
The Deflated Preconditioned Conjugate
Gradient Method

Applied to Composite Materials

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op
woensdag 1 februari 2012 om 15:00 uur

door

Tom Bernard JÖNSTHÖVEL
wiskundig ingenieur

geboren te Dordrecht.

Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. ir. C. Vuik.

Copromotor: Dr. A. Scarpas
Copromotor: Dr. ir. M.B. van Gijzen

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. C. Vuik, Technische Universiteit Delft, promotor
Dr. A. Scarpas, Technische Universiteit Delft, copromotor
Dr. ir. M. B. van Gijzen, Technische Universiteit Delft, copromotor
Prof. dr. R. H. Bisseling, Universiteit Utrecht, the Netherlands
Prof. dr. M. Papadrakakis, National Technical University of Athens, Greece
Prof. dr. ir. C. W. Oosterlee, Technische Universiteit Delft
Prof. dr. T. A. Laursen Khalifa University, Abu Dhabi
Prof. dr. ir. A. W. Heemink Technische Universiteit Delft, reservelid

The work described in this dissertation was carried out at the Department of
Structural Mechanics, the Faculty of Civil Engineering, and, at the Department of
Applied Mathematical Analysis, the Faculty of Information Technology and Systems,
Delft University of Technology, the Netherlands.

The Deflated Preconditioned Conjugate Gradient Method
Applied to Composite Materials.
Dissertation at Delft University of Technology
Copyright c© 2012 by T.B. Jönsthövel

ISBN 978-94-6191-180-3

- All of old. Nothing else ever. Ever tried. Ever failed. No matter. Try again. Fail
again. Fail better.

from Worstward Ho by Samuel Beckett

- This ’shuddering before the beautiful’, this incredible fact that a discovery
motivated by a search after the beautiful in mathematics should find its exact replica

in Nature, persuades me to say that beauty is that to which the human mind
responds at its deepest and most profound.

from Truth and beauty by S. Chandrasekhar

- High-quality, useful energy, is localized energy. Low quality, wasted energy, is
chaotically diffuse energy. Things can get done when energy is localized; but

energy loses its potency to motivate change when it has become dispersed.

from Creation revisited by Peter Atkins

Acknowledgements

It has been a remarkable four years. I remember walking into Kees Vuik’s office
after an unsuccessful year as an IT consultant and financial expert. With hindsight I
realize returning to TU Delft was less about the failure in two professions that made
me feel so welcome here than the particular time in my life and realization there was
still much more to learn as an academic In short, during work on my Master’s Degree
I glimpsed the world of numerical analysis, but I could hardly see what was behind
the horizon. Apart from the theoretical results on deflation theory, I can conclude that
the years of my PhD studies have been the most (trans)formative years of my life
and have truly taken my level of professional skills and expertise to another level.
Moreover, I have in those years literally travelled the globe and connected to people
from inside and outside academics, of which some have become good friends. I cannot
imagine feeling more complete and being utterly satisfied with my life if it weren’t for
those challenges, chances and opportunities that this project has given me.

My PhD research was sponsored and initiated by Tom Scarpas, the head of the
Group of Infrastructural Materials at the Department of Civil Engineering at TU Delft.
I am deeply indebted to him for letting me have the freedom to work on this project
under excellent working conditions, with solid financial as well as infrastructural
support, and with wonderful colleagues. Next, I would like to thank Cor Kasbergen
for his never ending support, his patience and kindness. He has shown me the way
in the ancient worlds of FORTRAN and non-object oriented programming. I can’t
imagine finishing this project in the same period of time without his help. I would
also like to thank Xueyan Liu for his never ending stream of questions and for keeping
me in touch with my recently acquired Asian side. My sincerest respect goes to Frank
Custers. He has done a terrific job of setting up the computing cluster with minimal
resources and limited time. He has been a valuable sparring partner, and I enjoyed
our discussions on how to improve the performance and capabilities of the cluster.

The other two persons who played a crucial part in this research are of course my
supervisors Kees Vuik and Martin van Gijzen. I enjoyed our collaboration and I am
sure I will often think about those meetings to discuss the exciting and better than
expected numerical results. You have been great tutors and mentors to me and I am
very grateful to both of you for showing me the way to academic maturity and giving

v

me confidence to become an independent researcher with a truly open mind. I hope
we can continue to work together on exciting future research projects that may lead
to yet more high-level academic publications. As mentioned before, I have been given
the opportunity to travel around the globe to talk about deflation at seminars and
conferences, and interact with fellow researchers for longer periods of time during my
extended stays in Boston, USA and Sydney, Australia. I would like to thank Scott
MacLachlan for a month of truly inspiring research at Tufts University, USA. He has
also helped me reach a higher level of thinking and showed me alternate career paths
that could lead to a continuation of my academic career.

In Boston I was hosted by Steven Ford Brown, an inspiring writer, music critic,
and above all translator of poetry from nearly forgotten foreign poets. He has been
great company and I truly enjoyed our discussions on (American) politics, music and
life. I would also like to thank him for his textual comments and suggestions.

In Sydney I was welcomed by Markus Oeser who offered me a place to work at
the University of New South Wales during my extended stay-over on my trip to China.
I would like to thank him for his kind help and for giving me an insider’s view to the
peculiarities of the Australian way of life.

In addition to my academic career I have pursued the dream of a career in music.
In the last ten years I have developed a successful career as a pianist in a band with a
record deal, as a composer of music soundtracks for film, as well as an accompanying
pianist in a theatre tour. Moreover, I have had the chance to collaborate with dozens
of professional musicians who have ultimately not only raised my level of playing,
but my level of thinking about music as well. It is no secret that mathematics and
music are closely related and I consider them both as art. Although my thoughts on
this subject haven’t matured enough to be entrusted to paper, I have only managed in
recent years to connect those two sides of my personality and let them be mutually
influential. Proper research is not possible without giving your thoughts the chance
of settling down, and I can’t imagine any better way of nurturing my ideas about new
research than when working on music. I would therefore like to thank my creative
friends for their, probably, unintentional support to this research. Especially, Pieter,
Anne, Mert and, Louise.

Without the support of my dearest friends, at this time of writing, I would be lying
under a Parisian bridge, drinking bad wine and singing (out-of-tune) silly songs.
Wilmar and Tijn. You guys have both been there when I needed you the most, offering
me a place to sleep, listening to my badly told stories and anecdotes as well as
enduring all my ’exciting’ but hopeless ideas. You know I love you guys.

Although inevitably our lives took a different direction, I don’t believe I would be
the person I am today, both academically and personally, without sharing with her
that special period of my life. Thank you, dear Suzanne.

Inspired by a book of Alain de Botton, not long ago I decided I would enjoy

life better by being alone. And although Alain also warned me something untoward
might happen, and although it may or may not be a coincidence that her name is an
anagram of Alain, this concept of being alone suffered a severe blow when I met her.
De Buurvrouw. Because of her, life has taken another unexpected turn, sweet Alian.

I would like to dedicate my academic achievements to my wonderful parents, Jos
and Bettie, who I am indebted to for their unceasing support, encouragement and love.
I also want to thank my lovely sister Iris. For the joy you bring in life, your enthusiasm,
creativity and never-ending stream of inspiring ideas. And at last, my older brother
Nils. Although our characters could not be more different, I love you nonetheless, and
most of all your humor and contagious habit of putting things in perspective.

Finally, I would like to thank all the members of the doctoral examination committee
for their time and effort and I would like to thank all of those that have been of
invaluable support to my successful completion of this research.

Tom Jönsthövel, Amsterdam, February 2012.

Contents

Acknowledgements v

1 Introduction 1
1.1 Background composite materials . 1
1.2 Shifting length scales: from meso to micro level 1
1.3 Simulation tools for pavement engineering 2
1.4 Solving the stiffness matrix: numerical solution methods 4
1.5 Scope of the thesis . 5
1.6 Outline of the thesis . 6

2 Structural mechanics 9
2.1 Continuum model . 9

2.1.1 Strain . 10
2.1.2 Stress . 11

2.2 Equilibrium equation . 12
2.3 Balancing forces . 14
2.4 Material response . 16

2.4.1 Elasticity . 16
2.4.2 Plasticity . 16
2.4.3 Viscosity . 18

2.5 Implementation of material response . 19
2.5.1 Dissipation of energy . 19
2.5.2 Multiplicative decomposition . 19
2.5.3 Generalized model local dissipation 21
2.5.4 Hyperelastic response . 22
2.5.5 Plastic response . 22
2.5.6 Viscoelastic response . 25

3 Discretization virtual work equation 29
3.1 Discretization of the linearized virtual work equation 29

3.1.1 Finite-Element method . 30

ix

Element type and shape functions 30
Gauss points and numerical integration 31

3.1.2 Stiffness matrix . 32
Static mechanics . 32
Dynamic mechanics . 34

3.2 Stiffness matrix for composite materials 36
3.2.1 General properties of stiffness matrix 36
3.2.2 Discontinuities entries stiffness matrix 36
3.2.3 Non-linear material properties 37

3.3 Concluding remarks . 38

4 Solving the linear system: overview of solution methods 39
4.1 Factorization methods . 39

4.1.1 LU factorization . 40
Cholesky factorization . 41
Software implementation: MUMPS 41

4.1.2 Incomplete factorization . 42
ILU(0) decomposition . 42
Software implementation: ILUPACK 42

4.2 Multigrid . 43
4.2.1 Basic multigrid . 44
4.2.2 Multigrid Components . 45

Coarse grid specification . 45
Smoother . 46
Restriction operator . 46
Prolongation operator . 46

4.2.3 Algebraic multigrid . 47
Smoothed aggregation . 48

4.2.4 Software implementation: ML (Trilinos) 48
4.3 Krylov subspace methods . 51

4.3.1 Conjugate Gradient method . 51
4.3.2 Preconditioning . 53
4.3.3 Preconditioned Conjugate Gradient method 53

Diagonal scaling . 54
ILU decomposition . 55
SA-AMG . 55

4.3.4 Software implementation: AztecOO (Trilinos) 56
4.4 Concluding remarks . 56

5 Deflation theory 57
5.1 Composite materials: Preconditioned CG 57

5.1.1 Motivating numerical experiments 58
Convergence results . 59

5.2 Introduction to deflation . 63
5.2.1 Deflated Preconditioned CG . 63

5.3 Rigid body modes deflation . 65
5.3.1 Motivation: rigid bodies in composite materials 65
5.3.2 Construction of deflation vectors 66
5.3.3 Computing rigid body modes of a finite element 68
5.3.4 Additional work DPCG compared to PCG 70
5.3.5 Illustrative example: artificial representation of composite ma-

terial . 71
5.4 Recursive deflation . 75

5.4.1 Motivation: condition numbers of Deflated matrices 77
5.4.2 Recursive Deflation strategy . 78

Illustrative example: 1D Poisson equation 81
5.4.3 Deflation vectors in the neighborhood of a jump 82

Illustrative example: 1D Poisson equation (continued) 83

6 Parallel implementation deflation 87
6.1 Parallel computing . 88

6.1.1 Domain decomposition . 88
Subdomain mapping operators 89
Local and global stiffness matrix 90
Local and global vectors . 91
Parallel matrix-vector product 91
Parallel inner product . 92

6.2 Parallel Deflated Preconditioned Conjugate Gradient method 92
6.2.1 Building-blocks of parallel DPCG 92

Parallel coloring algorithm: construction and identification of
rigid bodies distributed over subdomains 92

Computing rigid body modes in parallel 96
Efficient computation of P in parallel 97

6.3 Subdomain deflation . 98
6.4 Parallel implementation of other solvers 101

6.4.1 Parallel PCG method . 101
6.4.2 Parallel SA-AMG . 101

7 Numerical examples 103
7.1 Description of cases . 103
7.2 Description of hardware and software 107
7.3 Rigid body mode deflation . 108
7.4 Subdomain deflation . 112
7.5 Performance DPCG and comparison to other state-of-the-art methods 117

7.5.1 CAPA-3D: DPCG and MUMPS 117
7.5.2 Trilinos: DPCG and ML (SA-AMG) 119

7.6 Concluding remarks . 126

8 Application to advanced material models 129
8.1 Generalized elasto-visco-plastic material model 129
8.2 Numerical experiments . 131
8.3 Concluding remarks . 134

9 Summary and Conclusions 135

10 Future research 143
10.1 On the improvement of deflation vectors 143

10.1.1 Assessment of quality deflation vectors 143
10.1.2 Polynomial updates of deflation vectors 143

10.2 Computing and implementation . 145
10.2.1 Recycling of deflation vectors . 145
10.2.2 GPU computing . 146
10.2.3 Nonsymmetric matrices . 146
10.2.4 Reducing the number of deflation vectors 147
10.2.5 Efficient computation with deflation vectors 147

A Notation 149

Bibliography 158

List of publications 159

Curriculum Vitae 161

List of Figures

1.1 Tomography scan of slice of asphaltic material. 3

2.1 Mapping of relative position vector from the reference to the current
configuration . 10

2.2 Traction t acting on an infinitesimal element da 12
2.3 Simplified representation of elastic material. 17
2.4 Example of relation between strain and stress. 18
2.5 Example of plastic yield surface. 18
2.6 Simplified example of 1D viscous laminar flow. 19
2.7 Schematic representation of multiplicative decomposition. 20

3.1 Finite element mesh applied to computer model of asphalt column. . . 29
3.2 Tetrahedral element with local coordinate system (ξ, η, ζ) 30

5.1 Schematic 2D representation of 3D test cases (II) and (III), figure (c)
and (d) contain one and four aggregates respectively. 59

5.2 Deterioration of rates of convergence of PCG for increasing number of
aggregates and stiffness. -.- homogeneous material, – E ratio O(103),
– E ratio O(105). 60

5.3 50 smallest eigenvalues of M−1K , M = diag(K). ×: 1 aggregate, �:
4 aggregates, ◦: 8 aggregates, ∗: homogeneous material 61

5.4 Principle of kernel deflation . 67
5.5 (a) spherical coordinates, (b) rotation around origin of tetrahedral el-

ement in x, y-plane . 69
5.6 Nonzero pattern of matrix KZ = KZ . 70
5.7 Convergence of PCG and kernel DPCG for 1 and 4 aggregates re-

spectively. -.- PCG (homogeneous material), – PCG (E ≈ O(103)), –
kernel DPCG (E ≈ O(103)). 73

5.8 Convergence of PCG and kernel DPCG for 1, 4 and 8 aggregates
respectively. -.- PCG (homogeneous material), – PCG (E ≈ O(103)),
– PCG (E ≈ O(105)),– DPCG (E ≈ O(103)), – DPCG (E ≈ O(105)). 74

xiii

5.9 spectrum of M−1K where [c1, c2, c3] = [1, 104, 108]. 82
5.10 sparsity pattern C0, C1 and C2. Nonzero elements represented by

symbols; corresponding to deflated material, interface elements and
remaining elements pictured by bold crosses, circles and non bold
crosses respectively. 83

5.11 spectrum of M−1Ci (? correct, +++ wrong choice deflation vectors) com-
pared to spectrum of M−1K (+) . 84

5.12 Convergence of DPCG and PCG where [c1, c2, c3] = [1, 104, 108] and
DPCG+, DPCG− represent correct and wrong choice of deflation vec-
tors respectively. 85

6.1 Schematic representation of domain decomposition of composite ma-
terial consisting of five bodies . 89

6.2 non-zero pattern for local stiffness matrix, K1, and, global stiffness
matrix, K . 90

6.3 Assembled global vector, u ∈ Rn. 91
6.4 Rigid bodies divided over subdomains. 94
6.5 Deflation matrix Z , divided over subdomains. 96
6.6 Sparsified global stiffness matrix, K̂ ; no connectivity between nodes

in subdomains of domain decomposition except for boundary nodes. . 98
6.7 Non-zero pattern subdomain deflation vectors, Zsd ∈ Rn×(4×6), for

domain decomposition with 4 domains. 99
6.8 Overlap between subdomains, and the corresponding entries in trun-

cated matrix, K̂ . 100

7.1 the artificial case: FE mesh and schematic representation of cylinder
containing three aggregates represented by spheres. 104

7.2 the asphalt core case: FE mesh representing core of asphaltic material
containing aggregates (yellow), bitumen (red) and air voids (blue). . . 105

7.3 the cube of asphalt case: mesh representing cube of asphaltic material
containing aggregates (light green), bitumen (dark green) and air voids
(blue). 106

7.4 the artificial case: Convergence of PCG and DPCG (bold line) for
cylinder containing three aggregates . 109

7.5 the asphalt core case: deflation strategy, identify sets of elements
corresponding to material: (a) aggregates, (b) bitumen and (c) air voids.110

7.6 the asphalt core case: Convergence of PCG and DPCG for a real slice
of asphaltic material . 111

7.7 the asphalt core case: L2 norms of the residuals for DPCG without
7.7(a), and, with 7.7(b) subdomain deflation for 2, 8, 16, and, 32 sub-
domains. 113

7.8 the cube of asphalt case: L2 norms of the residuals for DPCG without
7.8(a), and, with 7.8(b) subdomain deflation for 8, 16, 32, and, 64
subdomains. 114

7.9 the cube of asphalt case: number of nonzeros in matrix, Z , and the
relative increase of nonzeros in matrix, KZ , using subdomain deflation
for 8, 16, 32, and, 64 subdomains. 116

7.10 the cube of asphalt case: Cumulative timing all stages of DPCG (IC
preconditioner) for 8, 16, 32 and 64 subdomains. 118

7.11 the asphalt core case: Cumulative timing all stages of PCG, DPCG
for 4, 16, and, 64 subdomains. 121

7.12 the asphalt core case: L2 norms of the residuals 122
7.13 the asphalt core case: Ritz values derived from (D)PCG 122
7.14 the cube of asphalt case: Cumulative timing all stages of PCG, DPCG

for 4, 8, and, 64 subdomains. 124
7.15 the cube of asphalt case: L2 norms of the residuals 125
7.16 the cube of asphalt case: Ritz values derived from (D)PCG 125

8.1 Loading function creep test, 150 load steps. 131
8.2 Total strain in y-direction of elasto-visco-plastic element. 132
8.3 Plastic strain in y-direction of elasto-visco-plastic element. 132
8.4 Number of DPCG iterations per internal Newton-Raphson iteration. . 133
8.5 Boxplot of the number of DPCG iterations for all load steps (equals

2540 Newton-Rahpson iterations). 133

10.1 Two bodies, Ωa, and, Ωb, in finite element mesh. 146

List of Tables

4.1 Default parameters for SA-AMG . 50

5.1 2304 elements, the extreme eigenvalues and condition number of pre-
conditioned stiffness matrices. O (10n) represents the jump in E mod-
ulus of aggregates and bitumen. 62

6.1 Local number of connected rigid body modes in neighboring domains 95
6.2 Mapping temporary global numbering rigid body modes to local num-

bering. 95
6.3 Temporary set of rigid bodies and definite global numbering. 95

7.1 Young’s moduli for different materials . 103
7.2 Young’s modulus for different materials 108
7.3 the artificial case: wall clock time(s) PCG and DPCG 109
7.4 the asphalt core case: wall clock time(s) PCG and DPCG 111
7.5 the cube of asphalt case: wall clock time(s) DPCG for subdomain

deflation . 115
7.6 the cube of asphalt case: wall clock time(s) DPCG and MUMPS for

8, 16, 32, and, 64 subdomains . 118
7.7 the asphalt core case: Wall clock time and number of iterations of

(D)PCG . 120
7.8 the cube of asphalt case: Cumulative timing all stages of PCG, DPCG

for 4, 8, and, 64 subdomains. 123
7.9 the asphalt core and the cube of asphalt case: wall-clock times (s)

using SuperLU, distributed memory version 2.5 126

8.1 Parameters of elasto-plastic and visco-elastic components of elasto-
visco-plastic material model. 130

A.1 Tensor and index notation . 150
A.2 Basic tensor computations. 150

xvii

List of Algorithms

1 Balancing forces: solving the non-linear virtual work equation 16
2 Balancing forces: solving the discretized non-linear virtual work equation 35
3 Gaussian elimination algorithm . 41
4 ILU(0) algorithm . 43
5 Conjugate gradient algorithm . 52
6 Preconditioned conjugate gradient algorithm 54
7 Deflated preconditioned CG solving Ku = f 64
8 Identification of rigid bodies in FE mesh 93

xix

1
Introduction

1.1 Background composite materials

In many real-life applications, large scale engineered structures make use of composite
materials. These are materials which consist of a mixture of components that form one
integrated body. Composite materials have their own specific material properties
which (may) differ from the material properties of each individual component.

The current trends towards a more sustainable use of resources at the one hand,
and ever increasing demands on the durability and safety of engineered structures
on the other hand, require a new, multidisciplinary approach towards the engineering
practice. By enabling the visualization of the internal distributions of stresses and
strains in a body of material, we have a valuable tool in understanding the mechanisms
and processes leading to material deterioration. In addition, this approach enables the
quantification of the interaction between the material and the geometric characteristics
of the body.

1.2 Shifting length scales: from meso to micro level

Until recently, because of the extremely long execution time, memory and storage
space demands, the majority of computer simulations of composite materials such as
asphalt concrete, rocks and cement concrete were performed by means of homogeniza-
tion techniques. New, advanced characterization techniques elucidate the fundamental
physico-chemical interactions and processes that govern the macroscopic behavior of
composite materials. The macroscopic response of structures to external influences
such as forces, moisture or temperature gradients, should be understood and prone
to design from the more fundamental material levels upward. Hence, component in-
teraction is the most critical factor in determining the overall mechanical response of
the composite material and, that, by being able to control and specify the character-
istics of the interaction, the material designer can not only optimize the mechanical
performance but, also, tailor the short and long term response to address specific
environmental and/or loading demands.

In the framework of this thesis, we focus on the composite material asphalt con-

1

crete in the context of pavement engineering. Asphalt concrete consists of a mixture of
bitumen, aggregates and air voids, which have different materials properties. We use
material models which combine the elastic, plastic, and, viscous material properties to
simulate the mechanical response and component interaction. In pavement engineer-
ing, these three material properties determine the volumetric shape of the material,
which, in general, accounts for the condition and usability of the pavement.

Naturally, the difference between the stiffness, which is a function of the elastic,
plastic, and, viscous material properties, of the air voids, bitumen, and, the aggregates
is significantly large, especially at higher temperatures. Moreover, plastic and viscous
behavior is not likely to be observed for stone aggregates under room temperatures.
There are many benefits when modeling asphalt concrete as a composite since then
aging effects, cracking and deterioration of the material due to moisture penetration
can be carefully modeled thus providing the desired insight as to why material prop-
erties degrade or improve when the individual components of the composite change.
This leads to an integrated material design; a synergy between laboratory tests and
computer simulations, which reduces the need for extensive and expensive testing of
the material. Different models and parameters for elasticity, plasticity, and viscos-
ity can be applied to the different materials of the mixture. Changing the amount
of aggregates in the mix does not influence the elastic, plastic and viscous material
parameters of the bitumen.

Even though numerical simulation of asphalt concrete at micro scale has strong
physical advantages, there are also trade offs to be considered. First of all, the
construction of the computational mesh is much more involved compared to modeling
homogeneous materials. After we make tomography scans of samples of materials
fine meshes have to be constructed, representing the geometry, the location and the
mechanical characteristics of the individual components. Typically this can be achieved
by means of Computed Tomography (CT) X-ray scans. Figure 1.1 shows a typical CT
scan of a slice of a cylinder of asphalt concrete. The aggregates, the bitumen and the
air voids are clearly visible. Many successive CT slices are necessary for construction
of high quality three-dimensional surface renderings by means of specialized software
tools like Simpleware ScanFE [77]. Then, additional software like CUBIT [73] is
necessary for the generation of three-dimensional material-per-element meshes.

1.3 Simulation tools for pavement engineering

We simulate the mechanical response of composite materials by means of the math-
ematical framework developed by Malvern, Desai [61, 26], which is extended and
improved by Holzapfel, Lurie, Scarpas, and, Schellekens [58, 42, 74, 75].

In this thesis we use the large deformation, continuum formulation proposed in [74].
The mathematical framework has been implemented into the computational platform

2

Figure 1.1: Tomography scan of slice of asphaltic material.

CAPA-3D, by the group of Mechanics of Infrastructural materials of the Faculty of
Civil Engineering and Geosciences of TU Delft. The software is designed for static or
dynamic analysis of very large scale three-dimensional pavement and soil engineering
models. It consists of a sophisticated user interface, a powerful band-optimizing mesh
generator, high quality user-controlled graphical output, several material and element
types, and a variety of specialized algorithms for the more efficient analysis of pave-
ment constructions. Among others, these include a moving load simulation algorithm
and a contact algorithm.

The underlying mathematical framework involves (highly) non-linear constitutive
(material) models which are coupled to the mechanical response by the laws of energy
conservation, and, dissipation. This formulation leads to three-dimensional coupled,
partial differential equations (PDEs) which are linearized, and, subsequently, dis-
cretized by the Finite Element (FE) method. The linearization leads to the stiffness
matrix, which represents the internal stress of the materials. As the CT scans give
rise to high-quality, very fine meshes, the stiffness matrix involves millions of degrees
of freedom. In general the stiffness matrix is symmetric positive definite (SPD), hence
is non-singular and, thus, the resulting system of linear equations has an unique
solution. Moreover, the stiffness matrix is sparse.

The efficient solution of linear systems with the stiffness matrix is the key to
realistic simulations and leads to the main question of this thesis.

How to built an efficient solver for the linear systems resulting from the simulation
of the mechanical response of composite materials?

3

1.4 Solving the stiffness matrix: numerical solution methods

In the framework of this thesis, the FE computations in CAPA-3D involve the simula-
tion of an inhomogenous material, where the difference in properties of materials leads
to large differences in the entries of the resulting stiffness matrix. Modern iterative
and direct solvers are capable of handling these large systems of equations which
was unthinkable ten years ago. Still, even with the continuously increasing power
of CPUs and the introduction of multiple computing cores on one CPU, the demand
for efficient, parallel computing algorithms is higher. Well proven techniques like the
Krylov subspace methods, multigrid and direct solution methods are mashed up in all
forms of hybrid (iterative) solvers. Due to the availability of open source software,
linear solvers have become available for every engineer with a modern desktop com-
puter. Unfortunately, as mixing different medicine to cure an unknown disease is not
likely to work, randomly mashing up numerical methods is also no guarantee for an
efficient, fast and moreover robust solver. The particularities of each numerical method
and their interaction when combined is often not well understood or acknowledged. In
depth knowledge of the underlying physical phenomena, the discretization and mesh-
ing techniques are key to a successful solution algorithm. To return to our ’medicine’
metaphor, a good recipe can only be written if it is understood what, and especially,
how to cure.

For the PDEs with heterogeneous coefficients considered in this thesis, there are
several state of the art (black box) solvers available. Direct solution methods, the
FETI method, and algebraic multigrid methods (AMG) are among the most popular
solvers and preconditioners.

For small to medium scale problems parallel direct solvers such as MUMPS,
PARDISO, or SuperLU [56, 68, 76, 12, 25, 7] are good choices with respect to cost and
efficiency. However, the performance of parallel direct solvers degrades when solving
linear systems corresponding to three-dimensional meshes. The bandwidth of the
stiffness matrix, hardware limitations, delays in communication due to overhead and
latency and the arithmetic complexity (recursion) induce a boundary on the scalability
of parallel direct solvers when applied to three-dimensional problems.

Several high quality, well parallelisable public domain direct solvers exist. The
FETI and AMG methods are also robust but are often much less expensive than
direct solution methods and have been discussed in [35, 85, 54, 53, 37, 85]. One
AMG adaptation, smoothed aggregation (SA-AMG), has been demonstrated to be
a successful parallel preconditioner to iterative methods, for a number of structural
mechanics applications [3, 4, 17]. The two most relevant studies of SA-AMG to the
simulations considered in this thesis are those of [4, 8], both of which focus on micro-FE
modeling of bone deformation, based on micro-CT scans of human bones.

When considering the class of iterative solution methods, the Conjugate Gradient
(CG) method [41] is a natural choice as the stiffness matrix is SPD. The CG method is

4

composed of only one matrix-vector multiplication and two inner-products per iteration.
In exact arithmetic, the CG method constructs the exact solution within n steps where
the stiffness matrix has dimension n×n. Although in theory CG always converges, in
practice the amount of iterations of CG is determined to a large extend by the condition
number of the stiffness matrix [34]. Linear systems with large jumps in coefficients,
alike those resulting from the composite materials considered in this thesis, have a
large condition number, hence, slow convergence of CG [83].

Preconditioning is the standard technique for improving the convergence of CG.
Common choices of preconditioners are diagonal scaling of the stiffness matrix and
incomplete Cholesky factorization without fill in, i.e. IC(0) [62]. However, treating
the linear system with a traditional preconditioning technique is not sufficient for
our type of application. We will show that there is a direct correlation between the
rigid body modes of the components in the composite materials and the condition
number of the corresponding stiffness matrix. By removing the rigid body modes
of these components from the stiffness matrix we improve the condition number and
hence the convergence of CG. The deflation based preconditioners have successfully
been applied within the field of computational fluid dynamics, with excellent results
on problems with discontinuous jumps in coefficients [81, 32, 80]. We will extend
the technique of subdomain deflation, introduced in [66], towards rigid body modes
deflation or the mathematically equivalent kernel deflation to remove the effect of the
rigid body modes from the linear system. In this thesis we present a new deflation
strategy of using rigid body modes based on the underlying geometry and the physical
properties of the problem. Moreover, we note that as far as we know this is the first
successful application of deflation based preconditioning applied to coupled systems
of PDEs.

1.5 Scope of the thesis

In this thesis we focus on an efficient iterative solution method for solving large sparse
linear systems resulting from the simulation of the mechanical response of composite
materials in the context of pavement engineering. In contrast to direct solvers, iterative
solvers have more favorable properties for solving linear systems for three-dimensional
problems. Iterative solvers are fast, they do not require vast amounts of memory and
are highly parallelizable without losing their scalability. We construct a parallelizable
iterative method, based on the deflation technique, which is more resource efficient
and faster compared to available parallel direct methods. The method considered in
this thesis is the DPCG method introduced in [66] and extended towards rigid body
modes deflation.

We will benchmark the performance of DPCG for different preconditioners and
compare the performance of the method to PCG as well as a direct solver and the

5

state-of-the-art SA-AMG. Moveover, we will compare the performance of SA-AMG
using default parameters as a preconditioner for both PCG and DPCG with that of
SA-AMG using an optimal choice of parameters as a preconditioner to PCG.

All methods are implemented within a parallel environment using Trilinos [40] and
CAPA-3D [19]. We will provide an overview of the DPCG method, and discuss the
parallel implementation of the DPCG method into an existing FE software package.
Finally, we present numerical experiments on FE meshes from real-life cores of asphalt
concrete as case studies for this comparison.

1.6 Outline of the thesis

The structure of this thesis is as follows.

Chapter 2: Structural Mechanics. This chapter gives an introduction to the mathe-
matical framework for the simulation of the mechanical response of composite mate-
rials. The framework is built on large deformation of the material. We introduce the
driving quantities for deformation and stress, respectively the deformation gradient
tensor and First- and Second-Piola Kirchoff stress tensors. We provide definitions
for the elastic, plastic, and, viscous material properties as well as the correspond-
ing material models in the framework of large deformation. We introduce the partial
differential equations captured by the virtual work equation and we solve these non-
linear equations with the Newton-Raphson method. In the last part of this chapter
we discuss the algorithm for returning to force equilibrium.

Chapter 3: Discretization virtual work equation. We discretize the linearized virtual
work equation, which is introduced in Chapter 2, by means of the Finite-Element (FE)
method. This leads to the discretized linearized virtual work equation. We give the
algorithm for the solution of the discretized linearized virtual work equation based on
the Newton-Raphson method and non-linear virtual work equation of Chapter 2. We
introduce the stiffness matrix, which is defined as the Jacobian of the Newton-Raphson
method. In the last part of this chapter we give an overview of the properties of the
stiffness matrix in the context of composite materials.

Chapter 4: Solving the linear system: overview of solution methods. The efficient
solution of the linear systems with the stiffness matrix is key to the simulation of the
mechanical response of composite materials. In this chapter we provide an overview of
the state-of-the-art of linear solution methods for symmetric positive definite matrices.
We consider factorization methods, multigrid methods, and, (preconditioned) iterative
solution methods. We motivate our method of choice, the Preconditioned Conjugate
Gradient (PCG) method.

6

Chapter 5: Deflation theory. In this chapter we discuss the performance and the
limitations of the PCG method applied to composite materials. We illustrate and
explain these limitations by introduction of (small) artificial three-dimensional cases
that involve the simulation of asphaltic concrete, which consists of relatively stiff ag-
gregates embedded in a matrix of soft bitumen, resulting in significant differences
in the stiffness between the bitumen and aggregate elements especially at higher
temperatures. We introduce the deflation operator and describe how to construct the
deflation based preconditioner to improve the performance of PCG by using the rigid
body modes of the components of the composite materials involved, which leads to the
Deflated Preconditioned Conjugate Gradient (DPCG) method. We show theoretically
and experimentally convergence rates, independent of the number of aggregates and
the differences in stiffness coefficients. In the last part of this chapter we discuss the
recursive deflation operator which is key to the construction of the optimal deflation
strategy for composite materials.

Chapter 6: Parallel implementation deflation. In this thesis only parallel solution
methods are taken into account. The DPCG method that we introduced in Chapter
5 is given as a serial algorithm. In this chapter we discuss the parallel implementa-
tion of the deflation operator for parallel algorithms based on domain decomposition.
We propose a solver combining rigid body modes deflation, deflation based on the
subdomains of the domain decomposition, and, local preconditioners that have limited
global error reduction capabilities. We also provide an overview on the parallel im-
plementation of PCG and SA-AMG.

Chapter 7: Numerical examples. In this chapter we consider three numerical exam-
ples for comparing the performance and robustness of the linear solvers introduced in
Chapter 4 and 5. The experiments considered are one, small, artificial test case, and
two real-life engineering cases. We compare the DPCG method, with various precon-
ditioners, to the SA-AMG method, and, the PCG method. We show that the DPCG
method is robust, has limited set-up time, is easy to implement, and, has excellent
parallel scalability properties.

Chapter 8: Civil Engineering Applications. In this chapter we show that plastic and
viscous effects, which are key to many simulations in civil engineering, have no direct
influence on the performance of the DPCG method We consider the artificial test case
introduced in Chapter 7.

Chapter 9: Summary and conclusions. In this chapter we present the main conclu-
sions and give a summary of the most important research results.

7

Chapter 10: Future research. We present ideas for future research. We provide a
short overview on how we might improve existing deflation vectors. We apply this idea
to subdomain deflation and give some results for a real-life test case. Furthermore, we
include some recommendations on how the rapidly evolving field of GPU computing
can be used to speed up the DPCG method in a parallel computing environment.

This thesis is based on the proceeding papers [87, 44], and, the journal papers
[45, 48, 46, 47].

8

2
Structural mechanics

In the first part of this chapter we introduce the fundamentals of structural me-
chanics as described in [74, 29, 13, 23]. The fundamentals of structural mechanics form
a mathematical framework to model the relation between the force exerted on a body
of material, the resulting change in internal force, and, the volumetric change of the
body. This framework is used for the simulations of composite materials.

We describe the relation between stress and strain by means of the deformation
gradient, the balance of forces, the virtual work equation and we provide a brief
overview on the three material properties that constitute the absorption and dissipation
of energy: elasticity, plasticity and viscosity.

In the second part of this chapter we describe the implementation of material
response and the relation to the virtual work equation. We introduce the Clausius-
Planck law for the dissipation of energy and we define the multiplicative decomposition
of the deformation gradient to combine the three material properties given in the first
part of this chapter.

2.1 Continuum model

In Figure 2.1 a body V in the reference configuration (time t = t0) is subjected to an
external force, and deforms into the body v in the current configuration (t = t1). We
define position vector X as the position of point P in body V , and position vector x
as the position of corresponding point p in body v . Both position vectors are defined
in coinciding Cartesian base systems, {Ei : i = 1, 2, 3}, and {ei : i = 1, 2, 3}, in the
reference and current configuration respectively. The relative position vector dX of two
material points P and Q in the reference configuration relates to the relative position
vector dx of corresponding material points p and q in the current configuration as,

dx = FdX (2.1)

9

Figure 2.1: Mapping of relative position vector from the reference to the current
configuration

in which F is the deformation gradient tensor and is defined as,

F =
∂x
∂X (2.2)

=

∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

The difference between position vectors x and X is given by displacement vector u,

x = X + u (2.3)
dx = dX + du (2.4)

2.1.1 Strain

We write the deformation gradient tensor as

F = I +
∂u
∂X, (2.5)

or in index notation as,

Fij = δij +
∂ui
∂Xj

. (2.6)

10

We introduce the right Cauchy-Green deformation tensor,

C = FTF (2.7)

=

(
I +

∂u
∂X

)T (
I +

∂u
∂X

)

= I +

(
∂u
∂X

)T (∂u
∂X

)
+

(
∂u
∂X

)T

+

(
∂u
∂X

)
.

In addition to the right Cauchy-Green deformation tensor, we introduce the Lagrangian-
Green strain tensor E,

E =
1

2
(C− I) , (2.8)

or in index notation as,

Eij =
1

2

(
FkiFkj − δij

)
, i, j ∈ {1, 2, 3} . (2.9)

The main diagonals of the 2nd order tensor E in terms of the displacements are given
by,

Eii =
∂ui
∂Xi

+
1

2

[(
∂u1

∂X1

)2

+

(
∂u2

∂X2

)2

+

(
∂u3

∂X3

)2
]

(2.10)

and the off diagonals, by,

Eij =
1

2

[
∂ui
∂Xj

+
∂uj
∂Xi

+
∂u1

∂Xi
∂u1

∂Xj
+
∂u2

∂Xi
∂u2

∂Xj
+
∂u3

∂Xi
∂u3

∂Xj

]
, i 6= j . (2.11)

We note, that in this thesis, we only consider large deformations as these are common
practice in continuum mechanics [22]. We refer to [20] for the small strain formulation
of such systems.

2.1.2 Stress

Forces applied to a surface area of a body are expressed as pressure and have the
derived quantity of Pascal

(
[Pa] = [N]

[m]2

)
. The forces per unit area are called stress.

Figure 2.2 illustrates the normal vector n and traction force t acting on an in-
finitesimal element da. We express traction force t as,

t = lim
da→0

dq
da, (2.12)

where dq is an infinitesimal force. We introduce the Cauchy stress tensor σ in the
current configuration,

t = σ · n. (2.13)

11

Figure 2.2: Traction t acting on an infinitesimal element da

The Cauchy stress is defined in the current, yet unknown configuration, hence, we
introduce the First Piola-Kirchhoff stress tensor P in the reference configuration. The
First Piola-Kirchhoff stress tensor results from a pullback operation on the Cauchy
stress tensor from the current to the reference configuration taking into account the
surface area change,

T = P ·N (2.14)
where T is the traction vector with respect to the reference configuration, and N the
normal to the corresponding infinitesimal element dA in the reference configuration.
The First Piola-Kirchhoff stress tensor P relates to the Cauchy stress tensor σ as,

P = J·σ · F−T (2.15)

where J = det(F) is the Jacobian used for the volumetric transformation between
the current and the reference configuration. Because the stress tensor P leads to
asymmetric systems, we introduce the symmetric Second Piola-Kirchhoff stress tensor
S

S = J·F−1·σ · F−T (2.16)
We note that the Piola-Kirchhoff stress tensor has no direct physical interpretation
but is necessary to compute the Cauchy stress. The First and Second Piola-Kirchhoff
stress tensors relate as P = FS.

2.2 Equilibrium equation

At a fixed moment in time all forces exerted on a body and internal forces within the
body must be in balance. The balance of forces is defined as,

∫

v
div(σ) + f − ρgdv = 0, (2.17)

12

where σ represents the distributed loads acting on the body, f are body forces which
can be considered as source terms, and ρg is the gravitational force with mass density
ρ.

When the system is unbalanced, the cumulative external and internal forces are
unequal, this difference is expressed by the residual equation,

r =div(σ) + f − ρg. (2.18)

To obtain balance of forces we minimize the residual equation. This problem is
hard to solve, hence, we introduce the weak formulation of the residual equation, by
multiplying the residual force with a virtual velocity δv, yielding the virtual work per
unit volume per unit time,

δW =

∫

v
r · δvdv. (2.19)

We substitute Equation 2.18 into Equation 2.19, apply Green’s Theorem [50], and,
obtain the virtual work in the current configuration,

δW (x) = −
∫

v
σ : δddv +

∫

v
f · δvdv +

∫

a
t · δvda−

∫

v
ρg · δvdv, (2.20)

where, δd is the virtual rate of the deformation tensor d in the current configuration.
By substitution of Equation 2.15 and 2.16 into Equation 2.20 we obtain the virtual
work in the reference configuration,

δW (X) = −
∫

V
P : δḞdV +

∫

V
f0 · δvdV +

∫

A
t0 · δvdA−

∫

V
ρ0g · δvdV . (2.21)

The virtual work is the sum of the virtual work of the internal and external forces,

δW (X) = δWint (X)− δWext (X) (2.22)

δWint (X) =

∫

V
P : δḞdV (2.23)

δWext (X) =

∫

V
f0 · δvdV +

∫

A
t0 · δvdA−

∫

V
ρ0g · δvdV (2.24)

where δḞ is the virtual deformation rate. Because the external forces do not vary in
time (or load step) we rewrite the external work as,

δWext (X) = δv · fext, (2.25)

where,
fext =

∫

V
f0dV +

∫

A
t0dA−

∫

V
ρ0gdV , (2.26)

and, at equilibrium,

δW (X) = δWint (X)− δWext (X) = 0. (2.27)

13

2.3 Balancing forces

Due to the non-linear material response and the geometry of the material the virtual
work equilibrium equation, given by Equation 2.27, is non-linear. We use the modified
Newton-Raphson solution method [43] to solve this non-linear problem.

First we linearize Equation 2.27. We introduce the derivative of an arbitrary
function g in the direction of a vector ∆u,

D∆u [g (x)] = lim
ε→0

(
∂g (x + ε∆u)

∂ε

)
. (2.28)

The directional derivative D∆u satisfies the following rules of differentiation, where
A,B and X are arbitrary tensors,

D∆u [A : B] = D∆u [A] : B + A : D∆u [B] (2.29)

D∆u [A] =
∂A
∂X : D∆u [X] . (2.30)

Assume δW (X0) > 0 where X0 is the spatial vector and assume that with one step
in the direction of ∆u the equilibrium is reached, δW (X0 + ∆u) = 0. Hence, we
linearize the virtual work equation around X0 in the direction of ∆u,

δW =̃δW (X0) + D∆u [δW (X0)] . (2.31)

The linearized virtual work equation equals to zero at equilibrium,

δW (X0) + D∆u [δW (X0)] = 0. (2.32)

Write Equation 2.32 as,

δWint (X0)− δWext (X0) + D∆u [δWint (X0)]− D∆u [δWext (X0)] = 0, (2.33)

where, δWint , δWext as defined in 2.23 and

D∆u [δWint (X0)] =

∫

V
D∆u [P] : δḞdV +

∫

V
P : D∆u

[
δḞ
]
dV (2.34)

D∆u [δWext (X0)] = 0.

We expand the directional derivative of the internal work. The directional derivative
of the First Piola-Kirchoff stress tensor,

D∆u [P] =
∂P
∂F : D∆u [F] , (2.35)

14

where,

D∆u [F] = D∆u

[
∂x
∂X

]
= lim

ε→0

∂
∂X

(
∂x + ε∆u

∂ε

)
=
∂∆u
∂X =∇0∆u. (2.36)

It can be shown that, [74],

∂P
∂F = I⊗ S + F · C · FT . (2.37)

where, C, represents the fourth order elasticity tensor and is defined as, C =∂S
∂E . The

virtual deformation rate δḞ is defined as,

δḞ =Dδv

[
∂v
∂X

]
= lim

ε→0

∂
∂X

(
∂v + εδv

∂ε

)
=
∂δv
∂X =∇0δv. (2.38)

The directional derivative of the virtual deformation rate δḞ is zero by definition,

D∆u

[
δḞ
]

= D∆u

[
∂δv
∂X

]
= 0. (2.39)

We substitute the expressions for D∆u [P] , δḞ and D∆u

[
δḞ
]

into Equation 2.34,
which yields,

D∆u [δWint (X0)] =

∫

V

(
I⊗ S + F · C · FT) :∇0∆u :∇0δvdV + 0

=

∫

V

(
(∇0∆u : (I⊗ S)) +

(
∇0∆u : F · C · FT)) :∇0δvdV

=

∫

V
(∇0∆u · S) :∇0δvdV +

∫

V

(
∇0∆u : F · C · FT) :∇0δvdV . (2.40)

After substitution of Equation 2.40, 2.23, and, 2.24 into Equation 2.32 we obtain the
linearized virtual work equation at equilibrium,

∫

V
(∇0∆u · S) :∇0δvdV +

∫

V

(
∇0∆u : F·C · FT) :∇0δvdV

= δv · fext −
∫

V
P :∇0δvdV . (2.41)

The Newton-Raphson scheme for solving the non-linear virtual work equation is
given by Algorithm 1.

15

Algorithm 1 Balancing forces: solving the non-linear virtual work equation
for t = t0...tend do

Compute increment of external load
for i = 0 until convergence do

Determine, D∆u [δWint (Xi)], given reference configuration Xi
if i = 0 then
δWint (X0) = 0,

end if
Solve D∆u [δWint (Xi)] = δWext (Xi)− δWint (Xi) obtaining u
Update displacements, yielding the current configuration, xi = Xi +u, compute
the deformation gradient F = dxi

dXi
Compute internal force, δWint (xi)
Test for convergence, δWext (xi)− δWint (xi) < ε

end for
end for

2.4 Material response

In previous section we derived the (linearized) virtual work equation. In this section
we give a brief overview of the three material properties, elasticity, plasticity and
viscosity. In most real-life applications, the bodies will consist of different types of
material and a combination of the three properties, elasto-visco-plasticity, is used.

2.4.1 Elasticity

In Figure 2.3, a one dimensional spring is attached to two moveable boundaries with,
at time t = t0, positions x0, and x1. When an external pressure σ is applied to the
boundary at position x1 the spring stretches to a new boundary with position x2 at
t = t1. The difference between positions x2 and x1 is the strain ε of the spring. We
observe elastic behavior when the relation between the external pressure σ and the
strain σ is a linear function in time. This linear behavior must be valid for both the
loading and unloading phase, the material must return to its original state. In the
case of Figure 2.3, the boundaries of the spring must return to positions x0 and x1

respectively after unloading.

2.4.2 Plasticity

Again, we consider the spring of Figure 2.3, but we assume that the material has
plastic properties. When the applied force is not too large the spring will regain its
original shape after unloading. But after a certain threshold the applied force becomes
too large and the spring will yield. During unloading the spring has been deformed

16

permanently and we observe a change in volume. The law of conservation of mass
implies that the density of the body must have changed. This effect is illustrated by
Figure 2.4. We have a linear (elastic) relation between the strain ε and stress σ
when the stresses in the material are small. When the elastic limit or yield point has
been reached, plasticity is observed. The strain-stress relation is no longer linear and
when overstretched, the material will break (break point). Plasticity has two phases,
the hardening and softening phase. The hardening phase is spanning the range from
the yield stress to the ultimate response. The softening phase represents the range
from the ultimate response to the break point.

The domain of admissible stresses that determine the plastic behavior of a material
are predefined by the plastic response surface, illustrated in Figure 2.5. The plastic
response surface is a function of stress and irrecoverable strain. This means that the
surface will grow/shrink in time/iterations. For uniaxial compression tests (uniform
loading of the body of material along one axis) the stress path is depicted by the dotted
line in Figure 2.5. The variable I1 is the first invariant and represents summation of the
normal stress components, σxx ,σyy and σzz . The variable

√
J2 is the second invariant

and represents the relation between the deviatoric stress components, Sxy, Sxz and
Syz and are defined as Sij = σij − 1

3
tr(σ)δij , where i, j ∈ {x, y, z}. From Figure 2.5 it

is apparent that for an uniaxial compression test the ratio between a stress and strain
increment is constant. In this example the ratio is equivalent to an angle of 60◦.

The total stress will show elastic behavior when it is still in the domain of ad-
missible stresses. This phase corresponds to the elastic response curve of Figure 2.4.
However, when the stress exceeds the elastic limit the material will start to build up
plasticity. This is the yield point. The material is in the hardening phase until the
point of ultimate plastic response has been reached. From this point the material will
no longer harden but it will soften. The physical interpretation is that the material
starts to show micro cracks in its internal structure.

Both phases are characterized by the hardening and softening parameters, that
are unique to each material. In preempt to Section 2.5, we note that the stress-strain
relation illustrated in Figure 2.4 comes from a return mapping procedure that utilizes
the plastic response surface. In the return mapping procedure we assume elastic
behavior of the material and we back-calculate the corresponding plastic behavior.

Figure 2.3: Simplified representation of elastic material.

17

Figure 2.4: Example of relation between strain and stress.

2.4.3 Viscosity

Viscosity is defined as the internal friction of a fluid. In Figure 2.6 we illustrate the
flow of a viscous fluid between two plates. We apply force F at the right boundary,
hence the upper plate moves with constant velocity v and we fix the position of the
lower plate. Due to the viscous material property, at the upper and lower boundaries,
the fluid will have the same velocity as the corresponding boundary surfaces. Hence,
the fluid is moving with velocity v near the upper plate and is stationary near the
lower plate. For a fixed period of time, the volume of fluid in the area abcd will
deform into area abc′d′. The fluid is in a state of continuously increasing shear
strain, defined as the ratio of the displacement dd′ to the length of the flow l. We
define A as the surface area between the two plates, the ratio F

A is the shear stress
exerted on the fluid.

We define the viscosity η of a fluid as the ratio of the shear stress to the change
of shear strain,

η =
F/A

∆dd′/l =
F/A
v/l . (2.42)

The viscosity of a material strongly depends on the temperature. For example, at
higher temperatures, the upper layer of asphaltic materials absorbs sunlight and the
internal heat of the material increases. Hence, the asphalt becomes less viscous and
more fluid like. The same effect is observed when heavy forces are applied to the
material. Due to pressure the material will become less viscous and will soften.

Figure 2.5: Example of plastic yield surface.

18

Figure 2.6: Simplified example of 1D viscous laminar flow.

2.5 Implementation of material response

In this section we introduce a mathematical framework to describe the elasto-visco-
plasticity material response. We introduce the Clausius-Planck inequality, the law
of dissipation of energy within materials, and subsequently we derive the constitutive
relations for the material models.

2.5.1 Dissipation of energy

The energy-dissipation equation captures the response of material to externally ap-
plied forces. True dissipation of energy is only valid for inelastic systems. Because
of this inelastic behavior (plasticity and viscosity), energy (heat) is dissipated over
the system when the material responds to the applied forces. In other words, when
forces are being applied to the system, mechanical processes within the material are
initiated. For elastic materials these processes are reversible. The stress is only a
function of the deformation (and temperature) and the system will return to its original
state during unloading. However, for plastic and viscous materials the stress becomes
a function of deformation and variables associated with the memory properties of the
material. From a certain point in time (yielding point), with endured loading, the me-
chanical processes are irreversible. For instance, when plasticity applies, the system
will experience permanent deformation.

The loss of energy is defined by the Clausius-Planck inequality,

D = P : Ḟ− Ψ̇ ≥ 0, (2.43)

where P : Ḟ represents the work per unit volume per unit time and Ψ is known as the
Helmholtz free-energy function or, when solely a function of the deformation gradient
F, the strain energy function. The Helmholtz free energy function is a potential, i.e.
(virtual) work per unit volume. At any point in the system and at all times the internal
dissipation D should be non-negative.

2.5.2 Multiplicative decomposition

We extend our current framework of the sole deformation gradient to combine the three
material properties. We want to measure and compute the effects of elasticity, plas-

19

Figure 2.7: Schematic representation of multiplicative decomposition.

ticity and viscosity separately. Hence, we introduce the multiplicative decomposition
of the deformation gradient.

In Figure 2.7 we illustrate the decomposition of the deformation gradient of a
material in which the elastoplastic and viscoelastic components act in parallel, where,

F = F∞·Fp, (2.44)
F = Fe·Fv . (2.45)

in which, F∞, is the elastic component of the deformation gradient of the elastoplastic
element, Fp, is the plastic component of the deformation gradient of the elastoplastic
element, Fe, is the elastic component of the deformation gradient of the viscoelastic
element, and, Fv , is the viscous component of the deformation gradient of the vis-
coelastic element. We define the elastic and plastic right Cauchy-Green strain tensor
of the elasto-plasitc component as,

C∞ = FT
∞·F∞, (2.46)

Cp = FT
p ·Fp, (2.47)

and the elastic and viscous right Cauchy-Green strain tensor of the visco-elastic
component as,

Ce = FT
e ·Fe, (2.48)

Cv = FT
v ·Fv . (2.49)

Therefore we have,

C = FT ·F (2.50)
= FT

p ·C∞·Fp (2.51)
= FT

v ·Ce·Fv . (2.52)

The relation between the Cauchy stress, σ , and the Second Piola-Kirchhoff stress
tensor, S, for plasticity is given by,

J−1·F∞·S∞·FT
∞ = σ = J−1·F · S · FT , (2.53)

20

and the Second Piola-Kirchhoff stress tensor, S, for viscosity is given by,

J−1·Fe·Se·FT
e = σ = J−1·F · S · FT , (2.54)

hence, it is sufficient to compute the values of S∞ and F∞ to compute the value of S.

2.5.3 Generalized model local dissipation

The Helmholtz free energy function for a elasto-visco-plastic material model can be
expressed as,

Ψ = Ψv (Ce) + Ψp (C∞, ξp) . (2.55)

Here ξp is a measure of the plastic deformation. The Clausius-Planck inequality of
Equation 2.43 leads to,

S :
1

2
Ċ−

[
∂Ψp

∂C∞
: Ċ∞ +

∂Ψp

∂ξp
·ξ̇p
]
−
[
∂Ψv

∂Ce
: Ċe

]
≥ 0 (2.56)

We reformulate Equation 2.56 as,
[
S− 2F−1

v ·
∂Ψv

∂Ce
·F−Tv − 2F−1

p ·
∂Ψp

∂C∞
·F−Tp

]
:

1

2
Ċ (2.57)

+

[
2F∞·

∂Ψp

∂C∞
·FT
∞·F−T∞ : F∞·lp −

∂Ψ
∂ξp
·ξ̇p
]

(2.58)

+

[
2Fe·

∂Ψv

∂Ce
·FT

e ·F−Te : Fe·lv
]
≥ 0. (2.59)

By standard arguments the stress tensor, S, can be additively decomposed into a
viscoelastic, Sv , and a plastic component, Sp,

S = 2F−1
v ·

∂Ψv

∂Ce
·F−Tv + 2F−1

p ·
∂Ψp

∂C∞
·F−Tp (2.60)

= Sv + Sp. (2.61)

And, hence, we obtain the following constitutive relations for plastic response,
[
2F∞·

∂Ψp

∂C∞
·FT
∞·F−T∞ : F∞·lp −

∂Ψ
∂ξp
·ξ̇p
]
≥ 0, (2.62)

and, viscous response,
[
2Fe·

∂Ψv

∂Ce
·FT

e ·F−Te : Felv
]
≥ 0. (2.63)

21

2.5.4 Hyperelastic response

In this thesis, we describe hyperelasticity with the Neo-Hookean constitutive model,

S = µI− µdet(FTF)−α(FTF)−1, (2.64)

and
C =

2µα
det(FTF)α

(FTF)−1 ⊗ (FTF)−1 − 2µ
det(FTF)α

∂(FTF)−1

∂(FTF)
, (2.65)

where α = ν
1−2ν and ν , µ are the Poisson ratio and the Lamé material constant,

respectively. We refer to [74] for an extensive overview of hyperelastic constitutive
models.

2.5.5 Plastic response

We use the algorithm for computing the plastic response as given in [55]. In the
intermediate configuration, for the elastoplastic component of the model, the Helmholtz
free energy is given by,

Ψ = Ψ (C∞, ξ) , (2.66)
and,

Ψ̇ =
∂Ψ
∂C∞

: Ċ∞ +
∂Ψ
∂ξ : ξ̇ . (2.67)

Rewrite Equation 2.67 with respect to the deformation gradient as,

Ψ̇ = 2F∞·
∂Ψ
∂C∞
·F−Tp : Ḟ− 2C∞·

∂Ψ
∂C∞
·F−Tp : Ḟp −

∂Ψ
∂ξ : ξ̇ . (2.68)

Hence, the Clausius-Planck local dissipation inequality reads

D = P : Ḟ− Ψ̇ (2.69)

=

[
P− 2F∞·

∂Ψ
∂C∞
·F−Tp

]
: Ḟ + 2C∞·

∂Ψ
∂C∞

: lp + qξ̇ ≥ 0, (2.70)

from which we obtain by standard argumentation the First Piola-Kirchhoff stress
tensor, which is defined as,

P = 2F∞·
∂Ψ
∂C∞
·F−Tp , (2.71)

and the dissipation inequality,

Σ : lp + qξ̇ ≥ 0, (2.72)

where, Σ =C∞S∞, is the Mandel stress and, S∞ = 2 ∂Ψ
∂C∞ , the Second Piola-Kirchhoff

stress tensor defined in the intermediate configuration.

22

On the basis of the inequality of Equation 2.72 we define the following constrained
minimization problem,

min −
(
Σ : lp + qξ̇

)
, (2.73)

s.t. f (Σ, q) . (2.74)

This minimization problem is equivalent to the following set of plastic evolution equa-
tions,

lp = Ḟp·F−1
p = λN, (2.75)

ξ̇ = λ ∂f∂q, (2.76)

λ ≥ 0 ; f (Σ, q) ≤ 0 ; λf (Σ, q) = 0, (2.77)

where, λ, is the plastic consistency parameter, N = ∂f
∂Σ , and, f (Σ, q), is the plastic

response surface. The flow rule given by Equation 2.75 can be written as,

∂Fp

∂t = λN · Fp. (2.78)

We compute the elastic deformation gradient to obtain the Second Piola-Kirchhoff
stress in the reference configuration,

Ft+∆t
∞ = Ft+∆t·

(
Ft+∆t
p

)−1 . (2.79)

We assume no plastic deformation takes place during the time interval, [t, t + ∆t],

Ft+∆t
p = Ft

p, (2.80)
ξ t+∆t = ξ t. (2.81)

We introduce an approximation of the elastic deformation gradient F∞,

F̃t+∆t
∞ = Ft+∆t·

(
Ft
p
)−1 . (2.82)

We solve the evolution laws of Equation 2.78 for the time interval [t, t + ∆t] analyti-
cally,

Ft+∆t
p =

[
e∆λN]t+∆t Ft

p, (2.83)
hence,

Ft+∆t
∞ = Ft+∆t·

(
Ft
p
)−1 [e−∆λN]t+∆t (2.84)

= F̃t+∆t
∞

[
e−∆λN]t+∆t . (2.85)

23

The exponential can be approximated by a first order Taylor expansion,

e−∆λN = I−∆λN+
(∆λ)2

2!
N2+.... (2.86)

Elaborate Equation 2.84 with the use of Expression 2.86 and ignoring the second
order term further to,

Ft+∆t
∞ = F̃t+∆t

∞ −∆λWt+∆t (2.87)

where,
Wt+∆t = F̃t+∆t

∞ ·Nt+∆t (2.88)

It is apparent that Equation 2.87 constitutes an elastic predictor – plastic corrector
solution for the deformation tensor.

We derive the following hardening rule by means of Equation 2.75 and a backward
Euler time integration scheme,

ξ t+∆t = ξ t +

[
∆λ
(
∂f
∂q

)]t+∆t

. (2.89)

A system of residual equations can be formulated using Equation 2.87 and 2.89,

R =

(
RF∞
Rf

)
=

(
Ft+∆t
∞ − F̃t+∆t

∞ + ∆λWt+∆t

[f (Σ, q)]t+∆t

)
. (2.90)

Note that the residual Rf is equal to the plastic response surface [f (Σ, q)]t+∆t . This
corresponds to the objective of reducing the (trial) elastic stress state to the plastic
response surface as described in Section 2.4.2. Hence, the plastic response on time
t+ ∆t is desired to be zero. We use the Newton-Raphson procedure [30] to solve the
preceding residual equations,

(
Ft+∆t
∞

[∆λ]t+∆t

)

r+1

=

(
Ft+∆t
∞

[∆λ]t+∆t

)

r
−
((

[J]t+∆t
)−1
)

r

(
[RF∞]t+∆t

[Rf]t+∆t

)

r
(2.91)

where,

((
[J]t+∆t

)−1
)

r
=

∂(RF∞)11

∂(F∞)11

∂(RF∞)11

∂(F∞)12
· · · ∂(RF∞)11

∂(F∞)33

∂(RF∞)11

∂(∆λ)
∂(RF∞)12

∂(F∞)11

∂(RF∞)12

∂(F∞)12
· · · ∂(RF∞)12

∂(F∞)33

∂(RF∞)12

∂(∆λ)
...

∂(RF∞)33

∂(F∞)11

∂(RF∞)33

∂(F∞)12
· · · ∂(RF∞)33

∂(F∞)33

∂(RF∞)33

∂(∆λ)
∂(Rf)

∂(F∞)11

∂(Rf)
∂(F∞)12

· · · ∂(Rf)
∂(F∞)13

∂(Rf)
∂(∆λ)

. (2.92)

24

2.5.6 Viscoelastic response

Similar to the elastoplastic component, we derive the expressions for the viscoelastic
component in the intermediate configurations. In the intermediate configuration, for
the viscoelastic component of the model, the Helmholtz free energy function can be
set up as

Ψ = Ψ (Ce) . (2.93)
Since the Helmholtz free energy function of the viscoelastic component only depends
on the elastic strain tensor, it can also be referred to as a Strain Energy function. Its
time derivative can therefore be found as

Ψ̇ =
∂Ψ
∂Ce

: Ċe. (2.94)

By means of expression 2.48, Equation 2.94 can be further elaborated as,

Ψ̇ = 2Fe·
∂Ψ
∂Ce
·F−Tv : Ḟ− 2Ce·

∂Ψ
∂Ce
·F−Tv : Ḟv . (2.95)

Hence the Clausius-Planck local dissipation inequality reads,

D = P : Ḟ− Ψ̇ (2.96)

=

[
P− 2Fe·

∂Ψ
∂Ce
·F−Tv

]
: Ḟ + 2Ce·

∂Ψ
∂Ce

: lv ≥ 0, (2.97)

with, lv = ḞvF−1
v . From which by standard argumentation the first Piola-Kirchhoff

stress tensor is obtained as,
P = 2Fe·

∂Ψ
∂Ce
·F−Tv , (2.98)

and, the dissipation inequality,
Σ : lv ≥ 0, (2.99)

where, Σ =CeSe, is the Mandel stress and, Se = 2 ∂Ψ
∂Ce , is the second Piola-Kirchhoff

stress tensor defined in the intermediate configuration. The following evolution law
can be found

lv = C−1
v : Σ, (2.100)

with,
C−1
v =

1

2ηD

(
I− 1

3
I ⊗ I

)
+

1

9ηV
I ⊗ I, (2.101)

while ηD and ηV are the deviatoric and volumetric viscosities which may be deformation
dependent,

ηD = ηD (Σ) > 0, (2.102)
ηV = ηV (Σ) > 0. (2.103)

25

Therefore,
lv = ḞvF−1

v = C−1
v : Σ, (2.104)

which can be written as,
∂Fv

∂t =
(
C−1
v : Σ

)
·Fv . (2.105)

In Section 2.5.2 it was indicated that to obtain the second Piola-Kirchhoff stress in
the reference configuration we need to compute the elastic deformation gradient,

Ft+∆t
e = Ft+∆t·

(
Ft+∆t
v

)−1 . (2.106)

If we assume no further viscous deformation takes place during the time interval
[t, t + ∆t] then,

Ft+∆t
v = Ft

v . (2.107)
We introduce an approximation for the elastic deformation gradient Fe,

F̃t+∆t
e = Ft+∆t·

(
Ft
v
)−1 . (2.108)

We solve the evolution laws of Equation 2.105 for the time interval [t, t + ∆t] ana-
lytically,

Ft+∆t
v =

[
e∆C−1

v :Σ
]t+∆t

Ft+∆t
v , (2.109)

where, ∆C−1
v = C−1

v ∆t . Hence,

Ft+∆t
e = Ft+∆t·

(
Ft+∆t
v

)−1
[
e−∆C−1

v :Σ
]t+∆t

(2.110)

= F̃t+∆t
e

[
e−∆C−1

v :Σ
]t+∆t

. (2.111)

We approximate the exponential with a Taylor expansion,

e−∆C−1
v :Σ ≈ I−∆C−1

v : Σ+
(∆C−1

v : Σ)
2

2!
. (2.112)

We expand Equation 2.110 with the approximation of the exponential in Equation
2.112, and, ignoring the second order term. We obtain,

Ft+∆t
e = F̃t+∆t

e −∆C−1
v : Wt+∆t, (2.113)

where,
Wt+∆t = F̃t+∆t

e Σt+∆t. (2.114)
A system of residual equations can be formulated using Equation 2.113,

R=RFe = Ft+∆t
e − F̃t+∆t

e + ∆C−1
v : Wt+∆t. (2.115)

26

We use the Newton-Raphson procedure to solve the preceding residual equations,

(
Ft+∆t
e

)
r+1

=
(
Ft+∆t
e

)
r −
((

[J]t+∆t
)−1
)

r

(
[RFe]

t+∆t
)

r
, (2.116)

where,

((
[J]t+∆t

)−1
)

r
=

∂(RFe)11

∂(Fe)11

∂(RFe)11

∂(Fe)12
· · · ∂(RFe)11

∂(Fe)33
∂(RFe)12

∂(Fe)11

∂(RFe)12

∂(Fe)12
· · · ∂(RFe)12

∂(Fe)33...
∂(RFe)33

∂(Fe)11

∂(RFe)33

∂(Fe)12
· · · ∂(RFe)33

∂(Fe)33

. (2.117)

27

3
Discretization virtual work equation

In the first part of this chapter we give a brief overview of the finite-element (FE)
method, we derive the discretized linearized virtual work equation and introduce the
stiffness matrix. In the second part of this chapter we identify the issues related
to solving the discretized virtual work equation, that are key to the main research
question of this thesis: how to solve the stiffness matrix resulting from structural
mechanics efficiently.

3.1 Discretization of the linearized virtual work equation

In order to solve the linearized virtual work equations of Section 2.3, we discretize in
space and time. In static mechanics time is non existent, the external load steps are
increased by discrete quantities. In dynamic mechanics we have time as an additional
degree of freedom as the velocity as well as the acceleration of the system are taken
into account. We introduce the discretization for static and dynamic mechanics sepa-
rately. We use finite-elements (FE) [11, 90] to discretize the space. In FE, the choice
of elements and shape functions affects the stability and accuracy of the numerical
solution. In dynamic mechanics, time will be discretized by the Newmark integration
scheme [78].

Figure 3.1: Finite element mesh applied to computer model of asphalt column.

29

3.1.1 Finite-Element method

In this section we provide a brief overview of the FE method. Figure 3.1 shows a body
of stone, derived from the CT scan shown in Figure 1.1, and, the resulting mesh that
we obtained from the CUBIT mesh generator. The mesh in Figure 3.1 consists of four
noded, tetrahedral elements. In general, meshing of composite materials requires a
large number of elements, for two reasons. First, composite materials consist of many
(small) bodies that have non-regular shapes. These shape require (locally) a large
number of elements to obtain a high quality (non-negative element Jacobians, small
element-to-element ratio), well defined mesh. Second, in preempt to the remainder
of this section, for our application, we use low-accuracy elements. These elements
are cheap for numerical integration (evaluation of the internal forces), and yield less
degrees of freedom per element, at a cost of having much finer meshes compared to
higher-accuracy elements when we want to sustain a satisfactory (global) accuracy
of the solution.

Element type and shape functions

The composite materials in this thesis are meshed with unstructured grids and tetra-
hedral elements. We consider a tetrahedral element with local coordinate system
(ξ, η, ζ), illustrated in Figure 3.2, where the relation between the local and the nat-
ural coordinate system is represented by the Jacobian J ,

∂
∂ξ
∂
∂η
∂
∂ζ

 = J

∂
∂x
∂
∂y
∂
∂z

 =

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

∂
∂x
∂
∂y
∂
∂z

 . (3.1)

We use linear shape functions to interpolate between the element nodes. The linear
shape function Ni is defined as,

Ni(xξ) = c1,iξ + c2,iη + c3,iζ + c4,i (3.2)

Figure 3.2: Tetrahedral element with local coordinate system (ξ, η, ζ)

30

where, i = 1, .., 4, and local position vector, xξ = (ξ, η, ζ)T. By definition, for all
i, j = 1, .., 4, the shape function, Ni, must satisfy,

Ni(xξ) = δij(xξ) =

{
1, for xξ = (ξi, ηi, ζi)T

0, for xξ = (ξj , ηj , ζj)T, i 6= j . (3.3)

We determine the coefficients of the shape functions by solving, for each i = 1, .., 4,
the 4× 4 system,

ξ1 η1 ζ1 1
ξ2 η2 ζ2 1
ξ3 η3 ζ3 1
ξ4 η4 ζ4 1

c1,i
c2,i
c3,i
c4,i

 = ei. (3.4)

For given local coordinate xξ the shape functions must satisfy,

4∑

i=1

Ni (xξ) = 1. (3.5)

We define the interpolated displacement field ū at position xξ as,

ū(xξ) =
4∑

i=1

Ni (xξ) · ui, (3.6)

where ui are the known displacements at nodes i = 1, .., 4.

Gauss points and numerical integration

Consider a continuous function f defined on domain, Ω. The integral, If , of f over Ω
is defined as,

If =

∫

Ω

fdΩ. (3.7)

The domain Ω is meshed into n tetrahedral elements, Ωi, therefore Ω =
⋃n
i=1 Ωi, and,

If =

∫

Ω1

fdΩ1 + · · ·+
∫

Ωn

fdΩn =
n∑

i=1

∫

Ωi

fdΩi. (3.8)

We evaluate the integrals of the functions defined on the elements by numerical
integration. We have,

Ifi =
∫

Ωi
fdΩi

=
∫

Ωi
fdxdydz

=
∫

Ωi
f |J|dξdηdζ

(3.9)

31

The integral defined on the (ξ, η, ζ) space of Equation 3.9 can be approximated by,

∫ 1

0

∫ 1−ξ
0

∫ 1−ξ−η
0

f |J|dξdηdζ = f (ξa, ηa, ζa) |J|
∫

Ωi
dξdηdζ

=̃ f (ξa, ηa, ζa) |J| 1
6

= Ĩfi
(3.10)

where, (ξa, ηa, ζa), is the Gauss point of element Ωi. Optimal positions for Gauss
points have been calculated for many types of elements, such that error,

∣∣∣Ifi − Ĩfi
∣∣∣, is

minimized.
In general, the addition of more Gauss points to an element will increase the

accuracy of the numerical evaluation of integrals defined on that element, but increases
the computational costs. For linear elements, considered in this thesis, one Gauss point
gives the exact approximation to the numerical integrals of the interpolated functions
built on linear shape functions.

3.1.2 Stiffness matrix

Static mechanics

In Section 2.3 we have derived the linearized virtual work equation at the equilibrium.
We apply the finite elements formulation of Section 3.1.1 to the linearized virtual work
equation.

For each element we have N shape functions, Nk , as described in Section 3.1.1.
We derive the following quantities by using an isoparametric formulation,

∇0∆u =
N∑

k=1

∆uk ⊗∇0Nk=
N∑

k=1

∆uk ⊗
∂Nk

∂X , (3.11)

∇0δv =
N∑

k=1

δvk ⊗∇0Nk=
N∑

k=1

δvk ⊗
∂Nk

∂X . (3.12)

in which ∆u and δv are the displacement increment and virtual velocity respectively.
We substitute the former expression into Equation 2.41 and expand all integrals.

The virtual internal work.

δWint =
∫
V P :∇0δvdV

=
∫
V P :

(∑N
k=1 δvk ⊗

∂Nk
∂X

)
dV

=
∑N

k=1 δvk
∫
V P :

(
I⊗ ∂Nk

∂X
)
dV

=
∑N

k=1 δvk
∫
V P : B0dV .

(3.13)

32

The derivative in the direction of the incremental displacement of the internal work,

D∆uδWint =

∫

V
(∇0∆u · S) :∇0δvdV +

∫

V

(
∇0∆u : F · C · FT) :∇0δvdV

=

∫

V
(∇0∆u · S) :∇0δvdV +

∫

V

(
C : FT ·∇0∆u

)
: FT ·∇0δvdV

=

∫

V

((N∑

l=1

∆ul ⊗
∂Nl

∂X

)
S
)

:

(N∑

k=1

δvk ⊗
∂Nk

∂X

)
dV

+

∫

V
FT

(N∑

l=1

∆ul ⊗
∂Nl

∂X

)
: C : FT

(N∑

k=1

δvk ⊗
∂Nk

∂X

)
dV . (3.14)

Because we have,
(

∆ul ⊗
∂Nl

∂X

)
·S :

(
δvk ⊗

∂Nk

∂X

)
= ∆ul·

∂Nl

∂X ·S·
∂Nk

∂X ·I·δvk , (3.15)

and,
FT ·

(
∆ul ⊗

∂Nl

∂X

)
= ∆ul·

(
F⊗ ∂Nl

∂X

)
, (3.16)

we rewrite Equation 3.14 as,

D∆uδWint =
N∑

l=1

N∑

k=1

δvk
[∫

V

∂Nl

∂X ·S·
∂Nk

∂X ·IdV

+

∫

V

(
F⊗ ∂Nl

∂X

)
: C :

(
F⊗ ∂Nk

∂X

)
dV
]

∆ul

=
N∑

l=1

N∑

k=1

δvk
[∫

V
∇0Nl·S·∇0Nk·IdV

+

∫

V
(BL)l : C : (BL)k dV

]
∆ul,

(3.17)

where,

∇0Nl =
∂Nl

∂X (3.18)

(BL)l =

(
F⊗ ∂Nl

∂X

)
. (3.19)

At last, the discretized form of the external virtual work,

δWext =
N∑

k=1

δvk · (fext)k . (3.20)

33

This leads to the discretized linearized virtual work equation at equilibrium,
N∑

l=1

N∑

k=1

δvk
[∫

V
∇0Nl·S·∇0Nk·IdV +

∫

V
(BL)l : C : (BL)k dV

]
∆ul

=
N∑

k=1

δvk (fext)k −
N∑

k=1

δvk
∫

V
P : B0dV .

(3.21)

By definition Equation 3.21 must hold for all δvk , hence we eliminate δvk from the
equation. We write the discrete equilibrium equation in short notation as,

K∆u = ∆fext −∆fint, (3.22)

where,
K = K σ + K c, (3.23)

is defined as the stiffness matrix. The matrices, K σ , K c , correspond with the geomet-
rical stress components and the constitutive components respectively.

Analoguous to Algorithm 1 we introduce Algorithm 2 which represents the eval-
uation of the discretized non-linear virtual work equation by means of the Newton-
Raphson method1.

Dynamic mechanics

We obtain dynamic mechanics when we extend the formulation of the discretized
linearized virtual work equation to the time domain. We take into account not only
the displacement field but also velocity and acceleration of the body. Consider the
linearized virtual work equation extended to the time domain,

Ku + Cv +Ma = fext, (3.24)

where, C , is the damping matrix, M , the mass matrix, v, the velocity vector, and, a,
the acceleration vector. We note that, u̇ = v, and, ü = a. We solve the second
order differential equation of Equation 3.24 with the Newmark integration scheme
[64]. We write the acceleration and velocity as function of displacement and solve for
the unknown displacement field, u, hence,

ut+∆t = ut + ∆tvt + (∆t)2 [(1
2
− β

)
at + βat+∆t] ,

vt+∆t = vt + ∆t
[
(1− γ) at + γat+∆t] . (3.25)

1Algorithm 2 is the key algorithm of the FE software package CAPA-3D [19] that implements the
mathematical framework of Chapters 3 and 4. All numerical results in this thesis have been produced
explicitly- or implicitly with CAPA-3D. In the scope of this thesis we have parallelized CAPA-3D by
means of domain decomposition.

34

Algorithm 2 Balancing forces: solving the discretized non-linear virtual work equation
for t = 0...tend do

Compute external load f text
for i = 0 until convergence do

Assemble stiffness matrix K t,i

if i = 0 then
f0
int = 0 and ∆f0 = f0

ext − f0
int

end if
Solve system K t,i∆ui = ∆f i
Update displacements, ui+1 = ui + ∆ui
Compute internal force, f i+1

int and ∆f i+1 = f i+1
ext − f i+1

int
Test for convergence, ∆f i+1

∆f0 < ε
end for

end for

The predictor of time step, t ,

ūt+∆t = ut + ∆tvt + (∆t)2 (1
2
− β

)
at,

v̄t+∆t = vt + ∆t (1− γ) at. (3.26)

By substitution of Equation 3.26 into Equation 3.25 we obtain,

ut+∆t = ūt+∆t + (∆t)2 βat+∆t,
vt+∆t = v̄t+∆t + ∆tγat+∆t. (3.27)

Analoguous to the velocity field, an expression for the acceleration is obtained from
Equation 3.27,

at+∆t =
1

(∆t)2 β
(
ut+∆t − ūt+∆t) . (3.28)

We embed the Newmark integration scheme into the Newton-Raphson iteration scheme
of Algorithm 2 to obtain a force equilibrium for every timestep, ∆t . Define the dis-
placements, velocity and acceleration for time, t+∆t , at the (k+1)st Newton-Raphson
iteration as,

ut+∆t
k+1 = ut+∆t

k + ∆ut+∆t
k ,

vt+∆t
k+1 = v̄t+∆t + γ

(∆t)β
(
ut+∆t
k+1 − ūt+∆t) ,

at+∆t
k+1 = 1

(∆t)2β

(
ut+∆t
k+1 − ūt+∆t) ,

(3.29)

where, ut+∆t
0 = ūt+∆t . Substitution of Equation 3.29 into Equation 3.24 yields,

K ∗∆ut+∆t
k+1 = f̃ t+∆t

ext,k+1 − f t+∆t
int,k+1, (3.30)

35

where,

K ∗ = K + γ
∆tβC + 1

(∆t)2βM,
f̃ t+∆t
ext,k+1 = f t+∆t

ext − Cvt+∆t
k −Mat+∆t

k ,
f t+∆t
int,k+1 = Kut+∆t

k .

3.2 Stiffness matrix for composite materials

In this section we discuss the properties of the stiffness matrix in the context of
composite materials.

3.2.1 General properties of stiffness matrix

In previous chapters, we have seen that due to the shift in length scales as well as
the required accuracy in the simulations of asphaltic (composite) materials and with
the choice of elements, shape functions, and number of Gauss points, we need to solve
the non-linear virtual work equation on fine meshes that contain a large number of
elements. By definition, the stiffness matrix of Equation 3.23 is an assembly of element
matrices, hence, for these fine meshes, the stiffness matrix has large dimension and
is sparse, and ill-conditioned. We assume that an arbitrary domain is meshed by m
tetrahedral, linear, elements, yielding element stiffness matrices, Ke ∈ R12×12. We
introduce the element operator, Ne ∈ R12×n, that maps a global vector to an element
vector, ue = Neu. We assemble stiffness matrix, K ∈ Rn×n,

K =
m∑

e
NT
e KeNe. (3.31)

The stiffness matrix is, in fact, the Jacobian of the Newton-Raphson method, repre-
sented by, K , in Algorithm 2. The stiffness matrix is symmetric and positive definite
for elastic, constrained systems; hence, ∀u 6= 0 : uTKu > 0 and all eigenvalues of,
K , are real and positive. Furthermore, 1

2
uTKu, is the strain energy stored within the

system for displacement vector, u, [11]. Energy is defined as a non-negative entity;
hence, the strain energy must be non-negative also.

We evaluate the internal forces by numerical integration, which is relatively inex-
pensive because we have only one Gauss-point per element. We argue that evaluation
of the Jacobian, thus, solving the linear system that corresponds to the stiffness matrix,
is the most time-consuming step of the Newton-Raphson method.

3.2.2 Discontinuities entries stiffness matrix

We have seen that the geometrical properties of the elements, the shape functions
and the constitutive equations determine the entries of the stiffness matrix. Composite

36

(a) Convergence of Newton-Raphson method using
initial stiffness Jacobian

(b) Convergence of Newton-Raphson method using
true stiffness Jacobian

materials yield meshes where neighboring elements may have different material prop-
erties, hence constitutive models. We have seen in Section 2.4 that the stiffness of a
material is determined by its Young’s modulus, Lamé constants and Poisson ratio. The
matrix entries may vary in orders of magnitude if the different material models have
equivalent differences in stiffness. We will see in Chapter 4 that these high jumps
between the entries of the stiffness matrix result in very ill-conditioned systems and
require tailor made solution methods to efficiently solve the linear system.

3.2.3 Non-linear material properties

To reduce the computation time of Algorithm 2, the entries of the stiffness matrix
are fixed during a prescribed number of iterations or load steps. We refer to this

37

principle as ’initial stiffness’. In preempt to Chapter 4, direct solution methods store
the factorization of the stiffness matrix and thus, benefit from this approach. However,
for (highly) non-linear material properties such as hyper-elasticity, plasticity and
viscosity we observe (large) variations in the true entries of the stiffness matrix over
load increments or time for static and dynamic mechanics respectively. The poor
approximation of the Jacobian of the linearized virtual work equation for such highly
non-linear materials may result in a large number of Newton-Raphson iterations.
This effect is illustrated in Figure 3.3(a) and 3.3(b) for an arbitrary energy curve. The
true stiffness matrix yields an accurate Jacobian and, hence, quadratic convergence
of Newton-Raphson. The initial stiffness matrix yields a poor approximation of the
Jacobian and the convergence of Newton-Raphson is slow.

In this thesis we consider large strain deformations. For certain stress levels we
may exceed the elastic limit of the elasto-visco-plastic material models, and observe
hardening and softening due to the visco, and plastic components. These effects yield
significant contributions to the entries of the stiffness matrix, and hence, changes the
properties of the matrix. The approach of initial stiffness would lead to very slow
convergence or, in some cases, stagnation of the Newton-Rapshon method. In this
thesis we reassemble the stiffness matrix after every load increment or time step.

3.3 Concluding remarks

In Chapter 2, and 3, we introduced a mathematical framework for the simulation of
composite materials. We derived the non-linear virtual work equation, describing the
force balance within in a body of material. We solve the virtual work equation with
the Newton-Raphson method, and obtained the linearized virtual work equation. We
discretized the linearized virtual work equation with the FE method, and obtained
the discretized linearized virtual work equation. We introduced the stiffness matrix,
which is the Jacobian of the Newton-Raphson method and the driving force of the
algorithm. Due to the large differences in material stiffness, we have large jumps in
the entries of the stiffness matrix. The stiffness matrices considered in this thesis are
large, sparse, and ill-conditioned. In the application considered in this thesis, we have
highly non-linear material behavior, hence, for a stable Newton-Rapshon method, we
reassemble the stiffness matrix after every load or time step.

38

4
Solving the linear system: overview of solution methods

In Chapter 2 and 3, we have introduced a mathematical framework of the basics
of structural mechanics, we provided the finite element discretization of the linearized
virtual work equation and discussed the difficulties related to solving the stiffness ma-
trix. In this chapter we give an overview of established numerical methods for solving
large, sparse, symmetric positive definite matrices. We describe the applicability in
this context as well as the pros and cons of each numerical solution method. The
overview is based on the works of [82, 72, 86].

In general, we solve a linear system of equations,

Ku = f , (4.1)

where K is a large, sparse, symmetric positive definite matrix of dimension n × n
and u, f represent vectors of dimension n. We distinguish between three classes
of numerical solution methods. The factorization methods, the multigrid methods,
and, the Krylov subspace methods. The factorization methods solve Equation 4.1 by
means of matrix factorization and obtain the solution u by forward elimination and
back substitution. The multigrid methods solve Equation 4.1 by using a hierarchy of
meshes, solving the linear system on the coarsest grid and smoothing of the global
error. The Krylov subspace methods are essentially search algorithms that, given a
minimization constraint, construct a solution space, for which the solution converges
within a predefined tolerated error margin. Naturally, all three classes have limitations
in terms of stability, computer resources and numerical accuracy, hence it is common
practice that methods are combined to form one integrated solver.

In Section (4.1) we discuss the factorization methods, in Section 4.2 the multigrid
methods, and in Section (4.3) the Krylov subspace methods. At the end of every section
we give a brief introduction to the available software implementations of each method.

4.1 Factorization methods

The factorization methods compute the inverse of matrix K by means of matrix factor-
ization. In this section we provide the most basic form, LU factorization or Gaussian

39

elimination, in which we decompose the matrix as K = LU , where L is a lower trian-
gular and U an upper triangular matrix. The standard Gaussian elimination algorithm
has been improved and stabilized by the addition of pivoting, reordering, and many
other numerical add-ons. We refer to [24] for an extensive overview of these meth-
ods. In general, the performance of factorization methods depends on the bandwidth,
dimension and condition of the matrix.

For any given symmetric positive definite matrix there exists a stable factorization
that can be computed without pivoting. However, the stiffness matrix in our application
is large, sparse and has a large bandwidth due to the underlying (unstructured)
meshes and the coupled three dimensional partial differential equations, inducing
high connectivity between nodes and thus degrees of freedom. The fill-in is large and
thus memory demands are high. For this reason, factorization methods are often not
regarded as the method of choice for solving these large linear systems. However, an
important advantage of factorization methods is their robustness: they can, to a large
extent, be used as black box solver for solving a wide range of problems. Several high
quality, well parallelisable public domain direct solvers exist [56, 68, 76, 12], in this
thesis we consider MUMPS [?].

In preempt to Section 4.2 and 4.3, we use factorization methods to accelerate Krylov
subspace methods and to solve the linear systems resulting from multigrid methods. In
Chapter 7 we compare the performance of factorization methods in various numerical
examples in combination with multigrid and Krylov subspace methods.

4.1.1 LU factorization

Given a non-singular matrix K , there exist Gauss transformations M1...Mk−1, which
are lower triangular matrices, such that the matrix U given by,

Mn−1Mn−2 · · ·M2M1K = U (4.2)

is upper triangular [86]. The inverse of Mn−1...M1 is given by,

L = (M1...Mn−1)−1 (4.3)

which implies that K = LU . The matrix L is lower triangular and diag(L) = I . Once
the LU decomposition is obtained Equation 4.1 is easily solved. First, we solve Lv = f
and then the upper triangular system Uu = v.

We obtain factors L and U by Gaussian elimination, given by Algorithm 3. We
note that due to round off errors and machine precision Gaussian elimination may give
arbitrary poor results, even for well conditioned systems. With partial or complete
pivoting or by applying iterative improvements Algorithm 3 can be improved signif-
icantly. Implementations of the LU decomposition, such as provided in the LAPACK
software library, make use of these enhanced algorithms.

40

Algorithm 3 Gaussian elimination algorithm
Compute K = LU with K ∈ Rn×n

for k = 1, ..., n− 1 do
if Kkk = 0 then

quit
else

for i = k + 1, ..., n do
η = Kik

Kkk
Kik = η
for j = k + 1, ..., n do
Kij = Kij − ηKkj

end for
end for

end if
end for

Cholesky factorization

For symmetric positive definite matrices there exists a unique lower triangular R ∈
Rn×n with positive diagonal entries such that K = RRT . This is the Cholesky factor-
ization. Because of the symmetry of K , we only store the upper part. In general the
computation of the Cholesky factorization takes halve the amount of work and memory
compared to the Gaussian elimination.

Software implementation: MUMPS

MUMPS is public domain software and developed during the Esprit IV European
project PARASOL (1996-1999) by CERFACS, ENSEEIHT-IRIT and RAL [7]. The
MUMPS package computes an LU decomposition of a given matrix. The MUMPS
software is parallel, based on MPI, and available as both shared and distributed
memory implementation.

MUMPS computes the LU decomposition using a multifrontal approach [6]. In the
multi-frontal approach, all elimination operations take place with dense submatrices,
the frontal matrices. The overall factorization of the sparse matrix using a multifrontal
scheme can be described by an assembly tree, where each node corresponds to the
computation of a Schur complement, and each edge represents the transfer of the
contribution block from the child node to the parent node (or father) in the tree. This
parent node assembles (or sums) the contribution blocks from all its child nodes with
entries from the original matrix.

The algorithms use a dynamic distributed task scheduling technique to accommo-
date numerical pivoting and to allow the migration of computational tasks to lightly

41

loaded processors. Large computational tasks are divided into subtasks to enhance
parallelism. Asynchronous communication is used throughout the solution process to
efficiently overlap communication with computation. MUMPS can also determine the
rank and a null-space basis for rank-deficient matrices, and can return a Schur com-
plement matrix. It contains classical pre- and postprocessing facilities; for example,
matrix scaling, iterative refinement, and error analysis.

We have implemented MUMPS in CAPA-3D by using the distributed coordinate
format. The stiffness matrix K , as well as the right hand side f and solution vector u
are distributed over subdomains. The entries of K are given in triples (i, j , α), which
are the local rows, columns and values of the matrix respectively. We refer to Chapter
6 for more details on the parallel implementation of the software that is used in the
scope of this research.

4.1.2 Incomplete factorization

LU factorization methods generate a lower triangular matrix L and upper triangular
matrix U such that K = LU . However, because of the fill in, complete decomposition of
an arbitrary large, sparse matrix is often expensive in terms of CPU time and memory
size. We introduce a splitting of K ,

K = LU − R, (4.4)

where R 6= ∅ and LU the incomplete decomposition of K . The incomplete factorization
methods are not intended to be stand-alone solution methods, but always combined
with other solution methods. We refer to [84] for an extensive overview of the applica-
tion of ILU methods as accelerator for Krylov subspace methods applied to symmetric
positive definite matrices.

The simplest choice of the incomplete decomposition is zero fill-in LU decompo-
sition (ILU(0)).

ILU(0) decomposition

The general idea behind ILU(0) decomposition is to find L, U such that Kij = (LU)ij
for Kij 6= 0 and Rij = (LU)ij for Kij = 0. This means that R = K − LU is zero in the
non-zero entries of K . In general there exist many pairs of L and U that satisfy these
requirements. One possible ILU(0) decomposition for K is given by Algorithm 4. The
number of memory positions which are needed to perform the ILU(0) decomposition,
is solely determined by the zero pattern of matrix K .

Software implementation: ILUPACK

ILUPACK [12] is public domain software and was developed by Bollhoefer from TU
Braunschweig in collaboration with Saad and Schenk. The software computes the

42

Algorithm 4 ILU(0) algorithm
for i = 2...n do

for k = 1...i− 1 and (i, k) ∈ NZ (K) do
Kik = Kik

Kkk
for j = k + 1...n and (i, j) ∈ NZ (K) do
Kij = Kij − KikKkj

end for
end for

end for

incomplete LU (ILU) factorization of a given matrix by means of a recursive multilevel
strategy in which for a hierarchy of systems the matrices are reordered, scaled and
an inverse-based ILU with diagonal pivoting is applied [12]. The user can affect the
amount of fill-in in the factorization by adjusting parameters. The user can provide
a threshold for ILU, a bound on the norm of the inverse of the factors, the allowed
elbow space for the fill-in in memory, the maximum number of non-zeros per row and
a threshold for the approximate Schur complements. There are also various reordering
schemes which may improve the performance or stability of the method, depending on
the application.

We have implemented ILUPACK in CAPA-3D by using the solver as an acceler-
ator of a Krylov subspace method on each subdomain. We compute the incomplete
factorization of the local stiffness matrices where only the diagonal entries of the local
stiffness matrices have overlap between neighboring domains. We refer to Section 3.2
where we show that the stiffness matrix is an assembly of symmetric indefinite element
matrices with Neumann boundary conditions. By applying boundary conditions we
obtain the symmetric positive definite stiffness matrix. In preempt to Chapter 6, the
parallel implementation of CAPA-3D may yield local stiffness matrices corresponding
to subdomains that are not subjected to the essential boundary conditions and there-
fore indefinite. The incomplete factorization of these indefinite matrices may not exist
or yield very inaccurate local solutions. Hence, by introducing overlap of the diag-
onal entries we assure that all local stiffness matrices are non-singular and, hence,
preserve numerical accuracy.

4.2 Multigrid

Multigrid is a multilevel method in which a hierarchy of grids is constructed on which
the linear system is solved recursively. Multigrid methods are highly efficient, the
number of arithmetic operations needed to solve the problem is proportional to the
number of unknowns in the problem considered. Moreover, multigrid methods are
very general, they can be applied with full efficiency to many problems, such as

43

general domains, general boundary conditions, higher dimensions, scalar differential
equations, and, systems of differential equations.

Multigrid is the method of choice for solving discretized elliptic equations on
equidistant, structured grids. For these type of problems it has optimal performance
and grid independent convergence factors [18, ?, 88]. However, multigrid is suitable
for solving general partial differential equations on unstructured grids, but for these
type of problems the method has not always optimal performance.

The four key components that determine the performance, stability and robustness
of the multigrid method are the coarse grid specification, smoother, restriction, and,
prolongation operator. The optimal choice of the multigrid components is well known
for discretized elliptic partial differential equations on equidistant structured grids,
but not for general discretized partial differential equations on unstructured grids.

In this section we introduce the basic principle of multigrid, the four multigrid com-
ponents and we discuss Smoothed Aggregation Algebraic Multigrid (SA-AMG), which
is designed for solving partial differential equations that involve (linear) elasticity. In
the last part we consider the ML module of the Trilinos software package, which is a
state-of-the-art multigrid solver, as well as the optimal choices for SA-AMG.

4.2.1 Basic multigrid

For a formal description of multigrid we introduce a sequence of coarser and coarser
grids, characterized by Ωk ,

Ωl,Ωl−1, ...,Ω0. (4.5)
The coarsest grid is Ω0 whereas the index l corresponds to the finest grid, Ωl. On
grid Ωk Equation 4.1, is given by,

Kkuk = fk , (4.6)

where, Kk , is the corresponding stiffness matrix with dimension, nk × nk , for which,
nk < n. The displacement vector, uk , and, force vector, fk , have dimension nk . If the
solution of Equation 4.6 is approximated by umk , the error δumk , and, residual rmk are
given by,

δumk = uk − umk , (4.7)
rmk = fk − Kkumk . (4.8)

We have, uk = δumk + umk , hence, we introduce the defect equation,

Kkδumk = rmk . (4.9)

Multigrid is based on two principles. We consider solving the defect equation by
using (basic) iterative methods, as an error averaging process, and, a smooth quantity

44

on an arbitrary grid may be approximated on a coarser grid. This is the principle of
smoothing. By solving the defect equation on the coarsest grid with a direct method,
we obtain an approximation to the original system, but at a much lower cost. The
(smooth) error and residuals are transferred between the sequence of grids by means
of the restriction and prolongation operators. We write the four key components of
multigrid as (linear) operators,

Kk : G(Ωk)→ G(Ωk), (4.10)
Sk : G(Ωk)→ G(Ωk), (4.11)
Ik−1
k : G(Ωk)→ G(Ωk−1), (4.12)
Ikk−1 : G(Ωk−1)→ G(Ωk), (4.13)

where Kk is the discrete operator that corresponds to Ωk for k = l, ..., 0. The operator
Sk denotes the iteration operator corresponding to given smoothing methods on Ωk .
The operators Ik−1

k ,Ikk−1 are the restriction and prolongation operators respectively.
One choice for Ik−1

k can be the injection operator. For instance, the residual on a fine
grid Ωk is mapped directly to the coarser grid ΩH . No weighting has been applied.
Other operators are based on (full) weighting.

The operator Kk has different eigenmodes which correspond to low and high fre-
quency error components in the solution. The fundamental idea of multigrid is to
reduce the high frequency error components by smoothing and the low frequency
error components by coarse grid corrections [82]. As said before, the performance,
stability and robustness of multigrid depends on the four key components. These
components are chosen in such a way that they handle specific eigenmodes of oper-
ator Kk . In real-life applications it may be hard to choose the optimal components
uniformly for a large class of problems. For the discretized, linearized virtual work
equation of Chapter 3, unstructured grids, and, large discontinuities in the matrix
entries require special specific, tailored multigrid components. High anisotropy in
the discretized differential operator negatively affects the performance of multigrid,
however, only isotropic materials are considered in the scope of this research.

4.2.2 Multigrid Components

Coarse grid specification

The coarse grid specification for structured, equidistant grids is straightforward. As-
sume the finest grid has mesh size, h, then, we could have, H = 2h, as a logical
choice. However, the problems that we observe within structural mechanics do not
have structured grids due to the irregular shapes of the materials. We predetermine
a sequence of coarser grids and use a mesh generator to obtain the coarse grids,
this allows for an easy choice of the restriction and prolongation operators. These

45

methods may be complicated when the grid is cracking as the original cohesion will
disappear. In that case, a new sequence of coarse grids is constructed at every load
and time step.

Smoother

For the large systems of equations that we consider in this research, we want the
smoother to be cheap in terms of computing memory and floating point operations.
Hence, iterative solvers are often the method of choice. Basic iterative methods like
Gauss-Seidel and Jacobi often lack efficiency because of the complexity or conditioning
of the system. More sophisticated methods, like Krylov subspace methods such as CG,
and, GMRES for unsymmetric problems, are a good choice because they are relatively
cheap in operation and they can handle specific eigenmodes of the linear operator.
Another type of smoothers are polynomial smoothers. The Chebyshev polynomial
smoother is well used in parallel multigrid and minimizes over a predefined range of
eigenvalues and, hence, complementary to the damping of the low energy modes by
the coarse grid corrections [1]. The main disadvantage of the Chebyshev polynomial
smoother is that the (extreme) eigenvalues of the linear operator have to be computed
in advance. The common approach is to estimate the lower bound of the ’smoothing’
spectrum by using the extreme eigenvalue of the linear operator, which is automatically
determined for most (algebraic) multigrid implementations, and a scaling parameter.
ILU smoothers are not considered, as they lose much of their smoothing property for
PDEs defined on three dimensional meshes [82]. Smoothing by collective relaxation
is often used for systems of coupled PDEs. All unknowns at each single grid point
are relaxed simultaneously.

Restriction operator

For structured grids the restriction operator is often chosen as a weighting process.
The distance between grid nodes determines the weight of restriction. The weights
at each coarse grid nodes must add up to one. Similar techniques are also applied
at an unstructured mesh.

Prolongation operator

A natural prolongation operator is the scaled transpose of the restriction operator. This
means that the same weights are applied as with the restriction operator. This operator
is identical to constant interpolation in the coordinate direction of the component and
bilinear interpolation in the other coordinate directions.

46

4.2.3 Algebraic multigrid

For PDEs with heterogeneous coefficients that are discretized on unstructured meshes,
algebraic multigrid (AMG) approaches [71, 82, 85] offer similar scalability, although
at a higher cost per iteration (see, for example, [60] for a comparison of structured
and unstructured multigrid approaches). While the fundamental complementarity of
the multigrid approach doesn’t change within AMG, the way in which the coarse-grid
problems are defined does. In geometric multigrid schemes, the coarse-grid oper-
ators and intergrid transfer operators (interpolation and restriction) are determined
based on explicit knowledge of the grid geometry and discretized PDE. In contrast,
interpolation operators for AMG are defined in matrix-dependent ways [5, 71], while
the restriction and coarse-grid operators are given by variational conditions (when
K is symmetric and positive definite) [65]. Thus, the challenge in achieving efficient
multigrid performance is focused on the definition of appropriate matrix-dependent
interpolation operators.

In the case of scalar PDEs, there is a wide variety of possible approaches for
defining AMG-style interpolation operators [71, 85, 16, 14, 59, 67]. These approaches
are largely based on assumptions about the ellipticity of the underlying differential
operator and, for scalar PDEs, they typically result in defining interpolation to closely
match a given vector (often the constant vector) with the range of interpolation. For
systems of PDEs, such as the discretized linearized virtual equation of Chapter 3,
more care must be taken, as the ellipticity of the equations of linear elasticity, for
example, depends strongly on both the boundary conditions and Lamé coefficients of
the system. As a result, there has been much research into the development of efficient
AMG approaches for problems in solid mechanics.

For systems of PDEs, there are several possible AMG approaches. Within the
setting of classical AMG (often called Ruge-Stüben AMG) [71, 15], these approaches
are commonly labeled as the variable-based, point-based (or, equivalently, node-
based), and unknown-based approaches [21]. The variable-based approach applies
AMG as a black-box, ignoring the structure of the PDE system and, as such, is
understood to be effective only for very weakly coupled systems (such as systems with
no differential coupling) [21]. The unknown-based approach applies scalar AMG to
each component of the system, in a block Jacobi or block Gauss-Seidel manner, and
was originally applied to systems of linear elasticity in [70]. Most commonly used is
the point-based or node-based approach, where all variables discretized at a common
spatial node are treated together in the coarsening and interpolation processes. This
approach was first proposed for linear elasticity in [70] and has been extended in
[37, 51]. An extension framework to improve AMG for elasticity problems was proposed
in [10], which uses a hybrid approach with nodal coarsening, but interpolation based
on the unknown-based approach.

The two major disadvantages of AMG are high set up costs, and, generally, non-

47

optimal components. The components are constructed on the basis of compromises
between numerical work and overall efficiency. However, in our application of PDEs
on unstructured grids, geometric multigrid is too difficult to apply and AMG is the
method of choice.

Smoothed aggregation

Despite the recent developments in the use of classical AMG for structural mechanics
problems, a much more common algebraic multigrid approach for elasticity problems is
in the framework of smoothed aggregation multigrid [85]. In smoothed aggregation, the
coarse grid is created by aggregating degrees-of-freedom node wise, through a greedy
process that aims to create aggregates of size 3d for a d-dimensional problem. Such an
aggregation is used to define a partition of unity on the grid. A tentative interpolation
operator is then defined in groups of 6 columns (for three-dimensional mechanics)
by restricting the set of global rigid body modes to each aggregate based on this
partition. Smoothed aggregation improves this tentative interpolation operator by
applying a single relaxation step (or smoother) to it, leading to an overlapping support
of the block-columns of interpolation and giving much more robust performance than
unsmoothed (or plain) aggregation. Smoothed aggregation has been demonstrated
as a successful parallel accelerator for iterative solution methods for a number of
structural mechanics applications [3, 4, 17]. In Section 4.3.2 we will discuss the use
of SA-AMG in iterative solution methods.

4.2.4 Software implementation: ML (Trilinos)

The Trilinos Project [40] by SANDIA is an effort to develop algorithms and enabling
technologies within an object-oriented software framework for the solution of large-
scale, complex multi-physics engineering and scientific problems. Trilinos consists of
different modules that can be combined to built an integrated solver. The package is
parallel by default.

ML is part of Trilinos and designed to solve large sparse linear systems of equa-
tions arising primarily from elliptic PDE discretizations [33]. ML is used to define and
build multigrid solvers, and it contains black-box classes to construct highly-scalable
SA-AMG solvers.

We have exported the stiffness matrix and right hand side from CAPA-3D to
ML/Trilinos.

The optimal parameters for SA-AMG for solving the linearized virtual work equa-
tion are derived from [3, 4, 17, 33] and by trial-and-error and are given in Table 4.1.
We have one parameter set and two different coarsening schemes. One coarsening
scheme is the standard coarsening scheme for SA-AMG as provided by ML. We refer
to [33] for more details. Another coarsening strategy, to which we refer as the VBMetis

48

coarsening scheme, makes use of specific information on the coupling of the degrees of
freedom. We provide the list of grid nodes, the number of degrees of freedom per grid
node as well as the direction of the displacement, either the x-,y- and z-direction.
Due to (essential and natural) boundary conditions, the number of degrees of freedom
per node may vary. One limitation of this method, due to the parallel implementation
of ML/Trilinos, is that all degrees of freedom of one arbitrary node should be assigned
to one computing domain.

49

Table
4.1:D

efaultparameters
forSA-AM

G

maximum
numberofcoarsening

levels
10

multigrid
cycle

V-cycle
aggregation

type
Uncoupled-M

IS.Uses
maximal

independentsettechnique
to

define
aggregates.Aggregates

can
span

computing
domains.

SA-AM
G

damping
factor

43

smoothertype
Chebychev

polynomial.Smootherdamps
errors

between
ρ

and
ρα ,

where
ρ

is
spectralradius

ofdiag
(K

) −
1K

smootherdamping
factor

32

smootherscheme
pre-,and

post-smoothing
Chebychev

alpha
30

coarse
levelsolver

directsolver(Cholesky)
maximum

numberofunknowns
on

coarsestlevel
27

50

4.3 Krylov subspace methods

In this section we introduce the Krylov subspace methods to solve Equation 4.1.
Krylov subspace methods are a class of iterative methods that generate a sequence of
approximate solutions by solving a minimization problem over a particular subspace.
The stiffness matrix, K , in Equation 4.1 is only involved in matrix-vector multiplications
and the most popular Krylov subspace algorithms are built on the computation of
inner products, addition of vectors, and, scalar-vector and matrix-vector multiplications.
Hence, in general Krylov subspace methods require a (relatively) small amount of
memory overhead to solve the problem.

Definition 4.3.1. We define the Krylov subspace Km, based on stiffness matrix, K ∈
Rn×n, and vector, v ∈ Rn, as,

Km (K ; v) = span
{
v, K v, K 2v, ..., Km−1v

}
, (4.14)

where,
∀x ∈ Km (K ; v) : x = λ0v + λ1K v + ...+ λm−1Km−1v, (4.15)

with, λk ∈ R.

4.3.1 Conjugate Gradient method

In Section 3.2 of Chapter 3 we have seen that the stiffness matrix, K , in Equation
4.1, is symmetric positive definite for all applications of composite materials that are
considered in this research, hence the Conjugate Gradient (CG) is the Krylov method
of choice [41]. The full CG method is presented by Algorithm 5. As we have discussed
in Chapter 1, the Krylov methods are an important component in the development of
integrated (hybrid) linear solvers, as these methods have the capability to ’filter’ out
unfavorable eigenmodes of the system. We will introduce this coupling between the
CG method and other linear solvers in Section 4.3.2. In this section we will briefly
discuss the philosophy of the CG method.

The main idea behind the CG method is best explained by considering the solution
of Equation 4.1 as the unique minimizer of function φ(u), which is defined by,

φ(u) =
1

2
uTKu− uTf , (4.16)

where, ∇φ(u) = f − Ku, and, K , u, and, f , are defined as in Equation 4.1. Un-
der these assumptions, an approximate minimizer of φ(u) can be regarded as an
approximate solution of Equation 4.1. The CG method constructs the minimizer
of, φ(u), in Equation 4.16, by using the method of steepest descent along a set
of search directions, Pk = [p1, ..., pk], that are linear independent, K -conjugate,

51

Algorithm 5 Conjugate gradient algorithm
Start with r0 = f − Ku0, p0 = r0

rk 6= 0
for k = 0, 1, ... do
αk =

rTk rk
pTk Kpkuk+1 = uk + αkpk

rk+1 = rk − αkKpk
βk =

rTk+1rk+1

rTk rk
pk+1 = rk+1 + βkpk

end for

∀pi, pj ∈ Pk , i 6= j , piKpj = 0, and, pT
k rk−1 6= 0. An important property of the

CG method is that, provided that the search directions are independent, and uk solves
Equation 4.1, the method convergences in at most n steps, as, R(Pn) = Rn.

We introduce the energy norm,

∥u∥K =
(
uTKu

) 1
2 . (4.17)

and define the error, δuk , in the k-th approximation of the solution of Equation 4.1
as,

δuk = u− uk , (4.18)
where, uk , is the approximation to the exact solution, u. We show that minimizing the
energy norm of the error, δuk , over the Krylov subspace, Kk−1(K ; r0), is equivalent to
the minimization of Equation 4.16,

min
δuk∈Kk−1(K ;r0)

δuT
k Kδuk = min

uk∈Kk−1(K ;r0)
uT
k Kuk − 2uT

k f + uTf . (4.19)

We note that minimizing the error in the energy norm is, in fact, minimizing the
strain energy over the Krylov subspace Kk−1(K ; r0) for linear elasticity. This implies
that, for a given distributed static load, we construct a displacement vector that has
an optimal distribution of the internal force over the material.

Theorem 10.2.6 in [34] provides a bound on the error of the approximations com-
puted by the CG method. Denote the ith eigenvalue of K in nondecreasing order by
λi(K) or, simply, λi. After k iterations of the CG method, the error is bounded by

∥∥δuk
∥∥
K ≤ 2

∥∥δu0

∥∥
K

(√
κ − 1√
κ + 1

)k

(4.20)

where κ = κ(K) =
λn
λ1

is the spectral condition number of K . While this bound
is not always sharp, the error reduction capability of the CG method is generally

52

limited when the condition number is large. The condition number of K typically
increases when the number of elements increases or when the relative stiffnesses of
the materials change. For plastic and viscous behavior, this can result in a series of
increasing numbers of iterations as the stiffness changes with every load or time step.
Here we focus on a single load and time step, although this is an important question
for future research as plasticity and viscosity are key to realistic simulations.

The convergence of CG is not only affected by the condition number but also by
the number and distribution of very small eigenvalues, which has been shown in[83].
The eigenvectors corresponding to the smallest eigenvalues do have a significant
contribution to the global solution but may need a significant number of iterations
to convergence locally. Hence, very small eigenvalues can increase the number of
iterations. In preempt to Chapter 5, we will see clusters of very small eigenvalues
who are isolated from the other part of the spectrum of the stiffness matrix. These
clusters of eigenvalues will have a strong negative effect on the performance of the
CG method for the PDEs considered in this research.

4.3.2 Preconditioning

As the performance of the CG method is highly dependent on the extreme eigenvalues
of the linear operator, we precondition the linear system to obtain more favorable
extreme eigenvalues [72].

The preconditioned stiffness matrix reads,

M−1Ku = M−1f , (4.21)

where, M , is the left preconditioner and assumed to be symmetric positive definite,
hence, non-singular. The bound on the number of CG iterations, given by Equation
(4.20), is also valid when CG is applied to the preconditioned matrix. We know
that the CG method converges very fast in the energy norm if, κ(M−1K) ≈ 1. The
preconditioned system is evaluated in every iteration of CG, hence we require that
the preconditioning matrix must be cheap to construct and inexpensive to apply. In
general, preconditioner, M , is an approximation of the linear operator, and ideally
such that the eigenvalues of the preconditioned system cluster around 1.

4.3.3 Preconditioned Conjugate Gradient method

The principle of improving the performance of the CG method by preconditioning of the
original linear system has been introduced by Reid and Axelson [69, 9]. The precon-
ditioner for the CG method must meet a number of requirements. The preconditioner,
M , must be a symmetric positive definite matrix, as the CG method is designed speci-
ficially for symmetric systems and perform best for positive definite matrices. Also,
we must find a decent approximation of the stiffness matrix K and it should be easy

53

Algorithm 6 Preconditioned conjugate gradient algorithm
Start with r0 = b− Ax0, z0 = M−1r0 and p0 = z0

rk 6= 0
for k = 0, 1, ... do
αk =

rTk zk
pTk Apkxk+1 = xk + αkpk

rk+1 = rk − αkApk
zk+1 = M−1rk+1

βk =
rTk+1zk+1

rTk zk
pk+1 = zk+1 + βkpk

end for

to solve y from My = s as it will be solved every iteration step. In order to preserve
symmetry we introduce the M-inner product. When we replace the Euclidean inner
product with the M-inner product and rewrite Algorithm 5, we obtain the Precondi-
tioned Conjugate Gradient (PCG) method given by Algorithm 6. Note that just one
extra line is added to the original algorithm, hence the implementation of the PCG
method is similar to the original CG method.

It is clear that, since the preconditioner is an ’approximation’ to the linear opera-
tor, the choice of the preconditioner strongly depends on the properties of the linear
operator. Hence, for an arbitrary stiffness matrix that results from the discretization
of PDEs, an ’optimal’ preconditioner exists. We define optimal as the trade-off be-
tween the computational expense of the preconditioner and its ability to map the
preconditioned system to a more favorable spectrum. In recent years, there have been
many publications on suitable preconditioners for elliptic PDEs and linear elasticity
[35, 85, 3, 4, 17, 4, 8].

In this research we compare four preconditioners which are selected on basis of
different favorable properties. In Chapter 5 and 7, we compare the results of PCG
with different preconditioners applied to composite materials.

Diagonal scaling

The most obvious choice for a preconditioner based on an approximation of K is
M = D where D contains the main diagonal elements of K . The diagonal scaling
preconditioner scales the main diagonal elements of K to 1. The main advantages
of the diagonal scaling preconditioner are the minimal computing and storage costs.
For an n×n matrix the storage costs are n real numbers and the computational costs
are n flops. Within the field of high performance computing, the diagonal scaling
preconditioner is often used when solving extremely large problems on large clusters
of computers (1000+ computing cores). The algorithm is embarrassingly parallel as

54

no communication is required to solve with the preconditioner. Although diagonal
scaling has limited effect on the performance of PCG for most ill-conditioned systems,
it is an excellent method for benchmarking other preconditioners.

ILU decomposition

In Section 4.1.2 we discussed the properties of the ILU factorization methods. The use
of ILU decomposition as a preconditioner for CG has been first proposed in [62]. The
performance of the ILU preconditioner is mainly determined by the allowed amount of
fill-in of the bandwidth of the stiffness matrix, which is controlled by the drop tolerance.
We have derived the optimal drop tolerance by trail-and-error. In preempt to Chapter
7, we will see that the ILU decomposition preconditioner for the stiffness matrix in
this research yields large memory costs and is computationally intenstive. We also
discussed the difficulties of using the ILU decomposition preconditioner in a parallel
computing environment. The stiffness matrices associated with the parallel domains
may be (near) singular, yielding inaccurate results and, hence, possible divergence of
PCG. This potential pitfall is solved by synchronization of the main diagonals of all
local stiffness matrices, assuring non-singularity. We elaborate on this in Chapter 6.

Remark. The diagonal scaling preconditioner is in fact an ILU factorization method,
where only the main diagonal elements are taken into account. For very large sys-
tems, the stiffness matrix is usually divided over many parallel computing domains.
The ILU factorization method has less ability of global conditioning of the stiffness
matrix, because the local stiffness matrix connectivity decreases. The diagonal scaling
preconditioner and the ILU factorization method tend to have equal performance for
these parallelized systems.

SA-AMG

In recent years there have been many publications on using SA-AMG as precondi-
tioner for linear elasticity. The two most relevant studies of SA-AMG to the simula-
tions considered here are those of [4, 8], both of which focus on micro-FE modeling of
bone deformation, based on micro-CT scans of human bones. The SA-AMG method
has ’optimal’ multigrid efficiency for these type of problems. The application of the
SA-AMG as preconditioner is straightfoward. The PCG method is built on recur-
sion and does not store the Krylov subspace, hence, the preconditioner, M , cannot be
flexible. We fix the number of SA-AMG cycles, as well as the number of (pre- and
post-) smoothing steps and coarse grid corrections. As discussed in Section 4.2.3, we
have two variants of SA-AMG. The first variant uses the default aggregation scheme,
but has limited set-up costs. The second variant determines the aggregation scheme
based on the coupling of the PDEs, but has significant set up costs. The latter has

55

optimal multigrid efficiency for linear elasticity, but the performance for non-linear,
large deformation, elasto-visco-plastic PDEs has to be determined.

4.3.4 Software implementation: AztecOO (Trilinos)

AztecOO is a package within Trilinos, which was introduced in Section 4.2.4. The
Trilinos software is built on the Epetra framework, in which parallel objects such as
matrices, vectors, and, graphs, are defined that are thus inherited by all modules. This
enables for a fast implementation of (new) parallel algorithms.

AztecOO contains many standard Krylov subspace methods and gives access to
many preconditioners using Ifpack (ILU decomposition), ML (Multigrid/AMG), and,
AztecOO itself. Moreover, the implementation of new preconditioners using Epetra
objects and other modules is fast and straightforward. Users can also override the
default convergence tests in Aztec00.

We have exported the stiffness matrix and right hand side from CAPA-3D to
Aztec00/Trilinos.

4.4 Concluding remarks

Within the field of engineering, the PCG method is widely used because it is easy to
implement, PCG iterations are cheap, and the storage demands are modest and fixed.
However, there remain pitfalls in its use in practical simulations. As discussed in this
chapter, its performance depends on the conditioning and/or spectrum of the matrix.
This can be improved by the use of an appropriate preconditioner, but this adds to
the work and storage required by the algorithm. Consequently, the convergence of
low-energy modes can be slow and, more importantly, poorly reflected in the residual
associated with an approximate solution. The established alternative is the use of
direct solution methods or multigrid methods. For our application, the choice of direct
or iterative methods should not be made based on the solution of a single linearized
system but, rather, based on the full nonlinear, time-dependent equations to be solved.
When using simple nonlinear constitutive relations, direct methods may be preferable,
if the factorization of one stiffness matrix can be reused many times. If, on the other
hand, the stiffness matrix changes significantly with every linearization, the use of PCG
may be preferable, particularly if the number of Newton iterations can be controlled.
The study performed here focuses on the latter idea, that a single factorization cannot
be reused enough to make direct methods competitive. In preempt to Chapter 7,
for large sparse systems the costs of factorization are substantially greater than a
single iterative solve and, so, the use of iterative solvers can reduce the total required
computational time.

56

5
Deflation theory

In this chapter we discuss the performance of the PCG method applied to com-
posite materials with varying material stiffness. We introduce the deflation operator,
and, discuss the use of specific information of the underlying mesh and the material
properties to construct a more robust numerical solver: the Deflated Preconditioned
Conjugate Gradient method. We will introduce different deflation strategies and we
illustrate the efficiency of the methods with (small) artificial test cases. In the last sec-
tion of this chapter we introduce the optimal deflation strategy for composite materials:
recursive rigid body mode deflation.

5.1 Composite materials: Preconditioned CG

In Chapter 3 we argued that the stiffness matrix K is ill conditioned due to the
large discontinuities in the entries of the matrix and the shear size of the underlying
unstructured meshes. We have seen in Chapters 1 and 3, that asphaltic materials
consists of elements that significantly vary in stiffness. Hence, the stiffness matrix
K has presumably large differences in the extreme eigenvalues and therefore the
condition number of stiffness matrix, K , will be large. Given the PCG iteration bound
of Equation 4.20 we expect a large number of iterations for this kind of problems.
Moreover, the number of aggregates in a composite material determines the number
of (large) discontinuities in the stiffness matrix. Hence, the number of aggregates
has a direct correlation with the condition number of the matrix. The increase of the
number of aggregates may, therefore, result in an increase in the number of very small
eigenvalues and deterioration of the convergence rates of PCG.

In this section we apply the PCG method to various samples of composite materials
to determine the relation between the physical structure of the problem (number of
’aggregates’), the values of the material parameters (discontinuities) and the robustness
of the PCG method. As we focus on the properties of the spectrum of the preconditioned
stiffness matrix and not so much on finding the perfect preconditioner, we choose
diagonal scaling as preconditioner.

57

5.1.1 Motivating numerical experiments

All experiments in this section involve the same domain and an equal number of
elements. We only consider relatively small problems in order to be able to analyse
the eigenvalues with MATLAB [63]. All matrices and material problems were generated
by CAPA-3D [19]. The aim of the experiments is to find out how the convergence rate
of PCG depends on the material properties and geometry of the volumes. Hence, there
will be an emphasis on the relation between the number of PCG iterations and the
material stiffness and number of aggregates. Increasing the number of elements will
result in a more ill-conditioned problem and therefore the number of PCG iterations
increases.

The experiments will involve four different set-ups.

I. Homogeneous material (bitumen) and no aggregates
II. One aggregate in bitumen layer
III. Four aggregates in bitumen layer
IV. Eight aggregates in bitumen layer

For all experiments non-linear, hyper elastic material behavior is taken into ac-
count. The bituminous material is considered as a rubber like material, with low
stiffness. Furthermore, we assume that under the same conditions, the aggregates do
not deform and float in a sea of bituminous material. We consider the discretized
virtual work equation of Chapter 3. We have linear, 4 noded elements with three
directions of displacement at every node. At the main diagonal of the stiffness matrix
we have the elastic node contributions. The dominating term for the main diagonal is
the Youngs modulus (elasticity) over the Poisson ratio (compressibility), E

1−2ν where
0 < ν ≤ 1

2
. We only consider normal compressible materials, 0.2 ≤ ν ≤ 0.45, there-

fore E is the parameter of interest. The E of bitumen will be kept at a constant
value of 200 MPa. The E of the aggregates will vary between O(105) and O(109).
The results will be related to the ratio between the E of the bitumen and aggregates
respectively.

For simplicity, Figure 5.1 shows a 2D representation of 3D test cases (II) and
(III). Domain Ω is divided into Ωa and Ωb which represent the aggregate and bitumen
subdomains respectively. We have Ω = Ωa ∪ Ωb, where Ωa =

⋃n
i Ωi

a, n = 1, 4
and Ωb =

⋃3
i Ωi

b. The aggregates are only placed within domain Ω2
b such that the

boundary conditions at Γ3 and Γ4 are not acting on the aggregate elements directly.
The aggregates are considered as rigid bodies. We emphasize that the aggregates
are actually groups of elements, which share the same material properties.

As the total number of elements remains the same, the size of the aggregates
must decrease when the number of aggregates increases. The boundary conditions
are prescribed displacements (Dirichlet b.c.) at boundary Γ3 and fixed support, i.e. no

58

Ωa Ω2
b

Ω1
b

Ω3
b

Γ1Γ2

Γ3

Γ4

(c)

Ω2
b

Ω1
b

Ω3
b

Γ1Γ2

Γ3

Γ4

Ω1
a Ω2

a

Ω3
a Ω4

a

(d)

Figure 5.1: Schematic 2D representation of 3D test cases (II) and (III), figure (c) and
(d) contain one and four aggregates respectively.

displacements (Dirichlet b.c.), at boundary Γ4. At boundaries Γ1,Γ2 there is uncon-
strained displacement (homogeneous Neumann b.c.) in every direction.

Convergence results

Figure 5.2 shows the convergence results of PCG with diagonal scaling for all cases
(I) to (IV). We note that case (I), the red dotted line, is used as a benchmark for the
other cases. We can conclude that there is a direct correlation between the number of
iterations, the material stiffness, and the number of aggregates. As the ratio between
the elastic moduli of the bitumen and aggregates increases, the extreme eigenvalues
shift in opposite directions, the condition number increases and the number of itera-
tions increases. And when the number of aggregates increases the condition number
remains unchanged in order of magnitude but the number of iterations still increases.
We have seen that preconditioning will reduce the condition number and therefore the
number of iterations. But the introduction of more aggregates has clearly an effect on
the spectrum of eigenvalues.

Figure 5.3 shows the smallest eigenvalues of M−1K of all four cases. We note
that the aggregates are independent subdomains relative to each other. Hence, no
aggregate contains nodes from other aggregates. In this way we can consider the
aggregates as rigid bodies within a layer of bitumen. It can be shown that all rigid
body modes of the aggregates correspond to the smallest eigenvalues of K . In three
dimensions we have six rigid body modes, hence we expect 6, 24 and 48 smallest
eigenvalues that correspond to the rigid body modes for cases (II), (III) and (IV) re-
spectively. This is precisely what is observed for all cases. Moreover, the increase
in very small eigenvalues is clearly visible as there is a jump between the values
of the largest eigenvalues corresponding to the rigid body modes and the remaining

59

0 100 200 300 400 500 600
10

−8

10
−6

10
−4

10
−2

10
0

1 aggregate (64 elem / aggr)

iteration

||
r i
||
/|
|r
0
||

0 100 200 300 400 500 600 700
10

−8

10
−6

10
−4

10
−2

10
0

iteration

||
r i
||
/|
|r
0
||

4 aggregates (16 elem / aggr)

0 200 400 600 800 1000 1200
10

−8

10
−6

10
−4

10
−2

10
0

iteration

||
r i
||
/|
|r
0
||

8 aggregate (8 elem / aggr)

Figure 5.2: Deterioration of rates of convergence of PCG for increasing number of
aggregates and stiffness. -.- homogeneous material, – E ratio O(103), – E ratio
O(105).

eigenvalues in the spectrum of M−1K .
As the condition number of the stiffness matrix is of the same order for a different

number of aggregates we do not expect a large increase of iterations for an increasing

60

0 10 20 30 40 50 60
10−6

10−5

10−4

10−3

10−2

λ

6 24 48

Figure 5.3: 50 smallest eigenvalues of M−1K , M = diag(K). ×: 1 aggregate, �: 4
aggregates, ◦: 8 aggregates, ∗: homogeneous material

number of aggregates based on the condition number. However, from Figure 5.3 we
expect a slowly converging solution due to the large number of smallest eigenvalues,
which is indeed observed in Figure 5.2. The clustering of eigenvalues is clearly
visible for cases (III) and (IV), we observe small plateaus which correspond to the slow
converging components of the solutions. The number of plateaus increases when the
number of aggregates increases due to the number of smallest eigenvalues, i.e., rigid
body modes.

The extreme eigenvalues and condition numbers of the (preconditioned) stiffness
matrices of test cases (I), (II) and (III) are given in Table 5.1. Two observations stand
out when interpreting the results. The smallest eigenvalue of the non-preconditioned
problem is almost invariant with respect to increasing E ratio. The largest eigenvalue
of the non-preconditioned problem is not invariant with respect to an increasing E
ratio. The order of the largest eigenvalue increases proportionally to the increase in E
ratio. Obviously, both observations do not hold when a diagonal scaling preconditioner
is applied. In contrary, the inverse effect is observed. The smallest eigenvalue becomes
even smaller as the E ratio increases and the largest eigenvalue is a constant value.
We have seen that an upperbound for convergence of CG is related to the condition
number of the stiffness matrix. Hence, we can expect an increasing number of iterations
when the E ratio increases.

61

Case (I) λmin λmax κ
O(102) K 0.0425 4.15 · 103 9.76 · 104

M−1K 8.62 · 10−5 5.9248 6.87 · 104

Case (II)
O(103) K 0.0460 1.30 · 106 2.82 · 107

M−1K 6.29 · 10−6 5.9248 9.42 · 105

O(105) K 0.0460 1.30 · 108 2.82 · 109

M−1K 6.64 · 10−8 5.9248 8.92 · 107

Case (III)
O(103) K 0.0450 1.01 · 106 2.24 · 107

M−1K 6.48 · 10−6 5.9239 9.15 · 105

O(105) K 0.0450 1.01 · 108 2.24 · 109

M−1K 6.90 · 10−8 5.9239 8.59 · 107

Table 5.1: 2304 elements, the extreme eigenvalues and condition number of precon-
ditioned stiffness matrices. O (10n) represents the jump in E modulus of aggregates
and bitumen.

62

5.2 Introduction to deflation

We have shown in the previous section that the number of iterations to convergence for
PCG is highly dependent on the number of aggregates in a mixture as well as the ratio
of the Young’s moduli. Increasing the number of aggregates introduces correspondingly
more (clustered) small eigenvalues in stiffness matrix, K . The jumps in the Young’s
moduli are related to the size of the small eigenvalues. We know from [83] that the
smallest eigenvalues correspond to the slow converging components of the solution.
Thus, we look to design a preconditioner that directly addresses these modes.

Formally to define the deflation preconditioner, we split the solution of Equation
(4.1) into two parts [32],

u =
(
I − PT

)
u + PTu, (5.1)

where P is a projection matrix that is defined as,

P = I − KZ (ZTKZ)−1ZT, for Z ∈ Rn×m, (5.2)

where R(Z) represents the deflation subspace, i.e., the space to be projected out of
the system, and I is the identity matrix of appropriate size. We assume that m � n
and that Z has rank m. Under these assumptions, E ≡ ZTKZ is symmetric positive
definite and may be easily computed and factored. Hence,

(
I − PT

)
u = ZE−1ZTKu = ZE−1ZTf (5.3)

can be computed directly, and the difficult computation is of PTu. Because KPT is
symmetric,

KPT = PK, (5.4)
and P is a projection, we solve the deflated system,

PK û = Pf , (5.5)

for û using the PCG method and multiply the result by PT giving u = ZE−1Z T f+PT û.
We note that (5.5) is singular; however, the projected solution PTû, is unique, as it
has no components in the null space, N (PK) = span{Z}. Moreover, from [49, 83],
the null space of PK never enters the iteration process, and the corresponding zero-
eigenvalues do not influence the solution.

5.2.1 Deflated Preconditioned CG

The deflation method was proposed in [66]. A practical variant of the Deflated Precon-
ditioned Conjugate Gradient (DPCG) method [81] is given by Algorithm 7. The DPCG
method extends PCG, enhancing stability and robustness when solving for symmetric,
and positive definite systems, but requires extra storage for the deflation matrix Z .

63

Algorithm 7 Deflated preconditioned CG solving Ku = f
Select u0. Compute r0 = (f − Ku0), set r̂0 = Pr0

Solve My0 = r̂0 and set p0 = y0

for j = 0, 1, ... until convergence do
ŵj = PKpj
αj =

(r̂j ,yj)
(ŵj ,pj)

ûj+1 = ûj + αjpj
r̂j+1 = r̂j − αjŵj
Solve Myj+1 = r̂j+1

βj =
(r̂j+1,yj+1)

(r̂j ,yj)
pj+1 = yj+1 + βjpj

end for
u = ZE−1ZTf + PT ûj+1

Moreover, PKu in Algorithm 7 is computed in every iteration. However, the unfa-
vorable eigenvalues due to the discontinuities in the stiffness matrix are treated by
the deflation method making these costs worthwhile. For many problems the DPCG
method is robust for even highly ill-conditioned problems [79].

To obtain a useful bound for the error of DPCG for positive semi-definite matrices,
we define the effective condition number of a semi-definite matrix D ∈ Rn×n with
rank n − m, m < n, to be the ratio of the largest and smallest positive eigenvalues;
analogous to Equation (4.20),

κeff(D) =
λn
λm+1

. (5.6)

Theorem 2.2 from [32] implies that a bound on the effective condition number of PK
can be obtained.

Theorem 5.2.1. Let P be defined as in (5.2), and suppose there exists a splitting
K = C + R , such that C and R are symmetric positive semi-definite with null space
of C , N (C) = span{Z} . Then for ordered eigenvalues λi,

λi(C) ≤ λi(PK) ≤ λi(C) + λmax(PR). (5.7)

Moreover, the effective condition number of PK is bounded by,

κeff(PK) ≤ λn(K)

λm+1(C)
. (5.8)

Proof. See [32] (p445).

64

While the large jumps in matrix entries due to strongly varying material properties
in the FE discretization induce unfavorable eigenvalues (either large or small) in
the spectrum of stiffness matrix K , the effective condition number of PK is bounded
by the smallest eigenvalue of C and the largest eigenvalue of K . To remove the
discontinuities and, thus, eliminate those unfavorable eigenvalues, we decouple the
submatrices of stiffness matrix K that correspond to different materials by finding the
correct splitting. The eigenvalues of the decoupled submatrices then determine the
spectrum of PK . However, due to the large differences in stiffness, the values of the
eigenvalues for the different submatrices can still vary over several order of magnitudes.
To achieve a scalable solution algorithm, we couple this deflation procedure with
another preconditioner to map the spectra of the submatrices onto the same region,
around 1. This deflation technique can be used in conjunction with any ordinary
preconditioning technique, giving a two-level approach, treating the smallest and
largest eigenvalues by deflation and preconditioning, respectively. By choosing a
favorable combination of deflation and preconditioning, a better spectrum is obtained,
yielding a smaller effective condition number and fewer iterations. For a symmetric
preconditioner M = LLT, e.g. diagonal scaling, the result of Theorem 5.2.1 extends to
[32, Thm 2.3],

κeff(L−1PKL−T) ≤ λn(L−1KL−T)

λm+1(L−1CL−T)
. (5.9)

5.3 Rigid body modes deflation

5.3.1 Motivation: rigid bodies in composite materials

For any finite-element computation, we consider subsets of unconstrained elements
as rigid bodies. Their corresponding (sub) stiffness matrices are assemblies of the
element stiffness matrices. In the context of asphalt concrete, the aggregates are sub-
sets of elements, with their Young’s modulus as a shared property; the bitumen and
the air voids are defined similarly.

When a matrix, Kunc , represents a rigid body, i.e. an unconstrained mechanical
problem (with no essential boundary conditions), the internal energy equals zero for
the rigid body displacements, as the system remains undeformed, and the matrix is
positive semi-definite, ∀u : uTKuncu ≥ 0. More specifically, the number of rigid
body modes of any unconstrained volume equals the number of zero eigenvalues of
its corresponding stiffness matrix. When an arbitrary matrix, A, has zero eigenvalues,
the kernel N (A) is non-trivial. Moreover, the basis vectors of the kernel of a stiffness
matrix represent the principal directions of the rigid body modes. In general, two
types of rigid body modes exist: translations and rotations. In three dimensions, this
implies six possible rigid body modes and, hence, six kernel vectors can be associated

65

with the rigid body modes. For the linearized virtual work equation of Chapter 3,
the physical interpretation of these kernels are the rigid body modes of the (linear)
elastic components of the material.

In the Section 5.1.1 we concluded that the number of aggregates times the number
of rigid body modes per aggregate (6 in three dimensions) is equal to the number
of small eigenvalues of stiffness matrix K . By using deflation, we can ’augment’
the Krylov subspace with pre-computed rigid body modes of the aggregates, and
thus remove all corresponding small eigenvalues from the system. As a result, the
number of iterations of the Deflated Preconditioned Conjugated Gradient method is
nearly not affected by jumps in material stiffness or by the number of aggregates.
This is a significant improvement over many other preconditioning techniques whose
performance degrades even for simpler heterogenous problems [80].

5.3.2 Construction of deflation vectors

To fully comprehend the construction of the deflation vectors by rigid body modes,
we use the following experiment. Assume that we have a cube of bitumen containing
one aggregate which is shown in Figure 5.4. The subdomains Ω1 and Ω2 can be
considered as bitumen and aggregates respectively. Clearly, without the constraints
of the surrounding bitumen material, the aggregate of Ω2 will act as a rigid body.
With kernel deflation we aim to solve on both subdomains separately. We separate
subdomain Ω1 from subdomain Ω2 and apply new boundary conditions to the domains.
We assume that the aggregates that are not influenced by the boundary conditions
of the whole domain act as rigid bodies, therefore we assume homogeneous Neu-
mann boundary conditions on the aggregates. The bitumen will be restricted by the
aggregates and we apply homogeneous Dirichlet boundary conditions.

Consider the assembly of the stiffness matrix, K , as given in Equation 3.31, for
the domain in Figure 5.4 which is meshed with k elements. Assume that Kb =∑

e∈Ω1
NT
e KeNe, Ka =

∑
e∈Ω2

NT
e KeNe and KΓ =

∑
e∈Ω1∩Ω2

NT
e KeNe. We assume

K = C + R according to Theorem 2.2 of [32] where C = Kb + Ka − KΓ and R = KΓ.
Matrix C consists of two independent block matrices which correspond to the bitumen
and aggregate domains. Matrix R consists of only those node contributions of elements
from Ω1 that lie on the intersection of domain Ω1 and Ω2. We note that by the removal
of the bitumen-aggregates boundary nodes from the bitumen subdomain, Dirichlet
and Neumann boundary conditions are automatically imposed on the bitumen and
aggregate submatrices in matrix C . The matrix C contains one singular submatrix
corresponding to the aggregate and one positive definite submatrix corresponding to
the bitumen. Moreover, because of the Dirichlet boundary conditions, the bitumen
domain is statically determined and numerically well conditioned.

We apply Theorem 2.2 of [32] to C = Kb + Ka − KΓ and R = KΓ. We have,
Z = N (C) = span{Za} where Za = {z1

a, ..., z6
a} with zja the j-th base vector of

66

Ω1

Ω2

Ω1
∂u

∂n
= 0

u = 0 Ω2
∂u

∂n
= 0

∂u

∂n
= 0

∂u

∂n
= 0

Figure 5.4: Principle of kernel deflation

the null space of Kb which correspond to all six rigid body modes of the aggregate.
We emphasize that by this choice of deflation subspace Z the rigid body modes are
eliminated from the iterative solution process and thus, removes the bad influence of
the newly acquired Neumann boundary conditions from the aggregate subdomains.

Extension of the previous experiment to an arbitrary number of aggregates, is
straightforward. Assume that we only consider problems where there are r indepen-
dent aggregates and one homogeneous layer of bitumen. Two arbitrary aggregates
do not share elements and thus nodes. We apply the splitting K = C + R where
C = Kb +

∑
r Kar − KΓ and R = KΓ. Matrix C contains r independent singular sub-

matrices that correspond to the aggregates and one positive definite submatrix that
corresponds to the bitumen. The deflation subspace Z = N (C) =

⋃
r span{Zar} with

Zar = {z1
ar , ..., z

6
ar}. The dimension of Z will be r × 6. With respect to the software

implementation, because all aggregates are independent there is no overlap of the
non zero elements in the deflation vectors. Hence, we can store Z for any problem
size within just six vectors.

We assume that the stiffness of the aggregates does not change during the sim-
ulation, i.e. the Newton-Raphson iterative process for the computation of the virtual
work. As the stiffness submatrices corresponding to the aggregates do not change,
the rigid body modes will not change and the deflation space remains unchanged.
Hence, for any simulation where the geometry and stiffness of the aggregates does
not change only one evaluation of the rigid body modes is needed.

67

5.3.3 Computing rigid body modes of a finite element

We know from [11] that the rigid body modes of a finite element are spanned by the
kernel base vectors of the corresponding element stiffness matrix. We will show a fast
and cheap solution for the computation of the rigid body modes. The same principle
can be easily extended to sets of finite-elements of arbitrary shape and order. We
note that the rigid body modes are only defined by the geometric properties of the
element.

In three dimensions, a finite-element stiffness matrix for solid mechanics has 6
rigid body motions: three translations and three rotations. For simplicity we consider
a 4 noded tetrahedral element; however, all derivations can be extended to N noded
elements without loss of generality. The coordinate vector of the element is given by,

{ x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 }T

A translation can be considered as a uniform displacement of every node in a given
direction. To obtain three orthogonal translations, we choose the x ,y and z directions,
respectively. The three translation vectors are given by,

{ 1 0 0 1 0 0 1 0 0 1 0 0 }T

{ 0 1 0 0 1 0 0 1 0 0 1 0 }T

{ 0 0 1 0 0 1 0 0 1 0 0 1 }T.

The rotations can be easily described using the spherical coordinate system,

x = r cos(θ) sin(φ), y = r sin(θ) sin(φ), z = r cos(φ),

where
r =

√
x2 + y2 + z2, θ = tan−1

(y
x

)
, φ = cos−1

(x
r

)
,

and θ and φ are given as as in Figure 5.5(a).
We derive a rotation dθ in the x, y-plane, hence dφ = 0 and dr = 0. The x-y,

x-z and y-z planes contain unique rotations. The corresponding vectors can be found
by swapping axis. For an arbitrary point in space which has spherical coordinates
(r, θ, φ) a change dθ in the x, y-plane yields a displacement in cartesian coordinates
of,

dx = −r sin(θ) sin(φ)dθ, dy = r cos(θ) sin(φ)dθ, dz = 0.

Figure 5.5(b) shows the rotation for one element with respect to the origin over
angle dθ. By using above expressions, we obtain all three rotation vectors,

68

(a)

	 p1 = (px
1 , py

1, p
z
1)

dθ1

dθ2
dx1

dx2

p2 = (px
2 , py

2, p
z
2)

r1

r2

(b)

Figure 5.5: (a) spherical coordinates, (b) rotation around origin of tetrahedral element
in x, y-plane

• rotation x-y plane,

θj = tan−1

(
yj
xj

)
, φj = cos−1

(
zj
rj

)
,

−r1 sin(θ1) sin(φ1)
r1 cos(θ1) sin(φ1)

0
−r2 sin(θ2) sin(φ2)
r2 cos(θ2) sin(φ2)

0
−r3 sin(θ3) sin(φ3)
r3 cos(θ3) sin(φ3)

0
−r4 sin(θ4) sin(φ4)
r4 cos(θ4) sin(φ4)

0

• rotation y-z plane,

θj = tan−1

(
zj
xj

)
, φj = cos−1

(
yj
rj

)
,

−r1 sin(θ1) sin(φ1)
0

r1 cos(θ1) sin(φ1)
−r2 sin(θ2) sin(φ2)

0
r2 cos(θ2) sin(φ2)
−r3 sin(θ3) sin(φ3)

0
r3 cos(θ3) sin(φ3)
−r4 sin(θ4) sin(φ4)

0
r4 cos(θ4) sin(φ4)

• rotation x-z plane,

θj = tan−1

(
zj
yj

)
, φj = cos−1

(
xj
rj

)
,

0
r1 cos(θ1) sin(φ1)
−r1 sin(θ1) sin(φ1)

0
r2 cos(θ2) sin(φ2)
−r2 sin(θ2) sin(φ2)

0
r3 cos(θ3) sin(φ3)
−r3 sin(θ3) sin(φ3)

0
r4 cos(θ4) sin(φ4)
−r4 sin(θ4) sin(φ4)

We thus compute the null space of each element matrix. Sets of elements make up
the bodies of materials, as a collection of elements share a certain property and are

69

Figure 5.6: Nonzero pattern of matrix KZ = KZ .

neighbors. The rigid body modes of a collection of elements is equal to the assembly
of the rigid body modes of the individual elements, taking into account the multiplicity
of those degrees of freedom that lie in multiple neighboring elements. In the case of
asphaltic materials, we choose the element stiffness as the property for discrimination
between elements. We can think of stones, bitumen and air voids. We note that we
compute the rigid body modes of each independent body of material. Hence, two
bodies of the same material imply 12 deflation vectors. This has a physical meaning
also, two bodies will rotate and translate at the same time independently.

5.3.4 Additional work DPCG compared to PCG

The projector, P , is never computed explicitly. We compute the sparse matrix, KZ =
KZ , as well as the inverse of the small coarse matrix, E = ZTKZ , beforehand. Assume
the (full rank) deflation space has dimension, d � n, where, K ∈ Rn×n, implying,
Z ∈ Rn×d, E ∈ Rd×d and KZ ∈ Rn×d. Evaluation of w = Pv is equal to w =
v − KZE−1ZTv. Stiffness matrix K , deflation vectors Z and matrix KZ are sparse.
We compare the cost of one matrix vector product of the stiffness matrix K and the
deflation matrix P by comparing the number of flops. Assume that the average number
of nonzeros for each row of K , ZT and KZ is α , β and γ respectively. The total number
of flops, thus work, WKu, of one matrix vector multiplication with stiffness matrix, K ,
is,

WKu = 2αn. (5.10)
The (cumulative) number of flops, thus work WPu, of one matrix vector multiplication
with projector, P , is,

WPu = WZTv +WE−1v̂ +WKZ ṽ +Wv−v̄

= (2βd) + (2d2) + (2γn) + n. (5.11)

We derive estimates for γ , and β for non overlapping deflation vectors to compare
the matrix-vector multiplications for matrices, K , and, P as defined above. We as-
sume that, in general, we have, k = d

6
rigid bodies. We illustrate the matrix-matrix

70

multiplication of, KZ = KZ , with Figure 5.6. In this specific example, the stiffness
matrix, K , consists of three submatrices that correspond to rigid bodies, Φa, Φb, and,
Φc , and boundary conditions, ΓΦa , and, ΓΦb . The rigid body modes, and thus, the
deflation vectors, correspond to the kernels of these submatrices, hence, we only have
nonzero entries in KZ on the boundaries of the rigid bodies and due to the boundary
conditions of the PDEs, therefore, γ ≈ 4. We assume that on average, each rigid body
owns n

k degrees of freedom, with an average ratio of ψ ∈ (0, 1) degrees of freedom
on the boundary of the rigid body, hence, the total amount of work of multiplying KZ ,
with a dense vector of dimension d is, 8ψn. The average number of nonzeros in the
rows of ZT is bounded by the average amount of nonzeros in the rigid body modes,
divided by the number of rigid body modes, which is six in the three dimensional case
considered here. Therefore, β = 4× n

k ×
1
6

= 4n
d . We substitute the values of γ , and,

β in Equation 5.11, and replace WKZ ṽ = 2γn with 8ψn, yielding,

WPu = (9 + 8ψ)n+ 2d2. (5.12)

We equate Equation 5.10 to Equation 5.12, and solve for the number of deflation
vectors, d, provided that the connectivity, α ≈ O(102). We obtain that, WPu < WKu,
if,

d < 102
√
n. (5.13)

Although the bound on the number of deflation vectors given in Equation 5.13 seems
high, we emphasize that the deflation vectors considered in this section are very
sparse. We conclude that for, d � n, non-overlapping deflation vectors, the amount
of work for one matrix-vector multiplication with projector, P , is at most, as expensive
as one matrix-vector multiplication with stiffness matrix, K .

5.3.5 Illustrative example: artificial representation of composite material

We revisit the examples of Section 5.1.1, given in Figure 5.1. All numerical experiments
use the DPCG method based on the rigid body modes of the aggregates. The results
are benchmarked against the homogeneous material case (I) in which there are no
aggregates. The benchmark is CG with diagonal scaling and represented by the red
dotted lines.

Figure 5.7 shows the performance of PCG and DPCG applied to case (II) and (III).
The results of Figure 5.7 show what we expected from the deflation. The rigid

body modes are no longer active in the iterative process and only the deformation
of the bitumen has to be computed. Hence, the performance of DPCG is identical
compared to the homogeneous benchmark case. Moreover, in Figure 5.7 the plots for
case (II) and (III) show the same performance but for a different amount of aggregates.
Therefore, adding more aggregates to the domain has no influence on the performance
of CG. The same behavior can be observed in Figure 5.8 which shows the performance

71

of PCG and DPCG applied to case (II), (III) and (IV). We note that the results of Figure
5.7 are also included in Figure 5.8.

We have seen that the effective condition number of the deflated matrix PK de-
pends on the smallest positive eigenvalue of C which is identical to the smallest
eigenvalue of the bitumen submatrix. Hence, the number of iterations of CG is only
bounded by the material properties of the bitumen and not by the stiffness of the
aggregates.

72

0 50 100 150 200 250 300 350 400 450 500
10−8

10−6

10−4

10−2

100
1 aggregate (64 elem / aggr)

iteration

||r
i||/

||r
0||

0 50 100 150 200 250 300 350 400 450 500
10−8

10−6

10−4

10−2

100
4 aggregates (16 elem / aggr)

iteration

||r
i||/

||r
0||

Figure 5.7: Convergence of PCG and kernel DPCG for 1 and 4 aggregates respec-
tively. -.- PCG (homogeneous material), – PCG (E ≈ O(103)), – kernel DPCG
(E ≈ O(103)).

73

0 200 400 600 800 1000 1200
10−8

10−6

10−4

10−2

100
8 aggregates (8 elem / aggr)

iteration

||r
i||/

||r
0||

0 200 400 600 800 1000 1200
10−8

10−6

10−4

10−2

100
4 aggregates (16 elem / aggr)

iteration

||r
i||/

||r
0||

0 200 400 600 800 1000 1200
10−8

10−6

10−4

10−2

100
1 aggregate (64 elem / aggr)

iteration

||r
i||/

||r
0||

Figure 5.8: Convergence of PCG and kernel DPCG for 1, 4 and 8 aggregates respec-
tively. -.- PCG (homogeneous material), – PCG (E ≈ O(103)), – PCG (E ≈ O(105)),–
DPCG (E ≈ O(103)), – DPCG (E ≈ O(105)).

74

5.4 Recursive deflation

The deflation of rigid body modes considered in the first part of this chapter works
only for composite materials that consist of two materials. In this section we introduce
an extension to the rigid body mode deflation for composite materials that consist of
an arbitrary number of materials. Because this extension on the deflation operator is
rather complex, we illustrate the theory in this section with a one dimensional Poisson
problem.

The definition of P given by (5.2) does not provide insight in the effect of individual
deflation vectors on the spectrum of PK . The next theorem defines a recursive deflation
operator which can be used for more extensive eigenvalue analysis of PK . Moreover,
it will justify our choice of deflation vectors on which we elaborate later.

Definition 5.4.1. P(k) = I − KZk(ZT
k KZk)−1ZT

k with Zk = [Z̃1, Z̃2, ..., Z̃k], where
Z̃j ∈ Rn×lj and has rank lj .

Theorem 5.4.1. Let P(k) and Zk as in Definition 5.4.1, then P(k)K = PkPk−1 · · ·P1K
where Pi+1 = I − K̃iZ̃i+1(Z̃T

i+1K̃iZ̃i+1)−1Z̃T
i+1, K̃i = PiK̃i−1, K̃1 = P1K , K̃0 = K ,

Z̃T
i K̃i−1Z̃T

i and ZT
i KZi are non-singular because Zi are of full rank and K is a

symmetric positive definite matrix.

Proof. by induction,

i. show P1K = P(1)K where Z1 = Z̃1 ∈ Rn×l1 ,

ii. assume Pi−1K̃i−2 = K̃i−1 = P(i−1)K where Zi−1 = [Z̃i−1, Z̃i−2, · · · , Z̃1], show
that PiK̃i−1 = P(i)K where Zi = [Z̃i, Zi−1, Zi−1 ∈ Rn×l(i−1), Z̃i ∈ Rn×li and
l =

∑i
r=i li.

For the start of the induction we have to prove [i.]. The induction hypothesis is given
by [ii.]. We first show that P1K = P(1)K ,

P1K = K − KZ̃1(Z̃T
1 KZ̃1)−1Z̃T

1 K
= K − KZ1(ZT

1 KZT
1)−1ZT

1 K
= P(1)K.

which implies that (i.) is proved. For (ii.) we assume Pi−1K̃i−2 = P(i−1)K , and prove

75

that this implies PiK̃i−1 = P(i)K ,

P(i)K = K − KZi(ZT
i KZi)−1ZT

i K

= K −
[
KZi−1 KZ̃i

]([ZT
i−1

Z̃T
i

] [
KZi−1 KZ̃i

])−1 [ZT
i−1K
Z̃T
i K

]

= K −
[
KZi−1 KZ̃i

]
E−1

[
ZT
i−1K
Z̃T
i K

]
(5.14)

where,

E =

[
ZT
i−1KZi−1 ZT

i−1KZ̃i
Z̃T
i KZi−1 Z̃T

i KZ̃i

]

The matrix E =

[
E11 E12

E21 E22

]
is a symmetric 2x2 block matrix. Its inverse is defined

as follows [57],

E−1 =

[
E−1

11 + E−1
11 E12(E22 − E21E−1

11 E21E−1
11) −E−1

11 E12(E22 − E21E−1
11 E12)−1

−(E22 − E21E−1
11 E12)−1E12E−1

11 (E22 − E21E−1
11 E−1

12)−1

]

with,
Ψ = Z̃T

i KZ̃i − Z̃T
i KZi−1

(
ZT
i−1KZi−1

)−1 ZT
i−1KZ̃i

it follows that

(E−1)11 =
(
ZT
i−1KZi−1

)−1
+
(
ZT
i−1KZi−1

)−1 ZT
i−1KZ̃iΨ−1Z̃T

i KZi−1

(
ZT
i−1KZi−1

)−1

(E−1)12 = −
(
ZT
i−1KZi−1

)−1 ZT
i−1KZ̃iΨ−1

(E−1)21 = −Ψ−1Z̃T
i KZi−1

(
ZT
i−1KZi−1

)−1

(E−1)22 = Ψ−1

substitute this into (5.14) leads to,

P(i)K = K −
[
KZi−1 KZ̃i

] [E−1
11 ZT

i−1K + E−1
12 Z̃T

i K
E−1

21 ZT
i−1K + E−1

22 Z̃T
i K

]

= K −
[
KZi−1E−1

11 ZT
i−1K + KZi−1E−1

12 Z̃T
i K + KZ̃iE−1

21 ZT
i−1K + KZ̃iE−1

22 Z̃T
i K
]

= K − KZi−1

(
ZT
i−1KZi−1

)−1 ZT
i−1K (5.15)

−KZi−1

(
ZT
i−1KZi−1

)−1 ZT
i−1KZ̃iΨ−1Z̃T

i KZi−1

(
ZT
i−1KZi−1

)−1 ZT
i−1K

+KZi−1

(
ZT
i−1KZi−1

)−1 ZT
i−1KZ̃iΨ−1Z̃T

i K
+KZ̃iΨ−1Z̃T

i KZi−1

(
ZT
i−1KZi−1

)−1 ZT
i−1K

−KZ̃iΨ−1Z̃T
i K

76

In order to show PiK̃i−1 = P(i)K we now elaborate PiK̃i−1,

PiK̃i−1 = K̃i−1 − K̃i−1Z̃i
(
Z̃T
i K̃i−1Z̃i

)−1

Z̃T
i K̃i−1

= P(i−1)K − P(i−1)KZ̃i
(
Z̃T
i P(i−1)KZ̃i

)−1

Z̃T
i P(i−1)K

= K − KZi−1

(
ZT
i−1KZi−1

)−1 ZT
i−1K

−
(
K − KZi−1

(
ZT
i−1KZi−1

)−1 ZT
i−1K

)
Z̃i ·

(
Z̃T
i

(
K − KZi−1

(
ZT
i−1KZi−1

)−1 ZT
i−1K

)
Z̃i
)−1

·

Z̃T
i

(
K − KZi−1

(
ZT
i−1KZi−1

)−1 ZT
i−1K

)

= K − KZi−1

(
ZT
i−1KZi−1

)−1 ZT
i−1K

−
(
KZ̃i − KZi−1

(
ZT
i−1KZi−1

)−1 ZT
i−1KZ̃i

)
·Ψ−1 ·

(
Z̃T
i K − Z̃T

i KZi−1

(
ZT
i−1KZi−1

)−1 ZT
i−1K

)

= K − KZi−1

(
ZT
i−1KZi−1

)−1 ZT
i−1K (5.16)

−KZi−1

(
ZT
i−1KZi−1

)−1 ZT
i−1KZ̃iΨ−1Z̃T

i KZi−1

(
ZT
i−1KZi−1

)−1 ZT
i−1K

+KZi−1

(
ZT
i−1KZi−1

)−1 ZT
i−1KZ̃iΨ−1Z̃T

i K
+KZ̃iΨ−1Z̃T

i KZi−1

(
ZT
i−1KZi−1

)−1 ZT
i−1K

−KZ̃iΨ−1Z̃T
i K

note that (5.15) and (5.16) are identical, so PiK̃i−1 = P(i)K .

Theorem 5.4.1 provides us with a theoretical framework in which we construct
the deflation vectors. We will see that by subsequently adding rigid body modes of
particular sets of elements to the deflation space the number of small eigenvalues of
the deflated system is smaller compared to the non-deflated system.

5.4.1 Motivation: condition numbers of Deflated matrices

Let us denote the ith eigenvalue of K in nondecreasing order by λi(K) or simply by
λi. Theorem 10.2.6 in [34] provides a bound on the error of CG. After k iterations of
the CG method, the error is bounded by,

∥∥u− uk
∥∥
K ≤ 2

∥∥u− u0

∥∥
K

(√
κ − 1√
κ + 1

)k

77

where κ = κ(K) =
λn
λ1

is the spectral condition number of K , and the K -norm of

u is given by ∥u∥K =
√
uTKu.

To obtain a useful bound for the error of CG for positive semi-definite matrices we
define the effective condition number of a semi-definite matrix D ∈ Rn×n with corank
m to be the ratio of the largest and smallest positive eigenvalue,

κeff(D) =
λn
λm+1

. (5.17)

We extend Theorem 5.2.1 as Theorem 5.4.2 which implies that a bound on the
condition number of P(k)K can be obtained.

Theorem 5.4.2. Let P(k) as defined in Definition 5.4.1 and suppose there exists a
splitting K = C + R such that C and R are symmetric positive semi-definite with
N (C) = span{Zk} the null space of C . Then for ordered eigenvalues λi,

λi(C) ≤ λi(P(k)K) ≤ λi(C) + λmax(P(k)R). (5.18)

Moverover, the effective condition number of P(k)K is bounded by,

κeff(P(k)K) ≤ λn(K)

λm+1(C)
. (5.19)

Proof. See [32] (p445).

The effective condition number of P(k)K is bounded by the smallest eigenvalue of
C and the largest eigenvalue of K . For a symmetric preconditioner M = LLT, e.g.
diagonal scaling, we extend the result of Theorem 5.4.2 to

κeff(L−1P(k)KL−T) ≤ λn(L−1KL−T)

λm+1(L−1CL−T)
. (5.20)

5.4.2 Recursive Deflation strategy

In this section we introduce a strategy to construct the deflation space Zj for P(j)K
of Definition 5.4.1 to obtain decoupled problems using Theorems 5.4.2 and 5.4.1. Our
starting point is by observing that null spaces of sets of elements are represented
by the rigid body modes of those sets of elements. By choosing sets of elements we
define C and the nullspace of C is our deflation space, which is by definition spanned
by the rigid body modes.

We have an arbitrary FE mesh Ω consisting of elements ei, i = 1, ..., n and
m materials, sorted by decreasing stiffness. We will elaborate on the importance
of the ordering by material stiffness in Section 5.4.3. Material j of the FE mesh

78

can have multiple bodies jk which is the collection of connected elements that share
the same material property. We note that each body of material induces a jump
in the entries of the stiffness matrix of which the size depends on the differences
in stiffness of the corresponding materials. Hence it is important to distinguish all
bodies of all materials as we want to decouple those regions in the stiffness ma-
trix. The set of elements that makes up a body l of the material j is defined as
Ωl
j , where Ω =

⋃m
j=1{

⋃jk
l=1 Ωl

j}. Let I = {i : ei ⊂ Ω} be defined as the index
set of Ω. The index set of Ωl

j is I lj =
{
i : ei ⊂ Ωl

j
}

. We also define index set
I l,Γj =

{
i :
(
ei ⊂ Ω\Ωl

j
)
∧
(
ei ∩ ek 6= ∅, ∀ek ⊂ Ωl

j
)}

, which contains all indices of
the elements of Ω\Ωl

j that are connected to (the boundary elements of) Ωl
j .

Start with material j = 1 and body l = 1, which corresponds to sub-mesh Ω1
1.

This yields the first splitting:

K̃0 = A = C0 + R0

C0 =
∑

i∈I1
1

NT
eiKeiNei +

∑

i∈I\{I1,Γ
1 ∪I1

1}
NT
eiKeiNei

R0 =
∑

i∈I1,Γ
1

NT
eiKeiNei

The matrix C0 consists of the assembly of all finite elements that belong to body
l = 1 of material j = 1. Matrix Kei is the element stiffness matrix of element ei
with corresponding connectivity matrix Nei .The matrix R0 consists of the assembly
of all finite elements that share nodes with the elements on the boundary of body
l = 1 of material j = 1 but that are not contained within sub-mesh Ω1

1. The first
splitting yields, N (C0) = Z̃1 and P1 = I − Ã0Z̃1(Z̃T

1 Ã0Z̃1)−1Z̃T
1 . By this splitting we

have decoupled the first body of material 1 from all other materials. The rigid body
modes of all elements corresponding to the first body of material 1 are contained in
N (C0). We construct Ã1 = P1A = P1(C0 + R0) = P1C0 + P1R0 = C0 + R̃0, where
P1C0 = C0 follows by definition of P1. Continuing with the second body of material
1 and repeating the previous decoupling step gives

K̃1 = P1A = C0 + R̃0 = C1 + R1 + R̃0

C1 =
∑

i∈I1
1

NT
eiKeiNei +

∑

i∈I2
1\I

1,Γ
1

NT
eiKeiNei +

∑

i∈I\
⋃2
l=1{I l,Γ1 ∪I l1}

NT
eiKeiNei

R1 =
∑

i∈I2,Γ
1 \I1,Γ

1

NT
eiKeiNei

Hence, N (C1) = Z̃2 and P2 = I − Ã1Z̃2(Z̃T
2 Ã1Z̃2)−1Z̃T

2 . Continue for all bodies and

79

materials. At splitting m =
∑n−1

j=1 jk + l for material n and body l,

K̃m−1 = Cm−2 + R̃m−2 = Cm−1 + Rm−1 + R̃m−2

Cm−1 =
n−1∑

q=1

[qk∑

r=1

[
∑

i∈P

NT
eiKeiNei

]]

+
l∑

r=1

[
∑

i∈C

NT
eiKeiNei

]

+
∑

i∈U

NT
eiKeiNei

Rm−1 =
∑

i∈B

NT
eiKeiNei

where,

P = I rq\
{q−1⋃

j=1

jk⋃

s=1

Is,Γj

}

C = I rn\
{n−1⋃

j=1

jk⋃

s=1

Is,Γj

}
∪
{l−1⋃

s=1

Is,Γn

}

U = I\
{n−1⋃

q=1

{ qk⋃

r=1

I r,Γq ∪ I rq

}}
∪
{ l⋃

r=1

I r,Γn ∪ I rn

}

B = I l,Γn \
{n−1⋃

j=1

jk⋃

s=1

Is,Γj

}
∪
{l−1⋃

s=1

Is,Γn

}

Hence, N (Cm−1) = Z̃m and Pm−1 = I − K̃m−1Z̃m(Z̃T
m K̃m−1Z̃m)−1Z̃T

m = P with P =
I − AZ (ZTAZ)−1ZT and span{Z} =

⋃m
j=1 span{Z̃j}. The above expression for K̃m−1

is rather complex. We have divided the index sets needed for assembly of Cm−1 and
Rm−1 into 4 sub-sets, P, C, U and B . The set P contains all element indices that
belong to body r of material q except for all elements that are included in boundary
element sets of previously assembled materials and bodies. The set C contains all the
element indices that belong to body r of current material n except for all elements that
are included in boundary element sets of previously assembled materials and bodies,
and the l − 1 assembled bodies of the current material. The set U contains all the
element indices that belong to materials and bodies that have not been assembled yet.
The set B contains all element indices that belong to elements that lie against the
boundary of body l of current material n but without all elements that are contained
within boundary sets of previously assembled bodies and materials.

80

Illustrative example: 1D Poisson equation

In this section we look into the effects of individual deflation vectors on the spectrum
of PK . As it is easier to understand and analyze the recursive deflation strategy for
a small, one dimensional test case, we consider a one dimensional Poisson equation
with discontinuous coefficients. In Chapter 7 we discuss the performance of DPCG
and the recursive deflation strategy on real-life engineering applications.

The considered 1D Poisson equation reads,

− d
dx

(
c(x)

du(x)

dx

)
= f (x), x ∈ [0, l] (5.21)

u(0) = 0, du
dx (l) = 0 (5.22)

where c(x) is a given piecewise constant function, u(x) the unknown displacement
field and f (x) the given source term.

We discretize Equation (5.21) with the finite element method using linear first-
order shape functions and equally spaced elements of size h. It is well known that in
this particular case the finite element stencil for the 1D Poisson equation reads,

[
c(xi) −c(xi+1)
−c(xi) c(xi+1)

]
(5.23)

Introduce a FE mesh for the line [0, l] including 3 domains Ω1 = {x1, .., x4}, Ω2 =
{x5, .., x8} and Ω3 = {x9, .., x13}.

For sake of simplicity we will write ci = c(xi) where i = 1, ..., 13, x1 = h and
x13 = l. Furthermore because ci is constant on each material domain we will use
ci = c1, ci = c2 and ci = c3 on Ω1, Ω2 and Ω3 respectively.

After discretization we obtain,
Ku = hf (x) (5.24)

where,

K =
1

h

2c1 −c1

−c1
. ∅
. . . 2c1 −c1

−c1 c1 + c2 −c2

−c2
.
. . . 2c2 −c2

−c2 c2 + c3 −c3

−c3
.

∅ . . . 2c3 −c3

−c3 c3

81

0 2 4 6 8 10 12 14
10−10

10−8

10−6

10−4

10−2

100

102

Figure 5.9: spectrum of M−1K where [c1, c2, c3] = [1, 104, 108].

and u = [u1, u2, ..., u13]T, x = [x1, x2, ..., x13]T. The stiffness matrix K of Equation
(5.24) is preconditioned by M ' K . In this example we take M = diag(K).

The spectrum of M−1K is given by Figure 5.9. We first note that we only have one
very small eigenvalue due to the Neumann boundary conditions. Clearly the smallest
eigenvalue, which is of O (10−10) and induced by the (only real) rigid body contained
in the mesh, is much smaller compared to the other eigenvalues. Moreover, it affects
the condition number of M−1K . Now we apply the deflation strategy by finding a
correct splitting of K . We sort the materials in decreasing order of diffusion. Figure
5.10 shows the sparsity pattern of the three splitting matrices C0, C1 and C2. In matrix
C0 the assembly of the elements belonging to stiffest material 3, is represented by
the bold crosses. The interface between weaker material 2 and 3, which goes to R0 ,
is represented by the circles and all other elements are represented by the non bold
crosses. The second splitting is the decoupling of material 2 from the system, again
those elements are represented by the bold crosses. The interface between material 2
and 3 has been removed already, the interface between material 2 and 1 goes to R1.
The remaining splitting is the decoupling of material 1 from the boundary conditions
which go to R2.

5.4.3 Deflation vectors in the neighborhood of a jump

If some elements of a less stiff material are assigned to the element set of a stiffer
material, the material stiffness matrices are not decoupled. We illustrate this with a

82

0 5 10

0

5

10

C
0

0 5 10

0

5

10

C
1

0 5 10

0

5

10

C
2

Figure 5.10: sparsity pattern C0, C1 and C2. Nonzero elements represented by sym-
bols; corresponding to deflated material, interface elements and remaining elements
pictured by bold crosses, circles and non bold crosses respectively.

simple example. When a node belongs to two elements and two different materials and
is assigned to the wrong (least stiff) element with respect to the splitting of K , then
by applying the preconditioner the coupling between the stiffness matrices remains.
For instance, the 1D Poisson problem and preconditioning based on diagonal scaling,
the entry on the main diagonal is c1 + c2, with c1 � c2. Clearly, when decoupled
correctly, we have in splitting of K only c2 on the main diagonal of C , hence M−1C
gives c2

c1+c2 ≈ 1. With a wrong choice of deflation vectors, we have c1 on the main
diagonal of C , hence M−1C gives c1

c1+c2 ≈
1
c2 � 1. However all other terms on the

diagonal of M−1C will be approximately 1, introducing small eigenvalues for this
material and unfavorable local spectrum of eigenvalues of M−1C .

Illustrative example: 1D Poisson equation (continued)

We illustrate the effect of incorrect decoupling by analyzing the spectrum of the
splitting matrices for the 1D Poisson equation. Figure 5.11 shows the spectrum of
M−1Ci for the correct (star) and wrong (bold cross) choice of deflation vectors compared
to the spectrum of M−1K . After applying three deflation operations, we observe from
the spectrum of M−1C2 that the smallest eigenvalue of the wrong choice of deflation
vectors is much smaller than the smallest eigenvalue for the correct choice of deflation
vectors, which coincides with the smallest eigenvalue value in the spectrum of M−1K .
Moreover, we can see from the spectrum of C0 and C1 that the wrong choice is
clearly been made with respect to coupling of material 3 and material 2. The effective
condition number of the wrong choice of deflation vectors will affect the performance
of DPCG. Figure 5.12 shows the convergence of the error of DPCG and PCG for
correct(+) and wrong(-) choice of deflation vectors. The performance of DPCG(−) is

83

0 5 10 15
10−10

10−5

100

105
λi(M

−1C0)

2 4 6 8 10 12 14
10−2

10−1

100

101
λi(M

−1C1)

2 4 6 8 10 12 14
10−2

10−1

100

101
λi(M

−1C2)

Figure 5.11: spectrum of M−1Ci (? correct, +++ wrong choice deflation vectors) compared
to spectrum of M−1K (+)

worse than DPCG(+), as predicted by the eigenvalues in Figure 5.11.

84

0 5 10 15 20 25 30
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

iteration

|r
i|
/|
r 0
|

DPCG
+

DPCG
−

PCG

Figure 5.12: Convergence of DPCG and PCG where [c1, c2, c3] = [1, 104, 108] and
DPCG+, DPCG− represent correct and wrong choice of deflation vectors respectively.

85

6
Parallel implementation deflation

We have seen in Chapter 3, 4, and 5, that for the simulation of inhomogenous (com-
posite) materials, the differences in properties of materials lead to large differences
in the entries of the resulting stiffness matrices. We have shown that these jumps in
coefficients slow down the convergence of the PCG method for a standard choice of
preconditioners. By decoupling regions with homogeneous material properties, and,
thus, deflating the unfavorable eigenvalues from the spectrum of the stiffness matrix,
we obtained the more robust DPCG method. The deflation vectors are constructed
from the rigid body modes of sets of elements that form homogeneous bodies of mate-
rial. This deflation strategy is an extension of the technique of subdomain deflation,
introduced in [66].

The applications involving composite materials demand for massive, unstructured
meshes, yielding systems with millions of degrees of freedom. Therefore, the stiffness
matrices in the simulations considered in this thesis are large and sparse. Moreover,
realistic simulations of the long-term effects of (continuous) loading of structures re-
quire many Newton-Raphson iterations involving incremental loads and the evaluation
of the Jacobian, thus, stiffness matrix. These implicit constraints on the computational
resources as well as on the time needed for computation are met by using parallel
computations.

In this chapter we discuss the parallelization of the solution algorithm in the
framework of an existing software package. We will discuss the principle of domain
decomposition and define parallel matrix-vector products as well as parallel inner
products. We introduce an algorithm for the parallel construction of the deflation
vectors, and we show how to parallelize the deflation operator and, thus, the DPCG
method, using parallel linear operators.

We give a short overview on the use of subdomain deflation (as a complementary
operation to rigid body modes deflation) to increase the efficiency of preconditioners
that have limited global error reduction capabilities. In the chapter on future and
recommended research, we further elaborate on this idea within the framework of
enhanced deflations vectors.

In the last part of this chapter, we give a brief introduction to the parallel im-
plementation of the PCG method and Smoothed Aggregation Algebraic Multigrid

87

(SA-AMG).

6.1 Parallel computing

In this section, we discuss the parallel implementation of the solution algorithms. In
the framework of this thesis, we consider a domain, which is the collection of bodies
that form a composite material. We mesh the domain, yielding a set of elements, grid
nodes, and corresponding degrees of freedom.

We introduce a (computing) machine that has a fixed number of processors that
can work on one process at a time. The aim of parallel computing is to identify sets
of tasks that can be done concurrently and to distribute those tasks across processes
in such a way that the total computation time to finish all tasks, compared to the
sequential evaluation, scales with the number of processes.

The maximum number of tasks that can be executed in parallel is known as the
maximum degree of concurrency [36]. This degree of concurrency is determined by
the decomposition of the data on which the tasks are performed. In general, a good
parallel implementation of an algorithm will maximize the use of concurrency by
mapping data-independent tasks onto different processes; hence, this will minimize
the total completion time by ensuring processes are available to execute tasks as soon
as tasks become executable.

The decomposition of the data is determined by the application. In the framework
of this thesis, our data is the set of connected elements that define the mesh. We use
graph partitioning to cut the mesh into smaller sets of connected meshes. We identity
tasks as the operations on the matrices and vectors that correspond to those smaller
meshes. The smaller meshes determine subdomains, which together form the original
domain, yielding the domain decomposition.

6.1.1 Domain decomposition

We use parallelism based on domain decomposition as found in [36, 27]. We consider
a global domain, Ω, which consists of E elements. We use the multilevel K -way
graph partitioning algorithm in ParMETIS [52] to divide the elements over D non-
overlapping sets of elements, yielding the domain decomposition, Ω =

⋃D
d=1 Ωd. Each

subdomain holds Ed elements; hence, E =
∑D

d=1 Ed. Elements can share nodes and
the associated degrees of freedom that lie in multiple subdomains, but no element is
contained in more than one subdomain. Element-wise tasks can be evaluated inde-
pendently for each subdomain, but the values of any quantity at shared nodes must be
communicated for each subdomain after finishing the task. This yields communication
between the boundaries of the subdomains. We emphasize that this domain decom-
position is very natural when using finite elements, as many important tasks, such as

88

(a) (b)

Figure 6.1: Schematic representation of domain decomposition of composite material
consisting of five bodies

the evaluation of the internal forces, computation of matrix-vector products and inner
products, only need communication between the subdomains after the task is finished.

We illustrate the domain decomposition with an example given by Figure 6.1(a),
6.1(b). Given in Figure 6.1(a) is domain Ω, containing three materials, a, b, and,
c, divided over five bodies, Φa

1 , Φa
2 , Φa

3 , Φb, and, Φc . In Figure 6.1(b), we mesh the
domain, Ω, apply the graph partitioning and obtain subdomains Ωi, where i = 1, .., 4.
The boundaries between the subdomains, i, j , are given by Γi,j .

Subdomain mapping operators

We define two operators for mapping vectors and matrices on subdomains onto the
domain and scaling of vectors for shared nodes in multiple subdomains. The mapping
operator, Md, is essentially identical to the finite-element connectivity matrix, Ne, for
assembling stiffness matrices, Ke, into K ∈ Rn×n. Each subdomains holds nd degrees
of freedom. The operator, Md, has dimension nd × n, and consists of one and zero
entries. We can map vector ud from subdomain Ωd onto domain Ω by u = MT

d ud. The
averaging operator, Wd, is diagonal and has dimension, nd × nd. It contains ones on
the main diagonal when the corresponding degree of freedom lies only in subdomain,
Ωd. When multiple subdomains share a degree of freedom the diagonal entry of Wd
is 1 over the number of subdomains that share the degree of freedom.

89

(a) (b)

Figure 6.2: non-zero pattern for local stiffness matrix, K1, and, global stiffness matrix,
K .

Local and global stiffness matrix

We define the global stiffness matrix as the assembly of all the local stiffness matrices
defined on the subdomains. We compute the global stiffness matrix, K , as follows,

K =
e∑

d

MT
d KdMd, (6.1)

where, Kd ∈ Rnd×nd , is the local stiffness matrix corresponding to subdomain, Ωd.
We illustrate the assembly of the global stiffness matrix with the example of Figure

6.1(a) in Figure 6.2(a) and 6.2(b). The assembled local stiffness matrix correspond-
ing to subdomain Ω1 is given by Figure 6.2(a). The colored squares represent the
(potential) nonzero entries in the local stiffness matrix. All bodies of subdomain Ω1

are represented in the local stiffness matrix. The colored squares show overlap which
corresponds to the shared degrees of freedom of all the nodes that lie on the interface
between bodies. The ordering of the degrees of freedom determines the mapping of
the local stiffness matrix to the global stiffness matrix. In the example of Figure 6.1(b),
the degrees of freedom contained in subdomain Ω1 correspond to the first block in
the global stiffness matrix. We assign the degrees of freedom of subdomain Ω2 to the
second block, taking into account the connectivity between the degrees of freedom on
the subdomain boundaries and interior points. In the global stiffness matrix, degrees
of freedom are uniquely defined, hence, the first block contains the node contributions
of the degrees of freedom on the boundaries, Γ1,2, Γ1,3, etc.

90

Figure 6.3: Assembled global vector, u ∈ Rn.

Local and global vectors

We define global vectors as the assembly of all the local vectors defined on the
subdomains. We compute the global vector, u, as follows,

u =
e∑

d

MT
d ud, (6.2)

where, ud ∈ Rnd .

We illustrate the assembly of the global vector, u, with the example of Figure
6.1(a) and 6.3. The colored regions correspond to the entries of the subdomains. The
ordering of the degrees of freedom determine the mapping of the local vector to the
global vector. In this example, the degrees of freedom of subdomain, Ω1, correspond
to the first block in the global vector. This block also contains the node contributions
of the degrees of freedom that lie on the interface between subdomains, Ω1, Ω2, and Ω3.

Remark. Although we define global matrix, K , and global vector, u, these quantities
are never explicitly formed in the parallel implementation of the domain decomposition.
We store all matrices and vectors locally and by means of a subdomain mapping for
each degree of freedom we communicate and process the node contributions of the
degrees of freedom that lie on the interfaces between subdomains.

Parallel matrix-vector product

We define the global matrix-vector product as Ku = v, where K ∈ Rn×n and u ∈ Rn.
The parallel matrix-vector product is evaluated by computing {K1u1, ..., KDuD}, and,
combining, {v1, ..., vD}, where, Kd and ud have dimension, nd × nd and nd × 1 in

91

subdomain Ωd respectively. We have v =
∑D

d=1MT
d vd. We emphasize that in this

formulation the entries of the shared degrees of freedom in the vectors, ud, should be
identical for each domain it is defined on.

Parallel inner product

We define the global inner product as λ = uTu. The parallel dot product is computed
as λd = uT

dWdud, where Wd and ud have dimension nd×nd and nd×1, in subdomain
Ωd respectively. We have, λ =

∑D
d=1 λd. We emphasize that in this formulation the

entries of the shared degrees of freedom in the vectors, ud, should be identical for
each domain it is defined on.

6.2 Parallel Deflated Preconditioned Conjugate Gradient method

The parallelization of the deflation operator in the DPCG method given by Algorithm 7
involves two steps. First the construction of the deflation matrix, Z , on each subdomain
and, second, the evaluation of PKpj for each iteration of DPCG.

6.2.1 Building-blocks of parallel DPCG

We construct the rigid body modes in two steps. After we identify the sets of elements,
i.e. rigid bodies, that share the same material properties, we compute the rigid body
modes of those sets by using the formulation of rigid body modes for FE elements
given in Chapter 5, Section 7.6.

Parallel coloring algorithm: construction and identification of rigid bodies distributed
over subdomains

The identification of the rigid bodies is given by Algorithm 8. In three dimensions,
each rigid bodies has six rigid body modes and, hence, adds six deflation vectors to
the deflation space.

92

Algorithm 8 Identification of rigid bodies in FE mesh
Target: Given d materials, identify dj rigid bodies for material j .
Given FE mesh with elements Λ = {Λ1, ...,ΛE} and nodes Σ = {σ1, ..., σN},
Define element i as Λi = {ΣΛi, χΛi, θΛi, γΛi},
with

• nodeset, ΣΛi =
⋃
j∈IΣ

Λi
σj where, IΣ

Λi
contains indices of nodes of element Λi,

• neighboring elements, χΛi =
⋃
j∈IΛ

Λi
Λj where, IΛ

Λi
contains indices of neigh-

boring elements of element Λi,

• material type, θΛi ,

• rigid body, γΛi

for j = 1, ..., d do
set dj = 0
for i = 1, ..., E do

select element, Λi, with χΛi , θΛi , and, γΛi .
assign_element_to_body(Λi) {
if θΛi = j then

if γΛi = 0 then
dj = dj + 1, set, γΛi = dj .

end if
for all Λk ∈ χΛi do

select element, Λk , with, χΛk , θΛk , and, γΛk .
if θΛk = j then

if γΛk = 0 then
set γΛk = γΛi ,
put element, Λk , on the heap of element, Λi.

end if
end if

end for
end if
}
for all Λk on heap of Λi do

assign_element_to_body(Λk)
end for

end for
end for

93

Figure 6.4: Rigid bodies divided over subdomains.

The construction of the rigid bodies by Algorithm 8 is a serial algorithm. The
recursive call to function assign_element_to_body does not allow for easy paral-
lelization. We explain the concept of the parallel search algorithm by the example
given in Figure 6.4. The concept is based on a global reduction of connected rigid
bodies. We send the constructed sets of local rigid bodies to a master process, after
which we apply serial Algorithm 8 to these connected sets again, yielding the global
numbering of rigid bodies. In Figure 6.4 we have four subdomains which all contain
two materials, and multiple rigid bodies. We assume that we have identified the rigid
bodies for one particular material in each domain with Algorithm 8. Clearly, the rigid
bodies 2 and 3 of subdomain Ω1, the rigid bodies 2 and 3 of subdomain Ω2, the rigid
body 1 of subdomain Ω4, and the rigid body 2 of subdomain Ω3 are all connected and
form one rigid body. We introduce a global numbering of rigid bodies that ’unifies’
the connected rigid bodies of the neighboring subdomains yielding one rigid body,
and, hence, five global rigid bodies remain. The global numbering is constructed as
follows,

1. For all elements on the boundaries between the subdomains, communicate the
local number of the rigid body the element is contained in to the neighboring
elements of the neighboring domains.

2. Send the list of local rigid bodies and domain connectivity to a master process.
In the example of Figure 6.4, the list is given by Table 6.1.

3. Give rigid bodies temporary global number on master process. In the example
of Figure 6.4, we have 10 rigid bodies. We number sequentially, starting with
domain Ω1; hence, we obtain the connectivity as given in Table 6.2.

94

Ω1

1 2 3 4
1 x
2 x 2, 3
3 x 2

Ω2

1 2 3 4
1 x
2 2 x 1
3 2 x

Ω3

1 2 3 4
1 x
2 3 x 1

Ω4

1 2 3 4
1 2 2 x
2 x

Table 6.1: Local number of connected rigid body modes in neighboring domains

4. Construct set of elements Λ = {Λ1, ...,Λl}, where global rigid body i is defined
as Λi = {∅, χΛi, θΛi, γΛi}, with χΛi the connected global rigid bodies, θΛi the
material type, and γΛi the definite global rigid body numbers. In this example
l = 10.

5. Apply Algorithm 8 to set Λ = {Λ1, ...,Λl}. The sets of elements and the
definite global numbering is given by Table 6.3. We can clearly see from the
example of Figure 6.4 that we should obtain 5 global rigid bodies which are
Λ1, {Λ2,Λ3,Λ5,Λ6,Λ8,Λ9},Λ4,Λ7 and Λ10.

6. Master process broadcasts all global rigid body numbers to subdomains.

global 1 2 3 4 5 6 7 8 9 10
(Ωi, local) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (4,1) (4,2)

Table 6.2: Mapping temporary global numbering rigid body modes to local numbering.

Λ1 = {∅, ∅, 1, 1} Λ6 = {∅, {Λ2}, 1, 2}
Λ2 = {∅, {Λ5,Λ6}, 1, 2} Λ7 = {∅, ∅, 1, 4}
Λ3 = {∅, {Λ8}, 1, 2} Λ8 = {∅, {Λ3,Λ9}, 1, 2}
Λ4 = {∅, ∅, 1, 3} Λ9 = {∅, {Λ5,Λ8}, 1, 2}
Λ5 = {∅, {Λ2,Λ9}, 1, 2} Λ10 = {∅, ∅, 1, 5}

Table 6.3: Temporary set of rigid bodies and definite global numbering.

95

Figure 6.5: Deflation matrix Z , divided over subdomains.

Computing rigid body modes in parallel

After we identified the global rigid bodies, i.e. sets of elements, by global reduction
and recursively applying Algorithm 8, we compute the rigid body modes by means of
the formulation of rigid body modes for FE elements given in Section 5.3.3 of Chapter
5.

We explain the storage and construction of the deflation vectors by the example
of Figure 6.1(a). We apply Algorithm 8 to mesh and subdomains of Figure 6.1(a)
and, thus, identify five rigid bodies, Φa

1 , Φa
2 , Φa

3 , sΦb, and, Φc , corresponding to three
different materials, a, b, and c. The distribution of the global degrees of freedom
over the subdomains is illustrated by vector, u, in Figure 6.3. The entries of deflation
matrix, Z , containing the 6× 5 = 30 deflation vectors, have the same distribution.

In Figure 6.5, we illustrate the distribution and zero pattern of the deflation matrix,
Z , for the example of Figure 6.1(a). We observe that the rigid body modes of rigid
body, Φa

2 , are defined on subdomains Ω2, Ω3, and Ω4, but have only zero entries,
because this rigid body is not contained in either one of these subdomains. We
emphasize that this approach is different from the distribution of the entries of the
global stiffness matrix, K . We define the column and row index space of a matrix
as the space from which we select the indices that correspond to the nonzero entries
of that matrix. The column index space, as well as the row index space of matrix
K , have as many entries as degrees of freedoms in the matrix and are distributed
over all subdomains corresponding to the distribution of a global vector. However, the
column index space of the deflation matrix, Z , does not coincide with the distribution
of the degrees of freedom, but with the distribution of the rigid bodies, and would,
therefore, not be distributed over the subdomains. Hence, to simplify the parallel
administration, we keep the total number of deflation vectors on all subdomains, and
we consider deflation matrix Z , as a collection of global vectors, and not a sparse

96

global matrix. This approach leads to no additional memory requirements and only
a negligible amount of additional parallel communication. Only the rigid bodies that
are contained in a subdomain induce nonzero entries in the corresponding deflation
vectors, and because of the sparse data structure, only the row and column indices
and the values of nonzero entries are stored. Moreover, as only nonzero entries
are communicated to other domains, additional communication is needed for shared
degrees of freedom on the subdomain boundaries and for parallel matrix and vector
operations.

Efficient computation of P in parallel

In the previous section we discussed the mapping of the column index and row index
space of the deflation matrix, Z , onto the subdomains. The computation of rigid body
modes only requires the element matrices and is based on the node coordinates; hence,
no parallel communication is needed for the assembly of the distributed deflation
matrix. We store the nonzero elements of the deflation matrix, Z , in a sparse data
structure, yielding a small memory overhead and efficient computation.

We consider the evaluation of PKp,

PKp = Kp− KZE−1ZTKp,

where K ∈ Rn×n, Z ∈ Rn×k . Here, Kp = y, is computed as usual, while KZ =
Z̃ ∈ Rn×k and E−1 = (ZTKZ)−1 ∈ Rk×k are computed only once, before entering
the Krylov process (iteration loop). Hence, for each iteration of DPCG, we have three
extra operations compared to PCG,

ZTy = ỹ, ỹ ∈ Rk ,
E−1ỹ = ŷ, ŷ ∈ Rk ,
Z̃ ŷ = ȳ, ȳ ∈ Rn.

Communication between subdomains is needed for the computation of KZ , E , and ZT.
The computation of KZ is, in fact, k matrix-vector products of K zi, where vector zi ∈ Rn

is the ith column of deflation matrix Z . In each iteration, computing ZTy involves one
parallel communication at the cost of k parallel inner products. The coarse matrix,
E , is determined at the cost of k × k parallel inner products. The decomposition of
coarse matrix, E , is computed sequentially on each CPU by a direct method such as
PARDISO [76] and, thus, we solve E−1ỹ in each Krylov iteration by back substitution.

Remark. The number of Newton-Raphson iterations for highly non-linear material
models may be large if the Jacobian does not ’follow’ the deformation of the body, i.e.
if the stiffness matrix, which is the tangent of the non-linear virtual work equation, is
not adapted in every iteration. In the FE software CAPA-3D, the stiffness matrix is

97

Figure 6.6: Sparsified global stiffness matrix, K̂ ; no connectivity between nodes in
subdomains of domain decomposition except for boundary nodes.

recomputed at every load or time step, for static and dynamic mechanics, respectively.
Hence, as the stiffness matrix is kept constant, the deflation matrix Z , matrix KZ , the
coarse matrix, E , as well as the decomposition of E , are determined only once every
load or time step.

6.3 Subdomain deflation

We consider the subdomains of the domain decomposition method in Section 6.1.1 as
connected sets of elements, i.e. rigid bodies. These rigid bodies have no physical
meaning as they consist of bodies with varying material properties. We may compute
the rigid body modes of these subdomains, and use them as deflation vectors, but no
direct relation between the eigenvalues in the spectrum of the stiffness matrix, K , and
these deflation vectors exists.

However, some parallel preconditioners have limited global error reduction prop-
erties; we refer to these parallel preconditioners as local preconditioners. In this
thesis, we use the ILU preconditioner as a local preconditioner. For this precondi-
tioner, all off-diagonal entries in the stiffness matrix corresponding to the connectivity
between subdomains are disregarded. This effect is best illustrated by the assembly
of the global stiffness matrix, K , in Figure 6.2(b). When we disregard the connectivity
between nodes of elements that lie on the boundaries of the subdomains, we get the
splitting

K = K̂ + Γ, (6.3)
where the structure of sparsified matrix, K̂ , is given in Figure 6.6. We assemble the
local stiffness matrices in matrix K̂ , but remove the contributions from nodes of bound-
ary elements and add those to the ’boundary’ matrix, Γ, except for the contributions
to the main diagonal of K̂ from the nodes on the subdomain boundaries, which are
illustrated by the black squares in Figure 6.6.

98

Figure 6.7: Non-zero pattern subdomain deflation vectors, Zsd ∈ Rn×(4×6), for domain
decomposition with 4 domains.

In Section 5.3 of Chapter 5, we show how to decouple regions in the stiffness matrix
by means of deflation. We precondition those regions with a local preconditioner,
such as the ILU preconditioner considered in this section. In the context of domain
decomposition and parallel computing, we choose the subdomains as the decoupled
regions and obtain an embarrassingly parallel global preconditioner based on local
preconditioners.

The decoupling of regions in the stiffness matrix is determined by the choice
of the deflation vectors. We introduced the decoupling of regions corresponding to
rigid bodies based on the splitting of the stiffness matrix in Theorem 5.2.1. We
extend this decoupling to the deflation of subdomains. We apply Theorem 5.2.1 to
the splitting of Equation 6.3. The matrix, C , corresponds to matrix K̂ of Equation
6.3. Clearly, matrix K̂ is semi-positive definite, as is the interface matrix, Γ. The
matrix K̂ has D independent regions, with D × 6 null space vectors, thus, deflation
vectors. Those subdomain deflation vectors are defined by deflation matrix, Zsd ∈
Rn×(D×6). For the example of Figure 6.6, the non-zero pattern of matrix, Zsd, is given
by Figure 6.7. The subdomain deflation vectors have non-zero entries only on the
domains that ’own’ the corresponding degrees of freedom. We take into account the
overlap between the domains. The corresponding entries for the overlap between
subdomains for the example of Figure 6.6 is illustrated by the black rectangles in
Figure 6.7. We assume we have two subdomains Ω1 and Ω2, that share two degrees
of freedom on the boundaries of these domains α and β . The local stiffness matrices
contain the contributions of those degrees of freedom, hence, we obtain contributions
of both subdomains on the main diagonal of K̂ . We compute the null space vectors by
considering the subdomains as sets of elements and using the algorithm for computing
rigid body modes given in Section 5.3.3 of Chapter 5. However, to obtain the correct
null space vectors, we scale the rigid body modes of the subdomains for the overlapping

99

Figure 6.8: Overlap between subdomains, and the corresponding entries in truncated
matrix, K̂ .

entries on the main diagonal of matrix, K̂ , with the local contributions divided by the
sum of the contributions of all subdomains. For the two degrees of freedom in Figure
6.8, we scale by

αΩ1

αΩ1
+ αΩ2

, αΩ2

αΩ1
+ αΩ2

, (6.4)

and
βΩ1

βΩ1
+ βΩ2

, βΩ2

βΩ1
+ βΩ2

, (6.5)

for degrees of freedom, α , and, β , respectively.
We combine the deflation of the real rigid bodies and the subdomains with the re-

cursive deflation operator defined by Definition 5.4.1. We assume we have a composite
material with γ real rigid bodies and we apply a domain decomposition, yielding D
domains. We define the deflation vectors corresponding to the real rigid bodies as
Zag ∈ Rn×(γ×6), and the deflation vectors corresponding to the subdomains as above
Zsd ∈ Rn×(D×6). We define the deflation operator for the real rigid bodies as,

Pag = I − KZag(ZT
agKZag)

−1ZT
ag, (6.6)

and the the deflation operator for the subdomains as,

Psd = I − KZsd(ZT
sdKZsd)

−1ZT
sd. (6.7)

We combine the deflation operators, and, obtain,

PK = PagPsdK = K − KZ (ZTKZ)−1ZTK, (6.8)

where, Z = [Zag, Zsd].

100

Remark. In some deflation strategies, one of the real rigid bodies might consist of the
collection of all elements in one or more subdomains. In that case, the rigid body
modes of that real rigid body are linearly dependent on the null space vectors of those
subdomains. Thus, let zi ∈ Rn×6 correspond to the rigid body modes of rigid body i
which overlaps with the rigid bodies of subdomains, then,

∃λ = {λ1, ..., λD} : zi = λ1ZΩ1

sd + ...+ λDZΩD
sd , (6.9)

where, ZΩi
sd ∈ Rn×6, corresponds to the null space vectors of subdomain, Ωi. In this

particular case we omit the rigid body modes of the real rigid body from the deflation
space, hence, we obtain,

Z = [z1, ..., zi−1, zi+1, ..., zγ] ∈ Rn×((γ−1)×6). (6.10)

6.4 Parallel implementation of other solvers

6.4.1 Parallel PCG method

The PCG algorithm [34] is constructed from basic linear algebraic operations. As
described in the previous section, only the matrix-vector operation and inner product
require communication. All other linear algebraic operations (e.g. vector scaling and
addition) can be done locally; i.e., there is no communication with other subdomains.

The parallelization of the preconditioner is usually much more involved and de-
pends on the type of preconditioner. In this research, we consider diagonal scaling, IC
factorization, and SA-AMG. We note that diagonal scaling is, in fact, a matrix-vector
operation and hence, can be parallelized with the parallel matrix-vector operation
defined in the previous section. In this thesis, we apply the following simple par-
allelization strategy. We compute the IC factorization only for the local stiffness
matrices and ignore all connectivity between the subdomains. With this approach, we
might lose any global error reduction properties of the preconditioner, but we gain
performance as no communication between the subdomains is needed to compute the
decomposition. In Section 4.1.2 we argue that we may lose accuracy if the local stiff-
ness matrices are (nearly) singular; hence, the diagonal entries of the local stiffness
matrices are communicated, and, thus, ’synchronized’. We elaborate on the parallel
implementation of SA-AMG in the next section.

6.4.2 Parallel SA-AMG

In recent years, two general-purpose parallel algebraic multigrid codes have been
developed, alongside a number of other codes aimed at specific applications. One
of these codes, BoomerAMG [39] (included in the Hypre package [31]), focuses on
classical (Ruge-Stüben) AMG algorithms and their variants, while the other, ML [33]

101

(included in the Trilinos project [40]), focuses on the smoothed aggregation setting. In
our experiments below, we make use of ML and Trilinos for the parallel implementation
of smoothed aggregation.

There have been a number of studies on the performance of parallel AMG codes
for solid mechanics operations. Initial two-dimensional results were reported in [89],
based on an AMG treatment that first coarsens appropriately along boundaries shared
between processors and then treats the processor interiors. Scalability studies for a
simplified AMG approach, based on maximal independent set coarsening of nodes,
remeshing the coarse node set, and using geometric grid-transfer operators, for both
linear elasticity and nonlinear elastic and plastic solid mechanics are detailed in [2].
This method was compared with smoothed and unsmoothed aggregation in [3], where
it was found that the simplified approach was less robust than the aggregation ap-
proaches, and that smoothed aggregation was most robust and typically not much
more expensive than the other two approaches. A comparison of Ruge-Stüben AMG,
smoothed aggregation, and a generalized smoothed aggregation approach (using in-
formation from local eigensolves to complement the restricted rigid-body modes) was
performed in [17], where smoothed aggregation was shown outperform Ruge-Stüben
AMG for most cases. The generalized form offers even greater robustness, but re-
lies on an expensive preprocessing step. One important issue in these studies is the
choice of parallel smoother; this was studied in depth in [1], comparing parallel hybrid
Gauss-Seidel orderings with polynomial (Chebyshev) smoothers and concluding that
polynomial smoothers offer many advantages.

102

7
Numerical examples

In Chapter 5 and 6, we discussed the theory of rigid body mode and subdomain de-
flation, and, the parallel implementation. In this chapter we illustrate the performance
and robustness of DPCG by numerical experiments.

All the numerical experiments in this chapter are based on three different cases
which we describe in Section 7.1. We discuss the hardware and software configura-
tions in Section 7.2.

In Section 7.3 we look into the robustness of DPCG for varying orders of stiffness, in
Section 7.4 we show how subdomain deflation can improve the convergence of DPCG,
and in Section 7.5 we compare DPCG to the state-of-the-art solution methods that
we discussed in Chapter 4.

7.1 Description of cases

All three cases in this chapter concern the analysis of asphaltic materials subjected to
an external force. The simulation of the material behavior involves the evaluation of the
linearized virtual work equation given in Chapter 3. The asphaltic materials that we
consider in this section are composite materials that consist of aggregates, bitumen,
and air voids. Although in practice, bitumen is modeled as an elasto-visco-plastic
material, in this chapter we only consider the non-linear Neo-Hookean hyperelastic
material model. In the next chapter we show that the performance of the DPCG
method does not depend on specific material models. The elastic components are the
dominating contributions to the stiffness matrix. Large variations due to hardening
as well as softening effects in the materials may lead to a significant (permanent)
change in the ’stiffness’ of the material. Keep in mind that the ’stiffness’ of the material
constitutes the ordering of the sets of elements that determine the deflation vectors,
hence, if the stiffness changes due to these effects, a new ordering may apply and, thus,

aggregate bitumen air voids
69000 5000 100

Table 7.1: Young’s moduli for different materials

103

we need to identify the new rigid bodies and hence construct the corresponding set
of deflation vectors. However, during an arbitrary iteration of the modified Newton-
Raphson method, the Jacobian is fixed and hardening as well as softening effects can
not influence the Krylov iteration process.

We use the same set of material parameters for the hyperelastic material model in
all numerical experiments. The corresponding stiffness coefficients (Young’s Moduli)
are given in Table 7.1.

the artificial case: small artificial case, cylinder containing aggregates and bitumen

The case given in Figure 7.1 is a cylinder of soft material (air voids) containing three
aggregates embedded in a layer of bitumen. The aggregates and surrounding bitumen
are represented by spheres. The corresponding mesh holds 23602 elements and yields
12314 degrees of freedom. The number of deflation vectors for the experiments of the
artificial case is 36. All vectors are sparse and Z is of full rank.

We study this academic example to illustrate the various effects of the stiffness of
the rigid bodies in the composite material on the convergence of PCG without having
to take into account any numerical side effects due to badly shaped elements that
may come from the conversion of a CT-scan to a finite element mesh.

(a) (b)

Figure 7.1: the artificial case: FE mesh and schematic representation of cylinder
containing three aggregates represented by spheres.

104

the asphalt core & cube of asphalt case: FE mesh from real core of asphalt concrete

The meshes of the asphalt core and the cube of asphalt case, given by Figure 7.2
and 7.3 are derived from real-life samples of asphaltic material obtained by CT scan.
Both experiments involve different mesh sizes, yielding approximately 2.3 × 105 and
3× 106 degrees of freedom, respectively.

The number of deflation vectors for the experiments of the asphalt core case and (iii)
are 162 and 342, respectively. All vectors are sparse and Z is of full rank. As described
in Section 6.2, the parallel implementation involves the distribution of the degrees of
freedom, thus vectors; hence, the rigid body modes of an arbitrary aggregation of
materials may be spread over multiple domains. Apart from an increase in iterations
due to the preconditioner and deviations in iterations due to the round-off errors
induced by the domain decomposition, the parallel implementation of DPCG should
yield the same number of iterations as the sequential implementation provided that
we have the same deflation space. As a result, the number of iterations of the DPCG
method for a given problem is invariant under an increasing number of subdomains,
given the same number of deflation vectors.

Figure 7.2: the asphalt core case: FE mesh representing core of asphaltic material
containing aggregates (yellow), bitumen (red) and air voids (blue).

105

Figure 7.3: the cube of asphalt case: mesh representing cube of asphaltic material
containing aggregates (light green), bitumen (dark green) and air voids (blue).

106

7.2 Description of hardware and software

DELL cluster / CAPA-3D: Dell workstations and CAPA-3D

We have implemented PCG and DPCG into the parallel FE software package CAPA-
3D [19], which is programmed in Fortran90 and compiled with the Intel Fortran Com-
piler. Supporting libraries are the optimized BLAS and LAPACK libraries that are
contained in the Intel MKL library. All experiments with CAPA-3D were performed
on a cluster of 8 Dell workstations. Each cluster node has 2 Intel Xeon E5450 pro-
cessors (8 CPUs) running at 3.00GHz, 16GB DDR2 memory, and, are connected by
Infiniband. The two Intel Xeon processors have only two channels to access memory,
hence, maximum parallelism is gained at 16 concurrent threads running in parallel,
divided linearly over the 8 nodes. If the number of concurrent threads exceeds 16,
threads that share an Intel Xeon processor compete for direct memory access, thus,
slow down other threads and negatively affect the parallel speed-up.

We use this configuration for the domain decomposition by ParMETIS [52], and,
generation of the stiffness matrices, force vectors, and deflation vectors by CAPA-3D
and qualitative research on the robustness of the DPCG method.

TUFTS cluster / Trilinos: HPC cluster and Trilinos

We have implemented DPCG in the parallel software package Trilinos [40], which is
programmed in C++ and compiled with the GNU C compiler. All experiments with
Trilinos have been performed on the Tufts Linux Research Cluster which is comprised
of 103 IBM Linux systems (compute nodes) interconnected via a 10Gig network. Each
cluster node has 8 or 12 cores with 2.8Ghz+ Intel Xeon CPUs and 16, 24,32,48 or
96 gigabytes of memory. The 1000+ compute cores have a capacity of about 10
TeraFlops. Each user may access up to a maximum of 256 CPUs.

We use this configuration for quantitative research on the performance of the DPCG
method, and compare to the state-of-the-art solvers that are contained in Trilinos, such
as SA-AMG and SuperLU.

107

7.3 Rigid body mode deflation

In Chapter 5 we discussed the theory of rigid body mode deflation. In this section we
illustrate the effect of the discontinuities on the convergence of PCG, by comparing
results for 4 sets of parameters. The first set (i.) from Table 7.2 contains realistic
material parameters. The other sets do not have a direct physical meaning to as-
phaltic materials, but are used for illustration of the performance of deflation. We
have conducted the experiments with two different preconditioners, diagonal scaling
and Incomplete Cholesky with a drop tolerance of 10−3. This drop tolerance was
determined after performing several tests with ILUPACK [12] and represents a good
compromise in terms of memory usage (lower drop tolerance demands more memory)
and the speed of the back solve (lower tolerance yields a slower back solve) against
the performance of the preconditioner in terms of reduction in number of iterations of
DPCG. All experiments were performed with Conguration (i).

the artificial case

We compare DPCG and PCG in combination with diagonal scaling. The case involves
a mixture of materials that is subjected to an external force applied to the upper
boundary of the volume. Zero-displacement boundary conditions are imposed on the
base of the volume, this is, homogenous Dirichlet boundary conditions to all degrees
of freedom in the x, z-plane for y = 0. We note that the case resembles the uniaxial
compression test, which is a standard laboratory test. We observe the convergence
behavior of DPCG and PCG for variations in the Young’s moduli of the bitumen and
aggregates as given in Table 7.2. We compare a standard choice for the values of
parameter E [28] with increased stiffness of the aggregates, and decreasing stiffness
for the bitumen and air voids.

Figure 7.4 shows the convergence of PCG and DPCG for parameter sets (i.) to
(iv.). Clearly the convergence of the solution with PCG is slow and highly oscillating.
PCG compared to DPCG is also slower in terms of wall clock time. But due to the
small problem size, this is more a qualitative example rather than quantitative. We
observe in the plots of sets (i.) to (iii.) that the value of the material stiffness for
the aggregates and bitumen does not influence the number of iterations of DPCG.

aggregate bitumen air voids
i. 69000 5000 100
ii. 690000 5000 100
iii. 69000 500 100
iv. 69000 5000 10−2

Table 7.2: Young’s modulus for different materials

108

0 500 1000 1500
10

−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

|r
i|/

|r
o
|

E
aggr

,E
bit

,E
air

=[69000,5000,100]

0 500 1000 1500
10

−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

|r
i|/

|r
o
|

E
aggr

,E
bit

,E
air

=[690000,5000,100]

0 500 1000 1500
10

−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

|r
i|/

|r
o
|

E
aggr

,E
bit

,E
air

=[69000,500,100]

0 500 1000 1500
10

−10

10
−5

10
0

10
5

iteration

|r
i|/

|r
o
|

E
aggr

,E
bit

,E
air

=[69000,5000,10
−2

]

Figure 7.4: the artificial case: Convergence of PCG and DPCG (bold line) for cylinder
containing three aggregates

This is what we expected. The stiffness matrices corresponding to the aggregates
and bitumen have been decoupled. We observe that the effective condition number is
bounded by the smallest eigenvalue of the least stiff material, the air voids. This can
also be observed in the plot of set (iv). The number of iterations of DPCG increases
from 150 towards 242 for air. As the value of the material stiffness of the air voids

PCG DPCG
iter cpu (s) iter cpu(s)

i. 648 0.288 143 0.204
ii. 1089 0.477 154 0.175
iii. 746 0.328 149 0.172
iv. 1581 0.677 242 0.276

Table 7.3: the artificial case: wall clock time(s) PCG and DPCG

109

(a) (b) (c)

Figure 7.5: the asphalt core case: deflation strategy, identify sets of elements corre-
sponding to material: (a) aggregates, (b) bitumen and (c) air voids.

changes from 100 to 10−2, the effective condition number increases as well as the
number of iterations of both DPCG and PCG. However, this is not surprising as the
smallest (non-zero) eigenvalue is determined by the least stiff material, due to the
decoupling of the stiffness matrices corresponding to the different materials. When
the stiffness decreases, the smallest eigenvalue will become smaller and subsequently
the condition number increases. We do not consider this as a shortcoming of the
deflation method as it can and must be solved by applying the right preconditioner.

the asphalt core case

We compare DPCG and PCG in combination with incomplete Cholesky with drop
tolerance 10−3. The case involves a mixture of materials that is subject to an external
force applied to the upper boundary of the volume. Zero-displacement boundary
conditions are imposed on three sides of the volume, this is homogenous Dirichlet
boundary conditions to all degrees of freedom in the x, z-, x, y- and y, z- planes for
y = 0, z = 0 and x = 0 respectively. We observe the convergence behavior of DPCG
and PCG for variations in the E modulus of the bitumen and aggregates as given in
Table 7.1. We compare a standard choice of parameters [28] with increased stiffness
of the aggregates, and decreasing stiffness for the bitumen.

There is a difference between the artificial cylinder and the sample of real asphaltic
material. Where it was possible to decouple all materials in case of the cylinder, for
an FE mesh obtained from a CT scan this is much more involved. We can see from
Figure 7.5 (b) and (c) that there exist many small bodies of material. Each body is
represented in the deflation space by six rigid body modes. However, due to overlap,
many of these sparse vectors will become zero, implying a singular deflation matrix.
Moreover, because of the large number of small bodies and thus deflation vectors, it

110

0 200 400 600 800
10

−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

|r
i|/

|r
0
|

E
aggr

,E
bit

,E
air

=[69000,5000,100]

0 200 400 600 800
10

−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

|r
i|/

|r
0
|

E
aggr

,E
bit

,E
air

=[690000,5000,100]

0 200 400 600 800
10

−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

|r
i|/

|r
0
|

E
aggr

,E
bit

,E
air

=[69000,500,100]

Figure 7.6: the asphalt core case: Convergence of PCG and DPCG for a real slice of
asphaltic material

would be more favorable in terms of overhead to collapse these bodies into one entity.
Therefore we have used an adapted version of the deflation strategy of Section 5.4.2.
By combining sets of elements of different materials, we still have a decoupling when
we keep in mind the decreasing order of stiffness for the construction of the splitting
of Theorem 5.2.1. We note that we lose some rigid body modes, and hence a worse
bound of the condition number for PK but we gain performance because of a large

PCG DPCG
iter cpu (s) iter cpu(s)

i. 648 13.18 261 7.26
ii. 821 17.48 332 9.31
iii. 756 15.21 331 8.89

Table 7.4: the asphalt core case: wall clock time(s) PCG and DPCG

111

reduction in deflation vectors and avoid singularity of the deflation matrix. Also we
have omitted set (iv.) from this test because the FE software would not run this value
of air voids due to collapsing elements (negative Jacobian).

We observe in Figure 7.5 that PCG has a strongly oscillating curve of convergence
and DPCG has nearly a straight line. Clearly the unfavorable eigenvalues have been
removed by deflation. However, the system is not decoupled completely because the
number of iterations is not invariant for different sets of material parameters. But the
number of iterations of DPCG is much smaller compared to PCG. The performance of
DPCG in terms of wall clock time is also better compared to PCG.

7.4 Subdomain deflation

In Section 6.3, we introduced subdomain deflation as an additional tool to the de-
flation of the rigid body modes of the different bodies in a composite material, to
decouple the regions in the global stiffness matrix corresponding to the subdomains
and, thus, eliminate the need for a strong (expensive) global preconditioner. We show
the potential of subdomain deflation by comparing the convergence behavior of DPCG
with and without subdomain deflation for 2, 8, 16, and 32 subdomains. We compare
the number iterations for different number of subdomains for the asphalt core case
and study the performance of DPCG for the cube of asphalt case. The wall clock time
and memory usage of DPCG are only provided for the cube of asphalt case as the
variations in these numbers for different subdomains are not significant for the asphalt
core case. The DPCG method is preconditioned by Incomplete Cholesky with drop
tolerance 10−3. Both cases involve a mixture of materials that is subject to an exter-
nal force applied to the upper boundary of the volume. Zero-displacement boundary
conditions are imposed on three sides of the volume, this is, homogenous Dirichlet
boundary conditions to all degrees of freedom in the x, z-, x, y- and y, z- planes for
y = 0, z = 0 and x = 0 respectively. All experiments were performed with DELL
cluster / CAPA-3D.

the asphalt core case

In Figure 7.7(a), 7.7(b) we present the L2 norms of the residuals of the DPCG method
respectively without, and with subdomain deflation for 2, 8, 16, and, 32 subdomains.
Clearly, for an increasing number of subdomains the number of DPCG iterations
increases when no subdomain deflation is applied. This is what we expect from In-
complete Cholesky with a fixed drop tolerance. The local stiffness matrices correspond
to smaller domains, and hence, the ’local’ preconditioner has less global error reduc-
tion capabilities. We observe that by decoupling of the regions in the global stiffness
matrix corresponding to the subdomains, we can apply these ’local’ preconditioners

112

0 50 100 150 200 250 300 350 400
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(a)

0 50 100 150 200 250 300 350 400
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(b)

Figure 7.7: the asphalt core case: L2 norms of the residuals for DPCG without 7.7(a),
and, with 7.7(b) subdomain deflation for 2, 8, 16, and, 32 subdomains.

and still preserve the robustness of the DPCG method at the cost of extra (subdomain)
deflation vectors.

113

the cube of asphalt case

In this example we compare the performance of DPCG with, and, without subdomain
deflation and analyze the additional work induced by subdomain deflation. In Figure
7.8(a), 7.8(b) we present the L2 norms of the residuals of the error of the DPCG method
without, and, with subdomain deflation respectively for 8, 16, 32, and 64 subdomains.
We observe the same convergence behavior as for the previous example, if we do not

0 500 1000 1500 2000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

(a)

0 100 200 300 400 500 600 700 800
10

−8

10
−6

10
−4

10
−2

10
0

10
2

(b)

Figure 7.8: the cube of asphalt case: L2 norms of the residuals for DPCG without
7.8(a), and, with 7.8(b) subdomain deflation for 8, 16, 32, and, 64 subdomains.

114

use subdomain deflation the number of DPCG iterations increases for an increasing
number of subdomains. On the other hand, the number of DPCG iterations decreases
for an increasing number of subdomains if subdomain deflation is applied.

The iteration count and wall clock time (s) for DPCG with, and without subdomain
deflation are presented in Table 7.5. We observe that the additional amount of work
due to the subdomain deflation vectors does not significantly influence the performance
of the DPCG method. Bring in mind that we have true parallelism for DELL cluster
/ CAPA-3D only up to 16 domains. We observe linear parallel speed-up for DPCG
with subdomain deflation going from 8 to 16 domains, while the number of iterations
remains constant. Moreover, we gain a factor of 1.5, 1.87, 2.38, and 2.70 in time
when using DPCG with subdomain deflation compared to DPCG without subdomain
deflation for an increasing number of subdomains. Thus, we conclude that we gain
performance of DPCG for an increasing number of subdomains, although the dimension
of the deflation space increases due to an increasing number of subdomain deflation
vectors.

In Figure 7.9(a), 7.9(b) we present the number of nonzeros in the deflation matrix,
Z , and the relative increase of nonzeros in matrix, KZ , for an increasing number of
subdomains, hence, subdomain deflation vectors.

From Figure 7.9(a) we conclude that the amount of additional memory space for
the storage of the subdomain vectors is negligible compared to the storage of the
’original’ rigid body mode deflation vectors. However, the additional memory space
for the storage of the subdomain deflation vectors will be much larger compared to
the storage of the ’original’ rigid body mode deflation vectors when the number of
domains equals or exceeds the total number of rigid bodies in the composite material,
but this does not apply to the experiments considered in this research.

From Figure 7.9(b) we conclude that the number of additional nonzeros in matrix,
KZ , due to the addition of subdomain deflation vectors, increases almost linearly with
the number of subdomains. The additional nonzeros entries in matrix, KZ , naturally
lead to a proportionally large number of additional FLOPS for a multiplication with
this matrix. However, as the number of parallel processes increases equally, the total

DPCG (no subdomain defl) DPCG (subdomain defl)
iter cpu (s) iter cpu(s)

8 1348 781 755 530
16 1503 440 752 235
32 1661 380 625 160
64 1946 421 613 156

Table 7.5: the cube of asphalt case: wall clock time(s) DPCG for subdomain deflation

115

8

16

32

64

0 750.000 1.500.000 2.250.000 3.000.000

(a)

8

16

32

64

0% 23% 45% 68% 90%

(b)

Figure 7.9: the cube of asphalt case: number of nonzeros in matrix, Z , and the relative
increase of nonzeros in matrix, KZ , using subdomain deflation for 8, 16, 32, and, 64
subdomains.

FLOP rate should scale linearly with the number of subdomains, and, hence, balance
the added amount of work due to the subdomain deflation vectors, but at the expense of
zero speed-up. From Table 7.5 we learn that this effect is negligible when the number
of subdomains is much smaller than the number of rigid body modes contained in the
composite material.

116

7.5 Performance DPCG and comparison to other state-of-the-art meth-
ods

In Chapter 4 we discussed the existing solution methods for solving the linear systems
that come from the linearized virtual work equation of Chapter 3. In this section
we compare the DPCG method with other state-of-the-art solution methods. We
consider direct solution methods and SA-AMG which are implemented in MUMPS,
and Trilinos1, respectively.

Although we do not consider direct solvers as the method of choice for coupled
PDEs that are defined on very large three dimensional meshes, we compare the DPCG
method implemented in CAPA-3D to the direct factorization method MUMPS for a
small number of domains. All experiments with CAPA-3D were performed with DELL
cluster / CAPA-3D.

The Trilinos package provides an interface to many state-of-the-art linear solvers.
In this research we consider SA-AMG, with different coarsening schemes as solver as
well as preconditioner to DPCG. All experiments with Trilinos were performed with
TUFTS cluster / Trilinos.

In this section we consider the asphalt core case and (iii). Zero-displacement
boundary conditions are imposed on three sides of the volume; that is, homogenous
Dirichlet boundary conditions are given for all degrees of freedom in the x, z-, x, y-
and y, z- planes for y = 0, z = 0, and x = 0, respectively. In the experiments, we
make use of the same set of material parameters given in Table 7.1.

7.5.1 CAPA-3D: DPCG and MUMPS

the cube of asphalt case

We solve the stiffness matrix with MUMPS, and DPCG preconditioned by Incomplete
Cholesky with a drop tolerance of 10−3 and rigid body modes and subdomain deflation.
The resulting number of deflation vectors for D subdomains is, 342 + (D × 6). The
wall clock time as well as the number of iterations for both solvers and all domain
decompositions are given in Table 7.6. The convergence curve of DPCG for the cube
of asphalt case is given in Figure 7.8(b).

We observe in Table 7.6 that MUMPS is outperforming DPCG for all subdomains.
Although under optimal parallel conditions, which is one dedicated memory bus for
each CPU, the timings are relatively close (roughly 20 % difference in wall clock time,
in favor of MUMPS). The analysis of the memory usage of the threads on the cluster

1Trilinos is implemented with the object-orientated programming language C++, and, thus, has con-
siderably more overhead in terms of memory and CPU compared to libraries compiled with FORTRAN.
Therefore we do not compare the results coming from different software packages.

117

DPCG MUMPS
iter cpu (s) cpu (s)

8 755 530 301
16 752 235 198
32 625 160 131
64 613 156 105

Table 7.6: the cube of asphalt case: wall clock time(s) DPCG and MUMPS for 8, 16,
32, and, 64 subdomains

of DELL cluster / CAPA-3D tells that the required amount of memory for MUMPS
running with 16 subdomains is 87GB (divided over 16 CPUs) and he required amount
of memory for DPCG running with 16 subdomains is 15GB (divided over 16 CPUs).
This shows the limitations of factorization methods for large systems of PDEs. Given
the same resources, with DPCG we can solve problems that take 6 times the memory
of the current test case.

Although MUMPS uses significantly more memory, in Table 7.6 we observe a more
favorable speed-up for non-optimal parallel conditions. We conclude that MUMPS
is implemented more efficiently by utilizing near-CPU cache memories and special
memory queueing strategies [7]. Moreover, with dedicated hardware (vector processors,
GPU computing) and cache memory programming, the DPCG algorithm can be further
optimized. In Chapter 10 we discuss future research on more efficient implementation
of the DPCG algorithm.

In Figure 7.10 we present the cumulative timing of all different stages of the DPCG
method for 8, 16, 32, and, 64 subdomains. The set-up time and the run-time of the

8

16

32

64

0% 25% 50% 75% 100%

Figure 7.10: the cube of asphalt case: Cumulative timing all stages of DPCG (IC
preconditioner) for 8, 16, 32 and 64 subdomains.

118

deflation operator and the preconditioner are considered, as well as the timing of
the ’general’ matrix-vector multiplications and inner products. We observe that the
relative set-up time of the preconditioner does not change under an increasing number
of subdomains, but the set-up time, as well as the run-time, of the deflation operator
do. This is expected given the increase in the number of non-zero entries in Z , and,
KZ , as presented in Figure 7.9(b). Although we may explain the deterioration of
the parallel speed-up of DPCG in Table 7.6 by these results, as argued above, an
enhanced implementation of the DPCG algorithm, which would address memory more
efficiently is likely to give more favorable results.

7.5.2 Trilinos: DPCG and ML (SA-AMG)

The aim of the experiments in this section is to compare the performance and robust-
ness of our deflation method and (optimized) SA-AMG for mechanical problems with
heterogeneous material coefficients. In Section 5.2, we have argued that DPCG is
a two-level approach, and that we need a preconditioner to treat both ends of the
spectrum of the stiffness matrix. We have seen that SA-AMG is designed to solve ho-
mogeneous elastic equations in an optimal way. A natural choice for preconditioning
of DPCG would be using a "black box" implementation of SA-AMG for the "decoupled"
stiffness matrices. Hence, we compare PCG and DPCG preconditioned by SA-AMG
as well as PCG preconditioned by SA-AMG / VBMetis which are included in the
ML software. In the case of SA-AMG, we provide the minimal amount of information
required and follow the default software options. In the case of SA-AMG / VBMetis,
we explicitly provide complete information about the PDE structure and null space. In
particular, we provide the degree-of-freedom to node map, including full details about
eliminated degrees of freedom due to boundary conditions, and we give directly the
rigid body modes of the entire solid body. In both cases, we make use of Chebyshev
smoothers. We also include diagonal scaling as preconditioner to have a point of ref-
erence from which to compare all methods. The stopping criterion for all computations
is ri < 10−6 where ri is the residual vector at ith iteration.

For a fair comparison of PCG and DPCG, we have implemented both methods
using the Trilinos software of TUFTS cluster / Trilinos. Due to the complexity of the
meshes and limitations of our meshing software, we only take into consideration the
strong scaling effect of the solvers. In the asphalt core case, we compare results for
4, 16 and 64 subdomains, where each subdomain is mapped onto a computing core.
In the cube of asphalt case we compare results for 4, 8 and 64 subdomains, because
of memory limitations of the SA-AMG / VBMetis solver.

We have included the run time of the decomposition of the stiffness matrix using
SuperLU 2.5 (distributed memory) [56], hence, we can compare the performance of
a direct solver with the performance of DPCG on the hardware of TUFTS cluster /
Trilinos.

119

the asphalt core case

The wall clock times as well as the number of iterations of all solvers for all domain
decompositions are given in Figure 7.11. Running with 64 subdomains, the DPCG
solver with diagonal scaling is clearly the fastest method, requiring 17 seconds and
1663 iterations. The number of iterations for PCG and DPCG for both diagonal scaling
and SA-AMG is essentially invariant with the number of subdomains, as expected.
The strong scaling is clearly not optimal for this number of unknowns. For instance,
the wall clock time for DPCG with diagonal scaling goes from 73 to 37 and down to
17 seconds, reducing by a factor of two when the number of subdomains increases
by a factor of four. The costs of the deflation operator for diagonal scaling is almost
equal to the costs of the matrix-vector products together with the inner products. The
set up time of the deflation operator lies around 20% of the total cost and does not
significantly increase when increasing the number of subdomains.

The DPCG method combined with the SA-AMG preconditioner has a good per-
formance in terms of iterations, but shows poor parallel performance. Going from 16
subdomains to 64 subdomains gains very little in terms of speed-up. Also, the SA-
AMG preconditioner has three times the set up cost and ten times the operational
cost compared to the deflation operator.

The PCG method combined with the SA-AMG / VBMetis preconditioner performs
worse than the DPCG method with SA-AMG in terms of iterations as well as wall
clock time. Although the ratio between set up time and cost per iteration is almost
equal for both methods, the overall cost of the SA-AMG / VBMetis preconditioner
is much higher. Again, due to the small problem size, there is no benefit from the
parallel implementation.

The L2 norms of the residuals of Experiment 1 are given in Figure 7.12. We
observe that without deflation, i.e. PCG preconditioned by SA-AMG or SA-AMG /
VBMetis, not all unfavorable eigenvalues have been removed from the spectrum of
M−1K . This can also be seen from Figure 7.13, where the 50 smallest Ritz values
of M−1K and M−1PK are given. Clearly, the deflated system has no clusters of
very small (approximated) eigenvalues whereas the non-deflated system, even though

4 domains 16 domains 64 domains
iter cpu (s) iter cpu (s) iter cpu (s)

PCG - diag 4644 109 4642 58 4643 16
DPCG - diag 1665 73 1665 37 1663 17
PCG - SA-AMG 635 150 631 85 637 58
DPCG - SA-AMG 214 66 214 36 217 26
PCG - SA-AMG/VB 298 120 317 51 324 59

Table 7.7: the asphalt core case: Wall clock time and number of iterations of (D)PCG

120

PCG - diag, 4 CPUs
DPCG - diag, 4 CPUs
PCG - diag, 16 CPUs

DPCG - diag, 16 CPUs
PCG - diag, 64 CPUs

DPCG - diag, 64 CPUs

PCG - SA (AMG), 4 CPUs
DPCG - SA (AMG), 4 CPUs
PCG - SA (AMG), 16 CPUs

DPCG - SA (AMG), 16 CPUs
PCG - SA (AMG), 64 CPUs

DPCG - SA (AMG), 64 CPUs

PCG - SA (AMG) / VB, 4 CPUs
PCG - SA (AMG) / VB, 16 CPUs
PCG - SA (AMG) / VB, 64 CPUs

0% 20% 40% 60% 80% 100%

set up: defl.
set up: precon.
krylv accl: defl.
krylv accl: precon.
krylov iter

Figure 7.11: the asphalt core case: Cumulative timing all stages of PCG, DPCG for
4, 16, and, 64 subdomains.

preconditioned by SA-AMG / VBMetis, still contains some unfavorable eigenvalues.

121

0 100 200 300 400 500 600 700 800
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

real slice of asphalt
230.000 DOF, 162 deflation vectors

residuals (64 domains)

iteration

||r
i||

/||
r 0
||

Figure 7.12: the asphalt core case: L2 norms of the residuals

0 5 10 15 20 25 30 35 40 45 50

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

real slice of asphalt
230.000 DOF, 162 deflation vectors

Ritz values (4 domains)

DPCG − diagonal scaling

DPCG − SA (AMG)

PCG − diagonal scaling

PCG − SA (AMG)

PCG − SA (AMG) / VBMETIS

i

R
it
z

va
lu

e
s
,µ

i

Figure 7.13: the asphalt core case: Ritz values derived from (D)PCG

122

the cube of asphalt case

The wall clock time as well as the number of iterations of all solvers for all domain
decompositions are given in Figure 7.14. Again, we see expected performance from the
iteration counts. For PCG, these improve from not converging (within 10000 iterations)
with diagonal scaling, to roughly 2000 iterations with SA (AMG), to roughly 380
iterations with SA (AMG) / VBMetis. Here, the added costs of SA(AMG) / VBMetis
are very notable, giving an out-of-memory error on 4 CPUs. Also as before, we see the
immediate advantage of DPCG, leading to convergence in about 9000 iterations for
diagonal scaling, and about 1200 iterations for SA (AMG). In this case, however, the
added expense of SA (AMG) / VBMetis pays off, yielding about a 50% speedup over
DPCG with diagonal scaling on 64 CPUs (and a greater speedup on 8 CPUs). We note
that the SA (AMG) / VBMetis approach is far from a "black-box" preconditioner, and is
available only as beta software within the ML package; as such, further improvement
may be possible by refining this software and addressing memory issues that were
encountered in obtaining these results.

Several interesting observations are possible about the parallel scaling. For the
DPCG approaches, the relative cost of the deflation operator increases with the num-
ber of subdomains, becoming as expensive the total cost of matrix-vector and inner
products; however, the setup time decreases, due to the parallel Cholesky decomposi-
tion of E. Excellent strong scaling is observed for DPCG with diagonal scaling, giving
speedup of 1.8 and 8.0 for increases in the number of subdomains by factors of 2 and 8,
respectively. Slightly less impressive speedup of DPCG preconditioned by SA (AMG)
is observed, with factors of 1.87 and 6.54 for increases in the number of subdomains
by factors of 2 and 8, respectively. This sub-optimal speed-up is due to the SA (AMG)
preconditioner, which involves an extra set-up phase that scales poorly. The speedup
of the SA (AMG) / VBMetis approach shows the poorest results, with a factor of only
2.45 when the number of subdomains increases by a factor of 8. This, again, is due to
poor scaling of the SA(AMG) / VBMetis preconditioner, although better scaling might
be observed with more degrees-of-freedom per subdomain on the 64 CPU scale.

4 domains 8 domains 64 domains
iter cpu (s) iter cpu (s) iter cpu (s)

PCG - diag n.c. - n.c. - n.c. -
DPCG - diag 9018 9883 9017 5456 9015 680
PCG - SA-AMG 2018 6687 2016 6906 1942 1123
DPCG - SA-AMG 1210 9450 1206 5043 1199 771
PCG - SA-AMG/VB o.o.m. - 376 1118 379 455

Table 7.8: the cube of asphalt case: Cumulative timing all stages of PCG, DPCG for
4, 8, and, 64 subdomains.

123

PCG - diag, 4 CPUs
DPCG - diag, 4 CPUs

PCG - diag, 8 CPUs
DPCG - diag, 8 CPUs
PCG - diag, 64 CPUs

DPCG - diag, 64 CPUs

PCG - SA (AMG), 4 CPUs
DPCG - SA (AMG), 4 CPUs

PCG - SA (AMG), 8 CPUs
DPCG - SA (AMG), 8 CPUs
PCG - SA (AMG), 64 CPUs

DPCG - SA (AMG), 64 CPUs

PCG - SA (AMG) / VB, 4 CPUs
PCG - SA (AMG) / VB, 8 CPUs

PCG - SA (AMG) / VB, 64 CPUs
0% 20% 40% 60% 80% 100%

set up: defl.
set up: precon.
krylv accl: defl.
krylv accl: precon.
krylov iter

Figure 7.14: the cube of asphalt case: Cumulative timing all stages of PCG, DPCG
for 4, 8, and, 64 subdomains.

The L2 norms of the residuals of Experiment 2 are given in Figure 7.15, and the
Ritz values of the preconditioned stiffness matrix derived form the (D)PCG iterations
are given in Figure 7.16. We observe that the stiffness matrix preconditioned by
SA-AMG / VBMetis yields a more favorable spectrum of eigenvalues compared to
preconditioning with the deflation operator combined with SA-AMG. This can also be
observed in Figure 7.15, as the residual curve of PCG preconditioned by SA-AMG /
VBMetis is steeper than the curve of DPCG preconditioned by SA-AMG, which indi-
cates that the eigenvalues of the spectrum of preconditioned K lie relatively closer to
1. However, compared to PCG preconditioned by diagonal scaling and SA-AMG, all
unfavorable eigenvalues have been removed from the spectrum by DPCG and PCG
preconditioned by SA-AMG / VBMetis.

124

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

real asphalt core
2.976.627 DOF, 342 deflation vectors

residuals (8 domains)

iteration

||r
i||

/||
r 0
||

Figure 7.15: the cube of asphalt case: L2 norms of the residuals

0 5 10 15 20 25 30 35 40 45 50
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

real asphalt core
2.976.627 DOF, 342 deflation vectors

Ritz values (8 domains)

DPCG − diagonal scaling

DPCG − SA (AMG)

PCG − diagonal scaling

PCG − SA (AMG)

PCG − SA (AMG) / VBMETIS

i

R
it
z

va
lu

e
s
,µ

i

Figure 7.16: the cube of asphalt case: Ritz values derived from (D)PCG

125

SuperLU

The results for the direct solver for the asphalt core and the cube of asphalt case are
given in Table 7.9. Using the parallel direct solver, wall-clock times are uniformly
worse than those of DPCG for the smaller test problem; for the larger test problem,
memory issues prevented convergence on all but the largest numbers of cores, where
the wall-clock time was again substantially worse than all of the iterative approaches
considered here.

4 CPUs 8 CPUs 16 CPUs 64 CPUs
the asphalt core case 317 114 69 56

the cube of asphalt case o.o.m o.o.m o.o.m 3979

Table 7.9: the asphalt core and the cube of asphalt case: wall-clock times (s) using
SuperLU, distributed memory version 2.5

7.6 Concluding remarks

In this chapter we show that DPCG is a robust solution method for large jumps in the
coefficients of the stiffness matrix. For both the academic test case as well as the real
life engineering test cases we have seen that, for the right choice of deflation vectors,
the number of iterations of DPCG does not depend on the number and magnitude of
the jumps in the entries of the stiffness matrix.

We have seen that in the parallel implementation of (D)PCG the Incomplete
Cholesky preconditioner loses the ability of global error reduction due to the loss
of connectivity between the locally assembled stiffness matrices. Under an increasing
number of subdomains and rigid body mode deflation vectors, the number of iterations
decreases significantly. By combining rigid body mode deflation and subdomain de-
flation, we obtain a robust solver in which the number of iterations decreases with
respect to an increasing number of subdomains, at the expense of a larger number
of deflation vectors in the deflation space. However, the resulting matrix, KZsd, has
only non-zeros at the interface nodes of the subdomain, hence, the added amount of
work is relatively small and outweighs any loss in performance due to the weak local
preconditioning.

Although DPCG performs slightly less compared to MUMPS at this stage, timings
are relatively close and with further optimization we may increase the performance
of DPCG. Moreover, we observed that MUMPS requires significantly more memory
compared to (D)PCG and is therefore not a feasible method for very large meshes
for the PDEs considered in this research. DPCG performs very well compared to

126

Smoothed Aggregation AMG (SA-AMG) which is provided with detailed information
of the underlying mesh, distribution of degrees of freedom, and, null space of the
linear operator. Due to the extensive analysis of the linear operator, the set-up time
of SA-AMG is much higher than DPCG.

The performance of DPCG compared to state-of-the-art solution methods is promis-
ing. We conclude that DPCG with diagonal scaling as preconditioner is a very com-
petitive method compared to the state-of-the-art methods considered in this chapter.
The combination of DPCG with diagonal scaling offers an exceptionally low cost per
iteration, giving much better wall-clock performance than PCG, even with the SA-
AMG preconditioner. We suspect that DPCG and diagonal scaling combine so well
because deflation and scaling are complementary operations, working on the lower
and upper part of the spectrum respectively. DPCG with the SA-AMG preconditioner
strongly improves the iteration counts over diagonal scaling but, for our experiments,
does not improve the wall-clock time to solution. For our larger test problem, the op-
timized SA-AMG / VBMetis preconditioner does outperform the much simpler DPCG
with diagonal scaling approach; however, this approach requires significantly more
software development effort and, as such, may not be readily available for all simula-
tion codes. Thus, we demonstrate that the DPCG approach has limited set-up time, is
easy to parallelize, memory efficient, scalable, and robust and, as such, is an effective
tool in large-scale simulation of the mechanics of composite materials.

127

8
Application to advanced material models

In Chapter 7, we showed that the DPCG method is a very robust and fast method for
a variety of problems involving composite materials and the computational framework
that we introduced in Chapter 2. In the numerical experiments of Chapter 7 we
considered the non-linear Neo-Hookean hyperelastic material model. In this chapter
we discuss the performance of DPCG for a highly non-linear elasto-visco-plastic
material model that is used in many civil engineering applications.

The numerical experiments in this chapter are based on the artificial test case
described in Section 7.1. In Section 8.1 we discuss the elasto-visco-plastic material
model. In Section 8.2 we give the numerical results for the DPCG method applied to
the artificial test case.

8.1 Generalized elasto-visco-plastic material model

The case described in Section 7.1 involves asphaltic material that consist of three
components, bitumen, aggregates and air voids. The air voids and the aggregates
are modeled as hyperelastic materials, the corresponding material parameters are
given in Table 8.1, but in many civil engineering applications the bitumen is modeled
as an elasto-visco-plastic material. The viscous and plastic effects are related to
internal stress. For example, when the sun heats the asphaltic layer on the road, the
stiffness of the bitumen changes due to viscous effects. Or, after endured loading we
might observe permanent deformation of the asphalt due to plastic effects. The latter
phenomenon is clearly visible at traffic lights, where many road slabs have deformed
due to the loads induced by heavy traffic reducing their speed.

We consider a generalized elasto-visco-plastic material model, where plasticity is
controlled by a Drucker-Prager control surface [23]. This model has two components,
an elasto-plastic component and a visco-elastic component. The model is stress addi-
tive, the total stress on the model is the sum of the stress on the elasto-plastic and the
visco-elastic component. In Chapter 2, we have discussed that the visco-elastic and
the elasto-plastic material models have three phases, the linear elastic phase and the
non-linear hardening and softening phases. During the linear elastic phase no per-
manent deformation occurs, the material returns to the original state when unloaded.

129

Elasto-plastic component
Ep 5000
νp 0.13
cγ0 2.5
cγ∞ 2.5
φ 0.01
δ 0.0
ξlim 104

δ1 0.0
Visco-elastic component
Ev 112
νv 0.3
ηd 100.0
ηv 10.0

Table 8.1: Parameters of elasto-plastic and visco-elastic components of elasto-visco-
plastic material model.

During and after the hardening phase, the material will show permanent deformation
and becomes more stiff. When the material reaches the softening phase, it will also
show permanent deformation but the stiffness decreases until, eventually, the material
cracks.

In Table 8.1 we present the parameters that constitute the material behavior of
the bitumen in asphaltic materials. We observe that the Young’s modulus of the
elasto-plastic component is equal to the Young’s modulus of the bitumen modeled as
a hyperelastic material in Chapter 7. The cγ0 and cγ∞ are the cohesion parameters
of the elasto-plastic component and determine the elastic yield surface, described in
Chapter 2. Whenever the applied stress exceeds the elastic yield stress, plasticity
is being built up. The remaining internal stress after the return mapping procedure
constitutes the amount of permanent deformation and, thus, a change in stiffness. The
parameters ηd and ηv are the deviatoric and volumetric viscosity respectively. These
are the important parameters of the visco-elastic component.

In the numerical experiments of this chapter we focus on the permanent plastic
deformation and the elastic and hardening phase. We determine the effect of these
different phases on the performance of the DPCG method. The loading function for
the numerical examples in this chapter is presented in Figure 8.1. The function
represents a creep test. On the x-axis we have the load steps, on the y-axis we
have the normalized applied stress. We apply 150 load steps. In the first load step
we apply the full load. We keep constant loading until load step 99. In load step

130

0	

0,2	

0,4	

0,6	

0,8	

1	

1,2	

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	 50	 55	 60	 65	 70	 75	 80	 85	 90	 95	 100	 105	 110	 115	 120	 125	 130	 135	 140	 145	 150	

load step

no
rm

al
iz

ed
 lo

ad

Figure 8.1: Loading function creep test, 150 load steps.

100 until 150 we apply zero load. These load steps are important in this simulation
because it allows the material to return to its original configuration; hence, we can
determine the permanent deformation due to the viscous and plastic effects.

8.2 Numerical experiments

In this section we consider the performance of DPCG for the two phases of the gen-
eralized elasto-visco-plastic material model provided in the previous section. We
consider the artificial test case which is described in Section 7.1. Zero-displacement
boundary conditions are imposed on three sides of the volume; that is, homogenous
Dirichlet boundary conditions are given for all degrees of freedom in the x, z-, x, y-
and y, z- planes for y = 0, z = 0, and x = 0, respectively.

Figure 8.2 displays the total strain in the direction of the loading, the y-direction,
in an element of bitumen during all 150 load steps. The plastic strain on the element
in the y-direction is presented in Figure 8.3. The two phases are clearly visible.
The plastic strain becomes non-zero after 36 load steps, plasticity builds up. When
zero load is applied the material returns to the original configuration, the total strain
decreases but the plastic strain remains constant. Slight curvature in the total strain
is visible in the first 99 load steps. During the elastic phase, the first 36 load steps,
the total strain shows a linear decrease in time. During the hardening phase, load
steps 37 until 99, the change in total strain decreases and we observe (exponential)
curvature.

131

-‐1,00E-‐02	

-‐9,00E-‐03	

-‐8,00E-‐03	

-‐7,00E-‐03	

-‐6,00E-‐03	

-‐5,00E-‐03	

-‐4,00E-‐03	

-‐3,00E-‐03	

-‐2,00E-‐03	

-‐1,00E-‐03	

0,00E+00	
1	 6	 11	 16	 21	 26	 31	 36	 41	 46	 51	 56	 61	 66	 71	 76	 81	 86	 91	 96	 101	 106	 111	 116	 121	 126	 131	 136	 141	 146	

load step

Figure 8.2: Total strain in y-direction of elasto-visco-plastic element.

-‐8,00E-‐04	

-‐7,00E-‐04	

-‐6,00E-‐04	

-‐5,00E-‐04	

-‐4,00E-‐04	

-‐3,00E-‐04	

-‐2,00E-‐04	

-‐1,00E-‐04	

0,00E+00	
1	 6	 11	 16	 21	 26	 31	 36	 41	 46	 51	 56	 61	 66	 71	 76	 81	 86	 91	 96	 101	 106	 111	 116	 121	 126	 131	 136	 141	 146	

load step

Figure 8.3: Plastic strain in y-direction of elasto-visco-plastic element.

132

45	

46	

47	

48	

49	

50	

51	

52	

53	

54	

0	 5	 10	 15	 20	 25	

hardening phase

elastic phase

unloading phase

internal	 itera3on	

DP
CG

	 it
er
a3

on
s	

Figure 8.4: Number of DPCG iterations per internal Newton-Raphson iteration.

The number of iterations of the DPCG method for the artificial case are presented
in Figure 8.4. We consider the number of DPCG iterations in the elastic phase (load
step 1 - 36), the hardening phase (load step 37 - 99) and during the unloading of
the material (load step 100 - 150). In Figure 8.4 we present the number of DPCG
iterations for load step 2, 38 and 101 for the elastic phase, the hardening phase
and the unloading respectively. We observe that the number of DPCG iterations
varies slightly, but there is no significant increase between the elastic phase and the
hardening phase.

In Figure 8.5 we present a boxplot of the number of DPCG iterations for all
load steps. We consider the number of DPCG iterations for each Newton-Raphson
iteration in each load step. We have 150 load steps and, on average 16 Newton-

46

47

48

49

50

51

52

53

54

D
P

C
G

 it
er

at
io

ns

Figure 8.5: Boxplot of the number of DPCG iterations for all load steps (equals 2540
Newton-Rahpson iterations).

133

Raphson iterations at each load step; hence, we solve 2540 linear systems with the
DPCG method. The lower and upper whiskers are defined at 2.7 times the standard
deviation, which is at 50 and 53 iterations respectively. Therefore, in this case, 99.3%
of all solves with the DPCG method have an iteration count between these boundaries.

8.3 Concluding remarks

In this chapter we show that there is no correlation between the performance of the
DPCG method and the non-linearity of the material models that constitute the stiffness
matrix and the corresponding loading vector. We have discussed the highly non-linear
generalized elasto-visco-plastic material model that is well used in many real-life
engineering applications. We have seen that during the elastic phase, the hardening
phase and the unloading of the material the number of DPCG iterations does not
vary significantly. We conclude that the DPCG method is robust for simulations with
highly non-linear material models.

134

9
Summary and Conclusions

We define composite materials as connected bodies of materials. The modeling
techniques of composite materials have significantly changed in the previous years,
going from homogenization techniques to the microscopic behavior of the connected
bodies of materials. In this research we study asphaltic material as an example of a
composite material. We use CT-Scans to obtain fine meshes from asphaltic materials
in which we distinguish three materials: aggregates, bitumen and air voids.

We introduce a mathematical framework to describe the force balance within the
body of materials. The force misbalance leads to the formulation of the non-linear
virtual work equation. Within the mathematical framework we consider three non-
linear material properties: hyper elasticity, plasticity, and viscosity. These material
properties are coupled to the virtual work equation by means of stress-strain relations.

We solve the non-linear work equation with the modified Newton-Raphson method,
which yields the linearized virtual work equation. We argue that the most time
consuming step within the modified Newton-Raphson method is the evaluation of the
Jacobian.

We introduce the Finite-Element (FE) framework and discretize the linearized
virtual work equation with linear, tetrahedral elements as the CT-Scans give rise
to unstructured grids. The discretized linearized virtual work equation leads to the
formulation of the stiffness matrix. We show that the stiffness matrix corresponds to
the Jacobian of the modified Newton-Raphson method and we argue that we need
an efficient solution method to solve the stiffness matrix, as many Newton-Raphson
iterations are needed to obtain a force balance.

For all material models and loading cases considered in this research the stiffness
matrix is symmetric positive definite. Moreover, in this research we consider large
meshes, hence, the corresponding stiffness matrices are sparse and ill-conditioned.

We provide an overview of the existing solution methods. We argue that the Pre-
conditioned Conjugate Gradient (PCG) method is the method of choice for sparse,
symmetric positive definite matrices. Direct solution methods are very robust but
very expensive in terms of memory. We discuss the Smoothed Aggregation Alge-
braic Multigrid method (SA-AMG), which is currently the method of choice for linear
elasticity.

135

The starting numerical experiments involve composite materials consisting of two
materials: aggregates and bitumen. These experiments show that the performance of
PCG with diagonal scaling as preconditioner is poor. Increasing the stiffness as well
as the number of aggregates in the composite materials results in a deterioration of
the convergence rates of PCG. The results show plateaus in the convergence behavior
which indicate that there are clusters of small eigenvalues related to slow converging
components. Analysis of the spectrum of the preconditioned stiffness matrix shows that
the smallest eigenvalues correspond to the domains containing aggregates. Moreover,
we show that the number of small eigenvalues is equal to the number of rigid body
modes of the aggregates.

We introduce the Deflated Preconditioned Conjugate Gradient (DPCG) method to
filter out unfavorable eigenvalues from the spectrum of the stiffness matrix. We use the
rigid body modes for the disjunct aggregates as the deflation subspace. The DPCG
method will prove to be very robust and fast. The removal of rigid body modes results
in a mechanical and mathematical well defined problem that only depends on the
material properties of the bitumen. The convergence behavior of DPCG is identical to
the convergence behavior of the case in which the composite material consists of only
bitumen. The addition of more and stiffer aggregates has no effect on the performance
of DPCG. Therefore we construct an iterative solver that has aggregate independent
convergence behavior.

We introduce the recursive deflation operator and the deflation strategy to con-
struct the most efficient deflation vectors for composite materials that consist of an
arbitrary number of materials. We give a mathematical argument for the use of rigid
body modes and show the relation between the decoupling of the sub matrices corre-
sponding to individual materials and our deflation strategy. We argue and show that
the right choice of deflation vectors leads to the right decoupling of the sub matrices,
and thus to ’aggregate’ independent convergence behavior of DPCG.

We discuss subdomain deflation in the context of parallel computing and domain
decomposition, and argue that this is a useful addition to regular rigid body mode de-
flation as it improves the effect of ’local’ preconditioners, such as Incomplete Cholesky.
We also provide a sound mathematical argument on how to combine these two different
’flavors’ of deflation in an efficient way.

We show by numerical experiments involving an academic test case as well as a
real-life engineering test case that the DPCG method is insensitive to large jumps in
the Young’s modulus of materials. In the numerical examples considered in this thesis,
the amount of work per iteration for the deflation operator of DPCG is comparable to
one matrix-vector multiplication. However, this does not imply that DPCG becomes
twice as expensive as PCG because the preconditioning step consumes most resources
in both time and memory. For most applications, using sparse deflation vectors, DPCG
is roughly 30% more expensive in time per iteration compared to PCG.

136

We show for the real-life engineering test cases that subdomain deflation leads
to a very robust parallel DPCG method that addresses the problems with ’local’
preconditioning. The number of iterations does not increase for an increasing number
of subdomains in both experiments.

We compare three preconditioners with PCG and two with DPCG, using two
implementations of smoothed aggregation SA-AMG, and diagonal scaling. For one
implementation of SA-AMG, we choose the default parameter set and for the other
implementation, we choose an optimal parameter set for the experiments involved. The
latter is not used in conjunction with DPCG, due to large set up costs and the cost
per iteration. For small and large linear systems, DPCG preconditioned by diagonal
scaling proves to be slightly faster than preconditioning with SA-AMG. However, for
large linear systems, PCG preconditioned by SA-AMG with an optimal parameter
set outperforms DPCG but has a large setup time and requires significantly more
software development. The DPCG method is well suited for parallel computing and
can be implemented into any existing FE software package by using basic parallel
linear algebraic operations.

A priori we would not consider direct solution methods as the methods of choice
for the large meshes that come from the CT-scans of real-life samples of asphaltic
materials. However, for a fair comparison to the state-of-the-art solution methods
we have compare DPCG to MUMPS and SuperLU. Both tests are done on different
hardware and software. MUMPS performs slightly better than DPCG, at the expense
of higher memory consumption, and DPCG outperforms SuperLU. In the test case that
involved the largest mesh, corresponding to a core of asphaltic material, the direct
solution methods require roughly six times the amount of memory which is needed by
DPCG. We conclude that with further optimization of the implementation of the DPCG
algorithm we may increase the performance of DPCG and outperform both MUMPS
and SuperLU.

The final conclusion of this thesis is that we have developed an extension to
the existing theory on deflation, but aimed at three dimensional systems of coupled
PDEs resulting from structural mechanics. We have developed a deflation strategy
that removes those eigenvalues in the spectrum of the stiffness matrix that correspond
to the rigid body modes of the bodies of material in the composite material. The
resulting DPCG method is fast, easy to parallelize, robust, it may be combined with
any preconditioner, it works well in simulations that use highly non-linear materials
that occur in real-life engineering applications, and is easy to implement into existing
(FE) software.

137

Samenvatting en conclusies

We definiëren composieten als structuren van lichamen van verschillende materi-
alen. Het modelleren van composieten is sterk veranderd in de afgelopen jaren. Van
homogeniseren tot het bestuderen van het microscopische gedrag van de lichamen in
het composiet. In dit onderzoek bestuderen wij het composiet asfalt. We gebruiken
CT-scans om gedetailleerde grids van deze composieten te verkrijgen, waarbij we drie
materialen onderscheiden: stenen, bitumen en lucht.

We introduceren een wiskundig raamwerk om de krachten balans in het composiet,
tussen en binnen de lichamen, te beschrijven. De krachten balans leidt tot de formu-
lering van de niet-lineaire virtuele werk vergelijking. Binnen dit wiskundig raamwerk
beschouwen we drie niet-lineaire materiaal eigenschappen: hyper elasticiteit, plas-
ticiteit en viscositeit. Deze materiaal eigenschappen zijn gekoppeld aan de virtuele
werk vergelijking door middel van de spanning-rek relaties.

We verkrijgen de gelineariseerde virtuele werk vergelijking door het oplossen van
de niet-lineaire virtuele werk vergelijking met de Newton-Raphson methode. We
stellen dat de evaluatie van de Jacobiaan, gemeten in tijd en gevraagde resources, de
duurste stap is binnen de Newton-Rapson methode.

Omdat de CT-scans ongestructureerde grids van elementen opleveren, discretis-
eren wij de gelineariseerde virtuele work vergelijking met gebruik van de Eindige-
Elementen methode (FE) en lineaire, tetraëdrische elementen. De assemblage van de
stijfheids matrix volgt uit de gediscretiseerde gelineariseerde virtuele werk vergeli-
jking. We laten zien dat de stijfheids matrix overeenkomt met de Jacobiaan van de
gemodificeerde Newton-Raphson methode. Tevens stellen we dat we een efficiënte
methode nodig hebben om het lineaire systeem behorend bij de stijfheids matrix op te
lossen, omdat veel Newton-Raphson iteraties benodigd zijn om een krachten balans
te bereiken.

De stijfheids matrix is symmetrisch, positief, definiet voor alle materiaal modellen
en aangebrachte belastingen die we beschouwen in dit onderzoek. Tevens, de stijfheids
matrices zijn ijl en slecht geconditioneerd omdat we in dit onderzoek zeer grote grids
beschouwen.

We geven een overzicht van bestaande oplos methoden. We stellen dat de gepre-
conditioneerde geconjugeerde gradiënten methode (PCG) de juiste keuze is voor ijle,

139

symmetrische, definiete matrices. Directe oplos methoden zijn erg robuust maar
tevens erg kostbaar in het gebruik van geheugen. We bediscussiëren de ’Smoothed-
Aggregation’ algebraïsch multigrid methode (SA-AMG) die veelvuldig wordt gebruikt
voor het oplossen van problemen met lineaire elasticiteit.

De eerste numerieke experimenten betreffen composieten die bestaan uit twee
materialen: stenen en bitumen. De PCG methode met diagonaal schaling als pre-
conditionering presteert matig in deze experimenten. Het toenemen van de stijfheid,
alsmede het aantal stenen in de composieten resulteert in een verslechtering van de
convergentie van PCG. De resultaten laten plateaus in de convergentie zien die erop
duiden dat er clusters zijn van kleine eigenwaarden die behoren bij de langzaam con-
vergerende componenten. Een analyse van het spectrum van de gepreconditioneerde
stijfheids matrix laat zien dat de kleinste eigenwaarden behoren bij de domeinen die
de stenen bevatten. Tevens, we laten ook zien dat het aantal kleine eigenwaarden
overeenkomt met de energiewaarden van de rigide lichamen behorend bij de stenen.

We introduceren de gedefleerde geproconditioneerde geconjugeerde gradiënten
methode (DPCG) om de ongunstige eigenwaarden uit het spectrum van de stijfheids
matrix te verwijderen. We gebruiken de energie waarden van de rigide lichamen voor
de disjuncte stenen voor de deflatie ruimte. De DPCG methode zal een robuuste en
snelle methode blijken te zijn. Het verwijderen van de energie waarden van de rigide
lichamen resulteert in een mechanisch en wiskundig goed gedefinieerd probleem dat
qua oplosbaarheid alleen afhangt van de materiaal eigenschappen van het bitumen.
De convergentie van DPCG is identiek aan de convergentie van PCG indien het
totale volume uit slechts bitumen zou bestaan. De toevoeging van een groter aantal
en meer stijve stenen heeft geen effect op de prestatie van DPCG. We kunnen stellen
dat DPCG een oplos methode is, waarvan de convergentie niet afhankelijk is van het
aantal evenals de eigenschappen van de stenen.

We introduceren de recursieve deflatie operator en een deflatie strategie om de
meest efficiënte deflatie vectoren voor composieten die bestaan uit een willekeurig
aantal materialen te construeren. We geven een wiskundig argument voor het ge-
bruik van de energie waarden van de rigide lichamen en we laten de relatie zien
tussen het ontkoppelen van de sub matrices die behoren bij individuele materialen
en onze deflatie strategie. We stellen en laten zien dat de juiste keuze van de de-
flatie vectoren leidt tot de correcte ontkoppeling van de sub matrices en daardoor tot
steen-onafhankelijke convergentie van DPCG.

We bediscussiëren sub domein deflatie in de context van parallel rekenen en
domein decompositie en we stellen dat dit een nuttige toevoeging is tot de reguliere
rigide lichaam deflatie omdat het de invloed versterkt van ’lokale’ preconditioneringen,
zoals de Incomplete Cholesky methode. We geven ook een wiskundig argument hoe
deze twee deflatie ’smaken’ te combineren op een efficiënte manier.

We laten zien door middel van numerieke experimenten, waarin we een academis-

140

che casus en een praktijk casus beschouwen, dat de DPCG methode ongevoelig is voor
grote sprongen in de Young’s modulus van materialen. In de numerieke voorbeelden
die worden beschouwd in deze dissertatie is de hoeveelheid werk per iteratie voor
de deflatie operator in DPCG vergelijkbaar met één matrix-vector vermenigvuldiging.
Echter, dit betekent niet dat DPCG twee maal zo duur is als PCG, dit komt doordat
de preconditionering vergeleken met deflatie veel meer resources in tijd en geheugen
vraagt. Voor de meeste toepassingen waarin we ijle deflatie vectoren gebruiken, is
DPCG per iteratie ongeveer 30% duurder in tijd vergeleken met PCG.

We laten zien dat voor problemen uit de praktijk sub domein deflatie tot een heel
robuuste parallelle DPCG methode leidt die de problemen adresseert met betrekking
tot ’lokale’ preconditionering. Het aantal iteraties neemt niet toe voor een toenemend
aantal sub domeinen in beide experimenten.

We vergelijken PCG en DPCG met respectievelijk drie en twee preconditionerin-
gen, waarbij we diagonaal schaling en twee implementaties van SA-AMG gebruiken.
Voor de eerste implementatie van SA-AMG gebruiken we de standaard parameters
en voor de tweede implementatie kiezen we de optimale parameters voor onze exper-
imenten. De laatste wordt niet gebruikt in combinatie met DPCG vanwege de hoge
opstart kosten en de kosten per iteratie. Voor kleine en grote lineaire systemen, DPCG
gepreconditioneerd met diagonaal schaling is een fractie sneller dan preconditionering
met SA-AMG. Echter, voor grote systemen, PCG gepreconditioneerd met SA-AMG en
optimale parameters is een stuk sneller dan DPCG maar heeft een grotere opstart tijd
en vraagt om significant meer software ontwikkeling. De DPCG methode is geschikt
voor parallel rekenen en kan geïmplementeert worden in elk bestaand FE software
pakket door gebruik te maken van basale parallelle lineaire algebraïsche operatoren.

A priori beschouwen we directe oplos methoden niet als de juiste methoden voor
de grote grids die voortkomen uit de CT-scans van volumes van asfaltische materialen
uit de praktijk. Echter, voor een juiste vergelijking met de state-of-the-art oplos
methoden vergelijken we DPCG met MUMPS en SuperLU. Beide testen vinden plaats
op verschillende hardware en met verschillende software. MUMPS presteert een
fractie beter dan DPCG ten koste van een groter geheugen gebruik. DPCG presteert
aanzienlijk beter dan SuperLU. In het experiment met het grootste grid, dat behoort bij
een cilinder van asfaltisch materiaal, hebben de directe oplos methodes ongeveer zes
maal zoveel geheugen nodig in vergelijking met DPCG. We concluderen dat met een
verdere optimalisatie van het DPCG algoritme de prestaties van DPCG verbeteren en
dat de methode beter zou kunnen presteren dan zowel MUMPS als SuperLU.

De afsluitende conclusie van deze dissertatie is dat we een uitbreiding op de
bestaande deflatie theorie hebben ontwikkeld, toegepast op drie dimensionale syste-
men van gekoppelde partiële differentiaalvergelijkingen die voortkomen uit de mechan-
ica. We hebben een deflatie strategie ontwikkeld die eigenwaarden uit het spectrum
van de stijfheids matrix verwijderd die overeenkomen met de energie waarden van de

141

rigide lichamen in de composieten. De resulterende DPCG methode is snel, robuust
en kan worden gecombineerd met elke preconditionering. De methode werkt ook goed
in de simulaties van materialen uit de praktijk waarin sterk niet-lineaire materiaal
eigenschappen een rol spelen en is gemakkelijk te implementeren in bestaande (FE)
software.

142

10
Future research

In this chapter we discuss loose ends and topics that are of interest for future
research on deflation. We distinguish between two areas of research. We look into
the improvement of existing deflation vectors and we discuss efficient implementation
of the deflation operator.

10.1 On the improvement of deflation vectors

In Chapter 5 and 6, we discussed and motivated the principles of rigid body modes
deflation as well as subdomain deflation. In this section we bring forward several
ideas on how to improve the resulting deflation vectors.

10.1.1 Assessment of quality deflation vectors

To ensure accuracy and stability of DPCG, we need to ensure the linear indepen-
dence of the deflation vectors, both analytically and numerically. In some numerical
experiments, we observed a numerical loss of rank. In these cases, the modified Gram-
Schmidt [34] algorithm for reorthogonalization works, but is expensive, and, hence, not
useful in real-life engineering applications. In general, we would like an efficient test
to indicate problems with rank. For normalized deflation vectors, the condition number
of the deflation matrix E would be an useful indicator of deficiency of rank.

Another measure for the quality of the deflation vectors would be the Rayleigh
quotient of the stiffness matrix and the normalized deflation vectors. This is an indi-
cation on how close the deflation vectors are to the eigenvectors corresponding to the
smallest eigenvalues.

We propose the development of a numerical test to determine the quality of de-
flation vectors. The test has to be cheap in terms of resources and wall-clock time, as
deflation vectors may have to be recomputed at every Newton-Raphson iteration.

10.1.2 Polynomial updates of deflation vectors

Let Z = [z1, z2, . . . , zk] be a given full-rank deflation matrix. We want to ask the
following question: how do we “improve” the collection of vectors given by Z ?

143

If we start by considering deflated CG (DCG) with no preconditioning, we can get a
reasonable answer to this question in the case of eigenvector deflation, by considering
replacing deflation, thus, eigenvector z` for 1 ≤ ` ≤ k with an eigenvector zm for
m > k . Suppose that z` is an eigenvector associated with an “interior” eigenvalue,
while zm is associated with an “extreme” eigenvalue, then such a switch is expected
to improve the deflation performance. This is, of course, difficult to turn into a precise
statement without making further assumptions on the distribution of the eigenvalues
of K . A similar statement can be formulated for DPCG with preconditioning, based
on eigenvectors of the preconditioned system, M−1K .

In general, if the columns of Z are a more arbitrary set of deflation vectors than just
eigenvectors (of either K or M−1K), the question becomes more complicated. We lose
the advantage of eigenvector deflation that any collection of k distinct eigenvectors in
Z guarantees that deflation matrix Z has full rank. If we “replace” one of the columns,
thus, deflation vectors, zk of Z with an arbitrary vector, ẑ , we have no guarantee that
Ẑ = [z1, z2, . . . , zk−1, ẑ] remains full rank. Thus, any improvement that we do to the
columns of Z , must be done in a way that the resulting matrix Ẑ , remains full rank.
Hence, we cannot arbitrarily improve an individual column of Z , without worrying
about the effect that this might have on the rank of the matrix. Instead, we want to
find a way to improve the columns of Z without affecting their linear independence.
This might be hard to achieve, requiring both assumptions on Z (perhaps beyond just
being full rank) and on the process for improving an individual vector. One approach
for “improving” the columns of Z is to make “polynomial” updates, of the form,

z` → (I − ω(`)
1 K)(I − ω(`)

2 K) . . . (I − ω(`)
k K)z` , (10.1)

or z` → (I − ω(`)
1 M−1K)(I − ω(`)

2 M−1K) . . . (I − ω(`)
k M−1K)z` , (10.2)

for a suitable choice of weights.
Supposing that polynomial updates do, indeed, maintain the full rank nature of

deflation matrix Z , the next question is whether or not they actually represent an
improvement (in terms of the performance of the DCG/DPCG algorithm or the effective
condition number of the deflated system). Here, it seems reasonable to restrict the
range of the weights used in the polynomial update so that the columns of Z better
represent the eigenvectors associated with the extreme eigenvalues of K or M−1K .

In practice, there are several possibilities to improve vectors with a polynomial
update. We consider the following options,

• We apply a few steps of the PCG method to the linear system Kx = 0 with
x0 = zi, we obtain the minimum energy solution by default.

• The Lanczos method is the method of choice if we look for optimality in the
sense of reducing the Rayleigh quotients to its minimum over the polynomial

144

space (Krylov space). We construct AQ = QT , where Q contains the Lanczos
vectors based on vector zi. The eigenvalues of T are the Ritz values of stiffness
matrix K . Subsequently, the eigenvectors e from ẽ = Qe correspond to the Ritz
vectors of stiffness matrix K .

• Damping of the eigenvalues of M−1K in the interval [λnl , λn] by Chebyshev
polynomial updates, where λn is the largest eigenvalue of M−1K and l is to be
determined. The largest eigenvalue λn can be obtained using a small number
of DPCG iterations. We improve the deflation vectors by applying the kth-
order Chebyshev polynomial pk(K) = (1 − µ1M−1K)...(1 − µkM−1K) where
µi = 1

2
(λn + λn

l) + 1
2
(λnl − λn) cos(2i−1

2k π).

We recommend further research into polynomial improvement to improve the ro-
bustness of DPCG, especially for subdomain deflation.

10.2 Computing and implementation

In this section we discuss future research into the efficient evaluation of the deflation
operator. This might be achieved by recycling of deflation vectors and correspond-
ing matrices, as well as taking into account the benefits of cutting edge computing
techniques like GPU computing.

10.2.1 Recycling of deflation vectors

We have seen in the numerical examples of Chapter 7 and 8, and argued that there is
no effect of highly non-linear materials on the convergence of DPCG. It remains to be
seen what is the effect on the performance of DPCG when we reassemble the stiffness
matrix at every Newton-Raphson iteration, but, to save time, do not recompute the
deflation vectors, and, thus, matrices E , and KZ . As we have seen in Chapter 8, the
stiffness of the materials changes due to hardening and softening effects, and thus
the deflation vectors may not represent the correct rigid body modes. We propose
further research into an efficient "recycling" of deflation vectors. In the case of highly
non-linear material we want to recompute the deflation vectors, and, thus KZ , E , and,
E−1 at every iteration of Newton-Raphson. For less dramatic changes in stiffness it
can be interesting to save time, and, reuse the deflation vectors and corresponding
matrices of the previous Newton-Raphson iteration.

We note that in this thesis we only considered modified Newton-Raphson. The
proposed "recycling" of deflation vectors would have different effects on modified, re-
spectively, standard Newton-Raphson. It remains to be seen what would be the
trade-off between less iterations, and thus, run time (standard Newton-Raphson) and
less (cumulative) deflation set-up time (modified Newton-Raphson).

145

Figure 10.1: Two bodies, Ωa, and, Ωb, in finite element mesh.

10.2.2 GPU computing

The field of Graphics Processing Unit (GPU) computing has seen a surge in publica-
tions in the past few years. The improvements in the specifications, the explicit parallel
architecture, and, low costs make GPUs an attractive alternative to super computers.
GPUs are designed to efficiently process basic linear algebraic operations on small
(dense) matrices and vectors. The deflation operator, and the parallel implementation,
which we discussed in Chapter 5 and 6, seem to be well suited for implementation on
the GPU. Moreover, the computation of the 3D rigid body modes would be a natural
operation on a GPU. We propose future research into accelerating the evaluation of
the deflation operator by the use of GPU computing. We refer to [38] for preliminary
results.

10.2.3 Nonsymmetric matrices

Although we did not consider nonsymmetric systems, extensions to the mathematical
framework on structural analysis that we introduced in Chapter 2, might lead to such
systems. In the field of contact mechanics, imposed artificial "contact" constraints
would lead to an nonsymmetric stiffness matrix. In that case, we can not use the
theory on rigid body mode deflation of Chapter 5, however, as only small parts of the
matrix would be affected by these constraints, we propose future research on deflation
and nonsymmetric systems where the symmetric part of the system would be the
dominating term. A natural choice would be deflation in combination with GMRES.

146

10.2.4 Reducing the number of deflation vectors

In Chapter 7 we briefly discussed the loss of rank of matrix Z , due to the collapse of
deflation vectors. We illustrate this effect with Figure 10.1. We consider two bodies
of different material, Ωa, and, Ωb. Bring in mind the deflation strategy of Chapter 5,
we disregard all elements on the boundary of the rigid body that share nodes with
elements that are owned by a material with higher stiffness. If the material of body Ωa
would have higher stiffness than the material of body Ωb, we would obtain a deflation
vector containing the rigid body modes that coincide with the null space of the stiffness
matrix that corresponds to the assembly of all elements in body Ωa. However, if the
body Ωb has higher stiffness than the material of body Ωa, and because all elements
of body Ωa are boundary elements, we obtain a deflation vector with only zero entries.
Hence, the deflation matrix is not of full rank. As discussed in Chapter 7, we can avoid
this collapse of deflation vectors by using overlapping deflation vectors. This overlap
leads to a significant reduction of deflation vectors. We propose future research into
alternative techniques to use overlapping deflation vectors to reduce the number of
deflation vectors without effecting the number of DPCG iterations.

10.2.5 Efficient computation with deflation vectors

In the current implementation of the DPCG algorithm we assemble the deflation vectors
and use sparse storage for memory and CPU efficiency. However, depending on the
deflation strategy, most deflation vectors are disjoint. With coloring algorithms we
might condense (nearly) disjoint deflation vectors for storage and expand the vectors for
computations. Moreover, the subdomain deflation vectors can be stored with precisely
six (dense) vectors, taking into account the weighting of the boundary nodes when
evaluating the deflation operator. We propose future research into the condensing
and expansion of deflation vectors for efficient storage and evaluation of the deflation
operator.

147

A
Notation

In the thesis tensors are utilized for the governing equations as it is common
practice in structural mechanics. There are many different variations on the original
tensor notation. The notation introduced in the book of dr. A. Scarpas [28] will be
the notation utilized here. Vectors and matrices can be seen as 1st and 2nd order
tensors respectively. Sometimes classic linear algebraic notation will be used, e.g.
the transpose of a second order tensor

(
Aij
)T

= Aji.
Tensors with index notation.

• 1st order tensor: Ai (vector)

• 2nd order tensor: Aij (matrix)

• 3rd order tensor: Aijk

• 4th order tensor: Aijkl

All tensors without index notation are written bold and with capitals, e.g. fourth order
elasticity tensor, C.

149

Operation Index notation Tensor notation
multiply AijBij = c A : B = c

AikBkj = Cij A · B = C
AijBj = Ci A · B = C
aibi = c a · b = c
AijBik = Cjk AT · B = C
AijBkl = Cijkl A ⊗ B = C

derivative ∂xi
∂Xj = Aij ∂x

∂X = A
∂Xi
∂Xj = δij ∂X

∂X = I
∂Xij
∂Xkl = δikδjl = Cikjl X⊗ ∂

∂X = C
kronicker-delta δklδlj = δkj I · I = I

δijδkl = δijkl I⊗ I
δikδjl I

Table A.1: Tensor and index notation

A : B = B : A
A : B = AT : BT

(A · B)T = BT · AT

(A · B) : C =
(
CT · A

)
: BT

(A · B) : C = B :
(
AT · C

)

a⊗ b = (b⊗ a)T

a⊗ b = a · (I⊗ b)

A : (b⊗ C) = b · (A : (I⊗ C))

Table A.2: Basic tensor computations.

150

Bibliography

[1] Adams, M., Brezina, M., Hu, J., and Tuminaro, R. Parallel multigrid smoothing:
polynomial versus Gauss-Seidel. J. Comput. Phys. 188 (2003), 593–610.

[2] Adams, M. F. Parallel multigrid solvers for 3d unstructured finite element problems
in large deformation elasticity and plasticity. International Journal for Numerical
Methods in Engineering 48, 8 (2000), 1241–1262.

[3] Adams, M. F. Evaluation of three unstructured multigrid methods on 3D finite
element problems in solid mechanics. International Journal for Numerical Methods
in Engineering 55, 5 (2002), 519–534.

[4] Adams, M. F., Bayraktar, H., Keaveny, T., and Papadopoulos, P. Ultrascalable
implicit finite element analyses in solid mechanics with over a half a billion
degrees of freedom. In ACM/IEEE Proceedings of SC2004: High Performance
Networking and Computing (2004).

[5] Alcouffe, R. E., Brandt, A., Dendy, J. E., and Painter, J. W. The multigrid method
for the diffusion equation with strongly discontinuous coefficients. SIAM J. Sci.
Stat. Comput. 2 (1981), 430–454.

[6] Amestoy, P. R., Duff, I. S., Koster, J., and L’Excellent, J.-Y. A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix
Analysis and Applications 23, 1 (2001), 15–41.

[7] Amestoy, P. R., Duff, I. S., and L’Excellent, J.-Y. Multifrontal parallel distributed
symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184
(2000), 501–520.

[8] Arbenz, P., van Lenthe, G. H., Mennel, U., Müller, R., and Sala, M. A scalable
multi-level preconditioner for matrix-free µ-finite element analysis of human bone
structures. Internat. J. Numer. Methods Engrg. 73, 7 (2008), 927–947.

[9] Axelsson, O. On preconditioning and convergence acceleration in sparse matrix
problems. CERN (Series) ; 74-10., 1974.

151

[10] Baker, A. H., Kolev, T. V., and Yang, U. M. Improving algebraic multigrid interpo-
lation operators for linear elasticity problems. Numer. Linear Algebra Appl. 17,
2-3 (2010), 495–517.

[11] Bathe, K. J. Finite Element Procedures, 2 revised ed. Prentice Hall, June 1995.

[12] Bollhöfer, M., and Saad, Y. Multilevel preconditioners constructed from inverse-
based ilus. SIAM J. Sci. Comput. 27, 5 (2006), 1627–1650.

[13] Bonet, J., and Wood, R. Nonlinear Continuum Mechanics for Finite Element
Analysis. Wiley, 1999.

[14] Brandt, A., Brannick, J., Kahl, K., and Livshits, I. Bootstrap AMG. SIAM Journal
on Scientific Computing 33, 2 (2011), 612–632.

[15] Brandt, A., McCormick, S. F., and Ruge, J. W. Algebraic multigrid (AMG) for
sparse matrix equations. In Sparsity and Its Applications, D. J. Evans, Ed. Cam-
bridge University Press, Cambridge, 1984.

[16] Brannick, J., and Zikatanov, L. Algebraic multigrid methods based on compatible
relaxation and energy minimization. In Domain decomposition methods in science
and engineering XVI, vol. 55 of Lect. Notes Comput. Sci. Eng. Springer, Berlin,
2007, pp. 15–26.

[17] Brezina, M., Tong, C., and Becker, R. Parallel algebraic multigrids for structural
mechanics. SIAM J. Sci. Comput. 27, 5 (2006), 1534–1554.

[18] Briggs, W. L., Henson, V. E., and McCormick, S. F. A Multigrid Tutorial. SIAM
Books, Philadelphia, 2000. Second edition.

[19] CAPA3D. Capa-3d computer aided pavement analysis. http://www.capa-3d.org,
2009.

[20] Chen, W. Constitutive Equations for Engineering Materials. Elsevier, 1994.

[21] Clees, T. AMG Strategies for PDE Systems with Applications in Industrial
Semiconductor Simulation. PhD thesis, Universität zu Köln, Köln, Germany,
2005.

[22] Coleman, B. D., and Noll, W. The thermodynamics of elastic materials with heat
conduction and viscosity. Archive for Rational Mechanics and Analysis 13, 1
(Dec. 1963), 167–178.

152

[23] Collop, A., Scarpas, A., Kasbergen, C., and de Bondt, A. Development of an
elasto-visco-plastic constitutive model for asphalt c.a. In Proceedings of the 2003
International Conference on Computational, Experimental and Engineering Sci-
ences (ICCES 03) (2003), Tech Science Press.

[24] Davis, T. Direct Methods for Sparse Linear Systems (Fundamentals of Algo-
rithms), illustrated edition ed. Society for Industrial and Applied Mathematic,
Sept. 2006.

[25] Demmel, J., Gilbert, J., and Li, X. SuperLU users’ guide. Tech. Rep. CSD-97-944,
1997.

[26] Desai, C. Numerical Methods and Constitutive Modelling in Geomechanics.
Springer, 1991.

[27] Douglas, C. C., Haase, G., and Langer, U. A Tutorial on Elliptic Pde Solvers and
Their Parallelization (Software, Environments, and Tools), illustrated edition ed.
Society for Industrial and Applied Mathematic, Apr. 2003.

[28] Drescher, A., Kringos, N., and Scarpas, T. On the behavior of a parallel elasto-
visco-plastic model for asphaltic materials. Mechanics of Materials (October
2009).

[29] Erkens, S. Asphalt Concrete Response: Determination, Modelling, and, Predici-
tion. PhD thesis, TU Delft, Delft, the Netherlands, 2002.

[30] Faires, D. J., and Burden, R. L. Numerical Methods. PWS-Kent Pub.Co., Boston,
1993.

[31] Falgout, R., and Yang, U. hypre: a library of high performance preconditioners.
In Computational Science - ICCS 2002: International Conference, Amsterdam,
The Netherlands, April 21-24, 2002. Proceedings, Part III, no. 2331 in Lecture
Notes in Computer Science. Springer-Verlag, 2002, pp. 632–641.

[32] Frank, J., and Vuik, C. On the construction of deflation-based preconditioners.
SIAM J. Sci. Comput. 23, 2 (2001), 442–462.

[33] Gee, M., Siefert, C., Hu, J., Tuminaro, R., and Sala, M. ML 5.0 smoothed aggre-
gation user’s guide. Tech. Rep. SAND2006-2649, Sandia National Laboratories,
2006.

[34] Golub, G. H., and Van Loan, C. F. Matrix Computations (Johns Hopkins Studies in
Mathematical Sciences). The Johns Hopkins University Press, Baltimore, October
1996.

153

[35] Graham, I. G., and Scheichl, R. Robust domain decomposition algorithms for
multiscale pdes. Numerical Methods for Partial Differential Equations 23 (2007),
859–878.

[36] Grama, A., Karypis, G., Kumar, V., and Gupta, A. Introduction to Parallel Com-
puting (2nd Edition). Addison Wesley, January 2003.

[37] Griebel, M., Oeltz, D., and Schweitzer, M. A. An algebraic multigrid method for
linear elasticity. SIAM J. Sci. Comput. 25, 2 (2003), 385–407 (electronic).

[38] Gupta, R., Vuik, C., and Lemmens, C. Gpu implementation of deflated precondi-
tioned conjugate gradient. Tech. Rep. 10-20, TU Delft, 2010.

[39] Henson, V., and Yang, U. BoomerAMG: a parallel algebraic multigrid solver and
preconditioner. Applied Numerical Mathematics 41 (2002), 155–177.

[40] Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda,
T. G., Lehoucq, R. B., Long, K. R., Pawlowski, R. P., Phipps, E. T., Salinger,
A. G., Thornquist, H. K., Tuminaro, R. S., Willenbring, J. M., Williams, A., and
Stanley, K. S. An overview of the trilinos project. ACM Trans. Math. Softw. 31,
3 (2005), 397–423.

[41] Hestenes, M. R., and Stiefel, E. Methods of conjugate gradients for solving
linear systems. Journal of Research of the National Bureau of Standards 49
(Dec 1952), 409–436.

[42] Holzapfel, G. Nonlinear Solid Mechanics: A Continuum Approach for Engineer-
ing. Cambridge University Press, 2000.

[43] Househoulder, A. Principles of Numerical Analysis. New York: McGraw-Hill,
1953.

[44] Jönsthövel, T. B. Preconditioned conjugate gradient method enhanced by defla-
tion of rigid body modes applied to composite materials. In 18th world IMACS
congress and MODSIM09 international congress on modeling and simulation
(2009), Modeling and simulation society of Australia and New- Zealand., pp. 33–
33.

[45] Jönsthövel, T. B., Liu, X., Scarpas, A., and Vuik, C. Parallel direct solver for
linear systems resulting from constitutive modeling of pavement. In Performance
modeling and evaluation of pavement systems and materials (2009), Geotechnical
Special Publication, pp. 90–95.

154

[46] Jönsthövel, T. B., van Gijzen, M. B., Kasbergen, C., and Scarpas, A. Precon-
ditioned conjugate gradient method enhanced by deflation of rigid body modes
applied to composite materials. CMES-computer modeling in engineering & sci-
ences (2009), 97–118.

[47] Jönsthövel, T. B., van Gijzen, M. B., MacLachlan, S., Scarpas, A., and Vuik,
C. Comparison of the deflated preconditioned conjugate gradient method and
algebraic multigrid for composite materials. Computational Mechanics (2011).

[48] Jönsthövel, T. B., van Gijzen, M. B., and Vuik, C. On the use of rigid body
modes in the deflated preconditioned conjugate gradient method. SIAM Journal
on Scientific Computing (SISC) (2011).

[49] Kaasschieter, E. F. Preconditioned conjugate gradients for solving singular sys-
tems. J. Comput. Appl. Math. 24, 1-2 (1988), 265–275.

[50] Kaplan, W. Advanced Calculus, 4th edition. Addison-Wesley, 1991.

[51] Karer, E., and Kraus, J. K. Algebraic multigrid for finite element elasticity equa-
tions: determination of nodal dependence via edge-matrices and two-level con-
vergence. Internat. J. Numer. Methods Engrg. 83, 5 (2010), 642–670.

[52] Karypis, G., and Kumar, V. A coarse-grain parallel formulation of multilevel k-way
graph partitioning algorithm. In PARALLEL PROCESSING FOR SCIENTIFIC
COMPUTING. SIAM (1997).

[53] Klawonn, A., and Widlund, O. A domain decomposition method with lagrange
multipliers and inexact solvers for linear elasticity. SIAM J. Sci. Comput. 22
(2000), 1199–1219.

[54] Klawonn, A., Widlund, O., and Maksymilian, D. Dual-primal feti methods for
three-dimensional elliptic problems with heterogeneous coefficients. SIAM J.
Numer. Anal. 40 (2002), 159–179.

[55] Kringos, N. Modeling of combined physical-mechanical moisture induced dam-
age in asphaltic mixes. TU Delft, 2007.

[56] Li, X., and Demmel, J. W. Superlu dist: A scalable distributed-memory sparse
direct solver for unsymmetric linear systems. ACM Trans. Mathematical Software
29 (2003), 110–140.

[57] Lu, T.-T., and Shiou, S.-H. Inverses of 2 x 2 block matrices,. Computers and
Mathematics with Applications 43, 1-2 (2002), 119 – 129.

[58] Lurie, A. Nonlinear Theory of Elasticity. North-Holland, 1990.

155

[59] MacLachlan, S., Manteuffel, T., and McCormick, S. Adaptive reduction-based
AMG. Numer. Linear Alg. Appl. 13 (2006), 599–620.

[60] MacLachlan, S. P., Tang, J. M., and Vuik, C. Fast and robust solvers for pressure-
correction in bubbly flow problems. J. Comput. Phys. 227, 23 (2008), 9742–9761.

[61] Malvern, L. Introduction to the Mechanics of a Continuous Medium. Prentice
Hall, 1977.

[62] Meijerink, J. A., and van der Vorst, H. A. Guidelines for the usage of incomplete
decompositions in solving sets of linear equations as they occur in practical
problems. Journal of Computational Physics 44, 1 (1981), 134–155.

[63] Moler, C. B. MATLAB user’s guide. Tech. rep., University of New Mexico.
Dept. of Computer Science, Nov. 1980. This describes use of Classic Matlab, the
prototype for the very-much expanded professional Matlab from The MathWorks.
Classic Matlab is no longer available.

[64] Newmark, N. M. A method of computation for structural dynamics. Journal of
Engineering Mechanics, ASCE. (1959), 67–94.

[65] Nicolaides, R. A. On some theoretical and practical aspects of multigrid methods.
Math. Comp. 33 (1979), 933–952.

[66] Nicolaides, R. A. Deflation of conjugate gradients with applications to boundary
value problems. SIAM J. Numer. Anal. 24, 2 (1987), 355–365.

[67] Olson, L. N., Schroder, J. B., and Tuminaro, R. S. A general interpolation
strategy for algebraic multigrid using energy minimization. SIAM Journal on
Scientific Computing 33, 2 (2011), 966–991.

[68] Polizzi, E., and Sameh, A. H. A parallel hybrid banded system solver: the spike
algorithm abstract, 2005.

[69] Reid, J. The use of conjugate gradients for systems of linear equations possessing
Òproperty aÓ. SIAM J. Numer. Anal. (1972), 325–332.

[70] Ruge, J. Amg for problems of elasticity. Applied Mathematics and Computation
19, 1-4 (1986), 293 – 309.

[71] Ruge, J. W., and Stüben, K. Algebraic multigrid (AMG). In Multigrid Meth-
ods, S. F. McCormick, Ed., vol. 3 of Frontiers in Applied Mathematics. SIAM,
Philadelphia, PA, 1987, pp. 73–130.

156

[72] Saad, Y. Iterative Methods for Sparse Linear Systems, Second Edition. Society
for Industrial and Applied Mathematics, Philadelphia, April 2003.

[73] SandiaLabs. Cubit geometry and mesh generation toolkit. http://cubit.sandia.gov/,
2009.

[74] Scarpas, A. Mechanics based computational platform for pavement engineering.
PhD thesis, TU Delft, Delft, the Netherlands, 2004.

[75] Schellekens, J. Computational strategies for composite structures. PhD thesis,
TU Delft, Delft, the Netherlands, 1992.

[76] Schenk, O., Gärtner, K., Fichtner, W., and Stricker, A. Pardiso: a high-
performance serial and parallel sparse linear solver in semiconductor device sim-
ulation. Future Generation Computer Systems 18, 1 (2001), 69–78.

[77] Simpleware. http://www.simpleware.com, 2009.

[78] Sluys, L., and de Borst, R. Computational methods in non-linear solid mechanics.
TU Delft, 2001.

[79] Tang, J. Two-Level Preconditioned Conjugate Gradient Methods with Applications
to Bubbly Flow Problems. PhD Thesis TU Delft, 2008.

[80] Tang, J., MacLachlan, S., Nabben, R., and Vuik, C. A comparison of two-level
preconditioners based on multigrid and deflation. SIAM. J. Matrix Anal. and Appl.
31 (2010), 1715–1739.

[81] Tang, J., Nabben, R., Vuik, C., and Erlangga, Y. Comparison of two-level pre-
conditioners derived from deflation, domain decomposition and multigrid methods.
Journal of Scientific Computing 39 (2009), 340–370.

[82] Trottenberg, U., Oosterlee, C. W., and Schuller, A. Multigrid. Academic Press,
December 2000.

[83] Van der Sluis, A., and Van der Vorst, H. The rate of convergence of conjugate
gradients. Numer. Math. 48, 5 (1986), 543–560.

[84] van der Vorst, H. Iterative Krylov Methods for Large Linear Systems. Cambridge
Universuty Press, 2003.

[85] Vanék, P., Mandel, J., and Brezina, M. Algebraic multigrid by smoothed ag-
gregation for second and fourth order elliptic problems. Computing 56 (1996),
179–196.

157

[86] Vuik, C. Numerical methods for large algebraic systems. TU Delft, 2004.

[87] Vuik, C., Jönsthövel, T. B., Kasbergen, C., and Scarpas, A. Preconditioned
conjugate gradient method enhanced by deflation of rigid body modes applied
to composite materials. In Advances in contact mechanics: a tribute to Prof. J.J.
Kalker (2008), TU Delft, pp. 35–36.

[88] Wesseling, P. An Introduction to Multigrid Methods. John Wiley & Sons, Chich-
ester, 1992.

[89] Wriggers, P., and Boersma, A. A parallel algebraic multigrid solver for problems
in solid mechanics discretisized by finite elements. Computers & Structures 69,
1 (1998), 129 – 137.

[90] Zienkiewicz, O. C., and Taylor, R. L. The Finite Element Method for Solid and
Structural Mechanics, Sixth Edition, 6 ed. Butterworth-Heinemann, Sept. 2005.

158

List of publications

Journal papers

• Jönsthövel, T.B., Oosterlee, CW, Mulder, WA (2006). Improving Multigrid for 3D
electro-magnetic diffusion on stretched grids. ECCOMAS CFD 2006. Delft: Tu
Delft.

• Jönsthövel, T.B., Liu, X, Scarpas, A, Vuik, C (2009). Parallel direct solver for lin-
ear systems resulting from constitutive modeling of pavement. In Ceylan Halil,
Liu Xueyan, Gopalakrishnan Kasthurirangan & Huang Likui (Eds.), Performance
modeling and evaluation of pavement systems and materials Vol. 195. Geotech-
nical Special Publication (pp. 90-95). Virginia, USA: American Society of Civil
Engineers.

• Jönsthövel, T.B., Gijzen, M.B. van, Vuik, C, Kasbergen, C, Scarpas, A (2009).
Preconditioned conjugate gradient method enhanced by deflation of rigid body
modes applied to composite materials. CMES-computer modeling in engineer-
ing & sciences, 47(2), 97-118.

• Jönsthövel, T.B., Gijzen, M.B. van, MacLachlan, S, Scarpas, A, Vuik, C (2011).
Comparison of the Deflated Preconditioned Conjugate Gradient method and Al-
gebraic Multigrid for composite materials. Computational Methods for Interface
Mechanical Problems. (SICM)

• Jönsthövel, T.B., Gijzen, M.B. van, Vuik C (2011). On the use of rigid body
modes in the deflated preconditioned conjugate gradient method. SIAM Journal
on Scientific Computing (SISC). (accepted)

Proceedings and relevant talks

• Vuik, C, Gijzen, M.B. van, Scarpas, A, Kasbergen, C, Jönsthövel, T.B. (2008). Nu-
merical methods for algebraic problems from structural mechanics. In T Scarpas,
C Vuik & Y Sutjiadi (Eds.), Advances in contact mechanics: a tribute to Prof. J.J.
Kalker extented summaries (pp. 35-36). Delft: Tu Delft.

159

• Woudschoten Conference, Woudschoten, the Netherlands - 2009, 2010 : poster
presentation

• Jönsthövel, T.B. (2009). Preconditioned conjugate gradient method enhanced by
deflation of rigid body modes applied to composite materials. In R.S. Anderssen,
R.D. Braddock & R.S. Anderssen (Eds.), 18th world IMACS congress and MOD-
SIM09 international congress on modeling and simulation (pp. 33-33). Cairns:
Modeling and simulation society of Australia and New-Zealand.

• Mini-symposium invited speaker, group of Structural Mechanics, Department of
Civil Engineering, University of New South Wales, Sydney, Australia - 2009 :
presentation

• GeoHunan, Changsha, China - 2009 : paper and presentation at session "Ad-
vanced Constitutive Modeling of Asphaltic Concrete Materials.

• ECCM 2010, Paris, France - 2010 : contribution to presentation "Fast iterative
methods for mechanical problems with interfaces" by M.B. van Gijzen.

• ICCES10, Las Vegas, USA - 2010 : paper and presentation at session "Mechan-
ics of Composite Materials and Structures.

• 11th Copper Mountain Conference on Iterative Methods, Copper Mountain, Col-
orado, USA - 2010 : abstract and presentation at session "Krylov Techniques"

• PMAA10, Basel, Swiss - 2010 : abstract and presentation at session "Miscel-
laneous A"

• Invited speaker at SIAM Student Chapter, Tufts University, Medford, USA -
2011

• ICIAM 2011, Vancouver - 2011 : abstract and presentation at session ’New
Developments in Iterative Solvers for Large Sparse Problems’

Curriculum Vitae

Tom Bernard Jönsthövel was born on the 18th of July 1983, in Dordrecht, the
Netherlands. He completed secondary school at Titus Brandsmacollege (Dordrecht)
in 2001. From 2001 to 2002 he studied Applied Mathematics at Eindhoven University
of Technology (TUE), and from 2002 he continued his studies at Delft University of
Technology (TU Delft) where he obtained his Bachelor of Science and Master of
Science degree in 2005, respectively 2006. His Master research, "Improving Multigrid
for 3D electro-magnetic diffusion on stretched grids.", was carried out at the Shell
Research and Development facility in Rijswijk, Netherlands under supervision of Prof.
Dr. W.A. Mulder and Prof. Dr. C. Oosterlee.

He did his PhD studies at TU Delft in the group of Numerical Analysis of the
Department of Applied Mathematics, where he was supervised by Prof. Dr. C. Vuik,
Dr. van Gijzen, and, Dr. A. Scarpas. In the framework of his PhD project he has
worked as a researcher at the Schlumberger Research and Development facility in
Cambridge, UK, at Tufts University, Boston, USA and at the University of New South
Wales, Sydney, Australia.

Besides his PhD studies, he started his own engineering consultancy company,
and worked as a professional studio musician, film score composer, and, pianist in a
theater tour all around the Netherlands. His major interests are scientific computing,
music (composing/performing), traveling and photography.

161

	Acknowledgements
	Introduction
	Background composite materials
	Shifting length scales: from meso to micro level
	Simulation tools for pavement engineering
	Solving the stiffness matrix: numerical solution methods
	Scope of the thesis
	Outline of the thesis

	Structural mechanics
	Continuum model
	Strain
	Stress

	Equilibrium equation
	Balancing forces
	Material response
	Elasticity
	Plasticity
	Viscosity

	Implementation of material response
	Dissipation of energy
	Multiplicative decomposition
	Generalized model local dissipation
	Hyperelastic response
	Plastic response
	Viscoelastic response

	Discretization virtual work equation
	Discretization of the linearized virtual work equation
	Finite-Element method
	Element type and shape functions
	Gauss points and numerical integration

	Stiffness matrix
	Static mechanics
	Dynamic mechanics

	Stiffness matrix for composite materials
	General properties of stiffness matrix
	Discontinuities entries stiffness matrix
	Non-linear material properties

	Concluding remarks

	Solving the linear system: overview of solution methods
	Factorization methods
	LU factorization
	Cholesky factorization
	Software implementation: MUMPS

	Incomplete factorization
	ILU(0) decomposition
	Software implementation: ILUPACK

	Multigrid
	Basic multigrid
	Multigrid Components
	Coarse grid specification
	Smoother
	Restriction operator
	Prolongation operator

	Algebraic multigrid
	Smoothed aggregation

	Software implementation: ML (Trilinos)

	Krylov subspace methods
	Conjugate Gradient method
	Preconditioning
	Preconditioned Conjugate Gradient method
	Diagonal scaling
	ILU decomposition
	SA-AMG

	Software implementation: AztecOO (Trilinos)

	Concluding remarks

	Deflation theory
	Composite materials: Preconditioned CG
	Motivating numerical experiments
	Convergence results

	Introduction to deflation
	Deflated Preconditioned CG

	Rigid body modes deflation
	Motivation: rigid bodies in composite materials
	Construction of deflation vectors
	Computing rigid body modes of a finite element
	Additional work DPCG compared to PCG
	Illustrative example: artificial representation of composite material

	Recursive deflation
	Motivation: condition numbers of Deflated matrices
	Recursive Deflation strategy
	Illustrative example: 1D Poisson equation

	Deflation vectors in the neighborhood of a jump
	Illustrative example: 1D Poisson equation (continued)

	Parallel implementation deflation
	Parallel computing
	Domain decomposition
	Subdomain mapping operators
	Local and global stiffness matrix
	Local and global vectors
	Parallel matrix-vector product
	Parallel inner product

	Parallel Deflated Preconditioned Conjugate Gradient method
	Building-blocks of parallel DPCG
	Parallel coloring algorithm: construction and identification of rigid bodies distributed over subdomains
	Computing rigid body modes in parallel
	Efficient computation of P in parallel

	Subdomain deflation
	Parallel implementation of other solvers
	Parallel PCG method
	Parallel SA-AMG

	Numerical examples
	Description of cases
	Description of hardware and software
	Rigid body mode deflation
	Subdomain deflation
	Performance DPCG and comparison to other state-of-the-art methods
	CAPA-3D: DPCG and MUMPS
	Trilinos: DPCG and ML (SA-AMG)

	Concluding remarks

	Application to advanced material models
	Generalized elasto-visco-plastic material model
	Numerical experiments
	Concluding remarks

	Summary and Conclusions
	Future research
	On the improvement of deflation vectors
	Assessment of quality deflation vectors
	Polynomial updates of deflation vectors

	Computing and implementation
	Recycling of deflation vectors
	GPU computing
	Nonsymmetric matrices
	Reducing the number of deflation vectors
	Efficient computation with deflation vectors

	Notation
	Bibliography
	List of publications
	Curriculum Vitae

