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Preface

Labour not to be rich:
cease from thine own wisdom.

Proverbs 23:4

This dissertation completes four years of research conducted at the Na-
tional Aerospace Laboratory NLR, in collaboration with Delft University of
Technology. The aim of this research is to design a computational method
that can be used by NLR for radar scattering analysis of aircraft. The use
of computer predictions can be very powerful, but is only feasible when the
simulations are realistic. In this thesis, mathematical techniques are used to
design a computational method in which I have confidence it is stable and
robust. This is pictured in the photograph on the cover, where the birds are
confident that the rock formation is stable and robust.

It has been a very enjoyable and valuable experience for me to perform
my PhD study in a combination of the company-like environment at NLR
and the academic setting at TU Delft. Here, I would like to acknowledge that
this thesis cannot be attributed to only one person, as suggested by the single
author. This thesis could not have been completed without the support of
many people and I want to thank a number of them in this preface.

The research for this dissertation could not have been conducted without
the financial support of the National Aerospace Laboratory NLR. I am very
grateful to NLR for funding the research and providing me with plenty of
resources to perform research and visit international conferences.

I would like to express my sincere appreciation to my promotor Kees Vuik.
Kees, we have had many interesting discussions about this research and I have
learned a lot from your broad knowledge of applied mathematics. You have
taught me how to conduct and disseminate research and I am grateful for
your guidance during my academic education triple of BSc-MSc-PhD studies.

During this research project, I have had the privilege of having two daily
supervisors, Duncan van der Heul and Harmen van der Ven. Duncan, your
careful reading has improved the readability of our papers and this thesis and
your modern ideas about presentations have been valuable for the conferences
I have visited. Harmen, your knowledge of mathematics has been helpful to

v



vi Preface

analyze the computational method and you have kick-started the implemen-
tation of the computer code. Duncan and Harmen, your help has been more
important to the success of this thesis than my solitary hours at the office.

I have been working at NLR for the past four years and I want to thank
my colleagues for this memorable time. Koen, as the department manager
you have kept an eye on the practical application and have given me freedom
to perform my research. Jaap, it has been a pleasure to share an office with
you for four years. Wybe, I am glad to have had your company as a fellow
PhD student. Okko, Michel, Bimo, and Bambang, we have been walking
miles together from our offices to the coffee machine. Michel, Johan, Jan, and
Frank, we have had many entertaining discussions during the lunch break.
Furthermore, I would like to thank Stephan, Martin, Hans, Bart, and André
of the AVFP department, Rosita for administrative support, Rob for computer
support and Monique and Ronald for their help with the cover design.

I have visited TU Delft once a week and I am grateful to my colleagues
at the numerical analysis group who were always very welcome to me, both
the permanent staff and the continuously changing group of PhD students. I
would like to thank Martin van Gijzen in particular, who encouraged me to
pursue a PhD study and taught me essential mathematical techniques as my
MSc supervisor and teacher of the BSc course on numerical analysis.

I have had the opportunity to attend several conferences across the USA
and Europe and I am looking back to these visits with great enjoyment. This
can be attributed to many people with whom I have had interesting scientific
discussions and delightful visits to restaurants and bars.

I want to express my gratitude to the doctoral committee who have read
my thesis and have given valuable feedback. I am especially honored by the
presence of Eric Michielssen, we have already met in the United States and
hopefully we will work together after my graduation.

No matter how much I enjoyed my work as a PhD researcher, it has al-
ways been a pleasure to cycle away from office and meet family and friends.
Although they might not have had direct influence on this thesis, their com-
panionship has been very important to me.

Ik heb vele huisgenoten meegemaakt in Aalsmeer, waarvan ik Jan, Marco,
Deborah en Doreen speciaal wil bedanken voor de gezellige avonden in onze
gemeenschappelijke keuken. De weekenden en vakanties waren een plezierige
verandering van omgeving, waarvoor ik Bart, Arjan, Arjan, Wilco, Menno,
Johan en de andere voetbalvrienden wil bedanken. Daarnaast wil ik Deborah,
Matthijs, Marianne en Debby bedanken voor de fijne zondagavonden.

Mijn laatste en belangrijkste dankwoord wil ik richten aan mijn ouders,
Joël, Judith en Esther. Dankzij jullie is Ridderkerk voor mij nog steeds thuis.

Elwin van ’t Wout
Ridderkerk, October 2013



Summary

Stability, accuracy, and robustness of the time
domain integral equation method for radar scat-
tering analysis

Elwin van ’t Wout

The aim of this thesis is to design a computational method that can be used in
modern stealth technology. In particular, the computational method should
be capable to simulate scattering of ultra-wideband radar signals for mili-
tary aircraft constructed with ferromagnetic radar absorbent materials. A
full-wave boundary element method has been chosen because of its efficiency
for electromagnetic scattering of electrically large structures. A time-domain
method has been chosen because wideband signals can be simulated with a
single run. Moreover, the future use of nonlinear constitutive equations for
ferromagnetic materials requires simulation in time domain. To this end, the
Time Domain Integral Equation (TDIE) method is used as computational
method. More specifically, the numerical discretization of the Electric Field
Integral Equation (EFIE) is given by the Marching-on-in-Time (MoT) scheme,
which has been chosen because of its efficiency and accuracy. Instabilities pre-
vent its industrial application to stealth technology, even for smallband and
linear constitutive equations. In this thesis, a thorough numerical analysis on
stability, accuracy, and robustness has been derived, resulting in clear guide-
lines for the choice of numerical parameters. Consequently, stable computer
simulations have been achieved.

Stability The occurance of instabilities is the principal limitation of the
TDIE method and is the most important hurdle to industrial application.
They can be categorized as spectral and numerical instabilities, where the
numerical ones are the most persistent. An overview of the remedies intro-
duced in literature has been given, but none of them have solved instability
altogether. The use of smooth basis functions and very accurate evaluation
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viii Summary

of the discretization matrix are the most promising avenues to proceed. The
stability of the EFIE can be analyzed with the aid of an available functional
framework. For a specific variational problem, uniqueness and boundedness
of the solution of the EFIE has been proven. In this thesis, this stability theo-
rem has been extended to the differentiated version of the EFIE, for which an
extra order of regularity is required for the test space. However, it can not be
applied directly to the MoT scheme. A discrete equivalence with space-time
Galerkin methods is derived for this purpose. Then, quadratic spline basis
functions can be shown to fit within the stable framework, whereas this is
not the case for shifted Lagrange polynomials. Even for the choice of spline
basis functions, the expected stability can only be achieved when the com-
putation method uses accurate evaluation procedures for the elements of the
discretization matrix.

Accuracy The accuracy of the discretization in time of the TDIE method
has been analyzed with a derivation of the interpolation accuracy for piece-
wise polynomial basis functions in MoT schemes. Families of temporal basis
functions have been derived for a given order of interpolation accuracy. The
degrees of freedom have been chosen with predefined requirements on 1) the
inclusion of customary temporal basis functions, 2) smoothness, and 3) con-
ditioning of the system of linear equations that has to be solved. With this
framework for the design of temporal basis functions both classical temporal
basis functions such as the shifted Lagrange interpolators and novel spline
basis functions have been generated. Computational experiments confirm the
improved performance of numerical quadrature for smooth basis functions
and a dependency of the conditioning of the system of linear equations on
the shape of temporal basis functions. Numerical experiments show a higher
order of global accuracy for the spline basis functions than for the shifted
Lagrange basis functions with equal support.

Robustness The quasi-exact integration method is a key to the successful
application of MoT schemes in TDIE methods for electromagnetics. Available
analytical expressions for the exact evaluation of the radiation fields have to be
reformulated for evaluation in finite precision arithmetic. The straightforward
formulation does not necessarily lead to the accuracy required for late-time
stability of the MoT scheme, because it is ill behaved for a number of limit
cases. This is confirmed with a computational experiment. Hence, a novel
formulation with well-behaved expressions has been derived in this thesis,
along with specifically designed tolerance regions. This robust formulation
does not impinge on the overall accuracy of the quasi-exact integration method
and results in a stable MoT scheme.
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Application The applicability of the TDIE method has been verified with
a comparison of the radar cross-section of an aircraft with a frequency-domain
simulation. As postprocessing of the TDIE method, the scattered electric field
has been computed and visualized for a corner reflector and aircraft. High
resolution range profiles are promising tools for non-cooperative target recog-
nition. The computation of these profiles can be performed in a single run
with TDIE methods. They give valuable information on the characteristics
of the scatterer object.

With the aid of the mathematics in this thesis, well-founded choices can
be made for the use of the TDIE method as simulation tool. The recommen-
dations result in computer simulations that are stable, accurate, and robust
and the scattering of radar signals on aircraft can be predicted realistically.





Samenvatting

Stabiliteit, nauwkeurigheid en robuustheid van
de tijdsdomein-integraalvergelijkingsmethode
voor radarverstrooiingsanalyse

Elwin van ’t Wout

In dit proefschrift wordt een rekenmethode ontwikkeld waarmee de verstrooi-
ing van radarsignalen op een vliegtuig uitgerekend kunnen worden. Deze
methode is ontwikkeld met als doel om te gebruiken voor stealth-technologie.
De zichtbaarheid van militaire vliegtuigen kan verminderd worden door fer-
romagnetische radarabsorberende materialen te gebruiken. Daarnaast is het
van belang dat ultra-wideband radargolven gesimuleerd kunnen worden. Voor
deze toepassing is de randelementmethode een goede keuze aangezien deze
methode efficiënt is voor elektrisch grote voorwerpen. Met een formulering
in het tijdsdomein kunnen ultra-wideband radargolven in een enkele simu-
latie doorgerekend worden. Bovendien is dit geschikt voor de toekomstige
toepassing van niet-lineaire constitutieve vergelijkingen voor ferromagnetische
materialen. Om deze redenen is de tijdsdomein-integraalvergelijkingsmethode
(TDIE) gekozen. Als modelvergelijking wordt de Electric Field Integral Equa-
tion (EFIE) gebruikt en als numerieke discretisatie is gebruik gemaakt van het
Marching-on-in-Time (MoT) schema, omdat dit een efficiënt en nauwkeurig
schema is. Aangezien simulaties met dit schema regelmatig instabiel zijn,
kan de huidige versie nog niet gebruikt worden voor industriële toepassing in
stealth-technologie, zelfs niet voor smalle bandbreedtes en lineaire constitu-
tieve vergelijkingen. In dit proefschrift wordt een analyse uitgevoerd voor de
stabiliteit, nauwkeurigheid en robuustheid. Dit resulteert in duidelijke richt-
lijnen voor de keuze van numerieke parameters. Met dit verbeterde numerieke
schema zijn de computersimulaties stabiel.

Stabiliteit De voornaamste tekortkoming van de TDIE-methode is de in-
stabiliteit, waardoor de methode nog niet gebruikt kan worden voor indus-
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xii Samenvatting

triële toepassingen. Instabiliteiten kunnen onderverdeeld worden in spectrale
en numerieke oorzaken, waarbij de numerieke de meest hardnekkige zijn. Er
is een overzicht van oplossingsmethodes uit de literatuur gegeven, maar geen
enkele techniek kan de instabiliteit in zijn geheel oplossen. Het gebruik van
gladde basisfuncties en het zeer nauwkeurig uitrekenen van de elementen van
de discretisatiematrix zijn de meest belovende routes naar stabiliteit. Om
de stabiliteit van de EFIE te analyseren wordt gebruik gemaakt van een
beschikbaar raamwerk uit de functionaalanalyse. Voor een specifiek varia-
tioneel probleem is de uniciteit en begrensdheid van de EFIE bewezen. Deze
stabiliteitsstelling wordt in dit proefschrift uitgebreid naar de gedifferentieerde
versie van de EFIE, waarvoor een extra orde van differentieerbaarheid vereist
is voor de testruimte. Vervolgens is aangetoond dat de kwadratische spline-
basisfuncties binnen het stabiele raamwerk passen, terwijl dit niet het geval
is voor de verschoven Lagrange-basisfuncties. Echter, de verwachte stabiliteit
voor de keuze van spline-basisfuncties kan alleen verkregen worden als de dis-
cretisatiematrix nauwkeurig genoeg wordt uitgerekend.

Nauwkeurigheid De nauwkeurigheid van de discretisatie in de tijd van de
TDIE-methode is onderzocht met een afleiding van de interpolatienauwkeurig-
heid van stuksgewijs polynomiale basisfuncties in MoT-schema’s. Deze ana-
lyse resulteert in families van tijdsbasisfuncties die een gegeven orde van inter-
polatienauwkeurigheid hebben. De beschikbare vrijheidsgraden zijn aan de
hand van de volgende voorschriften gekozen: 1) het inbegrip van de gebruike-
lijke tijdsbasisfuncties, 2) de differentieerbaarheid en 3) de conditionering van
het systeem van lineaire vergelijkingen dat opgelost moet worden. Met dit
raamwerk kunnen verschillende tijdsbasisfuncties ontworpen worden, waaron-
der de klassieke keuze van verschoven Lagrange-interpolatoren en de nieuwe
spline-basisfuncties. Met computerexperimenten is de verbeterde prestatie
van de numerieke kwadratuur voor gladde basisfuncties bevestigd. Daarnaast
is aangetoond dat de conditionering van het systeem van lineaire vergelij-
kingen afhankelijk is van de vorm van de tijdsbasisfunctie. Ten slotte laten
numerieke resultaten een hogere orde van globale nauwkeurigheid zien voor
de spline-basisfuncties, vergeleken met verschoven Lagrange-basisfuncties met
dezelfde drager.

Robuustheid Om er zeker van te zijn dat de rekenmethode robuust is,
zijn quasi-exact integratiemethodes noodzakelijk. Met deze technieken kun-
nen de oppervlakte-integralen zeer nauwkeurig uitgerekend worden. Als dit
niet wordt gedaan, kunnen numerieke fouten zorgen voor instabiliteit, wat
ook in experimenten wordt waargenomen. De beschikbare analytische uit-
drukkingen voor de exacte evaluatie van stralingsvelden bevatten singulari-
teiten. Hierdoor zijn de berekeningen niet noodzakelijk nauwkeurig genoeg om
langdurige stabiliteit van het MoT-schema te verkrijgen, wat wordt bevestigd
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door een computerexperiment. Daarom zijn er nieuwe uitdrukkingen afgeleid
die nauwkeurig uitgerekend kunnen worden, ook als er afrondfouten zijn. Dit
vereist wel het gebruik van speciale tolerantiegebieden. Het gebruik van deze
robuuste uitdrukkingen behoudt de nauwkeurigheid van de quasi-exacte inte-
gratiemethode en zorgt voor een stabiel MoT-schema.

Toepassing De toepasbaarheid van de TDIE-methode is geverifieerd door
de radardoorsnede (RCS) van een vliegtuig te vergelijken met een simulatie
in het frequentiedomein. Als nabewerking van de TDIE-methode is het ver-
strooide elektrische veld uitgerekend en gevisualiseerd voor een hoekreflector
en een vliegtuig. Een veelbelovende techniek voor non-cooperative target recog-
nition is het gebruik van high resolution range profiles. Om deze profielen uit
te rekenen met frequentiedomeinpakketten zijn er meerdere simulaties nodig,
terwijl dit met de TDIE-methode in slechts een enkele simulatie uitgerekend
is. Met deze techniek kan waardevolle informatie over de eigenschappen van
het voorwerp verkregen worden.

Met de wiskunde in dit proefschrift kunnen er gefundeerde keuzes gemaakt
worden voor het gebruik van de TDIE-methode als simulatiepakket. Met deze
aanbevelingen zijn er computersimulaties uitgevoerd die stabiel, nauwkeurig
en robuust zijn en waarmee de verstrooiing van radarsignalen op een vliegtuig
realistisch voorspeld kan worden.
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Chapter 1
Introduction

1.1 Significance of this thesis

Problem area Stealth technology is key to the survivability of fighter
aircraft. Extensive full-scale experiments are used for the design of low-
observable structures. Computer simulations complement physical experi-
ments when the platform is unavailable for a measurement campaign, with
the added advantage of having low costs. Advanced computational methods
can provide high-confidence radar data for most aircraft. The latest develop-
ments in stealth technology call for the use of computer simulations in time
domain on the scatterer surface, the so-called Time Domain Integral Equa-
tion (TDIE) method. However, the radar signature is not always simulated
realistically due to instabilities in current implementations. Improvement of
the computational robustness is required to be applicable in the industrial
design process.

Description of work This thesis complements the existing literature by
analyzing the stability, accuracy, and robustness of the TDIE method. The
stability has been analyzed with an extension of an available mathematical
framework. In order to use the resulting stability theorem for the broadly used
Marching-on-in-Time (MoT) scheme, an equivalence has been derived with
the space-time Galerkin scheme. The accuracy in time of the TDIE method
has been analyzed with a derivation of the interpolation error. Finally, a
robust implementation of the analytical evaluation of radar fields for discrete
interactions between mesh patches has been explained.

Results and conclusions The work that is presented in this thesis im-
proves both the theoretical foundation and the practical implementation of

1
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the TDIE method. In particular, the numerical analysis of stability and ac-
curacy has been used to provide clear guidelines on how to choose numerical
parameters such as the temporal basis function and the quadrature procedure.
Implementation of this improved MoT scheme provides robust computer sim-
ulations that are stable and accurate.

1.2 Stealth technology

The development of aircraft is one of the major technological advancements
made in the military in the latest century. With very few natural obstruc-
tions, air forces can achieve quick movement into hostile territory. Evidently,
military defense systems try to intercept these missions. For the survivabil-
ity of the aircraft and the safety of the pilot it is very important to be low
observable. Stealth technology aims to design aircraft that are hardly notice-
ably to adversaries. This includes the reduction of the radar, heat, noise, and
infrared observability. This thesis focuses on the management of the radar
visibility. The primary reason to use stealth technology in military aircraft
is improving the survivability. Furthermore, when applied successfully and a
technological advantage over the opponent is obtained, stealth technology has
a deep impact on military tactics.

Where aircraft designers reduce the radar visibility with stealth technol-
ogy, radar developers simultaneously try to improve radar systems that can
identify aircraft. Counterstealth measures are used in defensive configura-
tions to detect hostile aircraft. This results in an everlasting process of
measures and countermeasures in stealth technology. The following mate-
rial serves as a short introduction only. For more information, the interested
reader is referred to the extensive literature on stealth technology, for exam-
ple [95, 13, 53, 52, 59].

1.2.1 Radar signature of airborne platforms

Aircraft can be distinguished by the scattered radar field, called the radar sig-
nature. Radar systems are used by military forces for the recognition of both
friendly and hostile aircraft. As a consequence, stealth aircraft are designed
such that its radar signature can not be identified by the opponent.

Low observability

An example of the successful application of stealth technology in the mili-
tary is the famous F-117 designed by Lockheed for the US Air Force. The
‘Nighthawk’ was able to penetrate deep into hostile territory without being
noticed. Striking feature of this stealth fighter is its shape, as can be seen in
Fig. 1.1. Faceting has been adopted to reflect incident radar fields away from
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the source. The radar visibility has been further reduced with the use of radar
absorbent materials (RAM) that dissipate part of the radar energy. Nowadays,
low observability is always achieved with combined techniques from airframe
shape optimization and construction with RAM.

(a) The faceted shape of the airframe reduces
the monostatic radar visibility.

(b) Least visible among fighter aircraft.
From left to right: an F-22, F-117, F-4,
and F-15 of the US Air Force.

Figure 1.1: The F-117 Nighthawk. Source: www.defense.gov/multimedia.

Defensive target identification

The main purpose of defensive radar systems is the detection of hostile air-
craft. Conventional configurations use pulse-Doppler radar that transmits
modulated pulses of a single, fixed carrier frequency. The pulse width is suf-
ficiently long to embed the scattering object in a continuous electromagnetic
wave. Since stealth technology has reduced the visibility for these particular
radar fields, new radar concepts have been developed. There is a strong in-
terest in ultra-wideband (UWB) radar, which uses very short, nearly square
pulses. These high power fields have a wide spectral content and are therefore
difficult to dissipate with RAM. Moreover, UWB radar is able to detect slow
moving or stationary targets.

Non-cooperative target recognition

Several combat cases are known in which a friendly platform has been iden-
tified as hostile and was fatally attacked. Reducing the fratricide is espe-
cially challenging in military missions with joint multinational forces. Usu-
ally, friendly aircraft are recognized by interchanging encrypted signals. This
is not feasible in certain situations, for instance when the transmitter is de-
ceived or jamming is used by a hostile party. This calls for non-cooperative
target recognition (NCTR), for which the active participation of the target is
not necessary. The radar is an attractive instrument for this purpose. The
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idea is to derive the geometry of the platform from its radar signature with
the aid of high resolution range profiles. A comparison with a database results
in the decision of friend or foe. The main limitations of this type of target
recognition are the need to quickly process the radar data and the compari-
son with a database in which the radar signatures of both friendly and hostile
aircraft have to be present.

1.2.2 Radar signature management

The goal of stealth technology is to conceal aircraft by reducing the radar
visibility. The main approaches in the radar signature management are the
deflection of radar fields and the absorption of radar energy. RAM can dis-
sipate part of the incident radar energy and thus reduces the magnitude of
the scattered radar field. In most cases, it is more effective to deflect the
radar field away from the source. Then, the deflected radar waves remain
unnoticed, because defensive radar systems often have the transmitter and
receiver at the same location.

Shape optimization

The most critical factor in the radar detectability of aircraft is the shape.
This has to be incorporated in the early beginning of the design process and
is usually at the expense of other considerations such as cruising speed and
agility. Other challenges are in the design of aircraft components that are
necessary for the flight performance but have a large radar signature, such as
the weapon bays, engines, air intakes and the cockpit canopy.

The airframe shape adopted in early stealth fighters such as the F-117
is largely based on faceting. The idea is that the facets are tilted with a
specific angle such that the radar fields from common angles of incidence are
deflected in a direction where no receiver is likely to be present. Wings and
tails are canted to avoid direct reflection back towards the ground or aircraft
at the same altitude. Then, the monostatic radar signature is very small. In
later designs of stealth fighters, this deflection has been achieved by smooth
surfaces instead of flat facets.

Deflecting the radar field has become less effective with the deployment
of bistatic geometries, that is, radar transmitters and receivers at different
locations. Moreover, shape alignment poses severe challenges in the design of
multirole aircraft. Nevertheless, the shape of an aircraft is still the deciding
factor in its radar visibility.

Radar absorbent materials

As a complement to shape optimization, radar absorbent materials can be
used in the construction of stealth aircraft. Part of the radar energy is dis-
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sipated by the RAM, thus reducing the detectability. Although the RAM is
effective in reducing the radar signature, the manufacturing and maintenance
costs are high and its absorption rate highly depends on the frequency of the
radar signal. RAM is being used with two different approaches, namely as a
coating or as part of load-bearing structures.

Radar absorbent coatings Radar absorbent coatings serve the sole pur-
pose of reducing the radar visibility and are often applied as a paint. To reduce
costs of operation, RAM is only used on aircraft parts that have a large radar
signature, such as sharp edges and the cockpit canopy. The effective radar re-
duction of the coatings can be based on interference or absorption.

When a dielectric layer, such as the Salisbury screen, is used with a thick-
ness of a quarter wavelength, the scattered radar field is canceled because of
interference. More elaborate multilayer variants such as the Jaumann and
Dallenbach layers use resonance patterns to cancel radar fields at different
frequencies. These dielectric coatings work for small frequency bands only
and become prohibitively thick for low frequencies.

Materials can have the property that radar fields are converted into heat.
Application of these materials in stealth technology has the advantage of ab-
sorbing the radar energy for a large frequency band with a small coating
thickness. Ferromagnetic material is a main candidate for this type of RAM.
The magnetization of ferromagnetic materials show a nonlinear response to
electromagnetic excitation. The response behavior is dispersive and shows
profound hysteresis, which makes the absorption rate history dependent. Al-
though ferromagnetism is usually understood with physical phenomena on a
microscopic level, macroscopic models are often used in practice.

Radar absorbent components The materials used in the construction
of aircraft are mainly chosen according to their influence on the structural
characteristics such as stiffness. Nowadays, extensive use is made of composite
structures in which many different materials are combined. Radar absorbent
materials, such as ferromagnetic nanoparticles, can also be incorporated into
these composite matrices. Main advantage of using radar absorbent materials
in composite load-bearing structures is that no additional layer is necessary
on the surface of the aircraft.

1.2.3 Radar signature analysis

The management of the radar signature can only be achieved when the radar
signature of aircraft can be analyzed with high confidence. Full-scale experi-
ments with different setups can provide the required radar data. As a com-
plement, computer simulations are being used to predict the radar signature
of aircraft.
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Experimental measurements

Full-scale experiments are very effective in measuring the radar signature
of available aircraft. Setups with a stationary aircraft measure the radar
signature very accurate and for many different angles of incidence. The use
of radar systems during training missions achieve data on the radar visibility
of aircraft during flight. With these measurement campaigns, indispensable
information of one own aircraft is obtained, which can be used in military
tactics. For the design of new aircraft types, the radar data of similarly
built aircraft can be used. However, for groundbreaking and unconventional
concepts such as the F-117, the radar signature is completely different than for
other aircraft. Then, physical experiments are applied to separate components
or aircraft models.

Computer simulations

The design of a stealth aircraft is a delicate task that takes a long time and
consumes huge costs. Full-scale experiments are an integral part of the design
process. However, measuring the radar signature with physical experiments
is not feasible in many situations, for instance when

• the platform is in the development phase,

• the platform belongs to a hostile party, or

• there are financial or logistic constraints.

Computer simulations are used to predict the radar signature in these situa-
tions. In order to assure realism of the computer simulations, only advanced
computational techniques that have been verified with experimental data are
used.

There is a continuous development in both stealth capabilities of aircraft
and new radar concepts. Most notably the use of ferromagnetic materials
for low observability and UWB radar for detection. Naturally, this requires
a constant improvement and extension of current computational methods to
keep up with the simultaneous developments in stealth technology.

1.3 Computational electromagnetics

The use of computer simulations is nowadays an indispensable part in the
industrial design of aircraft. The field of computational electromagnetics
(CEM) has grown by leaps in past decades and bounds and delivers many
different computational methods. In this section, an overview will be given
of CEM methods and an explanation will be given for the choice of com-
putational method that will be used in this thesis. All information in this
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introductory section can be found in the many textbooks on CEM, for exam-
ple [63, 17, 74].

1.3.1 Electromagnetic scattering models

First step in the development of computer simulations is the modeling of the
physical phenomena. Many different models exist that describe physical ob-
servations in terms of mathematical equations. The solution of these model
equations are then approximated with numerical techniques to provide pre-
dictions of specific physical quantities. The ultimate goal of this thesis is the
simulation of the radar signature of aircraft designed with advanced types of
RAM and excitation with modern radar concepts. This yields the following
requirements on the choice of the radar scattering model to simulate

• full electromagnetic wave fields;

• ultra-wideband radar fields;

• radar absorbent materials;

• general geometries.

Maxwell’s equations are the classical model for electromagnetic wave fields.
Additionally, constitutive equations that model material properties are re-
quired to find a unique solutions.

The electromagnetic response of most materials, even advanced dielectric
RAM, can be modeled with enough realism by linear equations or can be
linearized with sufficient accuracy. This is not the case for RAM that are
based on magnetic losses. For these materials, hysteresis has to be incorpo-
rated into the model. Although hysteresis and magnetic losses are physical
processes that should be described on a microscopic scale, different compu-
tational models exists for the radar responses on a macroscopic level. The
most promising model is given by the Landau-Lifshitz-Gilbert (LLG) equa-
tion. This is not an algebraic equation, but a nonlinear differential equation
that models the time-varying and history-dependent material properties en-
countered in ferromagnetic materials.

1.3.2 Overview of model formulations

Many formulations of Maxwell’s equations exist and a wide range of different
computational methods are used to discretize them. When a particular radar
signal is present, such as high-frequent radar fields, specific approximations
can be made. Otherwise, full-wave CEM methods are used, which are written
in either the frequency or time domain. Furthermore, CEM methods discretize
either volume of surface formulations. This yields four different categories,
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all with their merits and limitations. Remember that hybrid methods can be
used as well.

High-frequency versus full-wave methods

Most computational methods become impracticable for scattering of a high-
frequent signal on an electrically large object, because the computational costs
scale with the highest frequency mode. To allow for computer simulations in
these cases, several methods are available that adopt high-frequency approx-
imations to reduce the computational complexity. They include the general
theory of diffraction (GTD) and physical optics (PO). So-called full-wave
methods do not use high-frequency approximations and solve Maxwell’s equa-
tions directly.

High-frequency methods usually assume a combination of: 1) the surface
current on the shadowed regions is zero, 2) the observation point is far away,
3) the surface is smooth, and 4) the object is electrically large. These assump-
tions evidently impinge on the accuracy of the computational method. For
instance, edge diffraction, multiple reflection, resonance in cavities, and sur-
face waves that creep into the shadow region are not simulated. In general,
the low computational costs of high-frequency methods only outweighs the
accuracy limitations when scattering from electrically large objects for radar
signals with high-frequency content only is considered. For the application to
modern stealth technology, computational methods have to be able to sim-
ulate wideband radar scattering from aircraft constructed with cavities and
RAM. Then, high-frequency methods are not feasible and full-wave methods
are required.

Differential versus integral methods

In CEM, methods are often categorized as either a differential or integral
formulation. Differential formulations solve the electromagnetic field inten-
sity in Maxwell’s equations for a certain region of interest. Reflecting and
absorbing boundary conditions are necessary to truncate the computational
domain. Integral formulations, on the other hand, solve Maxwell’s equations
for the electric charge and current density. To this end, Maxwell’s equations
are rewritten into an integral from with the aid of a Green’s function. For in-
terfaces between homogeneous materials, it suffices to discretize the interface
only. When the materials are heterogeneous, volume discretizations are more
effective.

Main drawback of differential formulations is that for unbounded do-
mains an artificial boundary is required to truncate the computation domain,
whereas integral formulations automatically satisfy the radiation condition.
On the other hand, integral methods result in dense discretization matrices
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whereas differential methods result in sparse discretization matrices, which
can be solved considerably more efficiently.

Differential formulations are usually discretized with volume methods and
integral formulations with surface methods. The only exception is the volume
integral equation method, which main merit is its efficiency for thin heteroge-
neous layers and its natural coupling with surface integral equation methods.
In general, the computational cost is very high and the method has been used
relatively little compared to other CEM methods.

Volume versus surface methods

Volume methods discretize a three-dimensional region of interest with a volu-
metric mesh. Because different material parameters can be used for each mesh
element, these methods are especially suited for heterogeneous materials. Ma-
jor drawback is that a finite region is required. Hence, for scattering problems,
the computational mesh has to be truncated with an artificial boundary on
which absorbing boundary conditions have to be posed. Although very accu-
rate models for open boundaries have been derived, they are purely artificial
and can therefore only reduce the physical realism of the computer simula-
tion. Another drawback of volume methods is the tendency to disperse and
dissipate electromagnetic waves.

For scattering problems with two homogeneous materials, the equivalence
principle states that the electromagnetic fields are completely determined by
the electromagnetic current and charge on the interface. Surface methods
make grateful use of this principle by discretizing the scatterer surface in-
stead of a volume around the object. Radiation conditions are automatically
satisfied and no artificial boundary is necessary, which is the main merit of
surface methods. Modeling heterogeneous materials is challenging and ap-
proximate models have to be used. Notice that aircraft are not constructed
homogeneously, but when the outside of the aircraft is metallic, scattering is
only determined by the surface of the aircraft and volume discretization is not
necessary.

It should be noted that a combination of volume and surface methods
is possible. This coupling can be advantageous when surface methods are
used for heterogeneous objects or as absorbing boundary in volume methods.
Furthermore, it will be assumed that volume methods use a differential for-
mulation and surface methods an integral formulation. This excludes only the
volume integral equation method, which will be omitted for brevity.

Following is a comparative list of volume and surface methods for modeling
electromagnetic scattering.

Computational mesh
V: The volume mesh usually consists of polyhedral elements and has to be
fitted around the scatterer, which can be difficult for geometric details. For
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curved surfaces, staircasing is often performed, thus introducing spurious re-
flections.
S: Grid generation is easily performed because only the surface of the scat-
terer has to be meshed. Triangular patches are most commonly used and can
capture geometric details and curved surfaces with sufficient accuracy.

Radiation condition
V: The computational domain has to be truncated with an artificial boundary
for exterior problems. This open boundary should be modeled such that the
full electromagnetic field is absorbed. Usually, an absorbing boundary condi-
tion is applied which has the strict requirement of being convex. Alternatively,
perfectly matched layers have been derived that can have an arbitrary shape,
but are computationally more expensive. As effective as modern versions
might be, open boundaries remain computational artifacts.
S: Because the equivalence principle is used, the radiation condition is au-
tomatically satisfied. The scattered field can be described as function of the
surface current and charge. Computing the scattered electromagnetic field
is performed as postprocessing and calls for the integration over the whole
surface and can be expensive to perform.

Heterogeneous structures
V: Heterogeneous materials can be simulated effectively by using different
material parameters for different mesh elements. For accuracy, it is required
that the mesh elements should be smaller than the different components in
the structure. In particular, coatings have to be meshed with a very high
resolution, making it computationally expensive.
S: Surface methods are less effective for heterogeneous, penetrable objects,
since the equivalence principle is difficult to use. A layered medium Green’s
function can be used for penetrable objects. For coatings, approximate models
such as generalized impedance boundary conditions can be used.

Efficiency
V: The number of spatial degrees of freedom isO(f3) for frequency f . Because
discretization matrices are sparse, fast solution methods scale linear with the
number of mesh elements.
S: The number of spatial degrees of freedom is O(f2) for frequency f . Solving
the dense system of linear equations usually requires O(n2) computational
work, where n denotes the number of mesh elements. For fast algorithms, most
notably the fast multipole method, the computational work scalesO(n log(n)),
or O(f2 log(f)). Accelerated surface methods outperform volume methods for
large scale objects and high-frequent signals.

Higher-order accuracy
V: Higher-order accurate techniques have been developed. In particular, the
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discontinuous Galerkin (DG) method permits the use of hp-refinement. How-
ever, with these methods it is difficult to obtain higher-order accuracy for the
boundary conditions.
S: Although higher-order accurate methods are available, they require curved
patches as surface mesh, for which grid generation and postprocessing is dif-
ficult.

Dispersion and dissipation
V: Most numerical techniques are highly dispersive and dissipative. This can
only be avoided with very accurate methods and high resolution grids.
S: Dissipation and dispersion is hardly present in surface methods.

Stability of time discretization
V: Stability is usually restricted by CFL conditions. When the CFL number
is small enough, the stability is achieved with high confidence.
S: Numerical instabilities have been persistent and pose major restrictions
on the computational method. This is an active field of research and a large
portion of this thesis deals with stability.

Technology readiness level
V: The robustness is confirmed by the development of commercial codes, both
in frequency and time domain.
S: Commercial software is available in frequency domain. The time domain
variants lack the robustness for application in industry.

Frequency versus time methods

Many computational methods solve the model equations in the frequency
domain. That is, the electromagnetic field is decomposed into a range of sinu-
soidal waves with different frequencies and the Fourier transform is performed.
This avoids the use of discretization methods in time and computational tech-
niques in frequency domain are usually more efficient and robust. The main
merits of using time methods are that wideband signals can be simulated in a
single run and nonlinear or history-dependent models for material properties
can be used.

Following is a comparative list of frequency and time methods for modeling
electromagnetic scattering.

Radar fields
F: A Fourier decomposition of the radar field has to be performed. This
is inaccurate in the case of sharp changes, for instance when almost-square
pulses are used.
T: Hardly any conditions on the radar fields are imposed. Some methods
require the field to be differentiable in time.
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Material properties
F: Linear models for material properties can be used effectively. More-
over, frequency-dependent models are especially suited for frequency methods.
However, nonlinear or history-dependent models are not feasible.
T: Many models for electromagnetic responses in materials can be used. In
particular, nonlinear or history-dependent models can be incorporated. Time
methods are less suited for frequency-dependent models.

Causality
F: The electromagnetic field is a finite series expansion with respect to si-
nusoidal wave fields and has thus an infinite support in time. Causality is
therefore not meaningful in frequency domain.
T: Causality is taken into account in most discretization schemes.

Efficiency
F: In general, frequency methods are more efficient than time methods. The
efficiency depends on the bandwidth of the radar signal. In particular, effi-
ciency deteriorates significantly for wideband signals.
T: Time methods simulate the full electromagnetic wave in a single run. Ef-
ficiency does not depend on the bandwidth but on the highest frequency
component, which is advantageous for wideband signals and low frequencies.
For a small bandwidth, the computation time and storage requirements are
larger than frequency methods.

Technology readiness level
F: Robust implementations are available and stability is no issue. Frequency
methods have been used in industry for both the volume and surface variants.
T: Stability is difficult to achieve and robust implementations are burdensome,
especially for surface methods. Volume methods in time domain have been
used in commercial computer codes.

1.3.3 Choice of computational method

Many computational methods are available to model electromagnetic scatter-
ing phenomena. All of them have their specific merits and limitations. The
choice of computational method depends on the type of application, which is
in this case the stealth technology for aircraft. This results in the following
requirements on the computational method:

1. full-wave scattering of electrically large structures have to be computed
efficiently;

2. wideband signals have to be modeled;
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3. nonlinear and time-varying models for material properties have to be
incorporated.

The choice of computational method for this thesis is the Time Domain In-
tegral Equation (TDIE) method, also known as the Marching-on-in-Time
(MoT) scheme, which is a surface method in time domain. At first, this
might sound surprising because industrial application is aimed for, whereas
the surface method in time domain is the only part of the CEM spectrum that
has not found its way into commercial software packages. In short, the reason
to choose the TDIE method is that it has striking features for application in
modern stealth technology that are not encountered in other CEM methods.

Simulating electromagnetic scattering of electrically large objects in an
unbounded domain is a typical merit of boundary element methods. No ar-
tificial boundary is required and efficient computations for electrically large
objects can be performed. A time-domain formulation is necessary for effi-
ciently modeling wideband signals and incorporating sophisticated models for
RAM. Modern configurations of RAM include ferromagnetic materials, which
have time-varying characteristics and can only be modeled accurately with
nonlinear constitutive equations. Frequency-domain methods are not feasible
for these models. Concluding, the TDIE method is necessary to use for the
specific application this thesis aims for.

1.4 Outline

The TDIE method is a promising method for application to stealth technology
and has been developed and improved in the latest two decades. Still, it has
not yet reached the maturity for application in an industrial environment and
the incorporation of nonlinear constitutive equations remains an open ques-
tion. Therefore, this thesis restricts to radar scattering of metallic structures,
for which a robust implementation is a prerequisite for further development
towards sophisticated RAM models.

The goal of this thesis is to improve the technology readiness level of the
TDIE method. Instability of the TDIE method is the single most important
problem that precludes industrial application. To this end, a large portion of
this thesis concerns the numerical analysis of stability and remedies for insta-
bility will be derived. Furthermore, the accuracy in time of the MoT scheme
will be analyzed and a robust implementation will be explained. Computer
simulations confirm the stability, accuracy, and robustness of the improved
TDIE method.

This thesis will proceed as follows. First, an overview of the TDIE method
in electromagnetics will be given in Chapter 2. Then, the numerical properties
stability, accuracy, and robustness will be analyzed. Finally, several results
from computer simulations will be shown in Chapter 6.
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Part of this thesis has already been published:

• small parts of Chapter 3 on stability has been published in proceed-
ings [106, 111]; a journal paper is in preparation;

• Chapter 4 on accuracy is largely based on a publication in the IEEE
Transactions on Antennas and Propagation [108] and the proceeding
papers [105, 107];

• Chapter 5 on robustness is largely based on a paper accepted for pub-
lication in the IEEE Transactions on Antennas and Propagation [109]
and a proceedings paper [110].



Chapter 2
Methodology

2.1 TDIE method

The computational method of choice in this thesis is the Time Domain In-
tegral Equation method, which uses a boundary element formulation in time
domain of Maxwell’s equations. The focus will be on modeling electromag-
netic scattering phenomena, because this thesis aims for applications in stealth
technology. Remember that the TDIE method is not restricted to electromag-
netics, it has also been applied to acoustics [29, 38, 93, 55] and elastodynam-
ics [10, 72, 79, 51].

In this chapter, an introductory overview will be given of the TDIE method.
First, the model equations for electromagnetic scattering will be given. Then,
the numerical discretization in space and time will be explained. The empha-
size will be on the MoT scheme, which will be used as temporal discretization
procedure. The nomenclature will be introduced and literature reference are
given along the exposition of the TDIE method.

2.1.1 Governing equations in electromagnetics

Throughout this thesis, it will be assumed that a piecewise smooth surface Γ
separates two three-dimensional regions Ω0 and Ω1. The unit normal n̂ on Γ
points towards Ω0. Let us assume that Ω0 is free space and Ω1 a perfect electric
conductor (PEC). Notice that scattering of multiple objects can be modeled
with a disconnected region Ω1. Besides, Γ does not have to be closed, which
allows the modeling of sheets and other objects of zero thickness. Although
it is possible to include wires and junctions into the TDIE method, they will
not be considered in this thesis.

15
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Field equations

The classical equations that are used to describe electromagnetic phenomena
are Maxwell’s equations, which read

∇×E = −∂B
∂t

, (2.1a)

∇×H = −∂D
∂t

+ J, (2.1b)

∇ ·D = ρ, (2.1c)
∇ ·B = 0 (2.1d)

for the electric field intensity E(r, t) in V/m, magnetic field intensity H(r, t)
in A/m, electric flux density D(r, t) in C/m2 or As/m2, magnetic flux den-
sity B(r, t) in Wb/m2 or V s/m2, electric current density J(r, t) in A/m2, and
electric charge density ρ(r, t) in C/m3 or As/m3. The space and time vari-
ables are denoted by r and t with dimensions m and s, resp. The continuity
equation

∂ρ

∂t
+∇ · J = 0 (2.2)

can be derived from Maxwell’s equations and relates the electric current and
charge density. The electromagnetic field (E,H) will be the quantity of inter-
est. To solve Maxwell’s equations, constitutive equations are necessary that
relates the electromagnetic flux (D,B) to the electromagnetic field. These
equations depend on the model for the electromagnetic behavior of materials
on a macroscopic scale. In this thesis, one of the easiest models will be used,
that is,

D = εE, (2.3a)
B = µH (2.3b)

with the constants ε and µ denoting the permittivity and permeability of
free space. The impedance and wave speed are given by η =

√
µ/ε and

c = 1/
√

µε, resp. Sophisticated constitutive equations that model media
more realistically can include finite conductivity, space-dependent parameters,
tensors instead of scalars, or nonlinear partial differential equations such as
the Landau-Lifschitz-Gilbert equation for ferromagnetic materials.

Interface conditions

At interfaces between two media with different electromagnetic properties,
additional conditions hold. These interface conditions or jump conditions re-
late the electromagnetic fields and fluxes in the two media and are usually
derived by a limiting process of Maxwell’s equations towards the interface.
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For example, in the absence of sources on the interface, the magnetic field
intensity is discontinuous across the interface and the electric current den-
sity J is confined in a thin layer around the interface [7]. To be precise, for
arbitrary δ ∈ R,

lim
δ↓0

(n̂× (E(r + δn̂, t)−E(r− δn̂, t))) = 0, (2.4a)

lim
δ↓0

(n̂× (H(r + δn̂, t)−H(r− δn̂, t))) = JS(r, t) (2.4b)

for r ∈ Γ and n̂ = n̂(r), where the electric surface current density JS is
defined as

JS(r, t) = lim
δ→0

(δJ(r + δn̂, t)) for r ∈ Γ (2.5)

with dimension A/m.
Because the interface Γ encloses the PEC object Ω1 in free space Ω0, an

equivalence principle can be used. That is, the electromagnetic field inside the
object can be taken zero with an equivalent surface current on the interface.
Then, the jump conditions reduce to

n̂×E = 0, (2.6a)
n̂×H = JS (2.6b)

where the equivalent electric surface current density JS is defined on the
interface and the electromagnetic field (E,H) in the limit towards the interface
from free space. In the remainder, the subscript S will be omitted, so J = JS .

Vector wave equation

Using the constitutive equations, Maxwell’s equations can be rewritten into
the vector wave form given by

∇× (∇×E) +
1
c2

∂2E
∂t2

= −µ
∂J
∂t

. (2.7)

A classical technique in the analysis of differential equations is the use of the
Green’s function. To explain this technique, let us consider a the equation
Lu = f for a linear differential operator L, unknown function u = u(x) and
data f = f(x). The Green’s function g(x, y) is defined as the solution of
Lg(x, y) = δ(x − y) for the Dirac delta. When such a Green’s function can
be found,

´
Lg(x, y)f(y) dy =

´
δ(x − y)f(y) dy holds. This can be written

as L
´

g(x, y)f(y) dy = f(x), suggesting the solution u(x) =
´

g(x, y)f(y) dy.
A rigorous introduction to Green’s functions can be found in many textbooks
on function analysis, for example [37].

In the case of the vector wave equation (2.7), the electric field E(r, t),
where r and t are source coordinates, can be characterized by the causal
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Green’s function given by

G(r, t; r′, t′) =
δ (|r− r′|+ c(t− t′))

4πc|r− r′|
(2.8)

where r′ and t′ are observer coordinates.

2.1.2 Boundary integral formulation

The electromagnetic scattering of an object Ω1 has been modeled with Maxwell’s
equations (2.1) and constitutive equations (2.3) in the exterior volume Ω0 and
interface conditions (2.6) on the surface Γ. The aim is to reformulate this
model into equations that are defined on the surface Γ only.

Reformulating models from a volume to a surface can effectively be per-
formed with the vector Green’s theorem. This theorem relates a volume in-
tegral with a surface integral as

˚
V

(q · ∇ × (∇× p)− p · ∇ × (∇× q)) dv

=
¨

Σ

((n̂× p) · (∇× q)− (n̂× q) · (∇× p)) ds (2.9)

for smooth vectors p and q and arbitrary volume V with boundary sur-
face Σ. Now, let us substitute the electric field and the vector wave Green’s
function (2.8) into the vector Green’s theorem, i.e., p = E(r, t) and q =
G(r, t; r′, t′)a for an arbitrary vector a, and the space-time regions V = Ω0×R
and Σ = Γ × R. With the use of Maxwell’s equations and the constitutive
equations, this equation can be written into the time-domain equivalent of
the Stratton-Chu formulation [90]. The derivation assumes that no electro-
magnetic sources are present outside the object and that the electromagnetic
fields at the outer boundary in space can be represented with incident wave
fields.

Electromagnetic field integral equations

With the use of the interface conditions (2.6), the Stratton-Chu formulation
can be rewritten in terms of the surface current density J instead of the electric
field intensity E. Then, one will arrive at

−n̂× n̂×
¨

Γ

(
µ
J̇(r′, τ)
4πR

− 1
ε
∇
´ τ

−∞∇′ · J(r′, t̄) dt̄

4πR

)
dr′ = −n̂× n̂×Ei(r, t)

(2.10)
which is a special case of the Electric Field Integral Equation (EFIE), namely
for the surface of a PEC object embedded in free space. In this thesis, this will
be called the EFIE. The dot notation J̇ = ∂

∂tJ has been used for differentiation
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in time and ∇ and ∇′ denote the nabla operator with respect to r and r′,
resp. The EFIE has to be solved for the electric surface current density J(r, t)
for given incident electric field Ei(r, t). The EFIE makes use of evaluation of
the solution in the retarded time level

τ = t− |r− r′|
c

(2.11)

where the abbreviation R = |R| = |r− r′| is used.
When the magnetic field is substituted into Green’s theorem instead of

the electric field, one will arrive at

n̂× n̂×
¨

Γ

(
J(r′, τ)
4πR

+
J̇(r′, τ)

4πc

)
× R

R2
dr′− n̂× 1

2
J̇(r, t) = −n̂× n̂×Hi(r, t)

(2.12)
which is a special case of the Magnetic Field Integral Equation (MFIE),
namely for the surface of a PEC object embedded in free space. In this thesis,
this will be called the MFIE. The MFIE is only valid for closed surfaces.

The EFIE and MFIE can be related to the jump conditions (2.6), that is,
n̂× (Ei + Es) = 0 and n̂× (Hi + Hs) = JS with

Es(r, t) = −
¨

Γ

(
µ
J̇(r′, τ)
4πR

− 1
ε
∇
´ τ

−∞∇′ · J(r′, t̄) dt̄

4πR

)
dr′ (2.13a)

Hs(r, t) =
¨

Γ

(
∇× J(r′, τ)

4πR

)
dr′ (2.13b)

denoting the scattered electromagnetic field for r ∈ Ω0 outside the scatterer
surface. Notice that the MFIE uses the Cauchy principle value of the surface
integral in the scattered magnetic field for a smooth surface.

Initial conditions The incident field will be chosen such that it is present
only after a certain point in time. This can be modeled by the initial condi-
tions

Ei(r, t) = Hi(r, t) = 0 for t ≤ 0. (2.14)

Causality then states that the scattered field and the electric surface current
are zero for t ≤ 0 as well.

Boundary conditions The surface Γ does not have to be closed and can
contain a boundary, for example when a finite sheet is modeled. Then, jump
conditions (2.6) hold on the boundary of Γ. In particular, the electric field
normal to the boundary is zero on PEC objects, which is equivalent to a zero
electric surface current density.
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Differentiated electromagnetic field integral equations

The EFIE contains an integral in time, which results in a dependency of the
variables at the current time level on the full time history. Computation and
storage of the full history is expensive. To this end, it is more efficient to
consider the time derivative of the EFIE, that is,

−n̂× n̂×
¨

Γ

(
µ
J̈(r′, τ)
4πR

− 1
ε
∇∇

′ · J(r′, τ)
4πR

)
dr′ = −n̂× n̂× Ėi(r, t) (2.15)

the differentiated EFIE. The use of this equation requires an incident electric
field that is differentiable in time. Similarly,

n̂× n̂×
¨

Γ

(
J̇(r′, τ)
4πR

+
J̈(r′, τ)

4πc

)
× R

R2
dr′− n̂× 1

2
J̇(r, t) = −n̂× n̂× Ḣi(r, t)

(2.16)
is the differentiated MFIE. The abbreviations EFIE and MFIE are used in
this thesis for both versions. When the difference between the versions is
important, this will be emphasized with the names original EFIE and differ-
entiated EFIE. The differentiated versions are more efficient and more often
used in literature and will thus be used in this thesis, unless otherwise stated.

Combined field integral equations

Two independent model equations have been derived for the same scattering
problem. This allows for the use of a linear combination of the EFIE and
MFIE into a new model equation. For an arbitrary constant κ ∈ [0, 1], this
can be written as

CFIE =
κ

η
EFIE + (1− κ) MFIE (2.17)

called the combined field integral equation (CFIE). Evidently, for κ = 0 and
κ = 1 the CFIE reduces to the MFIE and EFIE, resp. This is the continuous
form of the CFIE. Usually, the CFIE is defined on a discrete level, as a linear
combination of the discretized EFIE and MFIE [81].

In this thesis, the EFIE will be used most often. The advantage of the
EFIE over the MFIE and CFIE is that its application is not restricted to closed
surfaces [81]. Moreover, it suffices to use the RWG function as test and basis
function in space to obtain accurate simulations [11]. Furthermore, the math-
ematical foundation of the EFIE is better developed, see Chapter 3. To this
end, the remainder of this chapter focused on the differentiated EFIE (2.15).
The numerical discretization of the other model equations can be performed
in a similar fashion.
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Dimension analysis

Maxwell’s equations contain four basic dimensions, namely time, length, mass,
and electric current. The solution of model equations depends on the scat-
terer surface, characterized by a reference length L in m; medium parameters
wave speed c, permittivity ε, and permeability µ; and the excitation. The
incident electromagnetic wave field can have arbitrary shape in time-domain
simulations and therefore also arbitrary many parameters. In this thesis, it is
assumed that the excitation is given by a plane wave that can be characterized
by a magnitude |Ei| in V/m and a reference frequency f in Hz. This results
in two dimensionless groups, namely the medium property εµc2 = 1 and the
electrical size of the object Lf/c. For the reference parameters |Ei|, L, c, and√

µ/ε, the model equations can be rewritten into a dimensionless equation
with identical solution.

2.1.3 Numerical discretization in space-time

The electric surface current density depends on both space and time. The
EFIE has therefore to be discretized with a space-time method. Different
discretization schemes have been used in TDIE methods. All of them can be
rewritten into the general framework of finite element methods, more specif-
ically the space-time Petrov-Galerkin method. Because the characteristics of
the EFIE in space and time are different, separate discretization algorithms
in space and time will be used, as explained in subsequent sections.

Space-time Petrov-Galerkin method

The space-time Petrov-Galerkin method uses a separation of the space and
time variables. To this end, the electric surface current density is expanded
in terms of Ns spatial and Nt temporal basis functions as

J(r, t) =
Ns∑

n=1

Nt∑
j=1

Jn,jfn(r)Tj(t). (2.18)

To obtain a discrete solution, the testing procedure also uses a separation
of variables and combines Ns spatial with Nt temporal test functions. The
numerical discretization results in a space-time system of linear equations
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Ax = b, with

A =



A1,1 A1,2 A1,3 . . . . . . A1,Nt

A2,1 A2,2 A2,3 . . . . . . A2,Nt

A3,1 A3,2 A3,3 . . . . . . A3,Nt

...
...

...
. . .

...
...

...
... ANt−1,Nt−1 ANt−1,Nt

ANt,1 ANt,2 ANt,3 . . . ANt,Nt−1 ANt,Nt


(2.19)

the space-time discretization matrix, and

x =



I1

I2

I3

...
INt−1

INt


and b =



V1

V2

V3

...
VNt−1

VNt


(2.20)

representing the discrete electric surface density and discrete incident wave
field, resp. The elements (Ij)n of the discrete solution correspond to temporal
basis function j = 1, 2, . . . , Nt and spatial basis function n = 1, 2, . . . , Ns. The
discretization matrix consists of blocks Ai,j corresponding to temporal test
and basis functions for i = 1, 2, . . . , Nt and j = 1, 2, . . . , Nt, resp. The ele-
ments (Ai,j)m,n of these blocks correspond to spatial test and basis functions
for m = 1, 2, . . . , Ns and n = 1, 2, . . . , Ns, resp. The size of the discretization
matrix is (NsNt)× (NsNt).

Reducing the complexity of the numerical scheme

Computing the discrete electric surface current density requires the solution of
the full space-time system. Because of its large size, this will already become
prohibitively expensive for electrically small objects and short time scales.
Hence, simply solving this system of equations is not feasible for industrial
application of TDIE methods. However, with a clever choice of numerical
scheme, the efficiency can be increased to an extent that solving the system
of linear equations becomes feasible. More specifically, the numerical scheme
should be chosen such that the following properties of the discretization matrix
hold:

1. Lower triangular: if Ai,j = 0 for j > i, then the discretization ma-
trix is lower triangular, which can be solved efficiently with forward
substitution;

2. Banded: if Ai,j = 0 for j < i− `, then the discretization matrix has a
diagonal band of size `;
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3. Toeplitz: if Ai,j = Zi−j for all i, j = 1, 2, . . . , Nt, then the discretiza-
tion matrix is a block Toeplitz matrix for which all diagonals contain a
repetition of the same block, thus reducing the storage requirements;

4. Sparse: if each block Ai,j contains many zero elements, the matrix
becomes sparse.

In next sections, these properties will be related to requirements on the nu-
merical scheme. When all properties hold, the space-time discretization ma-
trix (2.19) can be written as

A =



Z0 0 0 . . . . . . . . . . . . 0
Z1 Z0 0 . . . . . . . . . . . . 0
Z2 Z1 Z0 0
...

...
. . . . . .

...

Z` Z`−1
. . . . . .

...

0 Z` Z`−1
. . . . . .

...
...

. . . . . . . . . Z0 0
0 . . . 0 Z` Z`−1 . . . Z1 Z0


. (2.21)

The space-time system of linear equations can then be solved very efficiently
with forward substitution, that is

Z0Ik = Vk −
∑̀
j=1

ZjIk−j for k = 1, 2, . . . , Nt (2.22)

where the matrices Zj are called discrete interaction matrices. At every time
level k the discrete surface current density Ik can be calculated from known
solutions only, resulting in a marching procedure.

2.1.4 Discretization method in space

Early publications on TDIE methods have been using collocation in space [69].
This has been improved with a Galerkin method, which naturally fit within
the space-time Petrov-Galerkin framework introduced in Sec. 2.1.3. Then, nu-
merical discretization reduces to the choice of spatial test and basis functions
on a specific computational domain.

Surface mesh The computational domain in space should approximate
curved surfaces accurately. This can effectively be achieved with a surface
mesh that consist of flat triangular patches. Usually, each edge has exactly
two adjacent faces, except for edges on the boundary of the surface. Further-
more, the resolution of the surface mesh should be high enough to represent
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the shortest wavelength of the electromagnetic field. The TDIE method has
been applied to quadrilateral elements [115] and curvilinear patches [103] as
well. Then, different spatial basis functions are required, which will be outside
the scope of this thesis.

Test and basis functions in space Because the electric surface current
density is a vector function, the test and basis functions are vector functions
defined on a surface mesh. This thesis will use the most popular choice in
literature, namely the RWG functions, named after Rao, Wilton, and Glisson,
who introduced these functions in CEM [70]. In finite element methods, these
functions were already in use with the name Raviart-Thomas elements [71].
The RWG functions are linear vector functions, defined as

fn(r) =


`n

2|Γ+
n |

(r− r+
n ), r ∈ Γ+

n ,

− `n

2|Γ−n |
(r− r−n ), r ∈ Γ−n ,

0, elsewhere,

(2.23)

where the triangular facets Γ+
n and Γ−n share edge n of length `n, and r+

n

and r−n the free vertices, see Fig. 2.1. Because the RWG functions are defined
edgewise, the number of spatial basis functions equals the number of interior
edges. The local support on two triangular facets sparsifies the interaction
matrices Zj , which makes the marching procedure more efficient.

Figure 2.1: The RWG functions (2.23).

Other spatial basis functions have been used in literature as well, for exam-
ple the higher-order accurate Graglia-Wilton-Peterson functions [103], which
require curved patches to obtain accurate solutions on curved surfaces. In the
case of MFIE, the use of Buffa-Christiansen basis functions, possibly extended
with Calderón preconditioning, can be advantageous [11].

The RWG functions are by far the most often used test and basis functions
in literature on TDIE methods. This consensus has been reached because they
have been analyzed extensively in the literature on frequency-domain CEM
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and general finite element methods, and computational experiments confirm
their applicability. Therefore, the RWG functions will be used for all computer
simulations in this thesis and the research focus will be on the discretization
method in time.

2.1.5 Discretization method in time

Before proceeding to the numerical discretization, it should be noted that the
model equations are given by boundary integro-differential equations which
can not be written into standard formulations that are usually encountered
in textbooks on numerical analysis. Two main differences with standard dif-
ferential equations are present, both can be traced back to the coupling of
space and time dependencies with retarded time levels (2.11). That is, the
unknown surface current density J(r, τ) is evaluated in τ = t− |r− r′|/c.

The first difference with standard formulations is the presence of a surface
integral and divergence operator in space and derivatives and antiderivatives
in time. Because the unknown function depends on retarded time levels,
differential operators in space and time can not be interchanged trivially. This
makes it difficult, if not impossible, to rewrite the EFIE into the standard
form d

dtu(t) = f(t, u(t)) with unknown u and differential operator f . Since
virtually all time integration schemes are designed for this standard form, no
straightforward use of the extensive theory on numerical integration can be
used. Furthermore, with the same reasoning, the EFIE can not be written
into a standard form of a more general delay differential equation, given by
d
dtu(t) = f(t, u(t), u(t− σ1), u(t− σ2), . . . , u(t− σn)) for real σi > 0 [12].

The second difference with standard formulations is that the retarded time
levels are not restricted to a discrete set of time levels. For standard numerical
schemes, the approximated solution is defined on discrete time levels only.
In the case of the EFIE, the retarded time level changes continuously with
the spatial coordinates of the surface mesh. This yields that the retarded
time levels have to be evaluated within the quadrature procedure for the
surface integrals in space. The discretization method in time can therefore
not be decoupled from the discretization and quadrature method in space.
Concluding, the discretization method in time should allow for an evaluation
of the unknown in arbitrary time levels.

Specific discretization methods have to be designed for the model equa-
tions because of the strong coupling of space and time dependencies in the
EFIE. The discretization method in time should at least be able to han-
dle integration and differentiation in time and evaluation in arbitrary re-
tarded time levels. Many different numerical schemes have been used in the
TDIE method, all with their merits and limitations. The choice of discretiza-
tion scheme has influence on, among others, stability, accuracy, and efficiency
of the TDIE method.
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In this section, an overview of the following numerical schemes will be given:

• finite differences;

• marching on in time;

• marching on in degree;

• space-time Galerkin; and

• convolution quadrature.

All methods have been developed and presented in literature as different nu-
merical schemes. However, it should be noticed that the last four schemes can
all be written as a special case of a space-time Petrov-Galerkin scheme.

Discrete time axis

First, a discrete time axis has to be defined. Because of the zero initial
conditions for t ≤ 0, the discrete time axis has to partition the region 0 < t ≤
tend for tend the simulation time. The tessellation of the discrete time axis is
given by

tk = k∆t for k = 1, 2, . . . , Nt (2.24)

where Nt denotes the number of time levels, such that tNt = tend upon round-
ing. The time step size ∆t has been chosen uniform, which is by far the most
common choice in literature. Variable time step sizes have been used in the
TDIE method [77], but the space-time discretization matrix is not lower tri-
angular nor has a Toeplitz structure in these methods, thus preventing a
marching procedure. Moreover, adaptive methods require the recalculation of
interaction matrices for each change in the time step size.

To capture all waves in the electromagnetic field, the time step size has
to satisfy Nyquist’s criterium. That is, the maximum frequency fmax needs
to be sampled with at least two points. In practice, an oversampling factor ν
will be used, that is,

∆t =
1

ν 2fmax
(2.25)

where ν is usually chosen between 5 and 10 [102]. Notice that fmax should be
the maximum frequency of the total electromagnetic field, which is not known
in advance. In the case of PEC objects, the scattered field will have the same
frequency band as the incident field. This allows to choose fmax based on the
incident wave field only.

It is not necessary to satisfy a CFL condition, because stability of space-
time Petrov-Galerkin schemes for TDIE methods is independent of the CFL num-
ber, as will be explained in Chapter 3. Still, computational experiences sug-
gest that a CFL number around one is advantageous for accuracy and effi-
ciency. Notice that this will be obtained when both the surface mesh width
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and time step size are chosen as an oversampling factor of the highest fre-
quency mode.

Finite differences

Initial versions of the TDIE method used finite differences to approximate the
time derivatives in combination with interpolation for the evaluation of the
discrete surface current density in retarded time levels [69]. The finite dif-
ference approximation allows for analysis of the TDIE method with available
techniques from ODEs, such as the Von Neumann analysis (see Sec. 3.2.2).
However, these techniques have been found to be very unstable and have be-
come obsolete with the inception of the more accurate schemes that will be
explained subsequently.

Marching on in time

The most popular discretization scheme for TDIE methods is the Marching-
on-in-Time (MoT) scheme. Especially in engineering literature, a large num-
ber of papers on the development of the MoT scheme can be found, see [17, 5]
and references therein. Collocation is used in the MoT scheme, that is, the
EFIE is point matched in discrete time levels. Thus, the model equation is
solved on discrete time levels only. However, one still needs to compute the
surface current density and its derivatives in retarded time levels. Temporal
basis functions are simultaneously being used for differentiation and interpo-
lation.

For correctly chosen temporal basis functions, the MoT scheme satisfies
all four properties listed in Sec. 2.1.3 to reduce the computational complexity.
Consequently, the MoT scheme is the most efficient TDIE method, certainly
when the available accelerators are being used, see Sec. 2.2.5. Besides, im-
plementation is relatively easy and related model equations can readily be
discretized. For these reasons, the MoT scheme is the method of choice in
this thesis. The details of this method will be explained in Sec. 2.2.

Marching on in degree

The Marching-on-in-Degree (MoD) or Marching-on-in-Order (MoO) scheme
discretizes the EFIE with a Galerkin method in time, see [48] for a review. As
test and basis functions, Laguerre polynomials are used, which are causal and
defined on the entire time history. Therefore, the space-time discretization
matrix is lower triangular and has a Toeplitz structure, thus allowing for a
marching procedure. On the downside, the matrix is not banded and the
blocks are densely populated, which makes the method inefficient compared
to the MoT scheme. In fact, the computational costs scale with an additional
factor Nt and computational results show long computation times and large
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storage requirements [47]. Although many stable results have been shown,
there is no stability proof available. For these reasons, the MoD scheme will
not be used in this thesis.

Space-time Galerkin

An elegant and well-founded method for numerical discretization of the EFIE
is the use of a space-time Galerkin method [91, 39, 20]. Following the cus-
tomary approach in finite element methods, first a variational formulation is
derived. Then, the test and basis functions are chosen as a subspace of certain
space-time function spaces. This approach allows for a thorough mathemati-
cal analysis of computational properties such as stability. In fact, it has been
proven that the variational formulation of the EFIE admits a unique and
bounded solution. So, stable results are expected when all requirements for
the proof are fulfilled, see Chapter 3.

Notice that both the MoT and space-time Galerkin scheme can be writ-
ten as a special case of the space-time Petrov-Galerkin scheme. For specific
versions of MoT and space-time Galerkin schemes, they are even equivalent,
as will be shown in Sec. 3.8. Still, both methods have largely been developed
independently in literature and several differences between the methods are
given in Table 2.1. The efficiency of space-time Galerkin schemes is compet-
itive with MoT schemes. The main merit of the space-time Galerkin scheme
is the availability of a thorough mathematical framework, including a stabil-
ity proof. However, its application in the engineering community has been
restricted because of its scarce documentation in literature. An attempt will
be made in Chapter 3 to bridge the gap between the two methods such that
the favorable properties of both methods can be joined together.

Table 2.1: Comparison of the MoT scheme and space-time Galerkin scheme.
MoT scheme space-time Galerkin

collocation in time variational formulation

applied to differentiated EFIE applied to original EFIE

only a posteriori stability analyses a priori stability proof derived

accelerators developed no accelerators known

straightforward implementation elaborate implementation

engineering context mathematical background

well documented scarce documentation
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Convolution quadrature

The EFIE consists of a convolution in time of the Green’s function and the
electric surface current density. The presence of this convolution can be used
to design specific numerical schemes, as is done for general convolutional inte-
gral equations for decades [56, 58, 9]. The so-called Convolution Quadrature
(CQ) scheme has been applied to the EFIE, but with the name finite difference
delay modeling [99].

The CQ scheme uses a series of transformations to obtain a discrete so-
lution of the model equation. First, the time-dependent equations are trans-
formed to the Laplace domain. Then, discretization is carried out in the
Laplace domain. With an inverse z-transform, discrete equations in the time
domain are obtained. An advantage of this detour in the Laplace domain is
that computational properties are more easily derived. In particular, stabil-
ity of the CQ scheme has been proven, provided an A-stable discretization
scheme is used.

At first sight, the CQ scheme might look very different to space-time
Galerkin and MoT schemes, but many similarities can be found. For instance,
the stability proofs of both methods make use of the same mathematical foun-
dation in the Fourier-Laplace domain. On a discrete level, the CQ scheme ul-
timately results in a space-time discretization matrix as well. When backward
differences are used in the CQ scheme, a lower triangular Toeplitz structure
will be obtained, thus allowing for an efficient marching procedure. However,
the matrix is not banded and its blocks are densely populated because of the
dependence on the full time history. Since the CQ scheme and MoT scheme
are two of the most promising discretization methods for TDIE methods, let
us compare the computational characteristics:

Efficiency The large support in time of the CQ weights results in a non-
banded space-time discretization matrix and dense interaction matrices in
the marching procedure. The CQ scheme is therefore less efficient than the
MoT scheme, in terms of both computation time and storage requirements.
Efficiency of the CQ scheme has been improved with cutoff strategies and FFT
techniques [40, 8]. However, MoT schemes have been accelerated as well, with
plane-wave and FFT techniques. The weaker efficiency of large support car-
ries over to accelerated versions and the MoT scheme remains more efficient
than the CQ scheme.

Stability The main computational advantage of the CQ scheme is its su-
perior stability characteristics. Numerical stability is assured for all A-stable
time integration methods, which is a wide class of backward differentiation
formulas and Runge-Kutta methods. Moreover, stability is moderately sensi-
tive to quadrature errors in the evaluation of the interaction matrices [57, 25].
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Robustness Whereas the MoT scheme uses temporal basis functions, the
CQ scheme uses so-called CQ weights to interpolate the discrete surface cur-
rent density. For example, when backward Euler is used, the CQ weights
read wk = (ξke−ξ)/(k!) for k = 1, 2, . . . , Nt and arbitrary retarded lev-
els ξ = R/(c∆t) [99]. Because of the smoothness of the CQ weights, numerical
quadrature procedures are very effective. The use of quasi-exact integration
methods is therefore not necessary to obtain sufficient accuracy for the eval-
uation of interaction matrices in the CQ scheme. This makes the stability of
the CQ scheme less sensitive to numerical errors and thus more robust than
the MoT scheme [25]. On the other hand, finite precision arithmetic can re-
sult in large errors when electrically large structures are modeled. Then, Nt

becomes large and the evaluation of the CQ weights in finite precision arith-
metic becomes inaccurate for large values of k. Furthermore, when Runge-
Kutta discretization is used in the CQ scheme, no analytical expression for the
CQ weights in time domain can be obtained. Computational algorithms for
the inverse z-transform have to be used, thus introducing additional numerical
errors and difficulties [80, 9].

Convergence Higher-order spatial basis functions can be used in the CQ scheme
and higher-order convergence in time can be obtained with Runge-Kutta
schemes [98]. Higher-order convergence in time can be obtained in MoT schemes
as well, see Chapter 4, but this has not yet been achieved in combination with
the higher-order spatial basis functions due to the need of quasi-exact inte-
gration rules.

Accuracy A major drawback of the CQ scheme is the dispersion and dis-
sipation of the surface current density [16]. Computational experiments con-
firm that dispersion and dissipation in the CQ scheme is far worse than in the
MoT scheme [25].

Model equations Although this thesis focuses on the EFIE for PEC ob-
jects, the computational methods should also be applicable to different model
equations and other types of materials, for which the Green’s function might
differ from the standard Green’s function for scattering in an unbounded ho-
mogeneous space. Because the CQ scheme discretizes the model equations
in the Laplace domain, a formulation of the Green’s function in the Laplace
domain is required. This restriction to Green’s functions that are Laplace-
transformable might look as a drawback, for instance when nonlinearities
are present. On the other hand, the CQ scheme does not need the Green’s
function in the time domain. This is a strong merit in applications such
as viscoelastics where the Green’s function is only available in the Laplace
domain [80]. On the downside, the formulation in the Laplace domain of
the CQ scheme makes it difficult to use physically meaningful variables [9].
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With MoT schemes, one can develop algorithms inspired on physical phenom-
ena [62].

Hybridization Instead of emphasizing the differences between the meth-
ods, one can also join forces and combine the CQ and MoT scheme in one
TDIE method. The main insight that resulted in this fusion is that the
CQ scheme can be written as an MoT scheme with specific temporal basis
functions. That is, a large set of differently shaped temporal basis functions
is obtained. With this observation, spline basis functions for the MoT scheme
have been analyzed with techniques in the Laplace domain [25]. Another re-
markable union of the CQ and MoT scheme is the ‘arrested CQ method’ [101],
which uses a hybrid method of CQ weights for near interactions and MoT ba-
sis functions for far interactions. This combines the stability of the CQ scheme
with the efficiency and lack of dispersion and dissipation of the MoT scheme.

2.2 MoT scheme

In this thesis, the electromagnetic scattering from conducting surfaces is mod-
eled with the EFIE and solved with the TDIE method. As explained in
Sec. 2.1, the numerical discretization procedures can be analyzed for a general
space-time Petrov-Galerkin scheme, resulting in the space-time discretization
matrix (2.19). The choice of test and basis functions in space is given by
the RWG functions, which is a standard choice. No consensus on the nu-
merical discretization in time has been reached in the CEM community. The
MoT scheme, space-time Galerkin, and convolution quadrature are the major
schemes being used in literature. Because of its efficiency and ease of imple-
mentation, the MoT scheme will be adopted in this thesis. Remember that the
MoT scheme shares many properties with space-time Galerkin and for specific
versions, the two schemes are equivalent, as will be shown in Chapter 3.

2.2.1 Numerical discretization

The MoT scheme uses collocation in time, that is, the model equations are
point matched in discrete time levels ti = i∆t with i = 1, 2, . . . , Nt. This is
equivalent to using a Petrov-Galerkin scheme with the Dirac delta δ(t − ti)
as test function. The temporal basis functions Tj(t) with j = 1, 2, . . . , Nt

are the defining parameters of the MoT scheme. Their definition determines
many computational properties of the TDIE method. In particular, all prop-
erties of the space-time discretization matrix given in Sec. 2.1.3 that allow for
an efficient marching procedure depend on the choice of the temporal basis
function.

Remember that the unknown electric surface current density has to be
evaluated in retarded time levels τ = t− R/c where the distance R can take
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arbitrary values. Because of the series expansion (2.18) in terms of spatial and
temporal basis functions, the temporal basis function needs to be evaluated in
retarded time levels as well. This remains the case when collocation in time
is used, because then one needs to evaluate Tj(τi) = Tj(ti − R/c) which can
still obtain arbitrary values, in particular outside the discrete time levels tk.
Notice that each term Tj(τi) for i, j = 1, 2, . . . , Nt contributes to the block
Ai,j in the space-time discretization matrix (2.19).

Now, let us reformulate the properties of the space-time discretization
matrix given in Sec. 2.1.3 into requirements on the temporal basis functions:

1. Lower triangular: if Tj(t) = 0 for t ≤ tj−1 then Tj(τi) = 0 for τi ≤ tj−1

or i < j and thus Ai,j = 0 for j > i; this property is called discrete
causality or marching criterion;

2. Banded: if Tj(t) = 0 for t > tj+` then Tj(τi) = 0 for τi > tj+` or
i > j + ` and thus Ai,j = 0 for j < i− `; this property is called locality
as opposed to global or entire-domain basis functions; notice that this
property only leads to bandedness when no time integral is present in
the model equation;

3. Toeplitz: if Tj(t) = T (t − tj) for all j = 1, 2, . . . , Nt then Tj(τi) =
T (τi − tj) = T (τi−j) and thus Ai,j = Zi−j for all i, j = 1, 2, . . . , Nt; this
property is called convolution or translation invariant;

4. Sparse: if Tj(t) = 0 for |t − tj | > td with d ∈ N fixed and independent
on Nt then the number of nonzero elements scales with O(Nt) instead
of O(N2

t ) in time and thus is each block Ai,j sparse; this property is
called compactness or short support.

When the temporal basis functions are chosen such that they fulfill all above
mentioned requirements, the solution of the space-time system (2.19) reduces
to the marching procedure (2.22). This is a huge reduction of computational
costs in both simulation time and memory. Therefore, all of these properties
will be required for MoT schemes.

The convolution property requires that all temporal basis functions Tj are
written as translations of a single function T , i.e.,

Tj(t) = T (t− j∆t) for j = 1, 2, . . . , Nt. (2.26)

Because all temporal basis functions Tj are simple geometrical transformations
of the same function, this function T is also called the temporal basis function
of the MoT scheme. To obtain the other three properties, it satisfies to require

T (t) = 0 for t ≤ −∆t and t > d∆t. (2.27)
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The causality and compactness can be derived immediately from this require-
ment and the locality is obtained for

` =
⌊

maxr,r′∈Γ |r− r′|
c∆t

⌋
+ d. (2.28)

The only remaining requirement on the definition of T is that its derivatives
and antiderivative can be evaluated in retarded time levels, because terms
like T ′(τ), T ′′(τ) and

´ τ
T are present in the discrete model equations. In

order to make things not unnecessary complicated, piecewise polynomials will
be used as temporal basis function in this thesis. Remember that the cus-
tomary choices of shifted Lagrange and spline basis functions are piecewise
polynomials. They can conveniently be written as

T (t) =



F0(t), −1 < t̃ ≤ 0,

F1(t), 0 < t̃ ≤ 1,
...

...
Fd(t), d− 1 < t̃ ≤ d,

0, else,

(2.29)

with F0, F1, . . . , Fd polynomials of degree d, and t̃ = t
∆t the scaled time. The

degree of this temporal basis function is d.

2.2.2 Temporal basis functions

The main choice in MoT schemes is the definition of the temporal basis func-
tion (2.26). This choice has a profound influence on the computational proper-
ties of the MoT scheme, including stability, accuracy, and efficiency. Choosing
the correct temporal basis function is not evident and there is no consensus in
literature. Three of the most popular temporal basis functions are depicted
in Fig. 2.2.

The main characteristics of temporal basis functions are causality, com-
pactness, bandlimitedness, and smoothness. Causality and compactness have
been explained in Sec. 2.2.1. Bandlimitedness means that the frequency band
of a temporal basis function is limited. Smoothness is given by the continuity
or regularity of the temporal basis functions. Following is a cornucopia of
temporal basis functions, with the year of introduction in literature:

I. Interpolants (causal, compact, not bandlimited, not smooth):

1. Hat, 1991 [69];

2. Quadratic Lagrange, 1997 [60];

3. Cubic Lagrange, 1999 [30];
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Figure 2.2: Three of the most popular temporal basis functions, namely the
quadratic Lagrange (4.22), quadratic spline (4.25), and bandlimited interpo-
lation function (BLIF) [102].

4. Quartic Lagrange, 2005 [6];

5. Shifted Lagrange, 2009 [84];

II. Splines (causal, compact, not bandlimited, moderate smoothness):

6. Quadratic spline, 2007 [97];

7. Cubic C2 spline, 2009 [33];

8. Cubic C1 spline, 2011 [105];

9. Cubic B-spline, 2002 [73];

10. Noncausal B-spline, 2011 [32];

11. Cardinal B-spline, 1994 [72];

12. Convolution spline, 2013 [26];

III. Bandlimited functions (not causal, not compact, bandlimited, smooth):

13. Bandlimited APSWF, 2004 [102];

14. Bandlimited semi-hat, 2010 [41];

15. Bandlimited spline, 2012 [35];

16. Bandlimited Lagrange, 2012 [31];

IV. Smooth (not causal, compact, not bandlimited, smooth):

17. Partition of unity, 2012 [77];
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18. Convolution error, 2013 [25];

V. Diverse:

19. Cosine squared, 1999 [45];

20. Exponential, 2001 [44];

21. Rational fractional, 2001 [43];

22. Sinusoidal dome, 2007 [46];

23. Polynomial dome, 2007 [112];

24. Gauss, 2012 [14];

VI. Entire-domain functions used in MoD schemes:

25. Weighted Laguerre, 2004 [49];

26. Associated Laguerre, 2011 [61];

27. Hermite, 2007 [86];

VII. Entire-domain functions used in CQ schemes:

28. Backward differentiation formula, 2013 [26];

29. Runge-Kutta, 2013 [25].

As impressive as this list might look, it is not exhaustive, because a novel
family of spline basis functions will be derived in this thesis. In Chapter 4,
a framework will be presented which can be used to design temporal basis
functions according to user-specified requirements on computational charac-
teristics.

2.2.3 Matrix assembly

The MoT scheme has been designed such that solving the space-time dis-
cretization system reduces to a marching procedure (2.22). Before this march-
ing procedure can be performed, all interaction matrices Zj for j = 0, 1, 2, . . . , `
have to be computed. Each element (Zj)mn can be related to a discrete model
of the electromagnetic interaction between spatial elements m and n at re-
tarded time level j. Because the discretization methods can be written as a
space-time Petrov-Galerkin scheme of an integral equation, each matrix ele-
ment is given by two integrals in time and two surface integrals in space, to-
taling a six-dimensional integral. In time, the inner integral can be evaluated
analytically as a convolution of the Green’s function and the surface current
density. The outer integral in time can be evaluated analytically as well be-
cause this is point matching in time. The remaining four-dimensional integral
in space is not easily evaluated. Because of the presence of retarded time
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levels and the use of piecewise polynomial temporal basis functions, shadow
regions are present in the integrand. That is, the integrand is only smooth
on intersections of discrete light cones and triangular patches. In Chapter 5 a
quasi-exact integration method will be explained that takes this into account
and computes the integrals with a high accuracy.

In general, quadrature procedures are used to compute (parts of) the four-
dimensional integrals in space. The effectiveness of the numerical quadrature
depends on the choice of temporal basis function and the quadrature accuracy
has profound influence on the stability of the MoT scheme, see Sec. 3.4.4. The
incorporation of quasi-exact integration methods is necessary for stability, but
is computationally demanding. In many cases, the matrix assembly consumes
more computation time than the marching procedure.

2.2.4 Marching procedure

When all interaction matrices have been computed, the discrete solution can
be obtained with a marching procedure. This contains two parts, namely
the computation of the history and the current state. Computing the history
is given by matrix-vector multiplications of the interaction matrices and the
discrete solutions on past time levels. Computing the solution at the new
time level requires the solution of a system of linear equations.

Matrix-vector multiplication

The computation of the right-hand side of the marching procedure (2.22)
requires the computation of

∑`
j=1 ZjIk−j . The interaction matrices Zj have

already been computed and stored and the discrete solutions Ij have been
computed in previous iterations of the marching procedure. Standard routines
for matrix-vector multiplication can thus be used and parallelization can be
performed easily. Also, remember that the interaction matrices are sparse in
MoT schemes.

Linear solver

To obtain the discrete solution at a new time level, a system of linear equa-
tions Z0Ik = bk has to be solved for a known right-hand side bk containing
the excitation and history. The leading matrix Z0 contains near interactions
only, which makes it a sparse matrix. This calls for the use of efficient lin-
ear solvers. However, this procedure takes only very little computation time
compared to matrix assembly and matrix-vector multiplications for current
test cases. Therefore, an computationally expensive but very accurate full
LU-decomposition is used in this thesis. Still, the linear solver consumes less
than 1% of the total computation time for all simulations performed in this
thesis.
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It is expected that the linear solver will consume relatively more computa-
tion power for electrically large objects discretized with high spatial resolution.
Then, the use of an iterative linear solver will become advantageous. For ex-
ample, the TFQMR and GMRES solvers have been used in literature [2, 94].
No information about preconditioners of the linear solver has been found in
literature. Because this system of linear equations has to be solved at each it-
eration in the marching procedure, with every time iteration the same matrix,
an accurate preconditioner is expected to improve the efficiency.

Tail component of marching procedure

When the MoT scheme is applied to the differentiated EFIE, a marching
procedure (2.22) will be obtained with a fixed number of interaction matrices
for previous time levels. In the case of the original EFIE, an integral in time is
present which will result in an infinite tail, even when all requirements on the
temporal basis function listed in Sec. 2.2.1 are fulfilled. Because of the initial
conditions, the iterations start at zero time and run until the present time
level in the marching procedure. However, one can show that the interaction
matrices are constant inside the tail. Therefore, the original EFIE results in
a marching procedure given by

Z0Ik = Vk −
∑̀
j=1

ZjIk−j − Ztail

k∑
j=`+1

Ik−j (2.30)

where ` is given by the number of active interaction matrices, see Eq. (2.28).
Besides the additional tail, the matrices Zj are more dense than in the case of
differentiated model equations, because of the large support of the antideriva-
tive of the temporal basis function. This yields that the use of the original
EFIE is computationally more expensive than the differentiated EFIE, both
in computation time and storage requirements. For this reason, the differen-
tiated EFIE will be used throughout this thesis.

2.2.5 Acceleration methods

The advantage of a BEM is that the number of spatial mesh elements scales
quadratically with the frequency whereas for volume methods it scales cubi-
cally. However, this gain is usually diminished by the fact that dense matrices
are present in BEM whereas sparse matrices are present in volume meth-
ods. For the TDIE method to be competitive with volumetric time-domain
methods, the efficiency has to be improved. Two accelerators have been pre-
sented in literature, one based on plane wave expansions and the other on
fast Fourier transforms (FFT) [82, 115]. Both are inspired from frequency-
domain CEM and reduce the computational complexity of MoT schemes.
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Remember that computation time and memory requirements scale O(NtN
2
s )

in MoT schemes [17].
The incorporation of an acceleration method will be necessary to perform

a scattering analysis for objects of industrial interest, because these tend to
have dimensions that make them electrically large, while a high resolution
discretization is required to obtain an accurate solution. The acceleration
methods have already a long history of improvements and large scale com-
putations have been performed, but implementation is tedious. For these
reasons and because robust stability is more critical for industrial applica-
tion, no acceleration methods will be used in this thesis. For completeness,
the acceleration methods will be explained very briefly.

Fast Fourier transforms

The Time Domain Adaptive Integral Method (TD-AIM) [115, 113, 5] uses

FFT techniques to reduce the complexity to O(NtN
3
2
s log2 Ns) for the com-

putation time. The memory requirements remain O(NtN
2
s ). The TD-AIM

can be implemented in parallel relatively easy and improves the computa-
tion time already for small scale objects. The algorithm does not impose
specific requirements on the Green’s function. When quasiplanar structures
are modeled, an additional reduction in complexity can be achieved, namely
O(NtNs log2 Ns) for computation time and O(NtN

3
2
s ) for memory.

Plane wave expansions

Similar to the fast multipole method in frequency-domain CEM, plane wave
expansions can be used to improve the efficiency of the MoT scheme. The
Plane Wave Time Domain (PWTD) method [82, 83, 17] uses a multilevel
framework with groups of near and far interactions. The computational
complexity is O(NtNs log2 Ns) for both computation time and memory and
thus outperforms the TD-AIM asymptotically. The implementation of the
PWTD method depends on the definition of the Green’s function, which
makes the extension to different model equations nontrivial.

2.2.6 Incident wave field

TDIE methods compute the electric surface current density for a given inci-
dent electromagnetic wave field. When the differentiated EFIE is used, the
incident wave field has to be differentiable. In this thesis, plane wave fields will
be used, with the shapes depicted in Fig. 2.3. Following are the definitions of
the incident electric wave fields, where E0 denotes the pulse strength in V and
p̂ and k̂ denote the nondimensional polarization and propagation direction,
resp. The magnetic field is given by the same shape, but with polarization
k̂× p̂ and the amplitude divided by the impedance. Furthermore, instead of
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using seconds as unit of time, we will often use lightmeter (lm), that is, 1 s
= c lm with c the speed of light.
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Figure 2.3: Examples of the incident wave fields, given by the Gaus-
sian pulse (2.35), modulated Gaussian pulse (2.37), and causal sinusoidal
wave (2.38).

Modulated Gaussian pulses The most popular incident wave field in
literature is based on the modulated Gaussian pulse, given by

g(t) =
1

σ
√

2π
cos(γ(t− µ))e−

(t−µ)2

2σ2 (2.31)

for µ, σ, γ ∈ R. This function is symmetric around its peak value in t = µ

and its magnitude outside the region
[
µ− 4

√
ln(100) σ, µ + 4

√
ln(100) σ

]
is

at least 1016 times smaller than the maximum. The Fourier transform of this
pulse is given by

ĝ(ω) =
1
2
eiωµ

(
e−

1
2 (ω+γ)2σ2

+ e−
1
2 (ω−γ)2σ2

)
(2.32)

for ω ∈ R, i2 = −1, and ĝ(ω) =
´∞
−∞ g(t)eiωt dt. The center frequency ωc of

a pulse is defined as the frequency with maximum contribution, whereas the
bandwidth frequency ωbw is defined as

|ĝ(ωc)|
|ĝ(ωc ± ωbw)|

= 108. (2.33)



40 Chapter 2. Methodology

For the modulated Gaussian pulse (2.31),

ωc = γ, (2.34a)

ωbw =
4
√

ln(10)
σ

(2.34b)

This means that the strength of the modulated Gaussian pulse at frequency
ωc±ωbw is down by 108 or 160 dB from its peak value. The essential frequency
spectrum is thus given by [ωc − ωbw, ωc + ωbw]. Notice that this is the angular
frequency, the ordinary frequency is given by f = ω/(2π).

A special case is the Gaussian plane wave, given by

Ei(r, t) = E0
4√
πw

e−( 4
w (c(t−t0)−r·k̂))2

p̂ (2.35)

for w the pulse width in m and t0 the pulse delay in s. This is a modulated
Gaussian function (2.31) with γ = 0, µ = t0 + (r · k̂)/c, and σ2 = 1

2 ( T
4c )2.

The magnitude of the pulse at t = t0 ± w/c is 140 dB below the peak value.
Because the center frequency is zero, the frequency bandwidth is also the
maximum frequency content, given by

fmax =
8
√

ln(100)
π

c

T
. (2.36)

For example, a pulse width of 4 m results in a maximum frequency of 410MHz,
which corresponds to a minimum wavelength of 0.73 m.

A more general incident wave field is the modulated Gaussian plane wave,
given by

Ei(r, t) = E0 cos (2πfcρ) e−
ρ2

2σ2 p̂, (2.37)

σ =
3

2πfb
,

ρ = t− t0 −
r · k̂

c

for fc and fb the center and bandwidth frequency in Hz, resp. The magnitude
of the field at frequencies fc ± fb reduces to approximately 40 dB below the
peak value. The field is reduced by 160 dB at frequencies fc ± 2fb because
4
√

ln(10) ≈ 6.1.

Stationary waves Frequency-domain methods use stationary waves, that
is, sinusoidal fields with a given frequency. Due to the zero initial conditions,
these wave fields are not feasible in the TDIE method. This can be solved by
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using a causal sinusoidal plane wave, given by

Ei(r, t) = E0 sin(σwave)
(

1
2

+
1
2
erf(σshape)

)
p̂, (2.38)

σwave = 2π
ct− r · k̂

λ
,

σshape = 6
(σwave

2πn
− 1
)

for λ the wave length in m and n the time offset in number of wave lengths.
Notice that this wave field has been defined such that |Ei| < 10−16 for t < 0
and from t = 2nλ/c a sinusoidal plane wave is obtained in machine precision,
with amplitude E0 and wave length λ.





Chapter 3
Stability

3.1 Stability of TDIE methods

Computer simulations always produce an approximate solution of the physi-
cal model. This approximation should be realistic enough for computational
methods to be useful. One of the requirements on physical realism is that
the approximation remains bounded. This is guaranteed when the numerical
scheme is stable. Evidently, lack of stability should always be prevented.

TDIE methods for electromagnetic scattering analysis have a long history
of instability. Early schemes were hard to stabilize, even for small problem
sizes. Extensive research has improved the MoT scheme such that stable
results can be obtained for many different objects. The instabilities that are
still present arise only when simulation times are very long with respect to the
time scale of the excitation. This late-time instability can be very deceptive
and computational experiments suggest that the instabilities will be visible in
early time for more complicated geometries.

The stability of TDIE methods depends on different numerical parameters,
such as the time step size and the number of quadrature points. Repeating
computer simulations with carefully adjusted parameters will most often lead
to stability. However, this is not feasible in industry due to constraints in
time, computer power, and financial resources. Furthermore, nonexpert users
should be able to generate robust simulations. For these reasons, stability of
the computational method has to be assured without fiddling with numerical
parameters. In theory, the TDIE method can be proven to be unconditionally
stable, so without conditions on the choice of time step size and mesh width.
In practice, the expected stability can only be achieved with specific numerical
schemes and very accurate evaluation of the discrete interaction matrices.

Stability is a classical property of numerical schemes and its definition

43
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can be found in almost all textbooks on numerical analysis. Stability of a
numerical scheme depends on the model equation and its analysis can be
very elaborate. First, the instabilities that have been found in computer
simulations will be analyzed. In Sec. 3.2, several techniques for analyzing
stability of TDIE methods will be presented. The instabilities observed in the
MoT scheme will be categorized in Sec. 3.3. The most persistent instability
originates from the numerical discretization and is visible as a diverging so-
lution in time that alternates on discrete time levels. This type of instability
has been observed by many practitioners of the TDIE method and in Sec. 3.4
a large number of the remedies available in literature are explained. Com-
putational experiments in Sec. 3.5 suggest that the choice of temporal basis
function is of paramount importance to the stability. The most thorough sta-
bility analysis is based on a functional analysis of the variational formulation
and results in a functional framework for which a stability proof is available,
as explained in Sec. 3.6. This stability theorem will be extended in Sec. 3.7 to
the model equations of choice, i.e., the differentiated EFIE. The requirements
of the stability theorem prohibits a straightforward use of the MoT scheme.
This limitation can be circumvented by rewriting the MoT scheme into an
equivalent Petrov-Galerkin scheme, as derived in Sec. 3.8. With these exten-
sions, the stability theorem can be used for the MoT schemes with quadratic
spline basis functions. Finally, several nuances for this stable scheme will be
discussed in Sec. 3.9.

3.2 Analysis of instabilities

Instabilities of numerical schemes typically manifest themselves as solutions
that grow beyond any bound. This can easily be seen in a picture of the
time evolution of the discrete solution. However, other analyses are available
that give more information about how the instability behaves and where it
originates from. In this section, several algorithms will be explained to analyze
the instabilities in TDIE methods. This will be partitioned into a posteriori
analyses that require the numerical solution to be computed and a priori
analyses that work without first performing the computational simulation.

3.2.1 A posteriori stability analyses

A posteriori analyses can be used to obtain information about the stability of
the TDIE method with high confidence. Drawback of a posteriori analyses is
that the information is only valid for the particular test case and can there-
fore hardly be used to draw conclusions about stability for other test cases.
Moreover, these procedures can be computationally expensive.



3.2. Analysis of instabilities 45

Discrete surface current density

The electric surface current density on the scatterer can easily be computed
from the discrete solution with the series expansion (2.18). An example of
this is given in Fig. 3.1(a), where the discrete surface current density has been
depicted for one point on the scatterer surface. In TDIE methods, the insta-
bility is often present at late time only, that is, long after the incident wave
field has passed the object. Long time simulations are therefore necessary to
check stability, which can be computationally demanding. Moreover, stability
cannot be verified with this method, only instability can be confirmed.

Polynomial spectrum

Many computational properties of numerical schemes can be deduced from
the discretization matrix. In the case of MoT schemes, the stability can be
characterized by the interaction matrices Zj for j = 0, 1, 2, . . . , `. To this end,
let us rewrite the MoT scheme (2.22) as

xk = Qxk−1 + fk (3.1)

for xk = [Ik Ik−1 . . . Ik−`+1]T denoting the solution vector over ` time levels,
fk the excitation and

Q =


−Z−1

0 Z1 −Z−1
0 Z2 . . . −Z−1

0 Z`−1 −Z−1
0 Z`

I 0

I
. . .
. . . 0

I 0

 . (3.2)

This amplification matrix has size `Ns× `Ns and is in block companion form.
Solutions of the recurrence relation are bounded if the spectral radius of the
amplification matrix Q is smaller than unity. So, when all eigenvalues of Q are
contained within the unit circle of the complex plane, the numerical stability
has been confirmed [27, 3]. This property can also be derived via the z-
transform of the MoT algorithm [60]. An example of this so-called polynomial
spectrum is given in Fig. 3.1(b).

Computation of the polynomial spectrum can be prohibitively expensive
for large problem sizes. Notice that the spectral radius of the amplification
matrix already determines numerical stability, which makes it redundant to
compute the full polynomial spectrum. Algorithms exist that approximate the
spectral radius efficiently. However, for the MoT scheme these methods are
not effective due to the special structure of the polynomial spectrum. More
precisely, an eigenvalue of 1 with a large multiplicity is always present because
DC currents reside in the nullspace of the EFIE, see Sec. 3.3.1. This dete-
riorates the performance of most approximation techniques for the spectral
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radius. The polynomial spectrum analysis can thus be performed for small
test cases only.

Several techniques exist that compute an upper bound of the spectral
radius, for instance the Gerschgorin circle theorem [34]. Computational ex-
periences show that the computed upper bound is impracticable.

The MoT scheme (2.30) for the original EFIE contains an additional tail,
which necessitates the adjustment of the recurrence relation (3.1). Now, the
solution vector reads xk = [Ik Ik−1 . . . Ik−`+1

∑k
j=` Ik−j ]T and the amplifi-

cation matrix is given by

Q =



−Z−1
0 Z1 −Z−1

0 Z2 . . . −Z−1
0 Z`−1 −Z−1

0 Z` −Z−1
0 Ztail

I 0

I
. . .
. . . 0

I 0
I I


.

(3.3)
A different procedure to compute the polynomial spectrum of the original
EFIE is given in [68]. There, the discrete solution for the current and charge
are decoupled, yielding a system with size 2`Ns× 2`Ns instead of (`+1)Ns×
(` + 1)Ns, which makes it computationally more expensive.
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(b) Polynomial spectrum. Instability is
visible as eigenvalues outside the unit
disk.

Figure 3.1: A posteriori stability analyses of numerical instability for scatter-
ing of a modulated Gaussian pulse (2.37) on a cube. The instability has been
generated with a very small number of quadrature points.
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Polynomial pseudospectrum

The spectrum provides insight in many characteristics of a matrix. If the ma-
trix is nonnormal, as is the case for companion matrices, the pseudospectrum
can reveal more information [92]. The pseudospectrum Λε of a matrix A is
defined as

Λε(A) =
{
z ∈ C : ||(zI −A)−1|| ≥ ε−1

}
(3.4)

for ε ∈ R. For an eigenvalue λ of A, the resolvant (λI −A)−1 is not correctly
defined and ||(λI − A)−1|| = ∞ by convention. Hence, the spectrum Λ is a
special case of a pseudospectrum, namely Λ(A) = Λ0(A). The pseudospec-
trum can be also be expressed as the spectrum of a perturbed matrix, i.e.,

Λε(A) = {z ∈ C : z ∈ Λ(A + E) for some E with ||E|| ≤ ε} . (3.5)

This states that the ε-pseudospectrum is equivalent to the spectrum of all ε-
perturbations of a matrix. Consequently, this theorem can be used to analyse
the stability of MoT schemes for perturbations in the discretization matrix.
When the ε-pseudospectrum is contained within the unit circle in the complex
plane, all MoT schemes with a perturbation of at most ε in a matrix norm
will be stable as well. Perturbations of the discrete interaction matrices for
instance be caused by quadrature and rounding errors. The pseudospectrum
can thus be used as a measure for the robustness of the MoT scheme.

An example of the pseudospectrum is depicted in Fig. 3.2 for two different
temporal basis functions. The small values of ε in the positive real plane
are caused by DC modes, which result in a large number of eigenvalues near
1 + 0i, as will be explained in Sec. 3.3.1. Interesting is the contour level
of ε = 10−1 which is close to the unit circle in the complex plane. This contour
is slightly tighter for the quadratic Lagrange basis function, suggesting that
this choice is less susceptible to perturbations. However, it is actually the
quadratic Lagrange basis function that results in instability, as confirmed by
the eigenvalue at −1.024 + 0i.

The computation of the pseudospectrum is very expensive, even a lot more
than computing the spectrum. Furthermore it is difficult to draw conclusions
from pseudospectra because of the large influence of DC modes and only
small differences between temporal basis functions have been noticed. This
technique, although insightful, will therefore not be used in this thesis.
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(a) Quadratic Lagrange basis function.
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(b) Quadratic spline basis function.

Figure 3.2: The pseudospectrum of the differentiated EFIE, for a unit cube
with a mesh of 720 edges, ∆t = 0.5 lm, and quasi-exact integration. The
contours of the pseudospectrum Γε(Q) of the amplification matrix (3.2) are
given by log10(ε). The unit circle is depicted in black and the spectrum
is depicted by black dots. The pseudospectrum has been computed with
EigTool, a free Matlab package made by Thomas G. Wright, University of
Oxford, www.comlab.ox.ac.uk/pseudospectra/eigtool/.
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3.2.2 A priori stability analyses

A priori analyses are necessary to obtain general conditions for stability. Ad-
vantage is that insight can be obtained in the stability characteristics of the
TDIE method such that stable schemes can be designed for a wide range of
numerical parameters. Drawback is that the assumptions used in the analyses
make it difficult to draw conclusions on the stability of the actual computer
simulations. Loosely speaking, there is a gap between theory and practice.

Test equation

A standard approach to analyze numerical schemes for initial value problems
is by considering the test equation

d
dt

y = λy + f (3.6)

for the unknown y(t), forcing term f(t), and parameter λ ∈ C. When the
MoT scheme with quadratic Lagrange basis functions is applied to the test
equation, the discretization error en at time level tn satisfies the recurrence
relation (

3
2
− λ∆t

)
en − 2en−1 +

1
2
en−2 = 0. (3.7)

Similar to the polynomial spectrum analysis, an amplification matrix can be
derived, for which all eigenvalues should be smaller than one. In this case, the
two eigenvalues can be computed analytically. This results in a region in the
complex plane for which all values of λ result in a stable scheme, see Fig. 3.3.
The same analysis can be performed for other temporal basis functions, for
which interesting relations with classical schemes are obtained. The family of
shifted Lagrange basis functions can be related to the backward differentiation
formulas (BDF) and the quadratic spline basis function to the trapezoidal rule.
In general, temporal basis functions (2.29) result in linear multistep methods,
for which the Dahlquist barrier state that A-stable schemes can be at most
second order accurate [21].

These stability results are only valid for the test equation, which is far more
simple than the EFIE. In particular, the presence of retarded time levels can
change the stability properties of numerical schemes dramatically [12]. This
analysis can therefore only be used as circumstantial evidence. Furthermore,
the use of a test equation with a delay will have similar restrictions because
the EFIE can not be written as a standard delay differential equation, as
explained in Sec. 2.1.5. Stability analyses of delay differential equations have
therefore not found its way to the TDIE method.
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(b) Quadratic spline basis function.

Figure 3.3: Stability regions for the test equation; green area denotes stability
and red area instability.

Von Neumann

A more elaborate way to analyze numerical schemes for ODEs is the ‘Von
Neumann analysis’. This technique uses Fourier transforms and has been
applied to TDIE methods in which finite differences are used as numerical
scheme. For a flat plate with square patches, conditions on the CFL number
have been derived [22, 24]. Because a different discretization procedure is
used and the method is only valid for flat plates with uniform patches, it is
difficult to draw conclusions for stability of general TDIE methods.

Functional framework

A rigorous approach to analyze TDIE methods is the functional framework
of the variational formulation. For the EFIE, the analysis in [91] results in
guidelines for the choice of test and basis functions for which the solution
of the variational formulation is bounded. This is the most sophisticated
and promising analysis of TDIE methods and will be discussed extensively in
Sec. 3.6.

3.3 Types of instabilities

With the stability analyses, different types of instabilities can be characterized
in MoT schemes, all with different causes and implications. In this section,
instabilities will be subdivided into three categories, namely direct current,
resonance, and numerical instabilities.
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3.3.1 Spectral instability

The origin of spectral instabilities can be traced back to the spectral properties
of the continuous EFIE [3]. For instance, solutions in the null space of the
EFIE should remain constant in time. Discretization errors might shift the
corresponding eigenvalues slightly such that these solutions increase in size.
Two types of this instability will be considered, related to direct currents
(DC) and resonances.

DC instability

Static solenoidal currents generate no electric field on the surface of a PEC struc-
ture. This makes the EFIE blind to these DC modes. Mathematically, DC
solutions reside within the null space of the EFIE. For the differentiated EFIE,
this extends to solenoidal currents that are linear in time. DC modes are char-
acterized by an eigenvalue 1 in the polynomial spectrum. Discretization errors
shift these eigenvalues slightly outside the unit disk. This results in slowly
growing solutions, called DC instability or low frequency breakdown.

Remedies for DC instability of TDIE methods include the use of loop-tree
decompositions [102], conditions on the normal magnetic field [64], hierarchi-
cal spatial basis functions [2], and Calderón preconditioning [3]. The use of
Calderón preconditioning is the most effective one, because a model equation
is derived that does not include DC modes in its null space, thus solving the
DC instability altogether. Notice that when nontoroidal closed surfaces are
analyzed, the CFIE is free of DC modes as well [19].

DC instabilities typically correspond to polynomial eigenvalues very close
to 1, resulting in solutions that grow without any bound, but at a very slow
pace. In all computer simulations in this thesis, the size of the DC modes is
several orders of magnitude smaller than the peak in the incident wave field.
Consequently, the DC instability is hardly visible in the discrete solution. For
this reason, and because remedies are available, DC instabilities will not be
covered in this thesis.

As illustration, two test cases will be presented in which a DC instability
can be recognized in the solution. Both have been generated with unrealisti-
cally chosen parameters that will never be used in actual computer simulations
for radar signature analysis. The DC instability depicted in Fig. 3.4 is visible
because a tremendous amount of 1 000 000 time levels has been simulated with
a total simulation time of 100 000 lm. Notice that the magnitude of excita-
tion has dropped by a factor of 10−16 of its peak value after 21 000 time levels
already. The DC instability depicted in Fig. 3.5 has been generated with an
insane time step size of 100 000 lm, for a sphere with a radius of 1 m. This
means that the time step size has been chosen 50 000 times larger than the
electrical size of the object.
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(a) Discrete surface current density. The
DC instability is visible as a linearly grow-
ing solution.
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(b) Polynomial eigenvalues. The largest
eigenvalue is given by λmax = 1 + 7.9 ·
10−8 + 8.2 · 10−9i where i2 = −1.

Figure 3.4: Simulation of the differentiated EFIE, for a sphere with radius 1 m,
∆t = 0.1 lm, and a modulated Gaussian plane wave (2.37) with fc = fb =
1 MHz.
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(b) Polynomial eigenvalues. The largest
eigenvalue is given by λmax = 1.0312.

Figure 3.5: DC instability of the differentiated EFIE, for a sphere with ra-
dius 1 m, ∆t = 100 000 lm, and a modulated Gaussian plane wave (2.37) with
fc = fb = 100 Hz.
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Resonance instability

Similar to DC modes, resonances reside within the null space of the EFIE.
Resonances are oscillating solutions that have constant size in time. They
are characterized by polynomial eigenvalues on the unit circle in the complex
plane. These eigenvalues might shift outside the unit disk due to discretization
errors and cause instabilities [85]. The classical remedy is to use the CFIE,
which does not support resonant solutions [81]. Another approach is to use
a localized Calderón preconditioner [3]. In our experience, resonances are
hardly visible in the surface current density and resonances will be outside
the scope of this thesis.

3.3.2 Numerical instability

The most problematic type of instability is the numerical instability that
results in alternating, exponentially increasing solutions. This corresponds
to polynomial eigenvalues on the negative real axis outside the unit disk, see
Fig. 3.1. Because the unstable solution alternates on discrete time levels,
this instability is also called high-frequency breakdown. When the unstable
eigenvalue is close to the unit disk, the exponentially increasing solution will
start very slow compared to the incident wave field. The unstable solution is
thus only visible in the total field after the incident wave field has passed the
object, leading to its euphemistic name late-time instability. For simulations
of industrial interest, the surface mesh will have a higher resolution and the
instability will arise in early time. The simulations depicted in Fig. 3.6 and 3.7
corroborates on the idea that the more degrees of freedom, the earlier the
instability in time.

This kind of instability is not related to the null space of the EFIE and
is caused by the discretization procedure [3]. Computational experiences and
a posteriori stability analyses suggest that the choice of temporal basis func-
tion and the accuracy of the numerical quadrature for the evaluation of inter-
action matrices have a profound influence on the numerical stability. A priori
stability analyses support these observations.

Solving numerical instability has drawn a lot of attention in literature and
is still an ongoing topic of research [87, 68]. Most remedies that have been
proposed in literature will be explained in Sec. 3.4. In subsequent sections, a
new approach will be presented that improves stability by using a functional
framework to derive guidelines for the design of temporal basis functions.

3.4 Remedies for numerical instability

Numerical instabilities have been found in MoT schemes since their early
inception. Many techniques have been introduced in literature to remedy
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stability, namely

1. adjust the numerical discretization;

2. adjust the model equations;

3. eliminate high frequency components by:

(a) filtering and averaging,

(b) large time step sizes, and

(c) bandlimited temporal basis functions;

4. increase the numerical accuracy by:

(a) large CFL number,

(b) smooth temporal basis functions,

(c) quasi-exact quadrature, and

(d) separable approximation of convolutions; and

5. derive a functional framework.

Although these approaches improve stability, all have their own drawbacks,
as will be explained subsequently.

3.4.1 Numerical discretization

The numerical instability originates from the discretization procedure of the
MoT scheme. An obvious way to solve numerical instability in TDIE methods
is to use another numerical scheme. In Sec. 2.1.5 many numerical schemes for
use in TDIE methods have been summarized. In particular, the CQ scheme
has been proven to be stable, but is dispersive and dissipative. Also, all
common choices of numerical scheme can be written as a space-time Petrov-
Galerkin method, including the MoT scheme. This section therefore focuses
on MoT schemes only.

3.4.2 Model equations

Computational experiences confirm that the same MoT scheme can be un-
stable for the EFIE and stable for the MFIE, or vice versa. In general, the
MoT scheme is reported to be more stable for second order integral equations,
such as the MFIE [114]. However, there is no sound theory for this observa-
tion and instabilities are still present in both models. Moreover, the MFIE is
restricted to closed surfaces.
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3.4.3 High-frequency components

Numerical instability usually manifests itself as an alternating solution that
grows exponentially in time. This corresponds to the highest frequency mode
possible on the discrete time axis. Eliminating high-frequency components is
the idea behind several stabilization procedures.

Filtering and averaging

One of the earliest stabilization methods is the filtering or averaging of the
numerical solution. Different filtering techniques have been used, both in time
and space. In certain cases, this method is capable to eliminate instability
and Fourier analysis confirms an extended stability region [89]. However,
these techniques do not eliminate instability [75]. In fact, simulations have
been found where averaging introduces instability [23].

Large time step sizes

If the time step size increases, then the highest frequency that can be repre-
sented by the discrete solution will decrease. Computational methods indeed
show a dependency between time step size, or implicitness, and stability [27].
However, no clear bounds on the time step size are available and stability
cannot be guaranteed [96].

Bandlimited temporal basis functions

Because the solution is approximated with temporal basis functions, one might
exclude high-frequency content by using temporal basis functions with lim-
ited frequency content. The approximate prolate spheriodical wave functions
have been used as a bandlimited interpolation function (BLIF) to prevent the
buildup of high-frequency spurious modes [102]. The performance of these
bandlimited temporal basis functions heavily depends on a large support in
time. This necessitates extrapolation schemes and increases computation time
and memory requirements. Furthermore, this scheme is still unstable in rare
cases and only works for a limited range of time step sizes [98].

3.4.4 Numerical accuracy

Computational experiences suggest that the accuracy with which the inter-
action matrices are computed influences the stability of the MoT scheme.
This observation is supported by the fact that a priori stability analyses as-
sume that all interaction matrices are evaluated exactly. The idea to remedy
instability is thus to increase the accuracy of the evaluation of interaction
matrices.
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Here, numerical accuracy is defined as the accuracy with which the discrete
model equations are calculated and implemented on a computer architecture.
This excludes the discretization errors originating from the choice of test and
basis functions. The main sources of numerical errors are the quadrature pro-
cedure and the use of finite precision arithmetic. The quadrature procedure is
used to approximate the four-dimensional integrals over the scatterer surface
that are present in the interaction matrices of the discrete EFIE. As will be
explained in Sec. 5.3, the integrand contains discontinuities, thus reducing the
effectiveness of standard quadrature rules. The smoothness of the integrand
depends on the time step size, the size of the triangular patches, and the
choice of temporal basis function.

The improvement in robustness that will be achieved in Chapter 5 corrob-
orates on the idea that numerical accuracy is required to obtain stability.

Large CFL number

As will be explained in Chapter 5, the smoothness of the integrand depends
on the electrical size of each surface mesh element. To be more precise, the
larger the size of triangular patch w.r.t. the time step size, the less smooth the
integrand. Therefore, increasing the CFL number, or mesh ratio, increases
the smoothness of the integrand and the quadrature procedures become more
effective. This remedy can only be used ad hoc and impinges on accuracy and
efficiency [27].

Smooth temporal basis functions

The performance of numerical quadrature depends on the smoothness of the
integrand. In MoT schemes, the discontinuities in the expressions for the
interaction matrices originate from the nonsmooth character of the temporal
basis functions. To this end, smooth temporal basis functions will be designed
in Chapter 4, similar to the design of BLIFs [102]. However, smoothness can
in general only be achieved at the expense of other design criteria such as
efficiency.

Quasi-exact quadrature

Instead of increasing the smoothness of the integrand, one can also use quadra-
ture schemes that are more accurate [22]. To obtain accurate evaluation of the
surface integrals, the quadrature rule has to be designed specifically for the
TDIE method, because the discontinuities in the integrand are only present at
prescribed locations. The location of the discontinuities is known and can be
computed for flat patches, resulting in subregions for which the integrand is
smooth. Use of analytical expressions of radiation fields can further improve
the accuracy of the evaluation of interaction matrices. These quasi-exact
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quadrature rules have been shown to improve stability [84, 87]. A quasi-exact
quadrature rule will be explained in detail in Chapter 5, where the disconti-
nuities are depicted in Fig. 5.1.

Main advantage of this approach is that it does not affect the choice of
temporal basis functions and mesh sizes in space and time. On the other
hand, robust implementation of these quasi-exact quadrature rules is bur-
densome [109], is difficult if not impossible to apply to curved patches [98],
difficult to integrate in fast solvers [68], increases the computation time [87],
and depends on the Green’s function [84]. Nonetheless, computational expe-
riences confirm that the use of quasi-exact quadrature is necessary to obtain
stability in MoT schemes [87, 109].

Separable approximation of convolutions

A delicate approach to improve the regularity of the integrand without ad-
justing the time step size or temporal basis function is the separable approx-
imation of the convolution [68]. In this method, the convolution in time of
the Green’s function and the temporal basis function is approximated by a
series expansion in Legendre polynomials. Then, the time and space depen-
dencies can be separated and quadrature rules become effective. A stability
analysis has been derived [66] and the method has been applied to curvilinear
elements [67]. However, to the best of our understanding, the analysis of the
accuracy and robustness has not been published in literature.

3.4.5 Functional framework

The most rigorous approach to remedy the numerical instability of MoT schemes
is to derive a functional framework for its discretization procedure. For the
space-time Galerkin scheme, a thorough mathematical foundation has been
derived, resulting in a specific variational formulation of the EFIE with a
unique and bounded solution. Application of this functional framework to
the MoT scheme has to be done carefully. In the remainder of this chapter,
this functional framework will be used to derive guidelines for the choice of
temporal basis functions such that stability can be expected.

3.5 Experimental suggestion

In previous sections, a review of the stability of TDIE methods has been given.
Instability has been categorized in spectral and numerical causes. The many
remedies for the numerical instability that are given in literature have been
explained. The most thorough approach is the use of a functional framework.
In next sections, an available functional framework will be explained and
extensions to the MoT scheme for the differentiated EFIE will be derived.
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Before proceeding to this analysis, let us look at some computer simulations
that will illustrate the importance of the functional analysis. In particular,
the computational experiments suggest that a proper choice of temporal basis
function is of paramount importance to numerical stability.

Let us consider a sphere of radius 1 m with a triangular surface mesh con-
sisting of 356 edges. The time step size is chosen as ∆t = 10−9 s. The incident
wave field is given by a Gaussian plane wave (2.35) and traverses the sphere in
approximately 7 time steps. The outer surface integral is approximated with
a Gaussian quadrature with 73 points, whereas the inner integral is computed
analytically [84]. The MoT scheme has been performed for the differentiated
EFIE. The electric surface current density, depicted in Fig. 3.6, clearly shows
an alternating, exponentially increasing solution for the quadratic Lagrange
basis function. The use of quadratic spline basis functions results in a stable
MoT scheme, as verified by the polynomial spectrum that resides within the
unit disk of the complex plane.
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(a) Discrete electric surface current density.
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Figure 3.6: Discrete solution on a sphere with quadratic basis functions.

The second computer simulation uses the MoT scheme for the differenti-
ated EFIE as well. A generic aircraft, depicted in Fig. 6.1, is meshed with
6756 edges and scaled to fit within the unit cube. The time step size is chosen
as 0.01 lm. Again, the outer surface integral is approximated with a Gaussian
quadrature with 73 points, whereas the inner integral is computed analytically.
As incident wave field, a modulated Gaussian plane wave (2.37) is used with
center frequency 1 GHz and bandwidth 0.5 GHz. Fig. 3.7 depicts the electric
surface current density at the tail tip. The quadratic Lagrange basis func-
tion clearly results in an unstable computer simulation, whereas the quadratic
spline basis functions remains stable for this test case. Notice that comput-
ing the polynomial spectrum is computationally too expensive because of the
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dimensions, but from Fig. 3.7(b) it is clear that the MoT scheme is stable for
late time, in this case 10 000 discrete time levels.
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Figure 3.7: Discrete electric surface current density on a generic aircraft with
quadratic basis functions.

Main conclusion from these two computational experiments is that the
choice of temporal basis function influences the stability of the MoT scheme.
In particular, the computer simulations suggest that the quadratic spline ba-
sis functions (4.25) yield better stability characteristics than the quadratic
Lagrange basis functions (4.22). The functional analysis in subsequent sec-
tions supports this observation and will result in guidelines for the choice of
temporal basis functions for which stability is expected.

3.6 Functional analysis of the original EFIE

The numerical discretization procedure in TDIE methods is given by the
boundary element method (BEM). Model equations in a BEM are specified on
a two-dimensional manifold in R3. On this surface, a finite element method is
used to obtain discrete equations. To this end, the model equations are writ-
ten into a variational formulation or weak formulation containing test and
basis functions. The choice of these test and basis functions determines the
properties of the computational method to a great extent. In particular, nu-
merical stability is affected by this choice, as confirmed by the computational
experiments in Sec. 3.5. To obtain guidelines for this choice, a functional
framework has to be designed for which a unique and bounded solution is
guaranteed [1]. In this section, a summary of an available functional frame-
work for the original EFIE will be given. In next sections, this approach will
be extended such that a stable MoT scheme can be designed.
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The review articles [39, 20] explain the variational formulation of general
retarded potential integral equations. The special case of the EFIE for elec-
tromagnetics, a functional framework has been designed by Terrasse in her
PhD thesis [91]. This section serves as an introduction to this functional
framework and the resulting stability theorem.

3.6.1 Functional framework

The functional analysis of the original EFIE will make extensive use of the
function spaces Hs for s ∈ R, defined as

Hs = Hs
σ

(
R+,H− 1

2 (div,Γ)
)

(3.8)

for σ ∈ R positive: σ > 0. This function space is a special version of a Sobolev
space. Its norm is given by

||f(r, t)||2σ,s,− 1
2div =

ˆ +∞+iσ

−∞+iσ

|ω|2s
∣∣∣∣∣∣f̂(r, ω)

∣∣∣∣∣∣2
H− 1

2 (div,Γ)
dω (3.9)

for ω = η + iσ, where i denotes the imaginary unit: i2 = −1. The Fourier-
Laplace transform, denoted by f̂ , is given by

f̂(r, ω) =
ˆ ∞

−∞
eiωtf(r, t) dt. (3.10)

This norm can be used to measure the energy of the electric surface current
density. Without specifying all details, let us highlight several requirements
for this Sobolev space:

• The spatial part of the Sobolev space requires the functions to be ele-
ment of H− 1

2 (div,Γ), which is the space of divergence conforming sur-
face functions. RWG functions are element of this space [18].

• The support in time of the functions has to be R+, which is equivalent
to causality and the initial conditions stating zero fields for t < 0.

• The function has to be Fourier-Laplace transformable for σ > 0, which
requires the function to decay in time with an exponential rate.

• The function has to have a certain degree of regularity in time, char-
acterized by the parameter s. More precisely, the function (−iω)sf̂(ω)
has to be inverse Fourier-Laplace transformable. When s is an integer,
this reduces to s-times differentiable functions.

An important property of the Sobolev space that will be used in subsequent
analyses is: if f ∈ Hs then ∂

∂t f ∈ H
s−1 and f ∈ Hs′ for s′ ≤ s. A few example

functions will be given in Sec. 3.8.1.
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The functional framework uses a space-time inner product given by

〈f(r, t) , g(r, t)〉σ =
ˆ

R
e−2σt

¨
Γ

f(r, t) · g(r, t) drdt (3.11)

which is correctly defined for functions f ,g ∈ Hs. Special feature of the
inner product is the presence of the weight e−2σt in time. For the functional
framework, in particular the proof of the stability theorem, it is required to use
σ > 0. The numerical schemes will use σ = 0 for convenience and efficiency.
This nuance will be explained in Sec. 3.9.2.

Whereas in this thesis the EFIE is solved for the electric surface current
density J(r, t), the functional framework use the electric surface charge den-
sity ρ(r, t) as an additional unknown. Then, the following function space has
to be used:

Hs
ρ,J =

{
(ρ,J) ∈ Hs

σ

(
R+,H− 1

2 (Γ)
)
×Hs

σ

(
R+, TH− 1

2 (Γ)
)}

. (3.12)

This function space will not be used in this thesis, because (ρ,J) ∈ Hs
ρ,J is

equivalent to J ∈ Hs with the continuity equation (2.2).

3.6.2 Stability theorem

The functional framework has been designed for the original EFIE (2.10). For
conciseness, the original EFIE can be written as the integral equation

n̂× (Ei × n̂) = E(ρ,J),

where E denotes the EFIE operator, given by the tangential component of the
scattered electric field (2.13a) on the surface, that is E(ρ,J) = −n̂× n̂×Es,
where the continuity equation (2.2) has been used.

The stability theorem that has been derived for the original EFIE within
the functional framework consists of different parts. First, the integral equa-
tions is rewritten into a variational formulation. Then, the uniqueness and
boundedness of the solution are derived. The stability theorem of Terrasse
reads as follows.

Variational formulation of Terrasse ∀(Ei× n̂) ∈ H 3
2 , the integral equa-

tion n̂× (Ei × n̂) = E(ρ,J) admits the following variational formulation:

search for (ρ,J) ∈ H
1
2
ρ,J such that ∀(ρ̃, J̃) ∈ H

1
2
ρ,J

b
(
(ρ,J), (ρ̃, J̃)

)
=
ˆ

R
e−2σt

¨
Γ

(
n̂× (Ei × n̂)

)
· ∂2J̃

∂t2
drdt (3.13)
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with

b
(
(ρ,J), (ρ̃, J̃)

)
=− µ

ˆ
R

e−2σt

¨
Γ

¨
Γ

∂
∂tJ(r′, τ)

4πR
· ∂2J̃(r, t)

∂t2
drdr′ dt

− ε

ˆ
R

e−2σt

¨
Γ

¨
Γ

ρ(r′, τ)
4πR

∂3ρ̃(r, t)
∂t3

drdr′ dt. (3.14)

Uniqueness theorem of Terrasse If (Ei × n̂) ∈ H 3
2 , the variational for-

mulation admits a unique solution (ρ,J) in H
1
2
ρ,J.

Boundedness theorem of Terrasse The following bounds hold:

||ρ|| 1
2 ,σ,H− 1

2 (Γ)
≤ C(Γ)

1
σ

∣∣∣∣Ei × n̂
∣∣∣∣

3
2 ,σ,H− 1

2 (div,Γ)
, (3.15a)

||J|| 1
2 ,σ,TH− 1

2 (Γ)
≤ C(Γ)

1
σ

∣∣∣∣Ei × n̂
∣∣∣∣

3
2 ,σ,H− 1

2 (div,Γ)
. (3.15b)

Discussion

The stability theorem states that for all incident wave fields inH 3
2 , the original

EFIE can be written as a specific variational formulation. For the testing
space H

1
2
ρ,J there is a unique solution of the variational formulation in H

1
2
ρ,J.

Moreover, this solution is bounded by the incident wave field in an energy
norm. This concludes that this variational formulation of the original EFIE
is stable.

First, let us consider the incident wave field and check whether usual
choices of excitation satisfy the requirements of the stability theorem. The
stability theorem can only be used when (Ei × n̂) ∈ H 3

2 . Loosely speaking,
the incident wave field has to be smooth and converge to zero at very late
time. When the incident wave field is chosen as a realistic representation of
a radar field, smoothness will be obtained for physical reasons. Moreover,
only simulations of finite time length will be considered, thus satisfying the
conditions on the data.

The testing and solution space are given by the Sobolev space H
1
2
ρ,J, which

is equivalent to H 1
2 when the surface charge is eliminated with the continuity

equation. In Sec. 3.8, the test and basis functions of the space-time Galerkin
scheme will be chosen within these Sobolev spaces. For common choices of test
and basis functions, the defining parameter is the regularity of the functions,
given by s = 1

2 . Furthermore, the unwanted presence of the therm 1/σ in the
bounds will be explained in Sec. 3.9.2.
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3.7 Functional analysis of the differentiated EFIE

The stability theorem of Terrasse is only applicable to the original EFIE. As
argued in Sec. 2.2.4, the differentiated EFIE will result in a more efficient
MoT scheme than the original EFIE. Moreover, the vast majority of engi-
neering literature on TDIE methods deals with the differentiated EFIE. To
this end, the stability theorem of Terrasse will be extended to the differenti-
ated EFIE. Although the original and differentiated versions of the EFIE are
closely related, the extension of the stability theorem of Terrasse is not trivial,
as will be apparent in this section. Whereas all information in previous sec-
tion has been published by Terrasse in [91], the material in this section is new
to the literature. First, the resulting stability theorem of the differentiated
EFIE will be given, followed by the proof.

3.7.1 Stability theorem of the differentiated EFIE

The differentiated EFIE (2.15) can be written as the integral equation

n̂× (Ėi × n̂) = Ė(ρ,J),

where Ė denotes the differentiated EFIE operator, given by the time derivative
of the original EFIE operator, that is Ė = ∂

∂tE . Again, with the continuity
equation, the differentiated EFIE operator is given by the tangential compo-
nent of the time derivative of the scattered electric field on the surface.

Variational formulation ∀(Ėi× n̂) ∈ H 1
2 , the integral equation n̂× (Ėi×

n̂) = Ė(ρ,J) admits the following variational formulation:

search for J ∈ H 1
2 such that ∀w ∈ H− 1

2〈¨
Γ

(
µ
J̈(r′, τ)
4πR

− 1
ε
∇∇ · J(r, τ)

4πR

)
dr′ , w

〉
σ

=
〈
n̂× (Ėi × n̂) , w

〉
σ

.

(3.16)

Uniqueness If (Ėi× n̂) ∈ H 1
2 , the variational formulation admits a unique

solution J in H 1
2 .

Boundedness The following bound holds:

||J|| 1
2 ,σ,− 1

2div ≤ C(Γ)
1
σ

∣∣∣∣∣∣Ėi × n̂
∣∣∣∣∣∣

1
2 ,σ,− 1

2div
. (3.17)
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Discussion

Notice that in this variational formulation, the surface charge has been elim-
inated, as can be performed with the continuity equation. Furthermore, an
important difference is in the index of the Sobolev spacesHs, which represents
the regularity as defined in Eq. (3.8). Whereas the solution space remains the
same, the test space has become H− 1

2 . This means that the test space has
one order of regularity more than in the original EFIE. This is reasonable,
because using a test function that is more smooth is a natural choice in a
differentiated version.

3.7.2 Proof of the stability theorem

The backbone of the proof of the stability theorem for the differentiated EFIE
is the stability theorem of Terrasse for the original EFIE. When the variational
formulations of the two integral equations can be shown to be equivalent,
uniqueness and boundedness of the solution will follow. To this end, the
following proof will follow the approach of manipulating the variational for-
mulation (3.13) of the original EFIE. This will result in an equivalence with
the variational formulation (3.16) of the differentiated EFIE.

Eliminating the surface charge

The variational formulation (3.13) of the original EFIE uses both the electric
surface charge and current density, denoted by ρ(r, t) and J(r, t), resp. The
continuity equation (2.2) can be derived from Maxwell’s equation and the
constitutive equations. This relation between the charge and current can be
used to eliminate one of the two variables. Substitution of the continuity
equation into the variational formulation results in:

search for J ∈ H 1
2 such that ∀J̃ ∈ H 1

2〈¨
Γ

(
µ
J̇(r′, τ)
4πR

− 1
ε
∇
´ τ

−∞∇ · J(r′, t̄) dt̄

4πR

)
dr′ ,

∂2J̃
∂t2

〉
σ

=

〈
n̂× (Ei × n̂) ,

∂2J̃
∂t2

〉
σ

(3.18)

where the equivalence between the Sobolev spacesHs
ρ,J andHs has been used.

Notice that for spatial discretization, the gradient of the charge will be moved
towards the test function, such that the divergence of both the test and basis
function will be used. Since this section focuses on the functional analysis,
this will not be performed.
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Petrov-Galerkin variant

Both the test and solution space of the variational formulation are given by
the Sobolev space H 1

2 . The variational formulation is therefore written in a
so-called Galerkin form. However, the EFIE operator is actually tested with
the second derivative, that is

〈
E , ∂2

∂t2 J̃
〉
. Because J̃ ∈ H 1

2 yields ∂2eJ
∂t2 ∈ H

− 3
2 ,

the variational formulation is equivalent to:

search for J ∈ H 1
2 such that ∀v ∈ H− 3

2〈¨
Γ

(
µ
J̇(r′, τ)
4πR

− 1
ε
∇
´ τ

−∞∇ · J(r′, t̄) dt̄

4πR

)
dr′ , v

〉
σ

=
〈
n̂× (Ei × n̂) , v

〉
σ

. (3.19)

Because different Sobolev spaces are used for the test and solution space, this
is called a Petrov-Galerkin form.

Integration by parts

So far, the original EFIE operator has been considered, whereas the aim is to
use the differentiated EFIE operator. Because the difference between the two
versions is only a time derivative, applying integration by parts to the varia-
tional formulation is a standard technique to achieve an equivalence. However,
integration by parts is complicated by the weighted inner product (3.11) that
is being used. More precisely, for arbitrary functions p(r, t) and q(r, t) in Hs,
integration by parts results in〈

∂p
∂t

, q
〉

σ

=
ˆ +∞

−∞
e−2σt

¨
Γ

¨
Γ

∂p
∂t

· qdxdy dt

=
¨

Γ

¨
Γ

ˆ +∞

−∞
e−2σt ∂p

∂t
· qdt dxdy

=
¨

Γ

¨
Γ

([
e−2σt q · p

]+∞
t=−∞ −

ˆ +∞

−∞
p · ∂

∂t

(
e−2σt q

)
dt

)
dxdy

=
¨

Γ

¨
Γ

(
−
ˆ +∞

−∞
(−2σ)e−2σt p · qdt−

ˆ +∞

−∞
e−2σt p · ∂q

∂t
dt

)
dxdy

=
ˆ +∞

−∞
e−2σt

¨
Γ

¨
Γ

(
2σ p · q− p · ∂q

∂t

)
dxdy dt

=
〈
p , 2σq− ∂q

∂t

〉
σ

(3.20)

where the boundary term is zero for the Sobolev space Hs. That is, the
functions are zero for t < 0 and decay exponentially in time. For test func-
tions w(r, t) ∈ Hs, where the value of s will be specified later, the variational
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formulation of the differentiated EFIE can be abbreviated as〈
Ė(J) , w

〉
σ

=
〈
Ėi , w

〉
σ

. (3.21)

With integration by parts (3.20), this is equivalent with〈
E(J) , 2σw − ∂w

∂t

〉
σ

=
〈
Ei , 2σw − ∂w

∂t

〉
σ

. (3.22)

This is the variational formulation of the original EFIE with the test functions
given by

v = 2σw − ∂w
∂t

. (3.23)

Index of the Sobolev space

In order to use integration by parts to derive a variational formulation (3.21) of
the differentiated EFIE that is equivalent to the variational formulation (3.19)
of the original EFIE, one has to proof that w ∈ Hs for v ∈ H− 3

2 and the rela-
tion (3.23). Remember that most of the properties of the Sobolev spaces (3.8)
are defined in the Fourier-Laplace domain, given by f̂(ω) =

´∞
−∞ eiωtf(t) dt

for ω = η + iσ and σ > 0. In the Fourier-Laplace domain, the relation (3.23)
between the test functions reads

v̂ = (2σ + iω)ŵ = iω̄ŵ (3.24)

where ω̄ denotes the complex conjugate of ω. Because f ∈ Hs if its norm
||f ||σ,s,− 1

2div is bounded, let us consider the norm of the test functions, i.e.,

||v(r, t)||2σ,s,− 1
2div =

ˆ +∞+iσ

−∞+iσ

|ω|2s ||v̂(r, ω)||2
H− 1

2 (div,Γ)
dω

=
ˆ +∞+iσ

−∞+iσ

|ω|2s |iω̄|2 ||ŵ(r, ω)||2
H− 1

2 (div,Γ)
dω

=
ˆ +∞+iσ

−∞+iσ

|ω|2(s+1) ||ŵ(r, ω)||2
H− 1

2 (div,Γ)
dω

= ||w(r, t)||2σ,s+1,− 1
2div. (3.25)

Hence, v ∈ H− 3
2 ⇐⇒ w ∈ H− 1

2 . Finally, one can rewrite the variational
formulation of the original EFIE into the variational formulation for the dif-
ferentiated EFIE:

search for J ∈ H 1
2 such that ∀w ∈ H− 1

2〈¨
Γ

(
µ
J̈(r′, τ)
4πR

− 1
ε
∇∇ · J(r, τ)

4πR

)
dr′ , w

〉
σ

=
〈
n̂× (Ėi × n̂) , w

〉
σ

.
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Because of the equivalence between the variational formulations, the solution
is also unique and bounded.

3.8 Space-time Petrov-Galerkin schemes

With the stability theorem of Terrasse, the variational formulation of the
original EFIE has a unique and bounded solution J(r, t) ∈ H 1

2 . This stability
theorem has been extended to the differentiated EFIE, for which the test-
ing space reads H− 1

2 instead of H− 3
2 for the original EFIE. In this section,

the EFIE will be discretized with the space-time Petrov-Galerkin scheme.
Test and basis functions will be chosen as element of these Sobolev spaces.
First, a few examples of functions within these Sobolev spaces will be given
in Sec. 3.8.1.

The Dirac delta distribution is not an element of the testing space for the
differentiated EFIE, which prohibits the use of the MoT scheme. Nonetheless,
certain MoT schemes will be shown to be discretely equivalent to Petrov-
Galerkin schemes that fit within the functional framework. This results in
temporal basis functions for which the stability theorem can be used, as ex-
plained in Sec. 3.8.2.

3.8.1 Example functions of the Sobolev spaces

The Sobolev space Hs is defined in Eq. (3.8) and is given for space-time vec-
tor functions. In space, both test and basis functions have to be element
of H− 1

2 (div,Γ), the space of divergence conforming functions on a surface.
The customary choice RWG functions (2.23) fit within this functional frame-
work [18]. In time, the main requirements are causality, Fourier-Laplace trans-
formability, and regularity, as explained in Sec. 3.6.1. For the discretization in
time, only the Dirac delta distribution and the piecewise polynomials (2.29)
with compact support will be used. Then, the characterization of the Sobolev
spaces reduces to the regularity of the functions. Hence, the parameter s is
the defining parameter of the Sobolev space.

The regularity of the functions is defined in the Fourier-Laplace domain,
but for integers s this reduces to s-times differentiable functions. For instance,
continuous functions are element of H1, which is a subspace of H 1

2 . When the
function is not continuously differentiable, it is not an element of H 3

2 . In fact,
when restricted to Sobolev spaces H s

2 with s an odd integer, the continuity
requirement is both necessary and sufficient. See Fig. 3.8 for some example
functions of several Sobolev spaces Hs.

The MoT scheme uses collocation as discretization in time. A collocation
method can be written as a Petrov-Galerkin scheme with the Dirac delta δ
as test function. Because δ /∈ H− 1

2 , the stability theorem for the differ-
entiated EFIE can not be used for collocation schemes. In other words, the
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(a) Dirac delta:

H−
3
2 .

(b) Step: H−
1
2 . (c) Hat: H

1
2 . (d) Quadratic spline:

H
3
2 .

Figure 3.8: Example functions of several Sobolev spaces Hs.

MoT scheme can not be proven to be stable with the current functional frame-
work. Nevertheless, in the next section, a derivation will be given that can be
used to prove stability for certain classes of MoT schemes.

3.8.2 Discretely equivalent Petrov-Galerkin schemes

Although the stability theorem of the differentiated EFIE can not be applied
directly to the MoT scheme, the aim of this section is to design MoT schemes
that are equivalent to Petrov-Galerkin schemes that fit within the functional
framework. To prove an equivalence of two numerical schemes, let us consider
their discretization matrix. In the case of a marching procedure (2.22) this
is characterized by the discrete interaction matrices Zj for j = 0, 1, 2, . . . , `.
Now, let us consider a set of interaction matrices ZMoT

j for the MoT scheme
and ZPG

j for a Petrov-Galerkin scheme. If one can derive that both sets of
matrices are equal, i.e.,

ZMoT
j = ZPG

j for all j = 0, 1, 2, . . . , `, (3.26)

then the schemes are discretely equivalent. Hence, both schemes have the
same computational properties, in particular stability.

In next section, a full derivation of such a discrete equivalence will be given.
Let us already state the main conclusions, which are schematically depicted in
Fig. 3.9. The lowest order piecewise polynomials that fit within the functional
framework of the differentiated EFIE are the step and hat function as test and
basis function, resp. This Petrov-Galerkin scheme is discretely equivalent with
the MoT scheme employing quadratic spline basis functions. Hence, when
using quadratic spline basis functions, the MoT scheme is as stable as the
Petrov-Galerkin scheme for which the stability theorem holds. On the other
hand, the broadly used quadratic Lagrange basis functions are equivalent with
a Petrov-Galerkin scheme that does not fit within the functional framework.
Hence, the present functional analysis of the differentiated EFIE can not be
used to proof stability of the quadratic Lagrange basis function.
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MoT test MoT basis PG test PG basis

∗ = ∗ (a)

∗ = ∗ (b)

Figure 3.9: Equivalence between the MoT and Petrov-Galerkin scheme for
(a) quadratic spline basis functions (4.25) and (b) quadratic Lagrange basis
functions (4.22).

The following analyses of discretely equivalent schemes can be used for
piecewise polynomial basis functions with an arbitrary degree. Nonetheless,
this section wil restrict to quadratic basis functions, because these result in
efficient MoT schemes. For higher order temporal basis functions, the same
analysis can readily be used but will become more elaborate. For example, the
MoT scheme with cubic spline basis function (4.27) is discretely equivalent
with a Galerkin scheme with the hat function for both test and basis function.

Derivation of the discrete equivalence

In next sections, the discrete equivalence between the MoT schemes and
Petrov-Galerkin schemes that are depicted in Fig. 3.9 will be proven. Let
us first specify the discrete equivalence more precisely. The elements of the
discrete interaction matrices depend on both space and time, but the time
dependency will be isolated for convenience. Remember that RWG functions
will always be used in space and that the discrete EFIE operator is linear.
Hence, the full space-time discretization matrix of two schemes is identical
when all time-dependent terms are equivalent. Because separation of vari-
ables is used for the test and basis functions, the only time-dependent terms
in the discrete EFIE are the electric surface current density J(r, t) and the
test and basis functions in time. Let us consider a MoT scheme with tempo-
ral basis functions denoted by Tj and a Petrov-Galerkin scheme with test and
basis functions in time denoted by vk and uj , resp. Consequently, when

Nt∑
j=1

〈
Jn,j

dα

dtα
Tj(τ) , δ(t− tk)

〉

=
Nt∑
j=1

〈
Jn,j

dα

dtα
uj(τ) , vk(t)

〉
∀ k = 1, 2, . . . , Nt (3.27)
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where α ∈ {−1, 0, 1, 2}, then the two schemes are discretely equivalent. Notice
that for the differentiated EFIE, this suffices for α equal to 0 and 2, and −1
and 1 for the original EFIE. The inner product is given by 〈· , ·〉 =

´∞
−∞ ·dt.

Notice that whereas σ > 0 in the stability proof, σ = 0 will be used for
discretization, as justified in Sec. 3.9.2.

3.8.3 Equivalence for the lowest order stable P-G scheme

Let us consider the lowest-order functions that fit within the functional frame-
work of the differentiated EFIE, which is given by H− 1

2 and H 1
2 as test and

solution space, resp. As test function, let us use the step function

vk(t) =

{
1

∆t , tk−1 < t ≤ tk,

0, else
(3.28)

and as basis function the hat function

uj(t) =


t−tj−1

∆t , tj−1 < t ≤ tj ,
tj+1−t

∆t , tj < t ≤ tj+1,

0, else
(3.29)

which are depicted in Fig. 3.8. In this section, it will be proven that the corre-
sponding Petrov-Galerkin scheme is discretely equivalent with the MoT scheme
employing quadratic spline basis functions.

Because all test and basis functions are translated versions of the step and
hat function, it suffices to consider an arbitrary retarded time level τk that
satisfies

tl−1 < τk ≤ tl

for an l ∈ {1, 2, . . . , Nt}. The aim of the following analysis is to derive tem-
poral basis functions Tj(t) for which the MoT scheme is equivalent to this
Petrov-Galerkin scheme. To this end, all time dependent terms in the dis-
cretization matrix will be evaluated separately.

Petrov-Galerkin terms First, let us consider the term in Eq. (3.27) with
α = 0, that is,

Nt∑
j=1

〈Jn,juj(τ) , vk(t)〉 =
Nt∑
j=1

Jn,j

ˆ ∞

−∞
uj(τ)vk(t) dt

=
1

∆t

Nt∑
j=1

Jn,j

ˆ tk

tk−1

uj(τ) dt

=
1

∆t

Nt∑
j=1

Jn,j

ˆ τk

τk−1

uj(τ) dτ



3.8. Space-time Petrov-Galerkin schemes 71

=
1

∆t

l∑
j=l−2

Jn,j

ˆ τk

τk−1

uj(τ) dτ

=
1

∆t
Jn,l

ˆ τk

tl−1

τ − tl−1

∆t
dτ +

1
∆t

Jn,l−1

(ˆ tl−1

τk−1

τ − tl−2

∆t
dτ +

ˆ τk

tl−1

tl − τ

∆t
dτ

)

+
1

∆t
Jn,l−2

ˆ tl−1

τk−1

tl−1 − τ

∆t
dτ

= Jn,l
(τk − tl−1)2

2∆t2

+ Jn,l−1

(
1− (τk − tl−1)2

2∆t2
− (tl − τk)2

2∆t2

)
+ Jn,l−2

(tl − τk)2

2∆t2
. (3.30)

The term in Eq. (3.27) that contains the integral in time reads

Nt∑
j=1

〈
Jn,j

ˆ τ

−∞
uj(s) ds , vk(t)

〉

=
Nt∑
j=1

Jn,j

ˆ tk

tk−1

1
∆t

ˆ τ

−∞
uj(s) dsdt

=
1

∆t

Nt∑
j=1

Jn,j

ˆ τk

τk−1

ˆ τ

−∞
uj(s) dsdτ

=
1

∆t
Jn,l

ˆ τk

tl−1

ˆ τ

tl−1

s− tl−1

∆t
dsdτ

+
1

∆t
Jn,l−1

(ˆ tl−1

τk−1

ˆ τ

tl−2

s− tl−2

∆t
dsdτ

+
ˆ τk

tl−1

(ˆ τ

tl−1

tl − s

∆t
ds +

ˆ tl−1

tl−2

s− tl−2

∆t
ds

)
dτ

)

+
1

∆t
Jn,l−2

(ˆ tl−1

τk−1

(ˆ τ

tl−2

tl−1 − s

∆t
ds +

ˆ tl−2

tl−3

s− tl−3

∆t
ds

)
dτ

+
ˆ τk

tl−1

(ˆ tl−1

tl−2

tl−1 − s

∆t
ds +

ˆ tl−2

tl−3

s− tl−3

∆t
ds

)
dτ

)

+
1

∆t

l−3∑
j=1

Hj

ˆ τk

τk−1

(ˆ tj+1

tj

tj+1 − s

∆t
ds +

ˆ tj

tj−1

s− tj−1

∆t
ds

)
dτ
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= ∆tJn,l
(τk − tl−1)3

6∆t3

+ ∆tJn,l−1

(
− (τk − tl−1)3

6∆t3
+

τk − tl−1

∆t
+

(tl − τk)3

6∆t3

)
+ ∆tJn,l−2

(
1− (tl − τk)3

6∆t3

)
+ ∆t

l−3∑
j=1

Hj . (3.31)

The term in Eq. (3.27) that contains the derivative in time reads

Nt∑
j=1

〈
Jn,j

d

dt
uj(τ) , vk(t)

〉

=
Nt∑
j=1

Jn,j

ˆ tk

tk−1

1
∆t

d
dt

uj(τ) dt

=
1

∆t

Nt∑
j=1

Jn,j

ˆ τk

τk−1

d
dt

uj(τ) dτ

=
1

∆t
Jn,l

ˆ τk

tl−1

1
∆t

dτ +
1

∆t
Jn,l−1

(ˆ tl−1

τk−1

1
∆t

dτ +
ˆ τk

tl−1

−1
∆t

dτ

)

+
1

∆t
Hl−2

ˆ tl−1

τk−1

−1
∆t

dτ

=
1

∆t
Jn,l

τk − tl−1

∆t
+

1
∆t

Jn,l−1

(
tl − τk

∆t
− τk − tl−1

∆t

)
− 1

∆t
Jn,l−2

tl − τk

∆t
. (3.32)

For the term in Eq. (3.27) containing the second derivative we need the second
derivative of the hat function, which is only continuous differentiable once.
With the Dirac delta, the second time derivative can formally be written as

d2

dt2
uj(t) =

1
∆t

δ(t− tj−1)−
2

∆t
δ(t− tj) +

1
∆t

δ(t− tj+1).

The use of the Dirac delta in the derivation is mathematically not rigorous.
Instead, one should use an approximation scheme similar to the one in [38].
With this procedure, the piecewise continuous first derivative of the hat func-
tion is approximated with a globally continuous functions. The resulting
expression of the interaction matrices will be the same as with the following,
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less rigorous but easier, derivation. We have

Nt∑
j=1

〈
Jn,j

d2

dt2
uj(τ) , vk(t)

〉

=
1

∆t

Nt∑
j=1

Jn,j

ˆ τk

τk−1

d2

dt2
uj(τ) dτ

=
1

∆t

Nt∑
j=1

Jn,j

ˆ τk

τk−1

(
1

∆t
δ(τ − tj−1)−

2
∆t

δ(τ − tj) +
1

∆t
δ(τ − tj+1)

)
dτ

=
1

∆t2
(Jn,l − 2Jn,l−1 + Jn,l−2) . (3.33)

MoT terms The MoT scheme is given by collocation in time, that is, test
functions uk(t) = δ(t − tk) are used. This is combined with temporal basis
functions Tj(t) = T (t− j∆t). Then, the terms that depend on time read

Nt∑
j=1

〈
Jn,j

dα

dtα
Tj(τ) , δ(t− tk)

〉
=

Nt∑
j=1

Jn,j
dα

dtα
Tj(τk). (3.34)

for α = −1, 0, 1, 2. For temporal basis functions (2.29) defined by piecewise
quadratic polynomials, we have

Nt∑
j=1

〈
Jn,j

dα

dtα
Tj(τ) , δ(t− tk)

〉
= Jn,l

dα

dtα
F0(τk − tl) + Jn,l−1

dα

dtα
F1(τk − tl−1) + Jn,l−2

dα

dtα
F2(τk − tl−2)

(3.35)

for α = 0, 1, 2 and with an extra tail variable for the integral term.

Discretely equivalent temporal basis function At this moment, we
have derived expressions for the time dependent terms in the discretization
matrices for both the Petrov-Galerkin scheme and the MoT scheme. Substitu-
tion of these terms into Eq. (3.27) will result in an expression for the temporal
basis function in the MoT scheme, such that this scheme is discretely equiva-
lent with the Petrov-Galerkin scheme with step test and hat basis functions.
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For α = 0, we have

Jn,lF0(τk − tl) + Jn,l−1F1(τk − tl−1) + Jn,l−2F2(τk − tl−2)

= Jn,l
(τk − tl−1)2

2∆t2

+ Jn,l−1

(
1− (τk − tl−1)2

2∆t2
− (tl − τk)2

2∆t2

)
+ Jn,l−2

(tl − τk)2

2∆t2
(3.36)

where Eq. (3.35) and (3.30) have been used. This equation is solved for

F0(τk − tl) =
1
2

(
τk − tl

∆t

)2

+
τk − tl

∆t
+

1
2
, (3.37a)

F1(τk − tl−1) = −
(

τk − tl−1

∆t

)2

+
τk − tl−1

∆t
+

1
2
, (3.37b)

F2(τk − tl−2) =
1
2

(
τk − tl−2

∆t

)2

− 2
τk − tl−2

∆t
+ 2 (3.37c)

where tl = l∆t has been used. When the terms for the derivatives and the in-
tegral are equated, the derivatives and the integral of the functions (3.37a) are
obtained. Thus, equating all terms of Petrov-Galerkin scheme and MoT scheme
results in the piecewise polynomials (3.37a). Notice that this temporal ba-
sis function is the quadratic spline basis function (4.25). Concluding, the
MoT scheme with quadratic spline basis functions is discretely equivalent
with the Petrov-Galerkin scheme with step test and hat basis functions, for
both the original and differentiated EFIE.

3.8.4 Equivalence for the quadratic Lagrange MoT scheme

For a given Petrov-Galerkin scheme, a discretely equivalent MoT scheme has
been derived in previous section. Now, the reverse will be performed. In par-
ticular, a discretely equivalent Petrov-Galerkin scheme for a MoT scheme with
the broadly used quadratic Lagrange basis functions (4.22) will be derived.
However, two unknowns are present in the Petrov-Galerkin scheme, namely
the test and basis function. To obtain a unique Petrov-Galerkin scheme, ei-
ther the test or basis function has to be chosen in advance. Here, step test
functions will be chosen, because these are the lowest-order test functions that
fit within the functional framework of the stability theorem. For the term in
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Eq. (3.27) with α = 0, we have
Nt∑
j=1

〈Jn,jTj(τ) , δ(t− tk)〉

=
l∑

j=l−2

Jn,jT (τk − tj)

= Jn,l

(
1
2

(
τk − tl

∆t

)2

+
3
2

τk − tl
∆t

+ 1

)

+ Jn,l−1

(
−
(

τk − tl−1

∆t

)2

+ 1

)

+ Jn,l−2

(
1
2

(
τk − tl−2

∆t

)2

− 3
2

τk − tl−2

∆t
+ 1

)

= Jn,l

(
1
2

(
τk − tl−1

∆t

)2

+
1
2

τk − tl−1

∆t

)

+
1
2
Jn,l−1

(
1−

(
τk−1 − tl−2

∆t

)2

− τk−1 − tl−1

∆t
+ 1−

(
tl − τk

∆t

)2

− τk − tl−1

∆t

)

+ Jn,l−1

(
−1

2

(
τk−1 − tl−2

∆t

)2

− 1
2

(
tl − τk

∆t

)2

− τk − tl−1

∆t
+ 1

)

+ Jn,l−2

(
1
2

(
tl−1 − τk−1

∆t

)2

− 1
2

tl−1 − τk−1

∆t

)

=
1

∆t
Jn,l

ˆ τk

tl−1

(
τ − tl−1

∆t
+

1
2

)
dτ

+
1

∆t
Jn,l−1

(ˆ tl−1

τk−1

(
τ − tl−2

∆t
+

1
2

)
dτ +

ˆ τk

tl−1

(
tl − τ

∆t
− 1

2

)
dτ

)

+
1

∆t
Jn,l−2

ˆ tl−1

τk−1

(
tl−1 − τ

∆t
− 1

2

)
dτ

=
1

∆t

l∑
j=l−2

Jn,j

ˆ τk

τk−1

uj(τ) dτ

=
1

∆t

Nt∑
j=1

Jn,j

ˆ tk

tk−1

uj(τ) dt

=
Nt∑
j=1

〈Jn,juj(τ) , vk(t)〉 (3.38)
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where vk denotes the step function (3.28) and uj is given by

uj(t) =


t−tj−1

∆t + 1
2 , tj−1 < t ≤ tj ,

tj+1−t
∆t − 1

2 , tj < t ≤ tj+1,

0, else
(3.39)

called a shifted hat function. The terms in Eq. (3.27) with α ∈ {−1, 1, 2}
will result in the same basis function and their derivation will be omitted
for brevity. The conclusion of this derivation is that the MoT scheme with
the quadratic Lagrange basis function is discretely equivalent to the Petrov-
Galerkin scheme with step test function and shifted hat basis function. The
shifted hat function is only piecewise continuous and thus an element of H− 1

2 .
Hence, the basis function does not fit within the functional framework and
the stability theorem can therefore not be used for the MoT scheme with
quadratic Lagrange basis functions. Notice that although stability can not be
proven with this analysis, this does not mean that the scheme is unstable.

3.9 Provably stable MoT schemes

In this chapter, the numerical stability of TDIE methods has been analyzed
with the functional framework for the space-time Galerkin discretization of
the original EFIE derived by Terrasse. The resulting stability theorem has
been extended to the differentiated EFIE with functional analysis. Then, a
discrete equivalence between the space-time Galerkin and MoT scheme has
been derived. This concludes that the stability theorem of space-time Galerkin
can be used for the MoT scheme with quadratic spline basis functions.

3.9.1 Computational experiments

Many computer simulations for the differentiated EFIE have been performed
with the quadratic spline basis functions, for surface meshes with up to 17 000
degrees of freedom. The objects include spheres and boxes, but also more
challenging geometries such as a corner reflector and a generic aircraft, see
Chapter 6. All computational experiments with the MoT scheme have been
found to be stable, provided the quadrature scheme is accurate enough and
the time step size is chosen correctly. More specifically, quasi-exact integration
with 7 quadrature points for the outer integral and analytical formulations for
the inner integral has been found to be sufficiently accurate. The time step
size has been chosen as an oversampling of the highest frequency mode in the
incident wave field, as given in Eq. (2.25). See also the recommendations in
Chapter 8.
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3.9.2 Caveats in the stability theorem

The stability analysis of the TDIE method with a functional framework is
very valuable for the design of stable MoT schemes. The resulting guideline
of choosing the quadratic spline basis function has been confirmed by com-
puter simulations. Nevertheless, this does not conclude that all computer
simulations for MoT schemes with quadratic spline basis functions are guar-
anteed to be stable. There are still some caveats in the stability analysis. The
most important subtleties are the presence of a growing stability constant,
the numerical discretization in MoT schemes being based on a set of test and
basis functions that span a finite-dimensional function space, and the eval-
uation of interaction matrices using an approximation with finite precision.
Each nuance will be explained in subsequent sections.

Stability constant

The boundedness theorem of Terrasse contains both a constant C(Γ) and 1
σ .

Whereas the constant C is expected, the term 1
σ causes some controversy. The

parameter σ originates from the usage of the Fourier-Laplace domain in the
derivation of the functional analysis. For the stability proof, this parameter
can be chosen arbitrarily small but positive. In practice, σ = 0 is used during
numerical discretization. Strictly speaking, the stability theorem is not valid
anymore and can thus not be used to proof stability of the TDIE method.

This is still an open problem in literature [39, 20]. No stability proof
has been derived without this parameter, which makes the stability proof of
Terrasse still the most attractive option. In [39], it has been argued that for
finite simulation times, this parameter will not cause major problems.

Finite dimensional subspace

The stability theorem states that the variational formulation 〈E(J) , v〉σ =〈
Ei , v

〉
σ
∀v ∈ H− 3

2 of the original EFIE has a unique solution J ∈ H 1
2 which

is bounded by the incident field in an energy norm. Similar results have been
obtained for the differentiated EFIE. Petrov-Galerkin discretization uses test
functions vi and basis functions uj for i, j = 1, 2, 3, . . . , N and solves the
discrete variational formulation. The test and basis functions span a finite
dimensional function space, denoted by Htest and Hbasis. Naturally, the test
and basis functions are chosen such that these functions are N -dimensional
subsets of the Sobolev spaces, i.e., Htest ⊂ H− 3

2 and Hbasis ⊂ H 1
2 . Since the

theorem only proves boundedness of the solution of the continuous variational
formulation with infinite dimensional Sobolev spaces, one can not use this
theorem to prove stability of the Petrov-Galerkin scheme, which uses only a
finite dimensional subset.
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The difference between the continuous and discrete variational formula-
tion, or infinite and finite dimensional function space is subtle. Loosely
speaking, since the discrete solution is searched for in a finite dimensional
subspace of H 1

2 , the continuous solution might be element of its nonempty
complement H 1

2 \ Hbasis. Moreover, since the equations are tested against a
finite dimensional subspace of H− 3

2 , this solution does not have to be found at
all. In general, Petrov-Galerkin schemes will approximate the exact solution
effectively. However, providing a proof of convergence and boundedness of
this discrete solution can be very difficult. The proof usually derives inf-sup
conditions on the variational formulation. When the TDIE method is used
to discretize the scalar wave equation applied to acoustics, stability of the
discrete variational formulation has been proven [38], but details are scarce
in literature. For electromagnetics, no proof has been found in literature.

Computation of surface integrals

The EFIE is a surface integral formulation of Maxwell’s equation. Discretiza-
tion is based on the variational formulation, which introduces a space-time
inner product. The time integrals in the variational formulation can be eval-
uated analytically, see Sec. 3.8. An evaluation of a four-dimensional integral
in space remains. Strictly speaking, the stability theorem only holds when
this integral is evaluated exactly. This is not feasible in practice and nu-
merical quadrature is used instead. Even when analytical solutions can be
applied, rounding errors will be present in computer simulations. The idea is
that when these numerical errors are very small, the stability theorem can be
used with a high confidence. However, large numerical errors can deviate the
scheme to instability. Computational experiments confirm that the stability
is very sensitive to numerical errors [84, 87, 109].

To obtain the stability expected from the analysis, one thus has to evaluate
the four-dimensional integrals in space with a high accuracy. The presence
of retarded time levels in the integrand complicates this evaluation. More
precisely, the integrand is nonsmooth on the intersections of light cones and
triangular patches. Standard quadrature procedures are not effective anymore
and sophisticated algorithms have to be used to approximate the integrals.
This phenomenon will be explained in detail in Chapter 5.

3.9.3 Extension to other model equations

The stability theorem of Terrasse covers the original EFIE. In this chapter,
stability of the differentiated EFIE has been analyzed with the aid of the
available functional framework. Since the stability proof explicitly uses the
EFIE, the proof can not be used for other model equations such as the MFIE
and CFIE. Extensions to these equations will be nontrivial. In the case of
scalar wave equations applied to acoustics, stability has been analyzed for
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second kind integral equation similar to the MFIE [39]. Their recommendation
is to use first kind integral equations, such as the EFIE.

Two important extensions to the stability analysis have been derived in
literature: for an impedance boundary conditions [54] and a coupling with a
volumetric finite element method [78].





Chapter 4
Accuracy

4.1 Accuracy in time of the MoT scheme

The development of TDIE methods has benefited from the knowledge of its
frequency-domain counterpart, the Method-of-Moments (MoM). For exam-
ple, the discretization in space of the MoT schemes follows the lines of the
MoM, that is, a Galerkin method with RWG functions (2.23) is used. The
numerical discretization in time of the TDIE method naturally has no coun-
terpart in the MoM. The choice of temporal basis function can therefore not
be based on common practices for the MoM. Moreover, most theory on fi-
nite element methods is derived for ordinary differential equations, not for
retarded potential integro-differential equations such as the EFIE (2.10). An
example of this difference is the customary choice of shifted Lagrange basis
functions that have been designed such that they interpolate functions in a
retarded time level. Many other temporal basis functions have been used in
literature on TDIE methods, as listed in Sec. 2.2.2. No clear guidelines are
available on how to choose them. This chapter aims to derive a framework
for the design of temporal basis functions according to user-defined criteria
on interpolation accuracy and smoothness. This framework can be used to
verify existing temporal basis functions and to design novel ones.

The accuracy properties of the temporal discretization in the MoT scheme
will be the main topic of this chapter. A complete derivation of the global
accuracy in time of TDIE methods is not feasible. Instead, a combination of
analysis and experiments will be performed. An important part of finite ele-
ment methods is the projection of the solution of the variational formulation
onto a finite element space [15]. Error bounds on this interpolation procedure
will be derived for piecewise polynomial basis functions. Evidently, the accu-
racy of interpolation influences the global accuracy of the MoT scheme. How-

81
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ever, it is not necessary that the orders of interpolation and global accuracy
are exactly the same. The global accuracy will be analyzed experimentally
for a number of temporal basis functions.

The analysis of the interpolation accuracy will be restricted to temporal
basis functions that yield an efficient MoT scheme. We define the efficiency of
a numerical scheme by the trade-off between the amount of work and accuracy.
Generally speaking, a temporal basis function with small support results in
an inexpensive TDIE method whereas a large support results in an accurate
method [47, 50]. In order to obtain the fast MoT algorithm (2.22), causal basis
functions with small support will be used, as given by Eq. (2.29). This includes
shifted Lagrange basis functions [60], but excludes for example the smooth but
noncausal BLIFs [102] and PUMs [77] and the entire-domain Laguerre basis
functions [49]. Notice that the temporal basis functions that will be used have
compact support and have therefore no bandlimited frequency content [102].

First, the objectives for the design of temporal basis functions will be
explained in Sec. 4.2. Then, the interpolation accuracy of piecewise polyno-
mials basis functions in time will be derived in Sec. 4.3. For the requirement
of maximum order interpolation of interpolation accuracy, the temporal basis
functions allow for the incorporation of other design criteria, as performed in
Sec. 4.4. Numerical experiments in Sec. 4.5 will confirm the design criteria of
the temporal basis functions.

4.2 Framework to design temporal basis func-
tions

The interpolation accuracy of TDIE methods depends on the choice of tem-
poral basis function. Therefore, the analysis should be performed for each
temporal basis function. However, in this chapter, the analysis will not be
performed for a single temporal basis function, but for the class of piecewise
polynomial functions. The resulting temporal basis functions that satisfy a
prescribed order of interpolation accuracy contain several parameters. Be-
cause these parameters can be chosen freely, a framework is obtained for the
design of temporal basis functions. The parameters will be chosen according
to the following objectives:

• inclusion of popular choices of temporal basis function;

• smoothness of the temporal basis function;

• conditioning of the leading interaction matrix.

The presented framework can be used to design novel temporal basis func-
tions. In order to make a good comparison with the customary basis function,
it is necessary that the well-known shifted Lagrange basis functions naturally



4.3. Derivation of the interpolation accuracy 83

fit within this framework, as will be confirmed in Sec. 4.4.1. In Sec. 4.4.2,
smooth temporal basis functions will be designed. Smoothness can be ob-
tained without impinging on interpolation accuracy and will improve the ac-
curacy of the quadrature procedure in space, as confirmed experimentally. In
Sec. 4.4.3, a family of temporal basis function will be derived that have a
direct influence on the conditioning of the leading matrix and therefore also
on the effectiveness of the linear solver in the MoT scheme.

One of the most important properties of a numerical scheme is stability.
Without stability, TDIE methods are not feasible for industrial application.
The functional framework in Chapter 3 suggest a certain smoothness of the
test and basis functions in the space-time Galerkin scheme. This results in
the preliminary conclusion that stability is expected when the quadratic spline
basis function is used in the MoT scheme. This temporal basis function is
included in this framework and stability will not be considered further in this
chapter.

4.3 Derivation of the interpolation accuracy

The interpolation accuracy of piecewise polynomial basis functions will be
derived in this section. This will result in families of temporal basis functions
that satisfy a specific order of interpolation accuracy.

4.3.1 Interpolation in finite element methods

Intrinsic to the finite element method is the projection of the solution on a
function space of finite dimension. This so-called interpolation is one of the
sources of discretization errors. Temporal basis functions determine the finite
element space and thus influence the accuracy of interpolation. A thorough
analysis of the interpolation procedure will result in clear conditions on tem-
poral basis functions for interpolation errors of a given order w.r.t. the time
step size.

For an arbitrary function u(t), the interpolator I defines the interpolant û(t)
by

û = I (u) =
N∑

j=1

ũjTj (4.1)

for coefficients ũj that will be defined in Eq. (4.4) and Tj(t) temporal basis
functions (2.26). The interpolation error is given by ||u−Iu|| where the type
of norm will be specified in Eq. (4.7). Recall that for the CFIE the first
and second time derivative have to be evaluated in the retarded time as well.
Therefore, the interpolation errors ||u′ − Iu′|| and ||u′′ − Iu′′|| are also of
interest. The derivative of a function is interpolated with the derivative of



84 Chapter 4. Accuracy

the same basis functions, i.e.,

I(u′) =
∑N

j=1 ũjT
′
j , (4.2)

I(u′′) =
∑N

j=1 ũjT
′′
j (4.3)

where ũj and Tj are the same as in Eq. (4.1).
For a correct interpolation procedure, two choices have to be made, namely

the definition of the finite element space and the map onto this space. Since
piecewise polynomial basis functions (2.29) are used, the finite element space
is defined by the space of piecewise polynomials of degree d. The map onto
the finite element space is based on the definition of the coefficients ũj that
depend on u, i.e.,

ũj = Nj(u) (4.4)

for a functional Nj , called a nodal variable [15]. It is important to chose a
nodal variable for which the interpolation can be analyzed easily. Additionally,
a natural requirement is that the well-known shifted Lagrange basis functions
should fit within this choice for the nodal variables.

It is common practice to use an interpolation that is a projection. A
sufficient condition is Ni(Tj) = δij for i, j = 1, 2, . . . , N with δij denoting the
Kronecker delta. Although this will not be required, this condition is checked
a posteriori for the nodal variables and temporal basis functions that are used
in this chapter.

4.3.2 Interpolation accuracy of quadratic basis functions

Let us consider temporal basis functions based on quadratic polynomials. For
an arbitrary time point τ and corresponding level `, satisfying t`−1 < τ ≤ t`,
the interpolant (4.1) reads

Iu(τ) =
N∑

j=1

ũjTj(τ) =
2∑

k=0

ũ`−kFk(k∆t− σ) (4.5)

where Fk has been defined in Eq. (2.29). With σ defined as σ = t` − τ ,
the analysis can be restricted to an arbitrary σ ∈ [0,∆t). Remember that
derivatives have to be interpolated as well. This results in three interpolants

û(τ) = F0(−σ)ũ` +F1(∆t− σ)ũ`−1 +F2(2∆t− σ)ũ`−2, (4.6a)
û′(τ) = F ′

0(−σ)ũ` +F ′
1(∆t− σ)ũ`−1 +F ′

2(2∆t− σ)ũ`−2, (4.6b)
û′′(τ) = F ′′

0 (−σ)ũ` +F ′′
1 (∆t−σ)ũ`−1 +F ′′

2 (2∆t−σ)ũ`−2. (4.6c)

The interpolation error will be given by the pointwise norm, that is,

||u− Iu|| = |u(τ)− û(τ)| (4.7)
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and similar for the derivatives. To obtain useful expressions for the interpo-
lation accuracy, the interpolants have to be written as function of the solu-
tion uσ = u(τ) in the retarded time level. To this end, let us use

Nj(u) = u(tj) + α∆tu′(tj) (4.8)

for an arbitrary constant α ∈ R as nodal variable (4.4). This choice allows
for a straightforward analysis of the interpolation accuracy by using Taylor
series, that is,

ũ` = uσ + σu′σ +
1
2
σ2u′′σ

+ α∆tu′σ + α∆tσu′′σ +O(∆t3), (4.9a)

ũ`−1 = uσ + (σ −∆t)u′σ +
1
2
(σ −∆t)2u′′σ

+ α∆tu′σ + α∆t(σ −∆t)u′′σ +O(∆t3), (4.9b)

ũ`−1 = uσ + (σ − 2∆t)u′σ +
1
2
(σ − 2∆t)2u′′σ

+ α∆tu′σ + α∆t(σ − 2∆t)u′′σ +O(∆t3) (4.9c)

because O(σ) = O(∆t). Substitution of the Taylor series (4.9) into the inter-
polants (4.6) results in

û(τk) = A11uσ +A12u
′
σ +A13u

′′
σ +O(∆t3), (4.10a)

û′(τk) = A21uσ +A22u
′
σ +A23u

′′
σ +O(∆t2), (4.10b)

û′′(τk) = A31uσ +A32u
′
σ +A33u

′′
σ +O(∆t) (4.10c)

with Aij given by

A11 = F0,σ + F1,σ + F2,σ, (4.11a)
A12 = (σ + α∆t)F0,σ + (σ + (α− 1)∆t)F1,σ + (σ + (α− 2)∆t)F2,σ,

(4.11b)

A13 = (
1
2
σ2 + ασ∆t)F0,σ +

(1
2
σ2 + (α− 1)σ∆t− (α− 1

2
)∆t2

)
F1,σ

+
(1

2
σ2 + (α− 2)σ∆t− 2(α− 1)∆t2

)
F2,σ, (4.11c)

A21 = F ′
0,σ + F ′

1,σ + F ′
2,σ, (4.11d)

A22 = (σ + α∆t)F ′
0,σ + (σ + (α− 1)∆t)F ′

1,σ + (σ + (α− 2)∆t)F ′
2,σ, (4.11e)
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A23 = (
1
2
σ2 + α∆t)F ′

0,σ +
(1

2
σ2 + (α− 1)σ∆t− (α− 1

2
)∆t2

)
F ′

1,σ

+
(1

2
σ2 + (α− 2)σ∆t− 2(α− 1)∆t2

)
F ′

2,σ, (4.11f)

A31 = F ′′
0,σ + F ′′

1,σ + F ′′
2,σ, (4.11g)

A32 = (σ + α∆t)F ′′
0,σ + (σ + (α− 1)∆t)F ′′

1,σ + (σ + (α− 2)∆t)F ′′
2,σ,

(4.11h)

A33 = (
1
2
σ2 + α∆t)F ′′

0,σ +
(1

2
σ2 + (α− 1)σ∆t− (α− 1

2
)∆t2

)
F ′′

1,σ

+
(1

2
σ2 + (α− 2)σ∆t− 2(α− 1)∆t2

)
F ′′

2,σ (4.11i)

with the abbreviations

F0,σ = F0(−σ), (4.12a)
F1,σ = F1(∆t− σ), (4.12b)
F2,σ = F2(2∆t− σ). (4.12c)

Quadratic polynomials can interpolate arbitrary functions with third order
accuracy [15], that is,

|u(τ)− û(τ)| = O(∆t3). (4.13)

This is satisfied if A11 = 1, A12 = 0, and A13 = 0, which can be rewritten
into conditions on the temporal basis functions as

F0,σ + F1,σ + F2,σ = 1, (4.14a)

F1,σ + 2F2,σ =
σ

∆t
+ α, (4.14b)

F1,σ + 4F2,σ =
σ2

∆t2
+ 2α

σ

∆t
+ 2α2. (4.14c)

The first equation is the well-known unit sum condition for interpolants. No-
tice that conditions (4.14) yield A21 = 0, A22 = 1, A23 = 0, A31 = 0, A32 = 0,
and A33 = 1 for all σ ∈ [0,∆t). Hence,

|u′(τ)− û′(τ)| = O(∆t2), (4.15)
|u′′(τ)− û′′(τ)| = O(∆t), (4.16)

which shows that the derivatives are interpolated with a lower order of ac-
curacy. This is expected because the same temporal basis function are used
for interpolation of all derivatives. The interpolation is then based on a lower
degree of polynomial and thus obtains a lower degree of accuracy.

Since the CFIE contains second order derivatives, the interpolation ac-
curacy will be of first order at most. To obtain this order of interpolation
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accuracy, the temporal basis function has to satisfy conditions (4.14). This
system of three equations can be solved uniquely for quadratic polynomials
as

T (t) =


1
2 t̃2 + ( 3

2 − α)t̃ + α2 − 3
2α + 1, −1 < t̃ ≤ 0,

−t̃2 + 2αt̃− 2α2 + 1, 0 < t̃ ≤ 1,
1
2 t̃2 − ( 3

2 + α)t̃ + α2 + 3
2α + 1, 1 < t̃ ≤ 2,

0, else.

(4.17)

For any constant α this temporal basis function results in a first order accurate
interpolation of the CFIE. The parameter α is the degree of freedom in the
framework to design temporal basis functions.

4.3.3 Interpolation accuracy of cubic basis functions

The derivation of the interpolation accuracy for quadratic temporal basis
functions can readily be extended to higher order polynomials. The gain of
using cubic basis functions is that a higher degree of interpolation accuracy
can be achieved. To be precise, an interpolation procedure that satisfies

|u(τ)− û(τ)| = O(∆t4), (4.18a)

|u′(τ)− û′(τ)| = O(∆t3), (4.18b)

|u′′(τ)− û′′(τ)| = O(∆t2) (4.18c)

is searched for. Moreover, more flexibility in the framework to design temporal
basis functions can be obtained. To this end, let us use

Nj(u) = u(tj) + α∆tu′(tj) + β∆t2u′′(tj) (4.19)

as nodal variable. With a straightforward extension of the derivation in
Sec. 4.3.2, it can be shown that cubic polynomial basis functions have to
satisfy

F0,σ + F1,σ + F2,σ + F3,σ = 1, (4.20a)

F1,σ + 2F2,σ + 3F3,σ =
σ

∆t
+ α, (4.20b)

F1,σ + 4F2,σ + 9F3,σ =
σ2

∆t2
+ 2α

σ

∆t
+ 2(α2 − β), (4.20c)

F1,σ + 8F2,σ + 27F3,σ =
σ3

∆t3
+

α

2
σ2

∆t2
+ (α2 − β)

σ

∆t
+ α3 − 2αβ.

(4.20d)
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This system of equations can be solved uniquely as

T (t) =



1
6 t̃3 +

(
1− 1

2α
)
t̃2 +

(
11
6 + α2 − 2α− β

)
t̃

+1− α3 + 2α2 − 11
6 α + 2αβ − 2β, −1 < t̃ ≤ 0,

− 1
2 t̃3 −

(
1− 3

2α
)
t̃2 +

(
1
2 − 3α2 + 2α + 3β

)
t̃

+1 + 3α3 − 2α2 − 1
2α− 6αβ + 2β, 0 < t̃ ≤ 1,

1
2 t̃3 −

(
1 + 3

2α
)
t̃2 −

(
1
2 − 3α2 − 2α + 3β

)
t̃

+1− 3α3 − 2α2 + 1
2α + 6αβ + 2β, 1 < t̃ ≤ 2,

− 1
6 t̃3 +

(
1 + 1

2α
)
t̃2 −

(
11
6 + α2 + 2α− β

)
t̃

+1 + α3 + 2α2 + 11
6 α− 2αβ − 2β, 2 < t̃ ≤ 3,

0, else.

(4.21)

This a two-parameter family of temporal basis functions that result in a second
order accurate interpolation procedure.

4.4 Design of temporal basis functions

For MoT schemes with piecewise quadratic polynomials as temporal basis
function, the one-parameter family (4.17) results in a first order interpola-
tion procedure. Two degrees of freedom are present in the cubic basis func-
tions (4.21) that result in a second order accurate interpolation. In this sec-
tion, these parameters will be chosen according to the objectives defined in
Sec. 4.2.

4.4.1 Customary temporal basis functions

The most popular choice of temporal basis function in the MoT scheme is the
shifted Lagrange basis function. For the quadratic basis functions (4.17), the
choice α = 0 results in

T (t) =


1
2 t̃2 + 3

2 t̃ + 1, −1 < t̃ ≤ 0,

−t̃2 + 1, 0 < t̃ ≤ 1,
1
2 t̃2 − 3

2 t̃ + 1, 1 < t̃ ≤ 2,

0, else,

(4.22)

which is the quadratic Lagrange basis function [60]. The cubic Lagrange basis
function [4], given by

T (t) =



1
6 t̃3 + t̃2 + 11

6 t̃ + 1, −1 < t̃ ≤ 0,

− 1
2 t̃3 − t̃2 + 1

2 t̃ + 1, 0 < t̃ ≤ 1,
1
2 t̃3 − t̃2 − 1

2 t̃ + 1, 1 < t̃ ≤ 2,

− 1
6 t̃3 + t̃2 − 11

6 t̃ + 1, 2 < t̃ ≤ 3,

0, else,

(4.23)
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can be obtained with the choice (α, β) = (0, 0) in Eq. (4.21). Notice that the
shifted Lagrange basis functions correspond to the nodal variable Nj(u) =
u(tj) in both the quadratic and cubic case.

4.4.2 Smooth temporal basis functions

In this section, the freedom to choose the parameters of the temporal ba-
sis functions with maximum order of interpolation accuracy will be used to
require smoothness. Since piecewise polynomials are used, this reduces to
continuity on discrete time levels. For instance, continuity of quadratic basis
function (4.17) on the whole time axis is achieved when

α

(
α− 1

2

)
= 0. (4.24)

The solution α = 0 results in the quadratic Lagrange basis function (4.22),
whereas the solution α = 1

2 yields

T (t) =


1
2 t̃2 + t̃ + 1

2 −1 < t̃ ≤ 0,

−t̃2 + t̃ + 1
2 0 < t̃ ≤ 1,

1
2 t̃2 − 2t̃ + 2 1 < t̃ ≤ 2,

0 else.

(4.25)

This is the temporal basis function based on quadratic B-splines [97, 33].
Although only continuity has been required, the spline basis function has a
continuous derivative as well. Thus, the quadratic spline basis function is
C1 continuous, whereas the quadratic Lagrange basis function is C0 continu-
ous.

For the cubic basis functions (4.21), two parameters are present. Now,
C1 continuity can be imposed, which is achieved when

α3 − α2 +
1
3
α− 2αβ + β = 0, (4.26a)

1
3

+ α2 − α− β = 0. (4.26b)

The unique real-valued solution is (α, β) = (1, 1
3 ), for which the temporal

basis function reads

T (t) =



1
6 t̃3 + 1

2 t̃2 + 1
2 t̃ + 1

6 , −1 < t̃ ≤ 0,

− 1
2 t̃3 + 1

2 t̃2 + 1
2 t̃ + 1

6 , 0 < t̃ ≤ 1,
1
2 t̃3 − 5

2 t̃2 + 7
2 t̃− 5

6 , 1 < t̃ ≤ 2,

− 1
6 t̃3 + 3

2 t̃2 − 9
2 t̃ + 9

2 , 2 < t̃ ≤ 3,

0, else.

(4.27)
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Although only C1 continuity has been required, the basis function is in fact
C2 continuous. Therefore, it is called the cubic spline basis function. This
temporal basis function results in a second order accurate interpolation pro-
cedure for the CFIE and has the striking feature of being C2 continuous.

The various temporal basis functions introduced in this chapter are de-
picted in Fig. 4.1 and their properties are summarized in Table 4.1.
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Figure 4.1: The shape of the temporal basis functions.

Table 4.1: Interpolation accuracy for the three temporal terms, the total in-
terpolation accuracy of the CFIE and the smoothness of the various temporal
basis functions.

tbf acc. T acc. T ′ acc. T ′′ total acc. smoothness

qL O(∆t3) O(∆t2) O(∆t) O(∆t) C0(R)

qs O(∆t3) O(∆t2) O(∆t) O(∆t) C1(R)

cL O(∆t4) O(∆t3) O(∆t2) O(∆t2) C0(R)

cs O(∆t4) O(∆t3) O(∆t2) O(∆t2) C2(R)

4.4.3 Conditioning of the leading interaction matrix

At every time level in the MoT scheme (2.22), the solution of a system of
linear equations has to be computed. That is,

Z0Ik = bk (4.28)

has to be solved for Ik ∈ RNs , where Z0 is the leading interaction matrix
in the MoT scheme. For current test problems, this system of equations can
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be solved very efficiently. In fact, less than 1% of the total computation
time is consumed by the linear solver, for all computer simulations considered
in this thesis. However, this might become relatively more expensive when
larger problem sizes are considered. In this section, a family of temporal basis
functions will be derived with a parameter that has direct influence on the
conditioning of the leading interaction matrix.

The elements (Zj)mn of the interaction matrices correspond to the influ-
ence of the RWG function of edge m on edge n for a retarded time level j.
In particular, the leading matrix Z0 contains almost-immediate interactions
only, that is, all regions of support of RWG functions m and n with distance
smaller than c∆t. Moreover, the leading matrix depend on the first temporal
basis function T1(t) only, and only its first piecewise polynomial with support
on (−∆t, 0], see Eq. (2.29). The shape of the temporal basis function will
determine the weights on which radiation fields are distributed over different
interaction matrices Zj and their elements (Zj)mn. Therefore, the condi-
tioning of the interaction matrices depend on the shape of temporal basis
functions. To this end, a family of temporal basis functions will be designed
whose shape can be easily deformed.

Unfortunately, the families of temporal basis functions that have been
derived in this chapter are not feasible for the purpose of shape deformation.
To this end, the nodal variable (4.19) of cubic basis functions is extended to

Nj(u) = u(tj) + α∆tu′(tj) + β∆t2u′′(tj) + γ∆t3u′′′(tj) (4.29)

for arbitrary constants α, β, γ ∈ R. With an equivalent derivation as in Sec-
tion 4.3, a second order interpolation procedure can be required. This will
give a family of cubic basis functions with three parameters. The cubic La-
grange and spline basis functions can be derived for (α, β, γ) = (0, 0, 0) and
(1, 1

3 , 0), resp. This confirms that this family is an extension of Eq. (4.21).
Now, let us impose C1 continuity, which is achieved when

α3 − α2 +
1
3
α− 2αβ + β + γ = 0, (4.30a)

1
3

+ α2 − α− β = 0. (4.30b)

These conditions are satisfied for the temporal basis functions

T (t) =



1
6 t̃3 +

(
1− 1

2α
)
t̃2 +

(
3
2 − α

)
t̃ + 2

3 −
1
2α −1 < t̃ ≤ 0,

− 1
2 t̃3 +

(
−1 + 3

2α
)
t̃2 +

(
3
2 − α

)
t̃ + 2

3 −
1
2α 0 < t̃ ≤ 1,

1
2 t̃3 +

(
−1− 3

2α
)
t̃2 +

(
− 3

2 + 5α
)
t̃ + 8

3 −
7
2α 1 < t̃ ≤ 2,

− 1
6 t̃3 +

(
1 + 1

2α
)
t̃2 +

(
− 3

2 − 3α
)
t̃ + 9

2α 2 < t̃ ≤ 3,

0 else.

(4.31)

For α = 1, this cubic C1 spline basis function reduces to the cubic spline basis
function (4.27) that is C2 continuous. This one-parameter family of temporal
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basis functions satisfies the following properties:
ˆ ∞

−∞
T (t̃) dt̃ = 1, (4.32a)

ˆ ∞

−∞
t̃ T (t̃) dt̃ = α (4.32b)

for the nondimensional time t̃ = t/∆t. Eq. (4.32a) states that the temporal
basis functions have equal contributions for all parameters α ∈ R. The integral
in Eq. (4.32b) can be interpreted as the centroid. So the parameter α specifies
the point in time where the temporal basis function has most contribution.
This can be seen in Fig. 4.2, where the cubic C1 spline basis function (4.31)
is depicted for several choices of α. Changing the parameter α will deform
the shape continuously and is therefore expected to have influence on the
conditioning of the leading interaction matrix. This will be experimentally
confirmed in Sec. 4.5.5.
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Figure 4.2: The family of cubic C1 spline basis functions (4.31).

4.5 Experimental confirmation

The interpolation accuracy of temporal basis functions has been derived in
Sec. 4.3 for quadratic and cubic polynomials. This has resulted in families
of temporal basis functions that satisfy the maximum order of interpolation
accuracy. The degrees of freedom have been used to obtain user-defined ob-
jectives such as smoothness. In this section, the influence of the choices made
in the framework on the numerical properties of the MoT scheme will be
confirmed with computational experiments.
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Two test cases will be considered, namely a cube with edges of 1 m and a
sphere with a diameter of 1 m. As depicted in Fig. 4.3, the cube and sphere
are partitioned into 480 and 238 triangular patches, respectively. A Gaussian
plane wave (2.35) will be used as incident field, with the parameters given by:
pulse strength 120π V, pulse width 6m, pulse delay 4 lm, and polarization and
propagation in the +x̂ and−ẑ direction. To get an equal contribution from the
EFIE and MFIE, the CFIE-0.5 will be used, i.e., κ = 0.5 in (2.17). The outer
spatial integral has been calculated with Gaussian quadrature with 7 points on
each triangle patch and the inner integral calculated analytically [84], unless
stated otherwise.

Figure 4.3: The mesh of the cube and sphere used as test problem.

4.5.1 Interpolation accuracy

In this chapter, the accuracy in time of the MoT scheme has been analyzed
by deriving bounds on the interpolation error, as summarized in Table 4.1.
To validate the analysis, a given function will be interpolated, for instance
a Gaussian curve u(t) = e−(12t−6)2 for 0 ≤ t ≤ 1. The interpolant (4.1)
calculated with a time step size ∆t = 1/800 is denoted by û1 and with ∆t =
1/400 by û2. Then the order of interpolation accuracy can be computed as
log2

(
||û2−u||
||û1−u||

)
and similar for the derivatives. Results with the L2 norm are

given in Table 4.2. The experimental accuracy perfectly matches the expected
accuracy.

4.5.2 Smoothness

An important feature of the spline basis functions (4.25) and (4.27) is the
continuous derivative on the whole time axis whereas shifted Lagrange basis
functions (4.22) and (4.23) are only continuous. The discrete surface current
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Table 4.2: Experimental order of interpolation accuracy.
temporal basis function u u′ u′′

quadratic Lagrange 3.000 1.994 0.995

quadratic spline 3.000 2.005 1.000

cubic Lagrange 3.999 2.990 1.992

cubic spline 3.999 3.085 2.001

density calculated with the spline basis functions is therefore expected to be
smooth. To verify this implication, the TDIE method will be used with a
large time step size, for which the effect of smooth basis functions on the
solution will appear. For the sphere and cube a time step size of 1.13 lm
and 0.71 lm has been used, resp. As a reference solution, the MoT scheme
has been applied with a small time step size of 0.014 lm and 0.029 lm for
the sphere and cube, resp. The results depicted in Fig. 4.4 clearly show
that the smoothness properties of the temporal basis functions lead to similar
smoothness properties of the discrete electric surface current density.
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(a) At the top face of the cube.
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(b) At the top face of the sphere.

Figure 4.4: Electric surface current density.

4.5.3 Quadrature accuracy

Spatial integrals over the triangular surface mesh are present in the CFIE (2.17).
Gaussian quadrature has been used to evaluate the integrals, which is effective
for smooth integrands. The integrands in the CFIE depend on the temporal
basis functions evaluated in retarded time levels. Smooth temporal basis func-
tions therefore yield integrands that are smooth in space and the quadrature
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accuracy is expected to improve. Remember that the quadrature procedure
is applied to the outer integral only because the inner integral has been calcu-
lated with analytic expressions [84]. The sphere will be used as test problem,
with the EFIE and a time step size of 0.14 lm.

The discretized EFIE (2.15) consists of the terms

V q
mn,j =

¨
Γq

fm(r) ·
¨

Γ

fn(r′)T̈j(τ)
4πR

dr′ dr, (4.33a)

Sq
mn,j =

¨
Γq

∇ · fm(r)
¨

Γ

∇′ · fn(r′)Tj(τ)
4πR

dr′ dr (4.33b)

where Γq denotes the surface mesh with q quadrature points on each trian-
gular patch. These two terms can be related with the magnetic vector and
scalar potential, respectively [69]. Notice that the value j determines the ma-
trix Zj in the MoT scheme (2.22) of which the discrete terms are an element.
For each temporal basis function, both terms will be computed with differ-
ent numbers of quadrature points. The convergence towards the reference
experiment with 73 quadrature points will be considered. The relative error
is therefore defined as

||V q
mn,j − V 73

mn,j ||
||V 73

mn,j ||
.

For a given j, the `2 norm

||Vmn,j ||2 =
Ns∑

m=1

Ns∑
n=1

|Vmn,j |2

over all edge pairs has been used. The convergence results for the vector
potential term (4.33a) is depicted in Fig. 4.5(a) with j = 3 and for the scalar
potential term (4.33b) in Fig. 4.5(b) with j = 6.

For the cubic basis functions, the smoothness of the spline basis function
indeed improves the convergence as depicted in Fig. 4.5(a). For the quadratic
basis functions, however, exactly the same convergence is observed. This is
expected because the vector potential term (4.33a) contains T̈ only, which is
the same for both quadratic Lagrange and spline basis function.

In the case of the scalar potential term, no time derivatives are present
and the smoothness properties of the temporal basis functions are all differ-
ent. Fig. 4.5(b) clearly shows that smoothness of the temporal basis function
improves the convergence with respect to the number of quadrature points.

The positive influence of smooth basis functions on the quadrature accu-
racy of the discrete terms has been verified experimentally. However, a faster
convergence for the elements of the interaction matrices does not necessarily
imply more accurate solutions of the MoT scheme. It is therefore not evident
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(a) For the vector potential term.
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(b) For the scalar potential term.

Figure 4.5: Relative quadrature error for the EFIE on a sphere.

that smoothness of temporal basis functions will also have a positive influence
on the discrete surface current density of the TDIE method.

The solution of the EFIE has been computed with the MoT scheme for
different numbers of quadrature points. The convergence towards the refer-
ence solution for 73 quadrature points will be considered. The relative error
is given by

||Jq
n,j − J73

n,j ||
||J73

n,j ||

where Jq
n,j denotes the coefficients in Eq. (2.18) computed with q quadrature

points. The norm is defined in both discrete space and time as

||Jn,j ||2 =
Ns∑

n=1

100∑
j=1

|Jn,j |2 .

The convergence results depicted in Fig. 4.6 show a faster convergence for
spline basis functions compared to shifted Lagrange basis functions of equal
support. For this specific test case, the increase in convergence rate for the
surface current density is not as prominent as for the matrix elements.

4.5.4 Global accuracy

The global accuracy in time of TDIE methods depends on the interpolation
accuracy but does not necessarily have to satisfy the same orders of accuracy.
The global accuracy can be investigated experimentally with Richardson’s
extrapolation algorithm. To this end, let us consider three experiments with
three different time step sizes, all on the same spatial mesh. The x-component
of the discrete electric surface current density on top of the object is denoted
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Figure 4.6: Relative error for the electric surface current density on a sphere.

by J1(t), J2(t), and J4(t), for time step sizes ∆t, 2∆t, and 4∆t, respectively.
The order of the global accuracy in time can be computed as log2

(
||J4−J2||
||J2−J1||

)
where the L2 norm has been used for 0 ≤ t ≤ 14 lm. The results for the cube
and sphere are listed in Table 4.3 and 4.4, resp.

Table 4.3: Experimental order of accuracy on a cube, with the smallest time
step size listed.

temporal basis function 0.012 lm 0.023 lm 0.035 lm 0.047 lm

quadratic Lagrange 1.004 1.014 1.018 1.030

quadratic spline 1.996 2.004 1.989 2.044

cubic Lagrange 2.011 2.027 2.035 2.038

cubic spline 4.133 3.611 4.047 4.551

cubic C1 spline, α = − 1
2 2.989 2.916 2.8674 2.804

cubic C1 spline, α = 0 3.003 2.962 2.9568 2.935

cubic C1 spline, α = 1
2 3.016 2.992 3.0196 3.038

The experimental order of accuracy converges to the expected O(∆t) and
O(∆t2) for the quadratic and cubic Lagrange basis functions, resp. However,
a global error of O(∆t2) and O(∆t4) is observed for the quadratic and cu-
bic spline basis function, respectively. Furthermore, the cubic C1 spline basis
function (4.31) results in a global accuracy of O(∆t3). Apparently, the in-
terpolation error does not restrict the global accuracy when the spline basis
functions are used and higher orders of accuracy are obtained. Indeed, the
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Table 4.4: Experimental order of accuracy on a sphere, with the smallest time
step size listed.

temporal basis function 0.014 lm 0.028 lm 0.043 lm 0.057 lm

quadratic Lagrange 1.039 1.085 1.129 1.166

quadratic spline 1.982 2.017 2.005 1.992

cubic Lagrange 2.044 2.093 2.135 2.159

cubic spline 4.079 4.229 4.028 4.016

cubic C1 spline, α = − 1
2 2.955 2.9252 2.8291 2.7285

cubic C1 spline, α = 0 2.971 2.9748 2.9209 2.8586

cubic C1 spline, α = 1
2 2.983 3.0064 2.9937 2.9799

smoothness is a clear difference between shifted Lagrange and spline basis
functions, but the actual cause of this remarkably better accuracy for the
spline basis functions is a topic for future research.

The present accuracy analysis has been derived for TDIE methods that
use the MoT scheme. As explained in Chapter 3, discretely equivalent space-
time Galerkin schemes can be derived. Evidently, equivalent schemes have the
same accuracy properties. Recently, some computational experiments on the
global accuracy of space-time Galerkin schemes have been published in [11].
Their computational results are in agreement with this thesis.

4.5.5 Condition number

In Sec. 4.4.3 a family of temporal basis function has been derived with the
aim to influence the conditioning of the leading interaction matrix such that
the linear solver in the TDIE method becomes more effective. The spectral
condition number of the matrix can be used as a first estimate for the effec-
tiveness of linear solvers [76] and is defined as the ratio of the largest and
smallest eigenvalue. The influence of the shape of the temporal basis function
on the conditioning of the leading interaction matrix will be analyzed exper-
imentally. To this end, the spectral condition number will be computed for
several values of α in the cubic spline basis function (4.31).

First, let us consider several other numerical properties of the leading
interaction matrix. The sparsity of the matrix depends on the time step size.
More specifically, only the interaction of all spatial test and basis function
with distance at most c∆t result in nonzero elements in the leading interaction
matrix. Therefore, the larger the time step size compared to the surface mesh
size, the more nonzero elements. The sparsity pattern for a typical choice of
time step size is depicted in Fig. 4.7(a).

The exact formulation of the elements of the discrete interaction matri-
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ces is symmetric. That is, the influence of the spatial test function m on
basis function n equals the influence of n on m. However, because different
quadrature rules are used for the source and observer patches, the symmetry
is lost during the matrix evaluation. Still, the matrices are almost symmetric
and the computed eigenvalues are most often real valued. Furthermore, the
continuous formulation of the leading interaction matrix is positive definite
when the time step size is small enough [91]. Computational experiments sug-
gest that this still holds in the discrete case, as illustrated by the spectrum
depicted in Fig. 4.7(b).
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Figure 4.7: The leading interaction matrix on a unit sized cube with
1239 edges, ∆t = 0.1 lm, and the cubic spline basis function (4.31) with
α = 0. Quasi-exact integration has been used with 7 quadrature points.

Now, let us return to the influence of the temporal basis function on the
conditioning of the leading interaction matrix. Several computational experi-
ments will be performed for which the spectral condition number is computed.
Different values of the shape parameter in the cubic spline basis function (4.31)
are used, with the shifted Lagrange and quadratic spline basis function as ref-
erences. The results for a cube and a generic aircraft are given in Table 4.5.

The number of nonzero elements confirms that the larger the time step size,
the more populated the leading interaction matrix. This make the system of
linear equations harder to solve, as confirmed by the larger spectral condition
number. For small time step sizes, the contribution of radiation fields in the
leading interaction matrix is small and the differences between temporal basis
functions on the spectral condition number are negligible. For large time step
sizes, many discrete interactions contribute to each matrix and the influence
of the temporal basis function on the conditioning becomes apparent.
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Table 4.5: For a given time step size ∆t, the leading interaction matrix
has ‘nnz’ nonzero elements. The spectral condition number is given for the
quadratic Lagrange (qL), quadratic spline (qs), cubic Lagrange (cL), and cu-
bic spline (cs(α)) basis functions.

(a): A unit sized cube modeled with a surface mesh of 1239 edges.

∆t nnz qL qs cL

0.01 lm 16 035 5.72 5.96 5.85

0.1 lm 40 068 20.8 12.9 11.6

1 lm 1 080 971 1825 914 912

∆t nnz cs(-1) cs(-0.5) cs(0) cs(0.5) cs(1)

0.01 lm 16 035 5.96 5.96 5.96 5.96 5.96

0.1 lm 40 068 10.4 10.0 9.26 8.11 6.03

1 lm 1 080 971 710 670 609 508 306

(b): A generic aircraft modeled with a surface mesh of 6756 edges and scaled
to fit within a unit sized cube. This scaling allows for a fair comparison with
the results for the cube.

∆t nnz qL qs cL

0.01 lm 288 897 3.52·104 2.73·104 2.23·104

0.1 lm 4891 833 2.75·106 1.38·106 1.38·106

1 lm 45 643 096 2.74·108 1.37·108 1.37·108

∆t nnz cs(-1) cs(-0.5) cs(0) cs(0.5) cs(1)

0.01 lm 288 897 2.24·104 2.14·104 1.99·104 1.75·104 1.25·104

0.1 lm 4 891 833 1.07·106 1.01·106 9.20·105 7.68·105 4.63·105

1 lm 45 643 096 1.07·108 1.01·108 9.15·107 7.62·107 4.57·107

The computational experiments show that a larger shape parameter α in
the cubic spline basis function (4.31) improves the spectral condition number
of the leading interaction matrix. Remember that the definition of the leading
interaction matrix depends on the support in (−∆t, 0] of the temporal basis
function only. The distribution of the temporal basis functions between im-
mediate interactions, characterized by the support (−∆t, 0], and the retarded
interactions on (0, `∆t] is therefore not of influence on the conditioning of the
leading interaction matrix. In other words, the spectral condition number
of Z0 is a purely local parameter and depends on the shape of the temporal
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basis function in (−∆t, 0] only. Although it is clear from the computer simu-
lations that the condition number is influenced by the shape of the temporal
basis function, no clear relation with a certain shape characteristic has been
found. For example, the quadratic Lagrange and spline basis functions have
equal second derivative, but result in different spectral condition numbers.
Further research is required to specify the relation between the shape of the
temporal basis function and the conditioning of the interaction matrices.

The computational experiments clearly confirm that the shape of the tem-
poral basis function has influence on the conditioning of the leading matrix
and thus the effectiveness of the linear solver. However, the improvements
in the spectral condition number are moderate, especially for small time step
sizes. Notice that these smaller time step sizes are the typical choice for com-
puter simulations. Furthermore, the linear solver consumes only very little
computation time in the TDIE method for current test cases. This makes
the improvement of the condition number less important than other design
criteria for the temporal basis function. As a final remark, preliminary results
with a diagonal preconditioner do not change the observations made in this
section.





Chapter 5
Robustness

5.1 The influence of numerical errors on sta-
bility

Stability of the TDIE method is essential to its potential application in an
industrial environment. A functional analysis has been performed in Chap-
ter 3 that results in a stability theorem. For correctly chosen temporal basis
functions in the MoT scheme, stability of a specific variational formulation of
the EFIE is guaranteed. In this chapter, it will be shown that this is not yet
sufficient to obtain stable computer simulations in a robust manner.

After choosing the temporal basis function, the MoT scheme is given by
a marching procedure consisting of discrete interaction matrices. Each ele-
ment of the interaction matrices is given by the discrete radiation field for a
source and observer mesh element at a specific retarded time level. The eval-
uation of these elements requires the evaluation of two surface integrals. In
general, this can not be performed exactly on a computer architecture. The
use of approximation procedures such as numerical quadrature and floating
point representation are necessary. Consequently, numerical errors, such as
quadrature and rounding errors, are always present in computer simulations.

The stability proof does not take these numerical errors into account. It
is therefore possible that numerical errors ruin the theoretical stability. Com-
putational experiences suggest that the stability is very sensitive to numer-
ical accuracy. More precisely, standard implementations of simple quadra-
ture procedures most often fail to obtain the numerical accuracy required
for stable simulations. Stability can only be achieved with high confidence
when quadrature procedures are used that are specifically designed for the
TDIE method. Moreover, in this chapter we will show that a straightfor-
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ward formulation in finite precision arithmetic of accurate quadrature pro-
cedures is not yet sufficient. Well-behaved formulations will be derived and
employed in the MoT scheme resulting in improved stability and robustness
of the TDIE method.

In frequency-domain CEM, similar expressions for the elements of the
discretization matrix have to be evaluated with high precision as well. In
particular, highly accurate computation of singular and near-singular inte-
grals have to be performed to obtain accurate simulations. Different tech-
niques based on singularity extraction and singularity cancellation have been
designed [104, 36]. However, these algorithms can not readily be used in
TDIE methods, because the definitions of the integrals are different and no
influence of the impulsive nature in time of the Green’s function is present,
which considerable simplifies the integration regions.

The chapter will start with an introduction to quasi-exact integration
methods, which can obtain a very high accuracy in the evaluation of the
discrete interaction matrices. Sec. 5.2 will also explain the importance of
well-behaved expressions for computation in finite precision arithmetic. The
analytical formulation of radiation fields that are used in the quasi-exact in-
tegration method will be summarized in Sec. 5.3. Their evaluation in finite
precision arithmetic is ill behaved as explained in Sec. 5.4. To this end, a
robust formulation with specific tolerance regions will be derived in Sec. 5.5
and 5.6. The computational experiment in Sec. 5.7 confirms that the newly
designed robust formulation is necessary to obtain stability.

5.2 Quasi-exact integration methods

Numerical accuracy is dominated by the choice of quadrature procedure.
The numerical quadrature is used to approximate the four-dimensional in-
tegrals over the scattering surface that are present in the discretized equa-
tions. To be precise, an arbitrary element of an interaction matrix in the
MoT scheme (2.22) for the EFIE is given by

(Zi)mn =
1
c

¨
Γ

fm(r) ·
¨

Γ

fn(r′) T̈
(
i∆t− |r−r′|

c

)
4π|r− r′|

dr′ dr

+ c

¨
Γ

∇ · fm(r)
¨

Γ

∇′ · fn(r′)T
(
i∆t− |r−r′|

c

)
4π|r− r′|

dr′ dr. (5.1)

In general, numerical quadrature is effective when the integrand is smooth.
Remember that the temporal basis functions used in this thesis are differ-
entiable only to a limited degree, see Sec. 4.4.2. The integrand is therefore
nonsmooth and special quadrature procedures are necessary for high accuracy.

To reduce the quadrature errors in the TDIE method, there are mainly two
avenues to proceed: increase the smoothness of the integrand or improve the
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quadrature procedure. An increase in smoothness can be achieved by using
different temporal basis functions than the piecewise polynomials (2.29), for
instance BLIFs [102]. However, this is at the expensive of other design crite-
ria for temporal basis functions, most notably the efficiency and will therefore
not be considered, see Sec. 4.2. Improving the accuracy of the quadrature
procedure can not be achieved by increasing the number of quadrature points
in standard quadrature procedures, because the integrand is nonsmooth. The
idea is to design highly accurate quadrature procedures that locate the discon-
tinuities and use separate quadrature procedures on the subregions in which
the integrand is smooth.

Necessary for these so-called composite quadrature is the locating of sub-
regions in which the integrand is smooth. In the case of TDIE methods with
a Green’s function for scattering in an unbounded homogeneous space, these
subregions are given by the intersection of light cones and mesh elements, see
Fig. 5.1. Computing these shadow regions is highly technical and is known
only for lower-order schemes employing triangular patches.

Figure 5.1: For each quadrature point, the integrand is smooth inside each
shell of light cones.

The accuracy of the composite quadrature procedures can be improved
further when combined with analytical expressions for the integrals. In this
way, two quasi-exact methods have been established for TDIE methods in
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electromagnetics on arbitrary three-dimensional objects [84, 87]. The first
method uses analytical expressions of radiation fields to compute the inner two
integrals exactly. The second method uses analytical expressions for the inner
three integrals, leaving one integral to be evaluated by numerical quadrature.

The choice of integration method is based on a trade-off between accuracy,
efficiency, and implementation effort. Here, exact evaluation of the radiation
fields [84] will be used, because this method is in our experience necessary
and sufficient to obtain stability. The analytical expressions of the radiation
fields can be applied to specific basis functions only, namely the RWG spatial
basis functions (2.23) and the family of piecewise polynomial temporal basis
functions (2.29). Since these are the commonly practiced choices, it is no
stringent requirement.

This work builds upon the elegant analytical expressions for the radiation
fields as function of the geometrical properties of a source triangle and an
observation point, as introduced in [84]. We will analyze the evaluation of
these expressions in finite precision arithmetic, which is, in our experience, a
crucial element of a robust numerical scheme.

In this chapter, it will be shown that the analytical expressions of [84] are
ill behaved for certain important limit cases, for example when the observation
point is projected close to a vertex of the source triangle. Because of this, a
straightforward formulation in finite precision arithmetic can result in large
errors in the radiation fields, and basically undermines the accuracy of the
exact evaluation of the radiation fields. A computational experiment confirms
this and shows it can even lead to late-time instability of the MoT scheme.

Therefore, a robust formulation will be derived that will be shown to be
well behaved for all limit cases. This results in highly accurate evaluation
of interaction matrices, also in finite precision arithmetic. In fact, the same
computational experiment remains stable in late time. The novel formulation
thus improves the robustness and stability of the TDIE method and is an
important step towards industrial application.

5.3 Analytical formulation of radiation fields

This section describes the analytical formulation of the radiation fields and
explains its incorporation in the MoT scheme. Most of the material discussed
here has been introduced in [84]. This section aims to introduce the nomen-
clature that will be used in subsequent sections and provides additional details
for the analysis of the evaluation in finite precision arithmetic.

For conciseness, only the application to the differentiated EFIE (2.15)
will be considered in this chapter, but the same algorithm can also be used
for other boundary integral equations, including the MFIE, PMCHWT, and
Müller equations [84].
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5.3.1 Derivation of standard intersection integrals

The goal of this section is to rewrite the elements of the discretization ma-
trix (5.1) into a standardized form. First, the local support of the RWG func-
tion (2.23) is used to simplify the integration domain into pairs of observer
and source triangular facets, denoted by Γp and Γq, resp. A numerical quadra-
ture procedure will be used for the outer integral over the observer triangle.
Then, the radiation fields are expressed by an integral operator with respect
to an observer point, denoted by r?. The expressions can be simplified by
considering the projection point, denoted by r̃ and defined as the orthogonal
projection of r? onto the plane through source triangle Γq. This introduces
the projection height, denoted by h = |r̃− r?|.

The temporal basis functions (2.29) are defined as piecewise polynomials.
To obtain a single expression for the radiation field, the integration over the
source triangle Γq should be partitioned into regions where the temporal basis
functions are uniquely defined. This is the case for all source points r′ satis-
fying j ≤ |r?− r′|/(c∆t) < j + 1 for an integer j. This represents the discrete
light cone of observer point r? with interval ∆t. The integration should thus
be reduced to

Γq,j =
{
r′ ∈ Γq

∣∣ j∆t ≤ |r? − r′|
c

< (j + 1)∆t

}
(5.2)

which is the intersection of the source triangle and the discrete light cone.
Now, each element of the discretization matrix can be written as a unique

combination of standard intersection integrals, given by

Ik (r?) =
¨

Γq,j

(r′ − r̃)|r? − r′|k dr′, (5.3a)

Ik(r?) =
¨

Γq,j

|r? − r′|k dr′ (5.3b)

for k = −3,−1, 0, 1, . . . , `− 1.

5.3.2 Derivation of standard contour integrals

Using Gauss’ theorem, the standard intersection integrals (5.3) can be rewrit-
ten into the standard contour integrals

Ik(r?) =
1

k + 2

‰
∂Γq,j

|r? − r′|k+2 d̂dr′, (5.4a)

Ik(r?) =
1

k + 2

‰
∂Γq,j

|r? − r′|k+2

|r′ − r̃|2
(r′ − r̃) · d̂dr′ (5.4b)

for k = −3,−1, 0, 1, . . . , ` − 1, where d̂ denotes the unit outward normal
on ∂Γq,j situated inside the plane through the triangle. Special care should
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be devoted to the definition of the contour ∂Γq,j . The integrand of the scalar
contour integrals (5.4b) contains a singularity at r′ = r̃, which occurs when
the observer point is projected onto the source triangle. This is an integrable
singularity, so the integral operators converge and the singular point is called
a pole. Hence, the inside of contour ∂Γq,j should exclude the pole, which can
be done with a keyhole or indented contour, see Fig. 5.2. Then, a limit process
will be performed such that the contour converges to the boundary of Γq,j .
However, nonzero limit values of the standard contour integrals can be ob-
tained at the pole, which will be denoted by Ipole

k for k = −3,−1, 0, 1, . . . , `−1,
called the standard pole integrals.

Remember that Γq,j is given by the intersection of a triangle and a discrete
light cone. Therefore, the contour ∂Γq,j consists of line segments and arcs only,
see Fig. 5.3. The standard contour integrals can thus be written as a unique
combination of standard line, arc, and pole integrals:

Ik(r?) =
#line segments∑

i=1

Iline,i
k (r?) +

#arcs∑
i=1

Iarc,i
k (r?), (5.5a)

Ik(r?) =
#line segments∑

i=1

I line,i
k (r?) +

#arcs∑
i=1

Iarc,i
k (r?) + Ipole

k (r?) (5.5b)

where the number of line segments and arcs depend on the intersection shape.
These numbers range from zero to three. An analytical expression for the
standard contour integrals can be derived separately for each line segment
and arc.

5.3.3 Analytical expression for standard line integrals

Let us consider an arbitrary line segment that is part of the contour and denote
its start and end point by r1 and r2, resp. In order to derive an analytical
expression of the standard contour integrals (5.4) on a line segment, let us
introduce the local coordinate system (û, v̂, ŵ) defined by

û = (r2 − r1)/|r2 − r1|, (5.6a)
v̂ = û× ŵ, (5.6b)
ŵ = n̂ (5.6c)

where n̂ denotes the unit outward normal on the surface mesh. The unit
sized vectors û and v̂ are situated in the plane of the triangular mesh element
and are oriented parallel and perpendicular to the line segment, resp. The
location of the projection point r̃ w.r.t. this line segment can be characterized
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(a) The keyhole contour for a pole inside the triangle.

(b) The indented contour for a pole on the edge.

(c) The line contour for a pole outside the triangle.

Figure 5.2: The three cases of the contour integration, with the edge (black),
the projection point (red cross), and the contour (blue), where the inside of
the triangle is located above the edge.

r
⋆

r̃

Figure 5.3: The contour of an intersection of a triangle and discrete light cone.
Depicted are the triangle (green), observer point (blue point), projection (cyan
dotted line), projection point (red point), discrete light cones on the projection
plane (magenta dotted line) and contour (blue).
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by the parameters

u1 = (r1 − r̃) · û, (5.7a)
u2 = (r2 − r̃) · û, (5.7b)
v0 = (r1 − r̃) · v̂, (5.7c)
w0 = |(r1 − r̃) · ŵ| = h. (5.7d)

The analytical expression of the vector line integrals from Eq. (5.5) is given by

Iline
k (r?) =

Lvector
k

k + 2
v̂ (5.8)

for k = −3,−1, 0, 1, . . . , `− 1, with

Lvector
−3 = ln

(
u2 + |r2 − r?|
u1 + |r1 − r?|

)
, (5.9a)

Lvector
0 =

1
2
|r2 − r1|

(
|r2 − r?|2 + |r1 − r?|2

− 1
3
|r2 − r1|2

)
, (5.9b)

Lvector
k =

1
k + 3

(
u2|r2 − r?|k+2 − u1|r1 − r?|k+2

)
+

k + 2
k + 3

(
v20 + h2

)
Lvector

k−2 (5.9c)

for k = −1, 1, 2, 3, . . . , ` − 1. The analytical expression of the scalar line
integrals is given by

I line
−3 (r?) =


− 1

h

(
arctan

(
u2
v0

h
|r2−r?|

)
− arctan

(
u1
v0

h
|r1−r?|

))
, v0 6= 0 and h 6= 0,

0, v0 = 0 or h = 0,

(5.10a)

I line
0 (r?) =


1
2h2

(
arctan

(
u2
v0

)
− arctan

(
u1
v0

))
+ 1

2v0|r2 − r1|, v0 6= 0,

0, v0 = 0,

(5.10b)

I line
k (r?) =

v0

k + 2
Lvector

k−2 +
k

k + 2
h2I line

k−2(r
?) (5.10c)

for k = −1, 1, 2, 3, . . . , ` − 1. Notice that the scalar line integrals are given
by a recurrence relation (5.10c) which requires both an odd and even initial
term, given by Eq. (5.10a) and (5.10b) for −3 and 0, resp.
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5.3.4 Analytical expression for standard arc integrals

Let us consider an arbitrary arc that is part of the contour and denote its start
and end point by r1 and r2, resp. The analytical expression of the standard
contour integrals (5.4) on an arc is given by

Iarc
k (r?) =

(r2 − r1)× n̂
k + 2

|r1 − r?|k+2, (5.11a)

Iarc
k (r?) =

θ

k + 2
|r1 − r?|k+2 (5.11b)

for k = −3,−1, 0, 1, . . . , `− 1, where θ denotes the angle of the arc.

5.3.5 Analytical expression for standard pole integrals

The scalar standard contour integrals (5.5b) contain pole integrals, with the
analytical expression given by

Ipole
k (r?) = −ϕ(r̃)

hk+2

k + 2
(5.12)

for k = −3,−1, 0, 1, . . . , `−1, where ϕ denotes the circumscribed angle, given
by

ϕ(r) =


2π, r inside triangle,
π, r on edge,
αi, r on vertex i,

0, r outside triangle

(5.13)

where 0 < αi < π denotes the inner angle of the two edges connecting to
vertex i. Notice that the standard pole integrals (5.12) can be written as the
recurrence relation

Ipole
k (r?) =

k

k + 2
h2Ipole

k−2(r?) (5.14)

for k = −1, 1, 2, 3, . . . , `− 1.

5.3.6 Zero projection height

When the projection height h is zero, the integrals I line
−3 and Ipole

−3 are not
correctly defined because of a division by h. Notice that these integrals are
only present in the MFIE as the term (r̃−r?)I−3 [84]. Because (r̃−r?) = ±hn̂,
one can instead compute hI−3, which is properly defined for zero projection
height.
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5.4 Finite precision arithmetic

In this section, a thorough analysis of the consequences of analytic evaluation
of the contour integrals (5.4) in finite precision arithmetic will be derived. It
will be shown that the analytical expressions of the radiation fields suffer from
singular behavior when the projection of the observation point approaches
the boundary of the source element. A straightforward evaluation in finite
precision arithmetic will be given.

5.4.1 Straightforward formulation

The formulation of the analytical expressions of the radiation fields in fi-
nite precision arithmetic can best be explained for the standard pole inte-
grals (5.12), that depend on the circumscribed angle (5.13). The piecewise
definition of the circumscribed angle necessitates computing the location of
the projection point w.r.t. the triangular facet. For instance, one has to check
if the projection point r̃ coincides with a vertex vi. Due to rounding errors,
the check |r̃−vi| = 0 is not meaningful in finite precision arithmetic. Instead,
one has to use ||r−vi|| < ε for ε > 0 small compared to a characteristic length
scale of the surface mesh elements. If the projection point is located in the
tolerance region {r ∈ R3, ||r − vi|| < ε} around the vertex, then they will be
considered as if they coincide. Hence, the standard pole integrals read

Îpole
k (r?) = −ϕ̂(r̃)

hk+2

k + 2
, (5.15a)

ϕ̂(r) =


2π, r inside triangle and outside tol. regions,
π, r inside edge tolerance regions,
αi, r inside tolerance region of vertex i,

0, r outside triangle and tolerance regions

(5.15b)

for finite precision arithmetic. The full definition of the different tolerance
regions will be given in Section 5.6.

Similarly, the scalar line integrals (5.10) are piecewise defined for v0 = 0
and v0 6= 0. Geometrically, this corresponds to projection on or outside an
edge, resp. For finite precision arithmetic, a tolerance region around the edge
will be necessary and the scalar line integrals are extended to

Î line
k (r?) =

{
v0

k+2Lvector
k−2 + k

k+2h2Î line
k−2(r

?), r̃ outside tol. region,

0, r̃ inside tolerance region
(5.16)

for k = −1, 1, 2, 3, . . . , ` − 1, where the initial values Î line
−3 and Î line

0 are given
by Eq. (5.10). The analytical expression of a standard contour integral and
its extended expression for finite precision arithmetic are depicted in Fig. 5.4
and 5.5. For presentation, an extremely large tolerance region has been used.
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(a) The analytical expression, given by
Eq. (5.10) and (5.12).
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(b) The straightforward formulation for
finite precision arithmetic, given by
Eq. (5.16) and (5.15), with |v0| < 0.1 as
tolerance region.

Figure 5.4: The value of I line
0 + Ipole

0 w.r.t. projection points r̃ close to an
edge. Horizontal axes denote the local coordinates (û, v̂) from Eq. (5.6). The
vertical axis and colors in the surface plot depict the value of the integral.
The shape of the source triangle is depicted by the black lines.
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(a) The analytical expression, given by
Eq. (5.10) and (5.12).
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(b) The straightforward formulation for
finite precision arithmetic, given by
Eq. (5.16) and (5.15), with |v0| < 0.1 as
tolerance region.

Figure 5.5: The value of I line,2
0 + I line,3

0 + Ipole
0 w.r.t. projection points r̃ close

to vertex 1. Horizontal axes denote the local coordinates (û, v̂) from Eq. (5.6).
The vertical axis and colors in the surface plot depict the value of the integral.
The shape of the source triangle is depicted by the black lines.

Fig. 5.4 depicts the case where the projection point is located close to
an edge. A constant approximation has been used inside the edge tolerance
region, which results in a discontinuity at the boundary of the tolerance region.
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When the observer point is projected close to a vertex, both a vertex toler-
ance region and an edge tolerance region for the adjacent edges are necessary.
As depicted in Fig. 5.5, numerical errors are present in the straightforward for-
mulation whereas the analytical expression of the contour integral is smooth.
It will be shown in Section 5.5 that different terms in the analytical expres-
sion cancel out on the edges of the triangular facets. Because of the constant
approximations inside the tolerance regions, this cancellation is not effective
anymore, which causes inaccurate expressions for the standard contour inte-
grals.

5.4.2 Requirements on robust formulations

In Section 5.4.1, an extended version of the analytical expressions of radiation
fields has been introduced, which is necessary for finite precision arithmetic.
This straightforward formulation results in discontinuous and inaccurate ex-
pressions for the standard contour integrals. Although these inaccuracies
might be small for each radiation field, they could accumulate into inaccurate
discretization matrix elements and ultimately in an unstable MoT scheme, as
will be experimentally confirmed in Section 5.7.

Now, we aim to derive a robust formulation for the quasi-exact integration
method which eliminates this specific cause of instability. To this end, all
analytical expressions of radiation fields have to be well behaved, which we
will define as accurate and nonsingular.

The accuracy is defined as the difference between the formulation for fi-
nite precision arithmetic and the analytical expression of the standard con-
tour integrals. Outside the tolerance regions, the analytical expressions from
Section 5.3 are used, which introduce no errors, apart from rounding errors.
However, an approximation will be used inside the tolerance regions. In the
straightforward formulation, a constant approximation has been used. In the
next section, a robust formulation will be derived that is highly accurate. In
fact, for most cases the novel formulation will be equivalent to the analytical
expression.

The main reason for the necessity of tolerance regions is the singular de-
pendence of the analytical expressions on the location of the observer point.
In particular, the exact formulation contains a division by a parameter that
becomes arbitrarily small when the observer point approaches the edge of a
triangular patch. Although these singularities are properly defined for exact
arithmetic, for finite precision arithmetic these singularities might cause ex-
cessive rounding errors. To this end, a division by a parameter in the robust
formulation is only allowed when the absolute value of the parameter has a
strictly positive lower bound.
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5.5 Robust formulation of analytical expres-
sions

In Section 5.4.1 a straightforward formulation has been introduced for the
analytical expressions of the radiation fields when finite precision arithmetic
is used. Because this straightforward formulation contains expressions that
are not well behaved, a robust formulation will be derived in this section.

It can be shown that the scalar line (5.10) and pole integrals (5.12) are
the only parts of the standard contour integrals (5.5) that are not well be-
haved, according to the requirements in Section 5.4.2. The deficiencies occur
near the boundary of each triangular element and the novel expressions will
therefore be used inside the tolerance regions only. Due to cancellation of
some terms in their respective analytical expressions, one can only achieve
well-behaved expressions when the sum of the contribution of the scalar line
and pole integrals is considered, as opposed to considering these separately.

The expressions in the robust formulation are well behaved, even for fi-
nite precision arithmetic. That is, the radiation fields are represented very
accurate and the singular behavior of the original formulation is completely
eliminated.

5.5.1 Robust formulation near an edge

First, a robust formulation will be derived for projection points close to an
edge of the source triangle, but sufficiently far away from the vertices. The
scalar line integrals (5.10) contain terms in the form of arctan(C/v0) with
a constant C > 0. The parameter v0, given by Eq. (5.7c), represents the
distance from the projection point to the edge and can therefore become
arbitrary small. However, the limit

lim
v0→0

arctan
(

C

v0

)
=

{
π
2 , v0 > 0,

−π
2 , v0 < 0

(5.17)

converges, where v0 > 0 and v0 < 0 correspond to a projection point inside or
outside the source triangle, resp. This singularity can be rewritten with the
calculus identity

arctan
(

x

y

)
=

{
π
2 − arctan( y

x ), xy > 0,

−π
2 − arctan( y

x ), xy < 0
(5.18)

for arbitrary nonzero x and y.
Because the scalar line and pole integrals satisfy the recurrence rela-

tions (5.10c) and (5.14), it suffices to rewrite the scalar line and pole integrals
for k = −3 and k = 0 only. With the use of Eq. (5.18), the sum of the scalar
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line and pole integrals can be rewritten as

−h
(
I line
−3 (r?) + Ipole

−3 (r?)
)

=



arctan
(

u2
v0

h
|r2−r?|

)
− arctan

(
u1
v0

h
|r1−r?|

)
− 2π, v0 > 0,

0− π, v0 = 0,

arctan
(

u2
v0

h
|r2−r?|

)
− arctan

(
u1
v0

h
|r1−r?|

)
− 0, v0 < 0

=



π
2 − arctan

(
v0
u2

|r2−r?|
h

)
+π

2 + arctan
(

v0
u1

|r1−r?|
h

)
− 2π, v0 > 0,

−π, v0 = 0,
π
2 − arctan

(
v0
u2

|r2−r?|
h

)
+π

2 + arctan
(

v0
u1

|r1−r?|
h

)
, v0 < 0

= arctan
(

v0

u1

|r1 − r?|
h

)
− arctan

(
v0

u2

|r2 − r?|
h

)
− π, (5.19a)

2
h2

(
I line
0 (r?) + Ipole

0 (r?)
)

=



v0
|r2−r1|

h2 + arctan
(

u2
v0

)
− arctan

(
u1
v0

)
− 2π, v0 > 0,

0− π, v0 = 0,

v0
|r2−r1|

h2 + arctan
(

u2
v0

)
− arctan

(
u1
v0

)
− 0, v0 < 0

=



v0
|r2−r1|

h2 + π
2 − arctan

(
v0
u2

)
+π

2 + arctan
(

v0
u1

)
− 2π, v0 > 0,

−π, v0 = 0,

v0
|r2−r1|

h2 + π
2 − arctan

(
v0
u2

)
+π

2 + arctan
(

v0
u1

)
, v0 < 0

= v0
|r2 − r1|

h2
+ arctan

(
v0

u1

)
− arctan

(
v0

u2

)
− π. (5.19b)

This novel formulation is depicted in Fig. 5.6. Because an exact reformulation
has been derived, no errors are introduced except of rounding errors. This is
in contrast to the straightforward formulation, as can be clearly seen with a
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comparison with Fig. 5.4(b), where the same tolerance region has been used.
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(a) The robust formulation, given by
Eq. (5.19), with edge tolerance region
|v0| < 0.1.
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(b) The absolute difference between the ro-
bust formulation and analytical expression.

Figure 5.6: The value of I line
0 + Ipole

0 w.r.t. projection points r̃ close to an
edge. Horizontal axes denote the local coordinates (û, v̂) from Eq. (5.6). The
vertical axis and colors in the surface plot depict the value of the integral.
The shape of the source triangle is depicted by the black lines.

Important to notice is that because of the use of identity (5.18) the sin-
gularities are shifted from small v0 to small u1 and u2. Geometrically, the
singularity has been replaced from the edge to the vertices. Therefore, ver-
tices have to be excluded from the edge tolerance regions. This will be a
requirement for the definition of the tolerance regions, see Section 5.6.

5.5.2 Robust formulation near the extension of an edge

The singularity for small v0 in the scalar line integrals (5.10) occurs not only
for projection near an edge, also for projection near the extension of an edge.
Therefore, a novel formulation has to be derived for projection points close to
the rays that extend the edges. This ray tolerance region is depicted in yellow
in Fig. 5.10. Because the ray tolerance region is always outside the source
triangle, the standard pole integrals (5.12) are zero and only the scalar line
integrals have to be rewritten. Similar to Eq. (5.19), the scalar line integrals
can be expressed as

I line
−3 (r?) =

1
h

arctan
(

v0

u2

|r2 − r?|
h

)
− 1

h
arctan

(
v0

u1

|r1 − r?|
h

)
, (5.20a)

I line
0 (r?) =

v0

2
|r2 − r1|+

h2

2

(
arctan

(
v0

u1

)
− arctan

(
v0

u2

))
(5.20b)

inside the ray tolerance regions.
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5.5.3 Robust formulation near a vertex

For projection near a vertex, three parts of the standard contour integrals (5.5)
have to be rewritten to enable a robust formulation. These are the scalar
line integrals (5.10) on the two adjacent edges and the standard pole inte-
grals (5.12). To this end, let us consider a projection point r̃ close to ver-
tex 1, with edges 2 and 3 adjacent, as depicted in Fig. 5.7. The line inte-
grals run from r2 to v1 and from v1 to r3 over edge 2 and 3, resp. Two
sets of local coordinates (5.6) and parameters (5.7) have to be used, namely
(û2, v̂2, ŵ2), (u21, u22, v20, w0) for edge 2 and (û3, v̂3, ŵ3), (u31, u32, v30, w0)
for edge 3.

r̃

v1

v2

v3

e1

e2

e3

φ

r2

r3

Figure 5.7: An arbitrary projection point r̃ and triangle with vertices
(v1,v2,v3) and edges (e1, e2, e3). The contour is given by two line segments
and one arc passing through points (r2,v1, r3). The angle of the projection
point w.r.t. vertex 1 is denoted by φ.

If the projection point is located on vertex 1, all parameters u22, u31, v20,
and v30 are zero. The parameters u21 < 0 and u32 > 0 have a lower bound,
which allows for the use of

arctan
(

u21

v20

)
= −π

2
− arctan

(
v20

u21

)
, (5.21a)

arctan
(

u32

v30

)
=

π

2
− arctan

(
v30

u32

)
, (5.21b)
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equivalent to calculus identity (5.18). By geometrical identities,

arctan
(

u22

v20

)
=

{
φ− α1 − π

2 , −π < α1 − φ < 0,

φ− α1 + π
2 , 0 < α1 − φ < π,

(5.22a)

arctan
(

u31

v30

)
=

{
φ + π

2 , −π < φ < 0,

φ− π
2 , 0 < φ < π

(5.22b)

where α1 denotes the angle of vertex 1 and φ the angle from edge 3 to the
projection point, as depicted in Fig. 5.7. The identities (5.21) and (5.22) are
sufficient to derive a well-behaved expression for the standard contour inte-
gral I0. Notice that in the derivation, given by Eq. (5.24b), only three location
cases of the projection point w.r.t. the vertex have been given, whereas the
derivation for the other cases is similar.

The standard contour integral I−3 cannot be rewritten exactly into a well-
behaved expression, because the geometrical identities (5.22) are not valid.
Instead, one can combine it with the approximations

arctan
(

u22

v20

h

|v1 − r?|

)
= arctan

(
u22

v20

)
+O

(
|v20|2

)
, (5.23a)

arctan
(

u31

v30

h

|v1 − r?|

)
= arctan

(
u31

v30

)
+O

(
|v30|2

)
(5.23b)

that have been derived with a Taylor series. Notice that when |v0| < ε holds
inside the tolerance region, the truncation error is O(ε2). The derivation
of I−3 is given in Eq. (5.24a). Remember that for larger k the recurrence
relations (5.10c) and (5.14) can be used.

−h
(
I line,2
−3 + I line,3

−3 + Ipole
−3

)

=



arctan
(

u22
v20

h
|v1−r?|

)
− arctan

(
u21
v20

h
|r2−r?|

)
+arctan

(
u32
v30

h
|r3−r?|

)
− arctan

(
u31
v30

h
|v1−r?|

)
− 2π, inside triangle,

arctan
(

u22
v20

h
|v1−r?|

)
− arctan

(
u21
v20

h
|r2−r?|

)
− π, on edge 3,

−α1, on vertex 1

≈



(φ− α1 + π
2 ) +

(
π
2 + arctan

(
v20
u21

|r2−r?|
h

))
+
(

π
2 − arctan

(
v30
u32

|r3−r?|
h

))
− (φ− π

2 )− 2π, inside triangle,

(φ− α1 + π
2 ) +

(
π
2 + arctan

(
v20
u21

|r2−r?|
h

))
− π, on edge 3,

−α1, on vertex 1

= arctan
(

v20

u21

|r2 − r?|
h

)
− arctan

(
v30

u32

|r3 − r?|
h

)
− α1, (5.24a)
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2
h2

(
I line,2
0 + I line,3

0 + Ipole
0

)

=



v20
|v1−r2|

h2 + arctan
(

u22
v20

)
− arctan

(
u21
v20

)
+v30

|r3−v1|
h2 + arctan

(
u32
v30

)
− arctan

(
u31
v30

)
− 2π, inside triangle,

v20
|v1−r2|

h2 + arctan
(

u22
v20

)
− arctan

(
u21
v20

)
− π, on edge 3,

−α1, on vertex 1

=



v20
|v1−r2|

h2 + (φ− α1 + π
2 ) +

(
π
2 + arctan

(
v20
u21

))
+v30

|r3−v1|
h2 +

(
π
2 − arctan

(
v30
u32

))
− (φ− π

2 )− 2π, in triangle,

v20
|v1−r2|

h2 +
(
0− α1 + π

2

)
+
(

π
2 + arctan

(
v20
u21

))
− π, on edge 3,

−α1, on vertex 1

= v20
|v1 − r2|

h2
+ v30

|r3 − v1|
h2

+ arctan
(

v20

u21

)
− arctan

(
v30

u32

)
− α1.

(5.24b)

The standard contour integral I0 computed with the robust formulation
is depicted in Fig. 5.8(a). A comparison with the straightforward formula-
tion, depicted in Fig. 5.5(b) with the same tolerance regions, shows that the
robust formulation improves the accuracy tremendously. The error is ap-
proximately 10−16, as depicted in Fig. 5.8(b), which confirms the quadrature
accuracy has been diminished up to rounding errors.
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(a) The robust formulation, given by
Eq. (5.24) and (5.19), with |v0| < 0.1 as
tolerance region.
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(b) The absolute difference between the ro-
bust formulation and analytical expression.

Figure 5.8: The value of I line,2
0 + I line,3

0 + Ipole
0 w.r.t. projection points r̃ close

to vertex 1. Horizontal axes denote the local coordinates (û, v̂) from Eq. (5.6).
The vertical axis and colors in the surface plot depict the value of the integral.
The shape of the source triangle is depicted by the black lines.
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Fig. 5.9(a) and 5.9(b) depict the standard contour integral I−3 for the
straightforward and robust formulation, resp., for the same tolerance region.
It is apparent that the accuracy of the robust formulation is very high com-
pared to the straightforward formulation. At first sight, it looks as if no
quadrature errors are present in the robust formulation. However, an error in
the order of 10−2 is present, see Fig. 5.9(c), which is larger than the round-
ing error. This quadrature error is due to the approximation (5.23) that has
been used in the derivation of the robust formulation. Remember that for
illustration purposes, the tolerance regions in these figures have been chosen
extremely large. When applied to the MoT scheme, the tolerance regions will
be orders of magnitude smaller and the approximation error will drop be-
low machine precision. This has been verified experimentally, as depicted in
Fig. 5.9(d). For large tolerance values, the approximation error convergences
quadratically, as derived in Eq. (5.23). For tolerance values smaller than 10−8,
the error remains 10−16 because the rounding error dominates the truncation
error.

5.5.4 Summary of robust formulation

The robust formulation that has been derived in sections 5.5.1–5.5.3 has to be
incorporated into the evaluation of the radiation fields. For a given observer
point r̃ and source triangle Γq, different expressions for the standard contour
integrals (5.5) have to be used. That is,

• Eq. (5.19) for r̃ inside edge tolerance regions,

• Eq. (5.20) for r̃ inside ray tolerance regions,

• Eq. (5.24) for r̃ inside vertex tolerance regions, and

• Eq. (5.10) and (5.12) for r̃ outside tolerance regions,

where the tolerance regions will be defined in Section 5.6. All expressions
in this robust formulation are well behaved, because no singular behavior is
present and the radiation fields are approximated with a very high accuracy.
In fact, all expressions outside the vertex tolerance regions are exact, except
of rounding errors. Inside the vertex tolerance regions, an approximation with
quadratic convergence w.r.t. the size of the tolerance region has been used.

5.5.5 Zero projection height

The robust formulation is used when the projection of the observer point is
located close to the boundary of the source triangle. However, the derivation
is not valid for zero projection height h. This combination of projection on
the triangle boundary and a zero projection height can only happen when a
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(a) The straightforward formulation, given
by Eq. (5.16) and (5.15), with |v0| < 0.1 as
tolerance region.
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(b) The robust formulation, given by
Eq. (5.24) and (5.19), with |v0| < 0.1 as
tolerance region.
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(c) The absolute difference between the ro-
bust formulation and analytical expression.
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(d) The convergence of the error in the ro-
bust formulation w.r.t. the tolerance value.

Figure 5.9: The value of I line,2
−3 + I line,3

−3 + Ipole
−3 w.r.t. projection points r̃ close

to vertex 1. Horizontal axes denote the local coordinates (û, v̂) from Eq. (5.6).
The vertical axis and colors in the surface plot depict the value of the integral.
The shape of the source triangle is depicted by the black lines.

quadrature point is located on the triangle boundary. This will never hap-
pen for the Gaussian quadrature rules [28]. In fact, the tolerance values are
required to be smaller than the distance from each quadrature point to the
triangle boundary, which is easily satisfied for most quadrature rules. Conse-
quently, no additional formulations inside edge and vertex tolerance regions
are necessary for zero projection height.

On the other hand, the projection height can be zero inside ray tolerance
regions. Then, the robust formulation (5.20a) for odd indices is not valid
anymore. Because a ‘zero divided by zero’ is present in the limit, the same
trick can not be used. Instead, the limit value will be used in the ray tolerance
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region, i.e., I line
k = 0 for odd k. Additionally, for this limit case, the vector line

integral (5.8) for odd k is not properly defined anymore, because a ‘logarithm
of zero’ has to be computed. Again, the limit of the integral will be used in
the ray tolerance region, i.e., Iline

−3 = sign(u1)(log(u1) − log(u2)) and Iline
k =

sign(u1)(uk+3
2 − uk+3

1 )/((k + 2)(k + 3)) for odd k > −3.

5.6 Tolerance regions

The tolerance regions are required for finite precision arithmetic, as explained
in Section 5.4. In Section 5.5, accurate expressions for the standard contour
integrals have been derived for use within the edge, ray and vertex tolerance
regions. In this section, the full definition of the tolerance regions will be
established for specific design criteria.

5.6.1 Requirements on tolerance regions

The tolerance regions will be defined according to the following requirements:

1. the shape is based on parameters u1, u2, and v0 only;

2. regions are disjoint;

3. regions fully cover the triangle boundary; and

4. tolerance values are dimensionless.

The singularities present in the analytical expression of the radiation fields are
related to the local parameters u1, u2, or v0, defined by Eq. (5.7). Only these
parameter cause singularities at certain locations of the projection point, for
which a robust formulation is necessary. Therefore, the tolerance regions will
be based on the parameters u1, u2, and v0 only. To this end, two different
tolerance values will be used, one for tolerance regions based on u1 and u2

and the other for v0, which will be denoted by εvertex and εedge, resp.
For the exact evaluation of radiation fields, the standard pole integrals

have to be evaluated only once for each contour. In the robust formulation,
the standard pole integrals are evaluated in each tolerance region. Therefore,
the projection point has to be located in only one tolerance region and hence
disjoint tolerance regions are required. Because singularities are present on
the whole boundary of the source triangle, the tolerance regions should cover
the full boundary.

Dimensionless tolerance values will be used because the robust formulation
should be applicable to all surface meshes, independent of their length scale
and local refinement. To this end, the tolerance values will depend on a
characteristic length scale of the source triangle. Here, a factor

√
Aq will be

used, where Aq denotes the area of source triangle Γq.
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5.6.2 Definition of tolerance regions

The edge, ray, and vertex tolerance regions are denoted by E i
edge, E i

ray, and
E i
vertex for i = 1, 2, 3. They are defined by

E1
edge =

{
r̃ ∈ R3

∣∣|v10| < ε̃edge

∧ |v20| ≥ ε̃edge ∧ |v30| ≥ ε̃edge

∧ u11 ≥ ε̃vertex ∧ −u12 ≥ ε̃vertex
}
, (5.25a)

E1
ray =

{
r̃ ∈ R3

∣∣|v10| < ε̃edge ∧ |v20| ≥ ε̃edge ∧ |v30| ≥ ε̃edge

∧ (−u11 ≥ ε̃vertex ∨ u12 ≥ ε̃vertex)
}
, (5.25b)

E1
vertex =

{
r̃ ∈ R3

∣∣(|u22| < ε̃vertex ∧ |v20| < ε̃edge)
∨ (|u31| < ε̃vertex ∧ |v30| < ε̃edge)

∨ (|v20| < ε̃edge ∧ |v30| < ε̃edge)
}

(5.25c)

and similar for i = 2, 3, where ε̃edge = εedge

√
Aq and ε̃vertex = εvertex

√
Aq.

Clearly, the tolerance regions are based on the parameters u1, u2, and v0

only and the tolerance values are dimensionless. As can be derived, the tol-
erance regions are disjoint and cover the full boundary of the triangle. This
can be seen in Fig. 5.10 where the tolerance regions are depicted. Thus, all
requirements on the tolerance regions are satisfied.

Figure 5.10: The tolerance regions with εedge = 0.1, εvertex = 0.1 for a triangle
given by vertices ([0, 0], [2, 0], [0, 0.4]) and

√
A = 0.63. The vertex tolerance

regions are depicted in blue, the edge tolerance regions in red, and the ray
tolerance regions in yellow.

A striking feature of this definition is the vertex tolerance region, which is
not a circle as one might expect. There are two reasons for the parallelogram
shape. First, in order to establish disjoint tolerance regions, the intersection
of two edge tolerance regions is considered as a vertex tolerance region. Sec-
ond, the robust formulation in the edge tolerance regions dictates that the
parameters u1 and u2 have a strictly positive lower bound. When circles,
defined by

√
(u1)2 + (v0)2 < εcircle

√
Aq, are used, the parameter u1 might

become arbitrary small when v0 ≈ εcircle
√

Aq in edge tolerance regions.
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5.7 Experimental confirmation

Two versions for the analytical computation of radiation fields in finite preci-
sion arithmetic have been derived in Section 5.4 and 5.5, namely a straight-
forward and a robust formulation, resp. The straightforward formulation can
be considered as a standard and correct choice to enable finite precision arith-
metic and serves its purpose in most cases. The robust formulation on the
other hand is more sophisticated and uses well-behaved expressions for the
radiation fields. It should be stressed that the two formulations only differ
within the tolerance regions. Since tolerance values are very small, hardly
any projection points are located inside the tolerance regions for small-scale
objects. Therefore, the MoT solutions hardly differ for the two formulations.
However, when the TDIE method will be applied for larger geometries, more
mesh nodes are required and the likelihood that projection points are located
inside the tolerance regions is increased.

Computational methods, like the TDIE method, have to be robust in order
to be applied in industry. Using an example we will show that the accuracy
of the evaluation of the radiation fields strongly influences the robustness of
the algorithm. To this end, a configuration has been generated such that
the impact of the tolerance regions is large, but without resorting to un-
carefully chosen parameters. This configuration must include many observer
points that are projected inside tolerance regions. Then, many radiation fields
are computed different for the two exact formulations and differences in the
MoT solutions are expected.

The object is given by a toroidal box of size 1× 1× 0.1 m, modeled with a
surface mesh of 628 triangular facets, locally refined near the vertical edges of
the box. As depicted in Fig. 5.11, all vertical edges of the box are artificially
shifted 10−10 m to create a challenging test case. Notice that this shift of
mesh nodes is within the accuracy of almost all mesh generating programs.
Because of the shift of the vertical edges of the box, all observer points on the
adjacent face of the box are projected inside tolerance regions. The tolerance
values are set as εedge = 10−8 and εvertex = 10−8.

The EFIE (2.15) has been discretized with RWG test and basis functions
in space and quadratic spline basis functions in time [108]. The outer integral
over observer elements is evaluated with a 7-point Gaussian quadrature. The
incident field is given by a Gaussian plane wave (2.35) with unit strength,
pulse width 4 m, offset 6 lm, and polarization and propagation in the x̂ and
−ẑ direction.

The magnitude of the electric surface current density is depicted in Fig. 5.12
for 1600 timesteps. Initially, no differences are visible between the two formu-
lations. At late time, however, the straightforward formulation with constant
approximation results in a surface current that grows beyond any bound. The
novel robust formulation on the other hand remains stable. This difference in
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Figure 5.11: The surface mesh on the toroidal box of size 1× 1× 0.1 m, with
the arrows depicting the 10−10 m shift of the edges.
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Figure 5.12: The magnitude of the electric surface current density at the
point (0.967, 0.749, 0.1) on the toroidal box, with two different formulations
for analytical expressions of the radiation fields.

stability has also been verified with a spectral analysis, depicted in Fig. 5.13.
The MoT scheme is stable if the spectral radius ρ of the amplification matrix
is smaller than one [3]. For this test case, ρ = 1.029 and ρ = 1.0 for the
straightforward and robust formulation, resp.
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(a) Straightforward formulation.
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(b) Robust formulation.

Figure 5.13: The eigenvalues (blue markers) of the MoT scheme on the
toroidal box and the unit circle (red line) in the complex plane. The zoom
box depicts the eigenvalues that determine stability.





Chapter 6
Application

6.1 Verification

In order to check our implementation of the TDIE method, a verification result
will be presented in this section. In particular, the radar cross-section of a
generic aircraft will be compared with a simulation from frequency-domain
CEM.

The algorithm for the TDIE method that has been presented in this thesis
has been implemented in the Fortran90 programming language and compiled
with the Intel Fortran compiler. Use has been made of MKL routines for the
multiplication of interaction matrices and retarded solution vectors and the
computation and solution of the LU-decomposition of the leading interaction
matrix. Parallelization on shared-memory computer architecture has been
performed with OpenMP. Simulations has been performed on a computer with
two Intel Xeon E5-2650 8-core processors and 160 GB memory. Both Matlab
and TecPlot have been used for postprocessing and visualization.

6.1.1 The test case of a generic aircraft

Before presenting the computational results, let us first specify a scatterer
that will be used throughout this chapter. A generic aircraft with a length
of 60m has been generated, as depicted in Fig. 6.1. The surface mesh con-
sists of 6756 edges with a maximum edge length of 1.66 m and a minimum
length of 3.74 cm. The ratio of 44 between smallest and largest edge originates
from the mesh refinement for geometrical details. Local mesh refinement is
commonly used in industry and the computational method should be able to
handle this effectively. The TDIE method is effective for nonuniform meshes
because no CFL condition is present. In order to capture the electromagnetic

129
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wave field accurately, the minimum wavelength has to be larger than the
diameter of the largest surface patch. For this surface mesh, the minimum
wavelength is approximately 6m. This yields an electrical size of 10λ of the
generic aircraft and a maximum frequency of 50 MHz.

Figure 6.1: Surface mesh of a generic aircraft.

6.1.2 Comparison with the method of moments

The frequency-domain Method-of-Moments (MoM) is a broadly used com-
putational method for the simulation of the radar visibility of aircraft [17].
The radar signature is often characterized by its radar cross-section (RCS),
defined as

σ = lim
R→∞

4πR2 ||Es(R)||2

||Ei||2
(6.1)

where Es(R) denotes the scattered far field at distance R from the origin
of the coordinate system. Usually, the RCS is measured for a specific angle
of observation, given by an azimuth and altitude, and a specific angle of
incidence, given by the propagation direction of the excitation. Often, the
decibel scale 10 log10(σ) is used.

In frequency-domain CEM, the scattered far field is commonly measured
with the Euclidean norm, that is ||Es|| = |Es| the magnitude of the electric
field. For time-domain methods, a space-time norm has to be used. However,
because the goal is to compare the TDIE method with the MoM, the Euclidean
norm of the Fourier transformed field will be used, i.e.,

||Es|| =
∣∣∣Ês(R, λ)

∣∣∣
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where Ês(R, λ) = F (Es(R, t)) denotes the Fourier transform of the scattered
electric field intensity for a given wavelength λ.

In practice, the RCS (6.1) is computed for a finite distance R that is
far away from the scatterer. The computation of the scattered field from
the solution of a TDIE method will be explained in Sec. 6.2.1. No far-field
approximations will be used.

The RCS simulated with our implementation of the MoT scheme will be
compared with the RCS of the same structure computed with an implemen-
tation of a standard MoM that has been developed in-house at the National
Aerospace Laboratory NLR and verified with commercial codes. Only pre-
liminary verification results will be presented here, for only one test case.

The RCS of a generic aircraft

Let us consider the generic aircraft introduced in Sec. 6.1.1. The MoM has
been applied to the EFIE for an incident wave field with a wavelength of
λ = 10m, and polarization and propagation in the +ẑ and +x̂ direction, resp.
This means that the incident wave field approaches the aircraft at the nose,
with a vertical polarization. The TDIE method discretizes the differentiated
EFIE with a MoT scheme that employs quadratic spline basis functions (4.25).
The time step size is 0.1 lm and 50 000 time levels have been simulated. No-
tice that the MoT scheme remains stable for the entire simulation time of
500λ lm. The interaction matrices have been computed with the quasi-exact
integration method using 7 quadrature points. As excitation, a causal sinu-
soidal plane wave field (2.38) has been used with the same wavelength as in
the MoM simulation.

The RCS is obtained by first computing the scattered electric field inten-
sity (6.2) on a circle with a radius of R = 400λ in the horizontal plane given
by z = 0. For this, a 7-point quadrature rule has been used for 25 000 time
intervals of size 0.1 lm, starting from time (R + 1000)/c, where the additional
factor 1000 has been chosen such that the scattered field has become periodical
and no transient effects from the zero initial conditions are visible anymore.
The bistatic RCS is depicted in Fig. 6.2, that is, the radar source excites
the aircraft with incidence on the nose and the scattered field is observed at
a complete range of azimuth angles. Excellent correspondence between the
MoT scheme and the MoM is obtained for this test case.
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Figure 6.2: The bistatic RCS of a generic aircraft with incidence on the nose
and vertical polarization.

6.2 Radar scattering analysis

The electromagnetic scattering of a PEC object is characterized by the elec-
tric surface current density. This variable has therefore been used in the
experimental confirmation of the stability, accuracy, and robustness of the
TDIE method. For application in stealth technology, the scattered electro-
magnetic field is more meaningful, because this represents the radar field that
is detected. To this end, the electric fields will be computed from the electric
surface current density.

6.2.1 Scattered electric field

The scattered electromagnetic field can be written as a function of the electric
surface current density, as given in Eq. (2.13). In order to compute the scat-
tered field from the discrete solution of the CFIE, the series expansion (2.18)
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of the electric surface current density in terms of basis functions has to be
substituted. The idea is to evaluate the electromagnetic field similar to the
solution procedure of the CFIE. However, integration by parts can not be
used thus necessitating the evaluation of the ‘gradient of the divergence’ term
in the EFIE. More precisely,

∇

(´ τ

−∞∇′ · J(r′, t̄) dt̄

4πR

)

=
ˆ τ

−∞
∇′ · J(r′, t̄) dt̄ ∇

(
1

4πR

)
+

1
4πR

∇
(ˆ τ

−∞
∇′ · J(r′, t̄) dt̄

)
=
ˆ τ

−∞
∇′ · J(r′, t̄) dt̄

(
−R

4πR3

)
+

1
4πR

(∇′ · J(r′, t̄))t̄=τ ∇(τ)

= − R
4πR3

ˆ τ

−∞
∇′ · J(r′, t̄) dt̄ +

(∇′ · J(r′, t̄))t̄=τ

4πR

(
−1

c
∇R

)
= − R

4πR3

ˆ τ

−∞
∇′ · J(r′, t̄) dt̄−

(∇′ · J(r′, t̄))t̄=τ

4πcR

R
R

= − R
4πR2

(´ τ

−∞∇′ · J(r′, t̄) dt̄

R
+

(∇′ · J(r′, t̄))t̄=τ

c

)

where it is assumed that R > 0, which is valid for the computation of the
scattered field outside the surface. Substitution of the series expansion (2.18)
into the scattered field results in the discrete scattered electric field given by

Ês(r, t) = − 1
4π

Ns∑
n=1

Nt∑
j=1

Jn,j

¨
Γ

(
µ
fn(r′)Ṫj(τ)

R

+
1
ε

R
R2

(´ τ

−∞ (∇′ · fn(r′))Tj(t̄) dt̄

R
+

(∇′ · fn(r′))Tj(τ)
c

))
dr′

= − 1
4π

Ns∑
n=1

Nt∑
j=1

Jn,j

¨
Γ

(
µ
fn(r′)Ṫj(τ)

R

+
1
ε

R
R2

(∇′ · fn(r′))

(´ τ

−∞ Tj(t̄) dt̄

R
+

Tj(τ)
c

))
dr′. (6.2)

The RWG functions (2.23) and piecewise polynomials (2.29) can readily be
substituted as basis functions in space and time, resp. Similarly, the discrete



134 Chapter 6. Application

scattered magnetic field reads

Ĥs(r, t) =
1
4π

Ns∑
n=1

Nt∑
j=1

Jn,j

¨
Γ

((
fn(r′)Ṫj(τ)

c
+

fn(r′)Tj(τ)
R

)
× R

R2

)
dr′

=
1
4π

Ns∑
j=1

Nt∑
j=1

Jn,j

¨
Γ

((
Ṫj(τ)

c
+

Tj(τ)
R

)
fn(r′)×R

R2

)
dr′. (6.3)

Notice that the computation of the discrete scattered electromagnetic field
intensity requires the evaluation of a surface integral. This can be performed
efficiently with standard quadrature rules for the surface integral, because
R > 0. In practice, one is interested in a range of locations and time levels
on which the scattered field can be represented. In this thesis, a triangular
surface mesh around the scatterer will be used on which the scattered field
is computed in the cell centers. Capturing the highest frequency modes will
require meshes for the scattered field that are as dense as the surface mesh on
the scatterer. Moreover, the scattered field has to be computed on time inter-
vals that are similar to the time step size of the TDIE method. Consequently,
the visualization of the scattered field can be as computationally demanding
as the TDIE method itself.

Corner reflector Let us consider a corner reflector consisting of two screens
of unit size and zero thickness, with a right angle. The surface mesh consists
of 15 075 edges with a maximum edge length of 3.83 cm and a minimum length
of 1.53 cm. The TDIE method has been performed on the differentiated EFIE
with quadratic spline basis functions (4.25) and a time step size of 0.01 lm.
The interaction matrices have been computed with the quasi-exact integra-
tion method using 7 quadrature points. As excitation, a causal sinusoidal
plane wave field (2.38) has been used with unit amplitude, a wave length
of 20 cm, and polarization and propagation in the +ẑ and −x̂ direction, resp.
This means that the incident wave field approaches the corner reflector at the
front, with a polarization along the screens. The scattered electric field in-
tensity (6.2) has been computed with a 1-point quadrature rule, for 600 time
intervals of size 0.01 lm, and in the centroids of a triangular surface mesh
on a horizontal plane given by z = 0.5, with 45 578 triangles and a mean
edge length of 2.13 cm. The z-component of the total electric field Ei + Ês is
depicted for several time levels in Fig. 6.3, along with the magnitude of the
electric surface current density on the corner reflector.
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Figure 6.3: The magnitude of the electric surface current density on the sur-
face of the corner reflector is depicted in a scale from light blue to red. The
z-component of the electric field intensity on the horizontal plane z = 0.5 is
depicted in blue for negative and in red for positive values.
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Generic aircraft Let us consider the generic aircraft introduced in Sec. 6.1.1.
The TDIE method has been performed on the differentiated EFIE with quadratic
spline basis functions (4.25) and a time step size of 0.2 lm. The interaction
matrices have been computed with the quasi-exact integration method using
7 quadrature points. As excitation, a causal sinusoidal plane wave field (2.38)
has been used with unit amplitude, a wave length of 6 m, and polarization and
propagation in the +ẑ and +x̂ direction, resp. This means that the incident
wave field approaches the aircraft at the nose, with a vertical polarization.
The scattered electric field intensity (6.2) has been computed with a 1-point
quadrature rule, for 1000 time intervals of size 0.2 lm, and in the centroids
of a triangular surface mesh on a horizontal plane given by z = 1.75, with
6800 triangles and a mean edge length of 1.04 m. Fig. 6.4 depicts the electric
surface current, the incident and the scattered electric field for several time
levels.
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Figure 6.4: The magnitude of the electric surface current density on the sur-
face of the generic aircraft is depicted in blue. The magnitude of the electric
field intensity on the horizontal plane z = 1.75 is depicted in green for the
incident field and in red for the scattered field.
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6.2.2 High resolution range profile

One of the techniques in automatic target recognition is the use of high res-
olution range profiles (HRRP) [42, 65]. A HRRP is a one-dimensional visu-
alization of the radar signature of a target. The idea of using a HRRP is to
locate scatterer points on the target, which are components of the target with
a high radar reflection rate. In the case of an aircraft, typical scatterer points
are the nose, wing, and tail, in particular the tips and fairings which have
sharp edges. With the aid of a HRRP, characteristics of the target, such as
its size and the location of the wings and tail can be determined. Since each
aircraft has its own HRRP characteristics, comparison of the measured radar
signal with a database can result in the recognition of a target.

Many different techniques exist to obtain a HRRP [100]. The most effec-
tive one is the use of a short radar pulse, which have high frequency modes
and a small bandwith in time. The high frequencies result in radar scattering
of the target in the optical region, for which is easier to determine scatterer
points because less resonances and creeping waves are present. The small
support in time result in small excitation regions and highly concentrated
scattered fields. Then, the location of scatterer points can be estimated with
a high resolution. The drawback is that most radar equipment can generate
short pulses only with a limited power, thus reducing the range of detection.
This can be circumvented by using sophisticated waveforms with a range of
frequencies.

Using a HRRP in automatic target recognition requires a database of the
radar signature of common aircraft types. For military application, this also
includes hostile platforms, for which physical measurement campaigns are not
feasible. CEM methods can provide a HRRP for different platforms and angles
of incidence. For frequency domain methods, the radar signature has to be
simulated for a large range of frequencies. The HRRP is then obtained with
an inverse discrete Fourier transform. Alternatively, time domain methods
can simulate short pulses in a single run and the time signal can easily be
transformed into a HRRP. This makes time domain methods more efficient
and accurate in the computation of a HRRP than frequency domain methods.

Different definitions of a HRRP can be found in literature, with many
specifically formulated for frequency-domain CEM [88, 113]. Basically any
definition of a HRRP translates time into a relative position. The following
definition is perhaps not standard, but can be used to identify objects and
thus serves the purpose of the HRRP.

Let us assume that a given incident wave field with propagation in direc-
tion k̂ has a sharp peak at offset t0, for example a Gaussian plane wave (2.35)
with a small pulse width. At an arbitrary point rsca on the scatterer, the
incident wave field has a peak at time t0 +(rsca · k̂)/c. The scattered field will
reach an arbitrary observation point robs at time t0+(rsca·k̂)/c+|rsca−robs|/c.
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Now, let us assume |rsca−robs| = (rsca−robs) ·k̂, which is valid for monostatic
reflection. Then, the scattered field will reach the observation point at time
t0 + 2(rsca · k̂)− robs · k̂. This leads to the definition of the HRRP given by

EHRRP (rHRRP) = Es
(
robs, t0 + 2rHRRP − robs · k̂

)
, (6.4)

rHRRP = rsca · k̂

where Es is the scattered electric field intensity (6.2). The dimension is in
V/m, but it can be advantageous to consider the RCS (6.1) in decibel scale.

Two cubes Let us consider two cubes of unit size and separated 3m,
as depicted in Fig. 6.5(a). The surface mesh consists of 534 edges. The
TDIE method has been performed on the differentiated EFIE with quadratic
spline basis functions (4.25) and a time step size of 0.01 lm. The interaction
matrices have been computed with the quasi-exact integration method us-
ing 7 quadrature points. As excitation, a Gaussian plane wave field (2.35)
has been used with unit amplitude, pulse width of 1 m, and polarization and
propagation in the +ŷ and +x̂ direction, resp. The scattered electric field
intensity (6.2) has been computed at location (−20, 0.5, 0.5) with 7 quadra-
ture points on each mesh element for intervals of size 0.01 lm. The HRRP for
the y-component of the electric field intensity is depicted in Fig. 6.5(b). The
HRRP clearly show peaks in the RCS at the vertical faces of the cubes.

Generic aircraft Let us consider the generic aircraft introduced in Sec. 6.1.1.
The TDIE method has been performed on the differentiated EFIE with quadratic
spline basis functions (4.25) and a time step size of 0.12 lm. The interaction
matrices have been computed with the quasi-exact integration method using
7 quadrature points. As excitation, a Gaussian plane wave field (2.35) has
been used with unit amplitude, pulse width of 6 m, and propagation in the +x̂
direction. Both +ŷ and +ẑ polarization has been simulated. The scattered
electric field intensity (6.2) has been computed at location (−1200, 0, 3) with
7 quadrature points on each mesh element for intervals of size 0.12 lm.

The HRRP for the y- and z-component of the electric field intensity is
depicted in Fig. 6.6(b) and 6.6(c), resp. A scattering peak can be seen at the
nose of the aircraft. The wings result in a large contribution in the HRRP,
especially for the horizontally polarized field, because the wings are aligned
in the y-direction. For the same reason, the tail fin can be distinguished by
the peak in the HRRP of the vertical polarized field. The high levels in RCS
behind the aircraft are due to multiple scattering of the aircraft. The HRRP
provides information on the size and layout of the aircraft and can thus be
used for target recognition.
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(a) The scatterer consists of two cubes.
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(b) The y-component of the scattered elec-
tric field intensity at the observer point.
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(c) The HRRP in terms of the RCS, with the distance given by r · x̂.

Figure 6.5: The scattered electric field and HRRP of two cubes.

Discussion

The computational results confirm that HRRP’s can effectively be generated
with the TDIE method. Still, this is only a proof of concept because coarse
surface meshes have been used due to limits in efficiency of the current im-
plementation. Consequently, the relatively large wave length of the excitation
deteriorates the accuracy of the HRRP. That said, computing a HRRP is in-
herently more effective with time domain CEM than frequency domain CEM
because short pulses with a wide frequency band can be simulated in a single
run. Furthermore, surface integral methods are preferred because radiation
conditions are automatically satisfied and the scattered field can be computed
efficiently on arbitrary locations. Concluding, the simulation of a HRRP is a
valuable merit of using the TDIE method.
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(a) The dimensions of the generic aircraft.
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(b) The y-component of the scattered electric field intensity for an excitation with
+ŷ polarization.
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(c) The z-component of the scattered electric field intensity for an excitation with
+ẑ polarization.

Figure 6.6: The HRRP of a generic aircraft, with the distance given by r · x̂.





Chapter 7
Conclusions

The numerical analysis of the stability, accuracy, and robustness of the TDIE
method that has been derived in this thesis results in the following conclusions:

Stability

• The variational formulation of the differentiated EFIE admits a unique
and bounded solution in H 1

2 if the testing space is H− 1
2 (Sec. 3.7).

• The space-time Galerkin scheme with step test functions and hat ba-
sis functions in time is discretely equivalent to the MoT scheme with
quadratic spline basis functions in time (Sec. 3.8.2).

• The stability theorem of Terrasse holds for the differentiated EFIE when
discretized with the MoT scheme using quadratic spline basis functions
(Sec. 3.8).

• The stability theorem of Terrasse does not hold for the differentiated
EFIE when discretized with the MoT scheme using quadratic Lagrange
basis functions (Sec. 3.8).

• All computer simulations performed by the author have been stable so
far, provided a MoT scheme is used with quadratic spline basis functions
and the robust quasi-exact integration algorithm (Sec. 3.9.1).
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Accuracy

• Causal temporal basis functions applied to the differentiated CFIE achieve
first order interpolation accuracy in time for a one-parameter family of
piecewise quadratic polynomials (Sec. 4.3.2).

• Causal temporal basis functions applied to the differentiated CFIE achieve
second order interpolation accuracy in time for a two-parameter family
of piecewise cubic polynomials (Sec. 4.3.3).

• Temporal basis functions with maximum order of interpolation accuracy
in time can achieve C1 and C2 continuity for piecewise quadratic and
cubic polynomials, resp. (Sec. 4.4.2).

• Smoothness of the temporal basis function has a positive influence on
the performance of the quadrature procedure in space (Sec. 4.5.3).

• Numerical experiments show an unexpected higher order of global accu-
racy in time for the spline basis functions than for the shifted Lagrange
basis functions with equal support (Sec. 4.5.4).

• The shape of the temporal basis function influences the conditioning of
the system of linear equations that has to be solved (Sec. 4.5.5).

Robustness

• The accurate quasi-exact integration method for the evaluation of in-
teraction matrices is necessary to obtain stability of the MoT scheme
(Sec. 5.2).

• Straightforward implementation in finite precision arithmetic of avail-
able analytical expressions of the radiation fields are not well behaved
for a number of limit cases (Sec. 5.4).

• A robust implementation with well-behaved expressions can be obtained
only when tolerance regions are chosen carefully (Sec. 5.5).

• A computational experiment shows that for the same test case, the
straightforward implementation results in a unstable simulation whereas
the robust implementation remains stable (Sec. 5.7).



Chapter 8
Recommendations

8.1 Best practices

The goal of the numerical analysis of stability, accuracy, and robustness of
the TDIE method is the design of a usable MoT scheme. This means that
the numerical scheme should at least be stable and a robust implementation
should be used. Then, a trade-off concerning efficiency can be made, that
is, the computational method should be as accurate as possible and consume
as little computation time and storage as possible. Based on information in
literature and the numerical analysis in this thesis, the following choices are
recommended:

• Use the differentiated EFIE as model equation, because it is more effi-
cient than the original EFIE. Furthermore, a stability theorem for the
variational formulation of the EFIE has been derived. The CFIE is only
applicable to closed surfaces and requires different test functions than
RWG functions in space to obtain accurate simulations.

• Use the MoT scheme as numerical discretization, because it is more
efficient and easier to use than the space-time Galerkin and convolution
quadrature scheme. Moreover, the solutions are accurate and are almost
free of dispersion and dissipation. Remember that all these schemes can
be written as a general space-time Petrov-Galerkin scheme and a discrete
equivalence between specific schemes has been derived.

• Use the quadratic spline basis functions in time, because they fit within
the stability theorem and result in an efficient marching procedure be-
cause of discrete causality and short support. Moreover, the highest
order of smoothness and interpolation accuracy for piecewise quadratic
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polynomials are obtained and the global accuracy in time has been ex-
perimentally determined to be of order two.

• Use the quasi-exact integration method to evaluate the interaction ma-
trices, because this is necessary to obtain stability. Computational ex-
periences suggest that 7 quadrature points for the outer integral are
sufficient. The implementation is burdensome and robust formulations
of the radiation fields in finite precision arithmetic are required.

• Use a triangular surface mesh with the RWG functions as test and ba-
sis functions in space, because flat triangular patches can model curved
surfaces accurately and RWG functions are efficient, accurate, and sta-
ble. Moreover, quasi-exact integration methods have been derived for
this choice. The size of the surface patches have to be small enough to
capture all geometric features and the component of the excitation with
smallest wavelength.

• Use a time step size given by an oversampling of the maximum frequency
in the excitation, because this is the largest value that can model the
incident wave field accurate enough, and thus the most efficient choice.

With these best practices, all computer simulations so far have been stable.

8.2 Future research

Performing high-confident computer simulations for the radar signature of
modern stealth aircraft in an industrial environment was the goal of this
thesis. This specific application required the use of the TDIE method, which
should be best capable of simulating UWB radar and ferromagnetic RAM.
Current implementations, even for classic radar and PEC structures, are not
yet feasible in industry because of instabilities. In this thesis, a numerical
analysis has been performed resulting in clear guidelines for the choice of the
discretization scheme. Stable computer simulations have been obtained with
high confidence for different PEC objects with sizes of several wavelengths.
The two main aspects of future research are the stable implementation of
accelerators and the incorporation of nonlinear constitutive equations.

Accelerators For application in airborne stealth technology, computational
methods have to be able to simulate radar fields in the GHz-range. This
means that the size of the object is hundreds of wavelengths. Accelerators
are necessary to improve the efficiency. The PWTD method is the principal
candidate because the computational work is superior to other methods for
high resolution problems. Successful application to the MoT scheme has been
reported in literature. Still, more research is required on the influence of
PWTD acceleration on stability and robustness of the TDIE method.
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Nonlinear constitutive equations Simple, linear constitutive equations
can be used for PEC objects. Ferromagnetic materials that are frequently
being used in RAM may require the use of nonlinear constitutive equations
such as the LLG equation. The incorporation of nonlinear constitutive equa-
tion in TDIE methods is an open problem in literature. For ferromagnetic
coatings, generalized impedance boundary conditions are attractive options.
When ferromagnetic nanoparticles are used in load-bearing structures, vol-
ume methods inside this composite material have to be coupled with the
TDIE method on the scatterer surface. Only preliminary results are available
in literature, most for easier and linear models for the radar evolution in ma-
terials. Much research is therefore required for the simulation of scattering
from ferromagnetic materials with the TDIE method. Furthermore, since ob-
taining a robust implementation of a stable TDIE method has always been
the most challenging aspect in the design of MoT schemes, the implications of
all different constitutive equations on stability has to be analyzed thoroughly.
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[34] S. Gerschgorin, “Über die Abgrenzung der Eigenwerte einer Matrix,”
Bulletin de l’Académie des Sciences de l’URSS, pp. 749–754, 1931.

[35] M. Ghaffari-Miab, Z. H. Firouzeh, R. Faraji-Dana, R. Moini, S. H. H.
Sadeghi, and G. A. E. Vandenbosch, “Time-domain MoM for the anal-
ysis of thin-wire structures above half-space media using complex-time
Green’s functions and band-limited quadratic B-spline temporal basis
functions,” Eng. Anal. Bound. Elem., vol. 36, pp. 1116–1124, 2012.

[36] R. D. Graglia and G. Lombardi, “Machine precision evaluation of sin-
gular and nearly singular potential integrals by use of Gauss quadrature
formulas for rational functions,” IEEE Trans. Antennas Propag., vol. 56,
no. 4, pp. 981–998, 2008.

[37] D. H. Griffel, Applied functional analysis. Chichester, UK: Ellis Hor-
wood Ltd., 1985.

[38] T. Ha-Duong, B. Ludwig, and I. Terrasse, “A Galerkin BEM for tran-
sient acoustic scattering by an absorbing obstacle,” Int. J. Numer. Meth.
Engng., vol. 57, pp. 1845–1882, 2003.

[39] T. Ha-Duong, “On retarded potential boundary integral equations and
their discretisations,” in Topics in Computational Wave Propagation,
pp. 301–336, ser. Lecture Notes in Computational Science and Engi-
neering, vol. 31. Berlin: Springer, 2003.

[40] W. Hackbusch, W. Kress, and S. A. Sauter, “Sparse convolution quadra-
ture for time domain boundary integral formulations of the wave equa-
tion by cutoff and panel-clustering,” in Boundary Element Analysis, pp.
113–134, ser. Lecture Notes in Applied and Computational Mechanics.
Berlin: Springer, 2007.

[41] M. H. Haddad, M. Ghaffari-Miab, and R. Faraji-Dana, “Transient anal-
ysis of thin-wire structures above a multilayer medium using complex-
time Green’s functions,” IET Microw. Antennas Propag., vol. 4, no. 11,
pp. 1937–1947, 2010.



Bibliography 159

[42] R. van der Heiden, “Aircraft recognition with radar range profiles,”
Ph.D. dissertation, University of Amsterdam, 1998.

[43] J.-L. Hu and C. H. Chan, “Novel approach to construct temporal basis
functions for time-domain integral equation method,” in Proc. IEEE
Antennas Propag. Soc. Int. Symp., vol. 4, pp. 172–175. Boston, MA:
IEEE, July 2001.

[44] J.-L. Hu, C. H. Chan, and Y. Xu, “A new temporal basis function for
the time-domain integral equation method,” IEEE Microw. Wireless
Compon. Lett., vol. 11, no. 11, pp. 465–466, 2001.

[45] J.-L. Hu and C. H. Chan, “Improved temporal basis function for time
domain electric field integral equation method,” Electron. Lett., vol. 35,
no. 11, pp. 883–885, 1999.

[46] G. X. Jiang, H. B. Zhu, G. Q. Ji, and W. Cao, “Improved stable scheme
for the time domain integral equation method,” IEEE Microw. Wireless
Compon. Lett., vol. 17, no. 1, pp. 1–3, 2007.

[47] B. H. Jung, Z. Ji, T. K. Sarkar, M. Salazar-Palma, and M. Yuan, “A
comparison of marching-on in time method with marching-on in degree
method for the TDIE solver,” PIER, vol. 70, pp. 281–296, 2007.

[48] B. H. Jung, T. K. Sarkar, S. W. Ting, Y. Zhang, Z. Mei, Z. Li, M. Yuan,
A. De, M. Salazar-Palma, and S. M. Rao, Time and Frequency Domain
Solutions of EM Problems. Hoboken, NJ: John Wiley & Sons, 2010.

[49] B. H. Jung, Y.-S. Chung, M. Yuan, and T. K. Sarkar, “Analysis of tran-
sient scattering from conductors using Laguerre polynomials as tempo-
ral basis functions,” ACES Journal, vol. 19, no. 2, pp. 84–92, 2004.

[50] G. Kaur and A. E. Yılmaz, “Accuracy-efficiency tradeoff of temporal
basis functions for time-marching solvers,” Microw. Opt. Technol. Lett.,
vol. 53, no. 6, pp. 1343–1348, 2011.

[51] L. Kielhorn and M. Schanz, “Convolution quadrature method-based
symmetric Galerkin boundary element method for 3-D elastodynamics,”
Int. J. Numer. Meth. Engng., vol. 76, no. 11, pp. 1724–1746, 2008.

[52] E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section,
2nd ed. Raleigh, NC: SciTech Publishing, 2004.

[53] P. Lacomme, J.-P. Hardange, J.-C. Marchais, and E. Normant, Air and
Spaceborn Radar Systems. Norwich, NY: William Andrew Publ., 2001.



160 Bibliography
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