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Background

• The turbine is called Oryon Watermill (OWM).

• Developed by Deep Water Energy BV, Netherlands.

Key features

• Modular build

• Operates under low
pressure head conditions.

• ‘Special’ design of the
rotor arm.
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Numerical Model

• What are the expectations from the Numerical Model?

Performance Characteristic Curve
Co-efficient of Power v/s Tip Speed Ratio
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Current Numerical Model
• Computationally intensive
• No agreement with experimental result.

• Spikes in torque time signal.
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Solution to the spikes in torques

• Torque transfer mechanism- Water → Lamella → Shaft

• Fluid-Structure Interaction problem.
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Governing equations for lamella motion

Newton’s Second Law
Mathematically expressed as an ODE-

Mẍ(t) = h(t)

+
Algebraic Constraints

‖
Differential Algebraic Equation

Non-smooth Dynamics
Position and velocity vectors are not smooth functions of time.
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Numerical Solution

• Event Driven
• Separate the non-smooth motion.
• Integrate the smooth part until collision.
• Solve the impact problem at the discontinuity.
• Reset the ODE.

• Time Stepping
• Discretize the entire DAE with the inequalities.
• Less administrative effort
• Problems

• Small time step size.
• Poor accuracy as compared to the event-driven approach.
• Inability to model the partial elastic behavior correctly.
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Event Driven Approach

tn

tn+1

tc

t
A
n
g
le

tntntntntntntn-1

8 / 31



Event Driven Approach

Constraints are formulated as contacts

• Colliding Contact
Change in velocity on collision and bodies move apart with
different velocities.

• Resting Contact
Two bodies after collision are resting on each other.

• vrel > 0→ the bodies are not
contacting after tc.

• vrel < 0→ The bodies are in
colliding contact after tc.

• vrel = 0→ The bodies are in
resting contact after tc.
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Colliding and Resting Contact

• Colliding Contact
At the instant of collision-
• Calculate relative velocities.
• Add impulse j = –Ma(1 + ε)v–rel
• Reset ODE.

• Resting contact
Contact force equals the force acting on the lamella exerted
by the fluid.
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Summary of non-smooth dynamics for lamella motion

• ODE Formulation

• Detection of time of collision

• Detection of the type of contact
• Colliding Contact
• Resting Contact
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Coupled system of nonlinear ODEs

Governing equation for lamella motion

Mẍ(t) = h(t) + w(t); (1)

Governing equation for fluid flow

du

dt
+ R(u) = 0; (2)

• RHS of ODE 1 from forces due to fluids.

• RHS of ODE 2 from lamella motion.

• Resulting system of nonlinear ODEs has a periodic solution.
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Requirements for the numerical method

• The method should be faster than the direct time integration.

• The method should have low memory requirements.

• The method should be easy to implement with minimum
modifications to the solver.
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Methods for solving the coupled system

Standard Methods for nonlinear ODEs with periodic solutions-

• Shooting Method

• Finite Difference Method

• Collocation Method

Specific Methods for fast analysis of periodic flows-

• Multitime multigrid method

• Time Linearization method

• Time spectral (harmonic balance) method
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Harmonic Balance Method

du

dt
+ R = 0; (3)

Fourier series expansion of u(t) with n harmonics reads:

u(t) =
n∑

j=0

uje
ijωt, (4)

and the expansion for R(t) reads:

R(t) =
n∑

j=0

Rje
ijωt, (5)

where uj and Rj are the Fourier co-efficients.
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Harmonic Balance Method
Inserting equations (4) and (5) in equation (3) we obtain,

ω

n∑
j=0

ijuje
ijωt +

n∑
j=0

Rje
ijωt = 0.

n equations for sine


–1ωuc1 + Rs1 = 0;
–2ωuc2 + Rs2 = 0;

...
–nωucn + Rsn = 0;

(6)

center- R0 = 0 (7)

n equations for cosine


1ωus1 + Rc1 = 0;
2ωus2 + Rc2 = 0;

...
nωusn + Rcn = 0;

(8)

ωAu + R = 0. (9)
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Harmonic Balance Method
Frequency to time domain transformation-

u = E û(t).

The operator E is given by:

E =
2

2n + 1



sin(ωt1) sin(ωt2) sin(ωt3) . . . sin(ωt2n+1)
sin(2ωt1) sin(2ωt2) sin(2ωt3) . . . sin(2ωt2n+1)

.

.

.

.

.

.

.

.

.

.

.

.
sin(nωt1) sin(nωt2) sin(nωt3) . . . sin(nωt2n+1)

1
2

1
2

1
2

. . . 1
2

cos(ωt1) cos(ωt2) cos(ωt3) . . . cos(ωt2n+1)
cos(2ωt1) cos(2ωt2) cos(2ωt3) . . . cos(2ωt2n+1)

.

.

.

.

.

.

.

.

.

.

.

.
cos(nωt1) cos(nωt2) cos(nωt3) . . . cos(nωt2n+1)

 ; (10)

ωAE û + ER̂ = 0.

Multiplying from left, the inverse transform operator (E–1), we
have:

ω(E–1AE)û + R̂(û) = 0. (11)
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Harmonic Balance Method

• The derivative term is converted to a source term with the
left multiplication of the operator E–1AE

• ω(E–1AE)û + R̂(û) = 0 can be solved as coupled stationary
problems.

E–1AE =
2

2n + 1



0 B1 B2 B3 . . . . . . B2n
–B1 0 B1 B2 B3 B2n–1

–B2 –B1 0 B1 B2

.

.

.

–B3 –B2 –B1 0 B1

.

.

.

.

.

.
. . . B2

.

.

.
. . . B1

–B2n . . . . . . –B3 –B2 B1 0


;

Bi =
∑n

k=1 ksin(kωjt1); j = {1, ..., 2n}.
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Harmonic Balance Method

Pseudo time marching method:

dû

dτ
+ ωBû + R̂(û) = 0;

where B = E–1AE . (12)

ûk+1 – ûk

∆τ
= –[ωBû + R̂(ûk+1)]. (13)

R̂(ûk+1) is linearized using a Taylor Series expansion:

R̂(ûk+1) = R̂(ûk) + JR∆û +O(∆û2), (14)

where JR is the Jacobian matrix of the residual vector in block
diagonal form.
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Harmonic Balance Method
Explicit ωBû [

VI
∆τ

+ JR
]

∆û = –R̂
k

– ωBûk, (15)
E1 0 . . . 0

0 E2
. . .

...
...

. . . 0
0 . . . 0 E2n+1

 ; Ei =
V

∆τi
+ Jtsi,i

• Solve independently for each of the 2n + 1 stationary solutions

• Only the kth snapshot of the Jacobian has to be stored. No
extra memory.

• Can be easily parallelized.

• Restricts the size of the Courant-Friedrich-Lewy (CFL)
number and thus, time step size.
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Harmonic Balance Method

Implicit ωBû [
VI
∆τ

+ JR + ωB
]

∆û = –R̂
k

– ωBûk; (16)
E1 H1,2 H1,3 . . . H1,2n+1

H2,1 E2 . . .

.

.

.

.

.

.
. . .

.

.

.
E2n H2n,2n+1

H2n+1,1 . . . . . . E2n+1

 ; Ei =
V

∆τi
+ Jtsi,i ; Hi,j = VωBi,j

• Memory requirements and CPU time are more than the
explicit approach.

• No restriction on CFL number and thus, on time step size.

• Significant modification in the solver.
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Summary

• To solve the problem of unphysical spikes equations from the
field of non-smooth dynamics to be used.

• The event-driven approach with the consideration of colliding
and resting contacts is most appropriate.

• Complex problem of modeling lamella motion was reduced to
simple ODE integration but with appropriate conditions.

• Coupled system of nonlinear ODEs with periodic solutions.

• The harmonic balance method is most suited for the current
problem.
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Research Questions

• How to apply the harmonic balance method to the coupled
fluid-structure problem?

• Which of the two treatments-explicit or implicit, is the most
appropriate?

23 / 31



Appendix

Methods Applied to a system of linear ODEs
Consider the a system of linear ODEs

ẋ(t) = Qx + f(t); x(0) = x(T); x = [0 1]T; (17)

where Q =

[
0 –ω
ω 0

]
and f(t) =

[
sin(ωt)
cos(ωt)

]

The true solution of the above system is computed to be-[
x1(t)
x2(t)

]
=

[
–sin(ωt)

cost(ωt) + 1
ω (sin(ωt))

]
(18)
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Harmonic balance solution

ẋ(t) = Qx + f(t); (19)

Applying harmonic balance method, gives:

ω(E–1AE)X̂ + R̂ = 0.

where, for n harmonics we have

E–1AE ∈ R2n+1×2n+1; X̂ ∈ R2n+1×2; R̂2n+1×2

with
R̂ = –X̂QT – F

The final system looks like:

ω(E–1AE)X̂ – X̂QT = F

The above system is a Sylvester equation.
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Another formulation

Sylvester problem can be represented as a linear equation in this
case.

ω(E–1AE)X̂ – X̂QT = F ⇒ Z x̂ = F (20)

where Z = ω(E–1AE) – (I ⊗ Q)

Observation

Comparing with Z =M – N splitting.
Properties of Z determine the convergence of the iterative process.
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Van der Pol’s equation

The Van der Pol’s equation in reduced form:[
y1
y2

]′
=

[
y2

µ(1 – y21)y2 – y1

]
=: –R (21)

Performing the harmonic balance transformation, we have:

ωBŶ + R̂(Ŷ) = 0;

where Ŷ ∈ R2∗(2n+1)×1; R̂ ∈ R2∗(2n+1)×1;

B ∈ R2∗((2n+1)×(2n+1)) (22)
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Van der Pol’s equation

Pseudo time stepping-

dŶ

dτ
+ ωBŶ + R̂ = 0. (23)

Explicit [
VI
∆τ

+ Jts
]

∆Ŷ = –R̂
k

– ωBŶ
k
, (24)

Implicit [
VI
∆τ

+ Jts + B
]

∆Ŷ = –R̂
k

– ωBŶ
k
; (25)
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Though the Roads been rocky, it sure feels good to me

-Bob Marley
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