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Summary
Two-Level Preonditioned Conjugate Gradient Methodswith Appliations to Bubbly Flow ProblemsJok M. TangThe Preonditioned Conjugate Gradient (PCG) method is one of the most populariterative methods for solving large linear systems with a symmetri and positive semi-de�nite oe�ient matrix. However, if the preonditioned oe�ient matrix is ill-onditioned, the onvergene of the PCG method typially deteriorates. Instead, atwo-level PCG method an be used. The orresponding two-level preonditioner usuallytreats unfavorable eigenvalues of the oe�ient matrix e�etively, so that the two-levelPCG method is expeted to onverge faster than the original PCG method. Manytwo-level preonditioners are known in the �elds of de�ation, multigrid and domaindeomposition methods. Several of them are disussed in this thesis, where the mainfous is on the de�ation method.We show some theoretial properties of the de�ation method, whih give insightsinto the e�etiveness of this method. A ruial omponent of the de�ation preon-ditioner is the hoie of projetion vetors. Several hoies are disussed and exam-ined. We advoate that subdomain projetion vetors, whih are based on disjoint andpieewise-onstant vetors, are among the best hoies for a lass of problems.Subsequently, we examine the appliation of the de�ation method to linear systemswith singular oe�ient matries. Several mathematially equivalent variants of theoriginal de�ation method are proposed to deal with the possible singularity of thisoe�ient matrix. In addition, two approahes are disussed in order to handle oarselinear systems with a Galerkin matrix, whih are involved in eah iteration of thede�ation method. After the disussion of the implementation and e�ieny issues ofthe de�ation method, it is demonstrated that this method is usually faster than theoriginal PCG method.Moreover, we present a omparison between the de�ation method and other well-known two-level PCG methods, among them the balaning-Neumann-Neumann, addi-tive oarse-grid orretion, and multigrid methods based on symmetri and nonsym-v



vimetri V-yles. As the parameters of the orresponding two-level preonditioners areabstrat, we show that these methods are strongly onneted to eah other. Theomparison is also done where the di�erent two-level PCG methods adopt their typialand optimized set of parameters. Numerial experiments show that some multigridmethods are attrative in addition to the de�ation method.The major appliation of this thesis is the Poisson equation with a disontinuousoe�ient, whih is derived from 2-D and 3-D bubbly �ow problems. Most of theperformed numerial experiments in this thesis are based on this equation. Both sta-tionary and time-dependent experiments are arried out to emphasize the theoretialresults. We show that two-level PCG methods are signi�antly faster than the originalPCG method in almost all experiments. Hene, omputations involved in bubbly �owsan be performed very e�iently using these PCG methods.



Samenvatting
Tweelaags Gepreonditioneerde Geonjugeerde Gradiënten Methodenmet Toepassingen in Stromingsproblemen met BellenJok M. TangDe gepreonditioneerde geonjugeerde gradiënten (PCG) methode is één van de meestpopulaire iteratieve methoden voor het oplossen van grootshalige lineaire systemen,waarbij de oë�iëntenmatrix symmetrish en positief semi-de�niet is. Ehter, alsde gepreonditioneerde oë�iëntenmatrix sleht geonditioneerd is, dan vertoont dePCG methode langzame onvergentie. In plaats hiervan kan de tweelaagse PCG meth-ode gebruikt worden die gebaseerd is op een tweelaagse preonditioner. Deze pre-onditioner elimineert de e�eten van de kleine en grote eigenwaarden van de oë�-iëntenmatrix, waardoor de tweelaagse PCG methode sneller onvergeert dan de oor-spronkelijke methode. Vele tweelaagse preonditioners zijn bekend in de vakgebiedenvan de�atie, multirooster en domein deompositie methoden. In dit proefshrift on-derzoeken we deze preonditioners nader, waar we ons voornamelijk onentreren opde de�atie methode.We laten theoretishe eigenshappen van de de�atie methode zien, die inziht gevenin de e�etiviteit van deze methode. Een ruiale omponent van de de�atie preon-ditioner is de keuze van de projetievetoren. Diverse keuzes worden beargumenteerden onderzoht. We laten zien dat subdomein projetievetoren, die gebaseerd zijn opdisjunte en stuksgewijs onstante vetoren, een van de beste keuzes zijn voor eenspei�ieke klasse van problemen.Vervolgens onderzoeken we de toepassing van de de�atie methode op lineaire sys-temen waarbij de oë�iëntenmatrix singulier is. Versheidene wiskundig equivalentevarianten afgeleid van de originele de�atie methode worden behandeld. Deze variantenzijn bestand tegen de mogelijke singulariteit van de oë�iëntenmatrix. Verder wordentwee varianten bekeken die geshikt zijn om kleinere lineaire systemen binnen de de-�atie methode op te lossen waarbij de Galerkin matrix betrokken is. Na het behandelenvan de implementatie en de e�iëntie van de de�atie methode, laten we zien dat dezemethode in de meeste gevallen sneller onvergeert dan de originele PCG methode.vii



viii Verder presenteren we een vergelijking tussen de de�atie methode en andere be-kende tweelaagse PCG methoden, waaronder de gebalaneerde Neumann-Neumann,additief grof-rooster orretie en multirooster methoden gebaseerd op symmetrisheen niet-symmetrishe V-yli. Indien de parameters in de te beshouwen tweelaagsepreonditioners gelijk zijn, kunnen we aantonen dat de vershillende methoden sterk aanelkaar gerelateerd zijn. De vergelijking is verder ook uitgevoerd, waarbij de tweelaagsePCG methoden hun karakteristieke en geoptimaliseerde verzameling van parametersaannemen. Numerieke experimenten laten zien dat sommige multirooster methodenattratief zijn naast de de�atie methode.De belangrijkste toepassing in dit proefshrift is de Poisson vergelijking met een dis-ontinue oë�iënt, hetgeen afgeleid is van 2-D en 3-D twee-fase stromingsproblemenmet bellen. De meeste van de uitgevoerde numerieke experimenten zijn gebaseerd opdeze vergelijking. Zowel stationaire als tijdsafhankelijke experimenten zijn uitgevoerdom de theoretishe resultaten te onderbouwen. We laten zien dat in bijna alle experi-menten de tweelaagse PCG methoden signi�ant sneller onvergeren dan de originelePCG methode, waardoor de berekeningen voor twee-fase stromingen met bellen e�-iënter uitgevoerd kunnen worden.
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Chapter 1Introdution1.1 BakgroundThe fous of this thesis is on the numerial solution of the linear partial di�erentialequations (PDEs) resulting from the mathematial modeling of physial systems and,in partiular, bubbly �ows. We assume that these PDEs have already been disretizedin a sensible manner through the use of �nite di�erenes, �nite volumes or �niteelements. Our primary fous is on e�ient solution of linear systems, of the formAx = b; A 2 Rn�n; n 2 N; (1.1)that arise from suh disretizations, where n is the number of degrees of freedom andis alled the dimension of A. In Eq. (1.1), the oe�ient matrix, A, is assumed to bereal, symmetri, and positive semi-de�nite (SPSD), i.e.,A = AT ; yTAy � 0 8y 2 Rn;and has d zero eigenvalues with orresponding linearly independent eigenvetors. Ifd > 0, then A is singular. To guarantee that Eq. (1.1) is onsistent, the right-handside, b, is presumed to be in the range of A, i.e., b 2 R(A) where R(A) := fy 2 Rn :y = Aw for w 2 Rng. Thus, the next assumption holds throughout this thesis.Assumption 1.1. The oe�ient matrix, A, is SPSD and has d zero eigenvalues.Moreover, the linear system (1.1) is onsistent.The null spae of A is de�ned as N (A) := fw 2 Rn : Aw = 0ng, where 0n is the all-zero vetor with n entries. Then, N (A) is the orthogonal omplement of the olumnspae of A, i.e., N (A) = R(A)?. As a onsequene, the linear system (1.1) is onlyonsistent if bTw = 0 is satis�ed for all w 2 N (A).Linear system (1.1) is typially large, sparse, and ill-onditioned. That means thaturrent problems of interest involve millions of degrees of freedom, a �xed numberof nonzero entries per row and olumn of A, and ondition number of A, denotedas �(A), approahing in�nity as problem size or oe�ient ratio in the original PDEs1



2 Chapter 1. Introdutioninreases, respetively. In this thesis, we denote by �i(B) (or, shortly, �i) the i-theigenvalue of an arbitrary symmetri matrix, B 2 Rn�n, where the set f�ig is alwaysordered inreasingly (unless otherwise stated), i.e., �1 � �2 � : : : � �n. This set,f�ig, is alled the spetrum of B and is denoted as �(B). If B is SPSD, then its(spetral) ondition number is de�ned as the ratio of the largest and the smallestnonzero eigenvalues, i.e., �(B) := �n�d+1 :The linear system (1.1) an be solved using diret methods. Most of these solversgenerally involve expliit fatorization of (permutations of) A into a produt of alower and an upper triangular matrix. Important advantages of diret solvers are theirrobustness and general appliability. However, the bottlenek of diret solvers is thatthe matrix fator is often signi�antly denser than A. On the one hand, this mightlead to an exessive amount of omputations and, on the other hand, it might leadto insu�ient memory to form and store matrix fators. Therefore, diret methodsare typially prohibitively expensive and in some ases impossible, even with the bestavailable omputing power.Instead of diret solvers, iterative methods are more attrative to use to �nd thesolution of (1.1). In this ase, both memory requirements and omputing time an beredued, espeially if A is large and sparse. Moreover, these methods are mandatoryfor some numerial disretization methods, where A is not expliitly available. Theterm `iterative method' refers to a wide range of tehniques that use iterates, or su-essive approximations, to obtain more aurate solutions to a linear system at eahiteration step. Krylov subspae iterative methods, espeially the Conjugate Gradient(CG) method of Hestenes and Stiefel, are prominent iterative methods to solve (1.1).In these methods, the losest approximation to the solution of (1.1) is found in a sub-spae whose size is iteratively inreased. The onvergene of these methods dependshighly on �(A), whih again typially grows as the problem size inreases. To avoidthe inrease in iterations, it is ommon pratie to modify the Krylov subspae methodin the hopes of reduing the di�ulties in solving the given system. If this is applied toCG, then the resulting method is alled the preonditioned Conjugate Gradient (PCG)method. In this ase, (1.1) is multiplied by a preonditioner, M�1, hosen to reduethe ondition number of the iteration matrix from �(A) to �(M� 12AM� 12 ), whih isequivalent to �(M�1A). The resulting preonditioned system that should be solvedreads M�1Ax = M�1b; (1.2)where M is assumed to be symmetri and positive de�nite (SPD), i.e.,M = MT ; yTMy > 0 8y 6= 0n:PCG is more e�etive than original CG for many problems of interest. When M�1yis easily omputed for a given vetor, y , the additional ost of the preonditioning inthe Krylov iteration an ertainly pay o�, if it results in a more amenable spetrum of



1.2. Two-level Preonditioned Conjugate Gradient Methods 3M�1A. That is, if �(M�1A) is signi�antly less than �(A), or if the spetrum is morelustered than that of the original matrix, we an expet signi�antly fewer iterations tobe needed. However, even with sophistiated preonditioners, suh as preonditionersbased on inomplete fatorizations, �(M�1A) might still beome larger as the problemsize or oe�ient ratio in the original PDEs inreases. In this ase, PCG may su�erfrom slow onvergene due to the presene of unfavorable eigenvalues in �(M�1A).1.2 Two-level Preonditioned Conjugate Gradient MethodsIn addition to a traditional preonditioner, M�1, a seond kind of preonditioner an beinorporated to improve the onditioning of the oe�ient matrix even further, so thatthe resulting approah e�etively treats the e�et of all unfavorable eigenvalues. Thisombined preonditioning is known as `two-level preonditioning', and the resultingiterative method is alled a `two-level PCG (2L-PCG) method'. In this ase, CG,in ombination with a preonditioner based on a multigrid (MG) method or domaindeomposition method (DDM), an be regarded as a 2L-PCG method, sine most ofthese methods rely on preonditioning on two levels. These preonditioners have beenknown for a long time, dating bak at least to the 1930s.The main fous of this thesis is on the 2L-PCG method whose two-level preon-ditioner is based on a de�ation tehnique. The resulting method is often alled thede�ation method and was introdued independently by Niolaides and Dostal in the1990s.1.3 Bubbly Flow ProblemsThe main appliation of this thesis is two-phase bubbly �ows, as in Figure 1.1. Com-putation of these �ows is a very ative researh topi in omputational �uid dynamis(CFD). Understanding the dynamis and interation of bubbles and droplets in a largevariety of proesses in nature, engineering, and industry are ruial for eonomially andeologially optimized design. Bubbly �ows our, for example, in hemial reators,boiling, fuel injetors, oating, and volani eruptions.Two-phase �ows are ompliated to simulate, beause the geometry of the problemtypially varies with time, and the �uids involved have very di�erent material properties.A simple example is that of air bubbles in water, where the densities vary by a fatorof about 800. In this thesis, we onsider both stationary and time-dependent bubbly�ows, where the omputational domain is always a unit square or unit ube �lled witha �uid to a ertain height. The bubbles and droplets in the domain are always hosensuh that they are loated in a strutured way and have equal radius, s, at the startingtime. Typial 3-D test problems, onsidered in this thesis, are depited in Figure 1.2.2-D test problems are always based on setions of these 3-D domains. Throughoutthis thesis, lengths are typially given in entimeters (m).Mathematially, bubbly �ows are modelled using the Navier-Stokes equations in-luding boundary and interfae onditions, whih an be approximated numerially



4 Chapter 1. Introdution

Figure 1.1: A droplet splash: an example of a two-phase bubbly �ow problem.

(a) m = 1 and s = 0:1. (b) m = 8 and s = 0:05. () m = 27 and s = 0:025.Figure 1.2: Geometry of some stationary bubbly �ows onsidered in this thesis (m = number ofbubbles, s = radius of the bubbles).using operator-splitting tehniques. In these shemes, equations for the veloity andpressure are solved sequentially at eah time step. In many popular operator-splittingmethods, the pressure orretion is formulated impliitly, requiring the solution of alinear system (1.1) at eah time step. This system takes the form of a Poisson equa-tion with disontinuous oe�ients (also alled the `pressure(-orretion) equation')and Neumann boundary onditions, i.e.,
{ �r � ( 1�(x)rp(x)) = f (x); x 2 
;��np(x) = g(x); x 2 �
; (1.3)where 
; p; �; x, and n denote the omputational domain, pressure, density, spatialoordinates, and the unit normal vetor to the boundary, �
, respetively. Right-handsides f and g follow expliitly from the operator-splitting method, where g is suh thatmass is onserved, leading to a singular but ompatible linear system (1.1) 1.We de�ne nx ; ny and nz as the number of degrees of freedom in eah spatialdiretion, so that n = nxnynz . In this thesis, we perform the omputations on auniform Cartesian grid with nx = ny = nz . Furthermore, we onsider two-phase bubbly1For stationary bubbly �ow problems, we take f (x) = 0, so that the right-hand side of the linearsystem, b, only ontains omponents from the boundary onditions. In addition, we take g(x) to be



1.3. Bubbly Flow Problems 5�ows with, for example, air and water.In this ase, � is pieewise onstant with a relatively large ontrast:� = { �0 = 1; x 2 �0;�1 = "; x 2 �1: (1.4)For �ows with water and air, the density ontrast, de�ned as � := �0�1 = "�1, is � � 103,see Figure 1.3. In this ase, �0 is water, the main �uid of the �ow around the m airbubbles, and �1 is the region inside the bubbles.
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Figure 1.3: A two-phase bubbly �ow with the phases air and water.Solving linear system (1.1), that is a disretization of (1.3), within an operator-splitting approah has long been reognized as a omputational bottlenek in �uid-�owsimulation, sine it typially onsumes the bulk of the omputing time. Whether �nite-di�erene, �nite-element, or �nite-volume tehniques are used to disretize (1.3), theresulting matrix is sparse, but with a bandwidth of nxny , in lexiographial ordering.For a disretization on a ube with 100 degrees of freedom in eah diretion, this meansthat A is of dimension n = 106, with bandwidth nxny = 104. It is well-known thatdiret solution tehniques without reordering require a number of operations that saleas n 73 for a banded Cholesky deomposition, O(1014) operations in the example above.Thus, here, we onsider the solution of (1.1) using iterative tehniques. Standard PCGmethods are not suitable, sine they exhibit a strong sensitivity to the density ontrastand grid size. There is a real need for two-level preonditioning in order to aeleratethe onvergene of the iterative proess of PCG. Hene, we apply 2L-PCG methodsto solve (1.1).Next, de�ne 1p as the all-one vetor with p entries. Then, the following assumptionholds in our bubbly �ow problem, whih follows impliitly from the above problemonstant at eah boundary; we use the following boundary onditions in the 3-D ase:
8
><
>:

��np(x)jx=0 = � ��np(x)jx=1 = 1;��np(x)jy=0 = � ��np(x)jy=1 = �1;��np(x)jz=0 = � ��np(x)jz=1 = 1:In a similar way, suh boundary onditions are hosen in 2-D stationary problems.



6 Chapter 1. Introdutionsetting.Assumption 1.2. In bubbly �ow problems, we assume that A is a singular M-matrix,and the equations A1n = 0n and bT1n = 0 are satis�ed.A symmetri M-matrix is a square SPSD matrix whose o�-diagonal entries areless than or equal to zero. Aording to [15℄, d = 1 holds for a singular M-matrix,A. In other words, we have rank A = n � 1 and dim N (A) = 1, where rank B anddim B denote the rank of matrix B and the dimension of subspae B, respetively.Note that Assumption 1.1 follows immediately from Assumption 1.2, sine (1.1) isalways onsistent. For b = 0n, this is trivial, and, for b 6= 0n, b ? N (A) = spanf1ngresulting in the fat that b 2 R(A). Therefore, although A is singular, (1.1) is alwaysonsistent and an in�nite number of solutions exists. Due to the Neumann boundaryonditions, the solution, x , of (1.1) is �xed up to a onstant, i.e., if x1 is a solutionthen x1 + 1n is also a solution of (1.1), where  2 R is any onstant. This situationpresents no real di�ulty, sine pressure is a relative variable, not an absolute one inthe operator-splitting methods.1.4 Sope of the ThesisThis thesis deals with aeleration of PCG using two-level preonditioning in order tosolve linear systems with an SPSD oe�ient matrix. The main 2L-PCG method isthe de�ation method. In the literature, muh is known about applying the de�ationmethod to linear systems with invertible oe�ient matries and to problems with�xed and known density �elds. In this thesis, we generalize it to linear systems withsingular oe�ient matries and to problems where the density �eld varies or annotbe desribed expliitly. Moreover, we investigate the e�ient implementation of thede�ation method and the further improvements of the method. We also omparethe de�ation method with other well-known 2L-PCG methods by onsidering both theabstrat variants and their optimal variants with their typial parameters. Numerialexperiments with bubbly �ows are performed to illustrate the theoretial results.Remark 1.1. Many theoretial results presented in this thesis are generally appliableand are not restrited to appliations of bubbly �ows, although these bubbly �ows arethe main appliation of this thesis. Therefore, Assumption 1.2 is not demanded in thegeneral disussion, but is only required when the general theoretial results are appliedto bubbly �ows. In addition, all results that require Assumption 1.2 an also be appliedto other �elds where this assumption is ful�lled.1.5 Outline of the ThesisThe outline of this thesis is as follows.



1.5. Outline of the Thesis 7Chapter 2: Iterative Methods. This hapter is devoted to the introdution of itera-tive methods, espeially the CG and PCG methods. In most introdutory books, CGand PCG are derived and analyzed where A is assumed to be invertible, but we give themethods and their onise derivations for general SPSD oe�ient matries. More-over, some properties of these methods are presented, whih are not fully lear in theliterature. Finally, the drawbaks of PCG are illustrated using numerial experimentswith bubbly �ows.Chapter 3: De�ation Method. In order to improve the onvergene of the stan-dard PCG method, the de�ation method and its preonditioned variant are introduedin Chapter 3. We give their derivation in detail and present some new theoretialproperties. We show, both theoretially and numerially, that the de�ation method isexpeted to be more e�etive than the original PCG method.Chapter 4: Seletion of De�ation Vetors. The suess of the de�ation methodhighly depends on the hoie of the so-alled `de�ation vetors'. Good approximationsof eigenvetors assoiated with unfavorable eigenvalues are often hosen, whih areusually dense and not straightforward to obtain. In addition, the density �eld is oftennot known expliitly in our bubbly �ow appliation, whih might lead to di�ulties forapproximating eigenvetors. We analyze this issue in more detail in Chapter 4 andprovide some strategies to determine the best de�ation vetors for bubbly �ow prob-lems. We ome up with several suitable hoies, whose utility is illustrated in numerialexperiments.Chapter 5: Subdomain De�ation applied to Singular Matries. Theoretial re-sults for the de�ation method are well-known if it is applied to nonsingular oe�ientmatries. The appliation of this method to singular oe�ient matries is more om-pliated and has not been widely onsidered in the literature. This issue is furtherinvestigated in Chapter 5. We show equivalenes between de�ation methods appliedto singular and invertible oe�ient matries. We ome up with several mathemati-ally equivalent variants of the two-level preonditioner orresponding to the de�ationmethod. Numerial experiments are used to show that these variants an be easilyapplied in pratie.Chapter 6: Comparison of Two-level PCG Methods � Part I. The main fous ofthis thesis is on the de�ation method, whereas other attrative 2L-PCG methods areknown in the literature. In Chapter 6, we ompare the de�ation method with someprominent 2L-PCG methods oming from the �elds of de�ation, DDM and MG. Botha theoretial and numerial omparison are performed using the abstrat forms of thesemethods. We investigate their spetral properties, equivalenes, e�etiveness and ro-bustness, and end up with a 2L-PCG method of our hoie.



8 Chapter 1. IntrodutionChapter 7: Comparison of Two-Level PCG Methods � Part II. In Chapter 6, the2L-PCG method based on the standard multigrid V(1,1)-yle method is exluded inthe omparison, sine it has di�erent spetral properties and requires a speial theo-retial treatment. Chapter 7 examines this method in more detail. We ompare the2L-PCG methods as disussed in Chapter 6, and show that it depends on the hosenparameters whih 2L-PCG method is the most e�etive one.Chapter 8: E�ieny and Implementation Issues of the De�ation Method. In theprevious hapters, we have shown that the de�ation method is expeted to onvergefaster than PCG in terms of iteration ounts. However, the de�ation method needs tobe implemented e�iently in order to obtain a fast method with respet to omputingtime as well. This issue is examined in Chapter 8, where we show how eah step of thede�ation algorithm an be best implemented for a lass of problems. At eah iterationof the de�ation method, oarse linear systems should be solved, whih is usually doneby a diret method. If the number of de�ation vetors is relatively large, we showthat it is more attrative to use an iterative method, so that the resulting method isbased on an inner-outer iteration proess. This is further detailed and illustrated withnumerial experiments in Chapter 8.Chapter 9: Comparison of De�ation and Multigrid with Typial Parameters. InChapter 6 and 7, the 2L-PCG methods have been ompared in their abstrat forms. Inthis ase, the di�erent parameters within these methods an be arbitrary, but are equalfor eah method, whih allows us to perform a general omparison. The omparisonan also be arried out with typial parameters in the methods. Eah 2L-PCG methodthen takes its optimized set of parameters that is typial in the �eld where the methodomes from. Chapter 9 is devoted to this omparison. The aim of this hapter isto show whih optimized 2L-PCG method is urrently the best one to apply for 3-Dbubbly �ow appliations.Chapter 10: Bubbly Flow Simulations. In the previous hapters, we have shownthat 2L-PCG methods are bene�ial to use for stationary bubbly �ow problems. InChapter 10, the exat mathematial model for the bubbly �ows is formulated, sothat real-life time-dependent experiments an be performed. We show that 2L-PCGmethods redue signi�antly the omputations of bubbly �ow simulations and are lesssensitive to the density �eld ompared with standard PCG methods.Chapter 11: Conlusions. The main onlusions of the thesis and ideas for futureresearh are presented in Chapter 11.This thesis is based on the tehnial reports [87,132,134,136,137,140,141,144℄,the proeeding papers [138,139,142,147,172℄, and, espeially, the journal papers [85,88, 133, 135, 143, 145, 146, 148℄. It is written in suh a way that the thesis itself andevery hapter are self-ontained as muh as possible.



1.6. Notation 91.6 NotationThroughout this thesis, we use the notation as given in Table 1.1.Notation MeaningI identity matrix with an appropriate dimensione()� -th olumn of I with dimension �e()�;� �� � matrix with � idential olumns e()�1�;� �� � matrix whose entries are ones1� olumn of 1�;�0�;� �� � matrix whose entries are zeros0� olumn of 0�;�Table 1.1: Notation for standard matries and vetors where �; �;  2 N.
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Chapter 2Iterative Methods
2.1 IntrodutionReall that the main fous of this thesis is on solving the linear system (see Eq. (1.1))Ax = b; A = [ai j ℄ 2 Rn�n; (2.1)where A is a sparse and SPSD oe�ient matrix. We aim at solving (2.1) using Kryloviterative methods, whih are examined in this hapter.We start this hapter by reviewing basi iterative methods. This is followed by pre-senting the Conjugate Gradient (CG) method, whih is a well-known iterative methodto solve (2.1). The rate at whih CG and general iterative methods onverge dependsgreatly on the spetrum of the oe�ient matrix, A. Hene, these methods usually in-volve a seond matrix that transforms A into one with a more favorable spetrum. Theresulting method is then alled the preonditioned Conjugate Gradient (PCG) method,and is desribed in Setion 2.4. Some further onsiderations regarding preondition-ing, starting vetors and termination riteria of the iterative proedure are disussedin Setion 2.5. We onlude this hapter with the appliation of the solvers to bubbly�ow problems in order to illustrate the performane of the PCG methods.2.2 Basi Iterative MethodsIterative methods generate a sequene of iterates, fxjg, that approximate the exatsolution, x . These methods essentially involve matrix A only in the ontext of matrix-vetor multipliations. The starting point of these methods is onsidering a splittingof A of the form A = M � N; M;N 2 Rn�n; (2.2)where M is assumed to be invertible. If the splitting (2.2) is substituted into Eq. (2.1),we obtain Mx = b + Nx: (2.3)11



12 Chapter 2. Iterative MethodsFrom Eq. (2.3), a basi iterative method an be onstruted as follows:Mxj+1 = b + Nxj ; (2.4)where the iterate, xj+1, in the (j + 1)-th step an be determined from the previousiterate, xj . Eq. (2.4) an be rewritten asxj+1 = xj +M�1rj ; (2.5)where the residual after the j-th iteration is de�ned asrj := b � Axj ;that is a measure of the di�erene of the iterative and the exat solution of (2.1). Forthe iteration (2.5) to be pratial, it must be relatively easy to solve a linear systemwith M as the oe�ient matrix. For example, M = diag(A) is used in Jaobi iter-ations, M onsists of the lower-triangular part of A in Gauss-Seidel iterations, and amore ompliated M is used in (symmetri) suessive over-relaxation ((S)SOR) itera-tions, that an be derived from Gauss-Seidel iterations by introduing an extrapolationparameter. It has been reognized that these basi iterative methods are impratial,beause they onverge slowly, need good tuning of some parameters, or require stritonditions for onvergene. More basi iteration methods and their analysis an befound in [8,63,70,120,167℄.When the �rst iterations of (2.5) are developed, one obtains




x0;x1 = x0 +M�1r0;x2 = x0 + 2M�1r0 �M�1AM�1r0;x3 = x0 + 3M�1r0 � 3M�1AM�1r0 + (M�1A)2M�1r0;...This yieldsxj+1 2 x0 + span{M�1rj ;M�1A(M�1rj); : : : ; (M�1A)j�1(M�1rj)} :Subspaes of the formKj(A; r0) := span{r0; Ar0; A2r0; : : : ; Aj�1r0}are alled Krylov subspaes with dimension j , belonging to A and r0. Hene, thefollowing holds for basi iterative methods:xj+1 2 x0 +Kj(M�1A;M�1r0): (2.6)These methods are also alled Krylov(-subspae) methods. From Eq. (2.6), it followsthat Krylov methods rely on �nding M�1 (that is often alled a `preonditioner') and a



2.3. Conjugate Gradient Method 13basis for Kj , suh that the iterative method onverges fast with a reasonable aurayand e�ieny with respet to memory storage and omputational time.Krylov methods an be divided into stationary and nonstationary variants. Methodssuh as Jaobi, Gauss-Seidel, (S)SOR iterations are stationary methods, sine thesame operations on the urrent iteration vetors are performed in eah iteration. Theyare easy to understand and implement, but they are often not e�etive. On theother hand, nonstationary methods, that have iteration-dependent oe�ients, area relatively reent development. Their analysis is ommonly harder to understand,but they an be highly e�ient. They rely on forming an orthogonal basis of theKrylov sequene {r0; Ar0; A2r0; : : : ; Aj�1r0}. The iterates are then onstruted byminimizing the residual over the subspae formed. The prototypial method in thislass is the (preonditioned) Conjugate Gradient ((P)CG) method, whih is desribedin Setion 2.3 and 2.4. This is a popular and e�etive nonstationary Krylov solver forlinear systems with an SPSD oe�ient matrix, as the storage for only a limited numberof vetors is required. For non-SPSD matries, the Krylov solvers GMRES [121℄ andBi-CGSTAB [160℄ are popular methods in use, see [120,160℄.2.3 Conjugate Gradient MethodThe Conjugate Gradient (CG) method is probably the most prominent iterative methodfor solving the SPSD linear system (2.1). It is disovered independently by Hestenesand Stiefel, and they jointly published the method in [72℄, whih has beome thelassial referene on CG. We refer to [8, 61, 63, 86, 117, 120, 161℄ for more detailsabout this method.The purpose of CG is to onstrut a sequene, fxjg, that satis�es (2.6), withM = I and the property that minxj2Kj (A;r0) jjxj � x jjA (2.7)holds, where jjw jjA :=√(w;Aw) is used for any w 2 Rn. In other words, the error isminimized in the A-semi-norm (that is often abbreviated as the A-norm, if there is noambiguity) at eah iteration. This minimum is guaranteed to exist in general, only ifA is SPSD. Moreover, CG requires that searh diretion vetors, fpjg, are onjugatewith respet to A, i.e., (Api ; pj) = 0; i 6= j; (2.8)hene the name `Conjugate Gradient method'. It an be shown that (2.8) is equivalentto the fat that the residuals, frjg, form an orthogonal set, i.e.,(ri ; rj) = 0; i 6= j: (2.9)Now, the CG method proeeds as follows. The (j+1)-th iterate is updated via thesearh diretion: xj+1 = xj + �jpj ; (2.10)



14 Chapter 2. Iterative Methodswhere �j 2 R. This yields rj+1 = rj � �jApj : (2.11)It an be shown that �j = (rj ; rj)(Apj ; pj) (2.12)minimizes jjxj � x jjA over all possible hoies of �j and ensures that Eq. (2.9) issatis�ed. The searh diretions are updated using the residuals:pj+1 = rj+1 + �jpj ; (2.13)where �j 2 R equal to �j = (rj+1; rj+1)(rj ; rj) (2.14)ensures that Eq. (2.8) is satis�ed. In fat, it an be shown that Eqs. (2.12) and (2.14)make pj+1 onjugate to all previous searh diretions, fpi : i = 1; : : : ; jg, and rj+1orthogonal to all previous residuals, fri : i = 1; : : : ; jg.The above derivation leads to Algorithm 1, see below. This is essentially the formof the CG algorithm that appeared in [72℄.Algorithm 1 Conjugate Gradient (CG) solving Ax = b1: Selet x0. Compute r0 := b � Ax0 and set p0 := r0.2: for j := 0; 1; : : : ; until onvergene do3: wj := Apj4: �j := (rj ;rj )(wj ;pj )5: xj+1 := xj + �jpj6: rj+1 := rj � �jwj7: �j := (rj+1;rj+1)(rj ;rj )8: pj+1 := rj+1 + �jpj9: end for10: xit := xj+1Remark 2.1.� The iterative solution of Ax = b is denoted by xit in Algorithm 1 to distinguishit from the exat solution, x .� It is straightforward to derive CG from the Lanzos algorithm for solving sym-metri eigensystems and vie versa. The relationship an be exploited to obtainrelevant information about the eigensystem of A. We refer to [8, 63, 120℄ formore details.� It an be proven that the CG algorithm indeed minimizes the error in the solutionvetor over the Krylov subspae in the A-norm, as presented in (2.7).



2.4. Preonditioned Conjugate Gradient Method 15� The equality (rj ; rj) = 0 only happens if the solution, x , is already found. More-over, sine b 2 R(A) and Axj+1 2 R(A), the residual, rj+1, is also in therange of A, i.e., rj+1 2 R(A). Beause pj+1 is a linear ombination of theresiduals, fr1; : : : ; rjg, it is in the range of A as well, so that Apj+1 6= 0n ifpj+1 6= 0n. Therefore, (Apj ; pj) = 0 never happens, sine A is SPSD and rj 6= 0n(see [63, Lemma 10.2.1℄). Hene, breakdown of CG (even for a singular oe�-ient matrix) only ours if it is already onverged.Due to the SPSD property of A, the algorithm an be formulated suh that thememory spae is needed for only four vetors and one matrix. Eah iteration requiresthe omputations of two inner produts, one matrix-vetor multipliation and fourvetor updates. Note that a basis for the Krylov subspae does not need to be stored,and the algorithm only uses short reurrenes.Beause the residuals, frjg, are orthogonal to eah other, it follows that CG er-tainly onverges within n iterations in exat arithmeti. Moreover, the onvergene rateis bounded as a funtion of the ondition number of matrix A, �(A), see Lemma 2.1.Lemma 2.1. Let A and x be the oe�ient matrix and the solution vetor as inEq. (2.1), respetively. Let fxig be the sequene of CG-generated iterates. After j +1iterations of CG, the error is bounded byjjx � xj+1jjA � 2jjx � x0jjA(√�(A) � 1√�(A) + 1)j+1 : (2.15)Proof. The proof is almost idential to the proof of [105, Thm. 3.3℄.Remark 2.2.� From Inequality (2.15), it follows that the onvergene of CG does not dependon zero eigenvalues, see also [77℄.� The auray of fxjg is often muh better than that (2.15) predits, due to agood lustering of the eigenvalues of A or a favorable hoie of starting vetors,see [159℄.From Lemma 2.1, a heuristi rule an be formulated: a faster onvergene of CG isexpeted for a smaller �. In the ideal ase, we should have �(A) � 1. In the nextsetion, we show that the linear system (2.1) an be onverted into a related linearsystem suh that the new oe�ient matrix, Ã, is loser to the identity, i.e., �(Ã)approahes 1.2.4 Preonditioned Conjugate Gradient MethodThe previous setion has been onluded by observing that CG is e�etive if the oef-�ient matrix is well-onditioned or has a favorable lustering of eigenvalues. Both thee�ieny and robustness of CG an be improved by using so-alled `preonditioning'.



16 Chapter 2. Iterative MethodsPreonditioning is simply a means of transforming the original linear system (2.1) intoone whih has the same solution, but whih is likely to be easier to solve with CG. Inother words, instead of solving (2.1), we solve the transformed preonditioned linearsystem, Ã~x = ~b; (2.16)where Ã := M� 12AM� 12 ; ~x := M 12 x; ~b :=M� 12b: (2.17)MatrixM�1 is alled the preonditioner, as in basi iterative methods. It is required thatM is SPD, so that M� 12 exists and (M� 12 )T = M� 12 holds. Subsequently, Lemma 2.2shows that (2.16) satis�es Assumption 1.1.Lemma 2.2. Let the linear system (2.16) with oe�ient matrix Ã be given. Then,Eq. (2.16) satis�es Assumption 1.1, i.e.,� Ã is SPSD;� Ã has d zero eigenvalues;� Eq. (2.16) is onsistent.Proof. The fat that Ã is SPSD follows immediately from Lemma A.2 by substitutingB := A and C = M� 12 .Moreover, note thatAvi = 0n , M�1Avi = 0n; i = 1; : : : ; d;where v1; : : : ; vd are the eigenvetors assoiated with the d zero eigenvalues of A.Combining this fat with the equality �(Ã) = �(M�1A) (Lemma A.1), it follows thatboth A and Ã have d zero eigenvalues.In order to prove that Eq. (2.16) is onsistent, it su�es to show that ~b =2 N (Ã)for ~b 6= 0n. De�ne ~y := M 12 y for any y 2 N (A). Then,Ã~y = M� 12Ay = M� 120n = 0n;and, for ~b 6= 0n, ~bT ~y = (M� 12b)TM 12 y = bT y = 0;sine b =2 N (A) by hypothesis.Remark 2.3. If y 2 N (A), then ~y := M 12 y 2 N (Ã).Algorithm 1 an now be applied to the linear system (2.16). This results in thepreonditioned Conjugate Gradient (PCG) method, see Algorithm 2. The iterate, ~xj+1,an be regarded as an approximation of the solution, ~x , and ~rj+1 = ~b � Ã~xj+1 an beinterpreted as the preonditioned residual.



2.4. Preonditioned Conjugate Gradient Method 17Algorithm 2 Preonditioned CG (PCG) solving Ax = b (Original Variant)1: Selet ~x0. Compute ~r0 := ~b � Ã~x0 and set ~p0 := ~r0.2: for j := 0; 1; : : : ; until onvergene do3: ~wj := Ã~pj4: �j := (~rj ;~rj )(~pj ; ~wj )5: ~xj+1 := ~xj + �j ~pj6: ~rj+1 := ~rj � �j ~wj7: �j := (~rj+1;~rj+1)(~rj ;~rj )8: ~pj+1 := ~rj+1 + �j ~pj9: end for10: xit := M� 12 ~xj+1Subsequently, Algorithm 2 an be simpli�ed using the following substitutions:




~xj+1 = M 12 xj+1;~rj+1 = M� 12 rj+1;~pj+1 = M 12pj+1;~wj+1 = M 12wj+1: (2.18)This yields Algorithm 3, see below.Algorithm 3 Preonditioned CG (PCG) solving Ax = b (Pratial Variant)1: Selet x0. Compute r0 := b � Ax0,solve My0 = r0, and set p0 := y0.2: for j := 0; 1; : : : ; until onvergene do3: wj := Apj4: �j := (rj ;yj )(pj ;wj )5: xj+1 := xj + �jpj6: rj+1 := rj � �jwj7: Solve Myj+1 = rj+18: �j := (rj+1;yj+1)(rj ;yj )9: pj+1 := yj+1 + �jpj10: end for11: xit := xj+1Remark 2.4.� From Algorithm 3, it follows that it is not required to determine M 12 or its inverseexpliitly.� Compared to Algorithm 1, an additional linear system, Myj+1 = rj+1, has to besolved at eah iteration. Moreover, an extra matrix, M, and an extra vetor, yj ,should be stored in memory.



18 Chapter 2. Iterative Methods� In Algorithm 3, (pj ; Apj) and (rj ; yj) do not vanish, sine M is SPD and both(~pj ; Ã~pj) and (~rj ; ~rj) are nonzero if the (preonditioned) solution is not yet found(f. Remark 2.1).Beause Algorithm 2 an be rewritten as Algorithm 3, the preonditioned linearsystem (2.16) is often denoted byM�1Ax = M�1b; M = [mi j ℄ = Rn�n: (2.19)Moreover, the next lemmas show some properties of PCG.Lemma 2.3. Let A and M�1 be given as in (2.19). Let frig and fpig be sequenes ofresiduals and searh diretions satisfying Eq. (2.18), respetively. Then, the followingequality holds for PCG: (M�1ri ; rj) = (Api ; pj) = 0; i 6= j: (2.20)Proof. Note �rst that (~ri ; ~rj) = (M� 12 ri ;M� 12 rj) = (M�1ri ; rj);and (Ã~pi ; ~pj) = (M� 12AM� 12M 12pi ;M 12pj) = (M� 12Api ;M 12pj) = (Api ; pj);using Eq. (2.18). Sine (~ri ; ~rj) = (Ã~pi ; ~pj) = 0 holds for i 6= j (see Eqs. (2.8)and (2.9)), the lemma now follows immediately.
Lemma 2.4. Let A and M�1 be given as in (2.19). Let fxig be a sequene of PCG-generated iterates. Then, xj+1 satis�es the following inequality:jjx � xj+1jjA � 2jjx � x0jjA(√� (M�1A)� 1√� (M�1A) + 1)j+1 : (2.21)Proof. We have (see Eq. (2.15))jj~x � ~xj+1jj eA � 2jj~x � ~x0jj eA√�(Ã)� 1

√�(Ã)+ 1j+1 : (2.22)



2.5. Further Considerations 19The lemma follows from (2.22), Lemma A.1 and the fat thatjj~x � ~xi jj eA = (~x � ~xi)T Ã (~x � ~xi)= (M 12 x �M 12 xi)T M� 12AM� 12 (M 12 x �M 12 xi)= (x � xi)T M 12M� 12AM� 12M 12 (x � xi)= (x � xi)T A (x � xi)= jjx � xi jjA;with i = 0; 1; : : : ; j + 1.Aording to Lemma 2.3, both CG and PCG minimize the error in the solution vetorover the Krylov subspae in the A-norm, rather than in the Ã-norm, see also [8,Set. 11.2℄. Furthermore, it an be notied from Lemma 2.4 that a fast onvergeneof PCG relies on the hoie of M�1. In the ideal ase, we should have �(Ã) =� (M�1A) � 1.2.5 Further ConsiderationsFor the PCG method, there are still a few issues left that need further disussion, suhas the hoie of the preonditioner, starting vetor, and termination riterion of theiterative proess. These issues are onsidered in this setion.2.5.1 PreonditioningAlgorithm 3 is only e�ient if the preonditioner, M�1, satis�es the following require-ments:(i) M is easy to onstrut;(ii) the linear system Myj+1 = rj+1 should be solvable at low ost;(iii) the eigenvalues of Ã should be lustered (around 1).In other words, a good preonditioner improves the onvergene of the iterative method,su�iently to overome the extra ost of both onstruting and applying the preon-ditioner. The most standard preonditioner is the Jaobi preonditioner, de�ned asM = diag(A). In [158℄, it is shown that this hoie minimizes �(M�1A), if the preon-ditioner is restrited to a diagonal matrix. Blok versions of the Jaobi preonditioneran be derived by a partitioning of the variables. If the index set, S = f1; 2; : : : ; ng, ispartitioned as S = [qSq with disjoint sets, fSqg, thenmi j = { ai j ; if i and j are in the same index subset;0; otherwise.



20 Chapter 2. Iterative MethodsThe resulting preonditioner is now a blok-diagonal matrix, known as the blok-Jaobipreonditioner.Another simple way of de�ning a preonditioner is to perform an inomplete fator-ization of A. For example, the inomplete Cholesky deomposition without �ll-in [97℄,known as IC(0), is ommonly used. The resulting PCG method is often alled ICCG.In this approah, we have M = LLT , where L = [li j ℄ 2 Rn�n is a lower-triangular ma-trix having the same sparsity pattern as A, and is lose to the lower-triangular matrixassoiated with the exat Cholesky deomposition. More spei�ally, the entries of theinomplete Cholesky fator, L, should satisfy the following onditions:
{ li j = 0; if ai j = 0;(LLT )i j = ai j ; if ai j 6= 0:If A is an SPSD matrix with ai ;j � 0 for all i 6= j , suh an L always exists, see [77℄.Aordingly, IC(0) an always be onstruted for our bubbly �ows problem, as A is anSPSD M-matrix, see Assumption 1.2.Remark 2.5.� The general algorithm for onstruting L an be found in [63,97℄. This algorithman be redued by aounting for the exat nonzero pattern of A.� In pratie, matries A and L are stored in an appropriate data struture to savememory storage and obtain an e�ient method.There are various variants of ICCG known in the literature, suh as MICCG [9℄,RICCG [67℄ and ILUM [119℄. More general matrix-based preonditioners an be foundin, e.g., [120℄. Another type of preonditioners is operator-based, that exploits prop-erties of the physial problems from whih the linear system arises. For example, if weaim at solving the linear system derived from Eq. (1.3), then the preonditioner an bebased on the same equation but with a onstant � (that is the Poisson equation with aonstant oe�ient), or tehniques as desribed in [32℄. The di�ulty of �nding e�e-tive preonditioners is well-reognized, and the development of suh preonditioners isa major issue in the urrent ative researh.Remark 2.6.� It might happen that Myj+1 = rj+1 annot be solved aurately. In this ase,this solve an be regarded as yj+1 =M(rj+1), where M is a nonlinear mappingfrom Rn to Rn. In order to preserve the optimal onvergene property of PCG,one an perform a full orthogonalization of the searh diretion vetors, whihmight be extended by trunation and restart strategies. This leads to meth-ods based on GMRES, suh as the Flexible PCG method [109℄. However, it ispossible to use the original PCG method with inexat preonditioning, sine theonvergene rate of the outer PCG proess an be maintained up to a ertainauray for the inner solve, yj+1 =M(rj+1), see, e.g., [62,64℄.



2.5. Further Considerations 21� CG is usually straightforward to parallelize, while PCG might have di�ultiesdue to the hoie of the preonditioner, see [4,44,161℄. For example, the IC(0)preonditioner is umbersome to parallelize, in ontrast to the (blok-)Jaobipreonditioner. Hene, extra attention should be paid to the preonditioner,M�1, in a parallel environment.2.5.2 Starting Vetors and Termination CriteriaIn general, there is no restrition for hoosing the starting vetor, x0, in the (P)CGmethod. The onvergene rate of the iterative proess hardly depends on it, unlessx � x0 is already onjugate to some of the eigenvetors of M�1A. Common hoiesfor x0 are the zero vetor, the random vetor, and a rough estimate of x .In Algorithm 1, 2 and 3, `until onvergene' means that the iterative proess shouldbe terminated if the error, jjx � xk jjA, is su�iently small. Beause this error term isnot available, it is ustomary to terminate if the (preonditioned) residual falls belowa spei�ed value. This leads to the following widely used termination riteria:jjrj+1jj2jjr0jj2 < Æ; (2.23)and jjyj+1jj2jjy0jj2 = jjM�1rj+1jj2jjM�1r0jj2 < Æ; (2.24)where rj+1 and yj+1 represent the original and preonditioned residuals at iterationj + 1, respetively. The tolerane, Æ > 0, determines the auray of the solution andis a user-supplied parameter.Remark 2.7.� Termination riterion (2.23) does not depend on the preonditioner. Therefore,this riterion is suitable if PCG methods with di�erent M have to be ompared.� If M�1A � I, thenjjyj+1jj2jjy0jj2 = jjM�1(b � Axj+1)jj2jjM�1(b � Ax0)jj2 = jjM�1A(x � Axj+1)jj2jjM�1A(x � x0)jj2 � jjx � xj+1jj2jjx � x0jj2 ;so that termination riterion (2.24) relies on `real' relative errors.� Both riteria (2.23) and (2.24) have the drawbak that they strongly depend onthe starting vetor, x0. A relatively large and inaurate x0 leads to an inauratesolution, while x0 lose to the solution might result in a too stringent terminationriterion. More details on various termination riteria used in pratie an befound in, e.g., [10℄.



22 Chapter 2. Iterative Methods2.6 Appliation to Bubbly FlowsIn this setion, we present the performane of PCG in our main appliation of bubbly�ow problems. The omputations are performed on a serial Pentium 4 (2.80 GHz)omputer with a memory apaity of 1GB. Moreover, the ode is ompiled with FOR-TRAN g77 on LINUX.Both 2-D and 3-D variants of the problem setting, as given in Figure 1.2 of Se-tion 1.3, are onsidered, where the radius of the bubbles is s = 0:1. The number ofbubbles, m, the grid size, n, and the density ontrast, �, are varied in the experiments.We adopt ICCG (that is, PCG with the IC(0) preonditioner) to solve the resulting lin-ear system. PCG with Jaobi and Blok-Jaobi preonditioners is onsidered in [137℄,and is less e�ient ompared to ICCG. We hoose for a random starting vetor, andthe termination riterion is based on (2.24) with tolerane Æ = 10�8.The results of the experiment are given in terms of the total omputing time andthe number of required iterations for onvergene of ICCG, see Table 2.1 and 2.2. Theauray of the solutions is also heked. They are omitted in the results, sine theyare of the same order.(a) n = 1002, � = 103 andvarious number of bubbles,m.m # It. CPU0 109 0.11 128 0.19 247 0.3
(b) m = 9, � = 103 and vari-ous grid sizes, n.n # It. CPU1002 247 0.32502 466 3.65002 1027 34.4() m = 9, n = 1002 and var-ious density ontrasts, �.� # It. CPU103 247 0.3106 352 0.3108 381 0.4Table 2.1: Results for ICCG applied to 2-D bubbly �ow problems. `# It' means the number of requirediterations, and `CPU' is the orresponding omputational time in seonds.From Table 2.1 and 2.2, it an be readily observed that 3-D problems take moreiterations and omputing time to solve ompared to 2-D problems, beause the de-grees of freedom are larger in the 3-D ase. We see that the onvergene of ICCGdeteriorates when M�1A beomes more ill-onditioned; this is the ase when� the domain onsists of more bubbles;� the degrees of freedom are inreased;� the density ontrast grows.Hene, ICCG is not a salable and robust method.



2.7. Conluding Remarks 23(a) n = 1003, � = 103 andvarious number of bubbles,m.m # It. CPU0 170 25.21 211 31.18 291 43.027 310 46.0
(b) m = 27, � = 103 and var-ious grid sizes, n.n # It. CPU503 199 3.61003 310 46.01203 363 90.5() m = 27, n = 1002 andvarious density ontrasts, �.� # It. CPU103 310 46.0106 503 71.8108 532 77.5Table 2.2: Results for ICCG applied to 3-D bubbly �ow problems.2.7 Conluding RemarksIn this hapter, we review basi and Krylov iterative methods. The (P)CG is a popularKrylov iterative method, whih is disussed in more detail. Some theoretial propertiesthat are not fully lear in the literature are derived and explained.Numerial experiments show that ICCG (that is PCG with the IC(0) preonditioner)is not e�etive to deal with sophistiated bubbly �ows. Consequently, there is a needfor an alternative of PCG, so that the onvergene of its iterative proess is morerobust and salable with respet to the number of bubbles, the grid size, and thedensity ontrast. We deal with this issue in the remainder of this thesis.
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Chapter 3De�ation Method
3.1 IntrodutionThe linear system of our primary interest is (see Eq. (2.1))Ax = b; A 2 Rn�n; (3.1)where the SPSD oe�ient matrix, A, has d zero eigenvalues, and b 2 R(A) holds.As disussed in Chapter 2, PCG is a popular method to solve (3.1), and the resultingpreonditioned linear system to be onsidered is (see Eq. (2.19))M�1Ax = M�1b; (3.2)where M�1 is an SPD preonditioner. The spetrum of M�1A, � (M�1A), often on-sists of unfavorable eigenvalues that deteriorate the onvergene of PCG and makesPCG less robust, see also [175℄. In this hapter, we desribe the so-alled de�ationmethod that e�etively treats these eigenvalues, so that the onvergene an be sig-ni�antly improved, and a more robust and salable method an be obtained.The de�ation method applied to CG is independently proposed by Niolaides [108℄and Dostal [40℄. It is further exploited in several papers, among them are [56, 58, 82,93, 94, 99, 103, 104, 122, 173℄. Below, we �rst desribe the de�ation method and itspreonditioned variant following [173℄, where we aount for the possible singularityof the oe�ient matrix, A. We derive and disuss these methods inluding theirtheoretial properties. Moreover, the e�etiveness of the de�ation method is illustratedin bubbly �ow appliations.3.2 PreliminariesThis setion presents some preliminaries that are required to desribe the de�ationmethod. We start with De�nition 3.1. 25



26 Chapter 3. De�ation MethodDe�nition 3.1. Let A be an SPSD oe�ient matrix as given in (3.1). Supposethat Z 2 Rn�k, with full rank and k < n � d , is given. Then, we de�ne the invertibleGalerkin matrix, E 2 Rk�k, the orretion matrix, Q 2 Rn�n, and the de�ation matrix,P 2 Rn�n, as follows:P := I � AQ; Q := ZE�1ZT ; E := ZTAZ: (3.3)Remark 3.1.� The Galerkin matrix, E, is also known as the oarse matrix. In addition, linearsystem Ey2 = y1 is often alled the Galerkin or oarse system.� The matries as de�ned in De�nition 3.1 an be easily generalized for a non-SPSD oe�ient matrix, A. We refer to [47,48,171℄ for more details.In Eq. (3.3), Z is the so-alled `de�ation-subspae matrix' whose k olumns are alledthe `de�ation vetors' or `projetion vetors'. These vetors remain unspei�ed for themoment, but they are hosen in suh a way that E is nonsingular. In other words, thefollowing assumption is always ful�lled in this hapter (and in most of the upominghapters).Assumption 3.1. Z is hosen suh that N (A) * R(Z), so that E is nonsingular.The fat that E is nonsingular if N (A) * R(Z) follows from the next lemma.Lemma 3.1. Let A, Z and E be as given in De�nition 3.1, where Z satis�es Assump-tion 3.1. If N (A) * R(Z), then E is nonsingular.Proof. Note �rst that N (A) * R(Z) yieldsZ�y =2 N (A) 8�y 2 Rn: (3.4)Sine A is SPSD, we have yTAy > 0; y =2 N (A):In partiular, we an take y = Z�y and substitute this into the latter expression, givingus (Z�y)TA(Z�y) = �yTZTAZ�y = �yTE�y > 0; Z�y =2 N (A) 8�y 2 Rn: (3.5)Combining (3.4) and (3.5) leads to the fat that E is nonsingular.If N (A) � R(Z), then E would be singular. In this ase, the Moore-Penrosegeneralized inverse (also known as the pseudo-inverse) should be used rather than thereal inverse. This is further onsidered in Chapter 8.From Eq. (3.3), some results an be readily obtained, see Lemma 3.2.



3.2. Preliminaries 27Lemma 3.2. Let A, Z, E, Q and P be as given in De�nition 3.1, where Z satis�esAssumption 3.1. Let x and b be the solution and right-hand side of (3.1), respetively.Then, the following equalities hold:(a) ET = E;(b) QT = Q = QAQ;() QAZ = Z;(d) PAQ = 0n;n;(e) P 2 = P ;(f) AP T = PA;(g) (I � P T )x = Qb.Proof.(a) ET = (ZTAZ)T = ZTAZ = E;(b) QT = (ZE�1ZT )T = ZE�1ZT = Q using (a), andQAQ = ZE�1ZTAZE�1ZT = ZE�1EE�1ZT = ZE�1ZT = Q;() QAZ = ZE�1ZTAZ = ZE�1E = Z;(d) PAQ = (I � AQ)AQ = AQ� AQAQ = AQ� AQ = 0n;n using (b);(e) P 2 = (I � AQ)2 = I � 2AQ + AQAQ = I � 2AQ + AQ = I � AQ = P , usingagain (b);(f) AP T = A(I �QA) = A� AQA = (I � AQ)A = PA;(g) (I � P T )x = QAx = Qb, using Eq. (3.1).Remark 3.2.� In ontrast to P , matries E and Q are symmetri (Lemma 3.2(a) and (b)).� P is a projetor (Lemma 3.2(e)).� Although x is unknown, (I�P T )x an be omputed beforehand using Lemma 3.2(g).The next lemmas are frequently used in this thesis.Lemma 3.3. Let P , A and Z be as given in De�nition 3.1, where Z satis�es Assump-tion 3.1. Then, the following equalities hold:(a) PAZ = 0n;k ;



28 Chapter 3. De�ation Method(b) P TZ = 0n;k .Proof. Using Lemma 3.2(), we obtain(a) PAZ = (I � AQ)AZ = AZ � AQAZ = AZ � AZ = 0n;k ;(b) P TZ = (I �QA)Z = Z �QAZ = Z � Z = 0n;k .Remark 3.3.� PA has k +d zero eigenvalues (Lemma 3.3(a)), sine N (PA) = R(Z) � N (A)and N (A) \R(Z) = ; (Assumption 3.1).� The de�ation matrix, P , has only zero and unit eigenvalues, so that P is positivesemi-de�nite. This follows from the fats that PAZ = 0n;k (Lemma 3.3(a))and P 2Y = PY for full rank Y 2 Rn�(n�k�d) satisfying R(Y ) = R(AZ)?(Lemma 3.2(e)).Lemma 3.4. Suppose that A and P are given as in De�nition 3.1, where Z satis�esAssumption 3.1. Then, PA is SPSD.Proof. Note �rst that PA = P 2A = PAP T ;using Lemma 3.2(e) and (f). Then, the lemma follows immediately via Lemma A.2 bysubstituting B := A and C := P T .3.3 De�ated CG MethodIn this setion, the De�ated CG (DCG) method is introdued.The original linear system (3.1) an be solved by employing the splittingx = (I � P T )x + P T x: (3.6)In Eq. (3.6), (I � P T )x an be omputed immediately from Lemma 3.2(g). Hene,only P T x should be omputed in (3.6) in order to �nd x . We an writex = (I � P T )x + P T x , x = Qb + P T x, Ax = AQb + AP T x, b = AQb + PAx, Pb = PAx; (3.7)where we have used Lemma 3.2(f). Note that x at the end of Expression (3.7) isnot neessarily a solution of the original linear system (3.1), sine it might onsist ofomponents of the null spae of PA, N (PA). Therefore, this `de�ated' solution isdenoted as x̂ rather than x . We now an solve the de�ated system,PAx̂ = Pb; (3.8)



3.3. De�ated CG Method 29using CG. Solutions x̂ and x are related to eah other by Lemma 3.5.Lemma 3.5. Let P be as given in De�nition 3.1, where Z satis�es Assumption 3.1.Suppose that x and x̂ are solutions of (3.1) and (3.8), respetively. Then, P T x̂ = P T xholds.Proof. Deompose x̂ as x̂ = x + y;where y 2 R(Z) � N (PA) (Lemma 3.3(a)). This yieldsP T x̂ = P T x + P T y = P T x;sine P T y = 0n due to Lemma 3.3(b).From Lemma 3.5, solution x an be easily obtained from x̂ . This is summarized in thenext orollary.Corollary 3.1. Let P and Q be as given in De�nition 3.1, where Z satis�es Assump-tion 3.1. Suppose that b is the right-hand side of (3.1). Then, solution x of (3.1) anbe expressed as x = Qb + P T x̂ ; (3.9)where x̂ is a solution of (3.8).Proof. This follows immediately from Eqs. (3.6), (3.7), (3.8) and Lemma 3.5.Remark 3.4.� Sine PA is SPSD (Lemma 3.4), this an be interpreted as the new oe�ientmatrix of the linear system.� The de�ated linear system (3.8) is obviously singular. It an only be solved aslong as it is onsistent, i.e., as long as Pb = PAx̂ for some x̂, see also [77℄.Sine b 2 R(A) holds, we also have Pb 2 R(PA). Hene (3.8) is a onsistentsystem.The resulting DCG algorithm is presented in Algorithm 4. It an be observed thatit is almost equal to the original CG method (f. Algorithm 1).Remark 3.5.� If P = I, Algorithm 1 is readily obtained from Algorithm 4.� fr̂jg is the set of de�ated residuals satisfying r̂j = P rj = P (b � Ax̂j). Thehats on rj+1, wj and xj+1 emphasize that they are de�ated versions of the sameparameters in Algorithm 1. Impliitly, the other parameters are also de�atedversions, but the hats are negleted here for onveniene.



30 Chapter 3. De�ation MethodAlgorithm 4 De�ated Conjugate Gradient (DCG) solving Ax = b1: Selet x0. Compute r0 := (b � Ax0), set r̂0 := P r0 and p0 := r̂0.2: for j := 0; 1; : : : ; until onvergene do3: ŵj := PApj4: �j := (r̂j ;r̂j )(ŵj ;pj )5: x̂j+1 := x̂j + �jpj6: r̂j+1 := r̂j � �j ŵj7: �j := (r̂j+1;r̂j+1)(r̂j ;r̂j )8: pj+1 := r̂j+1 + �jpj9: end for10: xit := Qb + P T x̂j+1� Note that pj+1 =2 R(Z), sine pj+1 is a linear ombination of the de�ated resid-uals, fr̂ig with i = 0; : : : ; j + 1, and eah r̂i satis�es(r̂i ; y) = r̂Ti y = (P ri)T y = rTi P T y = rTi 0n = 0; 8y 2 R(Z);using Lemma 3.3(b). Therefore, the inner produts, (ŵj ; pj) and (r̂j ; r̂j), anonly vanish if the de�ated solution, x̂, has already been found (f. Remark 2.1).3.4 De�ated PCG MethodThe de�ated system (3.8) an also be solved by using an SPD preonditioner, M�1.In this ase, we solve P̃ Ã~̂x = P̃~b; (3.10)with (f. Eq. (2.17))̃A := M� 12AM� 12 ; ~̂x := M 12 x̂ ; ~b :=M� 12b;and P̃ := I � ÃQ̃; Q̃ := Z̃Ẽ�1Z̃T ; Ẽ := Z̃T ÃZ̃; (3.11)where Z̃ 2 Rn�k an be interpreted as a preonditioned de�ation-subspae matrix.The resulting method is alled the De�ated PCG (DPCG) method. When Algorithm 4is applied to (3.10), we end up with Algorithm 5 (f. Algorithm 2) that desribes theDPCG method.Remark 3.6. All properties and results given in Setion 3.3 hold in partiular forEq. (3.10) and Algorithm 5.Next, Lemma 3.6 is required for the further analysis of DPCG.Lemma 3.6. Let P and M�1 be as given in De�nition 3.1, where Z satis�es Assump-tion 3.1. Suppose that P̃ and Z̃ are de�ned as in (3.11). Let r̂j+1 and ~̂rj+1 be residualsfrom Algorithms 4 and 5, respetively. Then, the following equalities hold:



3.4. De�ated PCG Method 31Algorithm 5 De�ated PCG (DPCG) solving Ax = b (Original Variant)1: Selet ~x0. Compute ~r0 := (~b � Ã~x0), set ~̂r0 := P̃ ~r0, and ~p0 := ~̂r0.2: for j := 0; 1; : : : ; until onvergene do3: ~̂wj := P̃ Ã~pj4: �j := (~̂rj ;~̂rj )(~pj ; ~̂wj )5: ~̂xj+1 := ~̂xj + �j ~pj6: ~̂rj+1 := ~̂rj � �j ~̂wj7: �j := (~̂rj+1;~̂rj+1)(~̂rj ;~̂rj )8: ~pj+1 := ~̂rj+1 + �j ~pj9: end for10: ~xj+1 := Q̃~b + P̃ T ~̂xj+111: xit := M� 12 ~xj+1(a) P̃ = M� 12PM 12 with Z = M� 12 Z̃;(b) ~̂rj+1 = M� 12 r̂j+1.Proof. The lemma follows immediately fromP̃ = I � ÃZ̃Ẽ�1Z̃T= I �M� 12AM� 12 Z̃(Z̃TM� 12AM� 12 Z̃)�1Z̃T= I �M� 12AZ(ZTAZ)�1(M 12Z)T= M� 12 (I � AZ(ZTAZ)�1ZT )M 12= M� 12PM 12 ; (3.12)so that we also have ~̂rj+1 = P̃ (~b � Ã~xj+1)= P̃M� 12 (b � Axj+1)= P̃M� 12 rj+1= M� 12P rj+1= M� 12 r̂j+1:Analogously to the PCG method, DPCG an be rewritten by using new variablessatisfying (f. (2.18)) 



~̂xj+1 = M 12 x̂j+1;~̂rj+1 = M� 12 r̂j+1;~pj+1 = M 12pj+1;~̂wj+1 = M 12 ŵj+1; (3.13)where we have used Lemma 3.6. Substituting Expressions (3.13) into Algorithm 5



32 Chapter 3. De�ation Methodgives us Algorithm 6 (f. Algorithm 3).Algorithm 6 De�ated PCG (DPCG) solving Ax = b (Pratial Variant)1: Selet x0. Compute r0 := b � Ax0 and r̂0 = P r0,solve My0 = r̂0 and set p0 := y0.2: for j := 0; : : : ; until onvergene do3: ŵj := PApj4: �j := (r̂j ;yj )(pj ;ŵj )5: x̂j+1 := x̂j + �jpj6: r̂j+1 := r̂j � �j ŵj7: Solve Myj+1 = r̂j+18: �j := (r̂j+1;yj+1)(r̂j ;yj )9: pj+1 := yj+1 + �jpj10: end for11: xit := Qb + P T xj+1From Algorithm 6, it follows that it is not required to determine P̃ or M 12 expliitly.As a result, linear system (3.10) is often denoted byM�1PAx̂ = M�1Pb: (3.14)Remark 3.7.� A de�ation tehnique applied to a preonditioned system (i.e., Eq. (3.10)) isequivalent to preonditioning of a de�ated system (i.e., Eq. (3.14)).� All known properties and results for PCG also hold for DPCG, where PA an beinterpreted as the oe�ient matrix A in Eq. (2.19) and Algorithm 3. Moreover,if P = I is taken, Algorithm 6 is redued to Algorithm 3.� DPCG ould also be derived in a di�erent way, so that the resulting linear systemis P TM�1Ax = P TM�1b; (3.15)rather than Eq. (3.14), where the last step of Algorithm 6 (Line 11) is arriedout before the iteration proess starts, see [82, 93, 94, 108, 122℄. More detailsabout this variant an be found in Chapter 6.Similar results as Lemma 2.3 and 2.4 hold for DPCG, see below.Lemma 3.7. Suppose that A, M�1 and P are given as in De�nition 3.1, where Zsatis�es Assumption 3.1. Let fr̂ig and fpig be sequenes of residuals and searhdiretions as generated by Algorithm 6, respetively. Then, the following equalityholds for DPCG: (M�1r̂i ; r̂j) = (PApi ; pj) = 0; i 6= j: (3.16)Proof. The proof is similar to the proof of Lemma 2.3.



3.5. Properties of the De�ation Method 33Lemma 3.8. Suppose that A, M�1 and P are given as in De�nition 3.1, where Zsatis�es Assumption 3.1. Let x be the solution of Eq. (3.1) and fx̂ig be the sequeneof solutions generated by Algorithm 6. Then, the (j + 1)-th iterate of DPCG, x̂j+1,satis�es the next inequality:jjx̂ � x̂j+1jjA � 2jjx̂ � x̂0jjA(√� (M�1PA)� 1√� (M�1PA) + 1)j+1 : (3.17)Proof. We have (see Eq. (2.21))jjx̂ � x̂j+1jjPA � 2jjx̂ � x̂0jjPA(√� (M�1PA)� 1√� (M�1PA) + 1)j+1 : (3.18)Moreover, note that PA(P T y) = P 2Ay = PAy by applying Lemma 3.2. Hene, y isa solution of Eq. (3.8) if and only if P T y is also a solution of (3.8). Therefore,jjx̂ � x̂j+1jj2PA = (x̂ � x̂j+1)TPA(x̂ � x̂j+1)= (x̂ � x̂j+1)TPAP T (x̂ � x̂j+1)= (P T x̂ � P T x̂j+1)TA(P T x̂ � P T x̂j+1)= (x̂ � x̂j+1)TA(x̂ � x̂j+1)= jjx̂ � x̂j+1jj2A:Substituting jjx̂ � x̂j+1jjPA = jjx̂ � x̂j+1jjA into (3.18) leads to (3.17).Lemma 3.7 implies that, for the DPCG method, the searh diretions, fpig, are on-jugate with respet to PA, while the de�ated residuals, fr̂ig, are orthogonal in theM�1-norm. In addition, the onvergene of DPCG highly depends on � (M�1PA)aording to Lemma 3.8.3.5 Properties of the De�ation MethodIn this setion, we derive some theoretial properties of the DPCG method, where Z is�rst assumed to onsist of eigenvetors, and, thereafter, Z is arbitrary. If we restritourselves to linear systems with an invertible oe�ient matrix, then more propertiesof this method an be found in [56,82,103�105,122,173℄.3.5.1 Results for an Eigenvetor De�ation SubspaeTheorem 3.1 (f. [103, Thm. 2.5℄) shows that using eigenvetors as de�ation vetorsan be e�etive in order to obtain a small � (M�1PA).Theorem 3.1. Suppose that A, M�1 and P are given as in De�nition 3.1. Let M�1Ahave eigenvalues f�ig with orresponding orthonormal eigenvetors fvig. If Z :=



34 Chapter 3. De�ation Method[vd+1 vd+2 � � � vd+k ℄, then�(M�1PA) = f0; : : : ; 0; �d+k+1; : : : ; �ng:
Proof. We �rst prove thatP̃ Ã~vi = { 0; i = 1; : : : ; d + k;�i ; ~vi i = d + k + 1; : : : ; n; (3.19)where f~vig is the set of orthonormal eigenvetors orresponding to the eigenvalues ofP̃ Ã. Note that, aording to Lemma A.1, M�1A and Ã have the same eigenvalues,f�ig, but orresponding to di�erent eigenvetors (i.e, f~vig 6= fvig). De�ne � =diag(�d+1; : : : ; �d+k) and Z̃ := [~vd+1 � � � ~vd+k ℄, giving us ÃZ̃ = Z̃�. Sine theeigenvetors are orthonormal (i.e., ~vTi ~vj = Æi j , where Æi j denotes the Kroneker delta),we have Z̃T Z̃ = I. Then, we deriveẼ = Z̃T ÃZ̃ = Z̃T Z̃� = �;yielding P̃ = I � ÃZ̃T Ẽ�1Z̃T = I � Z̃T���1Z̃T = I � Z̃Z̃T :Moreover, we havẽZZ̃T ~vi = { Z̃e(i)k = ~vi ; i = d + 1; : : : ; d + k;Z̃0k = 0n; i = d + k + 1; : : : ; n:This results inP̃ Ã~vi = �i P̃ ~vi = �i ~vi � �i Z̃Z̃T ~vi =  0; i = 1; : : : ; d ;�i ~vi � �i ~vi = 0; i = d + 1; : : : ; d + k;�i ~vi � 0 = �i ~vi ; i = d + k + 1; : : : ; n;whih proves Eq. (3.19).Subsequently, Eq. (3.19) an be transformed into M�1PAvi = �vi , sineP̃ Ã~vi = �~vi , M� 12PM 12 (M� 12AM� 12) ~vi = �i ~vi, M� 12PAM� 12 ~vi = �i ~vi, M� 12PAvi = �iM 12 vi, M�1PAvi = �vi ;where Z := M� 12 Z̃, vi := M� 12 ~vi and Lemma 3.6(a) are used. Indeed, �i is an



3.5. Properties of the De�ation Method 35eigenvalue of both M�1PA and P̃ Ã. SineÃ~vi = �i ~vi , M� 12AM� 12 ~vi = �i ~vi, M� 12AM� 12M 12 vi = �iM 12 vi, M�1Avi = �ivi ;we obtain that fvig is the set of eigenvetors of M�1A, that an be saled suh thatthey are orthonormal.Corollary 3.2. Suppose that we have the same setting as in Theorem 3.1. Then,� (M�1PA) � � (M�1A).Proof. � (M�1PA) = �n�d+k+1 � �n�d+1 = � (M�1A).From Lemma 3.8 and Corollary 3.2, we obtain that DPCG with eigenvetors as de-�ation vetors is expeted to onverge faster than PCG. The resulting method issometimes alled `eigenvetor de�ation' or `spetral de�ation'.Remark 3.8. Eigenvetors orresponding to the smallest nonzero eigenvalues of A areused as de�ation vetors in Theorem 3.1, sineM�1 often treats the largest eigenvaluesof A e�etively. In this ase, the de�ation method is fast in onvergene if P ats asa omplementary part of the preonditioning by projeting the smallest eigenvalues tozero. However, in general, eigenvetors assoiated with the largest eigenvalues of A,or a ombination of these two approahes, an also be used as de�ation vetors inorder to redue � (M�1PA), see, e.g., [82℄ where two-fold de�ation tehniques areintrodued based on this idea.3.5.2 Results for an Arbitrary De�ation SubspaeEigenvetor de�ation an be very e�etive, but, unfortunately, eigenvetors are usuallyexpensive to ompute in pratie. In addition, eigenvetors are often dense, leading toa possibly expensive de�ation matrix, P . Ideally, Z should onsist of sparse and goodapproximations of eigenvetors, whih is further examined in Chapter 4. Moreover, it isalso ommon to hoose algebrai vetors as olumns in Z (see also Chapter 4). In thisase, it is not neessarily guaranteed that these vetors are good approximations of theunfavorable eigenvetors. Hene, the properties as desribed in Setion 3.5.1 are notvalid anymore. Instead, we show some properties of the DPCG method, where Z isarbitrary. Note that these properties hold in partiular for Z onsisting of eigenvetors.Comparison of De�ated Coe�ient MatriesDe�ne Pi := I � AQi ; Qi := ZiE�1i ZTi ; Ei := ZTi AZi ; Zi 2 Rn�ki ; (3.20)



36 Chapter 3. De�ation Methodfor ki < n � d and i = 1; 2; : : : ; k, where eah Zi satis�es Assumption 3.1. It isonvenient to adopt this notation with subsripts by omparing de�ation matrieswith di�erent de�ation subspaes. We start with Theorem 3.2 and 3.3, whih aregeneralizations of [103, Lemma 2.9 and Theorem 2.12℄.Theorem 3.2. Let Zi and Pi be de�ned as in (3.20) with i = 1; 2 and k1 = k2 = k. IfR(Z1) = R(Z2), then M�1P1A = M�1P2A, and, in partiular, Q1 = Q2.Proof. The proof is idential to the proof for the ase that A is invertible, see [103,Lemma 2.9℄.Theorem 3.3. Suppose that A and M�1 are given as in De�nition 3.1. Let Zi and Pibe de�ned as in (3.20) with i = 1; 2. If R(Z1) � R(Z2), then�(M�1P1A) � �(M�1P2A): (3.21)Proof. In Setion 3.4, it has been shown that M�1PiA = P̃i Ã for i = 1; 2, with
{ Ã := M� 12AM� 12 ;P̃i := I � ÃQ̃i ; Q̃i := Z̃i Ẽ�1i Z̃Ti ; Ẽi := Z̃Ti ÃZ̃i ; Zi := M� 12 Z̃i :Moreover, if R(Z1) � R(Z2) (i.e., R(M� 12 Z̃1) � R(M� 12 Z̃2)), then also R(Z̃1) �R(Z̃2), using Lemma A.13. Now, it su�es to prove that

{ �n(P̃1Ã) � �n(P̃2Ã);�k1+d+1(P̃1Ã) � �k2+d+1(P̃2Ã); (3.22)sine this implies �(P̃1Ã) � �(P̃2Ã) for R(Z̃1) � R(Z̃2); hene, the lemma follows.Note �rst that (P̃1 � P̃2)Ã is positive semi-de�nite, whih an be easily proven byapplying the same proedure as in the proof of [103, Lemma 2.8℄. By ombining thisfat with [103, Lemma 2.2℄, the �rst inequality of (3.22) an be obtained. The proof ofthe seond inequality of (3.22) is exatly the same as for the ase that Ã is invertible,see the proof of [103, Thm. 2.10℄.Corollary 3.3. Suppose that A and M�1 are given as in De�nition 3.1. Let Pi bede�ned as in (3.20). De�ne Zi := [z1 z2 � � � zi ℄ for i = 1; 2; : : : ; k. Then,�d+2(M�1P1A) � �d+3(M�1P2A) � : : : � �d+k+1(M�1PkA);and �n(M�1P1A) � �n(M�1P2A) � : : : � �n(M�1PkA):This yields�(M�1P1A) � �(M�1P2A) � : : : � �(M�1PkA) = �(M�1PA):Proof. Note that R(Zi�1) � R(Zi) holds for all i = 2; : : : ; k. Then, the orollaryfollows from Theorem 3.3.



3.5. Properties of the De�ation Method 37Theorem 3.2 implies that P is determined by the spae spanned by the olumns ofZ rather than the atual olumns. This has diret onsequenes for onstrutingthe de�ation vetors, see Chapter 4. Furthermore, Theorem 3.3 and Corollary 3.3show that the ondition number of M�1PA beomes more favorable by inreasingthe number of (arbitrary) vetors in Z; hene, a better onvergene of the iterativeproess is expeted, although more work is needed to solve the Galerkin system ateah iteration.Comparison of De�ated and Original Coe�ient MatriesHere, we prove that the ondition number of PA is always below that of A for allhoies of Z, see Theorem 3.4.Theorem 3.4. Suppose that A and P are given as in De�nition 3.1. For any full-rankZ, the following inequality holds: �(PA) � �(A): (3.23)Proof. It su�es to show that
{ �d+1(A) � �d+k+1(PA);�n(A) � �n(PA);for all Z with rank Z = k.The proof of �n(PA) < �n(A) is as follows. Note thatA� PA = AQA;whih is symmetri, beause of (AQA)T = AQA. Moreover,(AQ)2 = AQAQ = AQ;an be derived from Lemma 3.2(b), so that AQ is a projetor. Therefore, AQA isSPSD, where we have also used Lemma A.3 by taking S := AQ and R := A. Then,�i(A) � �i(PA), for all i = 1; : : : ; n, follows from Lemma A.4. Thus, we partiularlyhave �n(A) � �n(PA):Next, we show that �d+1(A) � �d+k+1(PA). Due to Corollary 3.3, it su�es toprove �d+1(A) � �d+2(P1A), where Z1 onsists of just one de�ation vetor, so thatP1A = (I � AZ1E�11 ZT )A = (I � AzzT )A = A� AzzTA; (3.24)with z := Z1 2 Rn and  := E�11 2 R. The inequality Az 6= 0n is always satis�ed, sineN (A) * R(Z) (otherwise Assumption 1.2 annot be satis�ed). Eq. (3.24) impliesP1A = A�R; R := AzzTA;



38 Chapter 3. De�ation Methodso that R is symmetri. From Lemma A.12, we haverank R = rank AzzTA = rank AzzTA = rank zzT = 1; Az 6= 0n:Hene, the onditions of Lemma A.5 are satis�ed. By taking B := A and C := �R inthat lemma, �i(A) � �i+1(P1A) is obtained for i = 1; 2; : : : ; n. In partiular, we have�d+1(A) � �d+2(P1A);whih ompletes the proof.Subsequently, we prove that Theorem 3.4 an be generalized using an SPD pre-onditioner, M�1, see Theorem 3.5.Theorem 3.5. Let P be given as in De�nition 3.1. Then, the following inequalityholds: �(M�1PA) � �(M�1A); (3.25)for any A, M�1 and Z as given in De�nition 3.1.Proof. In Setion 3.4, it has been shown that M�1PA = P̃ Ã; with
{ Ã := M� 12AM� 12 ;P̃ := I � ÃQ̃; Q̃ := Z̃Ẽ�1Z̃T ; Ẽ := Z̃T ÃZ̃; Z :=M� 12 Z̃:Combining Lemma A.1 and Theorem 3.4, we obtain�(M�1PA) = �(P̃ Ã) � �(Ã) = �(M�1A):

Theorem 3.5 shows that M�1PA is always better onditioned than M�1A. Therefore,the onvergene of DPCG is expeted to be equal or faster than the original PCGmethod for eah full-rank matrix Z and SPD matrix M�1.3.5.3 Termination CriteriaIn many numerial experiments performed in this thesis, PCG and DPCG are ompared.For a fair omparison, equivalent termination riteria of the methods are essential. Forthis purpose, we need the following lemma.Lemma 3.9. Let ri and r̂i be residuals from Algorithms 3 and 6, respetively. Then,r̂i = ri holds for i = 0; 1; : : :.



3.6. Appliation to Bubbly Flow Problems 39Proof. Using Lemma 3.2 and Corollary 3.1, we deriver̂i = P (b � A~xi)= Pb � AP T x̂i= b � A(Qb + P T xi)= b � Axi= ri :From Lemma 3.9, we obtain that the de�ated residuals are idential to the originalresiduals, although they might di�er in pratie due to round-o� errors. Consequently,equivalent termination riteria of PCG and DPCG an be derived, so that we obtain(f. Eq. (2.23)) jjrj+1jj2jjr0jj2 < Æ , jjr̂j+1jj2jjr̂0jj2 < Æ; (3.26)and (f. Eq. (2.24)) jjM�1rj+1jj2jjM�1r0jj2 < Æ , jjM�1 r̂j+1jj2jjM�1 r̂0jj2 < Æ; (3.27)for a spei�ed termination tolerane, Æ > 0. Both riteria, (3.26) and (3.27), are usedthroughout this thesis. A deeper disussion about the termination riterion of DPCGan be found in [173, Set. 4℄.3.6 Appliation to Bubbly Flow ProblemsThe 2-D and 3-D variants of the bubbly �ows, as given in Setion 1.3 (see Figure 1.2),are onsidered in this setion. In Setion 2.6, we have seen that M�1A is very ill-onditioned for sophistiated bubbly �ows, where M�1 is the IC(0) preonditioner. Inthis ase, ICCG shows slow onvergene. In this setion, the onvergene is aeleratedusing the de�ation method. The resulting method is alled DICCG, that is DPCGwith the IC(0) preonditioner. We often denote DICCG with k de�ation vetors asDICCG�k.The most simple hoie for the de�ation subspae is the subspae spanned bystrutured and uniform subdomains, whih are hosen independently of the bubbly�ow geometry, see Figure 3.1. Mathematially, this is de�ned as follows. Let the opendomain, 
, be divided into subdomains, 
j ; j = 1; 2; : : : ; q+1, suh that 
 = [q+1j=1
jand 
i \
j = ; for all i 6= j . In addition, q is always hosen suh that q+1 is a divisorof n. The disretized domain and subdomains are denoted by 
h and 
hj , respetively.Then, for eah 
hj with j = 1; 2; : : : ; q + 1, we introdue a de�ation vetor, zj , asfollows: (zj)i := { 0; xi 2 
h n
hj ;1; xi 2 
hj ; (3.28)



40 Chapter 3. De�ation Methodwhere xi is a grid point in the disretized domain, 
h. Then, for q > 1, we de�neZ := [z1 z2 � � � zq℄, so that k = q. Hene, Z onsists of disjunt orthogonal pieewise-onstant vetors and satis�es 1n = N (A) * R(Z), whih implies nonsingularity of E.A deeper disussion on subdomain de�ation is presented in Chapter 4.
Ω1 Ω2

Ω3 Ω4

Figure 3.1: De�ation subdomains with k = 3, whih are hosen independently of the density geometryof the bubbly �ow.The e�ieny of DICCG depends on the implementation of this method. We dealwith this issue in Chapter 8. For the time being, we report the results by onsideringthe number of iterations. In the numerial experiments, the number of bubbles, m,is varied, whereas the grid sizes (n = 1002 in 2-D and n = 1003 in 3-D) and densityontrast (� = 103) are �xed. The stopping riterion is based on (3.27) with Æ = 10�8.3.6.1 Results of Numerial ExperimentsThe results of both 2-D and 3-D experiments are presented in Table 3.1. The aurayof the solutions are of the same order (see [140℄), and, therefore, they are not inludedin the table.Considering the results in Table 3.1, we see that DICCG�k always requires feweriterations ompared to ICCG. This on�rms Theorem 3.5. It an be observed that, forlarger k, DICCG�k requires fewer iterations than for smaller k, whih is as expetedfrom Theorem 3.3. The gain fator of DICCG�k for large k an be more than 10,but we note that eah iteration beomes more expensive in this ase, see Chapter 8for details. Moreover, an inrease of the number of bubbles often leads to a worseperformane of ICCG and DICCG�k beomes more superior to ICCG. Additionally,DICCG�k is less sensitive to m for larger k.Subsequently, the relative residuals of both ICCG and DICCG based on (3.27)are depited for two test ases in Figure 3.2. It an be notied that the behaviorof the residuals of ICCG is irregular, due to possible unfavorable eigenvetors ausedby the presene of the bubbles. For DICCG�k, we an see that a larger k leads to asmoother behavior of the residuals; hene, a faster onvergene of the iterative proess.The suess of the method is two-fold: a larger k leads to a de�ation subspae thatapproximates more eigenvetors orresponding to the unfavorable eigenvalues and eah



3.7. Conluding Remarks 41(a) 2-D experiments with n = 1002 and � = 103.Method m = 0 m = 1 m = 9ICCG 109 128 247DICCG�(52 � 1) 49 51 70DICCG�(102 � 1) 32 34 44DICCG�(202 � 1) 21 22 27DICCG�(252 � 1) 19 20 23DICCG�(502 � 1) 12 13 14(b) 3-D experiments with n = 1003 and � = 103.Method m = 0 m = 1 m = 8 m = 27ICCG 170 211 291 310DICCG�(23 � 1) 109 206 160 275DICCG�(53 � 1) 56 58 72 97DICCG�(103 � 1) 35 36 36 60DICCG�(203 � 1) 22 25 22 31Table 3.1: Number of iterations for ICCG and DICCG�k for various number of bubbles, m, andde�ation vetors, k .of these approximations is more aurate.3.7 Conluding RemarksIn this hapter, we desribe a de�ation method applied to linear systems with a singularoe�ient matrix. Thereafter, new theoretial properties are derived and the de�ationtheory applied to invertible oe�ient matries is generalized. Numerial experimentsshow that the de�ation method with subdomain de�ation vetors are very e�etive forbubbly �ow problems.There are several open issues left, whih are treated in the next hapters. Weexplain the e�etiveness of subdomain de�ation vetors, and ompare them with otherommon hoies. Moreover, we deal with the implementation of the de�ation methodto obtain an e�ient solver. The optimal hoie of the number of de�ation vetors isinvestigated. In addition, the appliation of de�ation to singular oe�ient matries isexamined. We also relate and ompare the de�ation method to other two-level PCGmethods in order to determine the optimal method.
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(a) 2-D experiment with 9 bubbles.
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(b) 3-D experiment with 27 bubbles.Figure 3.2: Norm of the relative residuals during the iterations of ICCG and DICCG�k .



Chapter 4Seletion of De�ation Vetors4.1 IntrodutionThe underlying idea of applying the de�ation method is to e�etively treat (extremely)unfavorable eigenvalues that delay the onvergene of the PCG method. Reall thatthe de�ation matrix is de�ned as (see De�nition 3.1)P := I � AQ; Q := ZE�1ZT ; E := ZTAZ; (4.1)with a full-rank de�ation-subspae matrix, Z 2 Rn�k, onsisting of de�ation vetors(also known as projetion vetors). As mentioned in Chapter 3, the suess of thede�ation method highly depends on the hoie of Z. In the ideal ase with respet toonvergene, Z should onsist of eigenvetors assoiated with the most unfavorable(often the smallest) eigenvalues ofM�1A, see Theorem 3.1. These eigenvalues do notplay a role anymore in the onvergene behavior, so that a faster onvergene of theiterative proess an be expeted. However, the omputation of these eigenvetors anbe very expensive, and, in addition, these dense vetors might be ine�ient in use, sinethey require muh memory and expensive omputations with P . Therefore, we intendto �nd sparse de�ation vetors that approximate the unfavorable eigenspae, so thatTheorem 3.1 still holds to a ertain extent. Additionally, with respet to implementa-tion, it would be favorable to have de�ation vetors suh that the resulting de�ationmethod is easily parallelizable, and is straightforward to implement in an existing PCGode. In summary, the de�ation method should satisfy the next requirements in theideal ase:� the de�ation-subspae matrix, Z, is sparse;� the de�ation vetors approximate the eigenspae orresponding to the unfavor-able eigenvalues;� the ost of onstruting de�ation vetors is relatively low;� the method has favorable parallel properties;43



44 Chapter 4. Seletion of De�ation Vetors� the approah an be easily implemented in an existing PCG ode.Remark 4.1. The best strategy to hoose Z strongly depends on the appliation, thewishes of the user and the available information about the solution or (the behaviorof) unfavorable eigenvetors. There is no optimal hoie that always leads to the bestresults for all appliations. One of the main fouses in this hapter is onstruting astrategy to �nd optimal de�ation vetors for bubbly �ow problems, that might workfor various other appliations as well.This hapter is organized as follows. In Setion 4.2, some strategies for hoosingde�ation vetors known in the literature are reviewed and disussed. Subsequently,Setion 4.3 is devoted to �nding and analyzing the optimal strategy to hoose Z forbubbly �ow appliations. Finally, the onluding remarks are presented in Setion 4.4.4.2 Choies of De�ation VetorsIn the literature of de�ation, MG and DDM, several tehniques are known to hoosede�ation vetors. Eah �eld has its typial strategy to �nd the optimal hoie. Below,we desribe and disuss the approahes based on approximated eigenvetor, reyling,subdomain, and multigrid de�ation vetors. Most of the other alternatives known inthe literature are related to these approahes.4.2.1 Approximated Eigenvetor De�ationThe de�ation tehnique based on approximated eigenvetors is a popular approah,see, e.g., [25,27,122,173℄.In [173℄, an e�etive sheme is proposed based on physial de�ation in whihthe de�ation vetors are derived from the solutions of the original PDEs on spei�subdomains. The resulting Z is sparse, whereas the orresponding vetors span theunfavorable eigenspae.A general framework based on Flexible GMRES (FGMRES) is desribed in [27℄.This framework inludes tehniques that are used to enhane the robustness of Krylovsubspae methods, suh as the de�ated GMRES method, suggested in [80, 99℄, thataims at enhaning onvergene by modifying the spetrum of the original matrix. Theapproah uses Ritz values and relies on solving generalized eigenvalue problems withmuh lower dimensions than A itself. If these dimensions beome large, this approahis only suessful to e�iently solve SPD systems with multiple right-hand sides of theform Ax (i) = b(i); i = 1; 2; : : : ; (4.2)see also [122, Set. 5℄. In addition, the de�ation matrix, P , obtained by the proposedde�ation method is not sparse, resulting in possibly expensive omputations with P , andlarge memory requirements. In addition, formulating and solving generalized eigenvalueproblems are more straightforward for the lassial GMRES algorithm than for CG,making this approah somewhat less suitable for CG-like methods. Finally, the approah



4.2. Choies of De�ation Vetors 45seems unlikely to be helpful in realisti situations, beause, for very large linear systems,removing a small number of eigenvalues out of many of them lose to zero might havea limited e�et on the solver, see [27℄.A de�ation tehnique applied to basi iterative methods based on Eq. (2.4), suhas Gauss-Seidel or Jaobi iterations, is proposed in [25℄. This de�ation tehnique re-lies on omputing so-alled orthogonalized di�erene vetors and determining Shurvetors of a matrix with lower dimensions. It provides a distint advantage for ill-onditioned systems, where the underlying sheme would either diverge or onvergevery slowly. Several numerial experiments in [25℄ demonstrate the e�ieny of themethod. However, for linear systems where the basi iterative sheme is already on-verging reasonably well, the aelerated onvergene provided by de�ation is not worthby onsidering the required extra work, see [25, Set. 6℄.In general, it an be observed that de�ation based on approximated eigenvetorsmight be e�etive, but some additional e�orts are needed to �nd these approximatedeigenvetors, and su�ient memory should be available to store them. For relativelylarge problems, solving (generalized) eigenvalue problems may take a onsiderable time,espeially in PCG methods, sine PCG is based on short-term reurrenes. Addition-ally, the number of approximated eigenvetors should be su�iently small in order torestrit the extra work onsidering P and to redue memory requirements, sine theseeigenvetors are usually dense. However, this is not always possible, sine the spetrummight onsist of many unfavorable eigenvalues in realisti problems.4.2.2 Reyling De�ationRelated to approximated eigenvetor de�ation is solution and reyling de�ation, see,e.g., [31,112℄.Solution de�ation, proposed in [31℄, applies a subspae-projetion extrapolationsheme for the starting vetor generation of linear systems from impliit time integra-tion shemes. The sheme yields optimal linear ombinations from multiple availablestarting vetors. Similarly to eigenvetor de�ation, spetral omponents of the exatsolution ontained therein are optimally resolved whih redues the ondition number.Suppose fx (1); x (2); : : : ; x (q�1)g is the set of solutions of the linear systems at timesteps l = 1; 2; : : : ; q � 1. Then, the de�ation-subspae matrix an be de�ned asZ = [x (1) x (2) � � � x (q�1)℄: (4.3)Although numerial experiments in [31℄ emphasize the improved onvergene of CGombined with solution de�ation, we note that this approah has the drawbak thatZ is dense in general, and, additionally, it is not guaranteed that R(Z) indeed onsistsof any relevant spetral omponents.Another approah is desribed in [112℄, where de�ation vetors are based on re-yling information of (previous) Krylov iterations in GMRES-like methods with rela-tively short-term reurrenes. The resulting method is based on GMRES with de�atedrestarting vetors (i.e., GMRES-DR [100℄), and GCR with a so-alled optimal trun-



46 Chapter 4. Seletion of De�ation Vetorsation (i.e., GCROT [35℄). Reyling de�ation is suessful, if a sequene of linearsystems (4.2), or even a sequene of the formA(i)x (i) = b(i); i = 1; 2; : : : ; (4.4)has to be solved. Note that we indeed have suh a sequene (4.4) in bubbly �owsimulations, see also Chapter 10. Like most of the approximate de�ation methods,the reyling de�ation approah requires a signi�ant setup time to �nd the de�ationvetors, espeially for large grid sizes. Additionally, those vetors are usually dense,resulting in possible implementation and memory di�ulties.4.2.3 Subdomain De�ationAnother variant of de�ation is subdomain de�ation, where the de�ation vetors arehosen in an algebrai way, see [92,108,170,175℄ and Setion 3.6. The omputationaldomain is divided into several subdomains, where eah subdomain orresponds to oneor more de�ation vetors. The resulting approah is often alled `subdomain de�ation',and it is strongly related to approahes known in DDM, see, e.g., [126℄.In [175℄, subdomain de�ation is applied to the di�usion equation as given inEq. (1.3). Assume that the omputational domain, 
, is divided into several sub-domains, 
j , where eah 
j orresponds to one de�ation vetor, onsisting of ones forgrid points in the interior of the disretized subdomain, 
hj , and zeros for other gridpoints. Then, subdomain de�ation is e�etive, if eah subdomain, 
j , orresponds toexatly one onstant part of the oe�ient, �. In this ase, the subspae spanned bythe de�ation vetors is proved to be almost equal to the eigenspae assoiated withthe smallest eigenvalues. In addition, this approah onverges as fast as the physi-al de�ation approah [173℄ that has been desribed in Setion 4.2.1, but it is moree�ient due to a sparser struture of Z.A detailed treatment of interfae points of the subdomains, f
jg, an be foundin [170℄. It is shown that the subdomain tehnique is most suessful if there is nooverlap between subdomains. In this ase, we have pieewise-onstant, disjoint, andorthogonal de�ation vetors.Example 4.1. Suppose that we have a 1-D omputational domain, 
, onsisting of thegrid points x1; : : : ; x6, that is divided into two subdomains suh that 
h1 = fx1; x2; x3gand 
h2 = fx4; x5; x6g. Then, we obtainZ = [ 1 1 1 0 0 00 0 0 1 1 1 ]T : (4.5)Eah row of Z onsists of exatly one nonzero, and the rows are learly orthogonal,disjoint, and pieewise-onstant.Example 4.2. A graphial representation of 2-D subdomains based on a grid sizen = 642 an be found in Figure 4.1. Similar to Example 4.1, the orrespondingde�ation vetors an be obtained.
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Figure 4.1: Representation of the 2-D subdomains with k = 3 in a square domain, 
, onsisting ofn = 642 grid points.Remark 4.2. The underlying idea of hoosing pieewise-onstant de�ation vetors isto approximate eigenvetors belonging to the smallest eigenvalues. Sine the eigen-vetors often represent omponents of the solution that is not neessarily linear, thesepieewise-onstant de�ation vetors might only give a rough approximation. Thismotivates several authors (e.g., [54, 169℄), to augment the de�ation subspae withpieewise-linear (or even higher-order) subdomain de�ation vetors. Following Exam-ple 4.1, we obtain (f. Eq. (4.5))Z =  1 1 1 0 0 01 2 3 0 0 00 0 0 1 1 10 0 0 1 2 3 T : (4.6)Hene, we have two de�ation vetors per subdomain in 1-D. Generalization to 2-D and 3-D is straightforward for pieewise-onstant de�ation vetors, in ontrast topieewise-linear de�ation vetors. In 2-D, one might take three vetors per subdomain:one onstant and two pieewise-linear vetors in eah spatial diretion. Likewise, onean use four vetors per subdomain in 3-D. If the number of subdomains is large, thenthis would lead to a relatively large number of pieewise-linear de�ation vetors, makingthe de�ation tehnique more expensive than pieewise-onstant subdomain de�ation.In addition, the implementation of pieewise-linear vetors an be performed less e�-ient than pieewise-onstant vetors, see Remark 4.3. Nevertheless, the employmentof pieewise-linear de�ation vetors may aelerate signi�antly the onvergene ofthe iterative method, espeially if the unfavorable eigenvetors have a linear form.Remark 4.3.� In Example 4.1 and 4.2 and Remark 4.2, we have assumed that N (A) * R(Z),otherwise Assumption 3.1 annot be ful�lled. However, if, for instane, N (A) =1n, then Z should be adapted to obey N (A) * R(Z). This an be easily done by



48 Chapter 4. Seletion of De�ation Vetorsdeleting one pieewise-onstant de�ation vetor, while the resulting null spae ofPA remains the same. More details an be found in Setion 4.3 and Chapter 5.� Aording to Theorem 3.2, eah olumn of Z in Example 4.1 and 4.2 and Re-mark 4.2 an be resaled, while the resulting de�ation matries remain the same.� The de�ation method with pieewise-onstant de�ation vetors an be imple-mented very e�iently if A has some favorable properties, see Chapter 8.4.2.4 Multigrid and Multilevel De�ation VetorsIn the �eld of multigrid and multilevel methods, matries Z and ZT are known as theprolongation and restrition matrix, respetively, whereas a omputation with P anbe interpreted as a oarse-grid orretion. A basi hoie for Z (and orrespondingZT ) is a sparse matrix, given byZ =  12 1 12 0 � � � ?0 0 12 1 12 0 � � �. . .? � � � 0 12 1 12



T : (4.7)Many other prolongation and restrition matries are known in the multigrid literature,see [126, 151, 178℄. The olumns of Z should approximate the slow-varying eigenve-tors, often orresponding to small eigenvalues, in order to obtain an e�etive method.As also observed in (4.7), the number of de�ation vetors is generally large. In thisase, the resulting method requires a rather di�erent approah to be e�ient, om-pared to the methods as disussed so far. We fous on this issue in Chapter 9, and,in the meantime, this lass of multigrid de�ation vetors is not further onsidered.4.2.5 Disussion of Di�erent ApproahesOur approah of hoie is subdomain de�ation, beause of the following fats.� The resulting de�ation-subspae matrix, Z, is sparse: eah row onsists of onlyone nonzero.� The number of de�ation vetors is relatively small: k � n.� The de�ation vetors appear to approximate the eigenspae assoiated with theunfavorable eigenvalues, resulting in faster onvergene of the iterative proess:this is explained for spei� problem settings in [170,175℄.� The de�ation vetors an be easily found: these vetors orrespond to subdo-mains, whih are straightforward to obtain.� The approah is well-parallelizable: the de�ation vetors are disjoint, so that ithas exellent parallel properties (see Appendix F).



4.3. Appliation to Bubbly Flows 49� The approah an easily be implemented in an existing PCG ode: only a fewadditional steps should be inorporated in the PCG ode, see Chapter 8.As disussed above, not all of these riteria are satis�ed for approximate eigenve-tor, solution reyling, and multigrid de�ation. These riteria seem to be ful�lled forsubdomain de�ation, so that our main fous is on this approah.There are still several di�ulties left if one applies subdomain de�ation vetors in,for example, bubbly �ow appliations.� Subdomain de�ation is often applied to linear systems with a nonsingular oe�-ient matrix, while our oe�ient matrix of interest is singular.� Subdomain de�ation is used for problems with a �xed oe�ient matrix, wherethe (density) oe�ient in the original PDEs is often desribed expliitly. In ourbubbly �ow appliations, the density �eld is given impliitly and the oe�ientmatrix varies in time.In the next setion, we examine whether subdomain de�ation an still be applied takingthe above di�ulties into aount. In addition, subdomain de�ation vetors are appliedsuessfully to several other problems, but a theoretial proof is still laking. In [170℄, itis shown that the unfavorable eigenspae and the eigenspae spanned by the subdomainde�ation vetors are almost the same, but the proof seems not to be fully orret andthe onnetion to the orresponding spetra is not ompletely obvious. Ultimately, wehave to show that the most unfavorable eigenvalues are e�etively treated by usingsubdomain de�ation vetors. This is further analyzed in the next setion, where themain appliation is bubbly �ows.4.3 Appliation to Bubbly FlowsIn this setion, we adopt the problem setting as desribed in Setion 1.3 and examinethe optimal strategy to hoose the de�ation vetors for bubbly �ow problems. For thesake of onveniene, we restrit ourselves to ICCG and DICCG, so that the followingassumption holds throughout this setion.Assumption 4.1. M�1 is the IC(0) preonditioner based on a SPSD oe�ient ma-trix, A.4.3.1 PreliminariesReall that m 2 N denotes the number of bubbles in domain 
, where �0 and �1are the high- and low-density phases, respetively. In addition, Assumption 1.2 holdsthroughout this whole setion. If the m bubbles are numbered, then we de�ne �i � 
as the domain orresponding to the i-th bubble, inluding its interfae that may lie in�0, for i = 1; 2; : : : ;m. Hene, we have�1 � [mi=1�i and \mi=1 �i = ;:



50 Chapter 4. Seletion of De�ation VetorsThe disretized domain and the orresponding grid points are denoted by 
h and fxig,respetively. Moreover, �h0 , �h1 and �hi are the disretized variants of �0, �1 and �i ,respetively. For eah i = 1; : : : ;m, we introdue the harateristi vetor, �i 2 Rn,assoiated with the i-th bubble, where eah entry, (�i)j , is de�ned as follows:(�i)j = { 1; if xj 2 �hi ;0; elsewhere:Notie that the set of vetors f�igi=1;:::;m is linearly independent.For i � 2, the eigenvalues of M�1A, f�ig, appear to be of order 1, exept for afew eigenvalues that are of order ". The number of these O(")�eigenvalues dependson the number of bubbles, m, see Proposition 4.1.Proposition 4.1. Let A and M�1 satisfy Assumptions 1.2 and 4.1, respetively. Sup-pose that 1 < m < n. Then, the eigenvalues of M�1A, f�ig, satisfy�i =  0; for i = 1;O("); for i = 2; : : : ;m;O(1); for i = m + 1; : : : ; n:Moreover, for i = 2; : : : ;m, eah eigenvetor, vi , orresponding to �i is onstant in �1.Hene, M�1A has exatly m � 1 eigenvalues of O("), if there are m bubbles in 
.Note that Proposition 4.1 still holds if bubbles touh the boundaries. Similar resultsare proven in literature, see, e.g., [174, Thm. 2.2℄, where the oe�ient matrix isinvertible and appliations are given to steady porous-media �ows.Moreover, from Proposition 4.1, we obviously have that M�1A is ill-onditionedwhen " � 1 and m > 1. This results in the fat that ICCG onverges slowly. Thede�ation method ould be adopted in order to e�etively treat the O(")�eigenvalues,resulting in a more e�etive method. We sometimes add the de�ation-subspae matrixas a subsript to P to stress the hoie of this de�ation-subspae. For example, wehave PZ := I � AQZ ; QZ := ZE�1Z ZT ; EZ := ZTAZ: (4.8)Reall that Theorem 3.5 ensures that M�1PZA has a more favorable spetrum thanM�1A. Hene, the following orollary follows.Corollary 4.1. Let A and M�1 satisfy Assumptions 1.2 and 4.1, respetively. Supposethat PZ is de�ned as in Eq. (4.8). Let 0 = �1 < �2 � : : : � �n be the eigenvalues ofM�1A, and �1 � �2 � : : : � �n be the eigenvalues of M�1PZA.� If 1n 2 R(Z), then �(M�1PZA) = f0; : : : ; 0; �k+1; : : : ; �ng; (4.9)with �1 � �i � �n for i = k + 1; : : : ; n.



4.3. Appliation to Bubbly Flows 51� If 1n =2 R(Z), then �(M�1PZA) = f0; : : : ; 0; �k+2; : : : ; �ng; (4.10)with �1 � �i � �n for i = k + 2; : : : ; n.Note that the de�ation subspae is larger for 1n =2 R(Z), than for 1n 2 R(Z). Ofourse, it depends on the de�ation-subspae matrix, Z, in whih way the eigenvalues,f�ig, are distributed exatly; therefore, the suess of DICCG is related to the hoieof Z. Reall that Theorem 3.1 shows that the most straightforward hoie for theolumns of Z is the set of eigenvetors orresponding to the O(")�eigenvalues, sothat they are eliminated from the spetrum of M�1PZA. As a onsequene, the nextorollary holds.Corollary 4.2. Let A and M�1 obey Assumptions 1.2 and 4.1, respetively. Supposethat PV is the de�ation matrix, where V denotes its de�ation-subspae matrix. IfV := [v1 v2 � � � vk ℄ onsists of eigenvetors orresponding to all O(")�eigenvalues ofM�1A, then �(M�1PV A) only onsists of zeros and O(1)�eigenvalues.Hene, the appliation of eigenvetors assoiated with O(")�eigenvalues as de�ationvetors is a good strategy to improve the onvergene of the iterative proess. In thisase, it is su�ient to take k = m, when all O(")�eigenvalues should be eliminated.Moreover, due to Assumption 1.2, v1 is the onstant eigenvetor orresponding tothe zero eigenvalue. As a onsequene, v1 may be omitted in V , so that k = m � 1de�ation vetors would even be su�ient for the elimination of all O(")�eigenvalues.Although the resulting de�ation method an be very e�etive, this method based ona dense matrix V might be ine�ient in use. In the next subsetions, a perturbationanalysis is arried out, resulting in de�ation methods with appropriate hoies for Z.4.3.2 Inexat Eigenvetor De�ationHere, we analyze the de�ation tehnique whose de�ation vetors are based on inexateigenvetors orresponding to the smallest eigenvalues of M�1A.De�ne �V := [�v1 �v2 � � � �vk ℄, where eah �vi is an approximation of the exat eigen-vetor of M�1A, vi , i.e.,�vi := vi + Æi ; Æi 2 Rn; i = 1; 2; : : : ; k; (4.11)where k � m. As mentioned earlier, it is desirable to onstrut a de�ation method with�V as de�ation-subspae matrix that has the same favorable features as the de�ationmethod based on V . At least, the resulting spetrum of M�1P�V A with k = m shouldnot ontain any eigenvalue of O(") anymore. In this ase, eah Æi has to be hosen insuh a way that the eigenvalues of the resulting matrix, M�1P�V A, satisfyO(")� ��i � �n; for i = k + 1; : : : ;m; (4.12)



52 Chapter 4. Seletion of De�ation Vetorswhere ��i is an eigenvalue of M�1P�V A, and 1n 2 R(�V ) is assumed. However, as far aswe know, no expliit results are given in the literature onerning the way in whih vian be perturbed suh that (4.12) is satis�ed. In the remainder of this subsetion, wegive some propositions and theoretial results, whih eventually result in heuristi rulesfor hoosing Æi . These are partly based on numerial experiments desribed in [141℄.De�ne �i 2 Rn as the vetor with the entries of �vi , that orrespond to the bubblesof phase �1 inluding the interfaes, and let the other entries be zero, i.e., for eah i ,the entries of �i are de�ned by(�i)j = { (�vi)j ; if xj 2 �h1 or xj 2 ��h1;0; otherwise;where ��h1 denotes the interfaes orresponding to �h1. Similarly to �i , we de�ne~1n 2 Rn as follows: (~1n)j = { 1; if xj 2 �h1 or xj 2 ��h1 ;0; otherwise.Moreover, we suppose that the perturbations, fÆig, satisfy Assumption 4.2.Assumption 4.2. Let A satisty Assumption 1.2. Then, eah perturbation, Æi 2 Rn,with i = 1; 2; : : : ; k, is hosen suh that1. jjAÆi jj2 = O(") for eah Æi ;2. entries orresponding to at least one bubble in �1 are nonzero in �vi ;3. the set f~1n; �1; : : : ; �kg is linearly independent.The �rst ondition of Assumption 4.2 means that the norm of the perturbation issmall, after premultipliation with A. The seond ondition says that it is not allowedto hoose a perturbation, Æi , in suh a way that all entries of �vi orresponding to thebubbles are zero. The �nal ondition means that eah Æi should be hosen in suh away that eah vetor of f~1n; �1; : : : ; �kg does not orrespond to the same bubbles.Example 4.3. In our bubbly �ow appliations, a perturbation, Æi 2 Rn, satis�es As-sumption 4.2 in, for instane, the following two ases:� hoose arbitrary entries for Æi that orresponds to the high-density phase, �0;� hoose arbitrary but idential entries in Æi that orresponds to a omplete bubbleinluding its interfae in the low-density phase, �1, suh that eah Æi orrespondsto a di�erent bubble.Next, let V" 2 Rn�k with k � m � 1 be de�ned as a matrix onsisting of olumnsbeing eigenvetors of M�1A orresponding to O(")�eigenvalues. In addition, de�ne�V" 2 Rn�k as a perturbation of V", suh that eah Æi obeys Assumption 4.2, i.e.,eah olumn of �V" is the sum of the orresponding olumn of V" and Æi satisfyingAssumption 4.2 (f. Eq. (4.11)). Then, it appears that Assumption 4.3 is alwaysful�lled in our experiments.



4.3. Appliation to Bubbly Flows 53Assumption 4.3. Let A ful�ll Assumption 1.2. Suppose that P�V" and PV" are de�ationmatries, where �V" and V" denote their de�ation-subspae matrix, respetively. Let Rbe an n � n matrix. Then, P�V"A = PV"A+R with jjQjj2 = O(").Furthermore, we de�ne (~�i)j := { 1; if (�i)j 6= 0;0; otherwise:Then, � 2 f0; 1; : : : ;mg denotes the maximum number of independent harateristivetors, �hi , suh that �hi 2 span f~1n; ~�1; : : : ; ~�kg:In other words, � is the number of bubbles whih are e�etively aptured by f~�ig. Forinstane, � = k means that the number of de�ation vetors is equal to the number ofvetors orresponding to separate bubbles that an be onstruted from the de�ationsubspae. Now, Theorem 4.1 follows easily.Theorem 4.1. Let A, P�V" and PV" satisfy Assumption 4.3. Suppose that � = k. Then,for j = 1; : : : ; n, we havej�j(P�V"A)� �j(PV"A)j � ;  = O("): (4.13)Proof. Sine P�V"A = PV"A + R with jjRjj2 = O("), the theorem follows immediatelyfrom Lemma A.10(iii).As a onsequene of Theorem 4.1, perturbations that meet Assumption 4.2 do notsigni�antly in�uene the spetrum of the de�ated matrix, PV"A. If, for instane, PV"Adoes not ontain O(")�eigenvalues, then neither does P�V"A.Unfortunately, Theorem 4.1 annot be generalized to preonditioned de�ated ma-tries, in ontrast to what is laimed in the literature, see, e.g., [170℄. In otherwords, (4.13) does not hold in general, if M�1P�V A and M�1PV A are substituted intoP�V A and PV A, respetively. Counterexamples an be easily found using numerial ex-periments. It turns out that the preonditioned variant of Theorem 4.1 only holds forthe smallest eigenvalues, see Proposition 4.2.Proposition 4.2. Let A and M�1 ful�ll Assumptions 1.2 and 4.1, respetively. LetP�V" and PV" ful�ll Assumption 4.3. Let k 2 f1; 2; : : : ;m � 1g be given. Choose eahÆi 2 Rn suh that Assumption 4.2 is ful�lled. Suppose that � = k and 1n =2 R(V�").Then, j�j(M�1P�V"A)� �j(M�1PV"A)j � ;  = O(");for all j = 1; : : : ;m.Aording to Proposition 4.2, O(")�eigenvalues of M�1PV"A are not signi�antlyin�uened by these perturbations, if eah perturbation, Æi , is hosen suh that As-sumption 4.2 is satis�ed. However, Proposition 4.2 does not say anything about theother eigenvalues of M�1PV"A. Fortunately, it an be observed that the number of



54 Chapter 4. Seletion of De�ation VetorsO(")�eigenvalues is equal for M�1PV"A and M�1P�V"A, if � = k. In addition, a similarresult follows for � < k. These results are stated in Conjeture 4.1.Conjeture 4.1. Let A, M�1, P�V" and PV" be as given in Proposition 4.2. Let k 2f1; 2; : : : ;m � 1g be given and suppose that � = k holds. Choose eah Æi 2 Rn suhthat Assumption 4.2 is ful�lled. Then, the number of O(")�eigenvalues of M�1P�V"Ais equal to { m � � � 1; if � < m � 1;0; if � � m � 1:Moreover, if � � k, then the number of O(")�eigenvalues of both M�1P�V"A andM�1PV"A is the same.As a speial ase of Conjeture 4.1, we have that both M�1P�V"A and M�1PV"A do notontain any O(")�eigenvalue, if k = m�1 and eah Æi has nonzero entries assoiatedwith at least one bubble. Example 4.4 shows another appliation of the onjeture.Example 4.4. Consider a 2-D bubbly �ow problem with m = 5, see Figure 4.2. Inthis ase, the spetrum of M�1A ontains four O(")�eigenvalues. The orrespondingeigenvetors are taken as de�ation vetors. Figure 4.2 presents two situations, where 
is divided into four (de�ation) subdomains, 
i , eah orresponding to one perturbationvetor, Æi , whose entries are onstant in this subdomain and zero elsewhere. In thease of Figure 4.2(a), none of the perturbations satisfy Assumption 4.2. Therefore,all four O(")�eigenvalues of M�1A remain in the spetrum of M�1P�V"A. However,in the ase of Figure 4.2(b), all perturbations meet Assumption 4.2, but obviously� = 3. Aording to Conjeture 4.1, the spetrum of M�1P�V"A onsists of exatly oneO(")�eigenvalue.
δ3 δ4

δ2δ1

(a) Wrong hoie of subdomains:the middle bubble is not apturedby one subdomain (� = 0). δ3 δ4

δ1 δ2

(b) Good hoie of subdomains:eah bubble is in the interior of asubdomain (� = 3).Figure 4.2: A 2-D example of a bubbly �ow problem with m = 5 and two di�erent situations for theperturbations, fÆig.



4.3. Appliation to Bubbly Flows 55Remark 4.4.� From Conjeture 4.1, we obtain the unexpeted result that a good strategy forhoosing an appropriate de�ation vetor, �vi = vi + Æi , is related to AÆi , ratherthan to M�1AÆi .� We refer to [123℄ for related results onerning the hoie of de�ation vetors.In that paper, two-level overlapping domain deomposition preonditioners withoarse spaes are studied by smoothed aggregation in iterative solvers for �niteelement disretizations of ellipti problems. Furthermore, similar observations aspresented in this setion are proven using funtional analysis. It is a topi offuture researh to extend the theory given in [123℄ to the de�ation strategieshere.� Conjeture 4.1 might be proven using ideas given in reent papers [5,81℄. In thesepapers, theoretial bounds for eigenvalue approximations are presented, usingso-alled prinipal angles between subspaes spanned by eigenvetors assoiatedwith these (perturbed) eigenvalues. This is also left for future researh.4.3.3 Level-Set De�ation VetorsIn the previous subsetion, we have seen that exat eigenvetors are not requiredto eliminate the smallest nonzero eigenvalues from the spetrum of M�1PZA. Con-jeture 4.1 an serve as a guideline for approximating eigenvetors orresponding toO(")�eigenvalues. This leads to strategies for hoosing e�etive de�ation vetors.We start with the so-alled level-set de�ation method that is desribed below.By ombining the results obtained in Example 4.3 and Conjeture 4.1, it an beonluded that eigenvetors, fvig, assoiated with the O(")�eigenvalues are still well-approximated, if� all entries of vi orresponding to a bubble of �1 inluding its interfae ��1 aresaled by a onstant. Therefore, the value 1 an be hosen for the assoiatedentries of the perturbed eigenvetor �vi , as it follows from Assumption 4.1 thatall entries in a bubble are onstant;� the entries of vi orresponding to the high-density phase �0 an be perturbedarbitrarily. To obtain sparse perturbed eigenvetors, f�vig, these entries of vishould be perturbed suh that they beome zero. In other words, (�vi)j = 0, ifxj 2 �h0 and xj =2 ��h1 .Hene, eah vi an be approximated well by a sparse �vi suh that only the entriesorresponding to bubbles are nonzero. From Conjeture 4.1, we also �nd that, if� � m � 1, then all O(")�eigenvalues of M�1A an be eliminated by hoosing k =m � 1. The requirement that � � m � 1 is automatially ful�lled if we assoiateeah �vi with one unique bubble, so that only the entries orresponding to a singlebubble are nonzero. The resulting de�ation-subspae matrix with f�vig is denoted by



56 Chapter 4. Seletion of De�ation VetorsWL 2 Rn�k, and the resulting de�ation method is alled L-DICCG�k, where k isalways hosen to be m � 1. We de�ne W̃L 2 Rn�m as WL 2 Rn�(m�1) extended witha olumn assoiated with the exluded bubble. Later on, W̃L is used to de�ne thelevel-set-subdomain de�ation variant.Remark 4.5.� If some bubbles in 
 are very lose to eah other, then some grid points, fxig,might belong to the same nonzero entries of several olumns of WL. In this ase,row sums of WL an be larger than one, resulting in nondisjoint olumns. Thismight require a more sophistiated implementation of the method. On the otherhand, if disjoint vetors are imposed by hoosing zero instead of one at someentries assoiated with the bubble interfae, then the orresponding eigenvetorsappear to be approximated badly. This results in slower onvergene of theiterative proess, see also Setion 4.3.7.� If the density �eld, �, is known expliitly, then L-DICCG�k an be simply appliedby loating the bubbles in �1, and hoosing one for the orresponding entries ofthe olumns of WL. However, � is often given impliitly in many appliations, sothat the method an only be used if an extra proedure exists that determines thebubbles expliitly. For example, the level-set approah [102, 110℄ is adopted todesribe � impliitly in our appliations, see, e.g., [143,154,156℄. In Appendix B,this method is desribed onisely and an algorithm is presented for determiningthe bubbles from this level-set funtion.� The name `level-set de�ation' suggests that this approah is only appliable if thedensity is desribed by the level-set funtion. This is however not the ase. Theapproah an always be applied, as long as the bubbles an be desribed eitherimpliitly or expliitly. More general names for the approah are `oe�ient-dependent de�ation' or 'density de�ation'.4.3.4 Subdomain De�ationIn bubbly �ow problems where 
 ontains many bubbles or the density �eld, �, isunknown or too omplex, it is more appropriate to apply the de�ation tehnique withsubdomain de�ation vetors instead of level-set de�ation vetors. These subdomainvetors an be onstruted without any knowledge of � and are desribed earlier inSetions 3.6 and 4.2.3. We denote the de�ation method with subdomain vetorsas S-DICCG�k, where k is the number of subdomains minus one. Moreover, WS 2Rn�k denotes the orresponding de�ation-subspae matrix, whih is de�ned in a moremathematial way below (f. Setion 3.6).Let 
 be divided into open (equal) subdomains 
i ; i = 1; 2; : : : ; q + 1, suh that
 = [q+1i=1 
i and 
i \
j = ; for all i 6= j . The disretized subdomains are denoted by
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hi . For eah 
hi , we introdue a de�ation vetor, zi , as follows:(zi)j := { 0; xj 2 
h n 
hi ;1; xj 2 
hi :Then, WS is de�ned by WS := [z1 z2 � � � zq℄; (4.14)so that k = q. Hene, WS onsists of disjoint (and, hene, orthogonal) pieewise-onstant vetors, whih is generally not the ase for WL. Moreover, note that WS isusually less sparse and onsists of more vetors than WL, while the amount of work isO(n) for the onstrution of both WS and WL.We ould also extend WS with an extra olumn, zq+1, yieldingW̃S := [z1 z2 � � � zq zq+1℄;whih is used in Setion 4.3.5. Note that eah subdomain orresponds to one de�ationvetor, and we have the identity W̃S1q+1 = 1n: (4.15)Remark 4.6.� Eq. (4.15) is a useful property with respet to implementation and some proofsof theoretial results. However, reall that this might give rise to di�ulties forapproximating eigenvalues assoiated with the bubbles, espeially if bubbles arevery lose to eah other. In order to approximate the orresponding eigenvetorsappropriately, some row sums of WS should be larger than one, whereas this isnot possible using the urrent de�nition of WS.� We show in Chapter 5 that the de�ation matrix based onWS and W̃S are idential.Beause of Conjeture 4.1, S-DICCG�k an only be e�ient if eah subdomain,
j , ontains a part of at most one bubble. Otherwise, one or more O(")�eigenvalueswould remain in the spetrum of M�1PWSA. Hene, the e�ieny of the de�ationmethod with a �xed setting of subdomains depends on the number and the loationof the bubbles in 
. In order to ensure the e�ieny of the method, the number ofsubdomains, k, should be taken relatively large, ompared with the number of bubbles.We �nd that subdomain de�ation vetors also approximate other eigenvetors or-responding to small eigenvalues of O(1), sine they appear to vanish from the spetrumof M�1PWSA, for su�iently large k. In Setion 4.3.6, we illustrate this in numerialexperiments, but we already state this observation in Proposition 4.3.Proposition 4.3. Let A and M�1 ful�ll Assumptions 1.2 and 4.1, respetively. LetWS be as de�ned in (4.14). Then, for su�iently large k, R(WS) approximates theeigenspae orresponding to all O(")� and the smallest O(1)�eigenvalues of M�1A.



58 Chapter 4. Seletion of De�ation VetorsHene, S-DICCG�k is able to eliminate both O(")� and O(1)�eigenvalues fromM�1A. This means that, although S-DICCG�k is usually more expensive per itera-tion than L-DICCG�k, the total omputational ost an be muh less due to fasteronvergene.4.3.5 Level-Set-Subdomain De�ationFor a density �eld having a omplex geometry, S-DICCG�k with large k might en-ounter di�ulties to treat all O(")�eigenvalues e�etively, although the smallestO(1)�eigenvalues ould be eliminated. On the other hand, L-DICCG�k with k = m�1easily deals with the O(")�eigenvalues, while the O(1)�eigenvalues are usually un-touhed. Therefore, it might be bene�ial to ombine both approahes. This newde�ation variant is alled LS-DICCG�k, and WLS 2 Rn�k denotes its orrespondingde�ation-subspae matrix. The exat form of WLS is de�ned below.The most straightforward hoie is to take W̃LS := [W̃L; W̃S℄, so that the level-set-subdomain de�ation-subspae matrix, WLS, is equal to� W̃LS, if 1n =2 R(W̃LS);� W̃LS without its last olumn, if 1n 2 R(W̃LS).In this ase, WLS onsists of at most q+m�1 olumns. If both W̃L and W̃S are knowna priori, WLS an be onstruted immediately. Although the resulting approah mightbe e�etive, there are some obvious drawbaks:� row sums of WLS larger than one are inevitable, whih makes the method lesssuitable for a parallel environment, and its implementation less e�ient than theimplementations of level-set or subdomain de�ation;� it is not guaranteed that WLS has full rank.Instead of this above straightforward hoie of level-set-subdomain de�ation, wehoose for an alternative approah. First, we de�ne some simple operations on ma-tries. The operation [Y 2 Rr�1, ating on Y = [yi ;j ℄ 2 Rr�s, means that a vetoris reated whose entries are the maximum entries of eah row of Y , i.e., we have([Y )i = maxj yi ;j for eah i , requiring O(r) �ops. Moreover, for Y1 2 Rr�s1 andY2 2 Rr�s2, the operation Y1 \ Y2 2 Rr�s3 means that a new matrix (or vetor) is re-ated, whose olumns are equal to all possible omponentwise multipliations betweenthe olumns of Y1 and Y2 that are nonzero. Note that s3 � s1s2 holds and the amountof work for this operation is at most O(rs1s2). We now de�neW̃LS := [W1;W2℄; (4.16)with W1 := W̃S \ (1n � [W̃L); W2 := W̃L \ W̃S: (4.17)Hene, W1 onsists of all subdomain vetors of WS where the entries orrespondingto �1 are zero. Moreover, W2 onsists of olumns whose entries orrespond to the



4.3. Appliation to Bubbly Flows 59bubbles divided by the subdomains of W̃S. Now, the level-set-subdomain de�ation-subspae matrix, WLS, is equal to� W̃LS, if 1n =2 R(W̃LS);� W̃LS without its last olumn, if 1n 2 R(W̃LS).As noted earlier, both WLS and W̃LS lead to the same de�ation matrix. Example 4.5illustrates their onstrution.Example 4.5. LetW̃S = [ 1 1 1 1 0 0 0 00 0 0 0 1 1 1 1 ]T ; W̃L = [ 0 1 1 0 0 0 0 00 0 0 0 0 1 1 0 ]Tbe the de�ation-subspae matries orresponding to S-DICCG�1 and L-DICCG�1,respetively. Then, this yields[W̃L = [ 0 1 1 0 0 1 1 0 ]T ; 1n�[W̃L = [ 1 0 0 1 1 0 0 1 ]T ;resulting in W1 = W̃S \ (1n � [W̃L) = [ 1 0 0 1 0 0 0 00 0 0 0 1 0 0 1 ]T ;and W2 = W̃L \ W̃S = [ 0 1 1 0 0 0 0 00 0 0 0 0 1 1 0 ]T :This implies W̃LS = [W1;W2℄ =  1 0 0 1 0 0 0 00 0 0 0 1 0 0 10 1 1 0 0 0 0 00 0 0 0 0 1 1 0 T :As 1n 2 R(W̃LS), the level-set-subdomain de�ation-subspae matrix WLS is equal toWLS =  1 0 0 1 0 0 0 00 0 0 0 1 0 0 10 1 1 0 0 0 0 0 T :Remark 4.7.� If k is general, L-DICCG�k, S-DICCG�k and LS-DICCG�k are often denotedby L-DICCG, S-DICCG and LS-DICCG, respetively.� We have { R(W̃S) � R(W̃LS);R(W̃L) � R(W̃LS);
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9 12() LS-DICCG�11 (k < m(q + 1)).Figure 4.3: A 2-D bubbly �ow problem with m = 5, whih illustrates the level-set, subdomain andlevel-set-subdomain de�ation tehnique.whih means that the de�ation subspae of LS-DICCG ontains the de�ationsubspaes of both L-DICCG and S-DICCG.� The onstrution of WLS requires at most O(nms) �ops. In addition, omparedwith L-DICCG and S-DICCG, LS-DICCG requires more de�ation vetors, so aniteration of this hybrid method is more expensive due to the more sophistiatedoarse solves. However, sine the spetrum of M�1PWLSA is more favorable,onvergene an be muh faster, resulting in a possibly lower total omputationalost of LS-DICCG.� The row sum of WLS is at most one. If 1n =2 R(W̃LS), then we even haveW̃LS1k = 1n. Consequently, LS-DICCG an be easily parallelized and the methodan be implemented very e�iently.� Level-set de�ation might be ombined with other (de�ation) tehniques to endup with more e�etive hybrid methods. In fat, level-set de�ation is used toremove the e�ets of the bubbles, so that it ould be ombined with any e�etivesolver (suh as standard multigrid or methods based on fast Fourier transforms)to takle Poisson problems with a onstant oe�ient, i.e., problems withoutbubbles. This is left for future researh.



4.3. Appliation to Bubbly Flows 61We end this setion with Example 4.6, that illustrates the de�ation approahesproposed in this setion.Example 4.6. Consider a 2-D bubbly �ow problem with m = 5. The assoiatedde�ation vetors in L-DICCG�4, S-DICCG�3 and the resulting LS-DICCG�11 aredepited graphially in Figure 4.3.4.3.6 Numerial ExperimentsAfter presenting possible hoies of de�ation vetors applied to bubbly �ows, we showtheir e�ieny in 2-D numerial experiments. We test the three de�ation approahesL-DICCG, S-DICCG and LS-DICCG, and ompare them with ICCG. The omputationsare performed on a Pentium 4 (2.80 GHz) omputer with a memory apaity of 1GBusing MATLAB. Sine it is easy to use the sparse implementation for matries andvetors in MATLAB, we are able to measure fairly the omputing time that is requiredfor the whole iteration proess of the ompared methods 1.First, we onsider brie�y the test problem without bubbles, that is the Poissonproblem with a onstant oe�ient, so that " = 1. Next, we treat the test problemwith bubbles, where we vary the grid size, n, the density ontrast, � = 1" , and thenumber of bubbles, m. The employed geometry of the density �eld based on m = 5an be found in Figure 1.3. The linear system, Ax = b, is solved, where the terminationriterion is based on (3.27) with Æ = 10�7.Test Problem with a Constant Coe�ientFor this spei� test problem without bubbles in the domain, S-DICCG is the onlymethod that an be applied. The results for the problem with � = 1 and n = 162 arepresented in Table 4.1. Method # It.ICCG 23S-DICCG�3 22S-DICCG�15 15S-DICCG�63 10Table 4.1: Results for the Poisson problem with � = 1 and n = 162. `# It' means the number ofrequired iterations for onvergene.From Table 4.1, it an be notied that S-DICCG redues the number of iterations,ompared with ICCG. The orresponding eigenvalues of M�1A and M�1PWSA an befound in Figure 4.4.From both subplots of Figure 4.4, we observe that small O(1)�eigenvalues ofM�1A are eliminated from the spetrum of M�1PWSA (f. Proposition 4.3), whereas1This is inluding the omputation of AZ and E, but exluding the onstrution of Z, sine itannot be done e�iently in MATLAB. However, the omparison is still fair, sine the omputationalost to onstrut Z is negligible by onsidering the �op ounts given in previous subsetions.



62 Chapter 4. Seletion of De�ation Vetorsthe large eigenvalues remain in the spetrum. Inreasing the number of de�ationvetors results in the elimination of more small eigenvalues. This an be explainedby the fat that the orresponding eigenvetors are relatively smooth, so that theyan be well-approximated by the subdomain de�ation vetors. Other eigenvetorsorresponding to larger eigenvalues of M�1A do not have a smooth behavior, and,therefore, these are more di�ult to approximate by using these vetors, see [141, Set.10.1℄ for more details.
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eigenvalues M−1A

eigenvalues M−1PA(b) S-DICCG�63 (10 iterations).Figure 4.4: Eigenvalues of M�1A and M�1PWSA for S-DICCG, applied to the Poisson problem with� = 1 and n = 162.Test Problem with Varying Grid SizesNext, we perform a numerial experiment for the Poisson problem with m = 5, � = 106,and varying grid sizes. The onvergene results, inluding the omputational ost, anbe found in Table 4.2. n = 162 n = 322 n = 642De�ation Method k # It. CPU # It. CPU # It. CPUICCG � 39 0.04 82 0.53 159 10.92S-DICCG�k 3 37 0.12 80 0.67 194 14.0115 36 0.07 97 0.80 193 13.8263 19 0.11 16 0.20 26 2.14L-DICCG�k 4 17 0.09 37 0.37 75 6.17LS-DICCG�k 11 14 0.07 30 0.29 54 4.0835 10 0.08 21 0.32 40 3.0583 � � 15 0.20 25 2.05Table 4.2: Results for the Poisson problem with m = 5, � = 106, and varying grid sizes, n. `#It' means the number of required iterations, and `CPU' is the orresponding omputational time inseonds.For all grid sizes, it an be observed that S-DICCG�63 is very e�ient, omparedwith ICCG. This is in ontrast to S-DICCG�3 and S-DICCG�15, whose performaneis omparable to ICCG. The explanation is that Assumption 4.2 is ful�lled only for



4.3. Appliation to Bubbly Flows 63k = 63, and, aording to Conjeture 4.1, the spetrum assoiated with S-DICCG�63does not ontain O(")�eigenvalues, see also Setion 4.3.7. For the other two ases,S-DICCG�3 and S-DICCG�15, some de�ation subdomains onsist of parts of severalbubbles, and, therefore, the orresponding de�ation vetors do not satisfy Assump-tion 4.2. Hene, the number of O(")�eigenvalues remains the same after applyingsubdomain de�ation. Furthermore, note that ICCG requires signi�antly fewer itera-tions than S-DICCG�3 and S-DICCG�15 in the ase of n = 642. This is aused by thefat that the orresponding residuals show errati behavior with relatively large bumps,so that a small round-o� error during the iteration proess an lead to signi�antdi�erenes in onvergene, see [141, Set. 10.3℄ for more details.From Table 4.2, we observe that L-DICCG redues signi�antly the number ofiterations. It is an e�ient method, sine it requires only four de�ation vetors. We�nd that LS-DICCG performs very well in all ases, but S-DICCG and LS-DICCGbeome omparable for su�iently large k.Remark 4.8. If there are some limitations with respet to the number of de�ationvetors due to memory apaity, then LS-DICCG would onverge faster than S-DICCG.Suppose that only k < 50 de�ation vetors an be kept in memory, than the fastestmethod is LS-DICCG�35 aording to Table 4.2.Test Problem with Varying Density ContrastsWe �x m = 5 and n = 642, whereas the density ontrast, �, is varied in the nextnumerial experiment. The results of this experiment are presented in Table 4.3.� = 103 � = 106De�ation Method k # It. CPU # It. CPUICCG � 118 8.12 159 10.92S-DICCG�k 3 134 9.79 194 14.0115 131 9.60 193 13.8263 26 2.31 26 2.14L-DICCG�k 4 74 5.98 75 6.17LS-DICCG�k 11 54 4.05 54 4.0835 40 3.08 40 3.0583 25 2.46 25 2.41Table 4.3: Results for the Poisson problem with m = 5, n = 642, and varying density ontrast, �.From Table 4.3, we see that ICCG requires more iterations and CPU time forlarger �, due to the presene of O(")�eigenvalues in the orresponding spetrum. Thisobservation does not hold for L-DICCG and LS-DICCG, whih is a favorable feature ofthese methods, and it on�rms the theory given in the previous setion. For su�ientlylarge k, it an be notied that S-DICCG is also insensitive to �. Furthermore, it anagain be observed that S-DICCG�3 and S-DICCG�15 onverge more slowly thanICCG, whereas S-DICCG�63 is faster in this experiment.



64 Chapter 4. Seletion of De�ation VetorsTest Problem with Varying Number of BubblesWe onsider the Poisson problem with � = 106, n = 642, and a varying number ofbubbles, m. The results of this experiment an be found in Table 4.4.We observe that ICCG needs more iterations for larger m. This an be explained byProposition 4.1, whih states that an inrease of m leads to more O(")�eigenvalues.For L-DICCG, LS-DICCG, and S-DICCG with su�iently large k, we see that theirperformane depends less on m, whih is a favorable feature of these de�ation ap-proahes.Notie that L-DICCG�0 is unde�ned, so this method annot be applied for m = 1.Furthermore, L-DICCG onverges in fewer iterations for inreasing m > 1. Finally,S-DICCG onverges again slower than ICCG for k � 15.m = 1 m = 2 m = 5De�ation Method k # It. CPU k # It. CPU k # It. CPUICCG � 89 6.13 � 104 7.20 � 159 10.92S-DICCG�k 3 96 7.39 3 69 5.13 3 194 14.0115 52 3.97 15 64 4.79 15 193 13.8263 26 2.14 63 27 2.16 63 26 2.14L-DICCG�k 0 � � 1 79 5.79 4 75 6.17LS-DICCG�k 7 67 5.30 6 65 5.11 11 54 4.0819 41 3.14 24 42 3.22 35 40 3.0567 26 2.50 72 26 2.11 83 25 2.05Table 4.4: Results for the Poisson problem with � = 106, n = 642, and varying number of bubbles, m.In ontrast to ICCG, all approahes of the de�ation method (exept for S-DICCGwith relatively small k) hardly depend on m. This implies that, for problems with aninreasing number of bubbles, the de�ation method beomes more and more superiorto ICCG.4.3.7 Analysis of Small EigenvaluesIn this subsetion, we present some spetral information orresponding to the de�ationapproahes. These are based on the numerial experiments desribed in Setion 4.3.6.Level-Set De�ationIn Setion 4.3.6, we have notied that L-DICCG�4 redues signi�antly the number ofiterations, ompared with ICCG. Figure 4.5 shows the orresponding spetra. Beausewe onentrate on small eigenvalues, only the 80 smallest eigenvalues of eah spetrumare presented.First, it an be notied in Figure 4.5(a), that O(1)�eigenvalues are approximatelythe same for ICCG and L-DICCG�4. In Figure 4.5(b), we see that all O(10�6)�eigen-values are removed from M�1PWLA. However, eigenvalues in the viinity of 0.2 appear,see Figure 4.5(a).



4.3. Appliation to Bubbly Flows 65As notied in Setions 4.3.2 and 4.3.3, interfaes of bubbles should ontributeto the de�ation vetors. If these interfaes are exluded in the level-set de�ationvetors, then the onvergene of L-DICCG�4 is signi�antly slower. In this ase, itappears that O(10�6)�eigenvalues are e�etively eliminated, but with the drawbakthat eigenvalues between " and 1 appear.
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eigenvalues M−1A

eigenvalues M−1PA(b) Logarithmi sale: L-DICCG�4.Figure 4.5: Eigenvalues of both M�1A and M�1PWLA orresponding to L-DICCG�4, for the Poissonproblem with � = 106 and n = 162.Subdomain De�ationIn Setion 4.3.6, we have seen that S-DICCG�15 does not give any improvement ofthe onvergene, whereas S-DICCG�63 is very e�ient, ompared with ICCG. Thisan be understood by onsidering their spetral plots, see Figure 4.6 where the 80smallest eigenvalues of eah spetrum are depited.It appears that values below 10�8 an be interpreted as zero eigenvalues in Fig-ure 4.6. Then, in the ase of S-DICCG�15 (see Figure 4.6(b)), it an be observedthat none of the O(10�6)�eigenvalues of M�1A are eliminated after de�ation, sinethey remain in the spetrum of M�1PWSA. Moreover, S-DICCG�63 onverges veryfast, beause the O(10�6)�eigenvalues vanish from the spetrum, see Figure 4.6(d).Apparently, only for su�iently large k, eah de�ation subdomain onsists of a part ofat most one bubble. Hene, the smallest eigenvalues an be eliminated, whih on�rmsConjeture 4.1.With respet to the small O(1)�eigenvalues, we observe in Figure 4.6(a) that theyare approximately the same for ICCG and S-DICCG�15. Moreover, for the ase ofS-DICCG�63 (Figure 4.6()), it an be seen that the smallest O(1)�eigenvalues donot appear in the spetrum of M�1PWSA, whih is similar to the ase of L-DICCG�4(f. Figure 4.5(a)). However, some other small eigenvalues around 0.1 an be no-tied in Figure 4.6(). Roughly speaking, the eliminated O(10�6)�eigenvalues giverise to small eigenvalues of order 10�1. Apparently, the eigenvetors assoiated withO(10�6)�eigenvalues are not approximated aurately enough by the subdomain de�a-tion vetors, even if we inrease k. This might be aused by the fat that, by de�nition,
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eigenvalues M−1PA(b) Logarithmi sale: S-DICCG�15.
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eigenvalues M−1A

eigenvalues M−1PA(d) Logarithmi sale: S-DICCG�63.Figure 4.6: Eigenvalues of M�1A and M�1PWSA orresponding to S-DICCG, for the Poisson problemwith � = 106 and n = 162.the subdomain de�ation vetors have the unfavorable property that they are disjoint.This an be remedied by using LS-DICCG instead of S-DICCG, see Setion 4.3.7.
Level-Set-Subdomain De�ationAs observed in Setion 4.3.6, LS-DICCG performs very well for all k. The relatedspetral plots an be found in Figure 4.7.From Figure 4.7(a) and 4.7(b), we see that only O(10�6)�eigenvalues disappearand all O(1)�eigenvalues remain in the spetrum in the ase of LS-DICCG�11. InFigure 4.7() and 4.7(d), it an be observed that both O(10�6)� and the smallestO(1)�eigenvalues do not appear in the spetrum orresponding to LS-DICCG�35.More importantly, in ontrast to the ases of S-DICCG and L-DICCG, the eliminationof O(10�6)�eigenvalues by LS-DICCG does not give rise to new eigenvalues between" and 1. This is a favorable feature of level-set-subdomain de�ation.
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eigenvalues M−1A

eigenvalues M−1PA(d) Logarithmi sale: LS-DICCG�35.Figure 4.7: Eigenvalues of both M�1A and M�1PWLSA orresponding to LS-DICCG, for the Poissonproblem with " = 106 and n = 162.4.4 Conluding RemarksSome strategies for hoosing de�ation vetors are reviewed in this hapter: approxi-mate eigenvetor, reyling, subdomain and multigrid de�ation vetors. Eah of themhas its own advantages and drawbaks. The most favorable hoie strongly depends onmany aspets, suh as the problem setting, spei� appliation, a priori knowledge of(spetral) information, linear systems to be solved, used Krylov solver, and maximumnumber of allowed de�ation vetors. Hene, there is no ultimate strategy that alwaysperforms best for all ases, although we advoate that subdomain de�ation is oftenthe most appropriate hoie.In the seond part of this hapter, we present some spetral analysis to de�ationwith inexat eigenvetors, whih leads to strategies for hoosing the best de�ationvetors in bubbly �ow appliations. The main result is that eigenvetors orrespondingto the smallest eigenvalues an be perturbed in suh a way that they beome sparse,whih motivates the use of subdomain de�ation. Based on this result, two otherde�ation approahes are introdued and disussed. The �rst approah is the level-setde�ation method, where the sparse de�ation vetors are based on the geometry of thedensity �eld. The seond approah, whih is the level-set-subdomain de�ation method,



68 Chapter 4. Seletion of De�ation Vetorsombines original subdomain and level-set de�ation, and has the advantages of bothapproahes.In the numerial experiments, we ompare the proposed de�ation approahes forbubbly �ows. In most test ases, all of them perform very well ompared with ICCG.In addition, they are insensitive to large density ontrasts and the number of bubbles.Subdomain de�ation is only e�ient for a su�iently large number of subdomains. Inthis ase, not only the smallest eigenvalues orresponding to the bubbles are eliminated,but also other small eigenvalues. Moreover, level-set de�ation eliminates the smallesteigenvalues orresponding to bubbles at low ost, but leaves the other eigenvaluesmore or less untouhed. For both of these methods, the elimination of the smallesteigenvalues may result in a spetrum that onsists of eigenvalues whih are obviouslysmaller than those of the main luster. It appears that level-set-subdomain de�ationdoes not have this drawbak. Therefore, it is an e�ient method, although the workper iteration and the work to reate the de�ation vetors an be signi�antly largerthan for the other two approahes. However, we note that, if the number of de�ationvetors is su�iently large, then the di�erene in performane between subdomainand level-set-subdomain de�ation is small. In addition, subdomain de�ation has theimportant advantages that it an be used as a blakbox method without any knowledgeof the density �eld, and an be implemented and parallelized in a straightforward way.Hene, subdomain de�ation is our method of hoie and it is frequently used in theremainder of this thesis.Finally, a topi for future researh is improving the proposed de�ation approahes.Sine level-set de�ation is used to treat the bubbles e�etively, it might be possible toombine it with any e�etive solver (suh as standard multigrid or methods based onfast Fourier transforms) for the standard Poisson problem with a onstant oe�ientin order to obtain a powerful method, that ould e�etively deal with bubbly �owproblems.



Chapter 5Subdomain De�ation applied toSingular Matries5.1 IntrodutionIn Chapter 3, new theoretial results have been presented for the de�ation methodapplied to singular oe�ient matries. In this hapter, we deal with the issue ofde�ation and singularity in more detail. Although many results presented here an begeneralized to de�ation with a general Z, we restrit ourselves to subdomain de�ationfor onveniene, see De�nition 5.1.De�nition 5.1. Let the open domain, 
, be divided into subdomains,
j ; j = 1; 2; : : : ; q+1, suh that 
 = [q+1j=1
j and 
i \ 
j = ; for all i 6= j . The disretized domainand subdomains are denoted by 
h and 
hj , respetively. Then, for eah 
hj withj = 1; 2; : : : ; q + 1, a de�ation vetor, zj , is de�ned as follows:(zj)i := { 0; xi 2 
h n
hj ;1; xi 2 
hj ; (5.1)where xi is a grid point in the disretized domain, 
h. Then, for 1 < j � q, thede�ation-subspae matries are de�ned as
{ Zj := [z1 � � � zj] ;Ẑj := [Zj�1; z0] ;where z0 = 1n. In addition, we de�ne Z1 := z1 and Ẑ1 := z0.By onstrution, subdomain de�ation vetors are disjoint and sparse. Moreover, Prop-erty 5.1 an be derived from De�nition 5.1.Property 5.1. Let Zj , Ẑj and zj be as given in De�nition 5.1. Then, the followingstatements hold: 69



70 Chapter 5. Subdomain De�ation applied to Singular Matries(i) Zk1k = 1n;(ii) Zk�11k�1 6= Ẑk1k 6= 1n;(iii) ZTk�1e(n)n = 0k�1;(iv) ẐTk�1e(n)n = 1n;(v) Ẑke(k)k = z0;(vi) Zje(i)j = zi ; 1 < j � k; 1 � i � j ;(vii) Ẑje(i)j = zi ; 1 < j < k; 1 � i � j .Subsripts orresponding to matries will be omitted, if we deal with general matrieswithout spei�ed dimensions.In all previous hapters, we have performed the analysis and omputations basedon a singular oe�ient matrix, A, from the linear system (see Eq. (1.1))Ax = b; A 2 Rn�n: (5.2)However, in many CFD pakages, one imposes an invertible A, denoted by �A, see also[17,77,113℄. This makes the solution, x , of (5.2) unique, whih might be advantageousin omputations:� diret solution methods, suh as Gaussian elimination, might have some di�ul-ties to solve (5.2) with a singular A;� linear system (5.2) might be inonsistent as a result of rounding errors, whereasthe linear system with �A is always onsistent;� the de�ation tehnique requires an invertible matrix E = ZTAZ. This is guar-anteed for any full-rank Z = [z1 � � � zk ℄ if �A is used.One ommon way to fore invertibility of A is to replae its last entry, an;n, by �an;n =(1+�)an;n with � > 0. In fat, a Dirihlet boundary ondition is imposed at one pointof the domain, 
. This modi�ation results in an invertible linear system,�Ax = b; �A = [�ai ;j ℄ 2 Rn�n; (5.3)where �A is SPD. In pratie, it appears that the ondition number, �, is relativelylarge, espeially if � is lose to 0, see Lemma 5.1(ii). Hene, solving (5.3) with the CGmethod typially shows slow onvergene, see also [77, Set. 4℄ and [113, Set. 6.7℄.Similarly, this fat holds for the ICCG method as well, see Setion 5.5.1. In thishapter, a omparative study is performed on the de�ation methods based on (5.2)and (5.3).We have assumed in the previous hapters that Z does not onsist of ompo-nents of the null spae of A, N (A), in order to ensure that E is nonsingular (see



5.2. Preliminaries 71Assumption 3.1). However, N (A) is not always known a priori, and, additionally, itis sometimes not pratial to exlude some omponents from Z. In this hapter, weinvestigate this issue in more detail. It is derived that there exists a strong onnetionbetween de�ation methods based on a singular and nonsingular matrix E.The main questions that are answered in this hapter are:� an the de�ation method based on a singular E always be transformed into amethod with a nonsingular E, while A is still singular?� is it possible to transform the de�ation method based on a singular A into amethod where A is nonsingular?We start with some notations, de�nitions and preliminary results in Setion 5.2.Setion 5.3 is devoted to the introdution of the de�ation variants that are ompared inthis hapter. The theoretial omparison of these variants is performed in Setion 5.4.Some results of numerial experiments are presented in Setion 5.5. We end thishapter with some onluding remarks in Setion 5.6.Throughout this hapter, Assumption 1.2 holds. Reall that this assumption isalways ful�lled in bubbly �ow appliations, but it ould also be applied to other �elds.5.2 PreliminariesWe start this setion by presenting the de�nition of a nonsingular oe�ient matrix,�A, based on A.De�nition 5.2. Let A satisfy Assumption 1.2. Suppose that � > 0 is given. Then,the oe�ients of �A = [�ai j ℄ are de�ned as�ai ;j = { (1 + �)ai ;j ; if i = j = n;ai ;j ; otherwise. (5.4)The next two properties follow immediately, where we use Lemma A.9.Property 5.2. Let �A be as given in De�nition 5.2. Then, �A is invertible and SPD.Property 5.3. Let �A be as given in De�nition 5.2. Then, it satis�es �A1n;n = �an;ne(n)n;n.In partiular, �A1n = �an;ne(n)n .It an be easily shown that foring invertibility of A automatially leads to a worseondition number, see Lemma 5.1.Lemma 5.1. Let A and �A be as in Assumption 1.2 and De�nition 5.2, respetively.Then,(i) �( �A) � �(A); for all � > 0;(ii) lim�!0 �( �A) =1.



72 Chapter 5. Subdomain De�ation applied to Singular MatriesProof. (i) Note that we an write�A = A+ �T ;  = e(n)n ; � = �an;n:Lemma A.6 an now be applied by taking B := �A and C := A. From Eq. (A.1), wethen obtain �i(A) � �i( �A) � �i+1(A); i = 1; 2; : : : ; n � 1:Therefore, �1(A) < �1( �A) � �2(A); (5.5)using Property 5.2. Furthermore, from Eq. (A.2), we derive�n( �A) � �n(A): (5.6)By ombining Eqs. (5.5) and (5.6),�( �A) = �n( �A)�1( �A) � �n(A)�2(A) = �(A)follows.(ii) Taking B := A and G := �A� B in Lemma A.10(ii) leads toG = �an;ne(n)n (e(n)n )T ;yielding �1(G) = : : : = �n�1(G) = 0; �n(G) = �an;n:As a result of Lemma A.10(ii), we obtain�i(A) � �i( �A) � �i(A) + �an;n; i = 1; 2; : : : ; n;so, in partiular,0 < �1( �A) � �an;n; �n(A) � �n( �A) � �n(A) + �an;n:This implies lim�!0�( �A) = lim�!0 �n( �A)�1( �A) � lim�!0 �n(A)�an;n =1:
Remark 5.1. Lemma 5.1 seems to be generalizable for preonditioned oe�ient ma-tries, although a proof is laking.Let B 2 Rn�n be an arbitrary matrix. Then, B+ 2 Rn�n denotes the pseudo-inverse (also alled Moore-Penrose generalized inverse) of B, if it satis�es all following



5.2. Preliminaries 73onditions: 



BB+B = B;B+BB+ = B+;(BB+)T = BB+;(B+B)T = B+B: (5.7)Obviously, if B is nonsingular, then the pseudo-inverse and the inverse oinide, i.e.,B+ = B�1. In general, the pseudo-inverse always exists and is unique: for any B, thereis preisely one B+ that satis�es (5.7). We refer to, e.g., [14, 73℄ for more details onthe pseudo-inverse.Remark 5.2. The pseudo-inverse of a symmetri (and possibly singular) matrix, A,an be omputed expliitly by �rst writingA = V �V T ; V = [v1 v2 � � � vn℄; � = diag(�1; �2; : : : ; �n);with diagonal matrix � onsisting of the eigenvalues of A, and V being an orthonormalmatrix that onsists of the orresponding eigenvetors. Now, the pseudo-inverse of Aan be determined via A+ := V �+V T ;where �+ is a diagonal matrix with the reiproals of eah nonzero entry on thediagonal of �, and leaving the zeros in plae. For example, � = diag(0; 1; 2; 3) gives�+ = diag (0; 1; 12 ; 13). This implies that a solution of the onsistent linear system,Ax = b, is given by x = A+b = V �+V Tb:Using pseudo-inverses, the next de�nition and orresponding orollaries an begiven.De�nition 5.3. Let A and �A be as in Assumption 1.2 and De�nition 5.2, respetively.Let Zi and Ẑi be as given in De�nition 5.1. Then, the de�ation matries are de�nedas 



Pi := I � AQi ; Qi := ZiE+i ZTi ; Ei := ZTi AZi ;�Pi := I � �A �Qi ; �Qi := Zi �E�1i ZTi ; �Ei := ZTi �AZi ;P̂i := I � �AQ̂i ; Q̂i := Ẑi Ê�1i ẐTi ; Êi := ẐTi �AẐi :Both �Pi and P̂i are based on the invertible oe�ient matrix, �A, whih only di�er fromthe de�ation-subspae matries. Hene, �Ei and Êi are both nonsingular, so that �E�1iand Ê�1i exist. On the other hand, Pi is based on the singular oe�ient matrix, A.Sine the resulting Ek is singular due to Corollary 5.2, its pseudo-inverse has to beused in Pi .Corollary 5.1. Let P̂k and �Pk be as given in De�nition 5.3. Then, P̂k = �Pk holds.Proof. This follows immediately from Theorem 3.2, sine R(Zk) = R(Ẑk).Corollary 5.2. Let Ei be as given in De�nition 5.3. Then,



74 Chapter 5. Subdomain De�ation applied to Singular Matries� Ek�1 is nonsingular;� Ek is singular.Proof. (i) Sine N (A) * R(Zk�1) is satis�ed, Ek�1 is nonsingular, due to Lemma 3.1.(ii) Using Property 5.1(i), we haveEk1k = ZTk AZk1k = ZTk A1n = ZTk 0n = 0k ; (5.8)so that Ek is singular.Remark 5.3. In Chapter 3, some properties of the de�ation method have been derivedusing de�ation matrix Pk , where Ek is assumed to be invertible. These properties holdin partiular for the de�ation methods based on �Pk and P̂k .5.3 De�ation VariantsIn this setion, we present three de�ation variants based on De�nitions 5.2 and 5.3.Variant 5.1. Solve �x from M�1Pk�1A�x = M�1Pk�1b: (5.9)Variant 5.2. Solve �x from �M�1 �Pk �A�x = �M�1 �Pkb: (5.10)Variant 5.3. Solve �x from M�1PkA�x = M�1Pkb: (5.11)Variant 5.1 is the ommon de�ation method that has been used in prior hapters, withthe only di�erene that k � 1 instead of k de�ation vetors are adopted. Variant 5.2is based on the nonsingular oe�ient matrix, �A, so that this variant is always well-de�ned. Finally, Variant 5.3 is basially idential to the original DPCG for invertibleoe�ient matries (see, e.g., [56,103℄), sine the original oe�ient matrix and all kde�ation vetors are used in this variant. Hene, it is the most natural generalizationof DPCG for singular systems, although additional e�orts are required to generalize allknown results for invertible oe�ient matries or singular oe�ient matries with anonsingular Galerkin matrix, E. However, this an be irumvented, beause we showin Setion 5.4.4 that Variant 5.3 is (almost) idential to the other two variants.Remark 5.4.� For Variants 5.1 and 5.2, it is ommon to solve the Galerkin systems assoiatedwith Ek�1 or �Ek in a diret way, if k is relatively small. However, these Galerkinsystems ould also be solved iteratively, whih an be more e�ient if k is rela-tively large. On the other hand, although E�1k does not exist, it may be possible



5.4. Theoretial Comparison of De�ation Variants 75to apply a diret method for solving the orresponding Galerkin systems. Extraare is then needed by applying, e.g., Gaussian elimination or the band-Choleskydeomposition, to handle the singularity of Ek and to generate a solution upto N (Ek). However, in this thesis, we restrit ourselves to solve the Galerkinsystems in Variant 5.3 iteratively, so that the pseudo-inverse is not expliitly re-quired. This does not ause any problems, as long as these Galerkin systems areonsistent, see Chapter 8.� There are more de�ation variants known in the literature, whih deal with sin-gular oe�ient matries. For example, a variant an be based on Variant 5.3,where one entry of Zk is perturbed suh that Ek beomes nonsingular. Speialare should be taken to hoose this perturbation appropriately, see [168℄. An-other variant, that is frequently applied in the multigrid �eld, is also related toVariant 5.3. If we restrit ourselves to two-grid methods, then Ek is perturbedsuh that it beomes nonsingular. In other words, the orresponding de�ationmatrix isPi := I � AQi ; Qi := Zi Ê�1i ZTi ; Ei := ZTi AZi ; Êi � Ei : (5.12)Êi ould be obtained in the same way as Â (f. De�nition 5.2). The assoiatedGalerkin systems an now be solved with a diret method, see also Chapter 9.However, if an iterative method is used, then a slower onvergene would beexpeted, ompared to the onvergene for solving the Galerkin systems in Vari-ant 5.3. This follows from the fat that Êi is more ill-onditioned than theoriginal Ei (f. Lemma 5.1(i)).For the sake of onveniene, the orresponding matries of the three de�ationvariants are summarized in Table 5.1. These variants are ompared in the next setionin order to determine the most e�etive variant.MatriesVariant Coe�ient De�ation-subspae Galerkin Corretion De�ation5.1 A Zk�1 Ek�1 Qk�1 Pk�15.2 �A Zk �Ek �Qk �Pk5.3 A Zk Ek Qk PkTable 5.1: Corresponding matries of the proposed de�ation variants.5.4 Theoretial Comparison of De�ation VariantsIn this setion, we �rst show that the ondition number of �A is redued to the onditionnumber of A by a simple de�ation tehnique. Thereafter, we prove that even thematries �M�1 �Pk �A and M�1Pk�1A orresponding to Variants 5.1 and 5.2, respetively,are (almost) equal. Finally, it is also shown that M�1Pk�1A from Variant 5.1 and



76 Chapter 5. Subdomain De�ation applied to Singular MatriesM�1PkA from Variant 5.3 are equal. As a onsequene, Variants 5.1, 5.2 and 5.3 arebased on approximately idential preonditioned-de�ated oe�ient matrix, so thatthey would theoretially lead to the same onvergene results.5.4.1 On the Connetion of the Singular and Invertible MatrixReall that �P1 is the de�ation matrix with one onstant de�ation vetor based on �A.In this subsetion, we show that the de�ated matrix, �P1 �A, is idential to the originalsingular matrix, A. We start with Lemma 5.2, that shows that �P1 is the identity matrixexept for the last row.Lemma 5.2. Let �P1 be as given in De�nition 5.3. Then, �P1 = I � e(n)n;n.Proof. For k = 1, we have�P1 = I � �Az0 �E�1zT0 ; �E�1 = (zT0 �Az0)�1 = 1�an;n ;using Property 5.3. Hene, �P1 = I � �A1n;n�an;n = I � e(n)n;n:As a onsequene, �P1 has the properties that the last olumn is 0n, and the matrixonsists of only the values 0, 1 and �1. Next, by applying Lemma 5.2, we obtain thefollowing theorem.Theorem 5.1. Let A and �A be as in Assumption 1.2 and De�nition 5.2, respetively.Let �P1 be as given in De�nition 5.3. Then, �P1 �A = A holds.Proof. Due to Lemma 5.2, �P1 �A = A holds for all rows exept the last one. Theanalysis of the last row of �P1 �A, whih is (e(n)n � 1n)T �A, is as follows. Sine 1Tn A = 0Tnand (e(n)n � 1n)T �A = (e(n)n � 1n)TA hold, this yields(e(n)n � 1n)T �A = (e(n)n )T A:Hene, the last row of �P1 �A and A is also equal, whih proves the theorem.Theorem 5.1 implies that, after premultiplying with the de�ation matrix with k = 1,the invertible oe�ient matrix, �A, beomes equal to the original singular oe�ientmatrix, A. Apparently, only one eigenvalue of �A depends on the value of �, whihorresponds to the onstant eigenvetor. This eigenvetor is eliminated e�etively by�P1, so that �P1 �A and A are equal. Moreover, aording to the proof of Theorem 5.1,the results for this de�ation tehnique are independent of the entries of the last rowof �A.



5.4. Theoretial Comparison of De�ation Variants 775.4.2 Comparison of the De�ated Singular and Invertible MatrixTheorem 5.2 is the main result of this subsetion. In order to prove this theorem,a set of lemmas is required, whih are stated below. The most important lemmasare Lemma 5.3 and Lemma 5.6, whih show that de�ation matrix �Pk is invariant byright-multipliation by �P1, and that de�ated matries �PkA and Pk�1A are idential.Lemma 5.3. Let �Pi be as given in De�nition 5.3. �Pk �P1 = �Pk holds.Proof. Note �rst that the last olumn of �E�1 is equal to 1�an;n 1k by usingZTk �AZk1k = �an;nZTk e(n)n = �an;ne(k)kand Lemma A.11. Then, for all �, the last olumn of �A �Qk is exatly e(n)n , sine wehave
( �A �Qk)1:n;n = ( �AZk �E�1ZTk )1:n;n =∑kp=1 ( �AZk)1:n;p ( �E�1ZTk )p;n= 1�an;n ∑kp=1( �AZk)1:n;p = 1�an;n �A1n = 1�an;n �an;ne(n)n = e(n)n ;for all i = 1; 2; : : : ; n, where De�nition 5.1 and Property 5.1 are used. Therefore, thelast olumn of �Pk = I � �A �Qk is 0n. Using the latter fat ombined with Property 5.3,we obtain �Pk �A1n = 0n. Hene, this implies�Pk �P1 = �Pk (I � � �A1n) = �Pk � � �Pk �A1n = �Pk :Lemma 5.4. Let Ẑk and �A be as given in De�nitions 5.1 and 5.2, respetively. Then,there exists a matrix �Y := [zk+1 zk+2 � � � zn℄ 2 R(n�k)�n suh that� X := [�Y ; Ẑk] is invertible;� ẐTk �A�Y = 0k;n�k holds.Proof. It is always possible to �nd a full-rank matrix, �Y , suh thatR(X) = R(�Y )�R(Ẑk);where R(�Y ) is the orthogonal omplement of R(Ẑk), see Lemma A.15. Then, byde�nition (see De�nition A.2), X := [�Y ; Ẑk] is an invertible matrix. Furthermore, byDe�nition A.2, we have (f. Eq. (A.11))R(�Y ) = {y 2 Rn j hw; yi �A = 0 8w 2 R(Ẑk)} :In partiular, for all w 2 R(Ẑk) and y 2 R(�Y ), we have hw; yi �A = wT �Ay = 0; whihyields ẐTk �A�Y = 0k;n�k .



78 Chapter 5. Subdomain De�ation applied to Singular MatriesLemma 5.5. Let A and �A be as in Assumption 1.2 and De�nition 5.2, respetively.Suppose that z0 is as given in De�nitions 5.1. Let Pk�1 and P̂k be as given in De�ni-tion 5.3. Then, the following equalities hold:(i) (Pk�1 � P̂k � e(n)n zT0 ) �Az0 = 0n;(ii) (Pk�1 � P̂k) �AZk�1 = 0n;k�1.Proof. (i) Note �rst thatZTk�1 �Az0 = 0n; Q̂k �Az0 = Ẑk Ê�1k (ẐTk �Az0) = Ẑke(k)k = z0; (5.13)using Property 5.1. Combining Eq. (5.13) with Property 5.3 yields
( �AQ̂k � AQk�1) �Az0 = �AQ̂k �Az0 � AZk�1E�1k�1 (ZTk�1 �Az0)= �Az0 = �an;ne(n)n : (5.14)Moreover, we derive e(n)n 1Tn �Az0 = �an;ne(n)n;ne(n)n = �an;ne(n)n ; (5.15)using the fats that e(n)n 1Tn = e(n)n;n and e(n)n;ne(n)n = e(n)n . Equalizing Eqs. (5.14)and (5.15) results in (Pk�1 � P̂k � e(n)n zT0 ) �Az0 = 0n:(ii) Note �rst that the following identities hold for i � k � 1:� Qk�1Azi = Zk�1E�1k�1 (ZTk�1Azi) = Zk�1e(i)k�1 = zi ;� Q̂k �Azi = Ẑk �E�1k (ẐTk �Azi) = Ẑke(i)k = zi ;� �Azi = Azi ,applying Property 5.1. As a onsequene,

(Pk�1 � P̂k) �Azi = �AQ̂k �Azi � AQk�1Azi = �Azi � Azi = 0n;for i = 1; 2; : : : ; k � 1. This yields (Pk�1 � P̂k) �AZk�1 = 0n;k�1.Lemma 5.6. Let A satisfy Assumption 1.2. Let �Pk and Pk�1 be as given in De�ni-tion 5.3. Then, �PkA = Pk�1A holds.Proof. It is su�ient to prove that (Pk�1 � �Pk)A = 0n;n. Sine A1n = 0n (Assump-tion 1.2) holds, this implies that we have to show that eah row of Pk�1� �Pk ontainsthe same entries. In other words, after de�ningB := [%1 %2 : : : %n℄T1Tn ;



5.4. Theoretial Comparison of De�ation Variants 79it su�es to prove that there exist some parameters, %i 2 R; i = 1; 2; : : : ; n, and aninvertible matrix, C 2 Rn�n, suh that
(Pk�1 � P̂k � B)C = 0n;n (5.16)is satis�ed. Then, this would yield Pk�1� �Pk = B, sine P̂k = �Pk holds (Corollary 5.1).The proof is as follows. TakeC := �A [Ẑk ; �Y ] = �A [Zk�1; z0; �Y ] ;where �Y = [zk+1 zk+2 � � � zn℄ has the properties that the set,fzi : i = 0; 1; : : : ; n; i 6= kg;is linearly independent and ẐTk �A�Y = 0Tn�k (5.17)is satis�ed. Using Lemma 5.4, suh a matrix, �Y , an always be onstruted. Notethat, from Eq. (5.17), we partiularly obtainzT0 �A�Y = 0Tn�k ; ZTk�1 �A�Y = 0k�1: (5.18)Next, the following equalities hold:� (Pk�1 � P̂k) �A�Y = 0n;n�k , by ombining Eqs. (5.17) and (5.18);� (Pk�1 � P̂k) �AZk�1 = 0n;k�1 (Lemma 5.5(ii));� B [ �AZk�1; �A�Y ] = 0n;n, sine Eq. (5.18) holds and zT0 AZk�1 = 0Tk�1 followsfrom Properties 5.1 and 5.3.Combining these latter results gives us

(Pk�1 � P̂k � B) [ �AZk�1; �A�Y ] = 0n;n�1; (5.19)for all %i . Moreover, (Pk�1 � P̂k � B) �Az0 = 0n (5.20)holds due to Lemma 5.5(i), by taking %1 : : : = %n�1 = 0 and %n = 1. Hene, ombiningEqs. (5.19) and (5.20) yields
(Pk�1 � P̂k � B)C = (Pk�1 � P̂k � B) [ �AZk�1; �Aẑ0; �A�Y ] = 0n;n;with %1 : : : = %n�1 = 0 and %n = 1, whih ompletes the proof of the lemma.Finally, Theorem 5.2 shows that the de�ated singular matries based on A and �Aare equal, whih is a rather unexpeted result. The onsequene of the theorem is thatVariants 5.1 and 5.2 have the same expeted onvergene rate.



80 Chapter 5. Subdomain De�ation applied to Singular MatriesTheorem 5.2. Let A and �A be as in Assumption 1.2 and De�nition 5.2, respetively.Let Pk�1 and �Pk be as given in De�nition 5.3. Then, �Pk �A = Pk�1A holds for all � > 0and k > 1.Proof. The following equalities hold:� �P1 �A = A (Theorem 5.1);� �Pk �P1 = �Pk (Lemma 5.3);� �PkA = Pk�1A (Lemma 5.6),whih are valid for all � > 0 and k � 1. Hene,�Pk �A = �Pk �P1 �A = �PkA = Pk�1A:
5.4.3 Comparison of the Preonditioned De�ated Singular and InvertibleMatrixIn this subsetion, we restrit ourselves to the standard inomplete Cholesky (IC(0))preonditioners, see the next de�nition.Assumption 5.1. Suppose that A satis�es Assumption 1.2 and let �A be given asDe�nition 5.2. Then, M�1 and �M�1 are the IC(0) preonditioners based on A and �A,respetively.From Theorem 5.2, the equality �Pk �A = Pk�1A holds. This implies that the pre-onditioned variant of this equality also holds, see the next orollary.Corollary 5.3. Let A and �A be as in Assumption 1.2 and De�nition 5.2, respetively.Let �Pk and Pk�1 be as in De�nition 5.3. Moreover, let M�1 be as in Assumption 5.1.Then, M�1 �Pk �A = M�1Pk�1A:However, if A is not known expliitly, thenM�1 ould be di�ult to determine, whereas�M�1 ould be readily obtained from �A. This might be inonvenient, beause of thefat that �M�1 �Pk �A 6= M�1Pk�1A. However, we show in this subsetion thatlim�!0�( �M�1 �Pk �A) = �(M�1Pk�1A) (5.21)holds. First, we deal with the omparison of the ondition numbers of M�1A and�M�1A, and, thereafter, we generalize these results to M�1Pk�1A and �M�1 �Pk �A.An algorithm for omputing the IC(0) preonditioner an be found in, e.g., [63,Set. 10.3.2℄. Reall that the IC(0) preonditioner is formed by M = LLT , where L isa lower-triangular matrix. Analogously, �M = �L�LT an be omputed from �A. Aording



5.4. Theoretial Comparison of De�ation Variants 81to the algorithm desribed in [63℄, the IC(0) preonditioners of A and �A are the sameexept the last entry, sine only the last entry of L and �L di�ers, i.e.,�M �M = e(n)n (e(n)n )T ;  2 R: (5.22)If we denote M = [mi ;j ℄ and �M = [ �mi ;j ℄, then we have mn;n = an;n and �mn;n = �an;n byde�nition. Consequently, = �mn;n �mn;n = �an;n � an;n = �an;n:This implies lim�!0  = lim�!0�an;n = 0: (5.23)Now, we an prove that the ondition numbers of M�1A and �M�1A are the samefor � ! 0, see Theorem 5.3.Theorem 5.3. Suppose that A satis�es Assumption 1.2. Let M�1 and �M�1 be asgiven in Assumption 5.1. Then, the following identity holds:lim�!0 �( �M�1A) = �(M�1A):Proof. The eigenproblems of M�1A and �M�1A are given byM�1Av = �v; �M�1Aw = �w; v; w 2 Rn; �; � 2 R: (5.24)These eigenproblems an be rewritten as generalized eigenproblems,(A� �M)v = 0; (A� � �M)w = 0:Due to Eq. (5.22), we have M + RM = �M, with the symmetri perturbation matrix,RM, given by RM = �e(n)n (e(n)n )T ; � 2 R:This yields jjRM jj2 = max f j�1(RM)j ; j�n(RM)j g = �:We note that RM satis�es jjRM jj22 < (A;M), where (A;M) denotes the Crawfordnumber (see Eq. (A.3)). This is due to the fat that there exists a parameter, �0 > 0,suh that �2 < (A;M) is satis�ed for all � < �0, sine (A;M) does obviously notdepend on �.Lemma A.8 an now be applied, sine the onditions of this lemma are satis�ed.Note that lim�!0 � = 0 follows from Eq. (5.23). This implieslim�!0 �(A;M) = 1(A;M) lim�!0 � = 0;



82 Chapter 5. Subdomain De�ation applied to Singular Matriesso, in partiular, lim�!0 artan( �(A;M)) = 0: (5.25)Now, the eigenvalues of (5.24) are related by Eq. (A.4) of Lemma A.8, i.e.,j artan (�i)� artan (�i) j � artan( jjRM jj2(A;M)) : (5.26)By ombining Eqs. (5.25) and (5.26), we obtainlim�!0 artan (�i) = artan (�i) ;resulting in lim�!0 �i = �i ; sine the artan-operator is bijetive and ontinuous.Hene, the theorem follows immediately.Next, we ompare the ondition numbers of M�1PkA and �M�1 �Pk �A. Reall thatboth A and Pk�1A are SPSD matries, so that we an substitute Pk�1A into A inTheorem 5.3. Sine �Pk �A = Pk�1A follows from Theorem 5.2, this gives us the nexttheorem.Theorem 5.4. Suppose that A satis�es Assumption 1.2. Let Pk�1 and �Pk be as givenin De�nition 5.3. Moreover, let M�1 and �M�1 satisfy Assumption 5.1. Then,lim�!0 �( �M�1 �Pk �A) = �(M�1Pk�1A):Theorem 5.4 states that, although �M�1 �Pk �A and M�1Pk�1A di�er, their onditionnumber are almost idential for a su�iently small perturbation, �. As a result, Vari-ants 5.1 and 5.2 are expeted to have a similar onvergene rate.5.4.4 Comparison of the Preonditioned De�ated Singular MatriesHere, we prove that the preonditioned de�ated matries, M�1Pk�1A and M�1PkA,orresponding to Variants 5.1 and 5.3 are equal. This main result is presented inTheorem 5.5.Theorem 5.5. Suppose that A satis�es Assumption 1.2. Let Pi and M�1 be as inDe�nition 5.3 and Assumption 5.1, respetively. Then, the following identity holds:M�1PkA = M�1Pk�1A: (5.27)Proof. The proof an be found in Appendix C.Aording to Theorem 5.5, the de�ated-preonditioned matries based on k �1 and kde�ation vetors are the same, so that Variants 5.1 and 5.3 are mathematially equiv-alent.



5.5. Appliation to Bubbly Flows 83Remark 5.5.� From Theorem 5.5, it an be observed that it is possible to base omputationswith de�ation matries on the real inverse rather than the pseudo-inverse of E.This theorem an even be generalized to general singular oe�ient matriesand de�ation vetors, see Appendix C for details. This researh is still ongoingduring writing this thesis, see [85℄.� By ombining Theorems 5.3 and 5.5, we onlude that all proposed de�ationvariants are equivalent for su�iently small �, so the e�etiveness of these vari-ants is approximately the same. It depends on the e�ieny of implementationof the variants in order to deide whih variant is the best one in pratie, seeChapter 8.5.5 Appliation to Bubbly FlowsIn this setion, we illustrate the theoretial results, as presented in the previous setion,with bubbly �ow experiments. The 3-D variants of the bubbly �ows with � = 103,m = 23 and s = 0:05, as given in Figure 1.2 of Setion 1.3, are onsidered. Both theresulting linear systems, Ax = b and �Ax = b, are ill-onditioned, due to the presene ofbubbles. These linear systems are solved using ICCG and DICCG�k (i.e., DPCG withthe IC(0) preonditioner and k de�ation vetors). The termination riterion is basedon (3.27) with Æ = 10�8, and the de�ation-subspae matrix, Z, onsists of subdomainde�ation vetors as de�ned in Setion 4.2.3. We vary the perturbation parameter, �,and the number of de�ation vetors, k, in our experiments.Note that numerial experiments with Variant 5.1 have already been performed inChapters 3 and 4. In Setion 5.5.1, we present the results for Variant 5.2. Thereafter,Setion 5.5.2 is devoted to the omparison of Variants 5.1 and 5.2. Variant 5.3 isexluded in these experiments, sine it requires speial are for omputations with E+k .This topi is further investigated in Chapter 8.5.5.1 Results of ICCG and DICCG with Variant 5.2The results of ICCG and DICCG with Variant 5.2 an be found in Table 5.2. Notethat both methods are based on �Ax = b with an invertible oe�ient matrix, �A. In thease of ICCG, the results of solving the original linear system, Ax = b, with a singularmatrix, A, are added for omparison.From Table 5.2, it an be observed that the number of iterations for DICCG isindependent of � (as long as it is su�iently small), as expeted from Theorem 5.3.Con�rming Theorem 5.1, we see that the required number of iterations for ICCG isequal to the number for DICCG�1, when the problem with arbitrary � > 0 is solved.Moreover, we notie that inreasing the number of de�ation vetors, k, leads to anoninreasing number of iterations for DICCG (f. Theorem 3.3).



84 Chapter 5. Subdomain De�ation applied to Singular Matries(a) ICCG.n � = 0 � = 10�1 � = 10�3323 100 138 147643 118 195 195(b) DICCG�k (Variant 5.2).n = 323 n = 643k � = 10�1 � = 10�3 � = 10�1 � = 10�31 100 100 118 11823 66 66 126 12643 66 66 131 13183 28 28 106 106Table 5.2: Number of iterations for ICCG and DICCG (Variant 5.2) to solve the linear system �Ax = bwith invertible �A, for the test ase with m = 23, � = 103, and s = 0:05.In Figure 5.1(a), the residuals of ICCG and DICCG an be found for the testase of n = 323 and � = 10�3. From this �gure, it an be observed that ICCGshows an errati onvergene behavior, while DICCG onverges almost monotonially.Apparently, the spae spanned by eigenvetors orresponding to the small eigenvaluesare well-approximated by the spae spanned by the subdomain de�ation vetors (f.the results in Chapter 4). Moreover, we observe that the residuals of DICCG�23 andDICCG�43 almost oinide. This might be aused by the fat that some unfavorableeigenvetors ofM�1A are not treated e�etively by both 23 and 43 subdomain de�ationvetors, and it is related to the geometry of the density �eld. When we take m = 33bubbles, the results with k = 43 are muh better than for k = 23, see Table 5.3. Inaddition, in Figure 5.1(b), the residuals of ICCG and DICCG are presented for the testase with n = 323 and � = 10�3. Now, the residuals of DICCG�43 derease almostmonotonially, whereas the residuals of both ICCG and DICCG�23 are still errati. Inthis ase, eigenvetors assoiated with small eigenvalues are worse approximated bythe de�ation vetors, ompared to the ase with m = 23 bubbles (f. Figure 5.1(a)).This is aused by the position of the bubbles with respet to the subdomains, and theinreased number of bubbles that is more ompliated to treat with a relatively smallnumber of de�ation vetors.5.5.2 Results of the Comparison between Variants 5.1 and 5.2This subsetion deals with a numerial omparison of Variants 5.1 and 5.2. The samesetting as in the previous subsetion is used. The results are presented in Table 5.4.Reall that Variant 5.1 adopts the de�ation method with k � 1 instead of k de�ationvetors, so that DICCG�1 is not de�ned in this ase.From Table 5.4, we observe immediately that the results for Variant 5.2 (Ta-ble 5.4(a)) are the same as those for Variant 5.1 (Table 5.4(b)). Indeed, the twodi�erent variants with a singular and invertible oe�ient matrix seem to be mathe-matially equivalent, whih on�rms Theorem 5.4.
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(b) m = 33 bubbles.Figure 5.1: Residuals of ICCG, DICCG�23 and DICCG�33 with Variant 5.2, for the test ase withn = 323 and � = 10�3. (a) ICCG.n � = 0 � = 10�1 � = 10�3323 140 206 233643 246 246 362(b) DICCG�k (Variant 5.2).n = 323 n = 643k � = 10�1 � = 10�3 � = 10�1 � = 10�31 140 140 246 24623 137 137 197 19743 76 76 131 13183 42 42 59 59Table 5.3: Number of iterations for ICCG and DICCG (Variant 5.2) to solve �Ax = b, for the test asewith m = 33, � = 103, and s = 0:05.
(a) Variant 5.1 (based on A).k n = 323 n = 64323 66 12643 66 131 (b) Variant 5.2 (based on �A).n = 323 n = 643k � = 10�1 � = 10�3 � = 10�1 � = 10�323 66 66 126 12643 66 66 131 131Table 5.4: Number of iterations for DICCG (both Variant 5.1 and Variant 5.2) to solve Ax = b (witha singular A) and �Ax = b (with an invertible �A) for m = 23.



86 Chapter 5. Subdomain De�ation applied to Singular Matries5.6 Conluding RemarksIn this hapter, we present three di�erent de�ation variants, whih an deal with thesingularity of the oe�ient matrix, A. In Variant 5.2, an invertible oe�ient matrix,�A, is used instead of the singular matrix A, while the solution of the linear systemremains the same. Invertibility of the matrix gives several advantages for the iterativesolver. The drawbak, however, is that the ondition number of �A beomes worseompared to that of A. We show that this di�ulty an be ompletely remedied byapplying the de�ation tehnique with just one de�ation vetor. Moreover, Variants 5.1and 5.3 are based on the original singular matrix, A. In Variant 5.1, the de�ation-subspae matrix is hosen suh that the real inverse of the resulting Galerkin matrixalways exists. This variant is basially the de�ation method as onsidered in priorhapters. Moreover, the de�ation matrix in Variant 5.3 relies on the natural hoie ofde�ation vetors and the pseudo-inverse of the Galerkin matrix. This variant is mostrelated to the general de�ation method applied to invertible oe�ient matries.The proposed de�ation variants are analyzed and ompared. We show that theorresponding preonditioned-de�ated oe�ient matries are the same, for ertainde�ation vetors and small perturbations of A to onstrut �A. Hene, the onver-gene behavior of the de�ation variants are expeted to be omparable. It depends onthe implementation and pratial wishes of the user whih variant an be best used.Results of numerial experiments on�rm the theoretial results, and show the goodperformane and equivalenes of the de�ation variants. Variant 5.3 is not onsideredyet due to its implementation omplexity. This variant is further analyzed in Chapter 8.



Chapter 6Comparison of Two-Level PCGMethods � Part I
6.1 IntrodutionIn the previous hapters, the de�ation method has been analyzed extensively. Thismethod was originally used by Niolaides [108℄ and Dostal [40℄ to aelerate the on-vergene of PCG, and several ontributions were made sine then, inluding [45, 82,122,173℄. Following [108℄, the onvergene of PCG an be improved if the omponentsof the residual assoiated with the smallest eigenvalues are no longer present during theiteration proess. The orresponding preonditioner of the de�ation method onsistsof a ombination of a traditional single-level preonditioner, M�1, and a seond-levelpreonditioner, P . In this ase, the de�ation preonditioner an be regarded as a two-level preonditioner, and the resulting method an be interpreted as a two-level PCG(2L-PCG) method, see also Setion 1.2.In addition to the traditional preonditioner, a seond kind of preonditioner isinorporated in eah 2L-PCG method to improve the onditioning of the oe�ientmatrix, so that the resulting approah e�etively treats the e�et of both small andlarge eigenvalues. Besides the �eld of de�ation, a PCG method in ombination with apreonditioner based on multigrid (MG) or domain deomposition method (DDM), anbe seen as a 2L-PCG method, sine most of these methods rely on preonditioningon two levels. Probably the simplest form of 2L-PCG is CG ombined with a two-grid method. In this ase, together with the �ne-grid linear system from whih theapproximate solution of the original PDEs is omputed, a oarse-grid system is builtbased on a prede�ned oarse grid. From MG point of view, the (seond-level) oarse-grid system is used to redue the slow-varying, low-frequeny omponents of the error,whih ould not be e�etively redued on the (�rst-level) �ne grid. These low-frequenyomponents of the error are assoiated with the small eigenvalues of the oe�ientmatrix. The high-frequeny omponents are, however, e�etively handled on the �negrid. The latter is assoiated with the large eigenvalues of the oe�ient matrix.87



88 Chapter 6. Comparison of Two-Level PCG Methods � Part IIn order to attain a further redution of the error, however, it is required that theslow-varying omponents of the error on the �ne grid are well approximated on theoarse grid. While the two-grid method on its own is a good method for some lass ofproblems, a better onvergene bound an be obtained if it is used as a preonditionerfor PCG.The two-grid preonditioning has been known for a long time, dating bak at leastto the 1930s. Its potential was �rst exploited by Fedorenko and Bakhalov in the 1960s,and later by Brandt [21℄ and Hakbush [69℄, whih paved the way to the birth of MGmethods. We refer to [151, 178℄ and referenes therein for more details. In the two-grid method, the seond-level problem is derived from the systemati oarsening of theunderlying, prede�ned �ne grid, and, heneforth, has a geometrial relationship withthe �ne grid, see [126,150℄. MG methods an be useful for solving problems with highoe�ient ratios, see, e.g., [164�166℄. On the other hand, a more general two-levelmethod is obtained if the seond-level problem is built by using only the oe�ientmatrix. This generalization results in the so-alled algebrai multigrid (AMG) method.AMG an be very e�etive for ellipti problems on unstrutured grids, even with highoe�ient ratios [30,118℄. Similar observations an also be made for DDM. As in thease of MG, DDM by its own is an e�etive method for some lass of problems, andthe onvergene an be further improved if it is ombined with CG. Abstrat balaningNeumann-Neumann (BNN) methods [89�91℄ are well-known examples in this �eld.Other examples of DDM, whih are useful for solving problems with high-oe�ientratios, an be found in [126,150℄.At �rst glane, 2L-PCG methods from de�ation, DDM and MG seem to be di�er-ent. For example, in de�ation, eigenvetors or eigenvetor approximations assoiatedwith the unfavorable eigenvalues are often used as projetion vetors. In ontrast,MG or DDM use speial projetion vetors, whih represent interpolations betweenthe �ne-grid and oarse-grid subspae. Surprisingly, from algebrai/abstrat point ofview, the 2L-PCG methods from the three �elds are quite omparable or even equiv-alent. For example, the de�ation operator is the same as the multigrid operator ifno pre- and post-smoothing are performed, i.e., the de�ation operator is the same asthe oarse-grid orretion operator in MG. While de�ation is quite suessful withinKrylov methods, using only oarse-grid orretion does not lead to a suessful MGmethod [150℄. This motivates us to approah the 2L-PCG methods from an abstratpoint of view. In this hapter, we introdue a generalized formulation for de�ation,MG and DDM, resulting in a uni�ed theory.In [103�105℄, theoretial omparisons are presented for the de�ation, BNN and ad-ditive oarse-grid orretion (AD) methods. It is proven, using spetral analysis amongother tehniques, that the de�ation method is expeted to yield faster onvergeneompared to the other two methods. For ertain starting vetors, de�ation and BNNeven produe the same iterates. Although these methods seem to be omparable, de-�ation is not always robust, as observed in the limited numerial experiments providedin [103�105℄. The residuals may stagnate or even diverge during the iteration proess,if the required auray is (too) high. The AD and BNN preonditioners are more ro-



6.1. Introdution 89bust, but they also have drawbaks: BNN is more expensive to apply, and AD is slowerto onverge. It is known in the literature, see [89, 150℄, that the implementation ofthe robust BNN method an be made less expensive, so that the total amount of workis omparable to de�ation and AD. In this ase, new 2L-PCG methods an be de�nedand they an be interpreted as redued variants of the original BNN method. However,not muh is known about the robustness of these redued variants, as most theoretialresults apply to only the original method. One of the subjets of this hapter is to dealwith this issue in detail. More reent papers about the robustness of 2L-PCG methodsan be further found in, e.g., [16,59,65℄.In this hapter, the two-level PCG methods are ompared theoretially by inves-tigating the orresponding spetral properties, their numerial implementations, andequivalenes. Thereafter, the main fous is on numerial experiments, where the 2L-PCG methods are tested for their onvergene properties and robustness. The e�etof di�erent implementations is analyzed, and the results are related to the theory. Notethat, in [103�105℄, the omparisons of de�ation, BNN and AD are mainly based ontheoretial aspets, whereas only a limited numerial omparison is presented. Thishapter fouses equally on theoretial and numerial aspets of these of 2L-PCG meth-ods. The following questions are answered in this hapter:� what is the relation and equivalenes between the two-level PCG methods?� whih two-level PCG methods an be applied, if one uses inaurate oarsesolvers, severe termination riteria or perturbed starting vetors?� is there a two-level preonditioner that is as robust as BNN and as heap andfast as de�ation?Similar to the 2L-PCG methods onsidered in this hapter, there are some othervariants known as augmented subspae CG [46℄, de�ated Lanzos method [122℄,and the Odir and Omin version of CG ombined with extra vetors [6℄. We referto [122, 124℄ for a disussion and omparison of these methods. In the overview pa-per [124℄, more details and referenes are also given about Krylov subspae methodswith respet to inexat omputations and their equivalenes. Another omparison of2L-PCG methods is arried out in [59℄, where methods known as Init-CG, Def-CG,Proj-CG and SLRU are ompared. The aim of that paper is to obtain an optimalsolver, that exploits aurate spetral information about the oe�ient matrix in ane�ient way. In ontrast to that paper, our omparison of 2L-PCG methods is donewithout any spetral information of the oe�ient matrix, A. Reently, novel additiveand multipliative two-level preonditioners applied to general linear systems are on-sidered in [26℄. These spetral preonditioners are based on multigrid ideas, and anbe well analyzed for speial hoies of the restrition and prolongation operators.This hapter is organized as follows. In Setion 6.2, we introdue and disusstwo-level PCG methods. Setion 6.3 is devoted to the theoretial omparison of thesemethods. Subsequently, the numerial omparison of the two-level PCG methods isarried out in Setion 6.4. Finally, some onluding remarks are given in Setion 6.5.



90 Chapter 6. Comparison of Two-Level PCG Methods � Part IRemark 6.1. In this hapter, we restrit ourselves to a nonsingular oe�ient matrix,A, for onveniene. However, all main results are generalizable for A that is singular,see [85℄.6.2 Two-Level PCG MethodsIn this setion, two-level PCG methods are de�ned and motivated, but we start withsome terminology (f. De�nition 3.1), and a preliminary result (f. Lemma 3.2).De�nition 6.1. Suppose that an SPD oe�ient matrix, A 2 Rn�n, and a de�ationsubspae matrix, Z 2 Rn�k, with full rank and k < n are given. Then, we de�nethe invertible Galerkin matrix, E 2 Rk�k, the orretion matrix, Q 2 Rn�n, and thede�ation matrix, P 2 Rn�n, as follows:P := I � AQ; Q := ZE�1ZT ; E := ZTAZ:Lemma 6.1. Let A 2 Rn�n and Z 2 Rn�k be given. Suppose that Q and P are givenas in De�nition 6.1. Then, the following equalities hold:(a) P = P 2;(b) PA = AP T ;() P TZ = 0n;k , P TQ = 0n;n;(d) PAZ = 0n;k , PAQ = 0n;n;(e) QA = I � P T , QAZ = Z, QAQ = Q;(f) QT = Q.Remark 6.2.� E is SPD for any full-rank Z, sine A is SPD.� In this hapter, k � n does not neessarily hold. But if k � n does hold, then Eis a matrix with small dimensions, so that it an be easily omputed and fatored.From an abstrat point of view, all two-level preonditioners of the methods onsistof an arbitrary M�1, ombined with one or more matries P and Q. In the nextsubsetion, we give an explanation of the hoies for these matries in the di�erent�elds. Nevertheless, from our point of view, matries M�1 and Z are arbitrary (but�xed) for eah 2L-PCG method. In this way, the abstrat setting allows us to omparethe methods in terms of operators, although they have their roots in di�erent �elds.



6.2. Two-Level PCG Methods 916.2.1 Bakground of the Matries in Domain Deomposition, Multigridand De�ationIn the 2L-PCG methods used in DDM, suh as the BNN and (two-level) additiveShwarz methods, the single-level preonditioner, M�1, onsists of loal exat or in-exat solves on subdomains. Moreover, Z desribes a prolongation (or interpolation)operator, while ZT is a restrition operator based on the subdomains. In this ase, Eis alled the oarse-grid (or Galerkin) matrix. In order to speed up the onvergeneof the additive Shwarz method, a oarse-grid orretion matrix, Q, an be added,whih is a so-alled additive oarse-grid orretion. Finally, P an be interpreted as asubspae orretion, in whih eah subdomain is agglomerated into a single ell. Moredetails an be found in [126,150℄.In the MG approah, Z and ZT are also the prolongation and restrition opera-tors, respetively, where typial MG grid-transfer operators allow interpolation betweenneighboring subdomains. E and Q are again the oarse-grid (or Galerkin) and oarse-grid orretion matries, respetively, orresponding to the Galerkin approah. MatrixP an be interpreted as the algebrai form of the oarse-grid orretion step in MG,where linear systems with E are usually solved reursively. In the ontext of MG meth-ods,M�1 should work as a smoother (also known as relaxation method) that eliminatesthe high-frequeny errors in the residuals and often orresponds to Jaobi or Gauss-Seidel iterations. Before or after the smoothing step(s), a oarse-grid orretion, P ,is applied to remove the slow frequenies in the residuals. We refer to [69, 151, 178℄for more details.As disussed in the previous hapter, M�1 is often a traditional preonditioner,suh as an Inomplete Cholesky fatorization, in de�ation methods. Furthermore, thede�ation-subspae matrix, Z, onsists of so-alled de�ation vetors, whih are usedin the de�ation matrix, P . In this ase, the olumn spae of Z builds the de�ationsubspae, i.e., the spae to be projeted out of the residuals. It often onsists ofeigenvetors, approximations of eigenvetors, or pieewise-onstant vetors, whih arestrongly related to DDM. If one hooses eigenvetors, the orresponding eigenvalueswould be shifted to zero in the spetrum of the de�ated matrix. This fat has motivatedthe name `de�ation method'. In the literature, the de�ation two-level preonditioneris also known as the spetral preonditioner, see, e.g., [59℄. Usually, systems with Eare solved diretly, using, e.g., a Cholesky deomposition.6.2.2 General Linear SystemsThe general linear system, whih is the basis for two-level PCG methods, isPAx = b; P;A 2 Rn�n: (6.1)In the standard (single-level) PCG method, x = x is the solution of the original linearsystem, Ax = b, A = A is the SPD oe�ient matrix, P = M�1PREC represents atraditional SPD preonditioner, and b = M�1PRECb is the right-hand side, see also [63,97℄.



92 Chapter 6. Comparison of Two-Level PCG Methods � Part IWe denote this method by `Traditional PCG' (PREC).Next, A may also be a ombination of A and P , suh that A is SP(S)D, whileP remains a traditional preonditioner. Note that this does not ause di�ulties forthe CG proess, sine it is robust for SPSD matries as long as the linear systemis onsistent (f. Chapter 1), see [77℄. Furthermore, instead of hoosing one tra-ditional preonditioner for P, we an ombine di�erent single-level and seond-levelpreonditioners in an additive or multipliative way, whih is illustrated below.The additive ombination of two SPD preonditioners, C1 and C2, leads to Pa2,given by Pa2 := C1 + C2; (6.2)whih is also SPD. Of ourse, the summation of the preonditioners an be done withdi�erent weights for C1 and C2. Moreover, (6.2) an be easily generalized to Pai formore SPD preonditioners, C1; C2; : : : ; Ci .The multipliative ombination of preonditioners an be explained by onsideringthe stationary iterative methods indued by the preonditioner. Assuming that C1 andC2 are two SPD preonditioners, we an ombine
{ x i+ 12 = x i + C1(b � Ax i);x i+1 = x i+ 12 + C2(b � Ax i+ 12 ); (6.3)to obtain x i+1 = x i + Pm2(b � Ax i), withPm2 := C1 + C2 � C2AC1; (6.4)whih an be interpreted as the multipliative operator onsisting of two preondition-ers. Subsequently, C1 and C2 ould again be ombined with another SPD preondi-tioner, C3, in a multipliative way, yieldingPm3 = C1 + C2 + C3 � C2AC1 � C3AC2 � C3AC1 + C3AC2AC1: (6.5)This an also be generalized to Pmi for C1; C2; : : : ; Ci .6.2.3 De�nition of the Two-Level PCG MethodsThe two-level PCG methods that are onsidered in this hapter are presented andmotivated below.Additive MethodIf one substitutes a traditional preonditioner, C1 :=M�1, and a oarse-grid orretionmatrix, C2 := Q, into the additive ombination given in (6.2), this yieldsPAD = M�1 +Q: (6.6)Using the additive Shwarz preonditioner forM�1, the abstrat form (6.6) inludes



6.2. Two-Level PCG Methods 93the additive oarse-grid orretion preonditioner [19℄. The BPS preonditioner, intro-dued by Bramble, Pasiak and Shatz in [19℄, an be written as (6.6). This is furtheranalyzed in, e.g., [41,42,111℄. If the multipliative Shwarz preonditioner is taken asM�1, we obtain the Hybrid-2 preonditioner [150, p. 47℄. In the MG language, PADis sometimes alled an additive multigrid preonditioner, see [11℄. In this hapter, theresulting method assoiated with PAD is alled `Additive Coarse-Grid Corretion' (AD).De�ation MethodsThe de�ation tehnique is exploited in several papers, amongst them are [56,58,82,93,94, 99, 103, 104, 108, 122,173℄. Some di�erenes in the formulations an be observedin these papers, while they are basially mathematially equivalent. One of theseformulations of the de�ation method is presented in Chapter 3. This method is alled`De�ation Variant 1' (DEF1) in this hapter.An alternative way to desribe the de�ation tehnique is to start with an arbitraryvetor, �x , and hoose x0 := Qb + P T �x. Then, the solution of Ax = b an beonstruted from the de�ated systemAP T y = r0; r0 := b � Ax0: (6.7)The nonunique solution, y , is then used to obtain �y := P T y . It an be shown thatx = x0 + �y is the unique solution of Ax = b. Similarly, de�ated system (6.7) an alsobe solved with a single-level preonditioner, M�1, leading toM�1AP T y = M�1r0; r0 := b � Ax0: (6.8)Similar to the proedure for the unpreonditioned ase, x an be found from thenonuniquely determined solution, y , of (6.8). This leads to an algorithm that is basedon the projetion operator P TM�1, rather than M�1P as in DEF1, see [82,108,122℄.Hene, we solve P TM�1Ax = P TM�1b; (6.9)where the iterates, fxig, within the algorithm are uniquely determined as long as x0 :=Qb+P T �x is used. We treat this in more detail in Setion 6.3.2. The resulting methodis denoted by `De�ation Variant 2' (DEF2). Observe that Eq. (6.9) annot be writtenin the form of (6.1) with an SPD operator P and an SPSD matrix A. Fortunately, inSetion 6.3.2, it is shown that (6.9) is equivalent to a linear system that is in the formof (6.1).Remark 6.3. The main di�erene between DEF1 and DEF2 is their �ipped operators.In addition, if we de�ne the `uniqueness'-operation as omputing w := Qb + P T ~w ,for a given vetor ~w , this operation is arried out at the end of the iteration proessin DEF1, so that an arbitrarily hosen starting vetor, x0, an be used. On the otherhand, this operation is applied prior to the iteration proess in DEF2, whih an beinterpreted as adopting a speial starting vetor. As a onsequene, they have di�erentrobustness properties with respet to starting vetors, see Setion 6.4.5.



94 Chapter 6. Comparison of Two-Level PCG Methods � Part IAdapted De�ation MethodsIf one applies C1 := Q and C2 := M�1 in a multipliative ombination as given in (6.4),then this yields PA-DEF1 = M�1P +Q; (6.10)see [134℄ for more details. In the MG language, this operator results from a nonsym-metri multigrid V(1,0)-yle iteration sheme, where one �rst applies a oarse-gridorretion, followed by a smoothing step. Note that, although Q and M�1 are SPDpreonditioners, (6.10) is a nonsymmetri operator, and, even more, it is not symmet-ri with respet to the inner produt indued by A. In addition, PA-DEF1 an also beinterpreted as an adapted de�ation preonditioner, sine M�1P from DEF1 is om-bined in an additive way with a oarse-grid orretion, Q. Hene, the resulting methodorresponding to PA-DEF1 is denoted by the `Adapted De�ation Variant 1' (A-DEF1).Subsequently, we an also reverse the order of Q and M�1 (i.e., C1 := M�1 andC2 := Q) in (6.4), giving us PA-DEF2 = P TM�1 +Q: (6.11)Using an additive Shwarz preonditioner for M�1, PA-DEF2 is the two-level Hybrid-IIShwarz preonditioner [126, p. 48℄. In MG methods, PA-DEF2 is the nonsymmetrimultigrid V(0,1)-yle preonditioner, where M�1 is used as a smoother. Similar toA-DEF1, PA-DEF2 is nonsymmetri. Fortunately, we see in Setion 6.3.2 that A-DEF2is equivalent to a method based on a symmetri operator. As in the ase of PA-DEF1,the operator PA-DEF2 an also be regarded as an adapted de�ation preonditioner, sineP TM�1 from DEF2 is ombined with Q, in an additive way. Aordingly, the resultingmethod is denoted by the `Adapted De�ation Variant 2' (A-DEF2) method.Abstrat Balaning MethodsThe operators PA-DEF1 and PA-DEF2 an be symmetrized by using the multipliative om-bination of three preonditioners. If one substitutes C1 := Q; C2 := M�1 and C3 := Qinto (6.5), we obtain PBNN = P TM�1P +Q:The operator PBNN is a well-known operator in DDM. In ombination with an addi-tive Shwarz preonditioner for M�1, and after some saling and speial hoies ofZ, the operator PBNN is known as the Balaning-Neumann-Neumann preonditioner,introdued in [89℄, and further analyzed in, e.g., [43, 90, 91, 114,150℄. In the abstratform, PBNN is alled the Hybrid-1 preonditioner [150, p. 34℄. Here, we all it `AbstratBalaning Neumann-Neumann' (BNN).Of ourse, PA-DEF1 and PA-DEF2 ould also be symmetrized by using twieM�1 insteadof Q (i.e., C1 := M�1; C2 := Q and C3 := M�1) in Eq. (6.5). This results in thewell-known symmetri multigrid V(1,1)-yle iteration sheme, where a pre-smoothingstep is followed by a oarse-grid orretion and ended with a post-smoothing step. The



6.2. Two-Level PCG Methods 95resulting preonditioner is then expliitly given byP = M�1P + P TM�1 +Q�M�1PAM�1: (6.12)Note that this operator also follows by ombining the A-DEF1 and A-DEF2 operatorsin a multipliative way. In (6.12), a strutural di�erene an be observed betweenBNN and the multigrid V (1; 1)-yle iteration. As mentioned before, in MG, M�1 isthe smoothing operator, and the oarse-grid system typially has half of the order ofthe original system per diretion. Hene, smoothing is heap ompared to solving theoarse-grid system. In this ase, symmetrizing with another smoothing step is natural.In DDM, M�1 ontains all loal solves of the subdomain systems, while the dimensionof the Galerkin system is typially muh smaller than the dimension of the originalsystem. Hene, a symmetrization with a oarse-grid solve is inexpensive in DDM.Exept for speial hoies of the restrition and prolongation operator, see, e.g., [26℄,it is generally di�ult to analyze the spetra of the system preonditioned by (6.12)in omparison with the other methods desribed in this hapter. Therefore, we do notinlude this preonditioner in our omparison, but we fous on this issue in Chapter 7.Moreover, we also onsider two variants of BNN. In the �rst variant, we omit theterm Q from PBNN, giving us PR-BNN1 = P TM�1P;whih remains a symmetri operator. To our knowledge, PR-BNN1 is unknown in theliterature, and this is the �rst time that its properties are analyzed. The orrespondingmethod is alled `Redued BNN Variant 1' (R-BNN1). Next, in the seond variant ofBNN, we omit both the P and Q terms from PBNN, resulting inPR-BNN2 = P TM�1; (6.13)and this method is denoted by `Redued BNN Variant 2' (R-BNN2). Notie that theoperators of both R-BNN2 and DEF2 are equal, i.e.,PDEF2 = PR-BNN2 = P TM�1;where only the implementation is di�erent, see Setion 6.2.4. In fat, the implementa-tion of DEF2 is equivalent to the approah as applied in, e.g., [122℄, where the de�ationmethod is derived by ombining a de�ated Lanzos proedure and the standard CGalgorithm. On the other hand, R-BNN2 is the approah where de�ation is inorporatedinto the CG algorithm in a diret way [82℄, and it is also the approah where a hybridvariant is employed in DDM [150℄. Finally, as mentioned earlier, P TM�1 is a nonsym-metri preonditioner, but it is shown in Setion 6.3.2 that both PR-BNN1 and PR-BNN2are equivalent to PBNN for ertain starting vetors. Consequently, we lassify thesemethods as variants of the original BNN method, rather than as variants of de�ationmethods.



96 Chapter 6. Comparison of Two-Level PCG Methods � Part I6.2.4 Aspets of Two-Level PCG MethodsFor the sake of ompleteness, the 2L-PCG methods that are onsidered in this hapterare given in Table 6.1. More details about the methods an be found in the referenes,given in the last olumn of this table. Subsequently, the implementation and theomputational ost of these methods are onsidered in this subsetion.Name Method Operator ReferenesPREC Traditional PCG M�1 [63,97℄AD Additive Coarse-Grid Corretion M�1 +Q [19,126,150℄DEF1 De�ation Variant 1 M�1P [173℄DEF2 De�ation Variant 2 P TM�1 [82,108,122℄A-DEF1 Adapted De�ation Variant 1 M�1P +Q [126,151,178℄A-DEF2 Adapted De�ation Variant 2 P TM�1 +Q [126,151,178℄BNN Abstrat Balaning P TM�1P +Q [89℄R-BNN1 Redued Balaning Variant 1 P TM�1P �R-BNN2 Redued Balaning Variant 2 P TM�1 [89,150℄Table 6.1: List of methods that are ompared in this hapter. The operator of eah method an beinterpreted as the preonditioner P, given in (6.1) with A = A. Where possible, referenes to themethods and their implementations are presented in the last olumn.Implementation IssuesThe implementation of the 2L-PCG methods given in Table 6.1 an be presented inone algorithm, resulting in a generalized 2L-PCG method, see Algorithm 7. For eahmethod, the orresponding matries, Mi , and vetors, Vstart and Vend, are presented inTable 6.2. For more details, we refer to [134℄.Algorithm 7 Generalized Two-Level PCG Method for solving Ax = b.1: Selet arbitrary �x and Vstart;M1;M2;M3;Vend from Table 6.22: Set x0 := Vstart, and ompute r0 := b � Ax0, y0 :=M1r0; p0 :=M2y03: for j := 0; 1; : : : ; until onvergene do4: wj :=M3Apj5: �j := (rj ;yj )(pj ;wj )6: xj+1 := xj + �jpj7: rj+1 := rj � �jwj8: yj+1 :=M1rj+19: �j := (rj+1;yj+1)(rj ;yj )10: pj+1 :=M2yj+1 + �jpj11: end for12: xit := VendFrom Algorithm 7 and Table 6.2, it an be observed that one or more preondi-tioning and projetion operations are arried out in the steps where the matries Mi ,



6.2. Two-Level PCG Methods 97Method Vstart M1 M2 M3 VendPREC �x M�1 I I xj+1AD �x M�1 +Q I I xj+1DEF1 �x M�1 I P Qb + P T xj+1DEF2 Qb + P T �x M�1 P T I xj+1A-DEF1 �x M�1P +Q I I xj+1A-DEF2 Qb + P T �x P TM�1 +Q I I xj+1BNN �x P TM�1P +Q I I xj+1R-BNN1 Qb + P T �x P TM�1P I I xj+1R-BNN2 Qb + P T �x P TM�1 I I xj+1Table 6.2: Choies of parameters for eah method, used in the generalized two-level PCG method asgiven in Algorithm 7.with i = 1; 2; 3, are involved. For most 2L-PCG methods, these steps are om-bined to obtain the preonditioned/projeted residuals, fyig. DEF2 is the only methodwhere a projetion step is applied to the searh diretions, fpig. Likewise, DEF1is the only method where the projetion is performed to reate wj . In this ase,rj+1 = P (b � Axj+1) should hold, while rj+1 = b � Axj+1 is satis�ed for the othermethods. As disussed in Setion 3.5.3, termination riterion (2.23) based on frig anbe used to ompare the 2L-PCG methods in a fair way.Remark 6.4.� Note that Algorithms 3 (PCG) and 6 (DPCG) are partiular hoies of Algo-rithm 7.� Notie that we use the same arbitrary starting vetor, �x, in eah method, butthe atual starting vetor, Vstart, may di�er for eah method. Likewise, it analso be notied that the ending vetor, Vend, is the same for all methods, exeptfor DEF1.� A 2L-PCG method is guaranteed to onverge if P, as given in (6.1), is SPDor an be transformed into an SPD matrix, see, e.g., [51℄ for more details.This is obviously the ase for PREC, AD, DEF1 and BNN. It an be shown thatDEF2, A-DEF2, R-BNN1 and R-BNN2 also rely on appropriate operators, whereVstart = Qb + P T �x plays an important role in this derivation, see Theorem 6.4.A-DEF1 is the only method whih does not have an SPD operator and annotbe deomposed or transformed into an SPD operator, P. Therefore, it is notguaranteed that A-DEF1 always works, but it performs rather satisfatorily formost of the test ases onsidered in Setion 6.4.Computational CostThe omputational ost of eah method depends not only on the hoies of M�1 andZ, but also on the implementation and the storage of the matries. It is easy to see



98 Chapter 6. Comparison of Two-Level PCG Methods � Part Ithat, for eah iteration, PREC requires 1 matrix-vetor multipliation (MVM), 2 innerproduts (IP), 3 vetor updates (VU) and 1 preonditioning step.Note that AZ and E should be omputed and stored beforehand, so that only oneMVM with A is required in eah iteration of the 2L-PCG methods. Moreover, wedistinguish between two ases onsidering Z and AZ:� Z is su�iently sparse, so that Z and AZ an be stored in approximately twovetors;� Z is dense, so that Z and AZ are full matries.The �rst ase, whih is the best ase in terms of e�ieny, ours often in DDM,where the olumns of Z orrespond to subdomains, while the seond (and worst) aseours, for example, in approximated eigenvetor de�ation methods. Of ourse, thereare many relevant ases where Z and AZ annot be stored within two vetors, whiledense storage of these matries is not neessary; however, this is not onsidered in thishapter for onveniene. For eah 2L-PCG method, we give the extra omputationalost per iteration above that of PREC, see Table 6.3. In the table, the number ofoperations of the form Py and Qy , for a given vetor, y , per iteration is also provided.Note that, if both Py and Qy should be omputed for the same vetor, y , suh as inA-DEF1 and BNN, then Qy an be determined e�iently, sine it only requires one IPif Z is sparse, or one MVM if Z is dense.From Table 6.3, it an be seen that AD is obviously the heapest method periteration, while BNN and R-BNN1 are the most expensive 2L-PCG methods, sinetwo operations with P and P T are involved. With respet to the implementation, thisimplies that AD only needs two inner/matrix-vetor produts and one Galerkin systemsolves extra ompared to PREC, while both BNN and R-BNN1 require obviously moreinner/matrix-vetor produts, Galerkin system solves and additional vetor updates.Finally, we observe that using a 2L-PCG method is only e�ient if Z is sparse, or ifthe number of projetion vetors is relatively small in the ase of a dense matrix, Z.Remark 6.5.� The given omputational ost in Table 6.3 is based on the resulting abstratoperators and implementation as presented in Algorithm 7. As mentioned inSetions 6.2.2 and 6.2.3, the methods have di�erent origins with their own spe-i� and optimal implementation, so that the amount of work for eah methodan be less as suggested in Table 6.3.� We emphasize that the parameters of the 2L-PCG methods that are omparedan be arbitrary, so that the omparison between these methods is based on theirabstrat versions. This means that the results of the omparison are valid forany full-rank matrix Z and SPD matries A and M�1.� In Chapter 8, the e�ieny and implementation of DEF1 and A-DEF2 for aspei� hoie of Z are examined in more detail.



6.3. Theoretial Comparison 99Theory ImplementationMethod Py , P T y Qy IP / MVM VU GSSAD 0 1 2 0 1DEF1 1 0 2 1 1DEF2 1 0 2 1 1A-DEF1 1 1 3 1 1A-DEF2 1 1 4 1 2BNN 2 1 5 2 2R-BNN1 2 0 4 2 2R-BNN2 1 0 2 1 1Table 6.3: Extra omputational ost per iteration of the two-level PCG methods ompared to PREC.IP = inner produts, MVM = matrix-vetor multipliations, VU = vetor updates and GSS = Galerkinsystem solves. Note that IP holds for sparse Z and MVM holds for dense Z.We note that e�ieny and implementation issues have not been taken into on-sideration so far in this thesis. The aim of this hapter is to deal with those issues inmore detail. We show that a good implementation of the de�ation method is essentialin order to obtain a powerful and e�ient method.6.3 Theoretial ComparisonIn this setion, a omparison of eigenvalue distributions orresponding to the operatorsof the 2L-PCG methods is arried out, and, thereafter, some equivalene relationsbetween the methods are derived. Although some parts of the results are loselyrelated to results known in the literature [103,104,150℄, we inlude them here in orderto make this hapter self-ontained.6.3.1 Spetral Analysis of the MethodsWe start this subsetion with a de�nition.De�nition 6.2. Suppose that arbitrary matries C;D 2 Rn�n have the following spe-tra: �(C) := f�1; �2; : : : ; �ng; �(D) := f�1; �2; : : : ; �ng;respetively. Then, the addition of two sets, �(C) and �(D), is de�ned as�(C) + �(D) := f�1 + �1; �2 + �2; : : : ; �n + �ng:In Setion 3.5.2, we have shown that� (M�1PA) � � (M�1A) ;for any SPD matries A and M�1, and any full-rank Z. This means that the two-level preonditioned matrix orresponding to DEF1 is better onditioned than thatof PREC. It follows from the analysis below that the two-level preonditioned matrix



100 Chapter 6. Comparison of Two-Level PCG Methods � Part Iorresponding to PREC is always worse onditioned ompared to the other 2L-PCGmethods.In [103, 104℄, it is shown that the ondition number of DEF1 is not worse thanthat of both AD and BNN, i.e.,
{ � (M�1PA) � � (M�1A+QA) ;� (M�1PA) � � (P TM�1PA+QA) ; (6.14)for all full-rank Z and SPD matries A and M�1.Remark 6.6. Inequalities suh as (6.14) annot be derived between between AD andBNN. One would expet the ondition number assoiated with BNN to be below thatassoiated with AD, but this is not always the ase, see [105℄ for a ounterexample.In addition to the omparisons of AD, DEF1 and BNN performed in [103�105℄,more relations between the eigenvalue distribution of these and other 2L-PCG methodsare presented below. We �rst show in Theorem 6.1 that DEF1, DEF2, R-BNN1 andR-BNN2 have idential spetra, and that the same is true for BNN, A-DEF1 andA-DEF2.Theorem 6.1. Suppose that A;M�1 2 Rn�n are SPD. Let Q and P be as given inDe�nition 6.1. Then, the following two statements hold:� � (M�1PA) = � (P TM�1A) = � (P TM�1PA);� � ((P TM�1P +Q)A) = � ((M�1P +Q)A) = � ((P TM�1 +Q)A).Proof. Using Lemma A.1 and Lemma 6.1, we obtain immediately� (M�1PA) = � (AM�1P ) = � (P TM�1A) ;and � (M�1PA) = � (M�1P 2A)= � (M�1PAP T )= � (P TM�1PA) ;whih proves the �rst statement. Moreover, we also have that� (P TM�1PA+QA) = � (P TM�1PA� P T + I)= � ((M�1PA� I)P T )+ �(I)= � (M�1P 2A� P T )+ �(I)= � (M�1PA+QA) ;and, likewise, � (P TM�1A+QA) = � (P TM�1A� P T )+ �(I)= � (AM�1P � P )+ �(I)= � (PAM�1P � P )+ �(I)= � (P TM�1AP T � P T )+ �(I)= � (P TM�1PA+QA) ;



6.3. Theoretial Comparison 101whih ompletes the proof of the seond statement.As a onsequene of Theorem 6.1, DEF1, DEF2, R-BNN1 and R-BNN2 an beinterpreted as one lass of 2L-PCG methods having the same spetral properties,whereas BNN, A-DEF1 and A-DEF2 lead to another lass of 2L-PCG methods. Thesetwo lasses an be related to eah other by [104, Thm. 2.8℄, whih states that if�(M�1PA) = f0; : : : ; 0; �k+1; : : : ; �ng is given, then �(P TM�1PA+QA) = f1; : : : ; 1;�k+1; : : : ; �ng. We an show that the reverse statement also holds. These results aregiven in Theorem 6.2.Theorem 6.2. Suppose that A;M�1 2 Rn�n are SPD. Let Q and P be as in De�ni-tion 6.1. Let the spetra of DEF1 and BNN be given by�(M�1PA) = f�1; : : : ; �ng; �(P TM�1PA+QA) = f�1; : : : ; �ng;respetively. Then, the eigenvalues within these spetra an be ordered suh that thefollowing statements hold:
{ �i = 0; �i = 1; for i = 1; : : : ; k;�i = �i ; for i = k + 1; : : : ; n:Proof. Using Lemma 6.1, we have(P TM�1P +Q)AZ = Z; M�1PAZ = 0n;k :As a onsequene, the olumns of Z are the eigenvetors orresponding to the eigenval-ues of BNN and DEF1 that are equal to 1 and 0, respetively. Due to [104, Thm. 2.8℄,it su�es to show that if�(P TM�1PA+QA) = f1; : : : ; 1; �k+1; : : : ; �ngholds, then this implies�(M�1PA) = f0; : : : ; 0; �k+1; : : : ; �ng:The proof is as follows.Consider the eigenvalues, f�ig, and orresponding eigenvetors, fvig, with i =k + 1; : : : ; n of BNN, i.e., (P TM�1P +Q)Avi = �ivi , whih impliesP T (P TM�1P +Q)Avi = �iP T vi : (6.15)Applying Lemma 6.1, we have(P T )2M�1PA+ P TQA = P TM�1PAP T :



102 Chapter 6. Comparison of Two-Level PCG Methods � Part IUsing the latter expression, Eq. (6.15) an be rewritten asP TM�1PAwi = �iwi ;with wi := P T vi . Note that P T y = 0n if y 2 R(Z), due to Lemma 6.1. However,wi 6= 0n, sine vi =2 R(Z) for i = k+1; : : : ; n. Hene, �i is an eigenvalue of P TM�1PAas well. Lemma 6.1 implies� (M�1PA) = � (P TM�1PA) ;so that �i is also an eigenvalue of DEF1.Due to Theorem 6.2, both DEF1 and BNN provide almost the same spetra with thesame lustering. The zero eigenvalues of DEF1 are replaed by unit eigenvalues in thease of BNN.Remark 6.7. If 1 2 [�k+1; �n℄, then the ondition numbers of BNN and DEF1 areidential. On the other hand, if 1 =2 [�k+1; �n℄, then DEF1 has a more favorableondition number ompared to BNN, see also [104℄. In this latter ase, if j iterationsof CG ahieve a suitable redution in the error using DEF1, more than j iterations ofCG might be required to optimally eliminate all errors assoiated with eigenvalue 1.Next, Theorem 6.3 relates all methods in terms of their spetra and provides astrong onnetion between the two lasses as given in Theorem 6.1.Theorem 6.3. Let the spetrum of DEF1, DEF2, R-BNN1 or R-BNN2 be given byf0; : : : ; 0; �k+1; : : : ; �ng;satisfying �k+1 � �k+2 � : : : � �n. Let the spetrum of BNN, A-DEF1 or A-DEF2be f1; : : : ; 1; �k+1; : : : ; �ng;with �k+1 � �k+2 � : : : � �n. Then, �i = �i for all i = k + 1; : : : ; n.Proof. The theorem follows immediately from Theorem 6.1 and 6.2.From Theorem 6.3, it an be onluded that all 2L-PCG methods have almost thesame lusters of eigenvalues. Therefore, we expet that the onvergene of all methodsare similar, see Setion 6.4.2 for some test ases. Moreover, the zeros in the spetrumof the �rst lass (onsisting of DEF1, DEF2, R-BNN1 or R-BNN2) might beomenearly zero, due to round-o� errors or the approximate solution of Galerkin systems inthe operator. This gives an unfavorable spetrum, resulting in slow onvergene of themethod. This phenomenon does not appear in the ase of BNN, A-DEF1 or A-DEF2.Small perturbations in those 2L-PCG methods lead to small hanges in their spetraand ondition numbers. Theoretially, this an be analyzed using Z onsisting ofeigenvetors, see [103, Set. 3℄, but, in general, it is di�ult to examine for general Z.This issue is further illustrated in Setions 6.4.3 and 6.4.4 using numerial experiments.



6.3. Theoretial Comparison 1036.3.2 Equivalenes between the MethodsIn this subsetion, we show that DEF2, A-DEF2, R-BNN1 and R-BNN2 produe iden-tial iterates in exat arithmeti. More importantly, we prove that these 2L-PCGmethods are mathematially equivalent to the more expensive BNN method for ertainstarting vetors. First, Lemma 6.2 shows that some steps in the BNN implementationan be redued, see also [89℄ and [150, Set. 2.5.2℄.Lemma 6.2. Let Q and P be as given in De�nition 6.1. Suppose that Vstart = Qb+P T �xinstead of Vstart = �x is used in BNN, where �x 2 Rn is an arbitrary vetor. Then, thisimplies that� Qrj+1 = 0n;� P rj+1 = rj+1,for all j = �1; 0; 1; : : :, in the BNN implementation of Algorithm 7.Proof. Both statements an be proven by indution.For the �rst statement, the proof is as follows. It an be veri�ed that Qr0 = 0n andQAp0 = 0n. By the indutive hypothesis, Qrj = 0n and QApj = 0n hold. Then, for theindutive step, we obtain Qrj+1 = 0n andQApj+1 = 0n, sine Qrj+1 = Qrj��jQApj =0n; and QApj+1 = QAyj+1 + �jQApj= QAP TM�1P rj+1 +QAQrj+1= 0n;where we have used Lemma 6.1.Next, for the seond statement, P r0 = r0 and PAp0 = Ap0 an be easily veri�ed.Assume that P rj = rj and PApj = Apj . Then, both P rj+1 = rj+1 and PApj+1 = Apj+1hold, beause P rj+1 = P rj � �jPApj= rj � �jApj= rj+1;and PApj+1 = PAyj+1 + �jPApj= PAP TM�1P rj+1 + �jApj= AP TM�1rj+1 + �jApj= AP TM�1P rj+1 + �jApj= A(yj+1 + �jpj)= Apj+1;where we have applied the result of the �rst statement.Subsequently, we provide a more detailed omparison between BNN and DEF1in terms of errors in the A�norm, see Lemma 6.3. In fat, it is a generalizationof [104, Thm. 3.4 and 3.5℄, where we now apply an arbitrary starting vetor, �x , insteadof the zero starting vetor.



104 Chapter 6. Comparison of Two-Level PCG Methods � Part ILemma 6.3. Suppose that A 2 Rn�n is SPD. Let Q and P be as given in De�nition 6.1.Let (xj+1)DEF1 and (xj+1)BNN denote iterate xj+1 of BNN and DEF1 as provided byAlgorithm 7, respetively. Then, these iterates satisfy
{ jjx � (xj+1)DEF1jjA � jjx � (xj+1)BNNjjA; if (x0)DEF1 = (x0)BNN;(xj+1)DEF1 = (xj+1)BNN; if (x0)DEF1 = �x and (x0)BNN = Qb + P T �x:Proof. The proof is analogous to the proofs as given in [104, Thm. 3.4 and 3.5℄.From Lemma 6.3, we onlude that the errors of the iterates built by DEF1 are neverlarger than those of BNN in the A�norm. Additionally, DEF1 and BNN produe thesame iterates in exat arithmeti, if Vstart = Qb + P T �x is used in BNN.Next, Lemma 6.2 and 6.3 an now be ombined to obtain the following importantresult.Theorem 6.4. Let Q and P be as given in De�nition 6.1. Let �x 2 Rn be an arbitraryvetor. Then, the following methods produe exatly the same iterates, fxj+1g, inexat arithmeti:� BNN with Vstart = Qb + P T �x ;� DEF2, A-DEF2, R-BNN1 and R-BNN2 (with Vstart = Qb + P T �x);� DEF1 (with Vstart = �x) whose iterates are based on xj+1 = Qb + P T xj+1.Proof. The theorem follows immediately from Lemma 6.2 and 6.3.As a result of Theorem 6.4, if Vstart = Qb+P T �x is used, then BNN is mathematiallyequivalent to R-BNN1, R-BNN2, A-DEF2 and DEF2, sine they produe identialiterates. They even produe the same iterates as DEF1, if eah iterate of DEF1, xj+1,is transformed into Qb+P T xj+1. In Setion 6.4.2, we show that the methods as givenin Theorem 6.4 indeed lead to almost idential results with respet to onvergenebehavior.Remark 6.8.� Another onsequene of Theorem 6.4 is that the orresponding operators forDEF2, A-DEF2, R-BNN1 and R-BNN2 are all appropriate in a ertain subspae,although they are not symmetri. Hene, a CG proess in ombination withthese operators should, in theory, work properly.� The results as presented in Theorem 6.4 might not be valid anymore in theomputations, if the round-o� errors are too large. Therefore, although BNN,DEF2, A-DEF2, R-BNN1 and R-BNN2 give exatly the same iterates, all involved2L-PCG methods exept for BNN may lead to inaurate solutions and maysu�er from nonrobustness in numerial experiments, see also Setion 6.4.5. Inthis ase, the omitted projetion and orretion steps of the BNN algorithm,as suggested in Lemma 6.2, are important to maintain the robustness of themethod.



6.4. Numerial Comparison 1056.4 Numerial ComparisonIn this setion, a numerial omparison of the 2L-PCG methods is performed using 2-Dbubbly �ows with m = 5, � = 103 and s = 0:05 as desribed in Setion 1.3. In order toensure that the obtaining results are no artifats, the experiments are also arried outusing 2-D Poisson problems with a onstant oe�ient and 2-D porous-media �ows,see Appendix G and [134, Set. 4℄.The IC(0) preonditioner is hosen asM�1, but it seems that other traditional SPDpreonditioners ould also be used instead, leading to similar results, see [137, 173℄.Moreover, k = q + 1 subdomain de�ation vetors are taken as projetion vetors (f.Setion 3.6) based on Variant 5.2 (see Setion 5.3). We remark that the projetionvetors are not restrited to hoies that are ommon in DDM and de�ation. TypialMG projetion vetors ould also be taken, see [48℄ and Chapter 9.6.4.1 Setup of the ExperimentsWe start with a numerial experiment using standard parameters, whih means that anappropriate termination riterion, exat omputation of E�1, and exatly omputedstarting vetors are used. Subsequently, numerial experiments are performed with in-exat E�1, severe termination toleranes, and perturbed starting vetors, respetively.The results for eah method are presented in two ways. Firstly, the results aresummarized in a table, presenting the number of iterations and the standard norm ofthe relative errors (i.e., jjxit�xjj2jjxjj2 with the iterated solution, xit). Seondly, the resultsare presented graphially by showing the relative errors in the A�norm (i.e., jjxj�xjjAjjxjjAwith xj denoting the j�th iterate) during the iteration proesses. We reall that eah2L-PCG method optimizes the error in the A�norm, rather than in the (two-level)preonditioned A�norm (see Setion 2.4), so that it is natural to report the errorsin the A�norm in the experiments. Moreover, the errors are also measured in the2�norm, sine it may be a more relevant and useful measure of the error, and itappears that there are signi�ant di�erenes between these two measures. Finally, foreah test ase, the iterative proess of eah method is terminated if the maximumallowed number of iterations (hosen to be equal to 250) is reahed, or if the normof the relative residual falls below a tolerane, Æ > 0, see (2.23). As mentioned inSetion 6.2.4, this termination riterion leads to a fair omparison of the 2L-PCGmethods.Remark 6.9. As mentioned in Setion 6.2.1, the hoie of parameters, Z, M�1 andthe diret solver for E�1, are the same for eah 2L-PCG method. This allows us toompare these methods fairly. However, in pratie, the 2L-PCG methods are derivedfrom di�erent �elds, where typial hoies assoiated with these �elds are made forthese parameters. In Chapter 9, we ompare the 2L-PCG methods with their typialparameters.



106 Chapter 6. Comparison of Two-Level PCG Methods � Part I6.4.2 Experiment using Standard ParametersIn the �rst numerial experiment, standard parameters are used with stopping toleraneÆ = 10�10, an exat Galerkin matrix inverse, E�1, and an unperturbed starting vetor,Vstart. The results of the experiment an be found in Table 6.4 and Figure 6.1.k = 22 k = 42 k = 82Method # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2PREC 137 4:6� 10�7 137 4:6� 10�7 137 1:8� 10�7AD 161 1:1� 10�8 163 8:4� 10�9 60 1:1� 10�8DEF1 149 1:5� 10�8 144 3:1� 10�8 42 1:8� 10�8DEF2 149 1:5� 10�8 144 3:1� 10�8 42 1:8� 10�8A-DEF1 239 3:5� 10�7 NC 9:0� 10�6 48 1:5� 10�9A-DEF2 149 1:5� 10�8 144 3:1� 10�8 42 1:1� 10�8BNN 149 1:5� 10�8 144 3:1� 10�8 42 1:1� 10�8R-BNN1 149 1:5� 10�8 144 3:1� 10�8 42 1:1� 10�8R-BNN2 149 1:5� 10�8 144 3:1� 10�8 42 1:1� 10�8Table 6.4: Number of required iterations for onvergene and the 2�norm of the relative errors ofall methods, for the bubbly �ow problem with n = 642, and `standard' parameters. `NC' means noonvergene within 250 iterations.By onsidering Table 6.4 and Figure 6.1, we observe that all methods performthe same, exept for PREC, AD and A-DEF1. A-DEF1 has di�ulties to onverge,espeially for the ases with k = 22 and k = 42. This is not surprising, sine it annotbe shown that it is an appropriate preonditioner, see Setion 6.2.4. In addition, thenumber of projetion vetors is apparently too low to approximate the eigenvetorsorresponding to the small eigenvalues, whih is the result of the presene of thebubbles. Therefore, we hardly see any improvements by omparing all 2L-PCG methodsto PREC in the ase of k = 22 and k = 42. It is unexpeted that PREC requires feweriterations in these ases, but we observe that the orresponding solution is somewhatless aurate than the others. Moreover, we remark that AD performs obviously worse,ompared to the other 2L-PCG methods.The total omputational ost of the methods in this experiment is presented inTable 6.5. We restrit ourselves to the test ase with k = 82, sine analogous resultsare obtained for the other test ases. It depends on the exat implementation of themethods to determine whih 2L-PCG method requires the lowest omputational ost.6.4.3 Experiment using Inaurate Galerkin SolvesFor problems with a relatively large number of projetion vetors, it might be expensiveto �nd an aurate solution of the Galerkin system, Ey2 = y1, by a diret solver ateah iteration of the 2L-PCG methods. Instead, only an approximate solution, ~y2,an be determined, using, for example, approximate solvers based on SSOR or ILUTpreonditioners, reursive MG methods or nested iterations, suh as a standard (Krylov)iterative solver with a low auray. In this ase, ~y2 an be interpreted as Ẽ�1y1, whereẼ is an inexat matrix based on E. This motivates our next experiment, using Ẽ�1
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(b) k = 42.
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() k = 82.Figure 6.1: Relative errors during the iterative proess, for the bubbly �ow problem with n = 642, and`standard' parameters.



108 Chapter 6. Comparison of Two-Level PCG Methods � Part IMethod IP VU GSS PRPREC 137 411 0 137AD 180 180 42 42DEF1 126 168 42 42DEF2 126 168 42 42A-DEF1 192 192 48 48A-DEF2 210 168 84 42BNN 252 210 84 42R-BNN1 210 210 84 42R-BNN2 126 168 42 42Table 6.5: Computational ost within the iterations in terms of number of inner produts (`IP'), vetorupdates (`VU'), Galerkin system solves (`GSS'), and preonditioning step with M�1 (`PR'), for thebubbly �ow problem with n = 642, k = 82, and `standard' parameters.de�ned as Ẽ�1 := (I +  R)E�1(I +  R);  > 0; (6.16)where R 2 Rk�k is a symmetri random matrix with entries from the interval [�0:5; 0:5℄,see also [103, Set. 3℄ for more details. Note that theory, as derived in Setion 6.3.2,is not valid for any  > 0, but we will see that some of those theoretial results arestill on�rmed for relatively large  . The sensitivity of the 2L-PCG methods to thisinaurate solve with various values of  are investigated, and the results are related toTheorem 6.16. Note that the results for PREC are not in�uened by this adaptationof E�1. They are only inluded for referene.Remark 6.10. Eq. (6.16) does not re�et the way that inexat Galerkin solves typiallyenter 2L-PCG methods, but it does provide us with good insights into approximateGalerkin solves applied to these methods. Additionally, the approximation of E�1 anbe quanti�ed expliitly using Eq. (6.16). Experiments with Galerkin solves that aredone iteratively (i.e., nested iterations) an be found in Chapter 8. In that hapter,it is shown that it is reasonable to apply (6.16), sine they give similar results as inthis subsetion. Moreover, it turns out that the original PCG rather than a �exiblevariant an still be used in these experiments, as long as the inner stopping toleraneis su�iently small. More details about inexat Krylov subspae methods an also befound in [124℄.The results of the experiment an be found in Table 6.6 and Figure 6.2. Weobserve that the most robust 2L-PCG methods are AD, BNN, A-DEF1 and A-DEF2,sine they are largely sensitive to perturbations in E�1. On the other hand, DEF1,DEF2, R-BNN1 and R-BNN2 are obviously the worst methods, as expeted, sine thezero eigenvalues of the orresponding systems beome small nearly-zero eigenvaluesdue to the perturbation,  (f. Setion 6.3.1).6.4.4 Experiment using Severe Termination ToleranesIn pratie, two-level PCG methods are sometimes ompared with a too strit termi-nation riterion. Suh a omparison an be unfair, as ertain 2L-PCG methods are
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(a)  = 10�12.
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(b)  = 10�8.
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()  = 10�4.Figure 6.2: Relative errors during the iterative proess, for the bubbly �ow problem with parametersn = 642 and k = 82, and a perturbed Galerkin matrix inverse, eE�1.



110 Chapter 6. Comparison of Two-Level PCG Methods � Part I = 10�12  = 10�8  = 10�4Method # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2PREC 137 4:6� 10�7 137 4:6� 10�7 137 4:6� 10�7AD 60 2:3� 10�8 60 2:3� 10�8 63 7:8� 10�9DEF1 42 1:2� 10�8 NC 8:3� 10�4 NC 9:2� 10�2DEF2 42 1:2� 10�8 NC 3:9� 10+2 NC 2:2� 10+2A-DEF1 48 8:8� 10�9 48 8:8� 10�9 48 8:5� 10�9A-DEF2 42 1:1� 10�8 42 1:1� 10�8 43 8:2� 10�9BNN 42 1:1� 10�8 42 1:1� 10�8 42 1:1� 10�8R-BNN1 42 1:1� 10�8 NC 4:1� 10�7 NC 1:7� 10�4R-BNN2 42 1:2� 10�8 NC 3:7� 10�5 NC 1:5� 10�1Table 6.6: Number of required iterations for onvergene and the 2�norm of the relative errors of allmethods for the bubbly �ow problem with parameters n = 642 and k = 82, and a perturbed Galerkinmatrix inverse, eE�1, is used with varying perturbation  . `NC' means no onvergene within 250iterations.sensitive to severe termination riteria, see, e.g., [65℄. We investigate this by perform-ing a numerial experiment with various values of the tolerane, Æ. Note that, for arelatively small Æ, this may lead to a too severe termination riterion with respet tomahine preision. However, the aims of this experiment are to test the sensitivityof the 2L-PCG methods to Æ, and to investigate the maximum auray that an bereahed, rather than to perform realisti experiments.Æ = 10�8 Æ = 10�12 Æ = 10�16Method # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2PREC 122 6:6� 10�6 162 1:8� 10�10 179 2:1� 10�13AD 45 1:4� 10�6 75 1:1� 10�10 178 4:8� 10�13DEF1 32 9:4� 10�7 53 1:5� 10�10 NC 5:7� 10�6DEF2 32 9:4� 10�7 53 1:5� 10�10 NC 6:3� 10�7A-DEF1 34 9:7� 10�7 61 8:2� 10�11 233 2:2� 10�13A-DEF2 32 9:4� 10�7 53 1:5� 10�10 133 8:3� 10�13BNN 32 9:4� 10�7 53 1:5� 10�10 133 5:9� 10�13R-BNN1 32 9:4� 10�7 53 1:5� 10�10 NC 2:2� 10�12R-BNN2 32 9:4� 10�7 53 1:5� 10�10 NC 8:1� 10�9Table 6.7: Number of required iterations for onvergene and the 2�norm of the relative errors ofall methods, for the bubbly �ow problem with parameters n = 642 and k = 82. Various terminationtoleranes, Æ, are tested.The results of the experiment are presented in Table 6.7 and Figure 6.3. It an beseen that all methods perform well, even in the ase of a relatively strit terminationriterion (i.e., Æ = 10�12). PREC also onverges in all ases, but not within 250iterations. Note, moreover, that it does not give an aurate solution if Æ is hosentoo large. For Æ < 10�12, DEF1, DEF2, R-BNN1 and R-BNN2 show di�ulties,sine they do not onverge appropriately and may even diverge. This is in ontrastto PREC, AD, BNN, A-DEF1 and A-DEF2, whih give good onvergene results forÆ = 10�16. Therefore, these 2L-PCG methods an be haraterized as robust methods
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(a) Æ = 10�8.
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(b) Æ = 10�12.
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() Æ = 10�16.Figure 6.3: Relative errors during the iterative proess for the bubbly �ow problem with parametersn = 642; k = 82, and various termination riterion.



112 Chapter 6. Comparison of Two-Level PCG Methods � Part Iwith respet to termination riteria.Some of the nononverging methods might eventually give the solution after themaximum number of iterations, but suh a solution takes too muh omputing time;hene, the result is useless. Moreover, the nononverging behavior is aused by round-o� errors, resulting in, for example, a lak of orthogonality of the residuals with respetto Z, see Setion 6.4.6.6.4.5 Experiment using Perturbed Starting VetorsIn Setion 6.3.2, it is proven that BNN with Vstart = Qb + P T �x gives exatly thesame iterates as DEF2, A-DEF2, R-BNN1 and R-BNN2, in exat arithmeti. In thisase, the resulting operators are well-de�ned and they should perform appropriately.In our next experiment, we perturb Vstart in DEF2, A-DEF2, R-BNN1 and R-BNN2,and examine whether this in�uenes the onvergene results. The motivation of thisexperiment is the same as for the experiment arried out in Setion 6.4.3; for relativelylarge problems, it an be ompliated to determine Vstart aurately, due to, for example,the inaurate omputation of Galerkin solves. It is important to note that if we useapproximate starting vetors, then there is no longer any equivalene between BNNand its redued methods, as provided in the results of Setion 6.3.2. In this ase, it isinteresting to see how these methods perform in pratie.The perturbed Vstart, denoted byWstart, is de�ned as a omponentwise multipliationof a random vetor and Vstart, i.e., eah entry of Wstart is de�ned as(Wstart)i := (1 + (v0)i) (Vstart)i ; i = 1; 2; : : : ; n; (6.17)where  � 0 gives ontrol over the auray of the starting vetor, and v0 is a randomvetor with entries from the interval [�0:5; 0:5℄, taken to give eah entry of Vstart adi�erent perturbation. As in the experiment performed in Setion 6.4.3, the hoie ofWstart does not re�et the way in whih starting vetors are perturbed in pratie, butit provides us with some valuable insights where the perturbation an be quanti�ed inan easy way. Furthermore, note that if DEF2, R-BNN1 or R-BNN2 onverge usingWstart, then we may obtain a nonunique solution, sine the orresponding operator issingular. Therefore, as in the ase of DEF1, we should apply the `uniqueness' step(see Remark 6.3) at the end of the iteration proess. Note that this proedure is notrequired for A-DEF2, beause this method orresponds to a nonsingular operator.We perform the numerial experiment using Wstart for di�erent . The results anbe found in Table 6.8 and Figure 6.4. Here, we use asterisks to stress that an extrauniqueness step is applied in the spei� method. Moreover, notie that PREC, AD,DEF1 and BNN are not inluded in this experiment, sine they apply an arbitrary vetor,Vstart = �x, by de�nition.From the results, it an be notied that all involved methods onverge appropriatelyfor  = 10�10. For  � 10�5, DEF2, R-BNN1 and R-BNN2 fail to onverge (withrespet to the residuals), although R-BNN1 is already onverged and the urrent stop-ping riterion is apparently unreliable for this method in this experiment. The most
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(b)  = 10�5.
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()  = 10�10.Figure 6.4: Relative errors during the iterative proess for the bubbly �ow problem with n = 642; k =82, and perturbed starting vetors.



114 Chapter 6. Comparison of Two-Level PCG Methods � Part I = 100  = 10�5  = 10�10Method # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2DEF2 42 1:1� 10�8 NC 1:4� 10+4 NC 2:7� 10+9A-DEF2 42 1:1� 10�8 42 1:2� 10�8 45 1:2� 10�8R-BNN1 42 1:1� 10�8 NC 1:4� 10�10* NC 3:6� 10�7*R-BNN2 42 1:1� 10�8 NC 1:8� 10�5* NC 1:1� 10+0*Table 6.8: Number of required iterations for onvergene and the 2�norm of the relative errors ofsome methods, for the bubbly �ow problem with n = 642; k = 82, and perturbed starting vetors. Anasterisk (*) means that an extra uniqueness step is applied in that test ase.robust method is, obviously, A-DEF2. This method is ompletely insensitive to theperturbation, . This experiment illustrates that the `redued' variants of BNN havedi�erent robustness properties with respet to perturbations in starting vetors.6.4.6 Further DisussionThe theoretial results given in Setion 6.3 only hold in exat arithmeti and underthe assumptions required to prove them. However, from a numerial point of view,we have observed that some of these assumptions are neessary, whereas others areonly su�ient for ertain two-level PCG methods. The numerial results on�rm thetheoretial fat that all 2L-PCG methods perform approximately the same, althoughA-DEF1 shows problems in some test ases. This is understood by the fat thatA-DEF1 orresponds to a non-SPSD operator, as also disussed in Setion 6.2.4.If the dimension of the Galerkin matrix, E, beomes large, it is favorable to solve theorresponding systems iteratively, with a low auray. In this ase, we see that DEF1,DEF2, R-BNN1 and R-BNN2 show di�ulties in onvergene. It an be observedthat the errors during the iterative proess of DEF2 explode, whereas DEF1 onvergesslowly to the solution, but in an errati way. The most robust methods are AD, BNN,A-DEF1 and A-DEF2.If A is ill-onditioned and the tolerane of the termination riterion, hosen bythe user, beomes too severe, it is advantageous that the 2L-PCG method would stillwork appropriately. However, we observe that DEF1, DEF2, A-DEF1, R-BNN1 andR-BNN2 annot deal with too strit toleranes. This is in ontrast to AD, BNN,A-DEF2, whih remain robust in all test ases.In theory, BNN gives the same iterates as DEF2, A-DEF2, R-BNN1 and R-BNN2,for ertain starting vetors. In addition to the fat that these `redued' variants, exeptA-DEF2, are not able to deal with inaurate Galerkin solves, some of them are alsosensitive to perturbations of the starting vetor. In ontrast to the other methods,A-DEF2 is independent of these perturbations. This an be of great importane, ifone uses multigrid-like subdomains, where the number of subdomains, k, is very large,and the starting vetor annot be obtained aurately.In the numerial experiments, we observe that several methods show divergene,stagnation or errati behavior of the errors during the iterative proess. This may beaused by the fat that the residuals gradually lose orthogonality with respet to the



6.5. Conluding Remarks 115olumns of Z, see also [122℄. It an easily be shown thatZT rj = 0k ; j = 0; 1; : : : ; (6.18)should hold for DEF1, DEF2, A-DEF2, R-BNN1 and R-BNN2. However, it appearsthat (6.18) is not always satis�ed in the experiments. A remedy to reover this or-thogonality in the badly onverging methods is desribed in, e.g., [122℄. If we de�nethe `reorthogonalization' matrix, W 2 Rn�n, asW := I � Z(ZTZ)�1ZT ; (6.19)then W is orthogonal to Z, i.e.,ZTW = ZT � ZTZ(ZTZ)�1ZT = 0k;n: (6.20)Now, orthogonality of the residuals, frjg, an be preserved by premultiplying rj by Wright after rj is omputed in the algorithm:rj :=Wrj ; j = 0; 1; : : : : (6.21)As a onsequene, these adapted residuals satisfy (6.18), due to (6.20).Remark 6.11.� Eq. (6.18) is not valid for AD, A-DEF1 and BNN. In the ase of AD and BNN, thisis not a problem, beause they appear to be extremely robust in most test ases.This is in ontrast to A-DEF1, whih is not robust in several test ases, sineit is not an appropriate preonditioner, see Setion 6.2.4. The nonrobustness ofthis projetor annot be resolved using the reorthogonalization strategy.� The reorthogonalization operator (6.21) is relatively heap, provided that Z issparse.In the numerial experiments of [134, Set. 4.6℄, we show that the adapted versionsof the methods, inluding the reorthogonalization strategy, onverge better in terms ofthe residuals. Unfortunately, it appears that aurate solutions ould not be obtainedusing this approah. To preserve the relation, rj = b�Axj , eah iterate, xj , should beadapted via xj := xj � A�1Z(ZTZ)�1ZT rj ; j = 0; 1; : : : : (6.22)However, it is lear that (6.22) is not useful to apply due to the presene of A�1 inthat expression. Consequently, it is unlikely that, in pratie, the 2L-PCG methodswould bene�t from the reorthogonalization strategy.6.5 Conluding RemarksIn this hapter, we onsider the abstrat forms of several two-level PCG methods,listed in Table 6.1, whih originated from the �elds of de�ation, domain deomposition



116 Chapter 6. Comparison of Two-Level PCG Methods � Part Iand multigrid. A omparison of these methods is arried out by investigating theirtheoretial and numerial aspets.Theoretially, DEF1 is the best method [103�105℄. We see that all two-levelPCG methods, exept for PREC and AD, have omparable eigenvalue distributions.Two lasses of two-level PCG methods an be distinguished, eah having the samespetral properties. The �rst lass onsists of DEF1, DEF2, R-BNN1 and R-BNN2,and the seond lass inludes BNN, A-DEF1 and A-DEF2. Although the di�erenesare surprisingly marginal, and, therefore, similar onvergene behaviors are expeted,we derive that the assoiated spetrum of the methods of the �rst lass is possiblymore favorable than those of the seond lass.In numerial experiments with realisti termination riteria and relatively small per-turbations in the starting vetor and Galerkin solves, it is observed that all 2L-PCGmethods always onverge faster than PREC. More importantly, all 2L-PCG methodsshow approximately the same onvergene behavior, although the residuals of AD hassometimes a nonmonotonial onvergene behavior. Both DEF1 and DEF2 are sensi-tive to su�iently large perturbations in the Galerkin solves or too strit terminationriterion. In ontrast to DEF1, DEF2 also has the drawbaks that it annot dealwith perturbed starting vetors and that the method diverges when the onvergenedeteriorates. The errors are usually bounded in DEF1, when this method does notonverge.We dedue that, for ertain starting vetors, the expensive operator of BNN anbe redued to simpler and heaper operators, whih are used in DEF2, A-DEF2, R-BNN1 and R-BNN2. Hene, some 2L-PCG methods of the two spetral lasses aremathematially equivalent in exat arithmeti. However, these redued variants, exeptfor A-DEF2, are not robust in the numerial experiments, when applying inaurateGalerkin solves, strit stopping toleranes or perturbed starting vetors. In fat, oneshould realize that the redued variants of BNN, exept A-DEF2, are as not robust asDEF1 or DEF2.By examining all theoretial and numerial aspets, we onlude that BNN andA-DEF2 are the best 2L-PCG methods in the sense of robustness. However, twode�ation matries are involved in BNN, making the method expensive to use. On theontrary, only one de�ation matrix is involved in A-DEF2, so that it is attrative toapply. Hene, A-DEF2 seems to be the best and most robust method, onsidering thetheory, numerial experiments, and the omputational ost.If robustness is not an ruial issue in experiments, then the de�ation method(DEF1 or DEF2) is a very e�ient method (and often faster than other methods),see also Chapter 8 where DEF1 and A-DEF2 are ompared in more detail. Finally, thetwo-level PCG method based on the multigrid V(1,1)-yle preonditioner is exludedin the omparison presented in this hapter, but it is related to the other methods inthe next hapter.



Chapter 7Comparison of Two-Level PCGMethods � Part II7.1 IntrodutionIn the previous hapter, we have ompared several two-level PCG methods originatedfrom di�erent �elds. In that omparison, we have not inluded the two-level PCGmethod with a preonditioner based on a multigrid V(1,1)-yle (denoted by the MGmethod in this hapter), sine it has very di�erent spetral properties and requires aspei� theoretial treatment, beause of the more general hoie for the traditionalpreonditioner allowed within MG. The aim of this hapter is to �ll this gap. We fouson the omparison between abstrat balaning Neumann-Neumann (BNN), de�ation(DEF), and multigrid V(1,1)-yle (MG) preonditioners. DEF is equal to the DEF1method from Chapter 6.Of ourse, the MG method [23, 69, 151, 178℄ and its properties [20, 53, 68, 96,107℄ are well-known. Our intention is not to reprodue these results (although someknown results needed for the omparison are brie�y reviewed), but to ompare andonnet MG to the other 2L-PCG methods. Intuitively, we expet MG to have betteronvergene properties than the other 2L-PCG methods, when the MG smoother (alsoknown as the MG relaxation) is hosen to be equal to M�1, sine it is the only 2L-PCG method with two appliations of the traditional preonditioners (in the pre- andpost-smoothing steps), in addition to a single oarse-grid orretion step within oneiteration. DEF, on the other hand, has optimal onvergene properties in terms ofits spetral properties ompared with the other 2L-PCG methods (exept MG), seethe previous hapter. Therefore, it is su�ient for the omparison to show that MGhas more favorable spetral properties than DEF, if MG is indeed superior to DEF.Hene, we often base the analysis on the omparison of DEF and MG in this hapter.However, the omparison between MG and BNN is, in some ases, easier to perform,so BNN is used in the analysis as well.Some spetral analysis for MG is arried out in [26℄. In that paper, projetionvetors are based on exat eigenvetors of M�1A and more pre- and post-smoothing117



118 Chapter 7. Comparison of Two-Level PCG Methods � Part IIsteps are allowed per iteration. The resulting two-level preonditioner is alled a `mul-tipliative two-grid spetral preonditioner'. It is shown that this preonditioner anbe e�etive for many pratial appliations, where sequenes of linear systems have tobe solved. In this hapter, we restrit ourselves to the standard multigrid V(1,1)-ylepreonditioner, while eigenvetors are sometimes used to illustrate the theoretial re-sults. Moreover, we note that while the ondition number of preonditioned systemsis an imperfet indiator of the onvergene properties of CG, it is the only analysistool available with su�ient generality to ompare the tehniques onsidered here.This hapter is organized as follows. In Setion 7.2, DEF, BNN and MG are de-sribed onisely. Then, some spetral properties of MG are presented in Setion 7.3.Thereafter, in Setion 7.4, MG and DEF are ompared by investigating their spetralproperties using speial hoies of parameters; it is shown there that MG an be lesse�etive than DEF. In Setion 7.5, we show that MG is superior to DEF for moresophistiated preonditioners. Subsequently, Setion 7.6 is devoted to the ompari-son of MG, BNN and DEF with the same ost per iteration. For speial hoies ofpreonditioners, we show that they are almost spetrally equivalent. Setion 7.7 isdevoted to some numerial experiments in order to illustrate the theoretial results.Some onluding remarks are presented in Setion 7.8.7.2 Two-Level PCG MethodsIn this setion, the 2L-PCG methods are desribed that will be examined to solvethe linear system, Ax = b, where A is assumed to be SPD. We remark again thatmost results presented in this hapter are generalizable to linear systems where A isSPSD. The following de�nition (f. De�nition 6.1) is assumed to hold throughout thishapter.De�nition 7.1. Suppose that an SPD oe�ient matrix, A 2 Rn�n, and a de�ation-subspae matrix, Z 2 Rn�k, with full rank and k < n are given. Then, we de�nethe invertible Galerkin matrix, E 2 Rk�k, the orretion matrix, Q 2 Rn�n, and thede�ation matrix, P 2 Rn�n, as follows:P := I � AQ; Q := ZE�1ZT ; E := ZTAZ:In addition, �M�1 2 Rn�n is an arbitrary preonditioning matrix and M�1 2 Rn�n is anSPD preonditioning matrix.Remark 7.1. The di�erene between M�1 and �M�1 is that M�1 is assumed to besymmetri, positive de�nite and nonsingular, whereas �M�1 might be nonsymmetri, sin-gular, or even inde�nite, so that it is basially the pseudo-inverse of �M. PreonditionerM�1 is applied in de�ation-like methods, whereas the more general preonditioner,�M�1, is applied solely in multigrid methods, where a general smoothing operator isallowable.



7.2. Two-Level PCG Methods 119The de�ation method (DEF) is already desribed in the previous hapters. Reallthat its two-level preonditioner is PDEF = M�1P: (7.1)In order to derive the BNN and MG preonditioners, we onsider again the multi-pliative ombination of preonditioners, see Setion 6.2.2. Reall that the multiplia-tive operator onsisting of three preonditioners is given by (see Eq. (6.5))Pm3 = C1 + C2 + C3 � C2AC1 � C3AC2 � C3AC1 + C3AC2AC1: (7.2)It has already been derived that if one substitutes C1 := Q; C2 := M�1 and C3 := Qinto (7.2), we obtain PBNN = P TM�1P +Q; (7.3)whih is the two-level preonditioner orresponding to the abstrat balaning Neumann-Neumann (BNN) method. We have shown that BNN has the same spetral propertiesas the 2L-PCG methods based on multigrid V(0,1)- and V(1,0)-yle preonditioners(see Theorem 6.1).On the other hand, we ould also use �M�1 twie instead of Q, i.e., C1 :=�M�T ; C2 := Q and C3 := �M�1 in (7.2). We use the general preonditioner, �M�1,instead of M�1, beause �M�1 is not required to be symmetri nor invertible to de�nePm3. The resulting two-level preonditioner, well-known as the multigrid V(1,1)-ylepreonditioner, is then expliitly given by (see Eq. (6.12))PMG = �M�TP + P T �M�1 +Q� �M�TPA �M�1: (7.4)The latter expression for PMG also follows from the error-propagation operator:V := (I �PMGA) = (I � �M�TA)P T (I � �M�1A); (7.5)whih is often written as V := S�P TS; S := I � �M�1A; (7.6)where S� := I � �M�TA denotes the adjoint of S with respet to the A-inner produt.Reall that matries S and S� are known as the pre- and post-smoothers, respetively,and P T is the oarse-grid orretion operation. The resulting two-level PCG methodwith PMG is alled MG, see [23,69,151,178℄ for more details.Note that PMG is obviously symmetri, but it is not neessarily positive semi-de�nite,see Setion 7.3.2. Next, it an be observed that the two-level preonditioner or-responding to DEF is inluded as a term in the two-level preonditioner of MG if�M�1 = M�1 is taken (f. Eqs. (7.1) and (7.4)). Hene, we might expet that MGis always more e�etive than DEF. For ommon hoies of M�1, �M�1 and Z, this isindeed the ase, see Setion 7.7.2. However, Setion 7.4 shows that this is not truein all ases.



120 Chapter 7. Comparison of Two-Level PCG Methods � Part IITo summarize, the abbreviations and the two-level preonditioners orrespondingto the proposed 2L-PCG methods are presented in Table 7.1.Name Method Two-level preonditioner, PPREC Traditional PCG M�1DEF De�ation M�1PBNN Abstrat Balaning P TM�1P +QMG Multigrid V(1,1)-yle �M�1P + P T �M�1 +Q� �M�1PA �M�1Table 7.1: List of two-level PCG methods that are ompared in this hapter.Remark 7.2.� Eq. (7.4) is only used for the analysis of MG, but is never implemented us-ing this expliit form as the ation of PMG an be omputed with only a singlemultipliation, eah involving �M�1, �M�T , and Q.� We emphasize that the parameters of the two-level PCG methods that will beompared an be arbitrary, so that the omparison between these methods isbased on their abstrat versions. This means that the results of the omparisonare valid for any full-rank matrix Z, SPD matries A;M�1, and matrix �M�1.7.3 Spetral Properties of MGIn this setion, we present some results related to the spetral properties of the MGmethod. We �rst prove a result analogous to [104, Thm. 2.5℄, demonstrating that theMG preonditioner also lusters a number of eigenvalues at 1. Thereafter, we disussneessary and su�ient onditions for the MG preonditioner to be SPD. Note thatwhile these are natural onerns from a preonditioning point of view, these questionsare not ommonly onsidered for MG methods, whih are often applied as stationaryiterations and not used as preonditioners in all ases, unlike DEF.First, we present some notation in De�nition 7.2.De�nition 7.2. Let A and B be an SPD and arbitrary matrix, respetively. De�nejjBjjA := jjA 12BA� 12 jj2. Then,� if B is SPD, then the SPD square root of B is denoted by B 12 ;� if jjBjjA < 1, B is alled onvergent in the A-norm (or A-norm onvergent).7.3.1 Unit Eigenvalues of the MG-Preonditioned MatrixIn Chapters 3 and 6, we have seen that, for a SPD matrix A, DEF orresponds to atwo-level preonditioned oe�ient matrix that has exatly k zero eigenvalues, whereasthe matrix assoiated with BNN has at least k unit eigenvalues. Theorem 7.1 showsthat the two-level preonditioned matrix orresponding to MG also has at least k uniteigenvalues.



7.3. Spetral Properties of MG 121Theorem 7.1. Let PMG and S be as given in (7.4) and (7.6), respetively. Supposethat dimN (S) = �m; �m 2 N: (7.7)Then, PMGA has one as an eigenvalue, with geometri multipliity at least k and atmost k + 2 �m.Proof. In the following, we use the fatorization of I � PMGA = S�P TS as givenin Eqs. (7.5) and (7.6). Note �rst that dimN (S�) = dimN (S) = �m, see alsoLemma A.14.Considering Eq. (7.6), there are three ways for a vetor, v 6= 0n, to be in N (I �PMGA):(i) v 2 N (S), so that Sv = 0n;(ii) Sv 2 N (P T ), yielding P TSv = 0n;(iii) P TSv 2 N (S�), so that S�P TSv = 0n:We treat eah ase separately.(i) The geometri multipliity of the zero eigenvalue of I �PMGA must be at least�m, due to Eq. (7.7). This aounts exatly for all ontributions to N (I �PMGA) fromnull spae vetors of the �rst type.(ii) Counting the geometri multipliity of vetors of the seond type is only slightlymore ompliated. The fundamental theorem of linear algebra (see Theorem A.3) givesan orthogonal deomposition of Rn asRn = R (S)�N (ST ) : (7.8)Sine dimR (S) = n � �m, it must be the ase thatdimN (ST ) = �m: (7.9)Now, onsider the intersetion of R (Z) with subspaes R (S) and N (ST ):Z1 := R (Z) \R (S) ; Z2 := R (Z) \N (ST ) ;and let dimZ1 = k1 and dimZ2 = k2. Note that neessarily k1+k2 = k, and that k2 isno bigger than �m, beause of (7.9). Sine N (P T ) = R (Z), we have dimN (S) = k1;whih is the ontribution to the dimension of the null spae by vetors of the seondtype. Sine k1 + k2 = k for k2 � �m, the total dimension of the null spae arising fromvetors of the �rst and seond type must satisfy k � k1 + �m � k + �m:(iii) Similarly, we an determine the dimension of the null spae of the third type.Note �rst that (f. Eq. (7.8))Rn = R (P TS)�N (STP ) :



122 Chapter 7. Comparison of Two-Level PCG Methods � Part IILet M := N (S�) and M1 = M\R (P TS). Then, the number of unit eigenvaluesof the third type is �m1 = dimM1 � dimM = �m:Thus, dimN (PMGA) = �m + k1 + �m1; whih an be bounded byk � �m + k1 +m1 � k + 2 �m:Sine ounting the geometri multipliity of zero eigenvalues of I � PMGA is triviallyequal to the geometri multipliity of unit eigenvalues of PMGA (see Lemma A.1(b)),the proof is omplete.Remark 7.3.� PMGA has at least k unit eigenvalues, even if S is singular.� If zero is not an eigenvalue of S, then it is also not an eigenvalue of S� (whihis similar to ST ). Thus, Theorem 7.1 then says that PMGA has exatly k uniteigenvalues.� Sine �M�1 is nonsymmetri, the geometri and algebrai multipliity of the zeroeigenvalue of S (or, equivalently, the unit eigenvalues of �M�1A) should be dis-tinguished, sine they might di�er. 1� In a similar manner as Theorem 7.1, it an be shown that PBNNA has at least kand at most 2k + �m unit eigenvalues.7.3.2 Positive De�niteness of the MG preonditionerReall that a 2L-PCG method is guaranteed to onverge if P, as given in (6.1), isSPD or an be transformed into an SPD matrix. This is ertainly satis�ed for BNNand DEF, see the previous hapter. Here, we examine this issue for MG. It is obviousthat PMG (and, therefore, also PMGA) is not positive de�nite for all hoies of Z and�M�1, as in the next example.Example 7.1. Suppose that �M�1 = I and Z = [v1 � � � vk ℄, where fvig is the set oforthonormal eigenvetors orresponding to the eigenvalues of A, f�ig. Then,PMG = P + P T +Q� PA = 2I � 2ZZT + Z��1ZT � A+ ZZTA; (7.10)where � = diag(�1; : : : ; �k). Multiplying (7.10) by vi gives usPMGvi = 2vi � 2ZZT vi + Z��1ZT vi � �ivi + �iZZT vi :1A simple example is Gauss-Seidel for the 1-D Poisson problem with homogeneous Dirihlet bound-ary onditions. Take A = tridiag(�1;2;�1) and M to be the lower-triangular part of A. Then, S haseigenvalue 12 with algebrai multipliity n2 , assuming that n is even. Sine there is only one eigenvetororresponding to this eigenvalue, the geometri multipliity is 1.



7.3. Spetral Properties of MG 123This implies PMGvi = { 1�i vi ; for i = 1; : : : ; k;(2� �i)vi ; for i = k + 1; : : : ; n: (7.11)Hene, the spetrum of PMG is given by
{ 1�1 ; : : : ; 1�k ; 2� �k+1; : : : ; 2� �n} :In this ase, PMG, is SPD if and only if �n < 2.Example 7.1 shows that PMG an be inde�nite for some hoies of Z and �M�1. Thishighlights an important di�erene between MG and DEF. Indeed, many preonditioners,M�1, that make sense with DEF lead to inde�nite PMG, while hoies of �M�1 that leadto PMG, whih is SPD, might give nonsymmetri operators for PDEF. Next, a neessaryand su�ient ondition for PMG to be SPD is given in Theorem 7.2.Theorem 7.2. Let �M�1 and Z be as de�ned in De�nition 7.1. Let PMG be as givenin (7.4). A neessary and su�ient ondition for PMG to be SPD is that Z and �M�1satisfy minw : w?AZy 8y wT ( �M�1 + �M�T � �M�1A �M�T )w > 0: (7.12)Proof. By de�nition, PMG is positive de�nite if and only if uTPMGu > 0 for all vetorsu 6= 0n. Taking u := A 12 y , this means that PMG is SPD if and only if yTA 12PMGA 12 y > 0;for all y , or that A 12PMGA 12 is positive de�nite. Moreover, A 12PMGA 12 is symmetri and,so, it is SPD if and only if its smallest eigenvalue is greater than 0. This, in turn,is equivalent to requiring that I � A 12PMGA 12 has largest eigenvalue less than 1. ButI � A 12PMGA 12 is a similarity transformation of V (see Eq. (7.6)),A 12 V A� 12 = I � A 12PMGA 12 ;whih an be written as A 12 V A� 12 = (RS̃)T (RS̃); forR := I � A 12QA 12 ; S̃ := I � A 12 �M�1A 12 :Note that the eigenvalues of (RS̃)T (RS̃) are the singular values squared of RS̃ (see,e.g., [63℄), whih are also the eigenvalues of (RS̃)(RS̃)T = RS̃S̃TR: So, the largesteigenvalue of A 12 V A� 12 is less than 1 if and only if the largest eigenvalue of RS̃S̃TR isless than one. This happens if and only ifuTR(S̃S̃T )RuuT u < 1; 8u 6= 0n: (7.13)To maximize this ratio, we write u = A 12Zy1 + Ry2; and note that R is the L2-orthogonal projetion onto the orthogonal omplement of the range of A 12Z. Then,uTR(S̃S̃T )Ru = yT2 R(S̃S̃T )Ry2; uT u = yT1 ZTAZy1 + yT2 R2y2:



124 Chapter 7. Comparison of Two-Level PCG Methods � Part IISo, maximizing the ratio over all hoies of y1 means hoosing y1 = 0n, so that thedenominator of (7.13) is as small as possible. Therefore,uTRS̃S̃TRuuT u < 1 8u 6= 0n , yT2 RS̃S̃TRy2yT2 R2y2 < 1 8y2 6= 0n: (7.14)Thus, if the ratio on the right of (7.14) is bounded below 1 for all y2, so must be theratio in Eq. (7.13). But, if the ratio in (7.13) is bounded below 1 for all u, then it isbounded for u = Ry2, whih gives the bound at the right-hand side of (7.14).Equivalently, we an maximize the ratio of Eq. (7.14) over R(R) = R(A 12Z)?.So, the largest eigenvalue of RS̃S̃TR is less than 1 if and only ifmaxx:x?A 12Zy8y xT S̃S̃T xxT x < 1: (7.15)By omputation, we haveS̃S̃T = I � A 12 ( �M�1 + �M�T � �M�1A �M�T )A 12 :Therefore, the bound (7.15) is equivalent to requiringminx:x?A 12Zy8y xTA 12 ( �M�1 + �M�T � �M�1A �M�T )A 12 xxT x > 0:Taking w = A 12 x , this is, in turn, equivalent tominw :w?AZy8y wT ( �M�1 + �M�T � �M�1A �M�T )w > 0;beause wTA�1w > 0 for all w .Thus, a neessary and su�ient ondition for PMG to be SPD is given by (7.12).Intuitively, we expet the spetral properties of PMG to re�et those of �M�1, withsome aount for the oarse-grid orretion. Eq. (7.12) is partiularly interesting inomparison with Theorem 7.3, whih gives a neessary and su�ient ondition forM�1 to de�ne a onvergent smoother, see also [57,180℄.Theorem 7.3. Let �M�1 and Z be as de�ned in De�nition 7.1. Let S be as givenin (7.6). A neessary and su�ient ondition for S to be onvergent in the A-norm isminw wT ( �M�1 + �M�T � �M�1A �M�T )w > 0: (7.16)Proof. See [57,180℄.Theorem 7.3 amounts to the onditionkSkA < 1 , �min( �M + �MT � A) > 0;



7.4. Comparison of a Speial Case of MG and DEF 125that an also be found, for example, in [180, Thm. 5.3℄. On the other hand, Theo-rem 7.2 givesminw :w?AZy8y wT M̃�1w > 0 , minv :v= �M�Tw;w?AZy8y vT ( �M + �MT � A)v > 0;where M̃�1 := �M�1 + �M�T � �M�TA �M�1: (7.17)Neessarily,minv :v= �M�Tw;w?AZy8y vT ( �M + �MT � A)v > miny yT M̃�1y = �min( �M + �MT � A) > 0;so the ondition for PMG to be SPD is weaker than the ondition for a onvergent S inthe A-norm. In other words, the A-norm onvergene of S implies both onvergeneof I � PMGA, and that PMG is SPD. However, PMG an be SPD even if jjSjjA � 1, solong as oarse-grid orretion e�etively treats ampli�ed modes.7.4 Comparison of a Speial Case of MG and DEFHere, we show that abstrat preonditioners in the MG framework do not always lead tobetter onditioned systems than DEF. Suh problems an even be found in the ase ofM�1 = �M�1 = I, see Appendix I. In this setion, we show that this an be generalizedto arbitrary M�1, but requiring that �M�1 = M�1 and Z onsisting of eigenvetors ofM�1A. We start with some spetral bounds on MG and DEF under these assumptions.Thereafter, we perform a omparison between the ondition numbers for MG and DEF.Theorem 7.4 shows the eigenvalue distribution of PMGA and PDEFA, if Z onsistsof eigenvetors of M�1A.Theorem 7.4. Suppose thatM�1 = �M�1 is arbitrary and f�ig is the set of eigenvaluesof M�1A with orresponding eigenvetors fvig. Let Z be deomposed of v1; : : : ; vk .Suppose that MG is onvergent, so that 0 � �j � 2 holds for k < j � n. Furthermore,suppose that the eigenvalues are ordered so that 0 < �k+1 � �j � �n � 2 for allk < j � n. Let PDEF and PMG be as given in (7.1) and (7.4), respetively. Then,(i) PMGA has the following eigenvalues:
{ 1; for i = 1; : : : ; k;�i(2� �i); for i = k + 1; : : : ; n; (7.18)(ii) PDEFA has the following eigenvalues:

{ 0; for i = 1; : : : ; k;�i ; for i = k + 1; : : : ; n: (7.19)Proof. The proof follows from [26, Prop. 2℄ and [173, Set. 4℄.



126 Chapter 7. Comparison of Two-Level PCG Methods � Part IIHene, it depends on eigenvalues �k+1 and �n of M�1A whether �MG or �DEF is morefavorable, sine�MG = 1minf�k+1(2� �k+1); �n(2� �n)g ; �DEF = �n�k+1 ; (7.20)for any M�1 = �M�1 and Z onsisting of eigenvetors of M�1A. So, for some hoiesof Z and M�1, MG yields a larger ondition number than DEF.We disuss Figure 7.1 from whih the best method an be easily determined forgiven �k+1 and �n. Note �rst that if �k+1 = �n, then PMG onsists of at mosttwo di�erent eigenvalues, 1 and �n(2 � �n). In addition, if �k+1 = 2 � �n, then�MG = [�k+1(2� �k+1)℄�1 = [�n(2� �n)℄�1. Next, the region orresponding to0 < �k+1 � �n � 2 is naturally partitioned into two subdomains, along the line where�k+1(2� �k+1) = �n(2� �n), whih ours when �k+1 = 2� �n:� if �k+1(2��k+1) � �n(2��n), then �MG = [�k+1(2� �k+1)℄�1 : Thus, �MG <�DEF if and only if �k+1 � 2� 1�n ;� if �k+1(2��k+1) � �n(2��n), then �MG = [�n(2� �n)℄�1 : Thus, �MG < �DEFif and only if �k+1 � �2n(2� �n):Figure 7.1 depits these regions graphially. For any given �k+1 and �n, the methodwith smallest ondition number follows immediately from this �gure. Example 7.2 givessome onsequenes of Figure 7.1.Example 7.2.(a) If �(M�1A) � (0; 0:5℄, then we deal with Region B1, and, hene, �DEF � �MG:(b) If �(M�1A) � (0; 2) with �k+1 � 2��n, then we deal with either Region A1 orA2, and �DEF > �MG holds.Case (a) says that if M�1 is a `bad' smoother (no eigenvalues of S are less than 12),then MG is expeted to onverge worse than DEF. On the other hand, Case (b) impliesthat if M�1 is a `good' smoother (all eigenvalues that need to be handled by relaxationare done so with eigenvalues of S bounded in a neighborhood of the origin), then MGonverges better than DEF.7.5 E�et of Relaxation ParametersWhile DEF may have a smaller ondition number than MG for some hoies ofM�1 andZ, MG has an added relaxation parameter that is often very important. We illustratethis here by onsideringM�1 = �M�1 = �I for an optimized hoie of �. Suh a hoieof relaxation sheme within MG is ommonly known as Rihardson relaxation.
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Figure 7.1: Regions where �MG < �DEF (Regions A1 and A2) and �DEF < �MG (Regions B1 and B2),for arbitrary M�1 = �M�1, when Z onsists of eigenvetors of M�1A. The two ondition numbers areequal along the dotted and dotted-dashed lines.7.5.1 Analysis of Saling RelaxationInstead of onsidering the original linear system, Ax = b, we now onsider the saledlinear system, �Ax = �b; � > 0; (7.21)with M�1 = �M�1 = I. A subsript, �, is added to the notation for operators andmatries, if they are for (7.21). So, P� and PMG,� denote the de�ation matrix and MGpreonditioner based on (7.21), respetively.Solving the saled linear system (7.21) with M�1 = �M�1 = I is equivalent tosolving the preonditioned linear system, M�1Ax = M�1b, with M�1 = �M�1 = �I.The parameter, �, an then be regarded as a parameter of the relaxation instead ofthe linear system. The relaxation proesses are resaled, whereas there is no net e�eton oarse-grid orretion. Therefore, DEF is saling invariant, i.e.,�DEF,� = �n(M�1P��A)�k+1(M�1P��A) = �n(M�1PA)�k+1(M�1PA) = �DEF:In ontrast, MG is not saling invariant, and the positive-de�niteness property of PMG,�depends strongly on �, sine it is well-known that Rihardson relaxation is onvergentif 0 < � < 2jjAjj2 ; (7.22)see, e.g., [180℄. For multigrid, we typially try to hoose � lose to 1jjAjj2 , whihguarantees that the slow-to-onverge modes of relaxation are only those assoiatedwith the small eigenvalues of A. A better hoie of � is possible if we make assumptions



128 Chapter 7. Comparison of Two-Level PCG Methods � Part IIon how the eigenvetors of A assoiated with small eigenvalues are treated by oarse-grid orretion. It is also possible to get an expliit expression for the optimal �, seethe next subsetion.7.5.2 Optimal Choie of �The best value of � depends on Z, so the optimal �, denoted by �opt, an only bedetermined if the hoie of Z is �xed. In this ase, the job of relaxation is spei�allyto redue errors that are onjugate to the range of Z. The best hoie of � is the onethat minimizes the `spetral radius' of relaxation over the omplement of the range ofinterpolation, i.e., minw;yTZTAw=0 8y jwT (I � �A)w jwTw :If we restrit ourselves to Z onsisting of eigenvetors of A, parameter �opt is easilydetermined suh that it gives the most favorable ondition number for MG, see thenext theorem.Theorem 7.5. Suppose that M�1 = �M�1 = �I and f�ig is the inreasingly-sorted setof eigenvalues of M�1A with orresponding eigenvetors fvig. Let Z be deomposedof k orthonormal eigenvetors from fvig. Moreover, let PMG be as given in (7.4) suhthat PMGA is SPD. Then, �(PMG,�A) is minimized for�opt = 2�k+1 + �n : (7.23)Proof. Note �rst that, by hoosing �M�1 = M�1 = �I, the error-propagation operatorfor MG, V , an be written as (f. Eq. (7.10)).V = I�PMGA = (I��A)P T (I��A) = 2�I+Z��1ZT �2�ZZT ��2A+�2Z�ZT :So, applying PMG to an eigenvetor, vi , of A gives (f. Eq. (7.11))PMGvi = { 1�i vi ; for i = 1; : : : ; k;�(2� ��i); for i = k + 1; : : : ; n:Thus, PMGA has eigenvalue 1 with algebrai multipliity k, and n � k eigenvalues ofthe form ��i(2� ��i), for i = k + 1; : : : ; n.Let f�ig be the set of eigenvalues of PMGA, whih are positive and sorted inreas-ingly, so that its ondition number is given by �n�1 . By assumption, ��i(2 � ��i) > 0for all i = k + 1; : : : ; n and, by alulation, ��i(2� ��i) < 1 for all � and �i . Thus,�1 = mini2[k+1;n℄f��i(2� ��i)g; �n = 1:Sine the funtion f (�) := ��(2� ��) is onave down, we havemini2[k+1;n℄f��i(2� ��i)g = min f��k+1(2� ��k+1); ��n(2� ��n)g : (7.24)



7.5. E�et of Relaxation Parameters 129Subsequently, we want to maximize this minimum eigenvalue,max� min f��k+1(2� ��k+1); ��n(2� ��n)g :This is ahieved when we hoose � so that��k+1(2� ��k+1) = ��n(2� ��n);whih ours when � = 2�k+1+�n .Corollary 7.1. Let the onditions of Theorem 7.5 be satis�ed. Then, �MG � �DEF.Proof. If the optimal weighting parameter, �opt, is substituted into (7.24), then thesmallest eigenvalue of PMGA is equal to4�k+1�n(�k+1 + �n)2 : (7.25)As a onsequene, the ondition number of PMGA is given by�MG = (�k+1 + �n)24�k+1�n : (7.26)Finally, �MG � �DEF follows from the fat that(�k+1 + �n)24�k+1�n � �n�k+1 , (�k+1 + �n)2 � (2�n)2;whih is always true, sine �k+1 � �n.Remark 7.4.� The ondition numbers orresponding to MG and DEF are the same if the spe-trum of A is `�at' (i.e., if �k+1 = �n). But, using the optimized parameter, �opt,in MG, it gives a more favorable ondition number than DEF.� In Setion 7.4, it is shown that �MG � �DEF an happen in general. However,aording to Theorem 7.5, these examples an never be onstruted if �opt isused.� In pratie, approximations to � are fairly easy to ompute, although the ex-at eigenvalue distribution is usually unknown. Gershgorin irle theorem (see,e.g., [63, Set. 8.1.2℄)) gives us estimates of both �1 and �n, whih an be usedto approximate �k+1.� An optimal weighting parameter, �opt, an also be onsidered for general preon-ditioners, �M�1; however, it is often muh more di�ult to express �opt expliitly,as it depends on the spetral properties of �M�1A, whih may not be known. Ingeneral, the optimal hoie of � is suh that relaxation onverges as quikly aspossible on the modes that are not being treated by the oarse-grid orretion



130 Chapter 7. Comparison of Two-Level PCG Methods � Part IIphase. Thus, if the spetral piture of �M�1A is known well-enough to approxi-mate the eigenvalues orresponding to �k+1 and �n, a similar hoie of �opt asin Eq. (7.25) may be possible.7.6 Symmetrizing the SmootherIn the previous setion, we have seen that MG an be expeted to onverge in feweriterations than DEF for spei� hoies of M�1, �M�1 and Z. However, the fat thatMG requires fewer iterations than DEF for many preonditioners does not mean thatit is more e�ient, sine eah iteration of MG is more expensive, due to the hoie oftwo smoothing steps. In order to make a fairer omparison between DEF and MG, wenow onsider DEF using the preonditioning version of the symmetrized smoother:S�S = (I � �M�TA)(I � �M�1A) = I � M̃�1A; (7.27)with M̃�1 := �M�1 + �M�T � �M�TA �M�1: (7.28)Note that M̃�1, as de�ned here, is the same as in Eq. (7.17). Then, we useM�1 := M̃�1 (7.29)as the preonditioner in DEF, sine this hoie allows implementation in suh a waythat eah iteration of BNN, DEF and MG has similar ost. In this setion, we omparethe spetra assoiated with MG, BNN and DEF using (7.29). For general Z and�M�1 suh that M̃�1 is SPD, we show that BNN and DEF, both with preonditionerM̃�1, and MG yield the same eigenvalues for those modes that are not treated by theoarse-grid orretion, see Theorem 7.6.Theorem 7.6. Let �M�1 be as given in De�nition 7.1 suh that PMG is SPD. In addition,let M�1 = M̃�1 be as de�ned in (7.28) suh that PBNN is SPD. Then, the eigenvaluesof PMGA and PBNNA are equal.Proof. We show the equivalene of �MG and �BNN by examining the extreme eigenvaluesof their error-propagation forms,
{ I �PMGA = S�P TS;I �PBNNA = P T (I � M̃�1A)P T :We examine both methods by making the same similarity transformation,I �PA! A 12 (I �PA)A� 12 :This allows us to make use of the fat that I � A 12QA 12 is an orthogonal projetion in



7.6. Symmetrizing the Smoother 131the L2-inner produt. Computing the similarity transformed systems, we have
{ A 12 (I �PMGA)A� 12 = (I � A 12 �M�TA 12 )(I � A 12QA 12 )(I � A 12 �M�1A 12 );A 12 (I �PBNNA)A� 12 = (I � A 12QA 12 )(I � A 12 M̃�1A 12 )(I � A 12QA 12 ):By de�ning C := (I � A 12QA 12 )(I � A 12M�1A 12 ); we an rewrite the latter expressionsas { A 12 (I �PMGA)A� 12 = CTC;A 12 (I �PBNNA)A� 12 = CCT ;where the following equalities are used:





(I � A 12QA 12 )2 = I � A 12QA 12 ;(I � A 12QA 12 )T = I � A 12QA 12 ;(I � A 12 �M�1A 12 )T = I � A 12 �M�TA 12 ;I � A 12 M̃�1A 12 = (I � A 12 �M�TA 12 )(I � A 12 �M�1A 12 ):Sine A 12 (I�PMGA)A� 12 and A 12 (I�PBNNA)A� 12 are similar to I�PMGA and I�PBNNA,respetively, and, �(CTC) = �(CCT ) (see Lemma A.1), we obtain�(I �PMGA) = �(CTC) = �(I �PBNNA);and the theorem follows immediately.From Theorem 7.6, we obtain that MG and BNN with M̃�1 give exatly the sameondition number. This also implies that the ondition number of MG is surprisinglynot smaller than the ondition number of DEF, see the next orollary.Corollary 7.2. Let �M�1 and M�1 = M̃�1 be as in Theorem 7.6 suh that PDEF isSPD. Then, { �MG = �BNN;�DEF � �MG;where �MG; �BNN and �DEF are the ondition numbers orresponding to MG, BNN andDEF, respetively.Proof. The orollary follows from Theorem 7.6 and [104, Thm. 2.7℄.Remark 7.5.� Ordering the smoothers in the opposite way might lead to a di�erent de�nitionof M̃�1; this, in turn, ould hange the eigenvalues of MG and BNN, althoughan analogous result to Theorem 7.6 still holds for the onsistent hoie of S andM̃�1.� Corollary 7.2 shows that BNN, DEF and MG are expeted to show omparableonvergene behavior for speial hoies of traditional preonditioners. We notethat this result is only valid in exat arithmeti. If oarse-grid systems are solved



132 Chapter 7. Comparison of Two-Level PCG Methods � Part IIinaurately, DEF might have onvergene di�ulties, while BNN and MG areless sensitive to it, see the previous hapter.7.7 Numerial ExperimentsIn this setion, we present the results of some numerial experiments, where PREC andthe 2L-PCG methods are ompared. The starting vetor for eah iterative method isarbitrary and the termination riterion of the iterative proess is based on (2.23) withÆ = 10�8. We start with a 1-D Poisson-like problem to illustrate the theory obtainedin Setion 7.4. Then, we onsider the same 2-D bubbly �ow problem as in Setion 6.4to show the performane of DEF, BNN and MG in a more realisti setting. We stressthat these examples are hosen to highlight the presented theory and not to presentthe e�ieny of the solvers; in pratie, very di�erent hoies of �M�1, M�1 and Z areused for eah method, see Chapter 9.7.7.1 1-D Poisson-like ProblemSeveral 1-D Poisson-like problems are onsidered, with the matrixA = �  ; � . . .. . . . . . ;  �


; �;  2 R; (7.30)where we vary the onstants � and  so that eah test ase orresponds to a di�erentregion as shown in Figure 7.1, see Table 7.2. In addition, we hoose �M�1 = M�1 =I and Z onsisting of eigenvetors orresponding to the smallest eigenvalues of A.Right-hand side, b, is hosen randomly. We take n = 100 (other values of n lead toapproximately the same results), and the number of projetion vetors, k, is varied.The results of the experiment an be found in Table 7.3.Problem �  Range of �i Region Expeted Fastest Method(T1) 1:5 �0:125 [1:25; 1:75℄ B2 DEF(T2) 1 �0:05 [0:9; 1:1℄ A1 / A2 MG(T3) 0:25 �0:1 [0:05; 0:45℄ B1 DEF(T4) 1:25 �0:125 [1:0; 1:5℄ A1 / A2 MG/DEFTable 7.2: Test ases orresponding to di�erent regions as presented in Figure 7.1.From Table 7.3(a), it an be seen that DEF yields a smaller ondition number andis faster than MG for spei� hoies of � and . On the other hand, as observedin Table 7.3(b), � and  an also be hosen suh that MG yields a smaller onditionnumber and is faster than DEF.Sine the ondition number assoiated with DEF is always below that of MG in thease as presented in Table 7.3(), DEF is expeted to be faster than MG. However,



7.7. Numerial Experiments 133(a) � = 1:5;  = �0:125.k = 2 k = 20 k = 60Method # It. � # It. � # It. �PREC 11 1.4 11 1.4 11 1.4DEF 11 1.4 10 1.3 8 1.1BNN 11 1.7 10 1.7 8 1.7MG 15 2.3 15 2.3 12 2.3(b) � = 1;  = �0:05.k = 2 k = 20 k = 60Method # It. � # It. � # It. �PREC 9 1.2 9 1.2 9 1.2DEF 9 1.2 9 1.2 7 1.1BNN 9 1.2 9 1.2 7 1.1MG 5 1.01 5 1.01 5 1.01() � = 0:25;  = �0:1.k = 2 k = 20 k = 60Method # It. � # It. � # It. �PREC 34 9.0 34 9.0 34 9.0DEF 34 8.8 24 4.9 11 1.4BNN 34 19.6 25 11.0 11 3.2MG 30 10.1 22 5.7 11 1.9(d) � = 1:25;  = �0:125.k = 2 k = 20 k = 60Method # It. � # It. � # It. �PREC 11 1.5 11 1.5 11 1.5DEF 12 1.5 11 1.4 8 1.1BNN 12 1.5 11 1.5 8 1.5MG 10 1.3 10 1.3 9 1.3Table 7.3: Results of the experiment with test ases as presented for the Poisson-like problem inTable 7.2. The results are presented in terms of number of iterations, # It., and ondition number, �.that is not the ase in this test problem. The two methods onverge at the same ratefor large k, but MG is faster than DEF for small k. This an be explained by the fatthat the spetrum of eigenvalues of MG onsists of two lusters, see Figure 7.2().If the �rst luster of ones is omitted (or is approximated by a Ritz value), then theondition number of the remaining spetrum is favorable when ompared to that ofDEF. For example, in the ase of k = 2, we have �MG = 7:0 (instead of �MG = 10:1)when the unit eigenvalues are omitted. Obviously, this would then be the smallestondition number over all of the methods.Finally, MG has a smaller ondition number and is faster than DEF for small k inthe ase presented in Table 7.3(d). On the other hand, for large k, DEF has a smaller



134 Chapter 7. Comparison of Two-Level PCG Methods � Part IIondition number than MG and performs somewhat better than MG. Indeed, the bestmethod depends on �k+1 for this ase with spei� � and .
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DEF
MG(d) � = 1:25;  = �0:125.Figure 7.2: Eigenvalues assoiated with DEF and MG for the test ases with k = 20 as presented inTable 7.3.7.7.2 2-D Bubbly Flow ProblemIn this setion, a numerial omparison of the two-level PCG methods is performedusing 2-D bubbly �ows with m = 5, � = 103, and s = 0:05. As in Setion 6.4, M�1is hosen to be the IC(0) preonditioner and subdomain de�ation vetors are taken asprojetion vetors based on Variant 5.2 (see Setion 5.3)..Experiment with �M�1 =M�1The results with �M�1 = M�1 are presented in Table 7.4 (f. Table 6.4).From the table, it an be observed that, for all k, DEF and BNN require the samenumber of iterations, whereas MG is the fastest method in terms of the number ofiterations, whih is as expeted. Reall that this does not neessarily mean that MG



7.8. Conluding Remarks 135is the fastest method with respet to omputing time, sine eah iteration of MG ismore expensive than an iteration of DEF.k = 22 k = 42 k = 82Method # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2DEF 149 1:5� 10�8 144 3:1� 10�8 42 1:8� 10�8BNN 149 1:5� 10�8 144 3:1� 10�8 42 1:1� 10�8MG 86 1:0� 10�7 93 6:5� 10�8 32 1:9� 10�8Table 7.4: Number of required iterations for onvergene and the 2�norm of the relative errors of2L-PCG methods, for the bubbly �ow problem with n = 642 and �M�1 = M�1. PREC requires 137iterations and leads to a relative error of 4:6� 10�7.Experiment with Symmetrized SmootherWe perform the same experiment as above, but now taking M�1 = �M�1 + �M�T ��M�TA �M�1, while �M�1 is still the IC(0) preonditioner. In ontrast to the previousexperiment, the amount of work for eah iteration of BNN, MG and DEF is nowapproximately the same and Theorem 7.6 holds. The results of this experiment arepresented in Table 7.5. k = 22 k = 42 k = 82Method # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2DEF 87 7:2� 10�8 94 1:3� 10�8 34 7:6� 10�9BNN 87 7:2� 10�8 94 1:3� 10�8 34 7:6� 10�9MG 86 1:0� 10�7 93 6:5� 10�8 32 1:9� 10�8Table 7.5: Number of required iterations for onvergene and the 2�norm of the relative errors of2L-PCG methods, for the bubbly �ow problem with n = 642 and M�1 = �M�1 + �M�T � �M�TA �M�1.PREC requires 137 iterations and leads to a relative error of 4:6� 10�7.As an be observed in Table 7.5, MG is now omparable with DEF and BNN, asexpeted from the theory of Setion 7.6. All methods require approximately the samenumber of iterations and lead to the same auray.7.8 Conluding RemarksWe ompare two-level PCG methods based on de�ation (DEF), balaning Neumann-Neumann (BNN) and multigrid V(1,1)-yle (MG) preonditioners in their abstratforms, whih all onsist of ombinations of traditional and projetion-type preondi-tioners. When spei� hoies are made for the algorithmi omponents, eah MGiteration is more expensive than a DEF or BNN iteration, due to the more sophisti-ated form of the two-level preonditioner. At �rst glane, we would expet MG tobe the most e�etive method; however, we show that there exist some traditional andprojetion preonditioners suh that DEF is expeted to onverge faster than MG inexat arithmeti.



136 Chapter 7. Comparison of Two-Level PCG Methods � Part IIIf Rihardson relaxation is used with an optimal weighting as a traditional preon-ditioner, then we prove that MG always gives a more favorable ondition number thanDEF or BNN. For more sophistiated and e�etive traditional preonditioners, we stillexpet MG to be superior to DEF and BNN, although the work per iteration of MGremains more than for the other methods.For speial hoies of traditional preonditioners, we show that BNN, DEF and MGrequire the same amount of work per iteration and their spetra only di�er in one lusterof eigenvalues around 0 or 1. Hene, these methods are expeted to show omparableonvergene behavior, assuming that oarse-grid systems are solved aurately.The gap from the previous hapter is �lled by taking the MG preonditioner intoaount. For ertain hoies of parameters, this two-level PCG method is strongly re-lated to those as disussed in that hapter. The di�erent methods with their optimizedset of parameters are further examined in the upoming two hapters.



Chapter 8E�ieny and Implementation of theDe�ation Method8.1 IntrodutionThe de�ation method (also known as DPCG and DEF) has been introdued in Chap-ter 3, and, subsequently, some aspets of this method have been examined in thesubsequent hapters. E�ieny and implementation issues have not been extensivelytaken into onsideration so far in this thesis. The aim of this hapter is to fous onthose issues. We show that a good implementation of the de�ation method is essentialin order to obtain a powerful and e�ient method.We have seen in the prior hapters that inreasing the number of projetion vetorsusually leads to a faster onvergene of the iterative proess. This does not give a moree�ient de�ation method in general, sine the ost of eah iteration beomes higherdue to larger Galerkin systems (i.e., linear systems involving the Galerkin matrix, E)that should be solved. Hene, there is always an optimum of the number of projetionvetors, regarding the total omputing time that is required to �nd the solution usingthe de�ation method. This optimum depends on many aspets, suh as� sparsity pattern and dimension of the oe�ient matrix, A;� hoie of the preonditioner, M�1;� hoie and dimensions of the de�ation-subspae matrix, Z;� way of omputing the matrix-vetor produt Py , where P is the de�ation matrixand y is an arbitrary vetor.The latter aspet, omputing Py , an be divided into several steps, see Algorithm 8.The e�ieny of implementing eah line of this algorithm in�uenes both the e�ienyof the whole de�ation method and the optimal number of projetion vetors that shouldbe hosen. In general, an optimum annot be determined beforehand, but it is ommonthat a relatively low number of projetion vetors often improves the e�ieny.137



138 Chapter 8. E�ieny and Implementation of the De�ation MethodIn this hapter, Assumption 8.1 holds in order to determine the e�ieny of the de-�ation method for one spei� problem setting. Numerial experiments are performedto determine the optimal hoie of the number of subdomain projetion vetors withrespet to the total omputing time.Algorithm 8 Computation of Py1: y1 := ZT y2: Solve Ey2 = y13: y3 := (AZ)y24: Py := y � y3Assumption 8.1.� A is derived after disretization of the Poisson problem that is originated frombubbly �ow appliations (see Setion 1.3), and it onsists of 7 nonzero diagonalsin the 3-D ase;� M�1 is the IC(0) preonditioner (see Setion 2.5.1), so that the resulting de�a-tion method is DICCG (see Setion 3.6);� Z onsists of subdomain projetion vetors (see Setion 4.2.3). In addition, thenumber of subdomains and de�ation vetors is assumed to be equal.The de�ation method an be regarded as a two-grid method, beause a Galerkinsystem has to be solved at eah iteration. If these systems are solved reursively, thenwe would obtain a method that is very lose to multigrid methods, see Chapter 9.In this hapter, we restrit ourselves to Galerkin systems that are solved in either adiret or an iterative way. In the latter ase, the resulting de�ation method an beinterpreted as an inner-outer iteration proess, whih requires a speial treatment. Forexample, attention should be paid to the stability and termination riteria for both theinner- and outer-iteration proess. We examine this issue in this hapter. Moreover,some theoretial results are presented for the de�ation method with a singular Galerkinmatrix. These insights provide us a better understanding of the e�ieny of thede�ation method.Remark 8.1. Subdomain de�ation lends itself for an e�ient parallel implementation.This issue is disussed in Appendix F.This hapter is organized as follows. In Setion 8.2, we show the e�ient imple-mentation of the matrix-vetor produt, Py . Setion 8.3 is devoted to the treatmentof Galerkin systems and the assoiated de�ation methods. In Setion 8.4, we fous onthe inner-outer iteration proess and its stability properties. Numerial experiments areperformed in Setion 8.5, and some onluding remarks are presented in Setion 8.6.



8.2. Computations with the De�ation Matrix 1398.2 Computations with the De�ation MatrixIn order to obtain a fast solver, the de�ation method should be implemented e�ientlyin a program ode. In this setion, we show how this an be done by onsidering eahstep of the omputations with the de�ation matrix. We restrit the analysis to the3-D ase, sine the treatment of the 2-D ase is similar. We remark that the mainpart of this analysis is only valid for 3-D regular grids, and that the �oating pointoperations (�ops) ounts and their analysis only hold for subdomain de�ation, wherenonoverlapping idential ubes are used as subdomains. An further disussion of thede�ation operations an be found in Appendix D and [140℄, whereas the �op ountsof ICCG and DICCG are analyzed in Appendix E and [140℄.8.2.1 Constrution of AZThe matrix-matrix produt AZ an be omputed e�iently by determining only thenonzero entries. The outome of this produt is stored as a small matrix, denotedby SAZ 2 R�3, where  2 N is the number of nonzero entries of the matrix AZ.The �rst and seond olumns of SAZ are �lled with the row and olumn indies of thenonzero entries of AZ, respetively. The third olumn of SAZ stores the orrespondingvalues of these nonzero entries. The entries of SAZ an be determined e�iently, sineZ represents subdomains, f
jg, whih are nonoverlapping ubes. Moreover, AZ onlyhas nonzero ontributions near the interfaes of these ubes, and, hene, it onsists ofrelatively many zeros. So, the few nonzero entries of AZ may be known beforehand.Example 8.1. Let A 2 R4�4 and Z 2 R4�2 be matries, obtained from the 1-DPoisson-like problem, given byA =  1 �1 0 0�1 2 �1 00 �1 2 �10 0 �1 1  ; Z =  1 01 00 10 1  :Then, this leads immediately to  = 4 andAZ =  0 01 �1�1 10 0  ; SAZ =  2 1 13 1 �12 2 �13 2 1  :Considering the number of �ops, it is not di�ult to show that onstruting SAZrequires O(n 23 k 13 ) �ops in the 3-D ase, see Setion E.1.8.2.2 Constrution of EThe Galerkin matrix, E := ZTAZ, an be easily formed during the onstrution ofAZ. Eah nonzero entry of AZ makes exatly one ontribution to E, by simply adding



140 Chapter 8. E�ieny and Implementation of the De�ation Methodthe value to the orresponding entry of E.The way of solving the Galerkin system, Ey2 = y1, determines the best storage ofE, see Setion 8.3. The matrix orresponding to this e�ient storage of E is denotedby SE. For the time being, the number of �ops to solve a Galerkin system is denotedby #.8.2.3 Calulation of Py and P T yIn ontrast to AZ and E, the de�ation matrix, P , is not onstruted expliitly. Instead,eah step of the matrix-vetor produt Py , as presented in Algorithm 8, is performedseparately. In the same way, P T y an be treated. Both algorithms require O(n + #)�ops.Note that Z is not stored expliitly, sine the matrix-vetor produts, ZT y and Zy2,an be simply determined from y , requiring O(n) �ops. Furthermore, both (AZ)y2 and(AZ)T y an also be easily omputed, sine SAZ is known. Both omputations requireO(n 23 k 13 ) �ops in the 3-D ase, see Setion E.1.8.3 E�ient Solution of Galerkin SystemsIn this setion, we demonstrate the strategies to solve Galerkin systems (i.e., Line 2 ofAlgorithm 8) e�iently. Reall �rst from Chapter 5 that three de�ation variants anbe used, see Table 8.1 (whih is the same as Table 5.1).MatriesVariant Coe�ient De�ation-subspae Galerkin Corretion De�ation5.1 A Zk�1 Ek�1 Qk�1 Pk�15.2 �A Zk �Ek �Qk �Pk5.3 A Zk Ek Qk PkTable 8.1: Corresponding matries of the proposed de�ation variants in Chapter 5.We distinguish two main DICCG methods in this hapter, whih only di�er in thesolver of the Galerkin systems, see De�nition 8.1.De�nition 8.1.� DICCG1�k is de�ned as DICCG orresponding to any de�ation variant of Ta-ble 8.1, where eah Galerkin system is solved diretly.� DICCG2�k is de�ned as DICCG orresponding to any de�ation variant of Ta-ble 8.1, where eah Galerkin system is solved iteratively.Remark 8.2.� If there is no ambiguity, we omit the bars on matries, and subsripts assoiatedwith the matries. In addition, DICCG1�k and DICCG2�k are shortly denotedby DICCG1 and DICCG2, if k is unspei�ed.



8.3. E�ient Solution of Galerkin Systems 141� If one applies Variant 5.3 in DICCG1, then extra are is needed to solve theorresponding Galerkin systems. The diret solver should generate a solution upto the null spae of the Galerkin matrix.� Any de�ation variant, as presented in Table 8.1, an be used for both DICCG1and DICCG2, sine we have shown in Setion 5.4 that all variants are (almost)mathematially equivalent. However, for onveniene, we restrit ourselves toVariant 5.1 and 5.2 for DICCG1, and Variant 5.1 and 5.3 for DICCG2, in thishapter.In this setion, we �rst demonstrate how a Galerkin system, Ey2 = y1, an be solvede�iently for both DICCG1 and DICCG2. Both DICCG methods require a di�erenttreatment. We then ompare these methods theoretially. We use kx that denotesthe number of grid points in eah spatial diretion of a subdomain, i.e., kx := 3√ nk ,assuming that k is a divisor of n.8.3.1 Galerkin Systems within DICCG1To solve Ey2 = y1 with a diret method, we apply the band-Cholesky deomposi-tion [63, Set. 4.3.5℄, and, thereafter, band-bak/forward substitution [63, Set. 4.3.2℄.In this ase, the bandwidth of E is k 23 + k 13 , making the deomposition e�ient onlyfor relatively small k.Reall that both Ek and Ek�1 are invertible, so that their band-Cholesky deompo-sitions exist. Furthermore, onstruting the Cholesky deomposition requires O(k 73 )�ops, whereas the bakward and forward substitutions take O(k 53 ) �ops.8.3.2 Galerkin Systems within DICCG2To �nd a solution of Ey2 = y1 in DICCG2, we apply the iterative solver ICCG. This ispossible and e�ient, sine E has the same properties as A. Obviously, E is SPSD andhas a similar sparsity pattern to A, beause Z is based on nonoverlapping subdomains.Moreover, E is better onditioned than A, see Theorem 8.1.Theorem 8.1. Let A, Ek�1 and Ek be as in Table 8.1. Then, the following inequalitieshold: �(Ek�1) � �(A); �(Ek) � �(A): (8.1)Proof. Note �rst that both Ek�1 and Ek have rank k � 1, as Z has full rank and thealgebrai multipliity of the zero eigenvalue of A is one. In addition, without loss ofgenerality (see Theorem C.2), we resale Zk with√ nk suh that it satis�es ZTk Zk = I.In order to prove the left-hand inequality of (8.1), it su�es to show that�2(A) � �2(Ek) and �k(Ek) � �n(A); (8.2)where 0 = �1(Ek) < �2(Ek) � : : : � �k(Ek) and 0 = �1(A) < �2(A) � : : : � �n(A)are the eigenvalues of Ek and A, respetively.



142 Chapter 8. E�ieny and Implementation of the De�ation MethodThe inequalities (8.2) an be derived from Theorem A.2 (that is the Courant-Fisher Minimax Theorem). From this theorem, we obtain in partiular�2(A) = minwTw=1; w?w1(A)wTAw; �n(A) = maxwTw=1wTAw; (8.3)where u1(A) is the eigenvetor orresponding to �1(A), see [73, Set. 4.2℄ for moredetails.Note that u1(A) = 1n and u1(E) = 1k hold due to Assumption 1.2 and Eq. (5.8).In addition, for w := Zky , we have




wTAw = (Zky)TAZky = yTEy ;(Zky)T (Zky) = yT y ;(Zky)T1n = yTZTk 1n = yT1k ;using Property 5.1(i). Hene, this impliesmin(Zky)T (Zky)=1; Zky?1n (Zky)TA(Zky) = minyT y=1; y?1k yTEy: (8.4)Now, ombining Eqs. (8.3) and (8.4) gives us�2(A) = minwTw=1; w?1n wTAw � minyT y=1; y?1k yTEy = �2(E);whih is the left inequality of (8.2). For the right inequality of (8.2), it follows in asimilar way that �k(E) = maxyT y=1 yTEy � maxwTw=1wTAw = �n(A);where we have applied max(Zky)T (Zky)=1(Zky)TA(Zky) = maxyT y=1 yTEy:The right-hand inequality of (8.1) an be proven in a similar way as above.Next, there is no need to fore invertibility of Ek , sine ICCG an deal with asingular oe�ient matrix. We only have to ensure the onsisteny of all Galerkinsystems during the outer-iteration proess of DICCG2, see Theorem 8.2.Theorem 8.2. Let DICCG2 be as given in De�nition 8.1. Then, all Galerkin systemswithin DICCG2 are onsistent.Proof. Reall that Ek�1 is invertible, so that we an restrit ourselves to E := Ek . TheGalerkin system, Ey2 = y1, appears three times in Algorithm 6 (Lines 1, 3 and 11),whih are treated separately below.In the matrix-vetor produt P r0, we have to solve the Galerkin system Ey2 = ZT r0.



8.3. E�ient Solution of Galerkin Systems 143This system is onsistent, sine it is ompatible due to Eq. (5.8) and(ZT r0)T1k = rT0 Z1k = rT0 1n = bT 1n � xT0 A1n = 0n � xT0 0n = 0n: (8.5)Moreover, sine (ZTApj)T1k = pTj AZ1k = pTj A1n = 0n; (8.6)the system Ey2 = ZTApj is ompatible as well. Hene, PApj is onsistent. Finally,using the same argument as above, we onlude that P T ~xj+1 is also onsistent, usingthe fat that P T ~xj+1 = ~xj+1 � ZE+ZTA~xj+1.From Theorem 8.2, we onlude that it is possible to solve eah Galerkin system,Ey2 = y1, iteratively. Eah of the ICCG steps osts O(k) �ops, and the e�ieny ofthis method depends on the number of required inner ICCG iterations.Remark 8.3. Note that the solution of the Galerkin systems in Variant 5.3 is notunique, sine it is determined up to a onstant vetor. If y2 is a solution of Eky2 = y1,then y2 + �1k with � 2 R is also a solution. Fortunately, y3 := AZk(y2 + �1k) isunique, due to the fat that AZk1k = A1n = 0n. Hene, Algorithm 8 gives a uniquePy for all de�ation variants.Reall that, in the ase of DICCG2, we have an inner-outer iterative proess withDICCG as an outer-iteration proess and ICCG as an inner-iteration proess, so thatwe need two di�erent termination riteria. The inner and outer toleranes are denotedby Æouter and Æinner, respetively, whih satisfyÆinner = ! Æouter; ! > 0: (8.7)For large ! � 1, DICCG2 does not onverge, as the method is sensitive to inau-rate solves of the Galerkin systems, see also [103, Set. 3℄. However, for small !� 1,the onvergene of the inner iterations of DICCG2 is relatively slow; the inner-iterationproess may stagnate or even diverge due to a too severe termination tolerane. There-fore, ! should be hosen arefully to obtain an onvergent and e�ient method. Fromour numerial experiments with bubbly �ows, it appears that! = 10�2 (8.8)is an appropriate hoie, but it usually depends on many fators, see [64,124℄ for moredetails.Remark 8.4. For problems with a large grid size or large jumps in the oe�ient of thePDEs, it ould be advantageous to solve the inner iterations with DICCG, instead ofICCG. The inner iterations ould even be solved by a reursive appliation of DICCG,see, e.g., [48℄. This is in analogy with multigrid-like methods, see also [56, Set. 3℄.



144 Chapter 8. E�ieny and Implementation of the De�ation Method8.3.3 Comparison of Galerkin MatriesHere, we examine the Galerkin matries in the di�erent de�ation methods in order todetermine the fastest method.Note �rst that the Galerkin matries, Ek�1 and Ek , satisfyEk = [ Ek�1 �� � ] ; (8.9)where � represents some irrelevant entries of Ek . Then, we an show that the eigen-values of Ek and Ek�1 interlae, see Theorem 8.3.Theorem 8.3. Let Ek�1 and Ek be as given in Table 8.1. Then, the following inequal-ities hold:0 = �1(Ek) � �1(Ek�1) � �2(Ek) � : : : � �k�1(Ek) � �k�1(Ek�1) � �k(Ek):Proof. The theorem follows immediately from the interlaing property (Lemma A.7).In ontrast to the ase that A is invertible, the spetrum of Ek�1 is not in therange of the nonzero eigenvalues of Ek , i.e., �(Ek�1) is not smaller than �(Ek). But,in pratie, we often see that the largest eigenvalues of both matries are almost thesame, whereas the smallest nonzero eigenvalues di�er signi�antly, i.e., we have�k�1(Ek�1)! �k(Ek); �1(Ek�1)� �2(Ek);for large k. This yields �(Ek) � �(Ek�1):Aordingly, one should iterate with Ek , rather than Ek�1, to obtain the fastest ex-peted onvergene of the inner-iteration proess. In other words, Variant 5.3 is thevariant of hoie in DICCG2 and, hene, this is used in Setion 8.5.3.8.3.4 De�ation Properties for a Singular Galerkin MatrixIn Setion 3.5, we have presented some theoretial results based on de�ation matrieswhose Galerkin matrix, E, is nonsingular. Under ertain irumstanes, these resultsalso hold for the ase with a singular Galerkin matrix. We start with Assumption 8.2that is satis�ed throughout this subsetion.Assumption 8.2. Suppose that Zk = [Zk�1; zk ℄ with Zk�1 2 Rn�(k�1) and zk 2 Rnholds. Then, we assume that Ek := ZTk AZk is a singular SPSD matrix, whose pseudo-inverse E+k satis�es E+k = [ E�1k�1 0k�10Tk�1 0 ] ; (8.10)where Ek�1 := ZTk�1AZk�1 is an invertible SPD matrix.



8.4. Stabilization of the De�ation Method 145Note that Eq. (8.10) an be dedued from Eq. (8.9) by hoosing zeros for �. In fat,this subsetion deals with a partiular hoie for Ek�1 and Ek .From Assumption 8.2, we have that the nonzero eigenvalue distributions of Ekand Ek�1 are idential, so that Theorem 8.4 follows immediately. This results in thefat that the onvergene of the inner solver for Galerkin systems within both DICCG1and DICCG2 is the same, if they are performed by a PCG method and the Galerkinmatries satisfy Assumption 8.2.Theorem 8.4. Let Ek�1 and Ek satisfy Assumption 8.2. Then, �(Ek�1) = �(Ek).Moreover, the proof of Theorem 5.5 is straightforward if Assumption 8.2 is satis�ed.For ompleteness, this is presented below.Theorem 8.5. Let A and M�1 be an SPSD and SPD matrix, respetively. Let Pkand Pk�1 be as de�ned in Table 8.1. Suppose that Assumption 8.2 is satis�ed. Then,M�1PkA = M�1Pk�1A holds.Proof. Using Qk = ZkE+k ZTk= [Zk�1; zk ℄[ E�1k�1 0k�10Tk�1 0 ] [Zk�1; zk ℄T= Zk�1E+k�1ZTk�1= Qk�1;the theorem follows immediately.8.4 Stabilization of the De�ation MethodIn pratie, the de�ation method (DPCG or DEF) might be not robust if the number ofprojetion vetors, k, is relatively large. This is aused by the fat that Galerkin systemsinvolving Ek or Ek�1 might also beome large and annot be solved aurately. Thede�ation method an be stabilized by adding a orretion matrix in the linear system,i.e., we solve (f. Eq. (6.11))(P TM�1 +Q)Ax = (P TM�1 +Q)b; (8.11)with starting vetor x0 = Qb+P T ~x0 and an arbitrary vetor ~x0. The resulting methodis alled the adapted de�ation method (ADPCG or A-DEF) method, whih is equal tothe A-DEF2 method as introdued and analyzed in Chapter 6.Remark 8.5.� The operator P TM�1 + Q in Eq. (8.11) annot be replaed by M�1P + Q,beause it has been shown in Chapter 6 that the resulting method may su�erfrom instability.



146 Chapter 8. E�ieny and Implementation of the De�ation Method� The solution, x , in (8.11) is the same as the solution of Ax = b, sine P TM�1+Qis invertible.� The matrix-vetor produt Qy for any y 2 Rn an be arried out e�iently in asimilar way as Py or P T y (see Setion 8.2.3).It has been demonstrated in Chapter 6 that ADPCG an be derived from the well-known balaning Neumann-Neumann (BNN) method [89℄. In addition, both methodshave more-or-less the same favorable robustness properties, due to the following the-orem (whih is Theorem 6.3 for an SPSD oe�ient matrix, A).Theorem 8.6. Let A and M�1 be an SPSD and SPD matrix, respetively. Supposethat P is a de�ation matrix orresponding to any de�ation variant as presented inTable 8.1. Let the spetra of DPCG and ADPCG be given by�(M�1PA) = f�1; : : : ; �ng; �(P TM�1A+QA) = f�1; : : : ; �ng;respetively. Then, the numbering of the eigenvalues within these spetra an be suhthat the following statements hold:
{ �i = 0; �i = 1; for i = 1; : : : ; k;�i = �i ; for i = k + 1; : : : ; n:Proof. The proof is almost the same as the proof of Theorem 6.3, see also [85℄.If Galerkin systems with Ek or Ek�1 are solved inaurately, then the zero eigen-values assoiated with DPCG beome nearly zero, resulting in a method that is notrobust. On the other hand, we do not have this phenomenon in the ADPCG method,sine the orresponding eigenvalues of M�1A are projeted to one instead of zero,see Chapter 6 for more details. It follows that if the Galerkin system, Ey2 = y1, issolved iteratively, then this an be done with a lower auray for ADPCG, omparedwith DPCG. As disussed in Setion 8.3, the Galerkin systems within DPCG shouldbe solved aurately. Following the disussion above, the expetation is that a larger! in Eq. (8.7) an be taken in the ADPCG method. In the numerial experiments (ofSetion 8.5.3, we investigate the hoie of ! for both DPCG and ADPCG in moredetail.Remark 8.6. If the Galerkin system, Ey2 = y1, is solved inaurately, the resultingoperator P TM�1+Q is varying at eah iteration, while a �xed operator is expeted inthe CG proess. In other words, the operationy2 = (P TM�1 +Q)�1y1seen by the outer proess turns out to bey2 = F(y1);



8.5. Numerial Experiments 147where F an be regarded as a nonlinear mapping. If the inner tolerane is too loose,the optimal onvergene property of the CG proess an only be preserved, if oneperforms a full orthogonalization of the searh diretion vetors that an be extendedwith trunation and restart strategies. This results in GMRES-like methods, suhas the Flexible CG method [109℄. We also onsider this variant in Setion 8.5.3.However, we note that it is possible to use the original (D)PCG method with inexatpreonditioning, sine the onvergene rate of the outer CG proess an be maintainedup to a ertain auray for the inner iterations, see [62,64℄.8.5 Numerial ExperimentsIn this setion, we perform some 3-D numerial experiments with stationary bubbly �owproblems, whih illustrate the theoretial results as obtained in the previous setions.Results of the 2-D numerial experiments an be found in [140, Set. 7℄. The numerialresults are presented in terms of both the number of iterations and omputing time,so that this setion is basially an extension of Setion 3.6.We apply the problem setting as given in Setion 1.3. Four test problems areonsidered with m = 0; 1; 8; 27 air bubbles. The orresponding geometries of thesetest problems an be found in Figure 1.2.In Setion 8.5.1, it is shown that the de�ation method an indeed be implementede�iently. We vary the density ontrast, �, the number of projetion vetors, k, andthe grid size, n. First, ICCG and DICCG1 are ompared, followed by the omparison ofDICCG1 and DICCG2. DICCG1 is based on Variant 5.2, whereas Variant 5.3 is used inDICCG2. Subsequently, we ompare DICCG2 and ADICCG2 in Setion 8.5.3, whereADICCG2 denotes the ADICCG method in whih the Galerkin system, Ey2 = y1, issolved iteratively using ICCG. We investigate whether DICCG2 an indeed be stabilizedwithout losing e�ieny.For eah iterative proess, a random starting vetor and the termination rite-rion (2.23) with a tolerane Æ = 10�8 are used. As a measure of the auray of thesolutions, the exat relative residuals are also investigated in the experiments. Theseresults are omitted below, as these residuals are omparable for ICCG and both DICCGmethods in all ases.8.5.1 Results for the De�ation Method with E�ient ImplementationThe omputations of this subsetion are performed on a Pentium 4 (2.80 GHz) om-puter with a memory apaity of 1GB. The ode is ompiled with FORTRAN g77 onLINUX.Results for a �xed grid size and density ontrastThe results for all test ases with a grid size n = 1003 and density ontrast � = 103are shown in Table 8.2.



148 Chapter 8. E�ieny and Implementation of the De�ation Methodm = 0 m = 1 m = 8 m = 27Method # It. CPU # It. CPU # It. CPU # It. CPUICCG 170 25.2 211 31.1 291 43.0 310 46.0DICCG1�23 109 20.2 206 37.5 160 29.1 275 50.4DICCG1�53 56 11.3 58 11.5 72 14.2 97 19.0DICCG1�103 35 8.0 36 8.5 36 8.2 60 13.0DICCG1�203 22 26.5 25 27.6 22 27.2 31 29.3Table 8.2: Convergene results for ICCG and DICCG1 for all test problems with n = 1003 and� = 103. `# It' means the number of required iterations for onvergene, and `CPU' means the totalomputational time in seonds.Considering the results in Table 8.2, we see that DICCG1 always requires feweriterations when ompared to ICCG. Reall that DICCG1 requires fewer iterations ifk beomes larger (f. Setion 3.6.1). The optimal hoie with respet to the CPUtime is k = 103, i.e., DICCG1�103 onverges most rapidly in all test ases. Theimprovement in the CPU time is relatively large ompared to ICCG. Furthermore, onean notie that, in general, it is not always the ase that more bubbles in the problemsetting lead to more iterations, and, therefore, more CPU time for both ICCG andDICCG1 to onverge. Namely, for DICCG1�23 and DICCG1�203, we observe thatfewer iterations and CPU time are required for the test ase with m = 8 than form = 1. Finally, notie that, for large k, DICCG1 requires signi�ant CPU time due tothe inrease of the omputational ost for solving Galerkin systems. Hene, DICCG1does onverge with a small number of iterations for k > 103, but it requires a lot ofCPU time for eah iteration.To visualize the results given in Table 8.2, we present those for the test ase withm = 27 in Figure 8.1. From Sub�gure 8.1(a), it an be observed that as small k isinreased, the number of iterations of DICCG1 dereases. For large k, the bene�t issmaller. Furthermore, after a peak at k = 23, the required CPU time for DICCG1dereases until k = 103. Thereafter, the CPU time inreases and DICCG1 is lesse�ient, see Figure 8.1(b). In Figure 8.1(), the bene�t fator for the number of iter-ations is depited for eah k. Obviously, the larger k, the larger the pro�t of DICCG1.For example, DICCG1�203 requires almost 10 times fewer iterations than ICCG. Fi-nally, the bene�t fator for the CPU time is depited for eah k in Figure 8.1(d). Fork = 103, the maximum bene�t fator is ahieved. In this ase, DICCG1�103 is around3.5 times faster than ICCG.Results for Varying Grid Sizes and Density ContrastsThe results for the test problem with 27 bubbles and varying grid sizes are presentedin Figure 8.2. Here, we use  := nxkx as the ratio of the grid size and the number ofde�ation vetors, both in one spatial diretion. We investigate whether DICCG1 issalable, i.e., whether the number of iterations of DICCG1 is equal for all k and for a�xed  .From the �gure, one observes immediately that for larger grid sizes, the di�erenes
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(d) Ratio of CPU time required for ICCG andDICCG1 versus k 13 .Figure 8.1: Visualization of the results for the test problem with m = 27.
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(b) CPU time versus grid size per diretion.Figure 8.2: Results for the test problem with m = 27 for varying grid sizes. ICCG and DICCG1 withboth  = 5 and  = 10 are presented.



150 Chapter 8. E�ieny and Implementation of the De�ation Methodin performane between ICCG and DICCG1 also beome signi�antly larger. For in-stane, in the ase of n = 1003, ICCG onverges in 275 iterations and 50.4 seonds,while DICCG1�103 �nds the solution in 60 iterations and in only 13.0 seonds. More-over, we notie that the number of ICCG iterations grows with the grid sizes, while thenumber of iterations for DICCG1 for both  = 5 and  = 10 remains approximatelyonstant. It seems that, in order to keep the number of iterations onstant in DICCG1as the grid size is inreased, the number of de�ation vetors must also inrease, pro-portionally to the grid sizes. Moreover, the CPU time required for DICCG1 inreasesmore-or-less quadratially with grid size, whih is a onsequene of the expensive diretsolve of the Galerkin systems. This is in agreement with the theory (f. Setion 8.3.1).In the next subsetion, this is remedied by using DICCG2 instead of DICCG1.Next, after experiments with varying grid sizes, we �x the grid size as n = 1003and vary the low-density, " (whih is 1� ). The results are presented in Figure 8.3.From the �gure, we see that DICCG1 for k > 23 hardly depends on ", while ICCGbeomes obviously worse when we hoose a smaller ". In other words, DICCG1 withk > 23 is insensitive to the density ontrast in terms of both the number of iterationsand the CPU time.
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(b) CPU time versus low-density ".Figure 8.3: Results for the test problem with m = 27 for varying density ontrast, �.8.5.2 Comparison of DICCG1 and DICCG2In the previous subsetion, we have seen that DICCG1 is very e�ient as long ask < 203. From k = 203, eah iteration of DICCG1 is relatively expensive, althoughonly a relatively low number of iterations is needed. The bottlenek is the expensiveonstrution of the banded Cholesky deomposition of E. Diret omputations withE an be avoided by using DICCG2, hopefully resulting in a fast solver for large k.In this subsetion, a numerial omparison between DICCG1 and DICCG2 is arriedout. Note that, sine we �x Æouter = 10�8 for all test ases, the termination tolerane,Æinner = 10�10, should be adopted for the inner iterations in DICCG2, as mentioned inSetion 8.3.2.



8.5. Numerial Experiments 151Some results for the test problem with m = 27 and varying grid sizes an be foundin Figure 8.4. Similar results are found for the other test problems. The number ofiterations required for both DICCG1 and DICCG2 is more-or-less equal in all test ases,whih is in agreement with Theorem 5.5, so these results are omitted for onveniene.We observe in Figure 8.4 that for a relatively small number of de�ation vetors,DICCG1 and DICCG2 perform approximately the same. However, for problems withrelatively large k, DICCG2 is learly more e�ient. The di�erene between the twoDICCG methods beomes signi�ant at k = 203. In addition, we observe that, in allases, DICCG1 ahieves its optimum at k = 103, whereas the optimum of DICCG2 isahieved for k > 103. Hene, we onlude that DICCG2 is the most e�ient methodfor k > 103. This onlusion is rather natural, but annot be drawn beforehand. Forexample, unforeseen problems solving the Galerkin systems may our, sine the preisee�ieny of solving these systems is not known exatly, and the onsisteny of thesesystems may be lost due to round-o� errors.
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Figure 8.4: CPU time of DICCG1 and DICCG2 for the test problem with m = 27 and various gridsizes.8.5.3 Comparison of DICCG2 and ADICCG2The omputations of this setion are performed on an Intel Core 2 Duo (2.66 GHz)omputer with a memory apaity of 8GB. The ode is ompiled with the Intel FOR-TRAN ompiler, ifort, on LINUX. Some disrepanies ould be observed between theresults of the experiments of this subsetion and the previous subsetion, due to anupdated ode and omputer environment.We onsider two test problems (f. Figure 1.2):� Test Problem 1: m = 8 bubbles, radius s = 0:10, grid size n = 1003;� Test Problem 2: m = 27 bubbles, radius s = 0:05, grid size n = 1503,where the density ontrast is � = 103. We examine PCG and the de�ation meth-ods DICCG2 and ADICCG2 for di�erent parameters of Æinner and number of de�ationvetors, k.



152 Chapter 8. E�ieny and Implementation of the De�ation MethodResults of the ExperimentsThe results of the experiments for the two test problems an be found in Table 8.3.(a) Test Problem 1.k = 53 k = 103 k = 203 k = 253Method Æinner # It. CPU # It. CPU # It. CPU # It. CPUDICCG2 10�10 151 17.9 66 8.5 32 5.8 28 6.510�8 NC � NC � NC � NC �ADICCG2 10�10 140 20.2 60 9.2 30 7.2 27 10.110�8 140 20.1 60 9.1 30 6.7 27 9.410�6 140 20.1 60 9.1 30 6.3 27 8.210�4 141 20.2 60 9.0 29 5.6 29 7.010�2 NC � 194 28.2 NC � NC �(b) Test Problem 2.k = 153 k = 253 k = 503Method Æinner # It. CPU # It. CPU # It. CPUDICCG2 10�10 53 24.1 44 25.1 24 82.110�8 NC � NC � NC �ADICCG2 10�10 50 27.6 41 32.5 22 130.410�8 50 27.2 41 30.7 22 116.010�6 50 26.7 42 29.3 22 86.210�4 52 27.4 43 27.0 24 58.210�2 NC � NC � NC �Table 8.3: Results for DICCG2 and ADICCG2 to solve Ax = b with n = 1003, orresponding to TestProblem 1. ICCG requires 390 iterations and 37.0 seonds for Test Problem 1 and 543 iterations and177.6 seonds for Test Problem 2. `# It' = number of iterations of the outer proess, `CPU' = therequired omputing time (in seonds) inluding the setup time of the methods, `NC' = no onvergenewithin 250 iterations.From Table 8.3, we see in all test ases that DICCG2 and ADICCG2 are alwaysfaster and require fewer iterations ompared with ICCG, whih on�rms Theorem 3.5.Both de�ation methods require approximately the same number of iterations for �xedk, whih is as expeted from Theorem 8.6. It an be observed that inreasing thenumber of projetion vetors, k, leads to a redution of the number of iterations forboth DICCG2 and ADICCG2. This is in agreement with Theorem 3.3. In additio, weexpet that ADICCG2 is more robust than DICCG2 due to Theorem 8.6. This is indeedthe ase: for Æinner � 10�8, DICCG2 does not onverge anymore, while ADICCG2 stillshows onvergene, provided that Æinner � 10�4. We notie that the bene�t of using alarger Æinner in ADICCG2 an be substantial for large k.Furthermore, it an be notied that there is an optimum regarding the omputingtime for spei� k and orresponding Æinner. For Test Problem 1, this is k = 203 andÆinner = 10�10 in the ase of DICCG2, whereas k = 203 and Æinner = 10�4 are theoptimal values in the ase of ADICCG2. Considering Test Problem 2, the optimalhoies are k = 153 and Æinner = 10�10 for DICCG2, and k = 253 and Æinner = 10�4 for



8.5. Numerial Experiments 153ADICCG2. Hene, ADICCG2 an be faster than DICCG2 using their optimal Æinner.Disussion of the ResultsFrom the above results, it an be observed that the optimal values are ! = 10�2 forDICCG2 and ! = 104 for ADICCG2 with respet to Eq. (8.7). These still hold ifwe vary Æouter. Apparently, DICCG2 an deal with nearly zero eigenvalues as long asthey are very small, so that they are treated as zero eigenvalues by the method. Inaddition, ADICCG2 is faster than DICCG2 in some ases, beause a larger Æinner anbe taken, while the number of outer iterations remain approximately the same. Thisis rather surprising, beause no extra orthogonalization steps onsidering the searhdiretions or residuals are added to the iterative proess in order to preserve the knownorthogonality properties of the CG proess.We investigate the inner-outer iterations in more detail. Note �rst that eah outeriteration of ADICCG2 requires two inner solves (i.e., two solves for the Galerkin sys-tems), whereas DICCG2 only needs one (f. Eqs. (3.14) and (8.11)). Therefore,ADICCG2 an only be more e�ient, if eah inner solve of this method is performedat least twie as fast as DICCG2, whih is the ase for su�iently large Æinner. Thisis illustrated in Figure 8.5, whih shows a typial onvergene of the residuals of aninner solve, within an outer iteration of ADICCG2�253. It an be observed thatADICCG2�253 would only be faster than DICCG2�253, if the inner solves are re-dued from 142 to at most 71. This means that, in theory, one has to perform theinner solves with an auray of approximately Æinner � 10�5. This an indeed beahieved for ADICCG2�253, see Table 8.3. Moreover, we remark that if k beomesrelatively large, then E would also be very large. Then, it is inevitable to use DICCG2 orADICCG2 instead of ICCG in order to solve Ey2 = y1 e�iently. Reall that we wouldthen obtain an iterative method with a multilevel preonditioning, see Remark 8.4.
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Figure 8.5: Convergene of the residuals during an inner solve at one iteration of ADICCG2�253(Test Problem 2). The plots are similar for the other outer iterations of the same test ase, sine oneapplies the inaurate solves to the Galerkin matrix, E.Next, we examine the residuals of the outer iterations to see what happens if amethod does not onverge, see Figure 8.6. From the �gure, we an observe that if



154 Chapter 8. E�ieny and Implementation of the De�ation MethodDICCG2 shows no onvergene, it even diverges. This is in ontrast to ADICCG2,whose residuals are still dereasing slowly. This is an extra advantage of ADICCG2.Although it might not be the fastest method, it gives somewhat more robust residualsin ase it onverges slowly.
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(b) Flexible ADICCG2.Figure 8.7: Residual plots of the outer iterations from ADICCG2�253 (Test Problem 1).by applying DICCG instead of ICCG, if an e�ient implementation is used.We show that the involved Galerkin systems within the de�ation method an besolved both diretly and iteratively. The resulting DICCG methods are denoted byDICCG1 and DICCG2, whih only di�er in the implementation of the solvers for theGalerkin systems. A diret solver for these systems is adopted in DICCG1, whereas aniterative solver for the Galerkin systems is applied in DICCG2. Theoretial properties ofthese Galerkin systems are derived, whih are of importane to DICCG2. Furthermore,insights are gained into stabilizing the de�ation method, resulting in the ADICCG2 (A-DEF2) method. In this method, the inner iterations an be solved rather inaurately,while the number of outer iterations remain approximately the same.Several 3-D numerial experiments based on bubbly �ow problems are performedin order to test the e�ieny of DICCG1 and DICCG2. For a relatively small numberof de�ation vetors, DICCG1 performs very well, but DICCG2 is more e�ient fora larger grid size and/or number of de�ation vetors. Compared with ICCG, bothmethods signi�antly redue the omputational ost in all test ases, espeially forlarge problems. Additionally, they are insensitive to density ontrasts, while ICCGhas di�ulties for large ontrasts. Furthermore, we show that the DICCG methodsare salable in terms of iterations and CPU time, as long as the number of de�ationvetors is hosen proportionally to the grid size. Moreover, numerial experimentsillustrate that the DICCG2 an indeed be stabilized without losing muh e�ieny.The resulting ADICCG2 method an be more e�ient than DICCG2 for some testases. In order to improve the e�ieny of the de�ation methods onsidered in thishapter, multigrid-like omponents ould be inorporated. Moreover, these methodsan also be ompared to well-known multigrid methods based on their typial andoptimized parameters, whih is the main topi of the next hapter.
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Chapter 9Comparison of De�ation and Multigridwith Typial Parameters
9.1 IntrodutionIn this hapter, we ompare de�ation and multigrid methods based on their typialoptimized parameters applied to linear systems oming from bubbly �ow problems.In the previous hapters, we have seen that the de�ation method (DPCG) is a 2L-PCG method that o�ers one attrative possibility for the e�ient solution of the linearsystem (see Eq. (1.1)), Ax = b; (9.1)whih takes the form of a Poisson equation (also alled `pressure-orretion equation')with disontinuous oe�ients and Neumann boundary onditions, see Eq. (1.3).Reall from Chapters 6 and 7 that another option for the e�ient solution of thepressure-orretion equation is the use of multigrid (MG) tehniques. We have shownthat, algebraially, DPCG and PCG with a MG preonditioner are strongly related toeah other. These results are only valid when the same set of parameters are taken inboth orresponding algorithms. However, the preferred hoies for these omponentsare quite di�erent between the two methods, and, in addition, they have a di�erentmeaning and bakground. The �ne-grid smoother or preonditioner is usually hosen togive e�etive treatment of ertain modes of error. A omplementary spae is de�ned, interms of a set of de�ation vetors or the range of the multigrid interpolation operator,and an optimal orretion over this spae is omputed. However, while de�ationtehniques are typially based on a strong �ne-sale preonditioner (suh as an IC(0)preonditioner) in ombination with a oarse-sale orretion over a very small spae,multigrid tehniques typially make use of a rather weak �ne-sale smoother (e.g., aJaobi or Gauss-Seidel iteration) in ombination with a oarse-sale orretion over aspae that is a large fration of the �ne-sale problem size. Furthermore, the treatmentof the linear systems assoiated with the oarse sale are handled di�erently. De�ationtehniques typially solve these systems using a diret or iterative method, whereas a157



158 Chapter 9. Comparison of De�ation and Multigrid with Typial Parametersreursive proedure is used in the multigrid approah.The blak box multigrid tehnique, �rst introdued in [3℄, uses geometrially stru-tured oarse grids in ombination with an interpolation operator designed to aountfor the e�ets of jumps in the di�usion oe�ients to ahieve fast multigrid onver-gene in many situations [12, 37, 39℄. Algebrai multigrid, or AMG, is also known tobe e�etive for ellipti problems with jumps in their oe�ients [118, 129℄, ahievingthis e�ieny by tailoring both the oarse-grid struture and interpolation operator toaount for the jumps in the oe�ients. While both of these solvers are applied su-essfully in many ases, the modelling of bubbly �ows provides some unique hallenges.In partiular, in simulations with bubbles that appear at the �nest resolution of the grid,these tehniques may enounter di�ulties in treating suh small-sale e�ets throughadapting the oarse-sale models. In these ases, we �nd in this hapter that using theabove multigrid algorithms as preonditioners within PCG easily restores their optimalonvergene behavior at a minimal extra ost.The use of MG-preonditioned CG within a pressure-orretion method is not new.Indeed, multigrid was �rst onsidered for use as a preonditioner for disontinuous-oe�ient problems very early in its history, see [18, 78℄. Under ertain symmetryassumptions on relaxation and the oarse-grid operators, Tatabe demonstrated thatmultigrid always de�nes a positive-de�nite preonditioner (regardless of the numberof pre- and post-relaxations) and, so, multigrid is aeptable as a preonditioner forPCG [149℄. In the �uid dynamis literature, Tatabe's MGCG method has been adoptedfor the solution of the pressure-orretion equation for variable-density �ows [115,130℄.Similarly, the MUDPACK software pakage [1℄ has also been used for solving theseequations [49, 50, 152℄, but this has been found to not o�er robust performane tothe large density jumps that appear in realisti simulations [50℄. In ontrast to manyof these tehniques, the multigrid algorithms onsidered here inlude two importantfeatures, Galerkin oarsening and operator-indued interpolation. Galerkin oarsen-ing reates the multigrid oarse-grid operators using matrix produts that restrit the�ne-grid operators onto the range of interpolation. This greatly simpli�es the task ofreating a onsistent oarse-grid orretion proess for problems with density variationsthat are not resolved on the oarse sale. Operator-indued interpolation tehniquesfurther improve this approah by building interpolation operators tuned towards ap-turing the �ne-sale modes that are slow to be redued by simple relaxation on thevariable-oe�ient problem.In this hapter, we make a detailed omparison between de�ation and multigridmethods with their own typial parameters for bubbly �ow problems. While the appli-ation of the de�ation method in bubbly �ows is examined in the previous hapters, theuse of advaned multigrid methods for these �ow simulations has, to our knowledge,not been previously onsidered in the literature. As well, the linear system (9.1) thatarises in 3-D two-phase �ows o�ers a good opportunity for omparison of these twofamilies of solvers. In ontrast to previous theoretial omparisons, as performed inChapters 6 and 7, we fous here on evaluating eah solver using its most advantageousseletion of options.



9.2. Numerial Methods 159The remainder of this hapter is organized as follows. Setion 9.2 presents thedetails of the de�ation and espeially the multigrid methods onsidered here. Someimplementation details of the two families of solvers are ompared in Setion 9.3. Then,Setion 9.4 shows a numerial omparison of the di�erent solvers for 3-D stationarybubbly �ows. Conluding remarks are presented in Setion 9.5.Remark 9.1. Domain deomposition methods, suh as the balaning Neumann-Neu-mann method, with their typial and optimal parameters are not onsidered in thishapter, beause these methods are advantageous in espeially a parallel environment.Sine this hapter is restrited to omputations on a sequential omputer, DDM isexluded from the omparison.9.2 Numerial MethodsWe know from Setion 1.3 that the solution of the pressure-orretion equation withinoperator-splitting approahes has long been reognized as a omputational bottlenekin �uid �ow simulation. In the ase of single-phase �uids, a ommon approah tooveroming this bottlenek is the use of multigrid solvers for this equation [151℄.Standard geometri multigrid tehniques o�er optimal-saling solution properties forthe pressure-orretion equation in a single-phase �uid. For two-phase �uids, however,large di�erenes in the �uid densities an lead to dramati deterioration in the multigridperformane. In this hapter, we onsider alternate approahes to solving the pressure-orretion equation that do not exhibit the same sensitivity to jumps in the materialproperties. We fous on solving Eq. (9.1), whih is a disretization of the pressure-orretion equation.9.2.1 De�ation ApproahReall that the linear system that is solved in ICCG is (see Eq. (2.19))M�1Ax = M�1b;where M�1 denotes the IC(0) preonditioner. To improve the performane of ICCG,we inlude a seond operation in the preonditioner, so that we solve the followingsystem (see Eq. (3.14)): M�1PA~x = M�1Pb; (9.2)where P := I � AZE�1ZT is the de�ation matrix with Z := [z1 z2 � � � zk ℄: Theresulting method is alled DICCG. In this hapter, the vetors fzig are subdomainde�ation vetors (see Setion 4.2.3). If k beomes large, the Galerkin systems involvingE beome more ostly to solve, and, in partiular, the use of standard sparse diretsolvers may be ine�ient. Instead, an iterative solver an be adopted to deal with theseGalerkin systems. In this hapter, the Galerkin systems in DICCG are, themselves,solved using ICCG. The resulting method is known as DICCG2, see Setion 8.3. As



160 Chapter 9. Comparison of De�ation and Multigrid with Typial Parametersmentioned in that setion, as k inreases, even standard iterative solution of the oarse-level systems an beome quite expensive, and de�ation-like tehniques should also beinorporated into the oarse-level ICCG algorithm, leading to a reursive multi-levelde�ation method [48℄. This is, however, not onsidered in the results presented here.9.2.2 Multigrid ApproahesSine Eq. (9.1) losely resembles the linear system assoiated with a di�usion equation,another lass of tehniques to onsider is the family of multigrid methods. In the aseof single-phase �ow, in partiular, the pressure-orretion equation (see Eq. (1.3))redues to the ase of a simple Poisson equation with a onstant density, for whihgeometri multigrid methods are known to provide optimal solution tehniques [151,178℄. For two-phase �uids, more ompliated multigrid tehniques are neessary toahieve optimal performane; suh tehniques are well-known in other �elds. Here, wepresent the details of these methods, and their speialization to solving (9.1).Just as de�ation methods use a orretion over a small subspae to aount for thede�ienies of a traditional preonditioner, all multigrid methods ombine the use of aoarse-sale (or oarse-grid) orretion proess that is aimed at orreting modes thata �ne-sale iteration (or smoothing) is slow to resolve. Di�erent multigrid methodsdi�er in the hoies made in these two proesses, partiularly in the details of howthe oarse-sale spae is hosen and how that orretion is omputed. Here, weonentrate on multigrid methods that make use of simple pointwise smoothers, suh asthe Jaobi or Gauss-Seidel iterations, and onsider four di�erent hoies for the oarse-grid orretion proedure. A brief introdution into lassial multigrid tehniques ispresented in the following subsetions; we refer to, e.g., [151,178℄ for more details.Geometri MultigridFor the ase of single-phase �ows disretized on a regular grid, the use of geometrimultigrid tehniques has long been studied (f. [151,178℄). These methods are basedon the realization that, while simple iterations, suh as weighted-Jaobi and Gauss-Seidel, do not e�iently resolve all modes of the solution, they do quikly and e�etivelydamp a large subspae of errors for a large lass of matries, inluding those onsideredhere. In partiular, for single-phase �ow (onstant density), the errors that are notquikly damped by these simple iterations are dominated by so-alled `smooth' errormodes; errors that vary slowly between neighboring grid points. It is, thus, the job ofthe oarse-grid orretion proess to attenuate exatly these modes.An important di�erene between the oarse-grid orretion proesses in multigridand de�ation tehniques is the size of the subspae employed for oarse-grid orretion.While de�ation aims for a orretion over a muh smaller subspae than the �ne-saleproblem size, the size of the oarse-grid problem in a multigrid method is spei�allyhosen to be a relatively large fration of the �ne-grid size; typial oarsening rates areby a fator of 2 or 3 in eah dimension. Suh slow oarsening is justi�ed by onsideringthe onvergene behavior of the omplementary stationary iteration; for any �xed



9.2. Numerial Methods 161redution tolerane, the number of error modes whih are redued in magnitude bya fator larger than that tolerane (i.e., the number of slowly onverging modes)inreases with the size of the �ne-grid matrix. Thus, to ahieve onvergene that istruly independent of problem size using lassial stationary iterations requires that thesize of the oarse-grid problem always remains a �xed fration of the �ne-grid problemsize.Here, we onsider a geometri multigrid approah using Gauss-Seidel smoothing.For maximum e�ieny, the algorithm is speialized to grids with the number of gridpoints in eah dimension of the form �2�, where �; � 2 N with typially � = 1 or� = 3, so that the oarse grid may be hosen by reduing the grid size by a fator of 2in eah diretion at all levels. Interpolation is trilinear ell-entered interpolation, whilerestrition is taken as ell-entered piee-wise onstant restrition [98℄. Smoothingand residuals on the oarse grid are realized using diret disretization of the �ne-salehomogeneous problem on the oarse grid. This is possible beause of the assump-tion of onstant-density for the single-phase (inompressible) �ow; for the two-phase�ows onsidered here, more sophistiated tehniques, desribed below, are needed todisretize, on the oarse sale, a �ne-sale �ow that may have phase boundaries thatannot be represented on the oarse grid.While geometri multigrid tehniques often yield the fastest solvers for the onstant-oe�ient version of the pressure-orretion equation, several ompliations arise inextending these tehniques to the ase of variable density. The properties of simplesmoothing tehniques, suh as Jaobi or Gauss-Seidel, are highly dependent on thedensity; in the ase of nononstant density, the dominant errors after smoothing mayexhibit sharp transitions and/or usps, whih must be aounted for in the oarsen-ing proess. Furthermore, if the variations in density have �ne-sale features (as weexpet for bubbly �ows), it may not be lear how best to represent the equations onthe oarser grid, as needed in the multigrid proess. In the following subsetions, wedisuss several approahes for overoming these obstales.Another approah to overome the above disussed ompliations is to use thegeometri multigrid method as a preonditioner for the PCG iteration. A good solver,suh as geometri multigrid, for the onstant-oe�ient ase is expeted to make agood preonditioner for the variable density ase, so long as the density ontrast isnot too signi�ant. Results for this approah are reported in Setion 9.4 as methodGMG-CG. All of the other multigrid approahes that we develop here may be appliedboth as a standalone solver and as a preonditioner for PCG. This preonditioner isbasially the multigrid V(1,1)-yle preonditioner as disussed in Chapter 7. In whatfollows, we disuss only the ase of these tehniques being used as standalone solvers;see Setion 9.2.2.Galerkin CoarseningWhile GMG-CG (and geometri multigrid in general) performs well when the densityontrast is small, its performane su�ers greatly when problems with large densityontrasts are onsidered (as shown in Setion 9.4). Improving the multigrid perfor-



162 Chapter 9. Comparison of De�ation and Multigrid with Typial Parametersmane requires improvement in one (or both) of the multigrid omponents, smoothingor oarse-grid orretion. In GMG-CG, however, diret smoothing on (1.3) is re-plaed by smoothing on the onstant-oe�ient problem as a preonditioner for thevariable-density problem of interest. Thus, a �rst step in improving the performane ofGMG-CG would be to replae the smoothing on the homogeneous problem with thaton the real problem of interest.Making the above improvement on the �ne sale is simple to implement; boththe onstant-density and variable-density problems are well-de�ned on the �ne sale,and it is relatively simple to replae smoothing on one with smoothing on the other.On oarse sales, however, we have no diret representation of the �ne-sale problem,unless it is possible to represent the variation in the density naturally on the oarse sale.For many �ows of interest, this is learly the ase for all oarse sales in a multigridhierarhy. Thus, we need some indiret way to aount for �ne-sale variations in thedensity diretly in smoothing on the oarse sales.There are many possible ways to reate a oarse-sale model with a �ne-saledensity distribution; the problem of numerial homogenization, or upsaling, is studiedin many disiplines, see, e.g., [176℄. While these tehniques fous on de�ning ane�etive density oe�ient that an be naturally represented on the oarse sale only,we instead fous on the multigrid point of view that the primary purpose of smoothingon the oarse sales is not to represent the �ow on those sales but, rather, to omputean appropriate orretion to the errors in the �uid pressures on the �ne sale.Using the oarse-grid models to improve a �ne-grid approximation to the pressurenaturally leads to the question of how good a orretion is possible from a oarse grid.Mathematially, we onsider a �xed oarse grid and interpolation matrix, Z, that mapsfrom the oarse grid to the �ne grid. Asking for the best possible orretion fromthe oarse grid, i.e., the best orretion in the range of Z, means that we wish tominimize some norm of the error, e, in our approximation, xj+1, to the solution, x ,that satis�es (9.1). Writing the orreted approximation as x̂j+1 = xj+1 + Zy , forsome vetor y , this means that we wish to minimizekêk = kx � (xj+1 + Zy)k = ke � Zyk:Both the minimum value and the oarse-grid vetor, y , for whih the minimumis ahieved depend strongly on the norm hosen for the minimization. Choosing theA-norm implies that the optimal hoie for y satis�es(ZTAZ)y = ZTAe = ZT (b � Axj+1):That is, the best possible oarse-grid orretion for a �xed hoie of the multigridinterpolation matrix, Z, may be expressed in terms of a Galerkin matrix, E := ZTAZ,and restrition of the �ne-grid residual, rj+1 := b�Axj+1, using ZT as the restritionmap. This hoie of oarse-grid and restrition operators is known in the multigridliterature as Galerkin oarsening [106, 151, 178℄, beause of its lose relationship toGalerkin �nite elements.



9.2. Numerial Methods 163A �rst generalization of GMG-CG is then to onsider the multigrid method withinterpolation, Z, given as in GMG-CG, but with smoothing on all levels replaed byGauss-Seidel smoothing on the �nest-grid matrix and its Galerkin restritions. Thistehnique, whih we denote by CCMG, was �rst proposed for problems similar to (1.3)in [177℄ and later studied in [79,163℄.The Blak Box Multigrid MethodWhile CCMG o�ers a great improvement over GMG-PCG in terms of its salability,its performane still degrades as the density ontrast inreases, see Table 9.1 in Se-tion 9.4. As CCMG arose through improvements to the smoothing phase in GMG-PCG,we now onsider the role of interpolation in the performane of CCMG. Of partiu-lar importane in ahieving onsistent multigrid performane regardless of the densityontrast or on�guration of the �ow is the priniple of omplementarity; as multigridmethods aim to redue errors through two distint proesses, smoothing and oarse-grid orretion, optimal multigrid performane an only our when these proessesare appropriately omplementary.While we ould aim to improve the performane of CCMG by making further im-provements to the smoothing routine, suh improvements often dramatially inreasethe ost of the iteration. Instead, we aim to improve the multigrid performane bymaking a di�erent hoie for the interpolation matrix, Z, to better omplement the per-formane of lexiographial Gauss-Seidel smoothing. It has long been reognized thatfor problems with disontinuous oe�ients, suh as the pressure-orretion equation,the errors left after smoothing are not smooth, as in the ase of onstant-oe�ientproblems [3℄. Thus, while oarse-grid orretion with a �xed interpolation operator,suh as those analyzed in [98℄ and disussed above, may be used to e�etively om-plement smoothing for onstant-oe�ient problems, they are less appropriate whenthe problem ontains large jumps in its oe�ients.The solution to the problem with large jumps in oe�ients, �rst disussed in [3℄and further developed in [37,38℄, is to allow the oe�ients of the interpolation matrix,Z, to depend on the oe�ients of A. Suh an operator-indued interpolation isbetter able to re�et the slow-to-onverge errors of smoothing as these errors are,themselves, dependent on the variation in A. The tehnique of the Blak Box MultigridMethod [37℄, also denoted by BoxMG, de�nes the oe�ients of interpolation to a �ne-grid point by ombining the entries of the matrix in the rows orresponding to the gridpoint and its graph neighborhood.In 3-D, the BoxMG algorithm assumes that the �ne-grid matrix omes from thedisretization of an equation suh as (1.3) on a logially retangular grid, see [38℄. The�ne-grid operator is then assumed to have at most a 27-point onnetivity struture;for eah grid point, onnetion is only allowed to grid points that reside in grid pointneighboring (possibly only at orners) that in whih the grid point lies. The oarse gridis onstruted by removing every other plane of grid points in eah diretion, in ontrastto the oarsening used in GMG and CCMG, where �nite volumes were aggregated inpairs in eah diretion. Interpolation in BoxMG then falls into four ategories: �ne-grid



164 Chapter 9. Comparison of De�ation and Multigrid with Typial Parameterspoints may be themselves oarse-grid points (as the oarse grid is embedded in the �negrid), they may lie on the line segment onneting two oarse-grid points, they maylie in the same plane as four oarse-grid points, at the enter of the square de�ned bythese grid points, or they may lie in a plane with no oarse-grid points, at the enterof the ube de�ned by 8 oarse-grid points.Interpolation of orretions to embedded oarse-grid points is always done usinginjetion, as the errors at these grid points are diretly represented on the oarse grid.For �ne-grid points lying between two oarse-grid points, the interpolation weights arede�ned by �rst adding the matrix entries in the row of A orresponding to the grid pointalong the planes orthogonal to the onneting line, ollapsing the 27-point stenil to a3-point stenil joining these three grid points. The orretion to the grid point is thenomputed by setting this 3-point stenil to zero, substituting in the injeted orretionsat the oarse-grid points and solving for the orretion at the �ne-grid points. A similarapproah is used for �ne-grid points lying at the enter of a square in the plane of fouroarse-grid points, however �rst the four other neighboring grid points in that planeare resolved using the �rst approah. In this way, the 27-point stenil needs only beollapsed to a 9-point stenil, whih an be treated using the previously omputedorretions as in the 3-point stenil ase. Finally, the orretion to the grid point atthe enter of the ube de�ned by 8 oarse-grid points may be alulated diretly, bysatisfying the 27-point stenil at this grid point using the orretions omputed at allof its neighbors, see [12℄.The Galerkin matrix, E, in BoxMG is again de�ned using a Galerkin oarsening,with Z de�ned as desribed above. It an be veri�ed that, if the �ne-grid stenil has itsnonzero onnetions on�ned to within a 27-point stenil pattern, then the oarse-gridoperator also has 27-point onnetivity. Thus, BoxMG may be applied reursively tode�ne a full multigrid hierarhy. While there are many ways to use knowledge of thedisrete operator, or of the density distribution itself, to de�ne the multigrid hierarhy,the approah taken in BoxMG has been shown to be suessful for a wide variety ofproblems. In [101℄, it is shown that one of the reasons for the suess of BoxMG is thatde�ning interpolation in this way approximately preserves the ontinuity of the normal�ux, (1�rp) � n, aross an interfae with a jump in the density. Thus, BoxMG anbe thought of as ombining e�etive multigrid priniples with useful physial insight inahieving a stable and e�ient solution algorithm.Algebrai MultigridWith the early papers on BoxMG [3,12,37℄, it was reognized that the ombination ofoperator-indued interpolation and Galerkin oarsening an lead to very robust methodsfor a wide lass of problems. The algebrai multigrid method [22, 118℄, or AMG, isan algorithm based on a di�erent implementation of the same priniples, but whihan be applied to an even larger lass of problems. In partiular, AMG an be appliedto problems without a regular grid struture and allows for the hoie of unstruturedoarse grids regardless of the �ne-grid operator struture.The entral idea of AMG is that all omponents of the oarse-grid orretion yle



9.2. Numerial Methods 165should be determined by the properties of the �ne-grid operator. The �rst step inoarsening is then to determine whether two grid points that are onneted in the�ne-grid operator are onneted in a signi�ant way, where grid points i and j are saidto be onneted if ai j 6= 0. Eah grid point, i , is said to strongly depend on any ofits neighboring grid points for whih ai j is of similar size as the largest entry in row i .For M-matries, suh as the oe�ient matrix of Eq. (9.1), we de�ne the set of gridpoints that i strongly depends upon asSi = {j : �ai j � � �maxJ 6=i f�aiJg} ;for some suitable �, 0 < � � 1. One these strong onnetions are identi�ed, a oarsegrid is formed by taking a maximal independent set of the graph reated by the set ofedges, fai jg, where j 2 Si .To de�ne interpolation in AMG, a similar strategy is used to ollapse onnetionsbetween grid points that appear only on the �ne grid and de�ne an interpolation op-erator. Choosing the oarse grid through the maximal independent subset algorithmdesribed above implies that the oarse-grid points are embedded in the �ne grid. Forany �ne-grid point, i , that is not also a oarse-grid point, interpolation an be de�nedby ollapsing the onnetions from i to other �ne-grid points, j , based on their om-mon oarse-grid neighbors. Unlike BoxMG, this is done without using any intuitioninto the ouplings involved; the elimination of these �ne-�ne onnetions is a purelyalgebrai operation. Eah �ne-�ne onnetion is replaed using a weighted average ofthe oe�ients onneting the �ne-grid point, j , to the oarse-grid neighbors of gridpoint i ; see [118,129℄ for details.Beause both the hoie of the oarse grid and the interpolation operator in AMGare determined based on the �ne-grid operator, we expet AMG to have onvergeneproperties similar to, or possibly even better than, those of BoxMG. However, theprie paid in AMG for this robustness is the use of ompletely unstrutured matrixand vetor data strutures, as a result of the unstrutured grid hierarhy. Additionally,the ost of the additional operations to ompute the oarse grid (and, in fat, amore expensive omputation of the interpolation weights) makes AMG an expensivealternative in situations where BoxMG (or CCMG or GMG) is expeted to performwell. Nevertheless, AMG is often the method of hoie in ommerial odes whererobustness is onsidered more important than ahieving the smallest possible solutiontime. Indeed, in CFD, AMG solvers have been reognized as an important tool forahieving e�ient solution in a wide variety of �ow regimes, see [116℄.On the Need for PreonditioningWhile the multigrid methods disussed here are typially onsidered as standalonesolvers, it is sometimes useful to also onsider them as two-level preonditioners for2L-PCG. These preonditioners take the form of a typial multigrid V(1,1)-yle, wherethey only di�er in the hoies of the parameters, see Chapter 7. Both BoxMG and



166 Chapter 9. Comparison of De�ation and Multigrid with Typial ParametersAMG aim to diretly treat the �ne-sale struture of the density �eld through the useof operator-dependent interpolation algorithms. It is possible, however, that operator-dependent interpolation alone is not su�ient to yield an optimal solution algorithm inall situations.It is quite natural for AMG and BoxMG to not interpolate signi�antly aross bubbleboundaries, see also [88, Set. 3.3.5℄. A intuitive requirement from this point of viewwould be to require, for eah �ne-sale bubble, a su�ient number of oarse-gridpoints to lie within the bubble, to allow for an aurate omputation of a oarse-gridorretion for all grid points within the bubble. In a real-life simulation, however, thismay not be pratial, due to bubbles and droplets that may only be resolved at thesize of a single grid point on the �ne sale. In Setion 9.4, we see that the numberof iterations for both BoxMG and AMG without the use of a Krylov wrapper inreaseas the number of bubbles grows. While suh an inrease is not dramati, it aneasily be attenuated by the use of these multigrid methods as a preonditioner for 2L-PCG; in this ase, the multigrid method gives good onvergene for almost all typesof errors, and the CG aeleration e�etively resolves the few error modes assoiatedwith these small bubbles. In Setion 9.4, we denote the 2L-PCG methods with CCMG,BoxMG, and AMG preonditioners for 2L-PCG by CCMG-CG, BoxMG-CG, and AMG-CG, respetively.9.3 Implementation and Computational CostIn the numerial experiments of Setion 9.4, we make use of standard implementationsof the methods disussed above, when available. In this setion, we disuss the relativeosts of these tehniques, as well as their salability for large problem sizes. Relativeto CG by itself, or even to ICCG, all of the other methods onsidered here have a largerost per iteration. Their utility lies in the signi�ant redution in iterations possibleusing a multilevel tehnique as ompared to a single-level method, suh as ICCG. Here,we stress the details of the relative osts of a single yle of these algorithms, as aprelude to the numerial results in Setion 9.4.9.3.1 Cost of De�ationThe omputational ost of the de�ation method has already been disussed in Chap-ter 8 and Appendix E. Reall that the setup of the de�ation method is rather heap,sine Z may be onstruted independently of the problem matrix. Furthermore, it isnot neessary to store Z expliitly in memory; AZ and E may be omputed before-hand. In the 3-D ase, onstrution of AZ and E an eah be done in O(n 23 k 13 )�ops. Moreover, DICCG needs only one more step than ICCG at eah iteration. Theadditional ost for the de�ation step is O(n+ �) �ops, where � is the number of �opsrequired for the inner solves involving E. Using ICCG as inner iterative solver, eahinner iteration osts O(k) �ops, and at most O(k 13 ) iterations are required to ahievesu�ient auray in the inner solve, leading to � = O(k 43 ) operations. Note that,



9.3. Implementation and Computational Cost 167beause AZ an be preomputed and is muh sparser than A, there are no additionalmatrix-vetor multipliations with A required at eah iteration of DICCG.Remark 9.2. While, in priniple, DICCG may be applied in an unstrutured man-ner, the implementation onsidered here is based on the assumption of a retangulartensor-produt grid. This allows signi�ant savings in both the storage and the om-putational ost required by the iteration, as strutured matrix data strutures may beused in plae of the more general (and more ostly) storage required by an unstru-tured implementation, see Chapter 8 and Appendix E. In this sense, DICCG testedhere is more omparable to a geometri multigrid approah than to AMG, althoughthe DICCG algorithm ould be applied in the same unstrutured settings as AMG.9.3.2 Cost of MultigridThe relative osts of the multigrid methods studied here, in priniple, inrease with theomplexity of the algorithm. Geometri multigrid an easily be implemented in a verye�ient manner. In fat, beause GMG-CG uses smoothing only on the homogeneousproblem, it may be implemented in a fully matrix-free manner. The same stenil isapplied everywhere on eah level, up to boundary onditions, and the simple transferoperators an be implemented again with onstant stenils away from the boundaries.Thus, the true omputational ost of a single iteration of GMG-CG is muh smallerthan that of a method with similar number of operations, beause of the optimizationpossible under the assumption of onstant oe�ients in the operator.While multigrid methods use muh �ner oarse grids than typial de�ation methods,their reursive treatment of these grids leads to an overall ost per iteration thatremains O(n). Consider, for example, the ost of a single GMG V(1,1)-yle (that is,the ost of a single preonditioning step in GMG-CG). On eah level of the multigridhierarhy, two smoothing sweeps are performed at the appropriate resolution. On everygrid, the ost of these smoothing sweeps is diretly proportional to the size of thatgrid. Thus, O(n) operations are required for eah sweep on the �nest grid, O(n8)operations are required for eah sweep on the �rst oarse grid (whih has size n8), andO( n64) operations per sweep are required on the next oarsest grid, et. Overall, thetotal number of operations required to perform two smoothing sweeps on all levels isthen bounded by 167 times the ost of a single sweep of smoothing on the �nest level,whih is O(n). Similarly, the additional storage requirements for GMG-CG an also bebounded by a small onstant times the �ne-sale, O(n) storage requirement for CG.CCMG adds the ost of strutured matrix storage and operations on all levels,as well as that of the Galerkin produt in the setup stage of the algorithm. For thenumerial results presented in Setion 9.4, we use 64-point interpolation and restritionstenils, orresponding to bilinear interpolation and its adjoint for restrition. Thisresults in some growth in the stenil size on oarser grids, but this growth an be easilyquanti�ed and still inluded in a strutured-grid matrix data struture. Alternately,lower-order interpolation and restrition may be used, as in [79℄, to ontrol the growthof the stenil on oarse grids. While these osts somewhat inrease the ost of CCMG



168 Chapter 9. Comparison of De�ation and Multigrid with Typial Parametersrelative to GMG, the overall ost per yle for CCMG remains O(n), as the addedstorage and omputational osts on eah level are bounded by a small onstant timesthe number of unknowns on that level.Here, we fous on an optimal implementation of the CCMG algorithm within theAMG ode, with a �xed hoie of oarse grids and transfer operators. The implemen-tation does not use the most e�ient data strutures and the reported CPU timesin Setion 9.4 are muh larger than stritly neessary for CCMG, although we stressthat the iteration ounts and �nal residuals are the same for this implementation asthey would be for a more e�ient one. In pratie, the setup osts for CCMG shouldbe heaper than those for BoxMG, due to the �xed interpolation pattern. However,the ost of a single iteration of CCMG is expeted to require more operations than asingle iteration of BoxMG, as BoxMG uses a 27-point interpolation stenil, omparedto CCMG's 64-point stenil, leading to denser oarse-grid matries for CCMG whenompared with BoxMG. As will be seen in Setion 9.4, the iteration ounts for CCMGlearly sale less well than those for DICCG, BoxMG, and AMG for the problemsonsidered here, partiularly as the density ontrast inreases (Table 9.1).In ontrast to GMG and CCMG, BoxMG is not based on ell-entered data stru-tures. Instead, BoxMG is, primarily, a node-based ode; however, its robustness leadsto suessful results for our ell-entered disretization as well. The added ost inBoxMG is primarily in the setup phase of the algorithm, where oe�ients of the op-erator on eah level are used in determining interpolation to that level. Coarsening inBoxMG is also slightly di�erent than that in CCMG and GMG, as it naturally takesnodal �ne grids of 2� + 1 grid points in eah dimension into nodal oarse grids with2��1 + 1 grid points; however, beause of the use of operator-indued interpolation,BoxMG is also able to suessfully solve problems with grids of arbitrary sizes, as willbe seen in Setion 9.4, while maintaining the typial O(n) omplexity per multigridyle.Finally, AMG has the highest ost per iteration of the multigrid (and other) ap-proahes onsidered here, beause of the added ost of its unstrutured grid proessingand data strutures, as well as a signi�ant setup ost. This is to be expeted; ourhoie of a strutured-grid disretization naturally suggests that the best e�ieny isobtained with a strutured-grid solver. Results for AMG are inluded to answer twointeresting questions. First, it is interesting to see how muh of a performane loss isseen with these unstrutured data strutures; results in Setion 9.4 suggest that AMGis typially a fator of 10 to 15 times slower than BoxMG, when used as a preondi-tioner. Seondly, we note that while the CPU-time ost of AMG is signi�antly greaterthan that of the multilevel strutured-grid odes (indeed, it is sometimes greater thanthat of simple ICCG), the iteration ounts for AMG-CG are quite good (typially om-parable to those of BoxMG). This demonstrates the salability and robustness seenwith AMG, while highlighting the advantages of using a strutured-grid algorithm whenpossible.



9.3. Implementation and Computational Cost 1699.3.3 Singularity of Coe�ient MatrixWe reall that the oe�ient matrix, A, is singular in (9.1). A nonunique solution,x , always exists, beause we know that the system is onsistent. However, extra areshould be taken in the implementation of the methods we ompare. Matrix E is oftensingular, due to the singularity of A and the onstrution of Z. In this ase, E�1does not exist, and instead the pseudo-inverse, E+ should be used in the operator P ,see Chapters 5 and 8. The iteration proess, where the de�ation matrix is based onE+, does not ause any di�ulties in DICCG, sine the orresponding systems areonsistent, see Theorem 8.2.The multigrid iterations are similarly insensitive to the singularity on all levels but theoarsest, as only iterative approahes are used in reduing errors at all other levels. Onthe oarsest level, the known form of the null spae of E allows a simple perturbationand projetion tehnique to be used in the diret solve of this system; see Remark 5.4and [39℄ for details.9.3.4 ParallelizationWhile the tests performed in Setion 9.4 are all done in a serial omputing environ-ment where, beause of the e�ieny seen in the best approahes, problems of upto 8 million degrees of freedom are easily handled, it is important to stress that thiswas done for onveniene alone and not beause of any inherent serial nature of thealgorithms onsidered. Indeed, muh e�ort has been invested in the parallelization ofexatly the algorithms onsidered here. Parallelization of de�ation solvers is onsideredin Appendix F and [56℄, where it is shown that, with a sensible alignment of the sub-domains and proessor boundaries, de�ation applied to blok-IC preonditioners anbe implemented with limited inrease in ost over that of the parallel matrix-vetormultiplies already required by blok-inomplete Cholesky PCG.Parallelization of standard multigrid methods has been onsidered for many prob-lems and many arhitetures; see, for example, [52,76℄. Similarly, parallel implementa-tions exist for BoxMG [7℄ and AMG [71℄. Beause of the use of pointwise smoothers inthe smoothing step, virtually no parallel ommuniation is neessary when blok-Jaobismoothing is used in plae of pointwise Gauss-Seidel. In AMG, parallel ommuniationand inherently serial algorithms is a well-studied issue, partiularly with respet to thehoie of oarse grid [2℄.9.3.5 ImplementationWhile we stress that there is nothing `out of the ordinary' in the multigrid imple-mentations onsidered here, it must be aknowledged that there have been manyless-suessful attempts to apply multigrid to these problems. Therein lies the attra-tiveness of the DICCG method; given an existing ode, with existing data struturesand single-level preonditioners, it is relatively simple to add an e�etive de�ation stepto the existing pressure solver. In ontrast, use of the best-available multigrid odes



170 Chapter 9. Comparison of De�ation and Multigrid with Typial Parameters(as onsidered here) requires some translation of the disrete problem into data stru-tures that are more natural for multigrid treatment. This trade-o� is at the root ofthe questions investigated here. While a greater investment of programming e�ortmay be neessary to implement a robust, e�ient multigrid solver, suh as BoxMG,this e�ort appears to pay o� in the redued omputing times seen in the followingnumerial results.9.4 Numerial ExperimentsIn this setion, we perform some numerial experiments with 3-D stationary bubbly �owproblems as desribed in Setion 1.3, where the presented methods in this hapterare ompared. The geometry of some test ases an be found in Figure 1.2. Theomputations are performed on an Intel Core 2 Duo (2.66 GHz) omputer with amemory apaity of 8GB. The ode is ompiled with the Intel FORTRAN ompiler,ifort, on LINUX.The experiments are similar to those in Setion 8.5.1. They are be divided intoseveral parts, where some parameters are varied to see how they a�et the performaneof the methods: n (total number of degrees of freedom), m (number of bubbles), s(radius of eah bubble) and � (density ontrast). The results of the experiments arepresented in terms of the required omputing time (CPU), inluding both the setupand solution time, number of iterations or yles (# It.), and the obtained auray(RES), measured as the relative norm of the residual, jjb�Axj+1jj2jjb�Ax0jj2 .For all 2L-PCG methods, the starting vetor is the zero vetor (i.e., x0 = 0n),and the termination riterion is based on (2.23) with Æ = 10�8. In theory, the CG-generated residuals as in (2.23) should be equal to the exat residuals in RES, butthey might di�er in the experiments due to round-o� errors, see also [66, Set. 7.3℄.Moreover, DICCG is based on Variant 5.2 (see Setion 5.3), where we typially takek 13 = 18n 13 ; k = 43; 83; 163 are hosen for n = 323; 643; 1283, respetively. Moreover,in the stationary MG methods, it is ommon to use the stopping riterion based onthe real residuals, (i.e., jjb�Axj+1jj2jjb�Ax0jj < Æ = 10�8). Therefore, RES is always below Æfor the stationary MG methods, while this is not neessarily the ase for the 2L-PCGmethods. Finally, we remark that xj+1 denotes the approximation of the solution afterj + 1 iterations in 2L-PCG methods, whereas it is the approximation after performingj + 1 multigrid yles in stationary MG methods.9.4.1 Varying Density ContrastsThe results for the test problem with varying ontrast, �, are presented in Table 9.1.A larger � typially orresponds to a linear system whose oe�ient matrix is moreill-onditioned. Therefore, most methods need more iterations and omputing timeas � inreases, as shown in Table 9.1. However, the performane of BoxMG-CG andBoxMG appears to be independent of the ontrast. In addition, they are the fastestmethods in the experiments, followed by DICCG for � = 103 or � = 105. Moreover, we



9.4. Numerial Experiments 171observe in Table 9.1 that GMG-CG and CCMG are very sensitive to �: the number ofiterations grows quikly with inreasing �. In fat, for � = 10, we see that GMG-CGis ompetitive with both BoxMG and DICCG as a solution tehnique, For larger �,however, the signi�ant inrease in number of iterations makes GMG-CG a muh lessattrative option. For CCMG-CG and AMG-CG, the number of iterations only growsslowly ompared with GMG-CG. As mentioned in Setion 9.3.2, CCMG-CG is notimplemented as e�iently as possible. Nevertheless, we an get an idea of the ost ofits optimal implementation by omparing with the performane of BoxMG. CCMG-CGis at least as expensive per iteration as BoxMG, so, in the ase of � = 103, CCMG-CGwould require at least 1.2 se instead of 4.3 se and may, therefore, be slightly fasterthan DICCG. However, for � = 105, CCMG-CG would need at least 2.5 se, so DICCGis faster than CCMG-CG for larger density ontrasts.We also observe in Table 9.1 that the auray of DICCG is onsistently the worstwhen ompared with the other methods, although the di�erenes are generally quitesmall. As mentioned in Setion 9.3.1, this is aused by the fat that the de�atedresiduals are used in DICCG, leading to extra round-o� errors.� = 10 � = 103 � = 105Method CPU # It. RES CPU # It. RES CPU # It. RESICCG 3.1 131 0.1E-7 5.8 244 0.1E-8 6.9 289 0.5E-8DICCG 1.1 35 0.3E-7 1.7 54 0.4E-7 1.9 59 0.4E-7GMG-CG 1.0 33 0.1E-7 3.9 132 0.9E-8 8.0 267 0.8E-8CCMG-CG 3.3 10 0.1E-8 4.3 18 0.1E-7 6.7 37 0.4E-8BoxMG-CG 0.8 12 0.1E-8 0.8 12 0.2E-8 0.8 12 0.2E-8AMG-CG 8.0 9 0.3E-8 8.9 14 0.1E-8 9.2 16 0.2E-8CCMG 4.0 17 0.6E-8 11.2 79 0.1E-7 40.9 338 0.1E-7BoxMG 0.8 17 0.3E-8 0.8 17 0.3E-8 0.8 17 0.3E-8AMG 8.9 15 0.8E-8 13.0 40 0.1E-7 21.5 92 0.9E-8Table 9.1: Convergene results for the experiment with n = 643, m = 23, s = 0:05, and varying theontrast, �. `CPU', `# It.' and `RES' denote the total omputing time, number of iterations or yles,and the auray of the solution measured as the relative norm of the exat residuals, respetively.9.4.2 Varying Bubbly RadiiThe results for an experiment with varying the radius of the bubbles, s, are given inTable 9.2. The smallest radius is hosen to be s = 0:01875, beause the bubblesare no longer resolved for s < 164 = 0:015635. In general, a smaller radius does notsigni�antly a�et the onditioning of the oe�ient matrix, but it does hange theform of the errors that are di�ult to resolve, possibly making them more di�ult toapproximate.In Table 9.2, it an be seen that there are hanges in onvergene behavior ofthe various methods for di�erent radii. In general, a smaller s leads to a more favor-able performane for several of the iterative methods, inluding ICCG, GMG-CG andCCMG-CG. The other methods do not have a lear relation with respet to s. This



172 Chapter 9. Comparison of De�ation and Multigrid with Typial Parameterseven seems to hold for the stationary methods, CCMG, BoxMG and AMG, whih wemight expet to be sensitive to the size of the bubbles due to the hallenges disussedin Setion 9.2.2. BoxMG and BoxMG-CG seem to be fully insensitive to s. They arealso the fastest methods in this experiment, followed by again DICCG. It is interestingto note that while GMG-CG is very ine�etive in the ase of large bubbles, its perfor-mane improves as the bubbles shrink, and, for the ase of s = 0:01875, it beomesompetitive with BoxMG and DICCG.s = 0:1 s = 0:05Method CPU # It. RES CPU # It. RESICCG 6.0 250 0.1E-7 5.8 244 0.1E-8DICCG 1.3 39 0.3E-7 1.7 54 0.4E-7GMG-CG 4.3 143 0.9E-8 3.9 132 0.9E-8CCMG-CG 5.1 24 0.4E-8 4.3 18 0.1E-7BoxMG-CG 0.8 12 0.3E-8 0.8 12 0.2E-8AMG-CG 8.3 11 0.6E-8 8.9 14 0.1E-8CCMG 13.0 95 0.8E-8 11.2 79 0.1E-7BoxMG 0.8 17 0.4E-8 0.8 17 0.3E-8AMG 10.6 25 0.8E-8 13.0 40 0.1E-7s = 0:025 s = 0:01875Method CPU # It. RES CPU # It. RESICCG 3.8 159 0.8E-8 4.1 170 0.9E-8DICCG 1.5 46 0.9E-7 1.5 45 0.8E-7GMG-CG 2.6 85 0.8E-8 1.3 41 0.4E-8CCMG-CG 3.6 12 0.5E-8 3.8 14 0.4E-8BoxMG-CG 0.8 12 0.2E-8 0.8 12 0.1E-8AMG-CG 8.2 12 0.7E-8 8.8 14 0.3E-8CCMG 7.0 43 0.7E-8 10.1 69 0.9E-8BoxMG 0.8 17 0.3E-8 0.8 17 0.3E-8AMG 10.9 29 0.6E-8 12.8 39 0.7E-8Table 9.2: Convergene results for the experiment with n = 643, m = 23, � = 103, and varying theradius of the bubbles, s.9.4.3 Varying Number of BubblesIn Table 9.3, we present results demonstrating the performane of the various solverswith variation in the number of bubbles, m. Note that the test ase with m = 0orresponds to the Poisson equation with a onstant density, i.e., a domain with onlyone phase. From Proposition 4.1, we know that inreasingm leads to the appearane ofmore large eigenvalues in the original oe�ient matrix, A, and small eigenvalues in theIC(0)-preonditioned oe�ient matrix, M�1A. This results in a more di�ult linearsystem to solve, although both the original and preonditioned oe�ient matries arenot neessarily worse onditioned.It an be seen in Table 9.3 that, for most methods, the onvergene worsens with



9.4. Numerial Experiments 173inreasing m, as expeted. Moreover, GMG-CG is the best method in the ase ofm = 0, but quikly loses e�ieny for m > 0. The number of iterations requiredby CCMG also grows rapidly with m, whereas it inreases gradually for CCMG-CG,AMG-CG and AMG. A single iteration of these methods, however, is more expensivethan one of BoxMG or DICCG, as mentioned in Setion 9.3. For m > 0, BoxMGand BoxMG-CG are always the fastest methods, followed by DICCG. The performaneof BoxMG-CG degrades only a little with inreasing m, while the iteration ounts forBoxMG inrease more substantially. For a su�iently large number of de�ation vetors,k, DICCG would be less sensitive to hanges in m, see Setion 8.5.1.m = 0 m = 1Method CPU # It. RES CPU # It. RESICCG 3.0 125 0.8E-8 3.9 163 0.7E-8DICCG 1.0 31 0.2E-7 1.5 47 0.2E-7GMG-CG 0.3 8 0.1E-8 3.7 124 0.8E-8CCMG-CG 3.2 9 0.7E-8 3.7 13 0.7E-8BoxMG-CG 0.8 12 0.1E-8 0.8 12 0.1E-8AMG-CG 7.7 7 0.9E-8 8.0 9 0.2E-8CCMG 4.0 17 0.4E-8 10.0 68 0.9E-8BoxMG 0.8 17 0.3E-8 0.8 17 0.3E-8AMG 8.2 11 0.6E-8 11.8 33 0.6E-8m = 23 m = 33Method CPU # It. RES CPU # It. RESICCG 5.8 244 0.1E-8 8.2 342 0.8E-8DICCG 1.7 54 0.4E-7 2.0 60 0.7E-7GMG-CG 3.9 132 0.9E-8 9.8 329 0.8E-8CCMG-CG 4.3 18 0.1E-7 6.5 35 0.4E-8BoxMG-CG 0.8 12 0.2E-8 1.0 15 0.2E-8AMG-CG 8.9 14 0.1E-8 8.9 14 0.8E-8CCMG 11.2 79 0.1E-7 27.9 223 0.1E-7BoxMG 0.8 17 0.3E-8 1.3 29 0.7E-8AMG 13.0 40 0.1E-7 14.1 45 0.7E-8Table 9.3: Convergene results for the experiment with n = 643, s = 0:05, � = 103, and varying thenumber of bubbles, m.9.4.4 Varying Number of Grid PointsTable 9.4 presents results with a varying grid size, n. A larger n leads to oe�ientmatries that are more ill-onditioned, as mentioned in Setion 9.2. It an be observedin Table 9.4 that only BoxMG, BoxMG-CG and DICCG show perfetly salable iterationounts with respet to the number of grid points, although the omputing times growrelatively quikly. Reall that, for DICCG, more de�ation vetors are taken for largern, whih results in a dereasing number of iterations for DICCG. Moreover, observethat BoxMG and BoxMG-CG outperform the other methods both in terms of the



174 Chapter 9. Comparison of De�ation and Multigrid with Typial Parametersnumber of iterations and the omputing time. For larger n, the number of iterationsfor CCMG-CG and AMG-CG grows very slowly; however, the large ost per iterationombined with the large setup ost for these methods still makes them unompetitive.As mentioned earlier, a lower bound for the ost of CCMG-CG an be given; in thease of n = 1283, CCMG-CG would require at least 11.1 se (instead of 38.0 sefor our urrent implementation), and, therefore, may be ompetitive with DICCG.Furthermore, while AMG and AMG-CG are ompetitive in terms of the number ofiterations required for onvergene, they are learly muh more expensive; this is dueto the extra osts assoiated with the unstrutured-grid data strutures used withinAMG, and the extra setup required based on this assumption, as disussed in Setion9.3.2. n = 323 n = 643 n = 1283Method CPU # It. RES CPU # It. RES CPU # It. RESICCG 0.3 112 0.9E-8 5.8 244 0.1E-8 92.3 444 0.9E-8DICCG 0.2 64 0.8E-7 1.7 54 0.4E-7 11.7 39 0.3E-7GMG-CG 0.2 81 0.9E-8 3.9 132 0.9E-8 36.0 134 0.8E-8CCMG-CG 0.4 14 0.3E-8 4.3 18 0.1E-7 38.0 19 0.9E-8BoxMG-CG 0.1 12 0.2E-8 0.8 12 0.2E-8 7.0 12 0.3E-8AMG-CG 0.8 10 0.4E-8 8.9 14 0.1E-8 89.0 15 0.2E-8CCMG 0.8 44 0.1E-7 11.2 79 0.1E-7 99.1 85 0.8E-8BoxMG 0.1 16 0.8E-8 0.8 17 0.3E-8 7.4 17 0.4E-8AMG 0.9 20 0.1E-7 13.0 40 0.1E-7 129.2 45 0.8E-8Table 9.4: Convergene results for the experiment with m = 23, s = 0:05, � = 103, and varying thetotal number of degrees of freedom, n.In this experiment, the salability of the methods an be easily observed. Consid-ering the omputing time, it an be seen that the required CPU time for both DICCGand BoxMG inrease by a fator of approximately 8 when doubling n in eah diretion.This is quite favorable in omparison with the other methods, whih sale with fatorsof 10 or more. Finally, we observe that ICCG requires signi�antly more CPU time asn inreases, as predited by the lassial theory.9.4.5 Di�ult Test ProblemWe end the stationary experiments with a test ase where the most di�ult parameters(taken based on the previous experiments) are hosen. The results assoiated with thisexperiment an be found in Table 9.5, using termination tolerane Æ = 10�8. We notethat a higher auray than Æ = 10�8 annot be reahed, due to the aumulation ofround-o� errors and the e�ets of �nite preision arithmeti.As in the other experiments, BoxMG-CG and BoxMG perform the best, in termsof both the number of iterations and the omputing time. They are again followed byDICCG, whih also performs rather well. GMG-CG, CCMG, and AMG all typially failto onverge within the allowed number of iterations for Æ = 10�8 (and also for theweaker tolerane Æ = 10�6). CCMG-CG and AMG-CG do onverge but, as always,



9.5. Conluding Remarks 175are not ompetitive in terms of true CPU time.Method CPU # It. RESICCG 195.4 942 0.1E-7DICCG 19.6 65 0.5E-7GMG-CG � > 1000 �CCMG-CG 114.0 92 0.1E-7BoxMG-CG 7.4 13 0.4E-8AMG-CG 107.6 29 0.8E-8CCMG � > 1000 �BoxMG 7.8 18 0.7E-8AMG � > 1000 �Table 9.5: Convergene results for the di�ult test problem. The following parameters are keptonstant: n = 1283, m = 33, s = 0:025, � = 105, and Æ = 10�8.While neither AMG nor CCMG onverge within the allowed number of iterationsas standalone solvers, both perform reasonably well as preonditioners. In fat, bothunaelerated solvers do onverge, but very slowly, with AMG onverging marginallyfaster than CCMG. While it may be possible to improve this performane somewhatby using di�erent smoothing shemes, or by hanging some of the parameters in theAMG setup stage, this is beyond the sope of the urrent study.9.5 Conluding RemarksAfter performing an algebrai omparison of multilevel tehniques based on their ab-strat forms in Chapters 6 and 7, we present a omparison of several of these tehniquesusing their typial and optimized parameters, whih may be onsidered as e�ientsolvers for linear systems from two-phase bubbly �ows. In partiular, two families ofalgorithms are onsidered in this hapter; the DICCG algorithm, based on the prin-iples of de�ation for lassial PCG tehniques, and multigrid algorithms. For themultigrid algorithms, we onsider a range of approahes, inluding standard geometri,robust geometri and algebrai multigrid variants, applied as both standalone solversand two-level preonditioners for 2L-PCG methods. The solvers are ompared on aseries of 3-D stationary problems, where it is shown that BoxMG-CG and DICCG arethe most stable and e�ient tehniques. Overall, we demonstrate that solution ofthe pressure-orretion equation within bubbly �ow appliations an be signi�antlyaelerated using the methods studied here. In the next hapter, we ontinue on theomparison of BoxMG-CG and DICCG, but applied to time-dependent bubbly �owproblems, where the density �eld varies at eah time step. It might be interesting tosee whether the multilevel tehniques are also e�ient for these more realisti testproblems.
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Chapter 10Bubbly Flow Simulations
10.1 IntrodutionThe main appliation of this thesis is bubbly �ows, whose omputation is a very ativeresearh topi in CFD, see, for instane, [34, 49, 130, 152, 153, 155, 156℄ and, morereently, [74,95,125,131,157℄. In the previous hapters, we have performed numerialexperiments based on stationary bubbly �ow problems, i.e., problems in whih thebubbles are �xed in the omputational domain and do not evolve in time. We haveshown that DICCG and BoxMG-CG are e�ient methods for solving the orrespondinglinear systems in stationary problems, see Setion 9.4. However, in pratie, the density�eld usually hanges in time. Therefore, in this hapter, some numerial experiments(also alled simulations) are arried out based on 3-D time-dependent bubbly �owproblems, where the density �eld evolves in time.The aim of this hapter is to examine whether DICCG and BoxMG are still e�etiveand e�ient to solve a sequene of linear systems in simulations. A omparison betweenDICCG variants for these simulations is arried out in Appendix H.In Setion 10.2, we �rst desribe onisely the mathematial model that is usedfor the bubbly �ow simulations, where we refer [154, Set. 8.3.2℄ for more details.Thereafter, the results of the simulations are presented in Setion 10.3. Conludingremarks are given in Setion 10.4.10.2 Mathematial Model of the Bubbly FlowBubbly �ows are mathematially governed by the inompressible Navier-Stokes equa-tions, �u�t + u � ru = �1�rp + 1�r � � (ru+ruT )+ f; (10.1)subjet to an inompressibility onstraint,r � u = 0; (10.2)177



178 Chapter 10. Bubbly Flow Simulationswhere u = (u; v ; w)T is the veloity vetor, and �, p, � and f are the density, pressure,visosity and soure funtion (onsisting of, for example, gravity and interfae ten-sion fores), respetively, whih are funtions of spatial oordinates and time. In thishapter, we only onsider simulations without surfae tension fores in order to obtainompliated density �elds with many and small bubbles. We assume the density andvisosity are onstant within eah �uid. At the boundaries of the domain, we imposeDirihlet boundary onditions for the veloity.Eqs. (10.1) and (10.2) are solved on an equidistant Cartesian grid in a retangulardomain using a pressure-orretion method [162℄. These equations are disretizedusing �nite di�erenes on a uniform staggered grid with n ells, where the grid pointsof the pressure variables are loated at the ell enters, and the grid points assoiatedwith veloity omponents are loated at the ell-fae enters.In the pressure-orretion method, a tentative veloity vetor, u�, is �rst omputedfrom u� � ul�t = �r � ulul + 1�r � � (ru� + (rul)T ) ; (10.3)where ul denotes the value of u at time step l . The resulting system of equations forunknown vetor u� is solved, for example, using the PCG method. The veloities atthe new time step, l + 1, are omputed fromul+1 � u��t = �1�Gp + f;under the onstraint of (10.2). This yields
{ ul+1 = u� +�t (�1�Gp + f) ;Dul+1 = 0; (10.4)where D represents the disretization of the divergene operator, and G is the disretegradient operator. Finally, Equation (10.4) givesD1�Gp = D( 1�t u� + f) ; (10.5)whih is known as both the pressure-orretion equation and the Poisson equationwith a disontinuous oe�ient (f. Eq. (1.3)). Eq. (10.5) an again be solved using,for example, the PCG method. However, solving (10.5) requires signi�antly moreomputing time than �nding the solution of (10.3), sine the onvergene of theiterative proess su�ers from the highly disontinuous behavior of the oe�ient, �,but is not ameliorated by a small �t. More strongly, solving (10.5) typially onsumesthe bulk of the omputing time for all omputations of the bubbly �ow, see, e.g.,[24, 74, 154℄. Further details about the pressure-orretion method applied to bubbly�ows an be found in [155�157℄.Due to the staggered grid, we do not have pressure points at the boundaries ofthe domain. Expliit pressure boundary onditions are, however, not required in the



10.3. Bubbly Flow Simulations 179method, sine, in Eq. (10.5), the veloity boundary onditions are naturally inludedin the disrete divergent operator, D. It follows impliitly that Neumann boundaryonditions hold for the pressure. In this ase, the pressure is a relative variable, sinethe di�erenes in pressure and not its absolute values are meaningful in the pressure-orretion method.Eq. (10.5) an be written as a linear system (see Eq. (1.1))Ax = b; A = [ai j ℄ 2 Rn�n; (10.6)for n = nxnynz , and a singular SPSD matrix, A. It appears that b 2 R(A) is alwayssatis�ed for (1.1), see [145℄ for more details. In this ase, (1.1) is onsistent and thesolution, x , is determined up to a onstant.We onsider two-phase bubbly �ows with air (a low-density phase) and water (ahigh-density phase). In this ase, � is pieewise-onstant with a density ontrast� � 820, whih is the ratio of the two densities, see Setion 1.3. Moreover, thedensity advetion is performed using the mass-onserving level-set method [154,157℄.Remark 10.1.� Operator-splitting methods, suh as the pressure-orretion method, are amongstthe oldest numerial shemes for solving the inompressible Navier-Stokes equa-tions, dating bak to the original work of Chorin [28,29℄. In the 1980s, this workwas extended to seond-order onvergent methods for the veloities [13,162℄.� Many other approahes ould be employed for both the solution of the Navier-Stokes equations and the advetion of the density �eld. Arti�ial ompressibil-ity tehniques, for example, replae the inompressibility ondition by one witha small ompressibility term that vanishes when treated appropriately, reover-ing, in this limit, the original (inompressible) Navier-Stokes equations [28, 84℄.While we only onsider the standard �nite-di�erene disretization, other ap-proahes are also possible; �nite-element disretizations of Navier-Stokes areompliated by the need to satisfy a disrete inf-sup ondition to give stablepressure disretizations [55, 60℄. While we use an interfae-apturing level-setsheme, other approahes inlude front-traking tehniques [152℄, the volume-of-�uid and marker-and-ell methods, as well as arbitrary Lagrangian-Euleriantehniques. Lattie Boltzmann tehniques may also be used to model inom-pressible multi-phase �ow, with similar onsiderations arising [75℄.10.3 Bubbly Flow SimulationsIn this setion, we onsider simulations of three `real-life' bubbly �ows. In order toobtain sophistiated geometries, these �ows are onsidered without surfae tension.The pressure-orretion method is adopted to solve the Navier-Stokes equations, asdesribed in Setion 10.2. The interfae advetion is arried out using the mass-onserving level-set method [155�157℄. Our main interest in eah time step is the



180 Chapter 10. Bubbly Flow Simulationspressure solve (10.6), whih takes the bulk of the omputing time in eah simulation,espeially when the total degrees of freedom, n, are relatively large. The atual timestep, �t, is restrited by�t � � := h'2 (jujmax + jv jmax + jw jmax) ;where h is the distane between grid points in one diretion and ' = 0:35 is the CFLnumber, see [155℄ for more details. That means that we use an adaptive time steppingproedure by onsidering the time-step restritions due to onvetion of the bubbly�ow. At eah time step, l , the atual time, t, is adveted with an inrement, �t, thatobeys �t = min (�;�tmax) ;where we hoose �tmax = 0:0005 se.DICCG�k denotes DICCG2 with k projetion vetors (see De�nition 8.1), basedon de�ation variant 5.3 (see Table 5.1). Then, at eah time step, the resulting linearsystem (10.6), with n, is solved using both BoxMG-CG and DICCG�k, as these areshown to be the most stable and e�ient methods for the stationary problems onsid-ered in Setion 9.4. The number of projetion vetors, k, is hosen to minimize therequired CPU time. ICCG is used as a benhmark in the experiments. The initial guessfor eah solve is hosen to be the previous solution, exept for the �rst 10 time steps,where the zero starting vetor is used (to avoid problems with ahieving a too-stritrelative residual redution when the �ow is initialized). The termination riterion of allmethods is hosen as in the stationary experiments in Setion 9.4. For more detailson the physial problems simulated here, see [155,156℄.10.3.1 Rising Air Bubble in WaterWe �rst onsider a test problem where a ube of 1 m3 is �lled with water to a heightof 0.6 m. For these experiments, we take the density of water to be 820 times thatof air (i.e., " = 1:22�10�3). At the initial time step, l = 0, a spherial air bubble withradius of 0.125 m is loated in the middle of the domain at a height of 0.35 m. Theexat material onstants and other relevant onditions for this simulation an be foundin [155, Set. 7.2℄. The evolution of the geometry during 500 time steps is givenin Figure 10.1. Here, we take a grid with n = 1003; in this ase, the optimal valuefor k in DICCG�k appears to be k = 203. Results of the experiment an be found inFigure 10.2, showing both the number of iterations and omputing time required foreah method for the pressure solves at eah time step, l .It an be readily observed from Figure 10.2 that, for eah time step, both DICCGand BoxMG-CG onverge in fewer iterations and require less omputing time thanICCG. Due to the zero starting vetor in the �rst 10 iterations, one an observe apeak in the ICCG ost around these �rst iterations, whereas this phenomenon annotbe learly seen for DICCG and BoxMG-CG. Moreover, BoxMG-CG shows better per-formane than DICCG. We remark that both methods behave smoothly in time and
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(a) l = 0 (t = 0 se). (b) l = 100 (t = 0:013 se). () l = 200 (t = 0:022 se).
(d) l = 300 (t = 0:032 se). (e) l = 400 (t = 0:050 se). (f) l = 500 (t = 0:064 se).Figure 10.1: Evolution of a rising bubble in water. Parameters l and t denote the time step and atualtime, respetively.
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(b) CPU time versus time step.Figure 10.2: Results for ICCG, DICCG�203 and BoxMG-CG for the pressure solves during the real-lifesimulation with a rising air bubble in water.



182 Chapter 10. Bubbly Flow Simulationsseem to be more-or-less independent of the (sometimes ompliated) geometry of thedensity �eld. This is in ontrast to ICCG, whose onvergene is rather errati. Onlysome small outliers an be observed in the onvergene of DICCG and BoxMG. Forexample, a small peak an be seen around l = 325 in DICCG, and around l = 390 andl = 410 in BoxMG-CG. This is likely related to partiular hanges in the density �eldat these time steps, but it is di�ult to pinpoint the ause, due to the ompliatedsurfae dynamis at these time steps. Moreover, it an be seen that, for l 2 [150; 350℄,more iterations are required espeially for DICCG, beause the geometry is most om-pliated in this period, due to the interation of the bubble with the interfae and theappearane of many droplets, as an be observed in Figure 10.1.10.3.2 Falling Water Droplet in AirIn the next simulation, we onsider a 1 m3 ube �lled with water to a height of 0.45m. At the initial time step, l = 0, a spherial water droplet with radius 0.125 mis loated in the middle of the domain at a height of 0.6 m. The same materialonstants and onditions are used as in Setion 10.3.1. The evolution of the geometryduring the 500 time steps is depited in Figure 10.3. Again, the grid resolution isn = 1003 and the optimal number of projetion vetors is k = 203.
(a) l = 0 (t = 0 se). (b) l = 100 (t = 0:013 se). () l = 200 (t = 0:027 se).

(d) l = 300 (t = 0:044 se). (e) l = 400 (t = 0:050 se). (f) l = 500 (t = 0:059 se).Figure 10.3: Evolution of a falling droplet in air.The results of the experiment an be found in Figure 10.4. It an again be notiedthat ICCG performs worse than both DICCG and BoxMG-CG. BoxMG-CG is alwaysfaster than DICCG, although the di�erenes are small in this experiment; the numberof iterations and omputing time per time step are approximately the same for both



10.3. Bubbly Flow Simulations 183methods. We observe a very smooth behavior of the orresponding performane urves,beause very few additional bubbles or droplets appear during the simulation. In thisexperiment, BoxMG and DICCG are more-or-less insensitive to the geometry of thedensity �eld, while it an be readily observed that the performane of ICCG does dependon it.
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(b) CPU time versus time step.Figure 10.4: Results for ICCG, DICCG�203 and BoxMG-CG for the pressure solves during the real-lifesimulation of a falling water droplet in air.10.3.3 Two Rising and Merging Air Bubbles in WaterIn the �nal simulation, we onsider a test problem where a 1 m3 ube is �lled withwater to a height of 0.65 m. At the initial time step, l = 0, two air bubbles of radius0.1 m are loated with enters at oordinates (0:5; 0:5; 0:37) and (0:5; 0:3; 0:15).The evolution of the geometry during 2500 time steps an be found in Figure 10.5.This test problem is, obviously, harder to solve than the previous two test problems,sine there is interation between the two bubbles at the same time as they interatwith the water interfae. In addition, we now onsider a re�ned grid with n = 2003,resulting in a strongly ill-onditioned oe�ient matrix and making the problem veryompliated to solve. DICCG�k with k = 253 appears to be optimal in terms of therequired CPU time for all possible k.Results are presented in Figure 10.6. ICCG is omitted in these results, sine itis extremely slow in this di�ult test ase, requiring, on average, over 700 iterationsand 500 seonds of CPU time per time step during the �rst 100 time steps, whihhave relatively simple dynamis. It an be observed that the number of iterations, and,therefore, also the omputing time, inreases gradually during the simulation for bothmethods, but espeially for DICCG�253. This is due to the fat that the geometryof the problem beomes progressively more sophistiated as the simulation proeeds.Apparently, the in�uene of the projetion vetors depends heavily on the time step.This even holds if we inrease k. Obviously, BoxMG is always faster than DICCG(espeially for l 2 [1000; 2500℄), both with respet to the number of iterations and theomputing time.
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(a) l = 0 (t = 0 se). (b) l = 500 (t = 0:025 se). () l = 1000 (t = 0:035 se).
(d) l = 1500 (t = 0:045 se). (e) l = 2000 (t = 0:056 se). (f) l = 2500 (t = 0:066 se).Figure 10.5: Evolution of two rising air bubbles in water.
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(b) CPU time versus time step.Figure 10.6: Results for DICCG�253 and BoxMG-CG for the pressure solve during the real-life simula-tion with two rising air bubbles in water. ICCG is omitted in these results, beause it is not ompetitivewith the other two methods.



10.4. Conluding Remarks 18510.4 Conluding RemarksIn previous hapters, we have seen that some de�ation (DICCG) and multigrid (BoxMG)methods are e�etive to solve stationary bubbly �ow problems. In this hapter, thesuess of DICCG is emphasized in realisti bubbly �ow simulations. Compared toICCG, the bene�t of the de�ation method is obviously observed in terms of both thenumber of iterations and the CPU time. Moreover, we onlude that BoxMG-CG per-forms better than DICCG, espeially for relatively large grid sizes. BoxMG-CG is moresalable, and requires fewer iterations and less omputing time in all experiments, forall time steps.BoxMG seems to have a low sensitivity to the density �elds, gives aurate solutionsand is very robust in all ases. Improvement of DICCG to give performane omparableto BoxMG-CG is a subjet for future researh. The relatively large oarse grids requiredby DICCG to ahieve good onvergene properties suggest that there is a need for abetter solver for the oarse linear systems in DICCG in order to make the method moree�ient and salable. Overall, we demonstrate that solution of the pressure-orretionequation within bubbly �ow simulations an be signi�antly aelerated using two-levelPCG methods.
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Chapter 11ConlusionsThe fous of this thesis is on the analysis of two-level preonditioned Conjugate Gra-dient (PCG) methods in whih the de�ation method (DPCG or DEF) plays a entralrole. Most of the performed numerial experiments are based on the Poisson equationwith a disontinuous oe�ient derived from bubbly �ow problems.11.1 ConlusionsFor linear systems with a nonsingular oe�ient matrix, it is known that DEF anbe very e�etive and e�ient. We show that most of this theory is generalizable tosingular oe�ient matries. Three variants of the de�ation methods that an dealwith these matries are disussed, where we prove that all of these variants orrespondto almost the same de�ated-preonditioned oe�ient matries. In fat, these variantsare equivalent to the original de�ation method, so that DEF is expeted to be e�etiveand e�ient when it is applied to linear systems with a singular oe�ient matrix.In eah iteration of DEF, oarse linear systems, based on the Galerkin matrix, mustbe solved. We show that this an be done with a diret or iterative method, so that itinvolves an inner-outer iteration proess in the latter ase. We examine their e�ienyand derive their theoretial properties. The optimal approah depends on the problemsetting and grid size. For problems with highly re�ned grids or many projetion vetors,DEF based on inner-outer iterations is the most attrative hoie.The de�ation method with �xed subdomain vetors as projetion vetors is well-understood if the underlying PDEs use onstant oe�ients. However, the densityoe�ient is often varying in time, suh as in our bubbly �ow simulations. We showthat DEF with �xed subdomain projetion vetors is still the method of hoie for thisase, although level-set and level-set-subdomain projetion vetors, whih depend onthe density �eld and have di�erent implementation properties, ould also be attrativein pratie. In addition, we show that the projetion vetors should always be good ap-proximations of eigenvetors assoiated with unfavorable eigenvalues of the oe�ientmatrix. We demonstrate that our hoies of projetion vetors (subdomain, level-setor level-set-subdomain vetors) are, indeed, good approximations for these eigenve-187



188 Chapter 11. Conlusionstors in our bubbly �ow problems. It depends on the implementation, the geometryof problem, and the maximum number of allowed projetion vetors, whih of thesevariants is the most suitable one in pratie.The e�etiveness and e�ieny of the de�ation method are also emphasized innumerial experiments for both stationary and time-dependent bubbly �ows. Comparedwith PCG, DEF signi�antly redues the omputational ost for most of the test ases,espeially for problems with many bubbles or a highly re�ned grid. Additionally, thede�ation method is less sensitive to the ontrasts between the phases, and is salablein terms of iterations and CPU time, as long as the number of projetion vetors ishosen to be proportional to the grid size.In addition to the de�ation method, several other two-level PCG methods arewell-known in the literature, among them are methods based on additive oarse-gridorretion (AD), balaning Neumann-Neumann (BNN), redued variants of balan-ing Neumann-Neumann (R-BNN), and multigrid V(1,0)-, V(0,1)- and V(1,1)-yles.The abstrat forms of these methods are ompared theoretially and numerially. Forertain hoies, we obtain the remarkable result that some of these methods are math-ematially equivalent. Most of these methods an be divided into two lasses, eahhaving the same spetral properties. The di�erenes between the two lasses are small,so that similar onvergene behaviors are expeted. Moreover, we show both theoret-ially and numerially that the seond lass (onsisting of the two-level PCG methodsbased on BNN and multigrid V(1,0)-, V(0,1)-yles) is more robust than the �rst lass(onsisting of DEF and R-BNN), although some of the methods from these lassesare mathematially equivalent.We derive that the two-level PCG method with the multigrid V(1,0)-yle preon-ditioner is the same as an adapted variant of both DEF and R-BNN. In addition, weadvoate that this method is the best method with respet to e�etiveness, e�ienyand robustness for a lass of problems. Additionally, when simple hoies are made forthe algorithmi omponents, eah iteration of the two-level PCG method based on amultigrid V(1,1)-yle (MG) is more expensive than a DEF iteration. At �rst glane,we would expet MG to be the most e�etive method; however, we show that thereexist some parameters suh that DEF is expeted to onverge more rapidly than MG.But, for more realisti hoie of parameters, MG is expeted to be faster than bothDEF and the other 2L-PCG methods given above, although the work per iteration ofMG may remain more than for the other methods. For typial hoies of parameters,we derive that BNN, DEF and MG require the same amount of work per iteration,and their spetra are almost the same. Hene, these methods are expeted to show aomparable onvergene behavior while the orresponding ost is similar.A omparison between DEF and MG is also performed, where the preonditionersare based on their own typial and optimized set of parameters. For the multigridalgorithms, we onsider a range of approahes, inluding standard geometri, robustgeometri and algebrai multigrid variants. The solvers are ompared on a series of sta-tionary problems in three dimensions, where we demonstrate that DEF and MG basedon the Dendy's blakbox multigrid preonditioner (BoxMG-CG) are the most robust



11.2. Future Researh 189and e�ient 2L-PCG methods. Large time-dependent bubbly �ow simulations are alsoperformed, showing e�ient and salable solution of the pressure-orretion equationusing these methods. BoxMG-CG is more salable, and requires fewer iterations andless omputing time than DEF.Overall, we demonstrate that solving the Poisson equation with a disontinuousoe�ient within bubbly �ow appliations an be done more e�iently using some ofthe two-level PCG methods studied in this thesis.11.2 Future ResearhAs shown in this thesis, the de�ation method is a fast and e�ient method. However,it should be improved to give performane omparable to BoxMG-CG for very largeproblems. The relatively large oarse grids, required by the de�ation method to ahievegood onvergene properties, suggest that there is a need for a better solver for thelinear systems assoiated with the Galerkin matrix. This is required to make the methodmore e�ient and salable. An alternative is to use the multilevel (projetion-based)Krylov method as proposed in [48℄, where the Galerkin systems are solved reursively,so that the resulting approah is lose to typial multigrid methods.Moreover, the hoie of the traditional preonditioner and the projetion vetorsould be further improved in the de�ation method. Currently, we use the inompleteCholesky preonditioner, but it might be more favorable to use operator-based preon-ditioners, based on ideas desribed in [32℄. In addition, we use subdomain projetionvetors that are hosen independently of the disontinuous oe�ient. We have an-alyzed that this is an e�ient approah, but oe�ient-dependent projetion vetors(suh as the level-set or level-set-subdomain vetors, whih are desribed in this thesis)might be advantageous for relatively large and ompliated bubbly �ow problems.Another important issue for future researh is the parallelization of the de�ationmethod (and its adapted variant) in this thesis, following the guidelines given in [56℄.This is required to ope with very large 3-D bubbly �ows problems. A fast traditionalpreonditioner based on blok inomplete Cholesky fatorization and �rst steps toparallelize the de�ation operator have already been arried out. In addition, parallelasynhronous iterative methods exhibit properties that are highly favorable in the on-text of large heterogeneous networks of omputers. By ombining these methods withde�ation�type tehniques, sophistiated parallel preonditioners may be onstrutedthat are both e�ient and robust. This approah is urrently under investigation byTijmen Collignon with promising preliminary results.
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Appendix ABasi Theoretial ResultsIn this hapter, we present some fairly basi results related to linear algebra, whih areused in this thesis.Lemma A.1. Let B;C 2 Rn�n be arbitrary matries. Then, the following equationshold:(a) �(BC) = �(CB);(b) �(B + I) = �(B) + �(I);() �(B) = �(BT ).Proof. (a) Let � 2 C and v 2 Cn be an eigenvalue and orresponding eigenvetor ofBC, respetively. We onsider two ases:� � 6= 0: the orresponding v satis�es BCv 6= 0n; so, in partiular, we haveCv 6= 0n: Then, the following equations are equivalent:




BCv = �v ;CBCv = �Cv ;CBw = �w;where w := Cv 6= 0n.� � = 0: we have det(BC) = det(CB) = 0;and, hene, if � is a zero eigenvalue of BC, then it is also a zero eigenvalue ofCB.In other words, � is an eigenvalue of both BC and CB.(b) Let � 2 C and v 2 Cn be an eigenvalue and orresponding eigenvetor of B+I,191



192 Appendix A. Basi Theoretial Resultsrespetively. Then, the following equations are equivalent




(B + I)v = �v ;Bv = (�� 1)v ;Bv = �v;where � := � � 1. In other words, � is an eigenvalue of B + I if and only if �� 1 isan eigenvalue of B.() By de�nition of determinants, det(B��I) = det(BT ��I) holds for all � 2 C,so that �(B) = �(BT ).Lemma A.2. Let B 2 Rn�n be an SPSD matrix. Let C 2 Rn�n be any matrix. Then,B̃ := CTBC is SPSD.Proof. Matrix B̃ is symmetri, sineB̃T = (CTBC)T = CTBTC = CTBC = B̃:Moreover, by de�nition, uTBu � 0; 8u 2 Rn:If we hoose, in partiular, u := Cv , we obtain(Cv)TB(Cv) = vTCTBCvT = vT B̃vT � 0;whih proves that B̃ is SPSD.Lemma A.3. Let S 2 Rn�n satisfy S2 = S. Let R 2 Rn�n be an SPD matrix suhthat SR is symmetri. Then, SR is SPD.Proof. Note �rst thatSR = S2R = S(SR)T = SRTST = SRST ;beause SR is symmetri and S is a projetion matrix. Then, the lemma follows fromLemma A.2 by taking C := ST and B := R.Next, for two symmetri matries, B and C, we write B � C if B � C is PSD.Lemma A.4 (Thm. 4.3.1 of [73℄). Let B;C 2 Rn�n be SPD matries with the propertythat B � C. Then, �i(B) � �i(C); i = 1; 2; : : : ; n:Lemma A.5 (Thm. 4.3.6 of [73℄). Let B;C 2 Rn�n be symmetri and suppose thatB has at most rank s. Then,�i(B) � �i+k(B + C); i = 1; 2; : : : ; n � s:Subsequently, Lemma A.6 is presented, whih is from the perturbation theory forthe symmetri eigenvalue problem (see also [179℄ and [63, Thm. 8.1.8℄).



193Lemma A.6. Suppose B = C + �T where B 2 Rn�n is symmetri,  2 Rn has unit2-norm and � > 0. Then,�i(C) � �i(B) � �i+1(C); i = 1; 2; : : : ; n � 1: (A.1)Moreover, there exist m1;m2; : : : ;mn � 0 suh that�i(B) = �i(C) +mi�; i = 1; 2; : : : ; n; (A.2)with m1 +m2 + : : :+mn = 1.The next lemma is known as the interlaing property or the interlaing eigenvaluestheorem for bordered matries (see, e.g., [63, Thm. 8.1.7℄).Lemma A.7 (Interlaing Property). If B 2 Rn�n is symmetri and Bs = B(1 : s; 1 : s),then�1(Bs+1) � �1(Bs) � �2(Bs+1) � : : : � �s(Bs+1) � �s(Bs) � �s+1(Bs+1);for 1 � s � n � 1.Next, given an SPSD matrix F 2 Rn�n and an SPD matrix G 2 Rn�n, we onsiderthe eigenproblem, G�1Fy = �y;whih an be rewritten as (F � �G)y = 0;where � and y are an eigenvalue and orresponding eigenvetor of G�1F , respetively.The latter problem is known as the symmetri-de�nite generalized eigenproblem, andF ��G is alled a penil, see, e.g., [63, Set. 8.7℄. In this ase, � and y are known asa generalized eigenvalue and generalized eigenvetor of the penil F ��G, respetively.Moreover, the Crawford number, (F;G), of the penil F � �G is de�ned as(F;G) := minjjy jj2=1 (yTFy)2 + (yTGy)2 > 0: (A.3)The following lemma gives information about the eigenvalues after perturbing matrix G.This lemma is a simpli�ed variant of the original theorem given in [127℄, see also [63,Set. 8.7℄.Lemma A.8. Let F 2 Rn�n be an SPSD matrix and G 2 Rn�n be an SPD matrix. LetF ��iG be the symmetri-de�nite n�n penil with �1 � �2 � : : : � �n. Suppose RGis a symmetri n � n matrix that satis�es jjRG jj22 < (F;G). Then, F � �i(G + RG)is symmetri-de�nite with �1 � �2 � : : : � �n, satisfyingj artan (�i)� artan (�i) j � artan( jjRG jj2(F;G)) ; i = 1; 2; : : : ; n: (A.4)



194 Appendix A. Basi Theoretial ResultsA matrix, B = [bi ;j ℄ 2 Rn�n, is irreduibly diagonally dominant if B is irreduibleand jbj j j �∑i 6=j jbi ;j j; j = 1; : : : ; n;with strit inequality for at least one j . Now, the following lemma, whih is [120,Corollary 4.8℄, an be proven.Lemma A.9. If a matrix B is irreduibly diagonal dominant, then it is nonsingular.Next, we give some results that haraterize eigenvalues in a variational way, seealso [73, Setion 4.2℄. Most of them use the so-alled Rayleigh-Ritz ratio given byyTByyT y ; B 2 Rn�n; y 2 Rn:Theorem A.1 (Rayleigh-Ritz Theorem). Let B 2 Rn�n be a symmetri matrix. Then,�1yT y � yTBy � �nyT y; 8y 2 Rn;and 


�max = �n = maxy 6=0n yTByyT y = maxyT y=1 yTBy ;�min = �n = miny 6=0n yTByyT y = minyT y=1 yTBy:Theorem A.2 (Courant-Fisher Minimax Theorem). Let B 2 Rn�n be a symmetrimatrix. Suppose that r is a given integer with 1 � r � n. Then, for y 6= 0n, we have




minw1;:::;wn�r2Rn�n maxy?w1;:::;wn�r yTAyyT y = �r ;maxw1;:::;wr�12Rn�n miny?w1;:::;wr�1 yTAyyT y = �r : (A.5)We remark that if we take r = n and r = 1 in the �rst and seond expression of (A.5),respetively, the assertions redue to Theorem A.1.Subsequently, the Frobenius norm and p-norm for matries are de�ned asjjBjjF :=√√√√ n∑i ;j=1 b2i ;j ; jjBjjp := supy 6=0 jjBy jjpjjy jjp ; (A.6)respetively. In partiular, the 2-norm for symmetri matries is de�ned asjjBjj2 := supy 6=0 jjBy jj2jjy jj2 = max f j�1(B)j; j�n(B)j g ; (A.7)where �1 � : : : � �n. Moreover, we mention well-known properties of the eigenvaluesof symmetri matries, whih an be found in [63, Set. 8.1.2℄.Lemma A.10. Let B;G 2 Rn�n be symmetri matries. Then,(i) ∑ni=1 [ �i(B + G)� �i(B) ℄2 � jjGjj2F ;



195(ii) �i(B) + �1(G) � �i(B + G) � �i(B) + �n(G); i = 1; 2; : : : ; n;(iii) j�i(B + G)� �i(B)j � jjGjj2; i = 1; 2; : : : ; n.Lemma A.10(ii) is known as the Wielandt-Ho�man theorem.If an invertible matrix satis�es some onditions, then some entries of the inverseare known a priori, see the next lemma.Lemma A.11. Let C = [i ;j ℄ 2 Rn�n be a symmetri and invertible matrix with theproperty that C1n = e(n)n ;  6= 0: (A.8)Then, the entries of the last row and last olumn of C�1 = [�1i ;j ℄ have the same value,1 , i.e., �1n;j = �1i ;n = 1 8 i ; j: (A.9)Proof. From Eq. (A.8), we obtain C�1e(n)n = 1n. This yields�1i ;1 = 1 ! �1i ;1 = 1 ;for all i = 1; 2; : : : ; n. Due to the symmetry of C, its inverse is also symmetri andEq. (A.9) follows.Lemma A.12. Suppose that u = [ui ℄ 2 Rn and v = [vi ℄ 2 Rn. Then, rank uvT = 1.Proof. Sine uvT = [u1 � � � un℄T [v1 � � � vn℄ = [v1u v2u � � � vnu℄;the olumns are multiples of eah other, so that rank uvT = 1.Lemma A.13. Let matries B 2 Rn�s1, D 2 Rn�s2 and an invertible matrix, C 2 Rn�n,be given. If R(B) � R(D), then R(CB) � R(CD) holds.Proof. Denote B = [b1 � � � bs1℄ and D = [d1 � � � ds2 ℄, where fbig and fdig are setsof vetors. Sine R(B) � R(D) holds, we an writebi = 1d1 + � � � s2ds2; j 2 R;for all i = 1; : : : ; s1. So, we also haveCbi = 1Cd1 + � � � s2Cds2 ; j 2 R;giving us R(CB) � R(CD).Subsequently, we present two well-known theorems in the linear algebra (see,e.g., [128℄), followed by a onsequene of these theorems.



196 Appendix A. Basi Theoretial ResultsTheorem A.3 (Fundamental Theorem of Linear Algebra). Let B be a symmetri ma-trix. Then, N (B) = R(B)?; R(B) = N (B)?:Theorem A.4 (Rank-Nullity Theorem). For any B 2 Rn�n, we haverankB + dimN (B) = n:Lemma A.14. Suppose that S := I � RB and S� := I � RTB, where B 2 Rn�n isSPD and R 2 Rn�n is any matrix. Then,dimN (S) = dimN (S�) :Proof. Note �rst that S� is similar to ST , sine S� = B�1STB: Hene, the eigenvaluesof S� and ST are the same (inluding multipliity), so thatdimN (S�) = dimN (ST ) :Lemma A.4 says that dimR (S) + dimN (S) = n:On the other hand, Theorem A.3 gives an orthogonal deomposition ofRn = R (S)�N (ST ) ; (A.10)implying that dimN (ST ) = n � dimR (S) = dimN (S) :The following standard de�nitions are related to orthogonal omplements and diretsums.De�nition A.1. Let H be a vetor spae with an arbitrary inner produt, h�; �i, and letZ be a losed subspae of H. Then, the orthogonal omplement Y of Z, also denotedby Z?, is de�ned as Y = fy 2 H j hz; yi = 0 8z 2 Zg ; (A.11)so that Z is the subspae orthogonal to Y.De�nition A.2. Let X be a vetor spae. Suppose that Y and Z are subspaes of X .Then, X is said to be the diret sum of Y and Z, written asX = Y � Z; (A.12)if eah x 2 X has a unique representation,x = y + z; (A.13)



197where y 2 Y and z 2 Z.In other words, the diret sum of two subspaes, Y and Z, is the sum of subspaes inwhih Y and Z have only the zero element in ommon. Using De�nitions A.1 and A.2,we an derive Lemma A.15, whih is well-known and states that the union of thesubspaes Y and Z is exatly H (see, e.g., [83, pp. 146�147℄).Lemma A.15. Let H;Y and Z be de�ned as in De�nition A.1. Then,H = Y � Z: (A.14)Note that dim Y + dim Z = n for H := Rn. This means that Y = Rn�s holds asZ = Rs with s < n is given.
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Appendix BDetermination of Bubbles from theLevel-Set FuntionThe level-set approah [102, 110℄ an be adopted to desribe the density �eld, �,impliitly in many appliations, suh as two-phase bubbly �ow appliations, see [143,154, 156℄. In this approah, the interfaes of the bubbles are de�ned by the zerolevel-set of a marker funtion 	(x; t) that is de�ned as follows:




	 = 0; at the interfae;	 > 0; inside the high-density phase;	 < 0; elsewhere:The interfae is impliitly adveted, by adveting	 as if it would be a material property:�	�t + u � r	 = 0;where u is the veloity vetor in 
. Therefore, � an be determined at eah time step,without having the exat oordinates of the bubbles. For hoosing de�ation vetors inthe de�ation method, an extra proedure for determining the bubbles from 	 shouldbe arried out. For example, Algorithm 9 gives the pseudo-ode of an algorithm fordetermining bubbles from a given level-set funtion, whih an be used for 2-D problemson an equidistant grid 1 2. In this algorithm, x̂i denotes an adjaent grid point of gridpoint xi .In Algorithm 9, three loops are needed to distinguish the bubbles from the rest ofthe domain and to inlude their adjaent grid points, requiring O(n) �ops. Note that,in the ase of deiding whether a grid point is in a bubble, we simply look at the signof the orresponding element of 	. If the value is positive, the grid point is in theinterior of the bubble, if it is negative, then it is outside the bubble, and, otherwise,1John Brushe has ontributed to the realization of this algorithm.2If the omputations are performed on an unstrutured grid, similar algorithms as Algorithm 9 anbe applied using reordering strategies, suh as Cuthill MKee's algorithm [33℄.199



200 Appendix B. Determination of Bubbles from the Level-Set FuntionAlgorithm 9 Determination of bubbles from the level-set funtion in 2-D1: Set j = 1 and f = 0n;2: for x1 to xn (from left to right and from bottom to top) do3: if xi 2 �h1 then4: if left and/or bottom x̂i =2 �h1 then5: fi = j ;6: j = j + 1;7: else8: fi = minx̂i f ;9: end if10: end if11: end for12: for xn to x1(from right to the left and from top to bottom) do13: if xi 2 �h1 then14: if right and/or top x̂i =2 �h1 then15: fi = j ;16: j = j + 1;17: else18: fi = minx̂i f ;19: end if20: end if21: end for22: Renumber all fi 6= 0;23: for x1 to xn do24: if xi 2 �h1 and x̂i =2 �h1 then25: fx̂i = fi ;26: end if27: end forit is on the interfae. In this way, it is straightforward to determine the bubbles fromthe level-set funtion, and to obtain a ode where eah de�ation vetor orrespondsto exatly one bubble. The algorithm is further explained in Example B.1.Example B.1. A 2-D bubbly �ow problem with m = 3 bubbles is onsidered, seeFigure B.1. In eah of the subplots, one an see the intermediate and �nal results ofapplying Algorithm 9 to determine eah bubble.
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(a) After the �rst loop (Line 11).
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(b) After the seond loop (Line 21).
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() After renumbering (Line 22).
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(d) After the algorithm (Line 27).Figure B.1: A 2-D bubbly �ow problem with m = 3 showing the appliation of Algorithm 9. Thenumbers given in the plots are the orresponding nonzero entries of vetor f .
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Appendix CMore Insights into De�ation applied toSingular Coe�ient MatriesIn addition to Chapter 5, we give some more results and insights into the appliationof the de�ation method applied to linear systems with singular oe�ient matries 1.The main fous of this appendix is on proving Theorem 5.5.The following de�nition holds throughout this appendix.De�nition C.1. Suppose that an SPD oe�ient matrix, A 2 Rn�n, is given. LetZ 2 Rn�k be a de�ation-subspae matrix with full rank and k < n. Let Za 2 Rn�ka bea de�ation-subspae matrix with full rank and ka � k satisfying N (A) \ R(Za) = ;.Then, we de�ne
{ P := I � AQ; Q := ZE+ZT ; E := ZTAZ;Pa := I � AQa; Qa := ZaE�1a ZTa ; Ea := ZTa AZa:Note that E an be singular, while Ea is obviously nonsingular (see Setion 3.2). Inaddition, if there does not exist a vetor, y , suh that y � R(Z) for y 2 N (A), thenP = Pa.C.1 Theoretial ResultsWe show that a de�ation matrix based on a singular Galerkin matrix an always beredued to a de�ation matrix based on a nonsingular Galerkin matrix.Theorem C.1. Let A 2 Rn�n and Z 2 Rn�k be as given in De�nition C.1. Then,there exists a matrix Za 2 Rn�ka with ka � k suh that Ea is invertible andQ = Qa; P = Pa: (C.1)1This appendix is based on researh that is still ongoing, see [85℄.203



204 Appendix C. More Insights into De�ation applied to Singular Coe�ient MatriesProof. Sine E is SPSD, there exists an orthogonal matrix, U 2 Rk�k, suh thatUTEU = [ D1 0ka;(k�ka)0(k�ka);ka 0(k�ka);(k�ka) ] ;where D1 2 Rka�ka with ka � k is a nonsingular diagonal matrix. Now, letU = [U1; U2℄; U1 2 Rk�ka; U2 2 Rk�(k�ka):Then, ZU = [ZU1; ZU2℄; (ZU)T = [ UT1 ZTUT2 ZT ] : (C.2)Moreover, note that Q = ZE+ZT = ZU(UTEU)+UTZT ; (C.3)for eah orthogonal matrix, U 2 Rk�k. Combining Eqs. (C.2) and (C.3) yieldsQ = ZE+ZT = ZU(UTEU)+UTZT= ZU ([ UT1 ZTUT2 ZT ]E[ZU1; ZU2℄)+ UTZT= [ZU1; ZU2℄[ D�11 0ka;(k�ka)0(k�ka);ka 0(k�ka);(k�ka) ][ UT1 ZTUT2 ZT ] ;= ZU1D�11 UT1 ZT= ZU1(UT1 EU1)�1UT1 ZT :Therefore, for Za := ZU1 2 Rk�ka, we haveQ = ZE+ZT = Za(ZTa AZa)�1ZTa = Qa;so that the theorem follows immediately.Theorem C.1 shows that, for eah SPSD oe�ient matrix, A, and de�ation-subspaematrix, Z, there exists a redued de�ation-subspae matrix, Za, suh that Ea is non-singular and de�ation matries P and Pa are equal.Furthermore, the proof of Theorem C.1 also provides a tehnique to onstrutZa: hoose Za := ZU1 with U1 onsisting of eigenvetors of E orresponding to thenonzero eigenvalues. Note that these eigenvetors are orthogonal to the eigenvetorsassoiated with the zero eigenvalues, so that N (A) * R(U1) and Za has full rank.Therefore, if N (E) is known, a basis of its orthogonal omplement, say W , an beonstruted suh that R(U1) = R(W ). Hene,R(ZU1) = R(ZW ):



C.2. Proof of Theorem 5.5 205Thus, by using Theorem 3.2, ZW an also be applied as a redued de�ation-subspaematrix, resulting in Theorem C.2.Theorem C.2. Let A 2 Rn�n and Z 2 Rn�k be as given in De�nition C.1. Supposethat E has rank ka. Let Zs := ZW and Za be de�ned as in the proof of Theorem C.1.Suppose that W onsists of basis vetors of the orthogonal omplement of N (E).Then, ZTs AZs is nonsingular andQ = Qa = Zs(ZTs AZs)�1ZTs :C.2 Proof of Theorem 5.5Using the results of the previous setion, we an prove Theorem 5.5 (that is equal toTheorem C.3), see below.Theorem C.3. Let A 2 Rn�n, Z 2 Rn�k and E 2 Rk�k be as given in De�nition C.1.Suppose that A1n = 0n; (C.4)Z1k = 1n; (C.5)dimR (E) = k � 1; (C.6)and Zk�1 = [z1; : : : ; zk�1℄. Let Ek�1, Qk�1 and Pk�1 be as de�ned in De�nition 5.3.Then, Ek�1 is nonsingular and AQA = AQk�1A:Hene, (see Eq. (5.27)) M�1PA = M�1Pk�1A:Proof. From Eqs. (C.4) and (C.5), we obtain E1k = 0k , so that N (E) = R(1k).Next, we hoose a basis W of the orthogonal omplement of R(1k). We take thevetors fwi 2 Rk : i = 1; : : : ; k � 1g, where




w1 = [1; �1k�1 ; : : : ; �1k�1]T ;w2 = [ �1k�1 ; 1; �1k�1 ; : : : ; �1k�1]T ;...wk�1 = [ �1k�1 ; : : : ; �1k�1 ; 1]T :Eq. (C.5) gives us z1 = 1n � k∑j=2 zj ;



206 Appendix C. More Insights into De�ation applied to Singular Coe�ient Matrieswhih an be rewritten as 1k � 1z1 = 1k � 1 1n � k∑j=2 zj : (C.7)On the other hand, we obtain Zw1 = z1 � k∑j=2 1k � 1zj : (C.8)Combining Eqs. (C.8) and (C.7) yieldsZw1 = (1 + 1k � 1) z1 + 1k � 11n:Similarly, we obtainZwi = (1 + 1k � 1) zi + 1k � 11n; i = 1; : : : ; k � 1:Hene, ZW = [�z1; : : : ; �zk�1℄ + 1k � 11n1Tn�1; � := 1 + 1k � 1 : (C.9)Suppose now that �Z := [�z1; : : : ; �zk�1℄:Then, with Eq. (C.4), we obtain W TEW = �ZTA �Z;while Theorem C.2 implies that �ZTA �Z is nonsingular. Using Eqs. (C.4) and (C.9), weobtain AZW = A �Z, so thatAZW (W TEW )�1W TZTA = A �Z( �ZTA �Z)�1 �ZTA:Sine R( �Z) = R(Zk�1), Theorem 3.2 yieldsAZW (W TEW )�1W TZTA = AZk�1E�1k�1ZTk�1A: (C.10)On the other hand, we haveAQA = AZW (W TEW )�1W TZTA (C.11)from Theorem C.2. Combining Eqs. (C.10) and (C.11) yieldsAQA = AQk�1A;



C.2. Proof of Theorem 5.5 207whih also implies M�1PA = M�1Pk�1A:Remark C.1.� From the proof of Theorem C.3, it is important to note that the following in-equalities hold: Q 6= Qk�1; AQ 6= AQk�1; QA 6= Qk�1A;while these would be equalities if E is nonsingular.� Several other interesting theoretial results for the de�ation tehnique based ona singular Galerkin matrix an be found in [85℄.



208 Appendix C. More Insights into De�ation applied to Singular Coe�ient Matries



Appendix DE�ient Implementation of De�ationOperationsIn this appendix, we demonstrate the e�ient omputation of AZ and E, so that theyan be easily inorporated in the de�ation method. One an onsult [140℄ for moredetails. Reall that A 2 Rn�n is a oe�ient matrix, Z 2 Rn�k is the de�ation-subspae matrix, and E := ZTAZ 2 Rk�k is the Galerkin matrix. As disussed inChapter 8, the nonzeros of these matries are stored in the matries SAZ and SE,respetively, whose exat forms are explained below. Moreover, Assumption D.1 holdsthroughout this appendix (see Assumption 8.1).Assumption D.1.� A is derived after disretization of the Poisson problem that is originated frombubbly �ow problems (see Setion 1.3) and onsists of 5 and 7 nonzero diagonalsin the 2-D and 3-D ase, respetively;� Z onsists of subdomain de�ation vetors (see Setion 4.2.3), where the subdo-mains are squares and ubes in the 2-D and 3-D ase, respetively. In addition,the number of subdomains and de�ation vetors is assumed to be equal.D.1 E�ient Constrution of SAZ and SE in 2-DMatrix SAZ 2 R�3 an be dedued from AZ, where  is the number of nonzeroentries of AZ. The �rst and seond olumns of SAZ are the row and olumn indiesof the nonzero entries of AZ, respetively. The third olumn of SAZ stores theirorresponding values.Eah de�ation vetor in Z orresponds to one subdomain in 
. If we assume 
to be a square, then these subdomains an be divided into nine di�erent groups asdepited in Figure D.1. Note that all groups (exept the orner groups 1, 3, 7, 9) mayonsist of more subdomains. For instane, for k = 25, Group 5 onsists of exatly 16subdomains, while eah of Group 2, 4, 6 and 8 onsists of 4 subdomains. Moreover,209



210 Appendix D. E�ient Implementation of De�ation Operationsin Figure D.2, we an see the di�erent ases and the grid points that are involved inthe omputation of SAZ. In addition, the variables used in this setion are explainedin the Table D.1.
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1M 1MFigure D.2: Cases of grid points involved in the groups of SAZ .D.1.1 Number of Nonzero Entries in AZThe number of nonzeros of AZ, , an be omputed by ounting the number ofnonzeros for the di�erent kinds of subdomains.� Corner Subdomains (Group 1, 3, 7, 9). Eah orner subdomain has nonzeroontributions of 4nb � 1 grid points, so that  = 4(4nb � 1).



D.1. E�ient Constrution of SAZ and SE in 2-D 211Variable Meaningk Number of subdomainskx Number of subdomains in one diretion (= pk in the 2-D ase)nb Number of grid points in one diretion of a subdomain Total number of nonzeros in AZ Number of nonzeros in AZ from all orner subdomainsb Number of nonzeros in AZ from all boundary subdomainsi Number of nonzeros in AZ from all interior subdomainsTable D.1: Explanation of the variables.� Boundary Subdomains (Group 2, 4, 6, 8). Eah boundary subdomain onsists of6nb � 2 involving grid points. Beause we have 4(kx � 2) boundary subdomains,b = 8(3nb � 1)(kx � 2) holds.� Interior Subdomains (Group 5). 8nb � 4 grid points are involved per interiorsubdomain. Sine there are (kx � 2)2 interior subdomains, this yields i =4(2nb � 1)(kx � 2)2.Now,  is given by =  + b + i= 4(4nb � 1) + 8(3nb � 1)(kx � 2) + 4(2nb � 1)(kx � 2)2: (D.1)Obviously, if k is large, then i is the dominant term in Eq. (D.1).D.1.2 Treatment of the Di�erent CasesThe di�erent ases as presented in Figure D.2 are onsidered separately.Case 1 (1R, 1L, 1M)We distinguish the ases `left' (L), `right' (R) and `middle' (M) variant in Case 1,where we note that the work is twie as muh ompared to `left' or `right' for variant`middle'. For eah row of the domain, we add the values of A orresponding to theinvolved grid points to SAZ, where it is sometimes e�ient to use�ai ;j =∑k 6=j ai ;k ; (D.2)sine A1n = 0n holds from Assumption 1.2. For instane, for the ase 'left', we addtwo values of A to SAZ in eah row: for the �rst entry, y , we add the negative valueof the orresponding right entry of A, and we add the orresponding left entry of A toSAZ for the seond entry, y + 1.



212 Appendix D. E�ient Implementation of De�ation OperationsCase 2 (2U, 2D)Two variants `up' (U) and `down' (D) are distinguished for this ase. The orrespondingentries of SAZ an be easily omputed: we add the orresponding bottom entry of Afor `up', while the top entry of A is added to SAZ in the ase of `down'.Case 3 (3LU, 3LD, 3RU, 3RD, 3MU, 3MD)This ase onsists of six di�erent variants. Eah variant requires a sequene of opera-tions, sine the `orner' points have to be treated di�erently ompared to the `boundary'points. For instane, Variant `3LU' requires the omputations of the boundary points,followed by two orner points that should be treated separately, both using again (D.2).Case 4 (4D, 4U)We distinguish the variants `4D' and `4U', whose treatment is analogous to the proe-dure of the variants in Case 3. Instead of two orner points, we now have four ornerpoints that should be handled separately.D.1.3 Constrution of SAZThe omputation of SAZ is straightforward by using the ases as desribed above.Eah subdomain is handled by determining the entries orresponding to eah ase. Ifk = 4, then four subdomains should be onsidered with three ases eah. In the aseof k > 4, Group 2 (or 4, 6, 8) in Figure 2 onsists of kx �2 subdomains, while Group 5onsists of (kx � 2)2 subdomains.Moreover, reall that if the singular oe�ient matrix, A, is made invertible a-ording to De�nition 5.2, then SAZ onsists of an extra row. Combining the fats(AZ)n;n = �an;n and ~an;n = (1 + �)an;n, we obtain(AZ)n;n = �1 + � ~an;n:D.1.4 Constrution of SEThe Galerkin matrix, E, is a relatively small and sparse SPD matrix with the samenonzero pattern as A. The di�erent ases in the omputations of SAZ an also beapplied to onstrut SE. Obviously, eah nonzero entry of AZ is used one in orderto ompute SE. The geometry of the proedure is given in Figure D.3, where thefollowing remarks an be made.� E is symmetri, so that only a limited number of nonzero entries of AZ is requiredto ompute SE.� SE is stored e�iently as SE := [e1 e2 e3℄ 2 Rk�3, where e1 is the maindiagonal of E, and e2 and e3 are the seond and third nonzero subdiagonalsof E, respetively. All indiated interior grid points ontribute to e1, while all



D.2. E�ient Constrution of SAZ and SE in 3-D 213right and top grid points next to the interior grid points ontribute to e2 and e3,respetively. Later on, zero olumns an be added between e2 and e3, whih anbe �lled with entries oming from the Cholesky deomposition.� The onstrution of SE an be easily implemented in the existing ode of theomputation of SAZ.
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Figure D.3: Cases of grid points involved in E := ZTAZ, denoted by E1, E2 and E3, whose values inAZ ontribute to e1; e2 and e3, respetively.D.2 E�ient Constrution of SAZ and SE in 3-DThe results from the previous setion an be generalized to the 3-D ase. Eahsubdomain of Figure D.2 takes the form of a blok in this ase. These bloks arenumbered lexiographially. We demonstrate the e�ient omputation of SAZ andSE, where the analysis is based on 9 subdomains followed by 27 and more subdomains.D.2.1 Number of Nonzero Entries in AZSimilarly to the 2-D ase, the number of nonzero entries of AZ, , an be easilyomputed, see below.� Corner Bloks. It is easy to see that 6n2b � 3nb + 1 nonzero entries are involvedfor eah of the eight orner bloks, so that  = 8(6n2b � 3nb + 1):� Interior Bloks. 12n2b � 12nb + 8 nonzero entries are involved for eah interiorblok. This implies i = (kx � 2)3(12n2b � 12nb +8); beause we have (kx � 2)3interior bloks.



214 Appendix D. E�ient Implementation of De�ation Operations� Boundary Bloks. We divide the boundary bloks into `real-boundary' bloksand `boundary-interior' bloks. Eah of the 12(kx � 2) real-boundary bloks has8n2b � 5nb +2 nonzero entries, whereas eah of the 6(kx � 2)2 boundary-interiorbloks requires 10n2b � 8nb + 4 entries. Hene, b = 12(kx � 2)8n2b � 5nb + 2+60(kx � 2)2n2b � 8nb + 4:The total number  an now again be omputed using  =  + i + b: As in the2-D ase, one extra row is required for SAZ, if A is fored to be invertible usingDe�nition 5.2.D.2.2 Matrix SAZ for Eight BloksIn the ase of eight subdomains, we only need Groups 1, 3, 7 and 9 of Figure D.2,whih are setions of orresponding bloks in 3-D. We treat Blok 1 extensively. Theremaining bloks an be analyzed in a similar way.Blok 1Blok 1 is arti�ially divided into layers, where eah layer orresponds to one positionon the z-axis. Note that the layers of z = 1; : : : ; nb � 1 are idential, see Figure D.4.As a onsequene, they are the same as Blok 1 in the 2-D ase. For layer z = nb,eah grid point of the blok aounts for an extra entry (at z = nb+1). This requiresthe introdution of `Case 6' that enounters for these entries. In addition, Cases 1and 3 are not required anymore. Finally, for layer z = nb + 1, eah interior grid pointof the blok has a ontribution that is treated in Case 5.
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Figure D.4: Treatment of Blok 1.Other BloksThe remaining bloks an be treated in the same way as Blok 1. In Table D.2, wesummarize the involved ases for eah of these bloks.D.2.3 Matrix SAZ for 27 BloksFor k = 27, the eight bloks from the previous subsetion are the eight orner bloks.The remaining 19 bloks an be onstruted in a straightforward way. The di�erentases for eah blok are onsidered below.



D.2. E�ient Constrution of SAZ and SE in 3-D 215z-position Blok 1 Blok 2 Blok 3 Blok 41; : : : ; nb � 1 1R, 3LU, 2U 1L, 3RU, 2U 2U, 3LD, 1R 2D, 3RD, 1Lnb 6LUp, 2U 6RUp, 2U 2U, 6LDp 2D, 6RDpnb + 1 5D 5D 5D 5Dz-position Blok 5 Blok 6 Blok 7 Blok 81; : : : ; nb � 1 5U 5U 5U 5Unb 6RUn, 2U 6RUn, 2U 2D 2D, 6RDnnb + 1 1L, 3RU, 2U 1L, 3RU, 2U 6LDn 2D, 3RD, 1LTable D.2: Cases involved in the bloks for eight subdomains in 3-D.Bloks 1�9The treatment of Bloks 1�9 is presented in Table D.3.z-position Blok 1 Blok 2 Blok 31; : : : ; nb � 1 1R, 3LU, 2U 1M, 4U, 2U 2U, 3LD, 1Rnb 6LUp, 2U 6MUp, 2U 2U, 6LDpnb + 1 5D 5D 5Dz-position Blok 4 Blok 5 Blok 61; : : : ; nb � 1 2D, 3LD, 1R, 3LU, 2U 2D, 4D, 1M, 4U, 2U 2D, 3RD, 1L, 3RU, 2Unb 2D, 6LMp, 2U 2D, 6MMp, 2U 2D, 6MMp, 2Unb + 1 5D 5D 5Dz-position Blok 7 Blok 8 Blok 91; : : : ; nb � 1 2U, 3LD, 1R 2D, 4D, 1M 2D, 3RD, 1Lnb 2U, 6LDp 2D, 6MDp 2D, 6RDPnb + 1 5D 5D 5DTable D.3: Cases involved in Bloks 1�9 for k = 27 in the 3-D ase.Bloks 10�18Bloks 10�18 an be onstruted from Bloks 1�9. Instead of three, we obviously have�ve di�erent layers. The last three layers are the same as the blok on the bottomof these layers, while the �rst two bloks follow immediately from the last two bloks.For example, Blok 10 onsists ofz =  nb : 5U;nb + 1 : 6LUn;nb + 2; : : : ; 2nb � 1 : 1R, 3LU, 2U;2nb : 6LUp, 2U;2nb + 1 : 5D:



216 Appendix D. E�ient Implementation of De�ation OperationsTherefore, the ases for the last three layers with respet to the z-position (i.e.,z = nb + 2; : : : ; 2nb + 1) are exatly the same as given for Blok 1. In addition, theases assoiated with the �rst two layers (i.e., z = nb; nb + 1) are almost idential tothe ases orresponding to the last two ases (i.e., z = 2nb; 2nb + 1), where `p' isreplaed by `n' in Case 6. A similar pattern of ases an be derived for Bloks 10�18.Bloks 19�27Bloks 19�27 also follow immediately from Bloks 1�9. The di�erent layers of Bloks 1�9 should be reversed and, moreover, `p' should be replaed by `n' in Case 6, while `D'should be replaed by `U' in Case 5. For instane, Blok 20 onsists ofz = 2nb : 5U;2nb + 1 : 6MUn; 2U;2nb + 2; : : : ; 3nb : 1M, 4U, 2U;This is exatly the reverse proedure of Blok 2, where 5D and 6LUp are now 5U and6LUn, respetively. In a similar way, the other bloks an be analyzed.D.2.4 Matrix SAZ with Variable Number of BloksThe determination of matrix SAZ with a variable number of bloks is a straightforwardgeneralization of the ase with 27 bloks as desribed above. Eah of the 27 bloksshould now be onsidered as di�erent lasses, whih over all new bloks.D.2.5 Constrution of SEMatrix SE is onstruted in the same way as the 2-D ase. Instead of SE = [e1 e2 e3℄,we now have SE = [e1 e2 e3 e4℄, where e4 an be omputed similarly to e2 and e3.



Appendix EFlop Counts for the De�ation MethodIn this appendix, we ompare the �oating-point operations (�ops) of ICCG and DICCGin more detail. The DICCG1 and DICCG2 methods (see Setion 8.3), whih only di�erin the inner-iteration solver, are examined. We restrit ourselves to the 3-D ase; athorough 2-D analysis an be found in [140℄. Moreover, the following assumption holdsthroughout this appendix.Assumption E.1.� A 2 Rn�n onsists of 7 nonzero diagonals;� M�1 is the IC(0) preonditioner (see Setion 2.5.1), so that the resulting de�a-tion method is DICCG;� Z 2 Rn�k onsists of subdomain de�ation vetors (see Setion 4.2.3) wherek � n;� AZ is omputed and stored e�iently as SAZ (see Appendix D.2);� E 2 Rk�k has bandwidth k2x + kx = k 23 + k 13 , and it is omputed and storede�iently as SE (see Appendix D.2).Assumption E.1 leads to fairly standard results as given in Table E.1, where F� denotesthe number of �ops required for a spei� operation �, and hol(A) is the Choleskyfator, C, that satis�es A = CCT .Notation Operation # FlopsF(y1;y2) (y1; y2) 2nFy1+y2 y1 + y2 nFAy Ay 13nFhol(A) onstrut C from A 12nFAy2=y1 solve y2 from CCT y2 = y1 15nTable E.1: Results of �op ounts for standard operations.217



218 Appendix E. Flop Counts for the De�ation MethodE.1 De�ation OperationsThe �op ounts for some operations in the de�ation method are presented below.Computation of SAZ and SEAording to Appendix D, the number of rows of SAZ in the 3-D ase is given by =  + i + b; where




 = 8(6n2b � 3nb + 1);i = (kx � 2)3(12n2b � 12nb + 8);b = 76(kx � 2)n2b � 5nb + 2 + 60(kx � 2)2n2b � 8nb + 4: (E.1)Substituting nb = 3√ nk and kx = 3pk into (E.1) and rearranging some terms, we obtain




 � 48 (nk ) 23 ;i � 12n 23 k 13 + 8k;b � 60n 23 ;resulting in  � 12n 23k 13 + 60n 23 + 48(nk ) 23 + 8k:Reall from Appendix D that SAZ and SE an be onstruted with the same ost. Thenumber of �ops to reate AZ and E, denoted by FAZ and FE, isFE � FAZ � 12n 23 k 13 + 60n 23 + 48(nk ) 23 + 8k � O(n 23 k 13 ):This latter expression an also be obtained by observing that i � b+ for su�ientlylarge k, so that the ontributions of b and  ould be negleted. Moreover, theonstrution of SAZ and SE in the 3-D ase (O(n 23 k 13 ) �ops) is learly more expensivethan in the 2-D ase (O(n 13 ) �ops).Computation of (AZ)T y1, ZT y1, (AZ)y2 and Zy2We easily derive FAZy2 = F(AZ)T y1 = 2 � O(n 23k 13 );and FZy2 = FZT y1 = n = O(n):In ontrast to the 2-D ase, the di�erene of ost between the omputations of (AZ)y1and Zy1 is relatively small.



E.1. De�ation Operations 219Computation of Solving Ey2 = y1The Galerkin system, Ey2 = y1, is solved di�erently in DICCG1 and DICCG2, seebelow.� DICCG1: Solving Ey2 = y1 diretly. The fator, L, of band-Cholesky deompo-sition is onstruted from E, followed by solving y2 from LLT y2 = y1. Sine thebandwidth of E is k 23 + k 13 , we obtain (f. [137, Appendix B℄)Fhol(E) = k ((k 23 + k 13 )2 + 3(k 23 + k 13 ))+ k � O(k 73 );and FEy2=y1;DICCG1 = k (2(k 23 + k 13 ) + 1) � O(k 53 ):� DICCG2: Solving Ey2 = y1 iteratively. If Ey2 = y1 is solved using ICCG, it anbe easily shown that FEy2=y1;DICCG2 = 31k + 36kIICCG;where IICCG is the number of inner iterations of ICCG.Clearly, it depends on k and IICCG whether DICCG1 or DICCG2 is the most e�ientmethod.Computations of Py and PAyObviously, FPy and FPAy depend on the hoie of DICCG1 or DICCG2. We obtainFPy;DICCG1 = FZT y1 + FEy2=y1;DICCG1 + F(AZ)y2 + Fy�y3= n + 2k 53 + 2k 43 + k + 24n 23 k 13 + 120n 23 + 96 (nk ) 23 + 16k + n;and FPy;DICCG2 = FZT y1 + FEy2=y1;DICCG2 + F(AZ)y2 + Fy�y3= n + 31k + 36kIICCG + 24n 23 k 13 :Moreover, we haveFPAy;DICCG1 = FPy;DICCG1 + FAy= 15n + 24n 23 k 13 + 120n 23 + 96 (nk ) 23 + 2k 53 + 2k 43 + 17k;and FPAy;DICCG2 = FPy;DICCG2 + FAy= 15n+ 24n 23 k 13 + 120n 23 + 47k + 36kIICCG + 96 (nk ) 23 :Hene, both FPy and FPAy for DICCG1 and DICCG2 require O(n) �ops.



220 Appendix E. Flop Counts for the De�ation MethodE.2 ICCG, DICCG1 and DICCG2In this setion, we �rst determine the number of �ops required before and after theiteration proess of ICCG, DICCG1 and DICCG2. Thereafter, we ompute the numberof �ops required within the iteration proess. Finally, the total �ops of the methodsare determined.Computations outside the Iteration ProessCompared to ICCG, both DICCG1 and DICCG2 methods need some additional workbefore and after the iteration proess, whose number of �ops is determined below.Fprior, DICCG1 and Fprior, DICCG2 denote the extra �ops for DICCG1 and DICCG2 prior to theiteration proess, whereas Fafter, DICCG1 and Fafter, DICCG2 denote the extra �ops for DICCG1and DICCG2 required after the iteration proess, respetively. We obtain the followingresults:Fprior, DICCG1 = FAZ + FE + Fhol(E)= 24n 23k 13 + 120n 23 + 96 (nk ) 23 + 16k + k 73 + 2k2 + 4k 53 + 3k 43 + k;and Fprior, DICCG2 = FAZ + FE= 24n 23 k 13 + 120n 23 + 96 (nk ) 23 + 16k:Subsequently, in order to ompute Fafter, DICCG1 and Fafter, DICCG2, we determine the numberof �ops for the omputation of Qy :FQy;DICCG1 = FZT y1 + FEy2=y1;DICCG1 + FZy2= 2n + 2k 53 + 2k 43 + k;FQy;DICCG2 = FZT y1 + FEy2=y1;DICCG2 + FZy2= 2n + 31k + 36kIICCG:Hene, this yieldsFafter, DICCG1 = FQy;DICCG1 + FP T y ;DICCG1 + Fy1+y2= 2n + 2k 53 + 2k 43 + k + 2n + 24n 23 k 13 + 120n 23+96 (nk ) 23 + 2k 53 + 2k 43 + 17k;Fafter, DICCG2 = FQy;DICCG2 + FP T y ;DICCG2 + Fy1+y2= 2n + 31k + 36kIICCG + 16n + 24n 23 k 13 + 120n 23+47k + 36kIICCG + 96 (nk ) 23 :As a result, Fprior is O(n 23 k 13 ), whereas Fafter is O(n) for both DICCG1 and DICCG2.Furthermore, ICCG, DICCG1 and DICCG2 have several omputations in ommon,



E.2. ICCG, DICCG1 and DICCG2 221whose number of �ops is denoted by Fommon-out. It is easy to see thatFommon-out = 39n:Computations within the Iteration ProessWe ompute the number of �ops that is involved in the iteration proess of ICCG,DICCG1 and DICCG2. The �ops of their ommon operations,Fommon-in = 31n;an be easily derived. Next, the di�erene between ICCG and DICCG1/DICCG2 withinthe iteration proess is omputing wj := Apj and �wj := PApj (f. Algorithms 3 and 6).Combining the fatsFPAp;DICCG1 = FPAy;DICCG1= 15n + 24n 23 k 13 + 120n 23 + 96 (nk ) 23 + 2k 53 + 2k 43 + 17k;and FPAp;DICCG2 = FPAy;DICCG2= 15n + 24n 23 k 13 + 120n 23 + 47k + 36kIICCG + 96 ( nk ) 23 ;with FAp;ICCG = FAy;ICCG = 13n;we dedue that both FPAp and FAp are O(n).Total Number of Flops for ICCG, DICCG1 and DICCG2Using the above results, the total number of �ops for ICCG isFICCG = Fommon-out + (Fommon-in + FAp)IICCG= 39n + (31n + 13n)IICCG= 39n + 44nIICCG;while, for DICCG1 and DICCG2, we obtainFDICCG1 = Fprior, DICCG1 + Fommon-in + Fafter, DICCG1 + (Fommon-in + FPAp;DICCG1) IDICCG1= 43n + 47n 23k 13 + 240n 23 + 192 (nk ) 23 + k 73 + 2k2 + 8k 53 + 7k 43 + 25k+(46n + 24n 23 k 13 + 120n 23 + 96 ( nk ) 23 + 2k 53 + 2k 43 + 17k) IDICCG1;andFDICCG2 = Fprior, DICCG2 + Fommon-in + Fafter, DICCG2 + (Fommon-in + FPAp;DICCG2) IDICCG2= 57n + 58k + 48n 23 k 13 + 240n 23 + 192 (nk ) 23 + 16k + 72kIDICCG2+(46n + 24n 23k 13 + 120n 23 + 47k + 36kIICCG + 96 ( nk ) 23) IDICCG2:



222 Appendix E. Flop Counts for the De�ation MethodObviously, it depends on the exat values of k and n, and the number of inner/outeriterations whih of the ICCG, DICCG1 and DICCG2 methods is the most e�ient one.



Appendix FParallel Version of the De�ationMethodParallel omputing is fast beoming an inexpensive alternative to the standard super-omputer approah for solving large linear systems, see, e.g., [4,36,44,120℄. The mainoperations to be parallelized for Krylov iterative methods, in partiular the de�ationmethod, are:(a) matrix-vetor multipliations;(b) vetor updates;() dot produts;(d) preonditioning setup and operations;(e) de�ation setup and operations.The potential bottleneks are setting up the preonditioner and solving linear systemswith the preonditioner (Operation (d)). On the other hand, de�ation setup andoperations (Operation (e)) an be easily parallelized if subdomain de�ation vetors areused, whih is explained in Setion F.2. In addition, we note that the dot-produtoperation () might be troublesome in omputational appliations, sine all proessorsmust synhronize and perform ommuniation before omputations an be ontinued(at least for parallel synhronous iterative methods).Sine Operation (d) might be rather ompliated in the parallel approah, we treatthis in more detail. Preonditioners are onsidered based on Shur-omplement andnonoverlapping additive-Shwarz (also known as additive Shwarz with minimum over-lap) methods. Equivalently, instead of the traditional DICCG method, we onsiderthe De�ated PCG method with a blok-Jaobi preonditioner, M�1BJ , or a blok-IC(0)preonditioner, M�1BIC , see Setion F.1 and also [137℄.223



224 Appendix F. Parallel Version of the De�ation MethodF.1 Traditional Parallel PreonditionersReall that (see Setion 2.5.1)MBJ =  A1 ?A2 . . .? Ap  ; (F.1)where Ai denotes the i-th diagonal blok of the oe�ient matrix, A. It an be shownthat solving MBJy2 = y1 aurately is equivalent to the Shur-omplement approah.In pratie, eah submatrix, Ai , an be relatively large, so that it might be attrativeto solve eah subsystem of MBJy2 = y1 inaurately. This latter approah is equivalentto solving linear systems with the additive-Shwarz preonditioner, see also [126℄.On the other hand, the inomplete Cholesky (IC(0)) deomposition of the bloks ofMBJ an also be used to onstrut an e�ient parallel preonditioner. The resultingpreonditioner is alled the blok-IC preonditioner, denoted by M�1BIC . Sine thereis no overlap between the bloks in any of the above desribed preonditioners, theorresponding preonditioning steps are well-parallelizable.F.2 Parallel De�ationIn this setion, we desribe onisely in whih way Operation (e) an be arried oute�iently in a parallel environment, see [56℄ for more details. We restrit ourselvesto subdomain de�ation, where eah available proessor orresponds to one subdomainand a �xed number of unknowns. For onveniene, one subdomain per proessor isassumed. The oupling with neighboring subdomains is realized by the use of virtualgrid points added to the loal grids. In this way, a blok-row of the linear system,Ax = b, orresponding to the subdomain orderingA =  A11 � � � A1p... ...Ap1 � � � App  ;an be represented loally on one proessor: the diagonal blok, Ai i , represents ouplingbetween loal unknowns of subdomain 
i , and the o�-diagonal bloks of 
i representoupling between loal unknowns and the virtual grid points.For the de�ation operations in parallel, we �rst ompute and store suessively thematries E and E�1 on eah proessor, whereas AZ is omputed and stored loally.The use of P within the de�ation method involves the operation y2 = PAy1, whihonsists of the following operations:� the matrix-vetor multipliation x1 := Ay1, requiring nearest neighbor ommuni-ations;



F.2. Parallel De�ation 225� the loal ontribution to the restrition x2 := ZT x1, whih should be distributedto all proessors;� a oarse-grid operation, x3 := E�1x2, that is loally determined;� y2 := I � AZx3, whih is also determined loally.The total ommuniation involved in y2 = PAy1 is a nearest neighbor ommuniationof the length of the interfae.For a �ve-point disretization of PDEs (i.e., standard 2-D problems), it an beveri�ed that the added iteration expense of de�ation is less expensive than an IC(0)fatorization, and the resulting parallel method an be implemented e�iently on a dis-tributed memory omputer, see [56, Set. 5℄. More researh is required to investigatethis issue for more-points disretization and 3-D problems.It is well-known that the overlapping of subdomains in the traditional preonditionermakes the parallel iterative method more-or-less independent of the subdomain gridsize, but overlapping is not always easy to implement on top of an existing softwarepakage. In order to make a parallel iterative method more robust, one ould applythe de�ation tehnique as suggested above. In [56℄, it is shown that only a slowinrease of the number of iterations an be observed when the subdomain grid size isonstant and the number of (de�ation) subdomains inreases. Additionally, for a �xedglobal grid, the number of iterations even dereases if the number of proessors grows,see [56,137℄.Finally, in order to improve the parallel de�ation method, one an also apply thede�ation tehnique on the loal level. If the blok-Jaobi preonditioner is used, thensolving MBJy2 = y1 onsists of solving subsystems of the formAi(y2)i = (y1)i ; i = 1; 2; : : : ; p: (F.2)If this is done iteratively, the onvergene ould be improved by solving the de�atedsubsystems of the form PiAi(y2)i = Pi(y1)i ; i = 1; 2; : : : ; p;instead of (F.2), where eah smaller loal de�ation matrix, Pi , is based on the gridpoints of the spei� subdomain. The overall de�ation method an then be interpretedas a twofold de�ation method, whih is still a topi of urrent researh.
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Appendix GTwo-Level PCG Methods applied toPorous-Media FlowsAs an extension of Setion 6.4, a numerial omparison of two-level PCG methodsfor 2-D porous-media �ows is performed in this appendix. This is a ontinuation ofSetion 6.4, where the same omparison has been done for 2-D bubbly �ows.G.1 Problem SettingWe solve the linear system, Ax = b, whih is derived after disretization of the Poissonequation with a disontinuous oe�ient,�r � (�(x)rp(x)) = 0; x = (x; y) 2 
 = (0; 1)2; (G.1)where p denotes the pressure, and � is the permeability of the porous-media �ow.Exept for the disontinuous oe�ient, Eq. (G.1) is the same as the Poisson equationin bubbly �ow problems (f. Eq. (1.3)). The exat desription of the test problem andthe orresponding hoie for projetion vetors are given below. In addition, the furthersetup and proedure of the experiment are taken to be the same as in Setion 6.4.1.In the porous-media �ow problem, 
 onsists of equal shale (� = 10�6) andsandstone (� = 1) layers with uniform thikness, see Figure G.1(a). We impose aDirihlet ondition on the boundary y = 1 and homogeneous Neumann onditions onthe other boundaries. The layers are denoted by the disjoint set, f
j ; j = 1; 2; : : : ; kg,suh that 
 = [kj=1
j . The disretized domain and layers are denoted by 
h and 
hj ,respetively.We hoose as preonditioner, M�1, the IC(0) fatorization of A. In ontrast tothe projetion vetors used in bubbly �ows (see Setion 6.4), the projetion vetorsare now hosen to be strongly related to the geometry of the problem. For eah 
hj ,227
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h. In this ase, eah projetion vetor orresponds to aunique layer, see also Figure G.1(b). Then, we de�ne Z := [z1 z2 � � � zk ℄.G.2 Experiment using Standard ParametersIn the �rst numerial experiment, standard parameters are used with stopping toleraneÆ = 10�10, an exat Galerkin matrix inverse, E�1, and an unperturbed starting vetor,Vstart.The results of the experiment are presented in Table G.1 and Figure G.2. Therelative errors are omitted, beause they are approximately the same. The �gurepresents only one test ase, sine a similar behavior is seen for the other test ases.Moreover, for the sake of a better view, the results for PREC are omitted in Figure G.2.From Table G.1, we observe that PREC needs more iterations to onverge whenn or k is inreased. This only holds partly for the two-level PCG methods. Theonvergene of the other methods is less sensitive to the number of layers, sine thenumber of projetion vetors is hosen to be equal to the number of layers. PREC isobviously the slowest method, and the two-level PCG methods, exept for A-DEF1,show approximately the same performane, whih on�rms the theory (f. Theorem 6.1and 6.3). Notie that even AD shows omparable results with the other two-level PCGmethods (exept A-DEF1), but it an be observed in Figure G.2 that AD shows a veryerrati behavior with respet to the errors in the 2�norm (whih has not been seenin the bubbly �ow experiments). In other words, although AD requires approximately



G.2. Experiment using Standard Parameters 229k = 5 k = 7Method n = 292 n = 542 n = 412 n = 552PREC 102 174 184 222AD 59 95 74 90DEF1 58 94 75 90DEF2 68 94 75 90A-DEF1 58 95 86 103A-DEF2 58 94 75 90BNN 58 94 75 90R-BNN1 58 94 75 90R-BNN2 58 94 75 90Table G.1: Number of required iterations for onvergene of all proposed methods, for the porous-media problem with `standard' parameters. The 2�norm of the relative error is approximately thesame for all methods in eah test ase, and, hene, they are omitted in the table.the same number of iterations, the errors measured in the 2�norm are larger, andthe iterated solution is less reliable. Furthermore, A-DEF1 is somewhat slower inonvergene, espeially if the test ase beomes more ompliated.Subsequently, we present the same results in terms of omputational ost. Werestrit ourselves to the test ase with n = 552 and k = 7, see Table G.2. Analogousresults are obtained for the other test ases. The total omputational ost withinthe iterations is given, following the analysis arried out in Setion 6.2.4. Due to thesparsity of Z, both Z and AZ an be stored as approximately two vetors, resulting inthe fat that there is no need to perform extra matrix-vetor multipliations in additionto those required by PREC. It depends on the exat implementation of the methods(suh as the storage and omputation with Z, AZ and E) to determine whih two-level PCG method requires the lowest omputational ost. For example, if both IP, VUand GSS require the same amount of omputing time, then it an be dedued fromTable G.2 that BNN is the most expensive method, whereas AD, following by DEF1,DEF2 and R-BNN2, has the lowest omputational ost per iteration.Method IP VU GSS PRPREC 222 666 0 222AD 270 270 90 90DEF1 270 360 90 90DEF2 270 360 90 90A-DEF1 412 412 103 103A-DEF2 450 360 180 90BNN 540 450 180 90R-BNN1 450 450 180 90R-BNN2 270 360 90 90Table G.2: Total omputational ost within the iterations in terms of number of inner produts (`IP'),vetor updates (`VU'), Galerkin system solves (`GSS'), preonditioning step with M�1 (`PR'), for theporous-media problem with n = 552, k = 7, and `standard' parameters.
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(b) Relative errors in the 2�norm.Figure G.2: Relative errors during the iterative proess, for the porous-media problem with n = 552,k = 7, and `standard' parameters.G.3 Experiment using Inaurate Coarse SolvesIn the next experiment, we solve Ey2 = y1 inexatly. In this ase, ~y2 an be interpretedas Ẽ�1y1, where Ẽ�1 is de�ned as (see Eq. (6.16))Ẽ�1 := (I +  R)E�1(I +  R);  > 0; (G.3)



G.4. Experiment using Severe Termination Toleranes 231where R 2 Rk�k is a symmetri random matrix with entries from the interval [�0:5; 0:5℄.The sensitivity of the two-level PCG methods to this inaurate solve with various val-ues of  are investigated, and the results are related to Theorem G.3.The results of the experiment an be found in Table G.3 and Figure G.3. Weobserve that the most robust two-level PCG methods are AD, BNN and A-DEF2,sine they are largely sensitive to perturbations in E�1. On the other hand, DEF1,DEF2, R-BNN1 and R-BNN2 are obviously the worst methods, as expeted, sine thezero eigenvalues of the orresponding two-level preonditioned matries beome nearlyzero eigenvalues due to the perturbation,  (f. Setion 6.3.1). In addition, it an beobserved that the errors diverge or stagnate for all test ases with DEF2 and R-BNN2,whereas they remain bounded and tend to onverge in the ase of DEF1 and R-BNN1. = 10�12  = 10�8  = 10�4Method # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2PREC 222 2:6� 10�8 222 2:6� 10�8 222 2:6� 10�8AD 90 1:0� 10�7 90 1:4� 10�7 92 1:2� 10�7DEF1 90 2:6� 10�6 NC 6:8� 10�7 178 1:4� 10�3DEF2 90 2:6� 10�6 NC 1:6� 10+2 NC 2:0� 10+4A-DEF1 103 2:0� 10�8 103 2:2� 10�8 120 2:6� 10�7A-DEF2 90 2:2� 10�8 90 2:6� 10�8 90 2:5� 10�7BNN 90 2:3� 10�8 90 2:8� 10�8 90 7:1� 10�8R-BNN1 90 6:8� 10�7 159 2:2� 10�8 213 6:9� 10�5R-BNN2 90 2:6� 10�6 NC 2:6� 10�2 NC 1:8� 10+2Table G.3: Number of required iterations for onvergene and the 2�norm of the relative errors ofall methods, for the porous-media problem with parameters n = 552 and k = 7. A perturbed Galerkinmatrix inverse, eE�1, is used with a varying perturbation,  .
G.4 Experiment using Severe Termination ToleranesIn this setion, we perform a numerial experiment with various values of the termina-tion tolerane, Æ.The results of the experiment are presented in Table G.4 and Figure G.4. It an beseen that all methods perform well, even in the ase of a relatively strit terminationriterion (i.e., Æ = 10�12). PREC also onverges in all ases, but not within 250iterations. Note, moreover, that it does not give an aurate solution if Æ is hosentoo large, see [173℄. For Æ < 10�12, DEF1, DEF2, R-BNN1 and R-BNN2, showdi�ulties, sine they do not onverge appropriately and may even diverge. This isin ontrast to PREC, AD, BNN, A-DEF1 and A-DEF2, whih give good onvergeneresults for Æ = 10�16. Therefore, these two-level PCG methods an be haraterizedas robust methods with respet to several termination riteria.
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(b) Relative errors in the 2�norm.Figure G.3: Relative errors during the iterative proess for the porous-media problem with n = 552; k =7 and eE�1, where a perturbation  = 10�8 is taken.
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(b) Relative errors in the 2�norm.Figure G.4: Relative errors during the iterative proess for the porous-media problem with n = 552; k =7, and termination tolerane Æ = 10�16.



234 Appendix G. Two-Level PCG Methods applied to Porous-Media FlowsÆ = 10�8 Æ = 10�12 Æ = 10�16Method # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2PREC 134 3:7� 10�1 > 250 2:4� 10�8 > 250 2:4� 10�8AD 80 5:2� 10�6 123 2:4� 10�8 139 2:4� 10�8DEF1 80 7:5� 10�8 121 2:0� 10�8 NC 4:4� 10�7DEF2 80 7:5� 10�8 144 1:9� 10�8 NC 6:6� 10+1A-DEF1 80 9:4� 10�8 121 2:5� 10�8 190 2:5� 10�8A-DEF2 80 7:7� 10�8 121 2:5� 10�8 138 2:5� 10�8BNN 80 7:7� 10�8 121 2:4� 10�9 138 2:4� 10�8R-BNN1 80 7:6� 10�8 121 2:3� 10�8 NC 2:3� 10�8R-BNN2 80 7:5� 10�8 121 1:9� 10�8 NC 1:9� 10�8Table G.4: Number of required iterations for onvergene and the 2�norm of the relative errors ofall methods, for the porous-media problem with parameters n = 552 and k = 7. Various terminationtoleranes, Æ, are tested.G.5 Experiment using Perturbed Starting VetorsIn Setion 6.3.2, we have proven that BNN with Vstart = Qb + P T �x gives exatlythe same iterates as DEF2, A-DEF2, R-BNN1 and R-BNN2, in exat arithmeti. Inour next experiment, we perturb Vstart in DEF2, A-DEF2, R-BNN1 and R-BNN2, andexamine whether this in�uenes the onvergene results. The perturbed Vstart, denotedby Wstart, is de�ned as a omponentwise multipliation of a random vetor and Vstart,i.e., eah entry of Wstart is de�ned as (see Eq. (6.17))(Wstart)i := (1 + (v0)i) (Vstart)i ; i = 1; 2; : : : ; n;where  � 0 gives ontrol over the auray of the starting vetor, and vetor v0 is arandom vetor with entries from the interval [�0:5; 0:5℄, taken to give eah entry ofVstart a di�erent perturbation.We perform the numerial experiment using Wstart for di�erent . The results anbe found in Table G.5 and Figure G.5. Here, we use asterisks to stress that an extrauniqueness step is applied in the spei� method. Moreover, notie that PREC, AD,DEF1 and BNN are not inluded in this experiment, sine they apply an arbitrary vetor,Vstart = �x, by de�nition. = 10�10  = 10�5  = 100Method # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2DEF2 90 2:2� 10�8 NC 2:1� 10+11 NC 3:5� 10+18A-DEF2 90 2:5� 10�8 90 2:5� 10�8 90 2:4� 10�8R-BNN1 90 2:5� 10�8 NC 2:5� 10�8* NC 1:3� 10�5*R-BNN2 90 2:0� 10�8 NC 2:9� 10�6* NC 2:5� 10�1*Table G.5: Number of required iterations for onvergene and the 2�norm of the relative errors ofsome methods, for the porous-media problem with parameters n = 552; k = 7, and perturbed startingvetors. An asterisk (*) means that an extra uniqueness step is applied in that test ase.From the results, it an be notied that all involved methods onverge appropriately
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Appendix HDICCG Variants applied to Bubbly FlowSimulationsWe perform two 3-D simulations of l = 250 time steps in order to test the DICCG1(�k)and DICCG2(�k) methods as given in De�nition 8.1. Reall that the di�erene be-tween the two de�ation methods is the inner solver for the Galerkin systems: this isdone in a diret way in DICCG1, while ICCG is applied within DICCG2. In this ap-pendix, we show that both de�ation variants are appliable to bubbly �ow simulations,and the performane of these methods is omparable for relatively small problems.In the �rst simulation, an air bubble is rising in water, whereas a water dropletis falling in the air in the seond simulation. We do not inlude surfae tension inthe simulations in order to obtain ompliated density geometries. We refer to [154,Set. 8.3.4℄ for more details. Similarly to Setion 10.3, we onentrate on solving thelinear system (10.6) derived from a Poisson problem (10.5) at eah time step. Weadopt ICCG, DICCG1 and DICCG2 to solve (10.5). We take de�ation variant 5.1 inDICCG1 and de�ation variant 5.3 in DICCG2 (f. Table 5.1).H.1 Simulation 1: Rising Air Bubble in WaterFor the �rst simulation, the starting position of the bubble in the domain and theevolution of its movement for l 2 [0; 250℄ an be found in Figure H.1.In [154℄, the Poisson solver is based on ICCG. Here, we ompare this method toboth DICCG1�103 and DICCG2�203 for n = 1003. It turns out that these de�ationmethods are optimal in the sense that they need the lowest omputational time toperform the simulation ompared to DICCG1 and DICCG2 with di�erent k (f. Fig-ure 8.4). The results are presented in Figure H.2.From Figure H.2(a), we notie that the number of iterations is strongly redued bythe de�ation method. DICCG1�103 and DICCG2�203 require at most 60 iterations,while ICCG onverges in between 200 and 300 iterations for most time steps. For eahl , DICCG2�203 requires fewer iterations than DICCG1�103, whih is in agreement237
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(a) l = 0. (b) l = 50. () l = 100.

(d) l = 150. (e) l = 200. (f) l = 250.Figure H.1: Evolution of the rising bubble in water in the �rst 250 time steps.with Theorem 3.3. Moreover, we observe the errati behavior of ICCG, whereas thede�ation methods are less sensitive to the geometries of the bubbles, during the evo-lution of the simulation. Considering CPU time, DICCG1�103 and DICCG2�203 alsoshow very good performane, see Figure H.2(b). For most time steps, ICCG requires25�45 seonds to onverge, whereas both de�ation methods are omparable and onlyneed around 9�14 seonds. Moreover, in Figure H.2(), one an �nd the gain fatorsfor both the ratios of the iterations and the CPU time between ICCG and the twode�ation methods, respetively. From this �gure, we onlude that DICCG1�103 orDICCG2�203 need approximately 4�8 times fewer iterations, depending on the timestep. More importantly, both de�ation methods onverge approximately 2�4 timesfaster than ICCG at all time steps.We end this subsetion with the remark that similar results an be found for otherhoies of grid sizes. For problems with larger grid sizes, the de�ation methods beomemore favorable, when ompared to ICCG.H.2 Simulation 2: Falling Water Droplet in AirFor the seond simulation, the starting position of the droplet in the domain and theevolution of its movement an be found in Figure H.3. The results are presented inFigure H.4, where again DICCG1�103 and DICCG2�203 are adopted.Similar observations as those from the previous subsetion an be drawn fromFigure H.4. Obviously, the de�ation methods are more e�ient, when ompared withICCG, in terms of both number of iterations and required CPU time. We observe that



H.2. Simulation 2: Falling Water Droplet in Air 239

0 50 100 150 200 250
0

50

100

150

200

250

300

350

Time Step

N
um

be
r 

of
 It

er
at

io
ns

ICCG
DICCG1−103

DICCG2−203

(a) Number of iterations versus time step. 0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

45

50

55

Time Step

C
P

U
 T

im
e 

(s
ec

)

ICCG
DICCG1−103

DICCG2−203

(b) CPU time versus time step.

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

10

11

Time Step

G
ai

n 
F

ac
to

r

Iterations ICCG / Iterations DICCG1−103

Iterations ICCG / Iterations DICCG2−203

CPU Time ICCG / CPU Time DICCG1−103

CPU Time ICCG / CPU Time DICCG2−203

() Gain fators of DICCG1�103 andDICCG2�203 with respet to ICCG.Figure H.2: Results for ICCG, DICCG1�103 and DICCG2�203 for the simulation with a rising airbubble in water.both DICCG1�103 and DICCG2�203 need approximately 3�5 times fewer iterationsand they onverge more-or-less 2�4 times faster than ICCG. In this test problem, itan be observed that DICCG2�202 performs somewhat better than DICCG1�103.Finally, a small jump in the DICCG1�103 performane an be notied around the205-th time step in Figure H.4. This might be the result of the appearane of a risingdroplet, whih an be observed in Figures H.3(e) and (f) as well. This jump is notsigni�ant in DICCG2�203. Apparently, a larger set of de�ation vetors e�etivelytreats that droplet.



240 Appendix H. DICCG Variants applied to Bubbly Flow Simulations

(a) l = 0. (b) l = 50. () l = 100.
(d) l = 150. (e) l = 200. (f) l = 250.Figure H.3: Evolution of the falling droplet in air in the �rst 250 time steps.
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Appendix I
Comparison of De�ation and Multigridfor a Speial Case
We onsider the two-level PCG methods (DEF and MG) based on the following two-level preonditioners (see Eqs. (7.1) and (7.4)):

{ PDEF = M�1P ;PMG = �M�TP + P T �M�1 +Q� �M�TPA �M�1:We show that abstrat preonditioners in the MG framework do not always lead tobetter onditioned two-level oe�ient matries ompared to DEF. Suh problems aneven be found in the ase of M�1 = �M�1 = I.We assume that Z = [v1 � � � vk ℄, where fvig is the set of orthonormal eigenvetorsorresponding to the inreasing set of eigenvalues of A, f�ig. Then, we know fromExample 7.1 that the MG operator is only SPD if �i < 2. Similar to Example 7.1, weobtain PMGAvi = 2Avi � 2ZZTAvi + Z��1ZTAvi � A2vi + ZZTA2vi= 2�ivi � 2�iZZT vi + �iZ��1ZT vi � �2i vi + �2i ZZT vi ;where � = diag(�1; : : : ; �k). This impliesPMGAvi = { 2�ivi � 2�ivi + vi � �2i vi + �2i vi = vi ; for i = 1; : : : ; k;2�ivi � �2i vi ; = �i(2� �i)vi ; for i = k + 1; : : : ; n:Hene, if A has eigenvalues f�ig, then the spetrum of PMGA is given byf1; : : : ; 1; �k+1(2� �k+1); : : : ; �n(2� �n)g: (I.1)We note that �i(2 � �i) � 1 for all i = k + 1; : : : ; n, beause of 0 < �i < 2, see243



244 Appendix I. Comparison of De�ation and Multigrid for a Speial CaseFigure I.1. Aordingly, the ondition number of PMGA is given by�MG = 1minf�k+1(2� �k+1); �n(2� �n)g :On the other hand, for DEF, we know that (see Setion 3.5)PDEFAvi = { 0; for i = 1; : : : ; k;�ivi ; for i = k + 1; : : : ; n: (I.2)Therefore, (f. Eq. (3.2)) �DEF = �n�k+1 :It depends on eigenvalues �k+1 and �n of A whether �MG or �DEF is more favorable.If �k+1; : : : ; �n ! 2, then obviously �DEF < �MG. In other words, M�1 and Z an behosen in suh a way that MG with an SPD operator is expeted to onverge slowerthan DEF, see also Example I.1.
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Figure I.1: Funtion �i (2� �i ) for �i 2 [0; 2℄.Example I.1. We onstrut a simple example to show that �MG < �DEF does not holdin general, even if PMG is SPD.Let A be an SPD diagonal matrix given byA = diag(1; 1:25; 1:5; 1:75):Then, the spetrum of A is � = (1; 1:25; 1:5; 1:75), where the orresponding eigen-vetors are olumns of I: I = [v1 v2 v3 v4℄. Hene, PMG is SPD.Choose now Z = [v1 v2℄ and M�1 = I. Then, the eigenvalues of PMGA are givenby Eq. (I.1): �MG = f1; 1; �3(2� �3); �4(2� �4)g = f1; 1; 0:4375; 0:75g;



245whereas (f. Eq. (I.2))�DEF = f0; 0; �3; �4g = f0; 0; 1:5; 1:75g:This leads immediately to the ondition numbers�MG = 1minf�k+1(2� �k+1); �n(2� �n)g = 10:4375 = 2:2857;and �DEF = �n�k+1 = 1:751:5 = 1:1667;so that �MG > �DEF obviously holds in this ase.Example I.2. It is easy to onstrut examples showing that �MG < �DEF. For instane,take A = diag(0:5; 0:75; 1:0; 1:25);with the same setting of the parameters of MG and DEF as in Example I.1. Then,�MG = f1; 1; 1; 0:9375g; �DEF = f0; 0; 1:0; 1:25g;giving us �MG = 10:9375 = 1:0667; �DEF = 1:251:0 = 1:25;so that �MG < �DEF holds in this ase.



246 Appendix I. Comparison of De�ation and Multigrid for a Speial Case



Bibliography
[1℄ J. C. Adams. MUDPACK: Multigrid portable FORTRAN software for the e�-ient solution of linear ellipti partial di�erential equations. Appl. Math. Comput.,34(2):113�146, 1989.[2℄ D. M. Alber and L. N. Olson. Parallel oarse-grid seletion. Numer. Lin. Alg.Appl., 14(8):611�643, 2007.[3℄ R. E. Alou�e, A. Brandt, J. E. Dendy, and J. W. Painter. The multigrid methodfor the di�usion equation with strongly disontinuous oe�ients. SIAM J. Si.Stat. Comput., 2:430�454, 1981.[4℄ P. Arbenz and W. Petersen. Introdution to Parallel Computing. Oxford Uni-versity Press, Oxford, 2004.[5℄ M. E. Argentati, A. V. Knyazev, C. C. Paige, and I. Panayotov. Bounds onhanges in Ritz values for a perturbed invariant subspae of a Hermitian matrix.SIAM J. Matrix Anal. Appl., 2008. Submitted. Published as a tehnial reporthttp://arxiv.org/abs/math/0610498.[6℄ S. F. Ashby, T. A. Manteu�el, and P. E. Saylor. A taxonomy for onjugategradient methods. SIAM J. Numer. Anal., 27(6):1542�1568, 1990.[7℄ T. Austin, M. Berndt, B. K. Bergen, J. E. Dendy, and J. D. Moulton. Parallel,salable, and robust multigrid on strutured grids. T-7 Researh Highlight LA-UR-03-9167, Theoretial Division, Los Alamos National Laboratory, Los Alamos,NM, USA, 2003.[8℄ O. Axelsson. Iterative solution methods. Cambridge University Press, Cambridge,UK, 1994.[9℄ O. Axelsson and G. Lindskog. On the eigenvalue distribution of a lass of pre-onditioning methods. Numer. Math., 48(5):479�498, 1986.[10℄ R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-jkhout, R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution247



248 Bibliographyof Linear Systems: Building Bloks for Iterative Methods. SIAM, Philadelphia,PA, 1994. Seond edition.[11℄ P. Bastian, W. Hakbush, and G. Wittum. Additive and multipliative multi-grid. A omparison. Comput., 60(4):345�364, 1998.[12℄ A. Behie and P. A. Forsyth. Multi�grid solution of three�dimensional problemswith disontinuous oe�ients. Appl. Math. Comput., 13:229�240, 1983.[13℄ J. B. Bell, P. Colella, and H. M. Glaz. A seond-order projetion method forthe inompressible Navier-Stokes equations. J. Comput. Phys., 85(2):257�283,1989.[14℄ A. Ben-Israel and T. N. E. Greville. Generalized Inverses: Theory and Applia-tions. Springer, New York, 2003. Seond Edition.[15℄ A. Berman and R. J. Plemmons. Nonnegative Matries in the MathematialSienes. SIAM, Philadelphia, PA, USA, 1994. Correted republiation, withsupplement, of work �rst published in 1979 by Aademi Press.[16℄ R. Blaheta. Multilevel iterative methods and de�ation. In P. Wesseling, E. Onate,and J. Periaux, editors, European Conferene on Computational Fluid DynamisECCOMAS CFD 2006, Delft, 2006. TU Delft.[17℄ P. Bohev and R. B. Lehouq. On the �nite element solution of the pureNeumann problem. SIAM Rev., 47(1):50�66, 2005.[18℄ D. Braess. On the ombination of the multigrid method and onjugate gradients.In Multigrid methods, II (Cologne, 1985), volume 1228 of Leture Notes inMath., pages 52�64. Springer, Berlin, 1986.[19℄ J. H. Bramble, J. E. Pasiak, and A. H. Shatz. The onstrution of preondi-tioners for ellipti problems by substruturing. I. Math. Comput., 47(175):103�134, 1986.[20℄ J. H. Bramble, J. E. Pasiak, J. Wang, and J. Xu. Convergene estimates formultigrid algorithms without regularity assumptions. Math. Comp., 57:23�45,1991.[21℄ A. Brandt. Multi-level adaptive solutions to boundary-value problems. Math.Comp., 31(138):333�390, 1977.[22℄ A. Brandt, S. F. MCormik, and J. W. Ruge. Algebrai multigrid (AMG) forsparse matrix equations. In D. J. Evans, editor, Sparsity and Its Appliations,pages 257�284. Cambridge University Press, Cambridge, 1984.[23℄ W. L. Briggs, V. E. Henson, and S. F. MCormik. A Multigrid Tutorial. SIAMBooks, Philadelphia, 2000. Seond edition.



Bibliography 249[24℄ B. Bunner and G. Tryggvason. Dynamis of homogeneous bubbly �ows. Part1. Rise veloity and mirostruture of the bubbles. J. Fluid Meh., 466:17�52,2002.[25℄ K. Burrage, J. Erhel, B. Pohl, and A. Williams. A de�ation tehnique for linearsystems of equations. SIAM J. Si. Comput., 19(4):1245�1260, 1998.[26℄ B. Carpentieri, L. Giraud, and S. Gratton. Additive and multipliative two-level spetral preonditioning for general linear systems. SIAM J. Si. Comput.,29(4):1593�1612, 2007.[27℄ A. Chapman and Y. Saad. De�ated and augmented Krylov subspae tehniques.Numer. Lin. Alg. Appl., 4(1):43�66, 1997.[28℄ A. J. Chorin. Numerial solution of the Navier-Stokes equations. Math. Comp.,22:745�762, 1968.[29℄ A. J. Chorin. On the onvergene of disrete approximations to the Navier-Stokes equations. Math. Comp., 23:341�353, 1969.[30℄ A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteu�el, S. F.MCormik, G. N. Miranda, and J. W. Ruge. Robustness and salability ofalgebrai multigrid. SIAM J. Si. Comput., 21(5):1886�1908, 2000.[31℄ M. Clemens, M. Wilke, R. Shuhmann, and T. Weiland. Subspae projetionextrapolation sheme for transient �eld simulations. IEEE Transations on Mag-netis, 40(2):934�937, 2004.[32℄ P. Conus and G. H. Golub. Use of fast diret methods for the e�ient numerialsolution of nonseparable ellipti equations. SIAM J. Numer. Anal., 10:1103�1120, 1973.[33℄ E. Cuthill and J. MKee. Reduing the bandwidth of sparse symmetri matries.In Proeedings of the 1969 24th national onferene, pages 157�172, New York,NY, USA, 1969. ACM Press.[34℄ F. S. de Sousa, N. Mangiavahi, L. G. Nonato, A. Castelo, M. F. Tomé,V. G. Ferreira, J. A. Cuminato, and S. MKee. A front-traking/front-apturingmethod for the simulation of 3D multi-�uid �ows with free surfaes. J. Comput.Phys., 198(2):469�499, 2004.[35℄ E. de Sturler. Trunation strategies for optimal Krylov subspae methods. SIAMJ. Numer. Anal., 36(3):864�889, 1999.[36℄ J. Demmel, M. Heath, and H. van der Vorst. Parallel numerial linear algebra. InAta Numeria 1993, pages 111�198. Cambridge University Press, Cambridge,UK, 1993.[37℄ J. E. Dendy. Blak box multigrid. J. Comput. Phys., 48(3):366�386, 1982.



250 Bibliography[38℄ J. E. Dendy. Two multigrid methods for three-dimensional equations with highlydisontinuous oe�ients. SIAM J. Si. Stat. Comput., 8:673�685, 1987.[39℄ J. E. Dendy. Blak box multigrid for periodi and singular problems. Appl. Math.Comput., 25(1, part I):1�10, 1988.[40℄ Z. Dostal. Conjugate gradient method with preonditioning by projetor. Int. J.Comput.. Math., 23:315�323, 1988.[41℄ M. Dryja. An additive Shwarz algorithm for two- and three-dimensional �niteelement ellipti problems. In T. Chan, R. Glowinski, J. Périaux, and O. Wid-lund, editors, Domain Deomposition Methods, pages 168�172, Philadelphia,PA, 1989. SIAM.[42℄ M. Dryja and O. B. Widlund. Towards a uni�ed theory of domain deomposi-tion algorithms for ellipti problems. In T. Chan, R. Glowinski, J. Périaux, andO. Widlund, editors, Third International Symposium on Domain DeompositionMethods for Partial Di�erential Equations, pages 3�21. SIAM, Philadelphia, PA,1990.[43℄ M. Dryja and O. B. Widlund. Shwarz methods of Neumann-Neumann type forthree-dimensional ellipti �nite element problems. Comm. Pure Appl. Math.,48(2):121�155, 1995.[44℄ I. S. Du� and H. A. van der Vorst. Developments and trends in the parallelsolution of linear systems. Parallel Comput., 25(13-14):1931�1970, 1999.[45℄ M. Eiermann, O. G. Ernst, and O. Shneider. Analysis of aeleration strategiesfor restarted minimal residual methods. J. Comput. Appl. Math., 123(1-2):261�292, 2000.[46℄ J. Erhel and F. Guyomar'h. An augmented onjugate gradient method forsolving onseutive symmetri positive de�nite linear systems. SIAM J. MatrixAnal. Appl., 21(4):1279�1299, 2000.[47℄ Y. A. Erlangga and R. Nabben. De�ation and balaning preonditioners forKrylov subspae methods applied to nonsymmetri matries. SIAM J. MatrixAnal., 2008. To appear.[48℄ Y. A. Erlangga and R. Nabben. Multilevel projetion-based nested Krylov iter-ation for boundary value problems. SIAM J. Si. Comput., 30(3):1572�1595,2008.[49℄ A. Esmaeeli and G. Tryggvason. Diret numerial simulations on bubbly �ows.Part 1. Low Reynolds number arrays. J. Fluid Meh., 377:313�345, 1998.[50℄ A. Esmaeeli and G. Tryggvason. Diret numerial simulations on bubbly �ows.Part 2. Moderate Reynolds number arrays. J. Fluid Meh., 385:325�358, 1999.



Bibliography 251[51℄ V. Faber and T. Manteu�el. Neessary and su�ient onditions for the existeneof a onjugate gradient method. SIAM J. Numer. Anal., 21:352�362, 1984.[52℄ R. D. Falgout and J. E. Jones. Multigrid on massively parallel arhitetures. InMultigrid methods, VI (Gent, 1999), volume 14 of Let. Notes Comput. Si.Eng., pages 101�107. Springer, Berlin, 2000.[53℄ R. D. Falgout, P. S. Vassilevski, and L. T. Zikatanov. On two-grid onvergeneestimates. Num. Lin. Alg. Appl., 12(5�6):471�494, 2005.[54℄ P. F. Fisher. An overlapping Shwarz method for spetral element solution ofthe inompressible Navier-Stokes equations. J. Comput. Phys., 133(1):84�101,1997.[55℄ M. Fortin. Old and new �nite elements for inompressible �ows. Int. J. Numer.Methods Fluids, 1(4):347�364, 1981.[56℄ J. Frank and C. Vuik. On the onstrution of de�ation-based preonditioners.SIAM J. Si. Comp., 23:442�462, 2001.[57℄ A. Frommer, R. Nabben, and D. B. Szyld. Convergene of stationary iterativemethods for Hermitian semide�nite linear systems and appliations to Shwarzmethods. SIAM J. Matrix Anal. Appl., 2008. To appear.[58℄ H. De Gersem and K. Hameyer. A de�ated iterative solver for magnetostati�nite element models with large di�erenes in permeability. Eur. Phys. J. Appl.Phys., 13:45�49, 2000.[59℄ L. Giraud, D. Ruiz, and A. Touhami. A omparative study of iterative solversexploiting spetral information for SPD systems. SIAM J. Si. Comput.,27(5):1760�1786, 2006.[60℄ V. Girault and P.-A. Raviart. Finite element approximation of the Navier-Stokesequations, volume 749 of Leture Notes in Mathematis. Springer-Verlag, Berlin,1979.[61℄ G. H. Golub and D. P. O'Leary. Some history of the onjugate gradient andLanzos methods. SIAM Rev., 31(1):50�102, 1989.[62℄ G. H. Golub and M. L. Overton. The onvergene of inexat Chebyshevand Rihardson iterative methods for solving linear systems. Numer. Math.,53(5):571�593, 1988.[63℄ G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins Univ.Press, Baltimore, MD, 1996. Third edition.[64℄ G. H. Golub and Q. Ye. Inexat preonditioned onjugate gradient method withinner-outer iteration. SIAM J. Si. Comput., 21(4):1305�1320, 2000.



252 Bibliography[65℄ I. G. Graham and R. Sheihl. Robust domain deomposition algorithms formultisale PDEs. Numer. Methods Partial Di�er. Eq., 23:859�878, 2007.[66℄ A. Greenbaum. Iterative methods for solving linear systems, volume 17 of Fron-tiers in Applied Mathematis. SIAM, Philadelphia, PA, 1997.[67℄ I. Gustafsson. A lass of �rst order fatorization methods. BIT, 18(2):142�156,1978.[68℄ W. Hakbush. Convergene of multi�grid iterations applied to di�erene equa-tions. Math. Comp., 34:425�440, 1980.[69℄ W. Hakbush. Multigrid Methods and Appliations. Springer-Verlag, Berlin,1985.[70℄ L. A. Hageman and D. M. Young. Applied iterative methods. Computer Sieneand Applied Mathematis. Aademi Press, New York, NY, USA, 1981.[71℄ V. E. Henson and U. M. Yang. BoomerAMG: a parallel algebrai multigrid solverand preonditioner. Appl. Numer. Math., 41(1):155�177, 2002.[72℄ M. R. Hestenes and E. Stiefel. Methods of onjugate gradients for solving linearsystems. J. Res. Nat. Bur. Stand., 49:409�436, 1952.[73℄ R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press, NewYork, NY, USA, 1990. USA Edition.[74℄ J. Hua and J. Lou. Numerial simulation of bubble rising in visous liquid. J.Comput. Phys., 222(2):769�795, 2007.[75℄ T. Inamuro, T. Ogata, S. Tajima, and N. Konishi. A lattie Boltzmann methodfor inompressible two-phase �ows with large density di�erenes. J. Comp. Phys.,198:628�644, 2004.[76℄ J. E. Jones and S. F. MCormik. Parallel multigrid methods. In Parallel nu-merial algorithms (Hampton, VA, 1994), volume 4 of ICASE/LaRC Interdisip.Ser. Si. Eng., pages 203�224. Kluwer Aad. Publ., Dordreht, 1997.[77℄ E. F. Kaasshieter. Preonditioned onjugate gradients for solving singular sys-tems. J. Comput. Appl. Math., 24(1-2):265�275, 1988.[78℄ R. Kettler and J. A. Meijerink. A multigrid method and a ombined multigrid-onjugate gradient method for ellipti problems with strongly disontinuous o-e�ients in general domains. Teh. Rep. 604, Shell Oil Company, 1981.[79℄ M. Khalil and P. Wesseling. Vertex-entered and ell-entered multigrid forinterfae problems. J. Comput. Phys., 98:1�20, 1992.[80℄ S. A. Kharhenko and A. Yu. Yeremin. Eigenvalue translation based preondi-tioners for the GMRES(k) method. Num. Lin. Alg. Appl., 2(1):51�77, 1995.



Bibliography 253[81℄ A. V. Knyazev and M. E. Argentati. Rayleigh-Ritz majorization error boundswith appliations to FEM and subspae iterations. SIAM J. Numer. Anal.,2008. Submitted. Published as a tehnial report http://arxiv.org/abs/math/0701784.[82℄ L. Y. Kolotilina. Twofold de�ation preonditioning of linear algebrai systems.I. Theory. J. Math. Si., 89:1652�1689, 1998.[83℄ E. Kreyszig. Introdutory Funtional Analysis with Appliations. Wiley, NewYork, 1989.[84℄ D. Kwak, C. Kiris, and J. Dales-Mariani. An assessment of arti�ial ompress-ibility and pressure projetion methods for inompressible �ow simulations. InSixteenth International Conferene on Numerial Methods in Fluid Dynamis,volume 515 of Leture Notes in Physis, pages 177�182. Springer, 1998.[85℄ E. Ludwig, R. Nabben, and J. M. Tang. De�ation and projetion methods appliedto positive semi-de�nite systems. 2008. In preparation.[86℄ D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, Reading,Massahussets, 1984. Seond edition.[87℄ S. P. MaLahlan, J. M. Tang, and C. Vuik. Fast and robust solvers for pressureorretion in bubbly �ow problems. DIAM Report 08-01, Delft University ofTehnology, Delft, 2008.[88℄ S. P. MaLahlan, J. M. Tang, and C. Vuik. Fast and robust solvers for pressureorretion in bubbly �ow problems. 2008. Submitted.[89℄ J. Mandel. Balaning domain deomposition. Comm. Numer. Meth. Engrg.,9:233�241, 1993.[90℄ J. Mandel. Hybrid domain deomposition with unstrutured subdomains. InA. Quarteroni, Y. A. Kuznetsov, J. Périaux, and O. B. Widlund, editors, DomainDeomposition Methods in Siene and Engineering: The Sixth InternationalConferene on Domain Deomposition, volume 157 of Contemporary Mathe-matis, pages 103�112. AMS, 1994. Como, Italy, June 15�19, 1992.[91℄ J. Mandel and M. Brezina. Balaning domain deomposition for problems withlarge jumps in oe�ients. Math. Comp., 65:1387�1401, 1996.[92℄ L. Mans�eld. On the use of de�ation to improve the onvergene of onjugategradient iteration. Communs. Appl. Numer. Meth., 4:151�156, 1988.[93℄ L. Mans�eld. On the onjugate gradient solution of the Shur omplement sys-tem obtained from domain deomposition. SIAM J. Numer. Anal., 27(6):1612�1620, 1990.



254 Bibliography[94℄ L. Mans�eld. Damped Jaobi preonditioning and oarse grid de�ation for on-jugate gradient iteration on parallel omputers. SIAM J. Si. Stat. Comput.,12(6):1314�1323, 1991.[95℄ E. Marhandise, P. Geuzaine, N. Chevaugeon, and J. Remale. A stabilized �niteelement method using a disontinuous level set approah for the omputationof bubble dynamis. J. Comput. Phys., 225(1):949�974, 2007.[96℄ S. F. MCormik and J. W. Ruge. Convergene estimates for multigrid al-gorithms without regularity assumptions. SIAM J. Numer. Anal., 19:924�929,1982.[97℄ J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linearsystems of whih the oe�ient matrix is a symmetri M-matrix. Math. Comp.,31(137):148�162, 1977.[98℄ M. Mohr and R. Wienands. Cell-entred multigrid revisited. Comput. Vis. Si.,7(3-4):129�140, 2004.[99℄ R. B. Morgan. A restarted GMRES method augmented with eigenvetors. SIAMJ. Matrix Anal. Appl., 16(4):1154�1171, 1995.[100℄ R. B. Morgan. GMRES with de�ated restarting. SIAM J. Si. Comput.,24(1):20�37, 2002.[101℄ J. D. Moulton, J. E. Dendy, and J. M. Hyman. The blak box multigrid numerialhomogenization algorithm. J. Comput. Phys., 141:1�29, 1998.[102℄ W. Mulder, S. Osher, and J. A. Sethian. Computing interfae motion in om-pressible gas dynamis. J. Comput. Phys., 100(2):209�228, 1992.[103℄ R. Nabben and C. Vuik. A omparison of De�ation and Coarse Grid Corretionapplied to porous media �ow. SIAM J. Numer. Anal., 42:1631�1647, 2004.[104℄ R. Nabben and C. Vuik. A omparison of de�ation and the balaning preondi-tioner. SIAM J. Si. Comput., 27:1742�1759, 2006.[105℄ R. Nabben and C. Vuik. A omparison of abstrat versions of de�ation, balaningand additive oarse grid orretion preonditioners. Numer. Lin. Alg. Appl.,15(4):355�372, 2008.[106℄ R. A. Niolaides. On the l2 onvergene of an algorithm for solving �nite elementequations. Math. Comp., 31:892�906, 1977.[107℄ R. A. Niolaides. On some theoretial and pratial aspets of multigrid methods.Math. Comp., 33:933�952, 1979.[108℄ R. A. Niolaides. De�ation of onjugate gradients with appliations to boundaryvalue problems. SIAM J. Numer. Anal., 24(2):355�365, 1987.



Bibliography 255[109℄ Y. Notay. Flexible onjugate gradients. SIAM J. Si. Comput., 22(4):1444�1460, 2000.[110℄ S. Osher and R. P. Fedkiw. Level set methods: an overview and some reentresults. J. Comput. Phys., 169(2):463�502, 2001.[111℄ A. Padiy, O. Axelsson, and B. Polman. Generalized augmented matrix pre-onditioning approah and its appliation to iterative solution of ill-onditionedalgebrai systems. SIAM J. Matrix Anal. Appl., 22(3):793�818, 2000.[112℄ M. L. Parks, E. de Sturler, D. D. Johnson G. Makey, and S. Maiti. Rey-ling Krylov subspaes for sequenes of linear systems. SIAM J. Si. Comput.,28(5):1651�1674, 2006.[113℄ S. V. Patankar. Numerial Heat Transfer and Fluid Flow. MGraw-Hill, NewYork, 1980.[114℄ L. F. Pavarino and O. B. Widlund. Balaning Neumann-Neumann methods forinompressible Stokes equations. Comm. Pure Appl. Math., 55(3):302�335,2002.[115℄ E. G. Pukett, A. S. Almgren, J. B. Bell, D. L. Marus, and W. J. Rider.A high-order projetion method for traking �uid interfaes in variable densityinompressible �ows. J. Comp. Phys., 130:269�282, 1997.[116℄ M. Raw. Robustness of oupled algebrai multigrid for the Navier-Stokes equa-tions. Tehnial Paper 96-0297, AIAA Press, Washington, D.C., 1996.[117℄ J. K. Reid. On the method of onjugate gradients for the solution of large sparselinear equations. In J. K. Reid, editor, Large Sparse Sets of Linear Equations,pages 231�254. Aademi Press, New York, NY, USA, 1971.[118℄ J. W. Ruge and K. Stüben. Algebrai multigrid (AMG). In S. F. MCormik,editor, Multigrid Methods, volume 3 of Frontiers in Applied Mathematis, pages73�130. SIAM, Philadelphia, PA, 1987.[119℄ Y. Saad. ILUM: a multi-elimination ILU preonditioner for general sparse matri-es. SIAM J. Si. Comput., 17(4):830�847, 1996.[120℄ Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA,USA, 2003. Seond edition.[121℄ Y. Saad and M. H. Shultz. GMRES: a generalized minimal residual algorithmfor solving nonsymmetri linear systems. SIAM J. Si. Stat. Comput., 7(3):856�869, 1986.[122℄ Y. Saad, M. Yeung, J. Erhel, and F. Guyomar'h. A de�ated version of theConjugate Gradient algorithm. SIAM J. Si. Comput., 21(5):1909�1926, 2000.



256 Bibliography[123℄ R. Sheihl and E. Vainikko. Additive Shwarz and aggregation-based oarseningfor ellipti problems with highly variable oe�ients. Comp., 80(4):319�343,2007.[124℄ V. Simonini and D. B. Szyld. On the ourrene of superlinear onvergene ofexat and inexat Krylov subspae methods. SIAM Rev., 47(2):247�272, 2005.[125℄ R. Singh and W. Shyy. Three-dimensional adaptive artesian grid methodwith onservative interfae restruturing and reonstrution. J. Comput. Phys.,224(1):150�167, 2007.[126℄ B. F. Smith, P. E. Bjørstad, and W. Gropp. Domain Deomposition: ParallelMultilevel Methods for Ellipti Partial Di�erential Equations. Cambridge Univer-sity Press, Cambridge, UK, 1996.[127℄ G. W. Stewart. Perturbation bounds for the de�nite generalized eigenvalueproblem. Lin. Alg. Appl., 23:69�85, 1979.[128℄ G. Strang. Introdution to Linear Algebra. Wellesley-Cambridge Press, Wellesley,MA, 1993.[129℄ K. Stüben. An introdution to algebrai multigrid. In U. Trottenberg, C. Oost-erlee, and A. Shüller, editors, Multigrid, pages 413�528. Aademi Press, SanDiego, CA, 2001.[130℄ M. Sussman and E. G. Pukett. A oupled level set and volume-of-�uid methodfor omputing 3D and axisymmetri inompressible two-phase �ows. J. Comput.Phys., 162(2):301�337, 2000.[131℄ M. Sussman, K. M. Smith, M. Y. Hussaini, M. Ohta, and R. Zhi-Wei. Asharp interfae method for inompressible two-phase �ows. J. Comput. Phys.,221(2):469�505, 2007.[132℄ J. M. Tang, S. P. MaLahlan, R. Nabben, and C. Vuik. A omparison oftwo-level preonditioners based on multigrid and de�ation. DIAM Report 08-05,Delft University of Tehnology, Delft, 2006.[133℄ J. M. Tang, S. P. MaLahlan, R. Nabben, and C. Vuik. Theoretial omparisonof two-level preonditioners based on multigrid and de�ation. 2008. Submitted.[134℄ J. M. Tang, R. Nabben, C. Vuik, and Y. A. Erlangga. Theoretial and numer-ial omparison of various projetion methods derived from de�ation, domaindeomposition and multigrid methods. DIAM Report 07-04, Delft University ofTehnology, Delft, 2007.[135℄ J. M. Tang, R. Nabben, C. Vuik, and Y. A. Erlangga. Comparison of two-level pg methods derived from de�ation, domain deomposition and multigridmethods. 2008. Submitted.



Bibliography 257[136℄ J. M. Tang and C. Vuik. On the theory of de�ation and singular symmetri posi-tive semi-de�nite matries. DIAM Report 05-06, Delft University of Tehnology,Delft, 2005.[137℄ J. M. Tang and C. Vuik. Parallel de�ated CG methods applied to moving bound-ary problems. Literature overview. DIAM Report 05-02, Delft University ofTehnology, Delft, 2005.[138℄ J. M. Tang and C. Vuik. De�ated ICCG method applied to 3-D multi-phase�ows. In T.E. Simos, G. Psihoyios, and Ch. Tsitouras, editors, Extended Ab-strats, ICNAAM 2006, International Conferene of Numerial Analysis and Ap-plied Mathematis, pages 323�326, Weinheim, 2006. Wiley.[139℄ J. M. Tang and C. Vuik. De�ated ICCG method solving the singular and dison-tinuous di�usion equation derived from 3-D multi-phase �ows. In P. Wesseling,E. Onate, and J. Periaux, editors, European Conferene on Computational FluidDynamis ECCOMAS CFD 2006, Delft, 2006. TU Delft.[140℄ J. M. Tang and C. Vuik. An e�ient de�ation method applied to 2-D and 3-D bubbly �ow problems. DIAM Report 06-01, Delft University of Tehnology,Delft, 2006.[141℄ J. M. Tang and C. Vuik. New variants of de�ation tehniques for bubbly �owproblems. DIAM Report 06-14, Delft University of Tehnology, Delft, 2006.[142℄ J. M. Tang and C. Vuik. Aeleration of preonditioned Krylov solvers for bubbly�ow problems. In Y. Shi, G. D. van Albada, and J. Dongarra, editors, Compu-tational Siene - ICCS 2007. 7th International Conferene, Beijing China, May27-30, 2007, Proeedings, Part I, Leture Notes in Computer Siene, Vol.4487, pages 603�614, Berlin, 2007. Springer.[143℄ J. M. Tang and C. Vuik. E�ient de�ation methods applied to 3-D bubbly �owproblems. Ele. Trans. Numer. Anal., 26:330�349, 2007.[144℄ J. M. Tang and C. Vuik. Fast de�ation methods with appliations to two-phase�ows. DIAM Report 07-10, Delft University of Tehnology, Delft, 2007.[145℄ J. M. Tang and C. Vuik. New variants of de�ation tehniques for bubbly �owproblems. J. Numer. Anal. Indust. Appl. Math., 2(3�4):227�249, 2007.[146℄ J. M. Tang and C. Vuik. On de�ation and symmetri positive semi-de�nitematries. J. Comput. Appl. Math., 206(2):603�614, 2007.[147℄ J. M. Tang and C. Vuik. Aeleration of preonditioned Krylov solvers for bubbly�ow problems. In R. Wyrzykowski, J. Dongarra, K. Karzweski, and J. Was-niewski, editors, Parallel Proessing and Applied Mathematis. 7th InternationalConferene, PPAM 2007. Gdansk, Poland, September 2007. Revised Papers,Leture Notes in Computer Siene, Vol. 4967, pages 1323�1332, Berlin, 2008.Springer.



258 Bibliography[148℄ J. M. Tang and C. Vuik. Fast de�ation methods with appliations to two-phase�ows. Int. J. Multis. Comput. Eng., 6(1):13�24, 2008.[149℄ O. Tatebe. The multigrid preonditioned onjugate gradient method. In N. D.Melson, T. A. Manteu�el, and S. F. MCormik, editors, Sixth Copper MountainConferene on Multigrid Methods, volume CP 3224, pages 621�634, Hampton,VA, 1993. NASA.[150℄ A. Toselli and O. Widlund. Domain Deomposition Methods - Algorithms andTheory, volume 34 of Springer Series in Computational Mathematis. Springer,Berlin, 2004.[151℄ U. Trottenberg, C. W. Oosterlee, and A. Shüller. Multigrid. Aademi Press,London, 2000.[152℄ G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juri, N. Al-Rawahi, W. Tauber,J. Han, S. Nas, and Y.-J. Jan. A front-traking method for the omputationsof multiphase �ow. J. Comput. Phys., 169:708�759, 2001.[153℄ G. Tryggvason, A. Esmaeeli, J. Lu, and S. Biswas. Diret numerial simulationsof gas/liquid multiphase �ows. J. Comput. Phys., 38(9):660�681, 2006.[154℄ S. P. van der Pijl. Computation of bubbly �ows with a mass-onserving level-setmethod. PhD thesis, Delft University of Tehnology, 2005.[155℄ S. P. van der Pijl, A. Segal, and C. Vuik. Modelling of three-dimensional multi-phase �ows with a mass-onserving level-set method. DIAM Report 06-10, DelftUniversity of Tehnology, Delft, 2006.[156℄ S. P. van der Pijl, A. Segal, C. Vuik, and P. Wesseling. A mass-onservingLevel-Set method for modelling of multi-phase �ows. Int. J. Numer. MethodsFluids, 47:339�361, 2005.[157℄ S. P. van der Pijl, A. Segal, C. Vuik, and P. Wesseling. Computing three-dimensional two-phase �ows with a mass-onserving level set method. Comput.Vis. Si., 2008. To appear.[158℄ A. van der Sluis. Condition, equilibration, and pivoting in linear algebrai systems.Numer. Math., 15:74�86, 1970.[159℄ A. van der Sluis and H. A. van der Vorst. The rate of onvergene of onjugategradients. Numer. Math., 48(5):543�560, 1986.[160℄ H. A. van der Vorst. Bi-CGSTAB: a fast and smoothly onverging variant of BI-CG for the solution of nonsymmetri linear systems. SIAM J. Si. Stat. Comput.,13(2):631�644, 1992.[161℄ H. A. van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cam-bridge University Press, Cambridge, 2003.



Bibliography 259[162℄ J. van Kan. A seond-order aurate pressure-orretion sheme for visousinompressible �ow. SIAM J. Si. Stat. Comput., 7(3):870�891, 1986.[163℄ J. van Kan, C. Vuik, and P. Wesseling. Fast pressure alulation for 2D and 3Dtime dependent inompressible �ow. Num. Lin. Alg. Appl., 7:429�447, 2000.[164℄ P. Van¥k. Aeleration of onvergene of a two-level algorithm by smooth trans-fer operators. Appl. Math., 37:265�274, 1992.[165℄ P. Van¥k. Fast multigrid solvers. Appl. Math., 40:1�20, 1995.[166℄ P. Van¥k, J. Mandel, and M. Brezina. Algebrai multigrid by smooth aggregationfor seond and fourth order ellipti problems. Comput., 56:179�196, 1996.[167℄ R. S. Varga. Matrix Iterative Analysis. Prentie-Hall, Englewood Cli�s, N.J.,1962.[168℄ J. Verkaik. De�ated Krylov-Shwarz domain deomposition for the inompress-ible Navier-Stokes equations on a oloated grid. Ms thesis, Delft Universityof Tehnology, 2003. Available on http://ta.twi.tudelft.nl/nw/users/vuik/numanal/verkaik_afst.pdf.[169℄ J. Verkaik, C. Vuik, B. D. Paarhuis, and A. Twerda. The de�ation aeler-ated Shwarz method for CFD. In V. S. Sunderam, G. D. van Albada, P. M. A.Sloot, and J. J. Dongarra, editors, Computational Siene-ICCS 2005: 5th Inter-national Conferene, Atlanta, GA, USA, May 22-25, 2005, Proeedings, Part I,pages 868�875, Berlin, 2005. Springer. Leture Notes in Computer Siene3514.[170℄ F. Vermolen, C. Vuik, and A. Segal. De�ation in preonditioned onjugategradient methods for �nite element problems. In M. K�ri�zek, P. Neittaanmäki,R. Glowinski, and S. Korotov, editors, Conjugate Gradient and Finite ElementMethods, pages 103�129. Springer, Berlin, 2004.[171℄ C. Vuik and J. Frank. Coarse grid aeleration of a parallel blok preonditioner.Fut. Gener. Comput. Syst., 17:933�940, 2001.[172℄ C. Vuik, R. Nabben, and J. M. Tang. De�ation aeleration for domain deompo-sition preonditioners. In P. Wesseling, C.W. Oosterlee, and P. Hemker, editors,Pro. 8th European Multigrid Conferene, September 27-30, 2005, Shevenin-gen, The Netherlands. Delft University of Tehnology, 2006.[173℄ C. Vuik, A. Segal, and J. A. Meijerink. An e�ient preonditioned CG methodfor the solution of a lass of layered problems with extreme ontrasts in theoe�ients. J. Comput. Phys., 152:385�403, 1999.[174℄ C. Vuik, A. Segal, J. A. Meijerink, and G. T. Wijma. The onstrution ofprojetion vetors for a De�ated ICCG method applied to problems with extremeontrasts in the oe�ients. J. Comput. Phys., 172:426�450, 2001.



260 Bibliography[175℄ C. Vuik, A. Segal, L. El Yaakoubi, and E. Dufour. A omparison of various de-�ation vetors applied to ellipti problems with disontinuous oe�ients. Appl.Numer. Math., 41:219�233, 2002.[176℄ X.-H. Wen and J. J. Gómez-Hernández. Upsaling hydrauli ondutivities inheterogeneous media: An overview. J. Hydrology, 183:9�32, 1996.[177℄ P. Wesseling. Cell-entered multigrid for interfae problems. J. Comput. Phys.,79:85�91, 1988.[178℄ P. Wesseling. An Introdution to Multigrid Methods. John Wiley & Sons,Chihester, 1992. Correted Reprint. Philadelphia: R.T. Edwards, In., 2004.[179℄ J. H. Wilkinson. The algebrai eigenvalue problem. Oxford University Press,In., New York, NY, USA, 1988.[180℄ D. M. Young. Iterative Solutions of Large Linear Systems. Aademi Press,New York, 1971.



List of Publiations
Journal Papers� J.M. Tang and C. Vuik, `On De�ation and Symmetri Positive Semi-De�nite Ma-tries', Journal of Computational and Applied Mathematis, Vol. 206, Issue 2,pp. 603�614, 2007.� J.M. Tang and C. Vuik, `E�ient De�ation Methods applied to 3-D Bubbly FlowProblems', Eletroni Transations on Numerial Analysis, Vol. 26, pp. 330�349,2007.� J.M. Tang and C. Vuik, `New Variants of De�ation Tehniques for PressureCorretion in Bubbly Flow Problems', Journal of Numerial Analysis, Industrialand Applied Mathematis, Vol. 2, Issue 3�4, pp. 227�249, 2007.� J.M. Tang and C. Vuik, `Fast De�ation Methods with Appliations to Two-PhaseFlows, International Journal for Multisale Computational Engineering, Vol. 6,Issue 1, pp. 13�24, 2008.� S.P. MaLahlan, J.M. Tang, and C. Vuik, `Fast and Robust Solvers for PressureCorretion in Bubbly Flow Problems', submitted (2007).� J.M. Tang, R. Nabben, C. Vuik, and Y.A. Erlangga, `Comparison of Two-LevelPCG Methods derived from De�ation, Domain Deomposition and MultigridMethods', submitted (2008).� J.M. Tang, S.P. MaLahlan, R. Nabben, and C. Vuik, `A Comparison of Two-Level Preonditioners based on De�ation and Multigrid', submitted (2008).� E. Ludwig, R. Nabben, and J.M. Tang, `De�ation and Projetion Methods appliedto Positive Semi-De�nite Systems', in preparation.

261



262 BibliographyProeeding Papers� C. Vuik, R. Nabben, and J.M. Tang, `De�ation Aeleration for Domain Deom-position Preonditioners', Proeedings of the 8th European Multigrid Confer-ene on Multigrid, Multilevel and Multisale Methods, The Hague, The Nether-lands, September 27-30, 2005, (Eds: P. Wesseling, C.W. Oosterlee, P. Hemker),CDROM ISBN 90-9020969-7.� J.M. Tang and C. Vuik, `De�ated ICCG Method solving the Singular and Dis-ontinuous Di�usion Equation derived from 3-DMulti-Phase Flows', Proeedingsof ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands, September 5-8,2006, (Eds: P. Wesseling, E. Onate, J. Periaux), CDROM ISBN 90-9020970-0.� J.M. Tang and C. Vuik, `De�ated ICCG Method applied to 3-D Multi-PhaseFlow', Proeedings of International Conferene on Numerial Analysis and Ap-plied Mathematis 2006 (ICNAAM-2006), Hersonnisos, Crete, Greee, Septem-ber 15�19, 2006 (Eds: T.E. Simos, G. Psihoyios, Ch. Tsitouras), Wiley-VCHVerlag GmbH & Co. KGaA, Weinheim, pp. 323�326, ISBN 3-527-40743-X.� J.M. Tang and C. Vuik, `Aeleration of Preonditioned Krylov Solvers for BubblyFlow Problems', Computational Siene - ICCS 2007. 7th International Confer-ene, Beijing, China, May 27�30, 2007, Proeedings, Part I (Eds.: Y. Shi, G.D.van Albada, J. Dongarra, P.M.A. Sloot), LNCS Vol. 4487, pp. 874�881, 2007.� J.M. Tang and C. Vuik, `Aeleration of Preonditioned Krylov Solvers for BubblyFlow Problems', Parallel Proessing and Applied Mathematis. 7th InternationalConferene, PPAM 2007. Gdansk, Poland, September 2007. Revised Papers(Eds.: R. Wyrzykowski, J. Dongarra, K. Karzweski, J. Wasniewski), LNCSVol. 4967, pp. 1323�1332, 2008.Tehnial Reports� J.M. Tang, `Parallel De�ated CG Methods applied to Moving Boundary Prob-lems. Literature Overview', DIAM Report 05-02, Delft University of Tehnology,2005.� J.M. Tang and C. Vuik, `On the Theory of De�ation and Singular SymmetriPositive Semi-De�nite Matries', DIAM Report 05-06, Delft University of Teh-nology, 2005.� J.M. Tang and C. Vuik, `An E�ient De�ation Method applied to 2-D and 3-DBubbly Flow Problems', DIAM Report 06-01, Delft University of Tehnology,2006.� J.M. Tang and C. Vuik, `New Variants of De�ation Tehniques for Bubbly FlowProblems', DIAM Report 06-14, Delft University of Tehnology, 2006.



Bibliography 263� J.M. Tang, R. Nabben, C. Vuik, and Y.A. Erlangga, `Theoretial and NumerialComparison of Various Projetion Methods derived from De�ation, Domain De-omposition and Multigrid Methods', DIAM Report 07-04, Delft University ofTehnology, 2007.� J.M. Tang and C. Vuik, `Fast De�ation Methods with Appliations to Two-PhaseFlows', DIAM Report 07-10, Delft University of Tehnology, 2007.� S.P. MaLahlan, J.M. Tang, and C. Vuik, `Fast and Robust Solvers for PressureCorretion in Bubbly Flow Problems', DIAM Report 08-01, Delft University ofTehnology, 2008.� J.M. Tang, S.P. MaLahlan, R. Nabben, and C. Vuik, `Theoretial Compari-son of Two-Level Preonditioners based on De�ation and Multigrid', DIAM Re-port 08-05, Delft University of Tehnology, 2008.Misellaneous Contributions� Jok Tang and Kees Vuik, `De�ated PCG Method for the Poisson Solver', Bur-gersdag 2008, Delft, The Netherlands, January 10, 2008. Winner of the BestPoster Presentation.� Jok M. Tang, `A Generalized Projeted CG Method with Appliations to BubblyFlow Problems', IMACS 2008: 9th IMACS International Symposium on IterativeMethods in Sienti� Computing, Lille, Frane, Marh 17-21, 2008. Winner ofthe Student Paper Competition.Relevant Talks� `De�ated ICCG Methods applied to 3-D Multi-Phase Problems', 9th CopperMountain Conferene on Iterative Methods, Colorado, USA, April 2006.� `De�ated ICCG Method applied to 3-D Multi-Phase Flows', Euromeh Collo-quium 479: Numerial Simulation of Multiphase Flows with Deformable Inter-faes, Sheveningen, The Netherlands, August 2006.� `De�ated ICCG Methods applied to 3-D Multi-Phase Problems', ECCOMASCFD 2006: European Conferene on Computational Fluid Dynamis, Egmondaan Zee, The Netherlands, September 2006.� `De�ated ICCG Methods applied to 3-D Multi-Phase Problems', ICNAAM 2006:International Conferene of Numerial Analysis and Applied Mathematis, Crete,Greee, September 2006.� `De�ation Method applied to 3-D Bubbly Flow Problems', Diplomanden- undDoktorandenseminar Numerishe Mathematik WS 2006/07, Berlin, Germany,November 2006.



264 Bibliography� `Versnellen van Numerieke Methoden voor de Berekening van Stromingen metBellen en Bubbels', 43rd Duth Mathematial Conferene 2007, Leiden, TheNetherlands, April 2007. Seleted by a jury for the ompetition of the PhilipsMathematis Prize for PhD-students.� `Aeleration of Preonditioned Krylov Solvers for Bubbly Flow Problems', ICCS2007: International Conferene on Computational Siene 2007, Beijing, China,May 2007.� `De�ated PCGMethod applied to Bubbly Flow Problems', Computing LaboratorySeminar, Oxford, England, August 2007.� `Aeleration of Preonditioned Krylov Solvers for Bubbly Flow Problems', PPAM2007: Parallel Proessing and Applied Mathematis, Gda«sk, Poland, September2007.� `Comparison of Projetion Methods with Appliations to Bubbly Flows', Diplo-manden- und Doktorandenseminar Numerishe Mathematik WS 2007/08, Berlin,Germany, November 2007.� `A Generalized Two-Level PCG Method', Gene Golub DCSE Symposium, Delft,The Netherlands, February 2008.� `A Generalized Two-Level Preonditioned Conjugate Gradient Method', IMACS2008: 9th IMACS International Symposium on Iterative Methods in Sienti�Computing, Lille, Frane, Marh 2008.� `A Generalized Two-Level Preonditioned Conjugate Gradient Method', 10thCopper Mountain Conferene on Iterative Methods, Colorado, USA, April 2008.� `Two-Level Preonditioned Conjugate Gradient Methods', ECCOMAS 2008: 5th.European Congress on Computational Methods in Applied Sienes and Engi-neering, Venie, Italy, July 2008.



Curriulum Vitae
Jok Man Tang was born on September 1, 1981, in Utreht, The Netherlands. Heompleted seondary shool at St. Bonifatius College (Utreht) in 1999. From 1999 to2004, he studied Applied Mathematis at Delft University of Tehnology. He obtainedhis Bahelor of Siene degree in 2003, followed by his Master of Siene degree (umlaude) in 2004. His Master's thesis, `Constrution of a Combined Preonditioner forthe Helmholtz Problem', was arried out in the numerial analysis group of Prof. P.Wesseling at Delft University of Tehnology, in ollaboration with Shell InternationalExploration and Prodution, under supervision of Prof. C. Vuik and Prof. W. Mulder.He worked as a PhD student in the numerial analysis group at Delft University ofTehnology from Otober 2004 to September 2008. He was supervised by Prof. C.Vuik, and has ollaborated with espeially Prof. R. Nabben (Tehnishe UniversitätBerlin, Germany) and S.P. MaLahlan (Tufts University, USA), whih have led toseveral publiations. He visited University of Oxford and Tehnishe Universität Berlinseveral times for his work. In addition, the researh has been presented at manyinternational onferenes and symposiums.He was awarded prizes for the Best Poster Presentation (Burgersdag 2008, Delft,January 2008) and Best Student Paper (9th IMACS International Symposium on It-erative Methods in Sienti� Computing, Lille, Frane, Marh 2008). Moreover, hehas taught linear algebra and was a teahing assistant for di�erential equations andnumerial analysis ourses. In addition, he has o-organized PhDays 2007 (Baarshot,April 2007), the Gene Golub DCSE Symposium (Delft, February 2008), and PhDays2008 (De Haan, Belgium, April�June 2008).

265


