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Preface
I am not a Physicist nor am I a Computer Scientist, I studied Mechanical Engineering at Reykjavik
University and worked in mechanical design before starting this Masters program that led to this thesis.
Therefore my interest in the topic of Quantum Computers comes not from an interest in theorizing better
algorithms, but from an interest in getting better ways to solve practical problems. As I didn’t have a
background to fully understand the papers I needed as the foundation for the practical implementation
of this thesis I read, and I read a lot. Assuming you the reader comes from a similar position as me
when I started I will try to cover well and explain as best I can those topics that I thought most important
to this work. However I can not cover everything and at times I will be vague, this will especially apply
to the topic of quantum physics and any practical implementation of Quantum Computers. So for a
good introduction to these topics, I would like to recommend the lecture series from Richard Feynman,
published online by the California Institute of Technology [9], as well as the book Quantum Computing:
a gentle introduction by Eleanor Rieffel and Wolfgang Polak [6].

S.A. Sigurdsson
Delft, March 2020
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1
Introduction

In 1883 Antoni Gaudi was designing his masterpiece La Sagrada Familia he had a problem, how to
calculate the intricate archways and columns that he had envisioned for his design. We today can set
this up in a computer and analyze it with e.g. the Finite Element method, then compute the model and
get an answer. These methods could not have worked for Gaudi as he was doing this well before the
Galerkin method was set forth and even further from a computer that could have done the calculations
necessary.

So how did Gaudi solve this? As he was using an old building style where the entire structure is kept
under compression, so that there is no need for steel for structural support, and only his chosenmaterial
of Catalonian sandstone would be used. He devised a way of using ropes hanging from the ceiling and
connected them in such a way that they formed the building he wanted, he then hung weights on the
ropes where they would be supporting the roof of the building. As he hung the ropes and weights the
calculations for the archways and columns were instantly done as the rope itself solves the ideal arch,
as shown by Robert Hook, as it always hangs in perfect tension and is under the same force was acting
on the rope as would be acting on the building, gravity. This a fundamental law the rope follows and
the gravity the building would be standing under was all he needed to complete the calculations, now
Gaudi could measure the archways on his model and scale them up to the real size of the model, a
replica of his model stands in the Sagrada Familia today, see figure 1.1, [1].

Figure 1.1: A replica of Gaudis model from La Sagrada Familia [12]

This story is to illustrate the way of Analog computers and to try to set the frame of mind that a
complex computation does not need the digital machines we are so used to today. In a more abstract
notion of computation, the information in the numbers is like currency, that is they are the medium we
use to exchange information between systems like we use our currency to exchange for goods and
services. In Guidi’s system a hanging rope was used to represent an archway and a sandbag the
weight it would need to support, then gravity did the calculations for him. With measurements of the
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2 1. Introduction

model he then turned it into numbers and scaled them properly to represent the real version. Using this
exchange view we see that something is fundamentally the same about the model and how we move
it into the real world, this we can call information.

1.1. Information
Information theory came about in the late 1940s and was first introduced by Claude Shannon [15],
mainly in relation to communication and computation.It has now grown from its origin into a fundamental
part of physics as we can say that every microscopic state a physical system can be characterized by
ho much information is needed to define that microscopic state and it was perhaps this definition that
led the physicist John Wheeler to say ”Information is the most fundamental building block of reality
[11].”

Shannon’s information theory focused on information as an abstraction and a distinction between
possible alternative messages, not the meaning of the message. Now this means that a message is
one out of a number of alternative possible messages and to be able to reliably distinguish between
the alternatives is the information. From this focus on the distinction of possible messages, Shannon
theorized the smallest possible level of distinction of information was a binary one, the 0 and 1, and
he called this the bit. To then capture the information in a message we can try to think of it as how
many yes or no questions you would need to ask to determine the message, this is also known as the
message entropy. From the bit, we can build and send any message we want by stringing together
enough bits and we can transform the information and do calculations.

Our classical computers user the bit as the bases of their calculations and the representation of
information, this is done by a string of bits with a given size represents a number or a letter and calcu­
lation are done on the bits them selves in the computer using logic gates. So the informational value
of a 8­bit number is obvious, it is simply 8 bits and so that is all the information you can work with at
any given moment, this is not true for quantum information. As we will explore further in later chapters
quantum information is represented by the qubit and it can represent more than one bit of information
at a time using the natural effects of quantum mechanics, as a comparison a 8­qubit string will have 28
bits of information.

1.2. Universal Computers
Alan Turing, one of the fathers of modern computing, reasoned that all sufficiently sophisticated com­
puters are equivalent. That is once a computer is able to simulate another computer all computations
done on the second can be done on the first, it might not be as efficient but in a conceptual way you now
try to capture the concept of a universal computer, that is a computer that is equivalent to all others.
Turing set to design the simplest such a computer possible and this came to be known as the Turing
machine.

His model consisted of a machine that had infinite tape to read and write to, a head that executed
the reading and the writing, the machine has finitely many states (memory), and a transition function
𝛿. The transition function determines what the machine will do at time 𝑡, given the current state it is
in and what is read at time 𝑡; The 𝛿 functions output is what will be written on the tape, what direction
the head will move, and what will be the state of the machine at time 𝑡 + 1. To see that such a simple
machine is a universal computer that can, in fact, simulate any other computer is difficult,

The theorem says that all sufficiently powerful computers are the same, though this only means
in that they can do the same calculations the important factor when you have a universal computer
is time, how long does it take to finish the calculation. This is called the complexity of an algorithm
and we categorize problems according to how the computation time scales with the input size of the
problem. In computers, this is also analyzed as the number of operations a computer must perform to
do the calculation. Simple problems such as just addition and multiplication are polynomial in scale,
called P class, that is we know an algorithm that can solve these problems on a time scale that is a
polynomial of the input. A more complex problem then is more time consuming and so we call them
non­deterministic polynomial time problems, NP class, and so for these are problems we only have
algorithms that can get to a solution in non­polynomial time. For researchers, the latter class is the
most interesting as even though a problem is classed as NP now it doesn’t prove that there can’t be a
polynomial algorithm just that we don’t have one yet, this class is where quantum computers come in.

Quantum computers have been shown to be able to crack some of these NP class problems within
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a polynomial time and so have broken a barrier thought by many to be impregnable, they do so by
utilizing quantum information and by forming a universal computer out of quantum systems. Though
to be clear a quantum computer, can not calculate anything more than classical computers can. That
is any Turing machine can calculate any problem and they are just Turing machines like any classical
computer. Their benefit is in re­framing certain problems so that they can be solved faster than they
could be otherwise. Like Gauids ropes they are just better suited to some types of problems than
others. Before we go into more into how quantum computers we need to familiarize ourselves with the
notations and conventions of quantum mechanics.

1.3. Quantum Mechanics
Quantum mechanics is a theory of physics that was set out in the early 20th century to explain the
behavior of matter on the smallest scales. This was primarily driven by the strange way objects on this
scale seem to behave, this is for example the wave particle duality of light. Out of these developments
came the essential mathematical framework used to describe this world, these descriptions of quantum
systems that we will explore have been thoroughly tested and confirmed in almost 100 years since their
inception.

Linear Algebra is the mathematical language used to describe quantum systems. To describe each
state we use a two dimensional vector of complex numbers in a Hilbert space, |𝜃⟩ ∈ ℂ2, the notation
|𝜃⟩ is called a ket of 𝜃 where

|𝜃⟩ = [𝛼𝛽] , ⟨𝜃| = [𝛼∗ 𝛽∗] .

This notation is commonly used in quantum physics and is the one we will use for the remainder of
this work, it is a compact notation that makes it easy to write common operations like an inner product
⟨𝜙|𝜓⟩. With regular vector multiplication and inner products, we use the operation of tensor products
on quantum systems. This is when we connect two qubits in an operation, more on this in the next
chapter, an example of a tensor product on two qubit vectors would be

[𝑎𝑏] ⊗ [𝑥𝑦] =
⎡
⎢
⎢
⎣

𝑎𝑥
𝑎𝑦
𝑏𝑥
𝑏𝑦

⎤
⎥
⎥
⎦
.

As a short hand notation we often write |𝜙⟩ |𝜓⟩ as the tensor product of |𝜙⟩ and |𝜓⟩. Further common
concepts from linear algebra are used such as unitary matrices, linear independence, and bases for
vector spaces, though these use a common notation and so should be familiar to anyone who has
studied those in any other context. These concepts will not be explored in depth here but we will come
back to them when we introduce quantum algorithms and how they function.

1.4. Quantum Algorithms
In a quantum system information is stored in a fundamental property of the particle, this can be e.g.
the spin of an electron. Though the spin can only be measured in two values, spin up or spin down, the
information differs from the classical bit. This is because the electron can be in any state in between
these values before it is measured and that is key information that we can use for calculations.

In a sentence, a Quantum computer is simply a computational device based around a quantum
process. The benefits of which are inherent in these quantum processes, which can store more infor­
mation than your typical computer and thus solve more complicated problems with fewer processes.
This allows quantum computers to solve some problems faster than our classical computers.

To use this ”extra” information we need special algorithms, we call these Quantum algorithms. They
are more analogous to classical algorithms as they are a series of steps that compute a solution to a
given setup.

As a classical computer uses bits a Quantum Computer stores it’s data and programs in a qubit and
these qubits can be put in a superposition, where n qubits have information on both a 1 state and a
0 state of n values giving a total information capacity of 2𝑛 bits. A quantum algorithm is an algorithm
that preserves these quantum states and can use them to simultaneously do the calculation on all of
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its possibilities, giving it the ability to e.g. run a program with both a 0 and a 1 as input and evaluate
both options.

As was talked about in the mathematics of quantum chapter we can describe qubits using two
dimensional vectors. Further we can write those vectors as a linear combination of some basis vectors
𝛼0 |0⟩ + 𝛼1 |1⟩ here we are using |0⟩, |1⟩ as our base, where

|0⟩ = [10]

|1⟩ = [01] .

This linear combination is called a superposition of the bases and needs to fulfill the condition that
𝛼𝑖 ∈ ℂ and |𝛼0|2 + |𝛼1|2 = 1. To draw this complex vector we us a three dimensional shell of a sphere,
where the third dimension comes from the complex numbers, in figure 1.2 we see a demonstration of
this using a state |𝜓⟩.

𝑥̂
̂𝑖

|0⟩

|1⟩

|𝜓⟩

Figure 1.2: Bloch spheare

So while the qubit remains unobservable it is any state on the surface of the Bloch sphere but as it is
measured it collapses to either |0⟩ or |1⟩, or to another measurement basis. Though this state is a real
physical state of a quantum system it is hard to imagine, so often one only looks at the mathematics,
that have been verified extensively for the last century. This is because the mechanics in the quantum
realm can be unintuitive and clash with our regular experience of reality. Let’s look at an example of a
qubit in a state where it has a half chance of being measured in the |0⟩ or |1⟩, |𝜓⟩ = 1

√2
|0⟩+ 1

√2
|1⟩, this

draw on the Bloch sphere is shown in figure 1.3.

𝑥̂
̂𝑖

|0⟩

|1⟩

|𝜓⟩

Figure 1.3: Bloch with a half state vector 𝜓

As you can see this state falls directly on the positive part of the 𝑥̂ axis, this is special enough
case that it is often simply referred to as |+⟩. As you can imagine the cases where the quantum state
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falls directly on the other axes are also special cases, |−⟩ , |𝑖⟩ , |−𝑖⟩. Note that there is no measurable
difference between |+⟩ and |−⟩ however, they do not behave the same in computation and this is crucial
[6].

1.5. Demonstrating Algorithmic advantage
Nowwe have talked about how andwhy quantum computing works andwe have gone over the tools and
notations we need to understand a quantum algorithm. So when is a quantum algorithm faster? The
first example is the Deutsch problem, which was later expanded to the Deutsch and Jozsa’s Algorithm.
The problem the Deutsch and Jozsa algorithm solves is defined such;

𝑥 ∈ Z[0,2𝑛−1],

𝑓(𝑥) ∶ Z[0,2𝑛−1] ↦ {0, 1},

and f is either balanced or constant.

Balanced here means that f gives an outcome of 0 for a random halve of the values of x and 1 for
the others, constant means that for any value of x it is either 0 or 1. Now a classical algorithm can solve
this problem in 2𝑛

2 +1 steps to have guaranteed success, that is check half of all possible x values and
then one more to be sure.
The quantum algorithm proposed to solve this, by David Deutsch and Richard Jozsa in 1992 [8], can
do this in one step.

|𝑞⟩

|𝑎⟩

H
𝑈𝑓(𝑥)

H Measure

H

n

X

Figure 1.4: Deutsch­Jozsa circuit

To prove this method is not simple but lets try to go through the algorithm step by step. To start we
assume all registers are in the |0⟩ position, we need though that the a register be in the |1⟩ position so
we flip it with a not gate, also called Pauli X. Next we switch our basis from z to x by using the Hadamard
gate on all registers. Then our states are

|𝑞⟩ =
|0⟩ + |1⟩
√2

|𝑎⟩ =
|0⟩ − |1⟩
√2

In this state we apply is the unitary operator that represents the oracle, we implement it separately by
connecting a cnot gate where appropriate from the values in the q register and to the a qubit. This
formulation allows for the final state of the q to tell us if the function encoding the unitary is balanced
or constant, this is because with a control in the Hadamard basis and with a target bit in |1⟩ phase
kickback gives us the state

1
2𝑛

2𝑛−1

∑
𝑦=0

[
2𝑛−1

∑
𝑥=0

(−1)𝑓(𝑥)(−1)𝑥𝑦] |𝑦⟩ .

Now we convert the basis back by using the inverse of the Hadamard which is just the Hadamard itself,
and measure the |𝑞⟩ register, if it comes out 1 the function is constant and else balanced. So this result
is achieved in a single step when a classical method needs 𝑛/2 + 1, though it should be pointed out
that for this specific problem the advantage is by design; It was the specific intent of Deutsch to find
a problem that would have an advantage when formulated as a quantum system. This advantage,
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going from 𝑂(𝑛) to 𝑂(1), is not restricted to such creations and it is what researchers look for when
developing new quantum algorithms. This potential to take a problem down on the complexity scale
has been shown in a multitude of other practical problems, from factoring numbers to the optimization.
The algorithm that is of interest in this paper is a quantum solution to the problem of solving linear
systems. This algorithm has been shown to have better efficiency than any classical one and so it has
great potential that we will explore in the next chapter, 2.



2
Quantum Linear Solver

A linear system of equations is a common problem known to all branches of science, it is frequently
a part of, design problems, signal processing, and homework. It is the way we solve a multitude of
connected variables in a single system and the problem is formulated such
Linear system of equations
Given an invertible matrix 𝐴 ∈ ℂ𝑁,𝑁, a vector 𝑏 ∈ ℂ𝑁 find a vector 𝑥 given

𝐴𝑥 = 𝑏. (2.1)

This problem is solved by finding, or approximating, an inverse of the matrix A such that 𝑥 = 𝐴−1𝑏.
Many algorithms exist to solve this problem the one generally considered most efficient is the method
of Conjugate Gradients it can solve this in 𝑂(𝑁√(𝜅)) time, CG has the condition that A be a Hermitian,
positive­definite matrix.

For solving the linear system in a quantum setting a change is needed to reach the full benefits of
quantum speedup. The general formulation is:
Quantum Linear Solver
Let A be an 𝑁×𝑁 Hermitian matrix with a unit determinant. Let b and x be N­dimentional vectors such
that 𝑥 ∶= 𝐴−1𝑏. Let the quantum state on ⌈𝑙𝑜𝑔(𝑁)⌉ qubits |b> be given by

∑𝑖 𝑏𝑖|𝑖 >
|| ∑𝑖 𝑏𝑖|𝑖 > ||2

and for |x> by
∑𝑖 𝑥𝑖|𝑖 >

|| ∑𝑖 𝑥𝑖|𝑖 > ||2
where 𝑏𝑖 , 𝑥𝑖 are the i­th components of b and x respectively. Given A and |b>, output a state |𝑥̃ > such
that ||(|𝑥̃ > −|𝑥 >)||2 ≤ 𝜖, with some probability larger than 1/2.

|𝑥⟩ = 𝐴−1 |𝑏⟩ (2.2)

The output |𝑥⟩ is a quantum state that represents x and to read out all 𝑁 values of 𝑥 would take
𝑂(𝑁) runs of the algorithm. This is because even though |𝑥⟩ contains all the information of 𝑥 we can
measure only one value of it each time, so to use this solution we must remain in the quantum state
to be useful. To use this then we don’t simply look at a 𝐴𝑥 = 𝑏 problem but embed this as a routine in
another problem would where e.g. we calculate 𝑥𝑇𝑀𝑥, where M is some linear operator, you can map
𝑀 to a quantum operator and get ⟨𝑥|𝑀 |𝑥⟩, such a problem is further discussed in 3.2.

2.1. Quantum algorithm for linear systems of equations
In 2009 Harrow, Hassim and Lloyd, [HHL [10]], introduced a Quantum Algorithm to solve the quantum
variation of the linear system 𝐴𝑥 = 𝑏. Their solution is built from previously established quantum

7



8 2. Quantum Linear Solver

algorithms, the three main steps of the HHL algorithm are the phase estimation, ancilla rotation and
then uncomputing of the registers B and C, this is highlighted in the circuit model of the algorithm in
figure 2.1.

Ancilla |0⟩

Register C|0⟩

Register B|𝑏⟩

|𝛼𝑗⟩

|0⟩

|𝑥⟩

𝑅𝑦 ( ̄𝜃𝑗)

n 𝐻 𝑄𝐹𝑇 𝑄𝐹𝑇† 𝐻

n 𝑒𝑖𝐴𝑡 𝑒𝑖𝐴𝑡†

Phase estimation Undo phase estimation
Rotation

Hamiltonian simulation

Figure 2.1: Circuit model of the algorithm proposed by Harrow, Hassim and Lloyd [13]

In their paper Harrow, Hasim, and Lloyd use a more detailed eight step procedure to describe their
algorithm as they include the initialization steps needed to get b and A into the correct states,

1. Converting A into a Unitary operator 𝑒𝑖𝐴𝑡.

2. Prepare the b register |𝑏⟩.

3. Compose |𝑏⟩ into the eigenvector basis of 𝑒𝑖𝐴𝑡 using phase estimation.

4. Apply the conditional Hamiltonian evolution, conditioned on register C in 2.1.

5. Apply the Quantum Fourier Transform on register C.

6. Use an additional ancilla, 𝛼𝑗, with a rotation conditioned on C register.

7. Undo the phase estimation to uncompute everything except the last ancilla bit.

8. Measure 𝛼𝑗, if it is 1 the computation was successful if not repeat.

Phase estimation
This part estimates the eigenvalues of A, by taking operator eigenstate of A and estimates the eigen­
values. This is broken into two major subroutines the Hamiltonian Simulation and the Quantum Fourier
Transform.

Hamiltonian Simulation
Converting A into a unitary operator 𝑒𝑖𝐴𝑡 is conditioned on A being Hermitian, this has been shown
to be efficient through multiple different techniques. All these techniques are a form of Hamiltonian
simulations, this is defined as a Hamiltonian that acts on n qubits can be efficiently simulated by a 𝑈𝐻
quantum circuit if for a 𝑂(𝑝𝑜𝑙𝑦(𝑛, 𝑡, 1/𝜖)) number of gates ||𝑈𝐻−𝑒𝑖𝐻𝑡|| < 𝜖 holds. Here we have added
a dependency on 𝑡 which is important as it can be shown that any such simulation requires 𝑂(𝑡) time to
calculate. An example of a method that does this is the Trotter­Suzuki method, details of this method
can be found in [1], this method has complexity

QFT
The Fourier transform is a method that allows you to change to frequency space and analyze a signal
on its base frequencies. Given a square invertible matrix 𝐹 it’s discrete Fourier transform is ℱ𝑛𝑚 =
1
√𝑁𝑒

( 𝑖2𝜋𝑁 )(𝑛𝑚), as the columns of the new matrix are orthonormal they can be used as a basis known as
the Fourier basis of the matrix 𝐹. The same way as the classical Fourier transform works the quantum
version, QFT, takes a quantum state |𝑥⟩ to a new state 𝑓𝑥 thus,

|𝑥⟩ ↦ 1
√𝑁

𝑘=0

∑
𝑁−1

𝑒
𝑖2𝜋
𝑁 𝑥𝑘 |𝑘⟩
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Rotation
The purpose of the ancilla qubit is to check if the estimation of the eigenvalues was successful in the
phase estimation so in the end we only need to measure the ancilla qubit and we can know if we
should run everything again or if we should continue with |𝑥⟩ into the next step. This check is done
using amplitude amplification which is an extension of Grover’s search algorithm.

Uncomputing
As gates in quantum circuits are unitary operation to invert the operations already done we simply take
the conjugate transpose and we will have a valid gate to invert it back.

Completion
Measuring the ancilla qubit is the only measurement necessary for the algorithm and it determines
whether the algorithm worked or not, however as the condition is before the undoing the phase esti­
mation an imperfect step there would not be detected by this method.

2.2. Variations and improvements
Improvements have been made both in the efficiency of the algorithm and in relaxing restrictions, which
is improving it for dense matrices and dropping the number of qubits needed for realization.

HHL 2009
𝑂 (𝑙𝑜𝑔(𝑁) 𝑠

2𝜅2
𝜖 )

AA 2010
𝑂 (𝑙𝑜𝑔(𝑁) 𝑠

2𝜅
𝜖 )

Childs 2017
𝑂 (𝑠𝜅𝑝𝑙𝑜𝑔( 𝑠𝜅𝜖 ))

WZP 2018
𝑂 (𝑝𝑙𝑜𝑔(𝑛) ‖𝐴‖𝐹

𝜅2
𝜖 )

Figure 2.2: Improvements on HHL through the years

As the original implementation is the focus of this paper I will not go into details on these improve­
ments but briefly go over them.

Faster algorithm for solving systems of linear equations2010
Andris Ambainis was the first to improve on the work of Harrow, Hassim, and Lloyd by improving the
runtime from 𝑂(𝜅2𝑙𝑜𝑔(𝑁)) to 𝑂(𝜅𝑙𝑜𝑔3(𝜅)𝑙𝑜𝑔(𝑁)).

Quantum circuits for solving linear systems of equations 2011
In 2011 Cao, Daskin, Fankel, and Kais at Purdue University, proposed an improved circuit to the HHL
model [5]. This model runs in 𝑂(𝑙𝑜𝑔(𝑁)𝜅

2

𝜖 ) time, where 𝜅 is the condition number 𝜅 = 𝜆𝑚𝑎𝑥
𝜆𝑚𝑖𝑛

and 𝜖 is
the error in the output of the x register.

Ancilla |0⟩

Register L|0⟩

Ancilla|0⟩

Register C|0⟩

Register B|𝑏⟩

Aniclla |0⟩

|𝛼𝑗⟩

|0⟩

|0⟩

|0⟩

|𝑥⟩

|0⟩

𝑅𝑦 ( ̄𝜃𝑗)

𝑈𝜆

| ̄𝜃𝑗⟩

𝑈†W 𝐹𝑇† |𝜆𝑗⟩

𝑒𝑖𝐴𝑡
∑𝑗 𝛽𝑗 |𝑢𝑗⟩

Figure 2.3: From [13]
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Experimental realization of HHL
In 2011 Pan, Cao, et al. ran a proof of concept experiment usin a 4­qubit nuclear magnetic resonance
quantum information processor to solve a 2 × 2 linear system using the HHL algorithm [13]. Their
experiment was successful and results showed a 96% fidelity, this was the first realization of the HHL
algorithm.

Similarly in an article from 2013 by Cai, Weedbrook, et al. the simplest meaningful instance of the
HHL algorithm was tested, 2 × 2 matrices, was tested again in an experiment using a linear optical
network with four photon base qubits [4].

Figure 2.4: The experimental circuit used four qubits to solve a 2x2 system[4]

Variational Quantum Linear Solver 2019
VQLS is a hybrid solution using both classical and quantum computing methods to solve the system
of equations [3]. This new algorithm, published 2019, is not an iteration on the HHL but a proposed
intermediary solution to HHL high demand of qubits and high quality of computation. This method is
designed to work on so called noisy intermediate scale quantum computers (NISQ) by reducing the
depth of the quantum circuit needed to solve the problem. It does this essentially by moving parts of
the algorithm back to a classical computer, this frees up qubits and creates stability as they do not need
to be in a quantum state for too long, reducing the likelihood of de­coherence. The authors of the article
immediately experimented with this new algorithm on hardware from Rigetti using a problem size of
32 × 32 with successful results. This change in the algorithm comes at a cost though as this algorithm
is the only one we have looked at here that has worse scaling behavior than HHL though it still remains
efficient in 𝜅 and 1/𝜖.

Figure 2.5: A circuit representation of the VQLS method, from Bravo et al [3]



3
Implementation

Implementations of a QLSA have come far since Harrow, Hassidim, and Lloyd first published their
algorithm, experiments have been performed and improvements have been made to the versions they
envisioned. Originally the intent of this work was to complete an implementation of HHL but through
research it became clear that more could be gained from building on top of already existing work, as
for both the HHL algorithm and the VQLS there are existing implementation.

3.1. IBM’s Quantum network
As the race to build a Quantum Computer is ongoing so is the race to create the software they will run
on. IBM has made it far on both fronts as they have built working Quantum computers and brought
them online along with building a software platform based on the Open Quantum Assembly Language
(OpenQASM)[7].Building on the OpenQASM, IBM has made an open­source framework for develop­
ing and test quantum algorithms called the Quantum Information Science Kit (Qiskit) and the cloud
computing platform IBM Q Experience. Qiskit is a python package that allows high­level interface with
the OpenQASM language and it can be run on and set up on your own machine like any other python
package. Qiskit can let you run quantum simulations locally as well as providing a backend to IBM’s
own quantum ­simulators and ­computers [2]. As Qiskit is an open platform many are developing al­
gorithms on it and so both HHL and VQLS have already been implemented. This implementation will
be the basis of the next phase of experiments in this work. Using both the simulators and hardware
available through the IBM Q Experience, and developing on the Qiskit modules the next part of this
project.

Hardware
Quantum computers are not really here yet. Thought the effort to develop them is growing and new
publications show improvements in this field every month the truth is we are not working with perfect
qubits. What we are working with is noisy and prone to errors, and very small scale systems, on the
order of 10 qubits, these systems we call noisy intermediary scale quantum computers or NISQ for
short. NISQ systems are good for testing small scale circuits that take a short time to run but are not
taking over from classical computers yet. Though as better techniques develop it may very well be
that NISQ quantum computers are all we need to reach quantum advantage in some cases [14]. Gate
models used by IBM are the CNOT gate, Identity and the rotational gates 𝑈1, 𝑈2, and 𝑈3, this gate set
is universal.

Simulators
While we are developing better and faster hardware the fastest and most reliable way to test quantum
algorithms is by using a classical simulations. As stated by the Church­Turing thesis all Turingmachines
can compute the same functions so any classical computer, that is Turing complete, can simulate a
quantum computer. Qiskit gives a module that turns any computer running it into a quantum simulator,
this gives the user a great advantage in quick learning to use and test quantum algorithms. As a
part of this local simulator, it is also possible to run “noisy” tests, that is trying to simulate the real

11



12 3. Implementation

Figure 3.1: The ibmqx2 5 qubit machine, one of the machines available through the IBM Q experience.

hardware we are using today. This will be important in the continuation of the development of quantum
algorithms such as the VQLS as they are designed for noisy hardware and should be tested on such.
This implementation could also prove useful if tests on hardware are proving unsuccessful as the noise
in the simulations can be calibrated, unlike in the hardware devices. Simulations also offer a greater
size as IBM’s online platform offers a 32­qubit simulator, which is double the number of qubits from the
hardware offered.

3.2. A Practical Problem
To see how both implementations work at the current state of technology and to theories about their
future a practical problem needs to be implemented to test their real use. Because the quantum formu­
lation of the linear solver needs to be part of a bigger quantum problem to be truly advantageous as was
mentioned when we discussed the formulation in chapter 2. This problem needs to be small enough in
scale to be workable on quantum hardware and still be of practical value. The Poisson equation, setup
in 1D is a good candidate for this job and a proper formulation using this classic problem will be the
next step in this work.

Before trying a practical problem though a good test of the behavior of both implementations for
different conditions of A needs to be carried out. This is to see the direct behavior of the two given
certain conditions so that a better assessment can bemade of the performance in the practical problem.



4
Thesis questions

For my thesis work want to explore further the functionality of the Quantum linear solvers I have intro­
duced, using the implementation of the IBM Qiskit platform. I will test these implementations in both
simulations and on real hardware. These tests will focus on practical matrices such as from the 1D
Poisson equation, and testing varying­ density and condition numbers. This is in part to explore in what
directions the development of quantum algorithms for linear systems should take.

1. What approaches are there to solve linear systems on Quantum Computers?

2. How do these implementations scale with problems?

3. Can you integrate these solutions into a practical problem?

4. Can these methods get to quantum advantage in the near term?
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