Methods for improving the computational performance of sequentially linear analysis

Wouter Swart

Delft University of Technology

August 30, 2018

• Increased attention to numerical predictions

Outline

- 1 Nonlinear finite element analysis
- 2 Sequentially linear analysis
- 3 Solution methods
 Direct
 Iterative
- 4 Results

Nonlinear finite element analysis

- Nonlinear relation between external forces and resulting displacements
- Find displacement which balances internal and external forces
- Discretise space and force (increments)
- Within each increment, use iterative method to find force balance

Nonlinear finite element analysis

Nonlinear finite element analysis

Proposed solution: sequentially linear analysis

- Main assumption: assume a stepwise material degradation
 → nonlinear response captured with a series of linear analyses
- Only 1 element is damaged per linear analysis
- Use automated selection procedure to find critical element

- Only a single element is damaged in between analysis steps
- Current solution methods do not exploit this property

Research question

How can the computational performance of SLA be improved such that it requires reduced computing time?

Next Subsection

- Nonlinear finite element analysis
- Sequentially linear analysis
- 3 Solution methods
 Direct
 Iterative
- 4 Results

Direct solution method

Want to solve:

$$K\mathbf{u} = \mathbf{f}$$
.

Direct solution methods typically consist of three stages

- Matrix reordering
- Factorisation
- Forward & backward substitution

Direct solution method

• Problem: scalability with problem size:

Forward & backward subtitution: $\mathcal{O}(n^2)$

Factorisation: $\mathcal{O}(n^3)$

Prevent factorisation every analysis step

Theorem (Woodbury's matrix identity)

The inverse of a rank-k corrected matrix K is given by:

$$(K + UCV)^{-1} = K^{-1} - K^{-1}U(C^{-1} + VK^{-1}U)^{-1}VK^{-1}$$

Solution to $(K + UCV) \mathbf{u} = \mathbf{f}$ can then be obtained as:

$$\mathbf{u} = (K + UCV)^{-1} \mathbf{f}$$

$$= (K^{-1} - K^{-1}U(C^{-1} + VK^{-1}U)^{-1}VK^{-1}) \mathbf{f}$$

$$= K^{-1}\mathbf{f} - K^{-1}U(C^{-1} + VK^{-1}U)^{-1}VK^{-1}\mathbf{f}$$

- How to determine U, C?
- Update to system stiffness matrix can be written as

$$\mathcal{K}^{(n+1)} = \mathcal{K}^{(n)} + NDN^T$$

Calculating eigenvalue decomposition of D

$$D = Q \Lambda Q^T$$

It follows that

$$\mathcal{K}^{(n+1)} = \mathcal{K}^{(n)} + (NQ) \Lambda (NQ)^{T}$$
$$:= \mathcal{K}^{(n)} + UCU^{T}$$

Woodbury's identity strategy:

- First analysis step: calculate factorisation
 - \rightarrow expensive
- Subsequent analysis steps: use known factorisation
 - \rightarrow cheap
- Costs of analysis steps rise as rank increases
- Recalculate factorisation once the rank becomes too large

Next Subsection

- 1 Nonlinear finite element analysis
- Sequentially linear analysis
- 3 Solution methods
 Direct
 Iterative
- 4 Results

Iterative solution methods

Want to solve:

$$K\mathbf{u} = \mathbf{f}$$
.

Instead of exact solution, create a sequence of approximations

$$\textbf{u}_0,\textbf{u}_1,\dots$$

If K is symmetric and positive definite

→ Conjugate gradient method is the best choice

Conjugate gradient method

- Finds approximation along search directions **p**_k
 → conjugate w.r.t. K: **p**_iK**p**_j = 0, i ≠ j
- $\mathbf{u}_{k+1} = \mathbf{u}_k + \alpha \mathbf{p}_k$
- Every iteration Krylov subspace dimension increases by 1
- After n iterations, the Krylov subspace spans the entire space

 → CG requires at most n iterations
- If the stiffness matrix only contains *r* distinct eigenvalues
 - \rightarrow only r+1 iterations are required

Conjugate gradient method - improvement

- Convergence of CG highly dependent on eigenvalues of K
- Use preconditioner P to obtain more favourable eigenvalues of $P^{-1}K$
- Use factorisation of K as preconditioner
- Result: n k eigenvalues will be equal to $1 \rightarrow$ only k + 1 *CG* iterations required

Results: restarting

- Woodbury's identity and PCG are similar
 - → One expensive analysis step (factorisation)
 - → Subsequent analysis steps relatively cheap
- Costs increase as rank increases
- Need to determine at what point to restart
- Measure analysis times and extrapolate cost

Results: restarting

Scaling of the shear wall problem, multi-threaded

Scaling of the slab problem, single-threaded

Results

• Contributions of solver to total analysis time

	Shear wall		Slab	
Threads	Single	Multi (4)	Single	Multi (4)
Default	47.9%	41.4%	70.6%	48.8%
Woodbury	16.7%	13.1%	20.0%	16.0%
PCG	39.1%	26.0%	29.2%	20.7%

Results

Now able to solve larger problems

	Default	Woodbury
Problem size	335.331	386.448 (+15.2%)
Analysis steps	2500	2881 (+15.2%)
Analysis time	23:11:10	23:31:55

- Significantly reduced computing times for large problems
- Increased applicability of SLA

Methods for improving the computational performance of sequentially linear analysis

Wouter Swart

Delft University of Technology

August 30, 2018

• How to choose eigenvalues in eigenvalue decomposition?

$$D = Q \Lambda Q^T$$

- Only want to choose 'large' eigenvalues corresponding to dominant features of D
- Define eigenvalue ratio

$$\epsilon = \frac{|\lambda_i|}{\lambda_{\max}}$$
, $\lambda_{\max} = \max\{|\lambda_1|, \dots, |\lambda_n|\}$

• Numerical experiments: $\epsilon = 10^{-10}$ good choice

Total expected computing time as a function of restarting point

