QuantumCircuit(3, 3)
apply_fixed_ansatz8(circ2,[0, 1, 2], out_f)
backend = Aer.get_backend(’statevector_simulator’)
job = execute(circ2, backend)
result = job.result()
o = result.get_statevector(circ2, decimals=10)

result_classical = NumPyLSsolver(Amatrix, b).run()
fid = fidelity(o, result_classical[’solution’])

Export results as a single string
INFO = [”\n ­­­­­­­­­­­­­­ \n n size,”, size, ”\n”,

”A Matrix, ”, matrixname, ”\n”,
”solution,”, np.round(o, 5).tolist(), ”\n”,
”classical solution, ”, np.round(result_classical[’solution’], 5), ”\n”,
”Fidelity,”, fid ,”\n”,
”Time to process,”, toc ­ tic, ”\n”]

Write the information into a file
WritetoFile(FileName, INFO)

D
Test Matrices

Here all test matrices used in experiments are listed together with their condition numbers and sparsity.
For each test matrix the condition number, 𝜅, is calculated as the ratio of the largest and the smallest
eigenvalue, 𝜅 = 𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
. Sparsity can be defined in a plethora of ways, here we go by the definition used

in the HHL paper where the sparsity, 𝑠, equals the maximum number of nonzero entries per row [17].

The test matrices were chosen such that they represent a variety of condition numbers and sparsity
numbers for each size category. The structure generally goes from less complex to more, starting with
the identity matrix. All sizes include a tri­diagonal matrix as these are common in practical problems
involving discretization. They also all include three matrices that are ill­conditioned, e.g. 4.𝑑,4.𝑒, and,
4.𝑓. The matrices 8.𝑑, 4.𝑐 are diagonal matrices with randomly generated values while 2.𝑗, 4.𝑖, 4.𝑗 are
randomly generated dense Hermitian matrices. The random values for thesematrices were determined
using the Online Math Tools random matrix generator [1].

Experimental matrices of size 2 × 2
2.𝑎 = [1 0

0 1] , 𝜅 = 1.0, 𝑠 = 1

2.𝑏 = [1 0
0 0.5] , 𝜅 = 2.0, 𝑠 = 1

2.𝑐 = [1.5 0
0 0.5] , 𝜅 = 3.0, 𝑠 = 1

2.𝑑 = [1 0
0 0.1] , 𝜅 = 10.0, 𝑠 = 1

2.𝑒 = [1 0
0 0.01] , 𝜅 = 100.0, 𝑠 = 1

2.𝑓 = [1 0
0 0.001] , 𝜅 = 1000.0, 𝑠 = 1

2.𝑔 = [1 −0.5
−0.5 1] , 𝜅 = 3.0, 𝑠 = 2

2.ℎ = [1 0.333
0.333 1] , 𝜅 = 2.0, 𝑠 = 2

2.𝑖 = [1 0.2
0.2 1] , 𝜅 = 1.5, 𝑠 = 2

2.𝑗 = [0.69 0.49
0.49 0.92] , 𝜅 = 4.337, 𝑠 = 2

55

56 D. Test Matrices

2.𝑘 = [0.5 1
1 0.5] , 𝜅 = 3.0, 𝑠 = 2

2.𝑙 = [0.75 0.5
0.5 0.75] , 𝜅 = 5.0, 𝑠 = 2

Experimental matrices of size 4 × 4

4.𝑎 =
⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎦
, 𝜅 = 1.0, 𝑠 = 1

4.𝑏 =
⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0.5

⎤
⎥
⎥
⎦
, 𝜅 = 2.0, 𝑠 = 1

4.𝑐 =
⎡
⎢
⎢
⎣

0.97 0 0 0
0 0.81 0 0
0 0 0.3 0
0 0 0 0.13

⎤
⎥
⎥
⎦
, 𝜅 = 7.462, 𝑠 = 1

4.𝑑 =
⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0.1

⎤
⎥
⎥
⎦
, 𝜅 = 10.0, 𝑠 = 1

4.𝑒 =
⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0.01

⎤
⎥
⎥
⎦
, 𝜅 = 100.0, 𝑠 = 1

4.𝑓 =
⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0.001

⎤
⎥
⎥
⎦
, 𝜅 = 1000.0, 𝑠 = 1

4.𝑔 =
⎡
⎢
⎢
⎣

1 −0.5 0 0
−0.5 1 −0.5 0
0 −0.5 1 −0.5
0 0 −0.5 1

⎤
⎥
⎥
⎦
, 𝜅 = 9.472, 𝑠 = 3

4.ℎ =
⎡
⎢
⎢
⎣

1 0.333 0 0
0.333 1 0.333 0
0 0.333 1 0.333
0 0 0.333 1

⎤
⎥
⎥
⎦
, 𝜅 = 3.342, 𝑠 = 3

4.𝑖 =
⎡
⎢
⎢
⎣

0.34 0 0.63 0
0 0.63 0.57 0.16
0.63 0.57 0.2 0
0 0.16 0 0.2

⎤
⎥
⎥
⎦
, 𝜅 = 7.695, 𝑠 = 3

4.𝑗 =
⎡
⎢
⎢
⎣

0.99 0.37 0.31 0
0.37 0.32 0.15 0.15
0.31 0.15 0.6 0.21
0 0.15 0.21 0.73

⎤
⎥
⎥
⎦
, 𝜅 = 11.157, 𝑠 = 4

57

Experimental matrices of size 8 × 8

8.𝑎 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝜅 = 1.0, 𝑠 = 1

8.𝑏 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0.5 0
0 0 0 0 0 0 0 0.5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝜅 = 2.0, 𝑠 = 1

8.𝑐 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0.5 0 0 0
0 0 0 0 0 0.5 0 0
0 0 0 0 0 0 0.5 0
0 0 0 0 0 0 0 0.5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝜅 = 2.0, 𝑠 = 1

8.𝑑 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.09 0 0 0 0 0 0 0
0 0.79 0 0 0 0 0 0
0 0 0.75 0 0 0 0 0
0 0 0 0.05 0 0 0 0
0 0 0 0 0.09 0 0 0
0 0 0 0 0 0.21 0 0
0 0 0 0 0 0 0.53 0
0 0 0 0 0 0 0 0.92

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝜅 = 18.4, 𝑠 = 1

8.𝑒 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0.333 0 0 0 0 0 0
0.333 1 0.333 0 0 0 0 0
0 0.333 1 0.333 0 0 0 0
0 0 0.333 1 0.333 0 0 0
0 0 0 0.333 1 0.333 0 0
0 0 0 0 0.333 1 0.333 0
0 0 0 0 0 0.333 1 0.333
0 0 0 0 0 0 0.333 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝜅 = 4.354, 𝑠 = 3

8.𝑓 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0.1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝜅 = 10.0, 𝑠 = 1

58 D. Test Matrices

8.𝑔 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0.01

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝜅 = 100.0, 𝑠 = 1

8.ℎ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0.001

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝜅 = 1000.0, 𝑠 = 1

E
Trials for Experimental Setup

The following are trials run to support the chosen experimental setup.

E.1. Varying Number of Shots
For completing the VQLS noisy algorithm we use a number of shots in each run of the quantum circuits.
The number of shots used in the general tests was determined by the experiment to be 10.000. The
experiment tested, 100, 1.000, 10.000, and 100.000 shots for matrices 2.𝑏,2.𝑐, and 2.𝑑 and the results
can be found in Figure E.1. Viewing the runtime we can see that the increase from 10.000 steps to
100.000 increases the runtime from under 2 seconds to over 10 seconds. This fivefold increase in time
does not marginally increase fidelity so the 10.000 shots case is considered the best option.

(a) Runtimes for selected 2 × 2 matrices with varying shot numbers. (b) Fidelity for selected 2 × 2 matrices with varying shot numbers .

Figure E.1: Experiments with 2 × 2 matrices, state vector simulations.

59

60 E. Trials for Experimental Setup

E.2. Lloyd’s Method Trial
For HHL there are two expansion methods set up in the Qiskit implementation of solving QPE. These
are the method of Lloyd which is based on the Trotter expansion formula [38], and the method of
Suzuki which is based on the generalized Trotter expansion called the Suzuki­Trotter expansion [36].
As explained in Chapter 4.1 the Suzuki­Trotter expansion corresponds to the Trotter expansion in the
first expansion order. So all experiments were generally run under the same conditions as Lloyd’s
method just using the Suzuki setting. This can be verified by comparing Figure E.2 to Figure 4.2.

(a) Runtimes for 4 × 4 matrices with Lloyd’s method. (b) Fidelity for 4 × 4 matrices with Lloyd’s method.

Figure E.2: Lloyd’s method experiments using 4 × 4 matrices in state vector simulations.

Bibliography
[1] Random matrix generator. URL https://onlinemathtools.com/

generate­random­matrix.

[2] Dorit Aharonov. Quantum computation. Annual Reviews of Computational Physics VI, page
259–346, Mar 1999. doi: 10.1142/9789812815569_0007. URL http://dx.doi.org/10.
1142/9789812815569_0007.

[3] Andris Ambainis. Variable time amplitude amplification and a faster quantum algorithm for solving
systems of linear equations, 2010.

[4] Abraham Asfaw, Luciano Bello, Yael Ben­Haim, Sergey Bravyi, Nicholas Bronn, Lauren Capelluto,
Almudena Carrera Vazquez, Jack Ceroni, Richard Chen, Albert Frisch, Jay Gambetta, Shelly
Garion, Leron Gil, Salvador De La Puente Gonzalez, Francis Harkins, Takashi Imamichi, David
McKay, Antonio Mezzacapo, Zlatko Minev, Ramis Movassagh, Giacomo Nannicni, Paul Nation,
Anna Phan, Marco Pistoia, Arthur Rattew, Joachim Schaefer, Javad Shabani, John Smolin, John
Stenger, Kristan Temme, Madeleine Tod, Stephen Wood, and James Wootton. Learn quantum
computation using qiskit, 2020. URL http://community.qiskit.org/textbook.

[5] Carlos Bravo­Prieto, Ryan LaRose, M. Cerezo, Yigit Subasi, Lukasz Cincio, and Patrick J. Coles.
Variational Quantum Linear Solver: A Hybrid Algorithm for Linear Systems. sep 2019. URL
http://arxiv.org/abs/1909.05820.

[6] X. D. Cai, Christian Weedbrook, Z. E. Su, M. C. Chen, Mile Gu, M. J. Zhu, L. Li, N. L. Liu, Chao­
Yang Lu, and Jian­Wei Pan. Experimental Quantum Computing to Solve Systems of Linear Equa­
tions. feb 2013. doi: 10.1103/PhysRevLett.110.230501. URL http://arxiv.org/abs/
1302.4310http://dx.doi.org/10.1103/PhysRevLett.110.230501.

[7] Graham Carlow. Quantum computers and accelerated discovery, 2018. URL https:
//newsroom.ibm.com/image­gallery?l=100&keywords=quantum#gallery_
gallery_0:21747.

[8] Marco Cerezo, Kunal Sharma, Andrew Arrasmith, and Patrick J. Coles. Variational quantum state
eigensolver, 2020.

[9] Andrew M. Childs, Robin Kothari, and Rolando D. Somma. Quantum algorithm for systems of
linear equations with exponentially improved dependence on precision. SIAM Journal on Com­
puting, 46(6):1920–1950, Jan 2017. ISSN 1095­7111. doi: 10.1137/16m1087072. URL
http://dx.doi.org/10.1137/16M1087072.

[10] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning. Cambridge University Press, 2017. doi: 10.1017/
9781316219317.

[11] Andrew W Cross, Lev S Bishop, John A Smolin, and Jay M Gambetta. Open Quantum Assembly
Language 1 Background. Technical report, 2017.

[12] David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation. Pro­
ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 439(1907):
553–558, dec 1992. ISSN 1364­5021. doi: 10.1098/rspa.1992.0167.

[13] Aïmeur Esma, Brassard Gilles, and Gambs Sébastien. Machine learning in a quantum world,
2006. URL https://link.springer.com/chapter/10.1007/11766247_37.

[14] Richard Feynman. The Feynman Lectures on Physics, 1963. URL https://www.
feynmanlectures.caltech.edu/.

61

https://onlinemathtools.com/generate-random-matrix
https://onlinemathtools.com/generate-random-matrix
http://dx.doi.org/10.1142/9789812815569_0007
http://dx.doi.org/10.1142/9789812815569_0007
http://community.qiskit.org/textbook
http://arxiv.org/abs/1909.05820
http://arxiv.org/abs/1302.4310 http://dx.doi.org/10.1103/PhysRevLett.110.230501
http://arxiv.org/abs/1302.4310 http://dx.doi.org/10.1103/PhysRevLett.110.230501
https://newsroom.ibm.com/image-gallery?l=100&keywords=quantum#gallery_gallery_0:21747
https://newsroom.ibm.com/image-gallery?l=100&keywords=quantum#gallery_gallery_0:21747
https://newsroom.ibm.com/image-gallery?l=100&keywords=quantum#gallery_gallery_0:21747
http://dx.doi.org/10.1137/16M1087072
https://link.springer.com/chapter/10.1007/11766247_37
https://www.feynmanlectures.caltech.edu/
https://www.feynmanlectures.caltech.edu/

62 Bibliography

[15] Michael Goerz. Decomposing two­qubit hamiltonians into
pauli matrices. URL https://michaelgoerz.net/notes/
decomposing­two­qubit­hamiltonians­into­pauli­matrices.html.

[16] Lov K. Grover. A fast quantum mechanical algorithm for database search. 1996.

[17] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for solving linear sys­
tems of equations. nov 2009. doi: 10.1103/PhysRevLett.103.150502. URL http://arxiv.
org/abs/0811.3171http://dx.doi.org/10.1103/PhysRevLett.103.150502.

[18] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M.
Chow, and Jay M. Gambetta. Hardware­efficient variational quantum eigensolver for small
molecules and quantum magnets. Nature, 549(7671):242–246, Sep 2017. ISSN 1476­4687.
doi: 10.1038/nature23879. URL http://dx.doi.org/10.1038/nature23879.

[19] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal component analysis.
Nature Physics, 10, 2014. ISSN 1745­2481. doi: 110.1038/nphys3029.

[20] Philippe Lock, Matt DeJong, and John Ochsendorf. As hangs the flexible line: Equilibrium of ma­
sonry arches. 8(2):p. 13–24, October 2006. URL http://web.mit.edu/masonry/papers/
block_dejong_ochs_NNJ.pdf.

[21] Dirk Meijer. The universe as a cyclic organized information system. john wheeler’s world revisited.
NeuroQuantology, vol 13:pp 57–78„ 03 2015.

[22] Memetician. A different kind of string theory: Antoni Gaudi ­ memetician — LiveJournal, 2007.
URL https://memetician.livejournal.com/201202.html.

[23] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii. Quantum circuit learning.
Physical Review A, 98(3), Sep 2018. ISSN 2469­9934. doi: 10.1103/physreva.98.032309.
URL http://dx.doi.org/10.1103/PhysRevA.98.032309.

[24] Matthias Möller and Cornelis Vuik. A conceptual framework for quantum accelerated auto­
mated design optimization. Microprocessors and Microsystems, 66:67 – 71, 2019. ISSN
0141­9331. doi: https://doi.org/10.1016/j.micpro.2019.02.009. URL http://www.
sciencedirect.com/science/article/pii/S0141933118303223.

[25] Ashley Montanaro and SamPallister. Quantum algorithms and the finite element method. Physical
Review A, 93(3), Mar 2016. ISSN 2469­9934. doi: 10.1103/physreva.93.032324. URL http:
//dx.doi.org/10.1103/PhysRevA.93.032324.

[26] Chris Nay. Ibm delivers its highest quantum volume to date, expanding the computational power
of its ibm cloud­accessible quantum computers. URL https://newsroom.ibm.com/.

[27] Michael Nielsen and Isaac Chuang. Quantum Computation and Quantum Information, volume 49.
2010. ISBN 978110700217.

[28] Jian Pan, Yudong Cao, Xiwei Yao, Zhaokai Li, Chenyong Ju, Xinhua Peng, Sabre Kais, and
Jiangfeng Du. Experimental realization of quantum algorithm for solving linear systems of equa­
tions. feb 2011. doi: 10.1103/PhysRevA.89.022313. URL http://arxiv.org/abs/1302.
1946http://dx.doi.org/10.1103/PhysRevA.89.022313.

[29] Marco Pistoia and Jay Gambetta. Qiskit aqua a library of quantum algo­
rithms and applications, 12 2018. URL https://medium.com/qiskit/
qiskit­aqua­a­library­of­quantum­algorithms­and­applications­33ecf3b36008.

[30] M. J. D. Powell. Direct search algorithms for optimization calculations. Acta Numerica, 7:287–336,
1998. doi: 10.1017/S0962492900002841.

[31] John Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, 08 2018.
ISSN 2521­327X. doi: 10.22331/q­2018­08­06­79. URL https://doi.org/10.22331/
q­2018­08­06­79.

https://michaelgoerz.net/notes/decomposing-two-qubit-hamiltonians-into-pauli-matrices.html
https://michaelgoerz.net/notes/decomposing-two-qubit-hamiltonians-into-pauli-matrices.html
http://arxiv.org/abs/0811.3171 http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://arxiv.org/abs/0811.3171 http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1038/nature23879
http://web.mit.edu/masonry/papers/block_dejong_ochs_NNJ.pdf
http://web.mit.edu/masonry/papers/block_dejong_ochs_NNJ.pdf
https://memetician.livejournal.com/201202.html
http://dx.doi.org/10.1103/PhysRevA.98.032309
http://www.sciencedirect.com/science/article/pii/S0141933118303223
http://www.sciencedirect.com/science/article/pii/S0141933118303223
http://dx.doi.org/10.1103/PhysRevA.93.032324
http://dx.doi.org/10.1103/PhysRevA.93.032324
https://newsroom.ibm.com/
http://arxiv.org/abs/1302.1946 http://dx.doi.org/10.1103/PhysRevA.89.022313
http://arxiv.org/abs/1302.1946 http://dx.doi.org/10.1103/PhysRevA.89.022313
https://medium.com/qiskit/qiskit-aqua-a-library-of-quantum-algorithms-and-applications-33ecf3b36008
https://medium.com/qiskit/qiskit-aqua-a-library-of-quantum-algorithms-and-applications-33ecf3b36008
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79

Bibliography 63

[32] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vector machine for big
data classification. Physical Review Letters, 113(13), Sep 2014. ISSN 1079­7114. doi: 10.
1103/physrevlett.113.130503. URL http://dx.doi.org/10.1103/PhysRevLett.113.
130503.

[33] Eleanor Rieffel and Wolfgang Polak. Quantum computing: a gentle introduction, volume 49. 2011.
ISBN 9780262015066. doi: 10.5860/choice.49­0911.

[34] Eleanor Rieffel and Wolfgang Polak. Quantum computing: a gentle introduction, volume 49. Mas­
sachusetts Institute of Technology, 2011. ISBN 9780262015066. doi: 10.5860/choice.49­0911.

[35] Benjamin Schumacher. The Science of Information From Language to Black Holes. The Great
Courses, 2015. ISBN 9780198520115.

[36] Masuo Suzuki. Generalized trotter’s formula and systematic approximants of exponential opera­
tors and inner derivations with applications to many­body problems. Communications in Mathe­
matical Physics, 51, 1976. doi: 10.1007/BF01609348. URL https://doi.org/10.1007/
BF01609348.

[37] Qiskit Development Team. Summary of quantum operations, 2020. URL https:
//qiskit.org/documentation/tutorials/circuits/3_summary_of_quantum_
operations.html.

[38] H. F. Trotter. On the product of semi­groups of operators. Proceedings American Mathematical
Society, 10:545–551, 1959. doi: https://doi.org/10.1090/S0002­9939­1959­0108732­6.

[39] Alan Turing. On computable numbers, with an application to the entscheidungsproblem. Pro­
ceedings of the London Mathematical Society, s2­42(1):230–265, 1937. doi: https://doi.
org/10.1112/plms/s2­42.1.230. URL https://londmathsoc.onlinelibrary.wiley.
com/doi/abs/10.1112/plms/s2­42.1.230.

[40] Jingwei Wen, Xiangyu Kong, Shijie Wei, Bixue Wang, Tao Xin, and Guilu Long. Experimental
realization of quantum algorithms for a linear system inspired by adiabatic quantum computing.
Physical Review A, 99(1), jan 2019. ISSN 24699934. doi: 10.1103/PhysRevA.99.012320.

[41] Leonard Wossnig, Zhikuan Zhao, and Anupam Prakash. Quantum linear system algorithm
for dense matrices. Physical Review Letters, 120(5), Jan 2018. ISSN 1079­7114. doi:
10.1103/physrevlett.120.050502. URL http://dx.doi.org/10.1103/PhysRevLett.
120.050502.

http://dx.doi.org/10.1103/PhysRevLett.113.130503
http://dx.doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1007/BF01609348
https://doi.org/10.1007/BF01609348
https://qiskit.org/documentation/tutorials/circuits/3_summary_of_quantum_operations.html
https://qiskit.org/documentation/tutorials/circuits/3_summary_of_quantum_operations.html
https://qiskit.org/documentation/tutorials/circuits/3_summary_of_quantum_operations.html
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s2-42.1.230
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1103/PhysRevLett.120.050502
http://dx.doi.org/10.1103/PhysRevLett.120.050502

	List of Figures
	Introduction
	Computational Perspective
	Information
	Universal Computers
	Quantum Mechanics
	Quantum Computers
	Example of a Quantum Algorithm

	Quantum Linear Solvers
	Solving Linear Systems
	Quantum Algorithm for Linear Systems of Equations
	Variational Quantum Linear Solver
	Summary of Quantum Linear Solvers

	Method
	IBM's Quantum Network
	Simulators

	Experiments and Results
	Procedure of HHL
	Perfect Simulation of HHL
	Noise Simulation of HHL
	Procedure of VQLS
	Perfect Simulation of VQLS
	Noise Simulation of VQLS
	Additional Tests for HHL

	Discussion
	Comparison
	Future Work
	Conclusion

	Quantum Hello World
	Gate Glossary
	Implementations of HHL and VQLS
	HHL
	VQLS

	Test Matrices
	Trials for Experimental Setup
	Varying Number of Shots
	Lloyd's Method Trial

	Bibliography

