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Abstract
Computational Aeroacoustics deals with the disciplines Computational Fluid

Dynamics and Aeroacoustics. Acoustic propagation problems are governed by
the linearized Euler equations. The properties of acoustic waves are encoded
in the dispersion relation of these equations. Optimized high order numerical
schemes are presented in this report. These schemes optimize the dispersion
and dissipation errors by preserving the dispersion relation and are presented
in the �nite di¤erence and the �nite volume approach.
In many practical applications complex geometries have to be handled. This

report presents a cut-cell method, which uses a Cartesian background grid. In
the interior of the domain the numerical schemes can easily be implemented but
in the vicinity of the boundaries special treatment for each cell is required.
Furthermore, many practical applications are exterior problems, which re-

quire boundary conditions for outgoing waves. These boundary conditions
should not give any noticeable re�ections of outgoing waves.
For an intensive investigation of this approach, a testcase has been studied.

In this testcase a wave is re�ected on a diagonal oblique wall. The investigation
has been done by determining the space-dependent order of accuracy of the
complete method by Richardson extrapolation. For applying Richardson ex-
trapolation the numerical solutions have to be interpolated to a common grid,
which should not a¤ect the numerical solution. So, an accurate interpolation
method has been developed that also deals with the complex geometry.
Because the numerical grid spacing and time step are coupled by the CFL-

number, the Richardson extrapolation procedure can be reduced to one para-
meter, the order of accuracy.
Discontinuities in boundary and initial conditions have been investigated,

which have a negative impact on the magnitude of the order of accuracy. Fur-
thermore, the impact of the out�ow conditions has been investigated for both
the initial outgoing wave and the re�ected outgoing wave. It turned out that
the initial outgoing wave does not a¤ect the order of accuracy, however, the
re�ected wave does. The out�ow boundary conditions are suitable only for the
initial outgoing wave. By comparing the order of accuracy of the initial wave
and the re�ected wave, the impact of the cut-cell method has been determined.
In spite of the bad performance of the interpolation method, used in the cut-cell
method, the cut-cell method performs well. However, the order of accuracy is
lower for the re�ected wave in part of the domain.
Richardson extrapolation can also be an e¤ective tool to improve the numeri-

cal solution. For problems without any discontinuities Richardson extrapolation
gives a smooth improved solution. However, for problems with a discontinuity
in the initial or boundary condition, Richardson extrapolation cannot give a
smooth improved solution, because this discontinuity leads to a low and un-
structured order of accuracy.
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Nomenclature
� Wavelength
f Frequency
c0 Speed of sound
! Angular frequency
! Angular frequency of a scheme
� Wavenumber
� Wavenumber of a scheme
x, y Coordinates in space
t Time
�x, �y Grid spacing
�t Time step size
CFL, � Courant-Friedrichs-Lewy number, CFL = c0 �t�x
Di Derivative at x = xi
DB
i , D

F
i Backward and forward derivative operator at x = xief(�) Fourier transform of f(x)

uei , u
w
i u at east and west face of cell i

uFei , u
Be
i Forward and backward operator at east face of cell i

uFwi , uBwi Forward and backward operator at west face of cell i

Ki Stage i for Runge-Kutta time integration
LN;k Lagrange kth basis polynomial with degree N

P (�x) Numerical pressure solution obtained with grid spacing �x

M0 Common grid on which numerical solutions are interpolated
M1 Grid of the numerical solution
ffilti Filtered solution at x = xi
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1 Introduction

Computational AeroAcoustics (CAA) deals with the disciplines Computational
Fluid Dynamics and AeroAcoustics. Sound generated by aerodynamic forces
or a �ow, fall in the category of aeroacoustics. Aeroacoustics should not be
confused with classical acoustics, e.g. sound generated by loudspeakers is in the
domain of classical acoustics, whereas sound generated by a turbulent �ow is in
the aeroacoustic domain.
An acoustic wave has a wavelength � in space, and a frequency f in time. The

speed of sound in a medium is c0. These are coupled by the following relation:
�f = c0. Wave propagation properties are encoded in the dispersion relation
of the governing equations [1,2]. The dispersion relation is a relation between
the angular frequency ! = 2�f and the wavenumber of the wave � = 2�

� . This
relation can easily be obtained by taking space and time Fourier transforms
of the governing equations. For example, the dispersion relation of the one-
dimensional wave equation is:

@2u
@t2 � c

2
0
@2u
@x2 = 0 ) !2 = c20�

2 ) ! = �c0� =W (�),
with angular frequency ! and wavenumber �.
Dispersiveness (spreading), dissipativeness (damping), group velocity (vgr =

dW
d� ), phase velocity (vph =

W (�)
� ) etc. are determined by the dispersion relation,

e.g. when vph depends on � the waves are dispersive and when W (�) has an
imaginary part the waves are dissipative [1,2].
It is well-known that acoustic waves are non-dispersive. Although sound is

dissipated by viscosity, it is dissipated after a very long travel distance and there-
fore acoustics is considered to be an inviscid �uid phenomenon. So, dissipative
loss becomes important only for sound with high frequencies, which travels long
distances. Acoustic waves travel with the speed of sound. In order to commit
satisfactory CAA all wave properties have to be preserved in the numerical so-
lution, which implies low dispersion and dissipation error. This can be achieved
by preserving the dispersion relation as well as possible in the numerical scheme,
which can be done by preserving the wavenumber and the angular frequency.
So when a numerical scheme has the same dispersion relation as the governing
equations, the waves in the numerical solution will have the same properties as
those of the governing equation.
Many CFD schemes are dispersive and dissipative. Sometimes numerical

dissipation is added to make the scheme stable. In CFD, schemes are usually as-
sessed by the order of the local truncation error, higher order often means better
local approximation, and by the Lax theorem for convergence. In acoustics this
is not su¢ cient to ensure a good quality numerical solution, as appears from the
previous discussion. A common approach in CFD is to use non-uniform grids,
e.g. in boundary layers. In acoustics, stretched grids could cause undesirable
phenomena, such as change of frequency or even re�ection [3].
Another di¢ culty in CAA arises from the type of problems in practical ap-

plications. These problems often are exterior problems, which implies that these
problems have to be solved in an unbounded domain. Thus for computational
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purposes, the domain has to be cut o¤ to make the computational domain �nite.
Boundary conditions have to be proposed for the cut-o¤ boundaries. Re�ection
of outgoing waves from the arti�cial cut-o¤ boundaries is undesirable.
Also problems in acoustics often have complex geometries. So, good methods

to handle these complexities are required.
As explained before, sound propagation is modelled as an inviscid �uid phe-

nomenon. On the other hand, if sound generation by a �ow is considered,
viscosity (involving the Reynolds number) plays an important role. Sound is
mainly generated in turbulent �ows, e.g. by acceleration of vorticity.
In Chapter 2 the governing equations for acoustics are derived, the problem

is formulated and important objectives of the thesis are described. In Chap-
ter 3 numerical methods are discussed. Space discretization, time integration
methods and a cut-cell method are presented in this chapter in order to solve
the problem. Also, interpolation methods and Richardson extrapolation are
presented in this chapter in order to handle the objectives. In Chapter 4 there
is a description of how to apply these methods to the particular problem, for-
mulated in Chapter 2. Chapter 5 describes how problems that appeared with
the implementation have been solved. In Chapter 6 results are presented and
the conclusions from these results can be found in Chapter 7.
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2 Problem

In this chapter an introduction to the problem will be given. The linearized
Euler equations are derived, which govern the acoustic problem. Furthermore,
the geometry of the problem is de�ned with the corresponding boundary and
initial conditions. After the problem formulation the main objectives of this
thesis will be discussed.

2.1 Linearized Euler Equations

As mentioned in the introduction, acoustics is considered to be an inviscid �uid
phenomenon. Therefore, the Euler equations are used to derive the governing
linearized Euler equations for acoustics. The linearized Euler equations are
derived for a homogeneous �uid with characteristics:

� = �0, p = p0, u = 0,
where u represents a vector and �0 and p0 are constants.
The Euler equations (governing an inviscid �ow) are given by:

�t + u � O�+ �O � u = 0,
�(ut + (u � O)u) + Op = 0.

(1)

When sound disturbs the �uid, the �uid is characterized by:

� = �0 + �
0, j�j � �0,

p = p0 + p
0, jp0j � �0c

2
0,

u = u0, ku0k � c0,
(2)

where c0 is the propagation speed (speed of sound).
Furthermore, the equation of state is given by:

1

c20
p0 = �0. (3)

Substituting (2) into (1) leads to:

(�0 + �
0)t + u

0 � O(�0 + �0) + (�0 + �0)O � u0 =
�0t + u

0 � O�0 + �0O � u0 + �0O � u0 = 0,
(4)

and

(�0 + �
0) [u0t + (u

0 � O)u0] + O(p0 + p0) =
�0u

0
t + �

0u0t + �0(u
0 � O)u0 + �0(u0 � O)u0 + Op0 = 0. (5)

Since all perturbation are small, higher order terms can be neglected, which
results in the following:

�0t + �0O � u0 = 0, (6)

�0u
0
t + Op0 = 0. (7)
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From (3) it follows that �0t =
1
c20
p0t, which can be substituted in (6) and

multiplied by c20:
p0t + �0c

2
0O � u0 = 0, (8)

�0c
2
0u

0
t + c

2
0Op0 = 0. (9)

Now, (8) and (9) are the Euler equations linearized around a state of rest.
Note that (8) and (9) satisfy the wave equation.
After non-dimensionalizing and taking c0 = 1 the linearized Euler equations

appear, which are used in the following section.

@p
@t + O � u = 0,
@u
@t + Op = 0.

(10)

The linearized Euler equations have been derived.

2.2 Problem Formulation

The following acoustic problem has been posed by Popescu, Shyy and Tai [4].
The problem is solved in 2-D and has a geometry as in Figure 2.1.

Figure 2.1: Geometry of the problem.

For this problem the computational domain is (x; y) 2 [�5; 5]� [0; 15], which
is cut o¤ by a solid wall at y = 2, where the angle of the wall with the positive
x�axis is equal to �. At y = 0 and around x = 0 a piston, that is ba­ ed, is
located. The problem is to �nd the sound �eld generated by this ba­ ed piston.
This �eld is re�ected by the solid wall. The problem is modelled as follows:

11



1. The linearized Euler equations are used, which are non-dimensionalized
with c0 = 1:

@p
@t + O � u = 0,
@u
@t + Op = 0,

(11)

where u =
�
u
v

�
.

2. The initial conditions are as follows:

u = 0,
p = 0.

(12)

3. The boundary conditions are as follows:

v(x; 0; t) =

�
V0 cos(!t), (x; 0) 2 piston

0, otherwise
(13a)

where V0 = 1 and ! = 4.

un = 0
@p
@n = 0

�
on the solid wall. (13b)

Out�ow conditions at x = �5, x = 5 and y = 15. (13c)

The goal is to solve this problem numerically. Several methods are presented
in the following chapters to obtain satisfactory numerical solutions. Results of
Popescu, Shyy and Tai [4] are presented in Section 6.1.

2.3 Objectives of the Thesis

In this thesis an intensive investigation of the results of Popescu, Shyy and Tai
[4] is presented. In the paper they present spatial discretization, time integration
and a cut-cell method in order to handle the presented test problem. The results
in Section 6.1 are quite satisfactory and give hope this approach to be e¤ective
for aeroacoustic problems. However, the results have not yet been investigated
in detail. This thesis focuses on further investigation of the results that are
obtained by Popescu, Shyy and Tai. An enumeration of the main objectives of
this thesis is given.

1. Because there is no analytical solution of this problem, it is impossible
to determine the order of accuracy explicitly. However, it is important to
know what the order of accuracy is in practice. So, the �rst objective is
to determine the order of accuracy.

2. For the complex boundary a special method has to be developed. This
method is called cut-cell method and should preserve the order of accuracy
that is derived for the methods used in the interior. A main objective is
to investigate what the impact of this cut-cell method is on the order of
accuracy of the complete simulation.

12



3. Finally, investigation of an improvement of the numerical solution is also
an objective. Another way then simply decreasing stepsizes in both time
and space, could lead to a smaller amount of work and memory in order
to obtain a better numerical solution.

Methods and its applicabilities, that are used to deal with these objectives
are presented in the next chapters.
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3 Numerical Methods

In this chapter numerical method, that are used in this thesis, are presented.
This includes spatial discretization, time integration, a cut-cell method, inter-
polation and extrapolation methods.

3.1 Spatial Discretization

For spatial discretization the Optimized-Prefactored-Compact (OPC) scheme
is used. In this scheme the coe¢ cients are determined such that it meets a
required order of accuracy and a small dispersion error. In order to obtain a
small dispersion error the dispersion relation has to be preserved. This can be
done by preserving the wavenumber in the numerical scheme.

3.1.1 The Optimized-Prefactored-Compact Scheme

The OPC scheme is based on prefactored compact schemes, which require very
small stencil support. The prefactor procedure splits the implicit central scheme
into a forward and backward operator. The compact schemes have small stencils,
which implies that the speci�cation of the boundaries is simpli�ed, because no
additional conditions have to be proposed. Another advantage of the OPC
scheme is that it has the same order of accuracy with a smaller stencil than
explicit schemes.

3.1.2 Finite Di¤erence approach

Let us introduce �rst the compact scheme:

�(Di�2 +Di+2) + �(Di�1 +Di+1) +Di '
a

2�x (ui+1 � ui�1) +
b

4�x (ui+2 � ui�2) +
c

6�x (ui+3 � ui�3).
(14)

where Di is the spatial derivative of u in the point xi. Note that this implicit
scheme uses 7 equally spaced nodes.
In order to obtain a certain order of the local truncation error a Taylor series

expansion can be made.
The Taylor series expansion is shown below:

2�(@ui@x +
(2�x)2

2
@3ui
@x3 +

(2�x)4

4!
@5ui
@x5 + :::)+

2�(@ui@x +
�x2

2
@3ui
@x3 +

�x4

4!
@5ui
@x5 + :::) +

@ui
@x '

2 a
2�x (

@ui
@x �x+

�x3

3!
@3ui
@x3 +

�x5

5!
@5ui
@x5 + :::)+

2 b
4�x (

@ui
@x (2�x) +

(2�x)3

3!
@3ui
@x3 +

(2�x)5

5!
@5ui
@x5 + :::)+

c
6�x (

@ui
@x (3�x) +

(3�x)3

3!
@3ui
@x3 +

(3�x)5

5!
@5ui
@x5 + :::).

(15)

After matching coe¢ cients the following relations can be obtained [5]:
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Second order:
a+ b+ c = 1 + 2� + 2�, (16)

Fourth order:

a+ 22b+ 32c = 2
3!

2!
(� + 22�), (17)

Sixth order:

a+ 24b+ 34c = 2
5!

4!
(� + 24�), (18)

etc.
Only for tenth order all coe¢ cients are unique.
Fourier transforms are used in order to derive the wavenumber of the scheme.

Fourier transform with wavenumber � 2 R, is de�ned as:

ef(�) = 1

2�

1Z
�1

f(x)e�i�xdx, (19)

and its inverse:

f(x) =

1Z
�1

ef(�)ei�xd�. (20)

The Fourier transform leads to the following derivative and shift theorems:

@̂f
@x (x) = i�

ef(�),
^f(x+ �) = ei�� ef(�). (21)

Then the (numerical) wavenumber of the scheme can be determined by ap-
plying Fourier transforms and its shift and derivative theorems to (14):

�(e�i�2�x + ei�2�x)i�eu+ �(e�i��x + ei��x)i�eu+ i�eu '
a

2�x (e
i��x � e�i��x)eu+ b

4�x (e
i�2�x � e�i�2�x)eu+

c
6�x (e

i�3�x � e�i�3�x)eu, (22)

(2� cos(2��x) + 2� cos(��x) + 1)i�eu '
( a
�x sin(��x) +

b
2�x sin(2��x) +

c
3�x sin(3��x))ieu. (23)

Hence, the numerical wavenumber � is given by:

��x =
a sin(��x) + b

2 sin(2��x) +
c
3 sin(3��x)

2� cos(2��x) + 2� cos(��x) + 1
. (24)

Note that this numerical wavenumber is real.
Now the prefactored compact scheme is de�ned, which uses a forward and

backward operator [5]. The reason for de�ning a prefactored compact scheme
is that it leads to reduced, upper and lower bidiagonal, matrices, which is ad-
vantageous when these have to be inverted (This procedure is described in the
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last part of this section). The derivative operator is split into a forward and a
backward operator:

Di =
1

2
(DB

i +D
F
i ), (25)

which are de�ned by:

�FD
F
i + �FD

F
i+1 '

1

�x
[aFui+2 + bFui+1 + cFui + dFui�1 + eFui�2], (26)


BD
B
i�1 + �BD

B
i '

1

�x
[aBui+2 + bBui+1 + cBui + dBui�1 + eBui�2]. (27)

Again Fourier transforms determine the numerical wavenumer of these op-
erators, which have a real and imaginary part.
The real and imaginary part of the numerical wavenumber of the forward

operator is:

Re(�F�x) =
(aF �F+bF �F�cF �F�dF �F ) sin(��x)

�2F+�
2
F+2�F �F cos(��x)

+

(aF �F�dF �F�eF �F ) sin(2��x)�eF �F sin(3��x)
�2F+�

2
F+2�F �F cos(��x)

,
(28)

Im(�F�x) =
�(bF �F+cF �F )�(aF �F+bF �F+cF �F+dF �F ) cos(��x)

�2F+�
2
F+2�F �F cos(��x)

+

�(aF �F+dF �F+eF �F ) cos(2��x)�eF �F cos(3��x)
�2F+�

2
F+2�F �F cos(��x)

.
(29)

The real and imaginary part of the numerical wavenumber of the backward
operator is:

Re(�B�x) =
(bB�B+cB
B�dB�B�eB
B) sin(��x)


2B+�
2
B+2
B�B cos(��x)

+

(aB�B+bB
B�eB�B) sin(2��x)+aB
B sin(3��x)

2B+�

2
B+2
B�B cos(��x)

,
(30)

Im(�B�x) =
�(cB�B+dB
B)�(bB�B+cB
B+dB�B+eB
B) cos(��x)


2B+�
2
B+2
B�B cos(��x)

+

�(aB�B+bB
B+eB�B) cos(2��x)�aB
B cos(3��x)

2B+�

2
B+2
B�B cos(��x)

.
(31)

The real parts represent the dispersion relation and the imaginary parts the
dissipation.
In order to be equivalent with the original compact scheme Hixon and Turkel

[6] de�ned several conditions:

1. The imaginary parts of the forward and backward wavenumbers have to
be equal but of opposite sign.

2. The real parts have to be equal and also equal to the wavenumber of the
compact scheme.
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To satisfy the �rst condition the following is required:

�B = �F ; 
B = �F ,
aB = �eF ; bB = �dF ; cB = �cF ; dB = �bF ; eB = �aF .

(32)
To satisfy the second condition and supplementary relation aF + bF + cF +

dF +eF = 0, to ensure that when gradients are zero the computed gradients are
also zero, the coe¢ cients are known as a function of a, b, c, � and � , which are
not completely determined yet in case of lower order accuracy than 10th order.
Now the stencil has to be optimized. The optimize technique is applied to

the original compact scheme. An errorfunction E is de�ned to measure the
di¤erence between the wavenumber and the numerical wavenumber:

E =

r�Z
0

(��x� ��x)2W (��x)d(��x), (33)

whereW (��x) is a weigth function, which makes the expression analytically
integrable, and r de�nes the optimized range. Kim and Lee [7] chose the function
W (��x) = [2� cos(2��x) + 2� cos(��x) + 1]2. How much free variables are
present depends on the choice of the order of accuracy. The errorfunction can
be minimized by the free parameter(s) in the following way:

minak E , @E
@ak

= 0,

where ak is a free parameter.
Now the problem is closed and all parameters of the compact scheme are

known, which implies that also all parameters of the forward and backward
schemes are known.
A 5-point compact stencil, which means � = c = 0, is equivalent with a

3-point OPC scheme. By requiring 4th order of accuracy there is one parameter
left for optimization. This 4th order optimized 3-point OPC stencil is called the
6=4 OPC, because the scheme has an order of accuracy of 4 while the maximum
order of accuracy is 6. The 8=4 OPC scheme is a 5-point stencil and uses two
parameters for optimization.
Also boundary stencils have to be taken into account. For example, for a

domain consisting of N nodes, a three-point stencil can be applied to the points
j = 2 to N � 1. Therefore for the points 1 and N explicit boundary stencils
have to be de�ned. These forward and backward boundary stencils are explicitly
de�ned as:

DB
1 =

1
�x

4X
j=1

sjuj , DB
N =

1
�x

NX
j=N�3

ejuj ,

DF
1 =

1
�x

4X
j=1

�eN+1�juj , DF
N =

1
�x

NX
j=N�3

�sN+1�juj ,
(34)

where the coe¢ cients sj and ej are determined by matching coe¢ cients from
the Taylor series expansion.
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Now, the system of equations following from (26) and (27) can be written
as follows:

[AF ]DF = [BF ]u, (35)

[AB ]DB = [BB ]u, (36)

where [:] are matrices.
The system of equations following from (25) can be obtained using (35) and

(36):

D =
1

2
([AF ]�1[BF ] + [AB ]�1[BB ])u. (37)

The matrices [AF ] and [AB ] are an upper bidiagonal and a lower bidiagonal
matrix, respectively.
Figure 3.1 [3] shows ��x as a function of ��x for several schemes. Also the

ideal situation ��x = ��x for all ��x is shown.

Figure 3.1: ��x versus ��x for two OPC schemes and
two compact schemes.

From Figure 3.1 it appears that ��x and ��x are nearly the same up to
�c�x, which is easily determined by a simple condition, e.g. j��x� ��xj <
0:001. Also the group velocity is considered and compared with the other
schemes in Figure 3.2 [3].
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Figure 3.2:
���d(��x)d(��x) � 1

��� versus ��x for two OPC schemes
and two compact schemes.

It appears from the �gures that the optimized schemes have a much larger
range of wavenumbers, in which these perform well, than the unoptimized
schemes.

3.1.3 Finite Volume approach

For the �nite volume derivation of the OPC scheme Popescu [3] uses the one-
dimensional linear wave equation (38) and the geometry as given in Figure 3.3.

@u

@t
+
@u

@x
= 0. (38)

Figure 3.3: A cell centered
grid with control volume

[xw; xe].

Integration over a cell gives:�
@u

@t

�
i

�x+ uijew =
�
@u

@t

�
i

�x+ uei � uwi = 0, (39)
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where
�
@u
@t

�
i
is an average value over a control volume i.

Equations (25), (26) and (27) describe the OPC scheme and the approxima-
tions of ue and uw have similar forms:

uei =
1
2 (u

Fe
i + uBei ),

uwi =
1
2 (u

Fw
i + uBwi ),

(40)

where uFei , u
Be
i , u

Fw
i and uBwi are determined from:

�uFei+1 + �u
Fe
i = bui+1 � dui,

�uFwi+1 + �u
Fw
i = bui � dui�1,

�uBei + �uBei�1 = bui � dui+1,
�uBwi + �uBwi�1 = bui�1 � dui.

(41)

Here the coe¢ cients �, �, b and d are the same as in the �nite di¤erence
approach: � = �F , � = �F , b = bF and d = dF .
In order to solve this, again explicit boundary stencils are required like (34):

uw1 =
3X
i=1

aiui, uwN =
3X
i=1

riuN�i,

ue1 =

3X
i=1

aiui+1, ueN =

3X
i=1

riuN�i+1,

(42)

all for forward and backward operators. Where the coe¢ cients are:

aB1 = �s1,
aB2 = �s1 � s2,
aB3 = �s1 � s2 � s3,

aF1 = eN ,
aF2 = eN + eN�1,
aF3 = eN + eN�1 � eN�2,

rB1 = eN ,
rB2 = eN + eN�1,
rB3 = eN + eN�1 � eN�2,

rF1 = �s1,
rF2 = �s1 � s2,
rF3 = �s1 � s2 � s3.

(43)

Now, the systems of equations can be solved like in the �nite di¤erences
approach.
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3.2 Time Integration

For time integration a modi�ed Runge-Kutta scheme is used. This scheme also
has the goal to preserve the dispersion relation. This scheme is developed with
Fourier transforms and Taylor series like the space discretization and is called
the Low-Dispersion-and-Dissipation-Runge-Kutta scheme (LDDRK).

3.2.1 Low-Dispersion-and-Dissipation-Runge-Kutta scheme

For time integration the modi�ed Runge-Kutta scheme, Low Dispersion and
Dissipation Runge-Kutta (LDDRK), has been developed by Hu, Hussaini and
Manthey [8]. In the original Runge-Kutta scheme the coe¢ cients are chosen
such that the Taylor series coe¢ cients match up to a certain order of accuracy.
The Runge-Kutta scheme is applied to the equation:

du

dt
= F (u). (44)

Consider the original p-stage explicit Runge-Kutta scheme in the (n + 1)th

iteration:
K1 = �tF (u

n),
...

Ki = �tF (u
(i�1)),

u(i) = un + biKi, i = 1:::p,
...

un+1 = u(p),

(45)

where bp = 1.
A reason for using this notation is that it is easier to implement and it needs

to store only two Ki�s against p for the standard notation. See Appendix A to
note the equivalence of this notation and standard notation for linear problems.
Another way to write un+1 is:

un+1 � un '
pX
j=1

pY
l=p�j+1

bl�t
j d

jun

dtj
. (46)

When the left-hand side of this equation is expanded into a truncated Taylor

series and the right hand side is written out the coe¢ cients 
j =
pY

l=p�j+1
bl can

be determined:

�tdu
n

dt +
�t2

2
d2un

dt2 + :::+ �tp

p!
dpun

dtp '
bp�t

dun

dt + (bpbp�1)�t
2 d2un

dt2 + :::+ (bp:::b1)�t
p dpun

dtp .
(47)

Hence, 
j =
1
j! for p

th order accuracy, like in the p-stage standard Runge-
Kutta.
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By applying Fourier transforms to (46) the numerical ampli�cation factor r
is obtained:

r =
eun+1eun = 1 +

pX
j=1


j(�i!�t)j = 1 +
pX
j=1


j(�i�)j . (48)

Also the exact ampli�cation factor can be obtained:

rexact = e
�i!�t = e�i�. (49)

With 
j =
1
j! , it is easy to see that the numerical ampli�cation factor is the

truncated Taylor series of the exact ampli�cation factor. To compare the exact
and numerical ampli�cation factor its ratio has to be obtained:

r

rexact
=

1 +

pX
j=1


j(�i�)j

e�i�
, (50)

which can be rewritten as:

r

rexact
= j�je�i�. (51)

In this expression j�j represents the dissipation rate and � represents the
dispersion rate. Where the j�j should be 1 and � should be 0 for r and rexact to
be equal. Thus for accuracy�s sake � must be close to 0 and j�j must be close to
1 and for stability�s sake j�j � 1. To obtain this the Runge-Kutta method has to
be modi�ed to optimize the dispersion and dissipation rate. Hu, Hussiani and
Manthey [8] showed that it is su¢ cient to minimize jr � rexactj2 as a function
of !�t:

min

j

�Z
0

������1 +
pX
j=1


j(�i!�t)j � e�i!�t
������
2

d(!�t) ; (52)

with a supplementary condition of j�j � 1 and [0;�] the optimization range.
Hu, Hussiani and Manthey [8] showed that jr� rexactj2 is an approximation

of the sum of the dispersion and dissipation errors. They also showed that
minimization of this integral also preserves frequency. From Figure 3.4 [3] it
appears that LDDRK has better dispersion and dissipation properties than the
ordinary Runge-Kutta integration. Here L and R denote the accuracy limit and
the stability limit, respectively.
Also the dissipation and dispersion error of an alternating scheme can be

optimized. An example of the alternating scheme 4-6-LDDRK: in the odd time
steps the four stage LDDRK and the even time steps the six stage LDDRK is
used. In this procedure jr4r6�r2exactj2 is minimized. For alternating schemes the
dissipation and dispersion error can be further reduced with the minimization
and another advantage is that higher order of accuracy can be maintained.
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Hu, Hussiani and Manthey [8] present the coe¢ cients of 4-6-LDDRK and 5-6-
LDDRK, which are both fourth order accurate.

Figure 3.4: Dissipation and dispersion errors. Above 4 stages, below 6
stages.

Popescu [3] speci�es the coe¢ cients of the 4-6-LDDRK scheme:
1. Four stages:

b1 =
1
4 , b2 =

1
3 , b3 =

1
2 .

2. Six stages:

b1 = 0:17667, b2 = 0:38904, b3 =
1
4 , b4 =

1
3 , b5 =

1
2 .
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3.3 Cut-Cell Method

In general there are two approaches to generate a grid.

1. A boundary conforming grid: the grid lines match with the boundary

2. A boundary non-conforming grid, the grid lines do not match or intersect
the boundary

Often the �rst option results in curvilinear grids, for which numerical schemes
are harder to implement due to the irregular cells. With the second option often
a Cartesian grid is used, for which special treatment for each boundary cell is
required. A great advantage of this Cartesian grid is the easy implementation
for the interior domain. For the implementation of the boundaries the cut-cell
technique is used. The standard second order cut-cell method is described be-
low as an introduction for the cut-cell method for acoustic problems which is
described later.

3.3.1 Ordinary Second Order Cut-Cell Method

The basic idea of the cut-cell method is to rearrange the control volumes, which
are in vicinity of the boundaries, to create cells that conform the boundaries.
Cells are cut o¤ according to the boundary and become an independent cell
or are merged with another (cut) cell. Cut cells are merged with others if the
cell area is less than a minimum acceptable cell area Smin. Otherwise, it could
be independent. So, this procedure produces new irregular shaped boundary
cells. In a �nite volume approach the �uxes across the faces of the cells are
approximated by: I

f � nds �
kX
i=1

fini; (53)

where �ux f contains both the convective and the di¤usive �ux, resulting
from a di¤erential equation for �. To compute the �uxes on the faces the
midpoint rule is used which means that the �uxes are evaluated at the center
of the faces.
For further explanation of the cut-cell method the geometry as in Figure 3.5

is used.

24



Figure 3.5: Two cut cells,
ABDE and BCD, are
merged into a new cell

ABCDE.

The approximation of the �ux on a face is split into an approximation of
the �ux on a cut face and an approximation of the �ux on a regular face. For
example, the �ux on face AC in Figure 3.5 is split into a �ux fw on regular face
AB and a �ux fsw on cut face BC, which results in:Z

AC

fdy =

Z
AB

fdy +

Z
BC

fdy. (54)

This integral can be approximated by:Z
AC

fdy � fw(yA � yB) + fsw(yB � yC). (55)

In this case a second order approximation of fw can be made just by linear
interpolation of neighboring nodes P and W . For example if fw requires a
value for �, this can be interpolated: �w = ��W + (1 � �)�P . If fw requires
the derivative of �, this can be handled by a second order �nite di¤erence
approximation.
This cannot be done for the �uxes fsw and fe, because of the absence of

neighboring nodes due to the boundary. The approximation for fsw is shown
below, whereas fe can be done in the same way. These �uxes can be approxi-
mated by making an interpolation polynomial. To make a second order approx-
imation, an interpolation polynomial is made that is linear in x and quadratic
in y:

�(x; y) = c1xy
2 + c2y

2 + c3xy + c4y + c5x+ c6. (56)

So,
@�

@x
= c1y

2 + c3y + c5. (57)
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This polynomial has six unknown coe¢ cients. In order to solve these coef-
�cients six neighboring points are needed. The trapezoidal region de�ned for
this is shown in Figure 3.6.

Figure 3.6: Cut cell
ABCDE (lined) and the
trapezoidal region 123456
(blue) for the interpolation

polynomial.

Substituting these six points into the interpolation polynomial leads to the
following system:26664

�1
�2
...
�6

37775 =
26664
x1y

2
1 y21 x1y1 y1 x1 1

x2y
2
2 y22 x2y2 y2 x2 1

...
...

...
...

...
...

x6y
2
6 y26 x6y6 y6 x6 1

37775
26664
c1
c2
...
c6

37775 : (58)

This system is easily inverted, which gives c1,..., c6 in terms of �1,..., �6.
Now, �sw and

@�sw
@x are determined in terms of the neighboring nodes �1,..., �6

by substituting c1,..., c6, xsw and ysw into the interpolation polynomial.
In a similar way fe can be determined. Also north and south faces, which

are cut, are treated in this way. The only di¤erence is that the interpolation
polynomial is linear in y and quadratic in x.
Now, fint on face CD has to be calculated. Since fint is on the boundary,

given boundary conditions could be implemented. When Dirichlet conditions
are given this can directly be implemented. Then only @�int

@n is needed to ap-
proximate, when present in fint. When Neumann conditions are given, only
�int is needed to approximate. Below the description of the approximation for
@�int
@n :

@�

@n
=
@�

@x
nx +

@�

@y
ny, (59)

where nx and ny are the components of the unit normal vector of face CD,
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which are known. From Figure 3.6 it appears that fint lies on node 2. This
implies that node 3, 4 and "4n" (north neighboring node of 4) are its neigh-
boring nodes in y-direction. So for the approximation of @�@y the interpolation
polynomial is only quadratic in y:

�(y) = c1y
2 + c2y + c3; (60)

for which the resulting system is easily solved. The approximation of @�int@y

is written as @�int
@y � 2c1yint + c2.

To approximate @�int
@x the procedure is similar to the procedure used for the

approximation of @�sw@x .
All �uxes have been determined now.

3.3.2 Cut-Cell Method for CAA Approach

In order to preserve the order of accuracy as developed in the DRP or OPC
schemes the same order of accuracy is needed for the boundary implementation.
To explain the adapted procedure for the CAA approach, again the geometry
as in Figure 3.5 is used. Also the �nite volume technique is used and gives the
integral approximations as described in the ordinary cut-cell procedure. Only
di¤erence is the approximations of the �uxes.
Now fw can be approximated by a given boundary stencil of the DRP or

OPC scheme. For the OPC scheme this is for example (34) and for the DRP
scheme ghostpoints have to be introduced. In the ordinary cut-cell procedure
central di¤erences and interpolation are used to approximate fw.
To �nd a fourth order approximation of fsw an interpolation polynomial is

used. To make this approximation fourth order this polynomial is third order
in x and fourth order in y:

�(x; y) =
4X
i=0

3X
j=0

cijx
jyi. (61)

This polynomial has 20 unknown coe¢ cients. Thus, 20 points are needed to
determine these coe¢ cients in terms of �1,..., �20. The trapezoidal region with
points 1,..., 20 is shown in Figure 3.7. This results in a similar system as in
the ordinary case. The only di¤erence is that the system is now � = [A]c, with
� and c twenty-dimensional vectors and [A] a 20 � 20 matrix, which is easily
inverted.
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Figure 3.7: The cut cell
ABCDE and the

trapezoidal 1 � � � 20 to
approximate fsw.

Also the approximation of fe can be done with this procedure as well as
north and south �uxes of this kind.
The approximation of fint in this case is also similar to the approximation

in the ordinary case. Again the approximation of the normal derivative is ex-
plained:

@�

@n
=
@�

@x
nx +

@�

@y
ny; (62)

where @�int@x can be approximated by a interpolation polynomial that is third
order in x and fourth order in y, like fsw has been approximated, and

@�int
@y can

be approximated by a polynomial that is fourth order in y along the vertical
line 14, 13, 12 , 11 and "11n":

�(y) = c1y
4 + c2y

3 + c3y
2 + c4y + c5, (63)

with derivative:

@�

@y
= 4c1y

3 + 3c2y
2 + 2c3y + c4. (64)

Substituting these 5 points in (63) leads to a small system, which is easily
solved.
All �uxes have been determined with this cut-cell method. The procedure

for acoustic problems is similar to that for ordinary problems, the only extension
is higher order interpolation polynomials.
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3.4 Interpolation Method

In order to apply Richardson extrapolation several numerical solutions have to
be obtained. These solutions will be obtained with di¤erent grid spacings, which
imply that, in general, the grids will not match. For Richardson extrapolation
matching grids are needed. Therefore, the numerical solutions have to be in-
terpolated to a common grid. In the next sections Lagrange interpolation is
described for the one-dimensional case and its extension to the two-dimensional
case.

3.4.1 One-dimensional Lagrange Interpolation

The Lagrange interpolation polynomial is the interpolation polynomial that
equals the given values f(xi) at the given positions xi.
Assume there is a set � = f(x0; f(x0)); (x1; f(x1)); ::::; (xN ; f(xN ))g. For

this set the unique Lagrange interpolation polynomial P (x) of the N th degree
can be written as follows:

P (x) =
NX
k=0

f(xk)LN;k(x), (65)

where LN;k(x) must satisfy LN;k(xi) =
�
1, if i = k
0, otherwise

.

With this condition the polynomial P (x) intersects the set �.
All LN;k(x) are of degree N and are de�ned as follows:

LN;k(x) =
(x� x0)(x� x1) � � � (x� xk�1)(x� xk+1) � � � (x� xN )

(xk � x0)(xk � x1) � � � (xk � xk�1)(xk � xk+1) � � � (xk � xN )

=

NY
i=0;i 6=k

x� xi
xk � xi

.

(66)
So, the Lagrange interpolation polynomial (65) can be written as follows:

P (x) =
NX
k=0

f(xk)
NY

i=0;i 6=k

x� xi
xk � xi

. (67)

Suppose that x0; x1:::xN 2 [a; b] and f 2 CN+1[a; b]. Burden and Faires [9]
showed that for each x 2 [a; b] there exists a �(x) 2 [a; b], such that the following
holds:

f(x)� P (x) = f (N+1)(�(x))

(N + 1)!
(x� x0)(x� x1) � � � (x� xN ). (68)

Despite the fact that, in general, f is not known, this error formula gives an
indication of the order of accuracy of Lagrange interpolation.
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3.4.2 Two-dimensional Lagrange Interpolation

The procedure can easily be extended to the two-dimensional case.
Assume there is a set

� = f(x0; y0; f(x0; y0)); (x1; y0; f(x1; y0)); :::::; (xN ; yM ; f(xN ; yM ))g.

This set consists of (N + 1) � (M + 1) pairs of (xi; yj ; f(xi; yj)). Again, the
Lagrange interpolation polynomial should equal the values f(xi; yj) at the po-
sitions (xi; yj). The polynomial will be of N th degree in x and of M th degree
in y.
Then the two-dimensional Lagrange interpolation polynomial can be written

as follows [13]:

PN�M (x; y) =

NX
i=0

MX
j=0

0@ NY
k=0;k 6=i

x� xk
xi � xk

1A0@ MY
l=0;l 6=j

y � yl
yj � yl

1A f(xi; yj). (69)

In this case, the set is the rectangle [x0; xN ]� [y0; yM ].
In order to make interpolation applicable for more general domains, the La-

grange interpolation polynomial can also be determined with a more general set
consisting ofM pairs: � = f(x1; y1; f(x1; y1)); (x2; y2; f(x2; y2)); :::::; (xM ; yM ; f(xM ; yM ))g.
Let us de�ne:

� Nx is the degree of the polynomial in x,

� and Ny is the degree of the polynomial in y.

Then the interpolation polynomial is de�ned as follows:

c1x
NxyNy + c2x

NxyNy�1 + :::+ cM�2x+ cM�1y + cM , (70)

and the following must hold in order to determine an unique Lagrange poly-
nomial:

M = (Nx + 1)� (Ny + 1). (71)

The coe¢ cients c1, c2,..., cM can be determined by solving the following
system:

26666664
xNx
1 y

Ny

1 xNx
1 y

Ny�1
1 � � � x1 y1 1

xNx
2 y

Ny

2 xNx
2 y

Ny�1
2 � � � x2 y2 1

...
...

...
...

...
xNx

M�1y
Ny

M�1 xNx

M�1y
Ny�1
M�1 � � � xM�1 yM�1 1

xNx

M y
Ny

M xNx

M y
Ny�1
M � � � xM yM 1

37777775

2666664
c1
c2
...

cM�1
cM

3777775 =
2666664

f(x1; y1)
f(x2; y2)

...
f(xM�1; yM�1)
f(xM ; yM )

3777775
(72)
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3.5 Richardson Extrapolation

Let P (�x) be an approximation of p. Then the error of this approximation can
be written as follows:

p� P (�x) = C1�xn1 + C2�xn2 + ::: (73)

where Ci 2 R and ni 2 N with 0 � n1 < n2 < ::.
When �x is small, (73) can be approximated by:

p� P (�x) = C�xn, (74)

with n = n1.
Now, this equation can be written for �x, �x

2 and �x
4 , which gives the

following system:

p� P (�x) = C�xn,
p� P (�x2 ) = C

�
�x
2

�n
,

p� P (�x4 ) = C
�
�x
4

�n
.

(75)

After subtracting the second equation from the �rst, the third from the
second and dividing these expressions the following is obtained:

P (�x2 )� P (�x)
P (�x4 )� P (

�x
2 )

= 2n. (76)

From this equation the order of accuracy n can be determined.
By subtracting the second and third equation of (75), C can be determined:

C =
P (�x4 )� P (

�x
2 )

(�x2 )
n(1� ( 12 )n)

. (77)

From the third equation of (75) an improvement of the solution accuracy
can be derived:

Pimpr = P (
�x

4
) + C

�
�x

4

�n
. (78)

This can be written as follows:

Pimpr =
2nP (�x4 )� P (

�x
2 )

(2n � 1) . (79)

This procedure can easily be extended to higher dimensions, what could be
done in order to make Richardson extrapolation applicable for an instationary
problem.
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4 Applicability

In this chapter it is described how the numerical methods are used and applied
in order to solve the formulated problem and objectives.

4.1 Obtaining Numerical Solutions

4.1.1 Problem Modelling

Popescu, Shyy and Tai [4] solved the problem, posed in Section 2.1, with a cell-
centered grid approach. However, there are cell centers on the north, east, south
and west boundaries of the domain. So the domain is slightly extended by �x

2

and �y
2 , in order to preserve the formal de�nition of a cell-centered approach.

For the spatial discretization of the linearized Euler equations (11) Popescu,
Shyy and Tai [4] use the �nite volume version of the 6=4 OPC scheme, as
described in Section 3.1.1. So, the spatial discretization should have fourth
order of accuracy. A uniform grid is used with �x = �y = 0:05 and CFL =
c0

�t
�x = 0:5 to determine the time step.
For time integration the 4-6-LDDRK method, as described in Section 3.2,

with the time step, that just has been de�ned, is used. Also, the time integration
should have fourth order of accuracy.
The initial condition (12) and boundary condition (13a) are easily imple-

mented.
In vicinity of the solid wall the cut-cell procedure is used. For the im-

plementation of boundary condition (13b) Figure 4.1 [4] is used to clarify the
procedure.

Figure 4.1: Geometry in vicinity of the
solid wall with cut cell ABCDE.
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The interpolation polynomials, as described in Section 3.3.2, are taken to be
fourth order in x and y. The �uxes fws and fn are approximated with these
polynomials. For the �uxes fs and fe the boundary stencils of the OPC scheme
can be used. For the �ux on face CD a virtual point G is de�ned. Point (xi; yj)
is the mass center of the boundary cell and G is the symmetrical opposite of
this mass center. Then uCD and pCD are de�ned as follows:

uCD =
uij+uG

2 , with uG = uij � 2(uij � n)n.
pCD =

pij+pG
2 , with pG = pij .

After some mathematical manipulation it appears that boundary condition
(13b) holds.
The modelling of the out�ow boundary conditions (13c) are based on the

out�ow boundary conditions of Tam [10]:

@p
@t +

@p
@x cos(�) +

@p
@y sin(�) +

p
2r = 0,

@u
@t + Op = 0,

(80)

where r is the distance from the boundary point to the center of the piston
and � the angular coordinate.

4.1.2 Stability Analysis

The stability of the linearized Euler equations is investigated by determining
the dispersion relation. The linearized Euler equations are written as follows:

@U

@t
+
@E

@x
+
@F

@y
= 0, (81)

where U =

24 p
u
v

35, E =

24 u
p
0

35, F =

24 v
0
p

35.
The Fourier transform of a function f(x; y; t) is de�ned by:

ef(�1, �2, !) = 1

(2�)3

1Z
0

1Z
�1

1Z
�1

f(x; y; t)e�i(�1x+�2y�!t)dx dy dt, (82)

where �1, �2, ! 2 R,
and its inverse:

f(x; y; t) =

Z
�

1Z
�1

1Z
�1

ef(�1, �2, !)ei(�1x+�2y�!t)d�1 d�2 d!, (83)

where � is the contour in the complex !-plane.
By applying Fourier transforms to (81) the following appears:

33



A eU = eG, (84)

where A =

24 �i! i�1 i�2
i�1 �i! 0
i�2 0 �i!

35 and eG = i
eUinitial

2� .

Tam [10] showed that the dispersion relation can be obtained by setting the
eigenvalues of A to zero.
The eigenvalues of A are:

�1 = �i! +
p
��21 � �22,

�2 = �i! �
p
��21 � �22,

�3 = �i!.
(85)

Here, the third eigenvalue is the dispersion relation of the vorticity wave.
The �rst two eigenvalues are the eigenvalues, from which the dispersion relation
of the acoustic wave can be determined. The dispersion relation is given by:

�1�2 = 0. (86)

So, the dispersion relation is:

! =
q
�21 + �

2
2. (87)

Right-hand-side is the wavenumber�s euclidean length �. For a stability
analysis (87) is written as follows:

! = �, (88)

The schemes have been developed such that the wavenumber and angular
frequency should equal the numerical wavenumber and numerical angular fre-
quency, respectively. The stability condition of this problem can be obtained
after some mathematical manipulation of the numerical dispersion relation:

! = � , !�t = ��x�t�x , !�t = ��x�,

where � = �t
�x is the CFL-number.

Popescu [3] showed that ��x < 1:4 is required for 6=4-scheme for low disper-

sion error. Criterion
���d(��x)d(��x) � 1

��� < 3�10�3 is used to obtain these requirements.
This is also illustrated in Figure 3.1 and Figure 3.2. Popescu [3] showed that for
numerical stability of the 4-6-LDDRK !�t < 2:52 is required. For accuracy�s
sake this requirement is replaced by !�t < 1:64 which also satis�es the require-
ment of negligible numerical dissipation. These results lead to the following
stability condition:

!�t = �t
�x1:4 = 1:4� � 1:64 ) � � 1:17.
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4.2 Application of Richardson Extrapolation

4.2.1 Interpolation

When numerical solutions are determined with di¤erent spacings, the grids will,
in general, not match. In order to apply Richardson extrapolation several nu-
merical solutions are needed on di¤erent grids. As said before, these grids will
not match, in general. Richardson extrapolation can only be applied to grids
that match. Therefore, an interpolation procedure is needed in order to trans-
form the numerical solutions to one common grid. Shyy and Garbey [11] have
addressed that the interpolation procedure could a¤ect the accuracy of the orig-
inal numerical solution, when it is interpolated to the common grid. So, this
could lead to Richardson extrapolation results, which are not reliable. In order
to maintain the accuracy of the numerical solution, the interpolation method
must have an order of accuracy that is higher than the derived order of accuracy
of the methods, which have been used to obtain the numerical solution.
The numerical solutions have an order of accuracy of four. Therefore, the

Lagrange polynomials, described in Section 3.4 should be �fth order in x and
�fth order in y or higher. For a �fth degree polynomial 36 nodes are needed.
In most of the domain, the rectangular interpolation area can be chosen. For

example, for nodes in the interior of the domain and not in the vicinity of the
boundaries this area is taken to be the square of the 6� 6 surrounding nodes as
in Figure 4.2. Here, the closed dot has to be interpolated and the open dots are
the cell centers. Only part of the square [i; j] = [1; 6]� [1; 6] is shown, but it is
obvious that the interpolated node is in the center of the square, which means
3 surrounding cell centers in each direction, north, east, south and west.

Figure 4.2: Interior
interpolation area.

The area in the vicinity of the north, east, south or west is similar. It is also
a square, but only di¤erence is that the interpolated node is not in the center of
the area. For example, an interpolated node in the vicinity of the east boundary
has 2 cell centers east, 4 west, 3 north and 3 south. This is clari�ed in Figure
4.3. So, here i = 6 is on the boundary.
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Figure 4.3: Interpolation
area in the vicinity of

east boundary.

In the vicinity of the wall, it is impossible to �nd a regularly shaped inter-
polation area. The procedure will be explained with Figure 4.4.

Figure 4.4: Interpolation
area in the vicinity of the

wall.

In Figure 4.4 the open dots are the cell centers, the blue dots are mass centers
of the cut cells and the red dots are virtual points that are used for the �nite
volume integration procedure, explained in Section 4.1.1.
For the interpolation procedure in the vicinity of the boundary, the inter-

polation polynomial for general domains, described in Section 3.4.2, is used.
There are two possibilities for obtaining 36 conditions in order to determine the
interpolation polynomial.

1. Take for i = 1::6 the three cell centers east of each mass center and the red
and blue nodes. This gives 36 conditions and the polynomial can uniquely
be determined.

2. Take for i = 1::6 the three cell centers east of each mass center, the blue
node, the red node on the wall and the condition @p

@n = 0 on the same red
node. The last condition is part of the boundary condition (13b).

With each approach there are 36 conditions in order to determine the inter-
polation polynomial.
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4.2.2 Extrapolation

In order to determine the order of accuracy of the complete method and the
impact of the cut-cell method on it, Richardson extrapolation is used. Shyy
and Garbey [11] showed that the order of convergence in CFD codes are often
space-dependent. Therefore, a pointwise approach is chosen. With a pointwise
approach also the impact of the cut-cell method can be detected easier.

Approach 1
Let Pnij(�x;�t) be the numerical approximation of p

n
ij . Here, P is the nu-

merical solution on a �ne grid. So a numerical has been interpolated to the �ne
grid, like described in the previous section, and this solution is called P . It is
assumed that �x = �y. Since the problem is nonstationary, the error can be
written in the following way:

pnij � Pnij(�x;�t) = cx1�x
p1 + cx2�x

p2 + cx3�x
p3 + ::::

+ct1�t
q1 + ct2�t

q2 + ct3�t
q3 + ::::

(89)

where:

1. cx1 , c
t
1, c

x
2 , c

t
2, :::: 2 R,

2. p1, q1, p2, q2, :::: 2 N,

3. 0 < p1 < p2 < p3 < :::: and

4. 0 < q1 < q2 < q3 < ::::

When �x and �t are small, (89) can be approximated by:

pnij � Pnij(�x;�t) = Cx�xp + Ct�tq. (90)

In Section 3.5 is described how to use Richardson extrapolation for one-
dimensional discretization. Now, there is spatial discretization and time inte-
gration. Therefore, the Richardson extrapolation procedure must be applied
twice:

1. Once for decreasing �x, in order to derive p and Cx.

2. Once for decreasing �t, in order to derive q and Ct.

In order to obtain an improved solution the most accurate numerical solu-
tion must be extrapolated. Therefore, �t

4 will be taken for simulations with
decreasing �x and �x

4 will be taken for simulations with decreasing �t. The
procedure is described below and is similar to the one-dimensional case.
First, in order to derive p and Cx:

pnij � Pnij(�x; �t4 ) = Cx�x
p + Ct

�
�t
4

�q
,

pnij � Pnij(�x2 ;
�t
4 ) = Cx

�
�x
2

�p
+ Ct

�
�t
4

�q
,

pnij � Pnij(�x4 ;
�t
4 ) = Cx

�
�x
4

�p
+ Ct

�
�t
4

�q
.

(91)
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After subtracting the second from the �rst equation of (91), the third from
the second and dividing these expressions, the spatial order of accuracy can be
obtained:

Pnij(
�x
2 ;

�t
4 )� P

n
ij(�x;

�t
4 )

Pnij(
�x
4 ;

�t
4 )� Pnij(

�x
2 ;

�t
4 )

= 2p. (92)

By subtracting the third from the second equation the coe¢ cient Cx can be
obtained:

Cx =
Pnij(

�x
4 ;

�t
4 )� P

n
ij(

�x
2 ;

�t
4 )�

�x
2

�p �
1�

�
1
2

�p� , (93)

Second, in order to derive q and Ct:

pnij � Pnij(�x4 ;�t) = Cx
�
�x
4

�p
+ Ct�t

q,
pnij � Pnij(�x4 ;

�t
2 ) = Cx

�
�x
4

�p
+ Ct

�
�t
2

�q
,

pnij � Pnij(�x4 ;
�t
4 ) = Cx

�
�x
4

�p
+ Ct

�
�t
4

�q
.

(94)

Note that the third simulation already has been done.
In a similar way the time integration order of accuracy can be obtained:

Pnij(
�x
4 ;

�t
2 )� P

n
ij(

�x
4 ;�t)

Pnij(
�x
4 ;

�t
4 )� Pnij(

�x
4 ;

�t
2 )

= 2q, (95)

and the coe¢ cient Ct can be obtained:

Ct =
Pnij(

�x
4 ;

�t
4 )� P

n
ij(

�x
4 ;

�t
2 )�

�t
2

�q �
1�

�
1
2

�q� . (96)

Now, the �rst and second step can be combined in order to obtain an im-
proved solution from (90):

Pimpr = P
n
ij(
�x

4
;
�t

4
) + Cx

�
�x

4

�p
+ Ct

�
�t

4

�q
. (97)

Substituting the coe¢ cients Cx and Ct leads to:

Pimpr = Pnij(
�x
4 ;

�t
4 ) +

Pn
ij(

�x
4 ;

�t
4 )�Pn

ij(
�x
2 ;

�t
4 )�

�x
2

�p�
1�
�
1
2

�p� �
�x
4

�p
+

+
Pn
ij(

�x
4 ;

�t
4 )�Pn

ij(
�x
4 ;

�t
2 )�

�t
2

�q�
1�
�
1
2

�q� �
�t
4

�q
,

(98)

which can be written as follows:
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Pimpr = Pnij(
�x
4 ;

�t
4 ) +

Pn
ij(

�x
4 ;

�t
4 )�Pn

ij(
�x
2 ;

�t
4 )

(2p�1) +

+
Pn
ij(

�x
4 ;

�t
4 )�Pn

ij(
�x
4 ;

�t
2 )

(2q�1) .

(99)

Here, 2p and 2q have already been determined in (92) and (95), respectively.

Approach 2
As in the �rst approach, let Pnij(�x;�t) be the numerical approximation of

pnij . Here, P is the numerical solution on a �ne grid. The error is written in
(89). The time step for the time integration is determined by the CFL-number:
� = �t

�x .
The second approach for Richardson extrapolation is based on decreasing

the grid spacing and keeping the CFL-number constant, so the time step will
automatically be decreased too.
This can be done by the substitution of �t = ��x into (89):

pnij � Pnij(�x;�t) = cx1�x
p1 + cx2�x

p2 + cx3�x
p3 + ::::

+ct1(��x)
q1 + ct2(��x)

q2 + ::::,
(100)

which can be written as follows:

pnij � Pnij(�x;�t) = cx1�x
p1 + cx2�x

p2 + cx3�x
p3 + ::::

+bct1�xq1 + bct2�xq2 + :::: (101)

The two parameters, �x and �t, in this expression have been reduced to
one, �x. Now, this can be rewritten as:

pnij � Pnij(�x) = C1�xm1 + C2�x
m2 + :::, (102)

where Ci 2 R and mi 2 N with 0 � m1 < m2 < ::: (m1 = min(p1; q1), ...).
This is the same expression as (73) in Section 3.5. Now, the exact same

procedure as in Section 3.5, can be followed in order to determine the order of
accuracy (76) and the improved solution Pimpr (79).

Validation
By substituting �t = ��x expression (100) become �-dependent. This could

a¤ect the determination of the order of accuracy and the improved solution.
For example, if q1 < p1, then the CFL-number could make the term bct1�xq1
smaller than or about equal to cx1�x

p1 . In this case, di¤erent CFL-numbers
lead to di¤erent orders of accuracy. So, validation for this approach is that the
order of accuracy should be �-independent.
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5 Implementation

The implementation of the interpolation procedure from the simulation grid to
a common grid will be explained and problems will be addressed in this section.
Furthermore, an additional method and a description of adaptations made in
the code are presented.

5.1 Interpolation

5.1.1 Structure

For every simulation the common grid M0 has to be de�ned. The numerical
solution on the computational grid M1 has to be interpolated to the grid M0.
In order to keep the extra computational work of the interpolation procedure
modest, a lot of information can be calculated once, before the simulation. The
following can be calculated once:

1. For every point on grid M0 the corresponding point on grid M1 is de-
termined. This corresponding point is the closest point in north-east di-
rection. So, in Figure 4.2 this corresponding point is (i; j) = (4; 4). It
is obvious that this point determines the interpolation area, which is the
following issue�s objective. This subroutine also determines whether or
not interpolation is needed. There is a possibility that the point of grids
M0 and M1 match. So, in this case interpolation is not needed, because
the value is known at that point.

2. For every point on grid M1 the type of interpolation is determined. Since
this point is the center of the interpolation area for the corresponding point
in M0, this subroutine will determine whether Lagrangian interpolation
on a square (in the interior) or interpolation on an irregular domain (in
the vicinity of the wall) is needed. If Lagrangian interpolation on a square
is needed, the south-west corner of this square is determined. If interpo-
lation on an irregular domain is needed, the interpolation matrix (72) and
the coordinates of the right-hand side are determined. The procedure of
�nding the interpolation area is described in Section 4.1.2.

3. For every point that needs interpolation on a irregular domain, a matrix
is determined. This matrix must be inverted in order to determine the
coe¢ cients of the interpolation polynomial. So, all matrices are inverted
once.

After these issues the simulation can be started. When the pressure has
been calculated on the computational gridM1 it can be interpolated very easily
to the common grid M0 with the information that has been calculated once.

5.1.2 Adaptations

After the implementation of the procedure described in Section 4.2.1 the results
were not satisfactory. Especially the interpolation in the vicinity of the wall
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performed unsatisfactorily. Several adaptations to the proposed procedure in
Section 4.2.1 has been made in order to solve these problems.

Shifting the Interpolation Procedure
In order to determine the coe¢ cients of the interpolation polynomial a sys-

tem has to be solved. The matrices look like (72) with Nx = Ny = 5. Some
examples of x- and y-coordinates in the vicinity of the wall are: (x; y) =
(�5; 2); (�2; 8); (1; 14). Because the interpolation polynomial is of degree 5 in x
and y, the elements of the matrices can vary from O(107) to O(1), which leads
to round-o¤ errors. In order to overcome this problem two options of shifting
the interpolation procedure are tried. The interpolation procedure is shifted to
(x; y) = (1; 1) or to (x; y) = (0; 0). So, every (xi; yj), used for interpolation, was
shifted around these coordinates. After shifting the interpolation procedure to
(x; y) = (1; 1) the results are better, but after shifting it to (x; y) = (0; 0) the
results are much better. However, it is still unsatisfactory.
The basic idea of shifting the interpolation procedure is that the elements

of the matrices can be stored more exactly, which leads to smaller round-o¤
errors. By shifting the procedure to the origin, the elements of the matrices
contain much less digits than with the original coordinates and the elements are
smaller than 1. So this has a big impact on the round-o¤ errors.

Row Scaling
Actually, matrix (72) is a two-dimensional Vandermonde-matrix and it is

well-known that this matrix can be ill-conditioned. In order to improve the
conditioning of these matrices, row scaling will be applied to the matrices. Every
element of a row is divided by the sum of the elements of that row. The results
with row scaling are slightly better than without row scaling.
Note that row scaling can be done once, before the simulation.

Choosing Points
It appears that the choice of the interpolation points has the greatest in�uence

on the results. In Section 4.2.1 two options are described. First option is to
choose the mass center, two virtual points and three cell centers in each row
of the domain and second option is to choose the virtual point on the wall,
the wall condition @p

@n = 0, the mass center and three cell centers in each row
of the domain in order to obtain 36 conditions to determine the coe¢ cients of
the interpolation polynomial. After implementation of both options it appeared
that the results of option 2 were much better, but still unsatisfactory. So, the
wall condition @p

@n = 0 has a big impact on the interpolation results.
In this approach the mass centers of the cut cells are chosen to be the cell

centers of the former complete cells. So, with this approach the mass centers can
be very close to the wall. This leads to ill-conditioned matrices for interpolation.
Also taking the opposite (virtual) point of the wall in stead of the point on the
wall when the mass center is close to the wall, does not give better results.
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When the mass center is very close to the wall, the opposite point of the wall is
also very close to the wall, which still leads to ill-conditioned matrices.
After taking the wall condition @p

@n = 0, the mass center and four cell centers
east of the mass centers in each row of the domain, the result seems to be
satisfactorily. The choice of the points is shown in Figure 5.1. So, the wall
condition @p

@n = 0 on the red dots, the blue dots and four open dots are taken
for the interpolation procedure. Results are shown in the next section.

Figure 5.1: Final choice of the
interpolation area in the vicinity

of the wall.

5.1.3 Analytical Testcase With Results

In order to test this �nal approach, a given function will be interpolated on this
domain. This function is known, so the quality of the interpolation procedure
will be determined by comparing the interpolated and the analytical solution on
the grids. The function must be chosen such that it satis�es the wall condition
@p
@n = 0. A function that satis�es this condition is f(x0) = C1 cos(x

0), with x0

the orthogonal distance to the wall and C1 2 R. The constant C1 will be chosen
such that it has similar amplitudes to the sound waves in the problem.
The function f(x0) with C1 = 10�3 is shown in Figure 5.2.
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Figure 5.2: f(x0) = C1 cos(x0) on a grid with
�x = 0:025:

In order to determine the order of accuracy of the interpolation method, this
function must be interpolated from several grids with di¤erent grid spacings to
common grid M0. The common grid M0 has been chosen with �x = 0:025.
Figure 5.3 shows f(x0) on a grid with �x = 0:1 and the interpolated function

on grid M0.
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Figure 5.3: a) f(x0) on a grid with �x = 0:1. b) Interpolated
function on M0.

The error will be determined by using the in�nity norm. By repeating this
procedure with di¤erent �x, Figure 5.4 can be made.
Figure 5.4 shows the plot from which the order of accuracy of the complete

�nal interpolation method can be derived.
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Figure 5.4: Plot of the error with logarithmic scale. The error has been
determined by the in�nity norm.

It appears that the order of accuracy is about 6. For further investigation of
the performance of the complete interpolation method, the orders of accuracy
of both used methods are determined seperately and extended to a larger range
of �x. The resulting plot is shown in Figure 5.5.
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Figure 5.5: Plot of the error of both methods with logarithmic scale.
The error has been determined by the in�nity norm.

Taking the maximum of the two errors leads to Figure 5.4. It appears that
both methods have an order of accuracy of about 6.
From Figure 5.5 it appears that when the grid becomes �ner the matrix in-

terpolation method will fail (purple). The points used for interpolation are too
close to each other which leads to ill-conditioned matrices. Regarding Section
5.1.2, this has been expected. If interpolation from such a �ne grid is needed,
this problem can be solved by a simple transformation, which spreads the in-
terpolation points. The results of this transformation are shown in Figure 5.5
(red).

5.2 Extrapolation

In order to obtain numerical solutions, a code has been made by Shyy, Popescu
and Tai [4]. This code is used and extended for this thesis. In this section
an additional method, the �lter, and the main adaptations made in the code
will be discussed. This is all necessary in order to be able to apply Richardson
extrapolation.
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5.2.1 Filter

In computational aeroacoustics usage of a �lter is common in order to �lter the
numerical solution. The numerical solution can produce some high frequency
noise, which is a numerical artefact. This high frequency noise can be handled
and removed by a �lter. The �lter, used in this code, is written as follows:

ffilti = fi +
1

5

�
�1
4
fi�2 + fi�1 �

3

2
fi + fi+1 �

1

4
fi+2

�
. (103)

This one-dimensional �lter is applied in both directions.
By applying Fourier transforms (19) and its shift and derivative theorems

(21) the �ltering proces can be shown. The Fourier transformation is given
below:

effilti = efi + 1
5

�
�1
4
(e�2i��x + e2i��x) + (e�i��x + ei��x)� 3

2

� efi, (104)

which can be written as follows:

effilti =
1

5

�
�1
2
cos(2��x) + 2 cos(��x) +

7

2

� efi. (105)

So, it can be seen that the Fourier transform of the �ltered solution is the
Fourier transform of the non-�ltered solution multiplied by 1

5

�
� 1
2 cos(2��x) + 2 cos(��x) +

7
2

�
.

This multiplication factor is plotted in Figure 5.6.
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Figure 5.6: ��x versus multiplication factor.

The multiplication factor is a function of the wavenumber. It is obvious that
higher wavenumbers are �ltered out of the solution, because they are damped by
the �lter. By the dispersion relation, it can be seen that high wavenumbers imply
high frequencies. The lower frequencies are multiplied by 1, so the numerical
solution does not contain the high frequency noise.
By expanding (103) in a Taylor series it appears that �ltered solution still

has an order of accuracy of four.
Obviously, (103) cannot be implemented near the boundaries. So, also for

boundary cells �lter expressions have been developed. The following boundary
�lters are used:

ffilti = fi +
1

5
[fi�1 � fi] , (106a)

ffilti = fi +
1

5
[fi�1 � 2fi + fi+1] . (106b)

Boundary �lter (106a) is applied on the boundary points and therefore, it
is an one-sided �lter. Boundary �lter (106b) is applied on the points next to
the boundaries and still is a symmetrical �lter. By expanding these �lters in
Taylor series, it appears that the boundary �lters have �rst and second order of
accuracy, respectively.
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5.2.2 Code

The code written by Shyy, Popescu and Tai [4], has been used for this thesis.
However, adaptations have been made in the code in order to make the code
suitable for the application of interpolation and Richardson extrapolation. The
geometry of the problem has been �xed and the �lter has been implemented cor-
rectly. Main adaptations made in the code are described in the code document
in Appendix B.
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6 Results

In this chapter results obtained by Shyy, Popescu and Tai [4] are presented in the
�rst section. In the next section results obtained in this project are presented.
These results are structured as a process.

6.1 Previous Results

The results of Shyy, Popescu and Tai [4] are given in Figure 6.1. The angle �,
which de�nes the solid wall, has been taken � = 63o. Contourplots at di¤erent
times have been plotted. At t = 10 can clearly be seen that the wall re�ected
the sound wave, which results in the local extrema.

Figure 6.1: Contourplots of pressure. CFL = 0:5 and �x = 0:05.

Popescu, Shyy and Tai [4] concluded that, based on this testcase, the pre-
sented approach can be e¤ective for acoustic problems with complex geometry.
Also they concluded that the computational overhead of the cut-cell method is
modest, because many computations in the vicinity of the boundary have to be
done once (because the geometry is �xed).
Results of further investigation of this testcase can be found in the next

section.
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6.2 New Results

In this section results obtained for this thesis are presented. First, the cause
of the low order of accuracy is investigated. Second, a validation of the used
approach is given. Third, some adaptations in the code and in the approach
are described and explained and after this, the impact of the out�ow boundary
condition and cut-cell method is investigated. Finally, Richardson extrapolation
is investigated.

6.2.1 Order of Accuracy

After adaptations made to the code, the results that are obtained with �x =
�y = 0:05 and CFL = 0:5 in order to determine the time step, are shown in
Figure 6.2.

Figure 6.2: Contourplots of pressure. CFL = 0:5 and �x = 0:05.

The di¤erences in the solutions of Figure 6.1 and 6.2 have been discussed
in Section 5.2.2 and Appendix B. These solutions converge for decreasing �x
with a CFL-number kept constant and for a decreasing CFL-number with �x
kept constant. This is shown in Figure 6.3, in which the slice x = 0 at t = 4:2
is plotted.
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Figure 6.3: a) Solution slice x = 0 with decreasing CFL-numbers. b)
Solution slice x = 0 with decreasing �x. Both at t = 4:2.

In order to determine the order of accuracy Approach 2 from Section 4.2.2
is used. This approach has two main advantages: it reduces the number of pa-
rameters from two to one and therefore, it needs only three numerical solutions.
Three numerical solutions have to be obtained and interpolated to the com-

mon grid M0. In order to determine the impact of the cut-cell procedure, �rst
the order of accuracy is determined before the waves hit the wall. For the
three simulations the CFL-number = 0:5 and the grid spacings are �x = 0:1,
�x
2 = 0:05 and �x

4 = 0:025. The common gridM0 has grid spacing �x = 0:025,
so the �nest grid solution does not need interpolation.
In order to reduce the impact of the �lter on the solution, the �lter is applied

in the three simulations only on the coarsest time grid of the three simulations.
So, each numerical solution will be �ltered the same number of times.
Like Shyy and Garbey [11], the order of accuracy will not be determined at

grid points where P (�x4 ) = P (
�x
2 ) within round-o¤ error.

In Figure 6.4 a numerical solution and the order of accuracy is plotted.
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Figure 6.4: a) Numerical solution with grid spacing �x
4 and CFL = 0:5. b)

Order of accuracy.

It is obvious that the order of accuracy is space-dependent and that at some
locations the order of accuracy is very poor.

Grid Re�nement
In order to �nd out the cause of this poor convergence, grid re�nement is ap-

plied. The order of accuracy is determined with three �ner grid solutions. This
grid re�nement is applied twice. So, the order of accuracy is determined with
the numerical solutions P (�x2 ), P (

�x
4 ) and P (

�x
8 ) and the order of accuracy

is determined with even �ner grid solutions P (�x4 ), P (
�x
8 ) and P (

�x
16 ). This

re�nement ensures that dispersion, dissipation and the multiplication factor of
the �lter do not a¤ect the solution accuracy. Moreover, this re�nement gives a
better approximation of the asymptotic order of accuracy.
The common grid will have the grid spacing of the �nest grid solution. Before

these simulations are done, it is checked with the testcase, described in Section
5.1.3, that interpolation does not a¤ect the numerical solution.
Results of the grid re�nement are shown in Figure 6.5.
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Figure 6.5: Order of accuracy obtained with a) P (�x), P (�x2 ) and P (
�x
4 ). b)

P (�x2 ), P (
�x
4 ) and P (

�x
8 ). c) P (

�x
4 ), P (

�x
8 ) and P (

�x
16 ).

From Figure 6.5 it appears that the positive and negative peaks in the order
of accuracy converge to singularities, which is illustrated more clearly in Figure
6.6.
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Figure 6.6: Slices x = 0 of the orders of accuracy in Figure 6.5.

Moreover, from Figure 6.6 it also appears that the order of accuracy con-
verges to two, which is much less than the derived fourth order. The area be-
tween y = 3:75 and y = 5, in which the order of accuracy is very unstructured,
is caused by the discontinuity in the boundary condition at t = 0.
In Figure 6.7 the slice x = 0 of the order of accuracy of the �rst re�nement

is plotted with the corresponding solutions that are used to determine the order
of accuracy. The order of accuracy in Figure 6.7 b), is the slice that is plotted
in Figure 6.6 (red).
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Figure 6.7: a) Slice x = 0 of solutions. b) Slice x = 0 of the order of
accuracy.

In Figure 6.7 it can be seen at which locations in the solutions the singular-
ities in the order of accuracy appear. It looks like when the solutions are close,
there appears a singularity. Obviously, this phenomenon needs more investiga-
tion.
In order to �nd out more about the e¤ect of the �lter, the singularities, its

locations and the low order of accuracy, some related problems will be investi-
gated in the next sections.

Acoustic Pulse
The problem of the acoustic pulse is de�ned in a similar way. The geometry

is almost the same, which means that there are out�ow boundary conditions
on all the boundaries, and the wall is at the same location. There is no ba­ ed
piston around the origin, but the initial condition is an acoustic pulse, de�ned
by:

p(x; y; 0) = exp

 
� ln(2)

"�
x� x0
b

�2
+

�
y � y0
b

�2#!
, (107)

where (x0; y0) is the location of the pulse, which is chosen to be (x0; y0) =
(0; 5) and b = 1

5 .
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Pulse without Filter
The problem of the pulse has been chosen because propagation of the pulse can

be simulated without using the �lter. The order of accuracy can be determined
in the exact same way. Three numerical solutions have to be interpolated to
the common grid M0. The common grid is chosen with grid spacing �x

8 , where
�x = 0:1 as in previous sections. The three numerical solutions are P (�x2 ),
P (�x4 ) and P (

�x
8 ). The order of accuracy at di¤erent times are given in Figure

6.8.

Figure 6.8: Order of accuracy of the propagation of an acoustic pulse at a)
t = 1, b) t = 2.

The slices x = 0 are given in Figure 6.9.
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Figure 6.9: Slices x = 0 of order of accuracy at a) t = 1, b) t = 2.

The slices at both times show that the order of accuracy is about four and
that there are also singularities, which are discontinuous. In the next section
the results of simulations of the pulse with application of the �lter, are shown.

Pulse with Filter
Now, the pulse is simulated and the �lter is also applied. Again, the �lter

is applied on the coarsest time grid and the parameters �x and CFL are the
same. In Figure 6.10 the order of accuracy is shown.
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Figure 6.10: Order of accuracy of the propagation of an acoustic pulse with
�lter at a) t = 1, b) t = 2.

The slices x = 0 are given in Figure 6.11.
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Figure 6.11: Slices x = 0 of order of accuracy at a) t = 1, b) t = 2.

From Figure 6.9 and 6.11 it appears that the use of the �lter does not only
smooth the solution but also the order of accuracy. Furthermore, it makes the
singularities in the order of accuracy continuous. So, the �lter makes the dif-
ferences between the solutions larger, because when the �lter is not applied,
the order of accuracy will not be determined at the locations of the singulari-
ties. Thus, the (continuous) singularities are a result of the phenomenon that
P (�x8 ) = P (

�x
4 ) within roundo¤ error. This is conform with Shyy and Garbey

[11] and can also be con�rmed by Figure 6.7.
Most important conclusion of this testcase is that the �lter does not a¤ect

the magnitude of the order of accuracy. The order of accuracy is still about
four.

Boundary Condition
The original problem, posed in Section 2.2, has boundary condition (13a) on

the south boundary of the computational domain. The piston is de�ned by:
(x; y) =

�
[� 1

2 ;
1
2 ]; 0

�
. This means that there are two discontinuities at x = � 1

2
and x = 1

2 , because of the de�nition of the boundary condition. Moreover, at t =
0 the boundary condition leads to another discontinuity at (x; y) =

�
[� 1

2 ;
1
2 ]; 0

�
in the initial condition. The boundary condition at t = 0 gives v = V0 at the
piston.
In order to determine the impact of these discontinuities on the order of ac-
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curacy, the problem is adapted to a problem without discontinuities. Therefore,
boundary condition (13a) is replaced by the following boundary condition:

v(x; 0; t) =

�
V0 sin(!t)

�
1
2 cos(2�x) +

1
2

�
, (x; 0) 2 piston

0, otherwise
(108)

where time-dependent sine leads to continuity in the initial condition and
the space-dependent cosine to continuity at x = � 1

2 and x =
1
2 .

Again, these simulations are interpolated to the common grid M0 with grid
spacing �x

8 . The numerical solutions P (
�x
2 ), P (

�x
4 ) and P (

�x
8 ) are �ltered on

the coarsest time grid. The solution and order of accuracy are shown in Figure
6.12.

Figure 6.12: a) Solution at t = 4:2. b) Order of accuracy at t = 4:2.

From Figure 6.12 it appears that the singularities in the order of accuracy
are smaller and shaped more circular than the singularities in Figure 6.5b, which
is caused by the continuities at x = � 1

2 and x =
1
2 . At the wave front the order

of accuracy is much more structured, which is caused by the continuity at t = 0.
The discontinuity at t = 0 leads to a peak at the wave front, which becomes
higher when the grid spacing �x become smaller. With the smoothing of the
�lter this leads to the unstructured order of accuracy at the wave front in the
original problem.
However, the magnitude of the order of accuracy does not improve signi�-

cantly.
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Boundary Filter
The boundary �lters are di¤erent than the �lter in the interior and the �lter

(106a) that is applied on the boundary, is not symmetrical. Both boundary
�lters are lower order �lters, which could a¤ect the order of accuracy. This will
be tested in the next sections.

Boundary Condition with Discontinuities
Boundaries of the numerical solutions of the original problem, posed in Section

2.2, are �ltered with a lower order �lter. However, this boundary �lter is not
needed to obtain a smooth numerical solution without high frequency noise.
Therefore, the impact of the boundary �lter can be tested. Simulations are
interpolated to common gridM0 with grid spacing �x

8 and the �ltering, without
boundary �ltering, is done on the coarsest time grid. The result of the order of
accuracy, compared with the result with boundary �ltering, is shown in Figure
6.13.

Figure 6.13: a) Order of accuracy with boundary �ltering. b) Order of
accuracy without boundary �ltering.

Obviously, the result of not �ltering the boundaries is even worse than the
result of �ltering the boundaries with a lower order �lter. The magnitude of the
order of accuracy is about one order lower. The singularities are also shaped
di¤erently.
So, �ltering the boundaries of a numerical solution, de�ned by discontinuous
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boundary and initial conditions, in�uences the order of accuracy in a positive
way. One may conclude that no boundary �ltering in combination with discon-
tinuous boundary and initial conditions will make the order of accuracy even
lower.

Boundary Condition without Discontinuities
The same procedure can be done for the adapted problem without disconti-

nuities in boundary and initial conditions. This means that boundary condition
(13a) is replaced by (108). The same common grid is used and the �lter, without
boundary �ltering, is applied on the coarsest time grid. The order of accuracy,
compared with the order of accuracy with �ltering the boundary, is shown in
Figure 6.14.

Figure 6.14: a) Order of accuracy with boundary �ltering. b) Order of
accuracy without boundary �ltering.

From Figure 6.14 it appears that the boundary �ltering a¤ects the order
of accuracy in a negative way. The magnitude of the order of accuracyof the
adapted problem is about four, which is the derived order of accuracy.
So, lower order boundary �ltering a¤ects the order of accuracy badly in a

problem without discontinuities. While lower order boundary �ltering a¤ects the
order of accuracy in a positive way in a problem with discontinuities. Boundary
�ltering is not needed in order to obtain satisfactory results, when the problem
is continuous.
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6.2.2 Validation

In order to investigate the impact of the cut-cell method the adapted problem
will be used. The continuous problem leads to a magnitude of the order of
accuracy of about four.
For the validation of this approach the order of accuracy should be CFL-

independent. In Figure 6.15 the order of accuracy is plotted with two di¤erent
CFL-numbers.

Figure 6.15: Order of accuracy at t = 4:2 with a) CFL = 1
4 . b) CFL =

1
2 .

From Figure 6.15 it appears that the order of accuracy has the same shape
and values for di¤erent CFL-numbers. If it would not have been CFL-independent,
the order of accuracy would have had di¤erent shape and di¤erent values. So,
this approach is CFL-independent and can be taken.

6.2.3 Code

Some adaptations in the code and approach has been made in order to obtain
better results. These adaptations are described in this section.

Coarser Grids
From simulations it appears that the solution P (�x4 ) does not give good re-

sults when the wave is re�ected on the wall. This phenomenon will be discussed
later in this section. So, a coarser grid must be used in order to obtain reliable
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results. The simulation with grid spacing �x
4 is replaced by a simulation with

grid spacing �x
3 . This leads to a nonlinear equation, which must be solved, in

order to obtain the order of accuracy.
The procedure described in Section 3.5 can be followed with the following

solutions: P (�x), P (�x2 ) and P (
�x
3 ).

P kij(
�x
2 )� P

k
ij(�x)

P kij(
�x
3 )� P kij(

�x
2 )

=
�xn � (�x2 )

n

(�x2 )
n � (�x3 )n

, (109)

where n is de order of accuracy. By multiplying denominator and numinator
by
�
2
�x

�n
, equation (109) can be rewritten as:

P kij(
�x
2 )� P

k
ij(�x)

P kij(
�x
3 )� P kij(

�x
2 )

=
2n � 1
1� ( 23 )n

. (110)

This nonlinear equation can be solved for n, which will be done with the
Newton-Raphson method [9].
The improved solution, based on (74), can be determined in a similar way as

the case with �x, �x2 and �x
4 . The improved solution can be written as follows:

Pimpr = P
k
ij(
�x

3
) + C

�
�x

3

�n
=
P kij(

�x
2 )�

�
3
2

�n
P kij(

�x
3 )

1�
�
3
2

�n . (111)

The following results are obtained by the numerical solutions P (�x), P (�x2 )
and P (�x3 ) interpolated to the common grid M

0 with grid spacing �x
4 .

Order of Accuracy
With the three numerical solutions P (�x), P (�x2 ) and P (

�x
3 ), the order of

accuracy can be determined by solving (110). The order of accuracy is plotted
at two di¤erent times in Figure 6.16.
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Figure 6.16: Order of accuracy at a) t = 8:4. b) t = 12:6.

From Figure 6.16 it appears that the results of the re�ected wave are not
satisfactory at all. The order of accuracy is minus four or less at some locations.
Furthermore, it is very wild and not structured. After these results veri�cation
of the code is needed, which will be discussed in the next two subsections.

Cut-Cell Procedure
From the code it appears that the pure cut-cell procedure as proposed in [4],

had not been implemented. The method that had been implemented is a kind
of weighted average of the cut-cell procedure and a staircase approximation of
the wall. In the staircase approximation the wall is approximated by complete
cells. The implemented approach will be clari�ed:
If Ki is the ith stage of the LDDRK method (45), this Ki is calculated in

the following way:

Ki =
1

4

�
cKcut

i + (4� c)Kstair
i

�
, (112)

where c 2 [0; 4] and Kcut
i and Kstair

i are the stages calculated with the cut-
cell approach and the staircase approach, respectively. By taking c = 4 the
pure cut-cell approach should appear. However, by taking c = 4 the results
were unsatisfactory and unstable.
In the cut-cell procedure cut cells can be independent or merged with another

(cut) cell, if the surface is less than a de�ned minimum. In the code all cells are
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�agged as a complete cell or a cut cell, which could have been merged. If cut
cells are merged, they are �agged as one cell. The wall is de�ned by angle �,
Figure 2.1. Because � > 45o, there is only one �agged cut cell on every j-level
and there can be more on every i-level. The code takes into account only one
cut cell for every i-level.
After the implementation of the pure cut-cell procedure with taking into

account the possibility of more cut cells on every i-level, the result in Figure
6.17 is obtained.

Figure 6.17: Order of accuracy at a) t = 8:4. b) t = 12:6.

From Figure 6.17 it appears that the results are still unsatisfactory. More-
over, the lower order boundary �lter had to be used at the wall in order to
obtain smooth solutions. In the next section the implementation of the out�ow
boundary condition (13c,80) will be discussed.

Out�ow Boundary Condition
The out�ow boundary condition is given by (80). So, on the out�ow bound-

aries the �nite volume treatment is applied to cells with (80). This boundary
condition is based on waves that propagate from a certain direction, de�ned by
� and r. Only waves that propagate from that direction can be handled well by
these cells.
This out�ow boundary condition has been implemented by treating 15 bound-

ary cells with (80). Thus, this is applied to the complete cells of (i; j) =
([1; 15]; [1; Ny]), (i; j) = ([Nx � 14; Nx]; [1; Ny]) and (i; j) = ([1; Nx]; [Ny �
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14; Ny]), which are the west, east and north out�ow boundary, respectively.
So, a kind of exit zone is created. However, waves which are re�ected on the
wall, have a di¤erent propagation direction. When these waves enter the exit
zone, the cells cannot handle these waves. These waves will be partially re�ected
and dispersed.
By calculating the range of the exit zone, there can be determined in which

regions it is expected that the solutions will give bad results. For the coarsest
grid the exit zone is about 15�x = 1:5. From Figure 6.16 it appears that the
origin of the low order of accuracy is near the wall in the range x 2 [�5;�3:5].
After this observation, the implementation of the out�ow boundary condition

in the code has been adapted. Based on Tam�s [10] implementation of the
out�ow conditions, it appears that the exit zone can be chosen much smaller.
Now, only the cells on the boundary, (i; j) = (1; [1; Ny]), (i; j) = (Nx; [1; Ny])
and (i; j) = ([1; Nx]; Ny) are treated with (80). The di¤erence in the solutions
can clearly be seen in Figure 6.18.

Figure 6.18: Numerical solution P (�x) at t = 8:4. a) With exit zone 15�x.
b) With exit zone �x.

Results and the impact of this adaptation and the boundary condition itself
on the order of accuracy will be discussed in the next section.
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6.2.4 Impact of the Out�ow Boundary Condition

After the implementation, described in the previous section, the exit zone is
only one cell and lower order boundary �lter at the wall is not needed anymore.
Now, the order of accuracy can be determined. Results are plotted in Figure
6.19.

Figure 6.19: Order of accuracy at a) t = 8:4. b) t = 12:6.

It appears from Figure 6.19 and 6.17 that the order of accuracy has been
improved by decreasing the exit zone. So, there can be concluded that the
re�ected waves could not be handled in the exit zone, which only "expects"
waves with a given propagation direction.
Furthermore, from the east boundaries of the domain in Figure 6.18 it ap-

pears that an exit zone of only one cell is su¢ cient for the out�ow boundaries.
This can be con�rmed by Figure 6.18. The outgoing waves are handled without
any noticeable re�ections.
It has already been addressed that the re�ected waves have another propa-

gation direction than the waves originating in the source. From the observation
that the exit zone is specially designed for outgoing waves from the source,
the re�ected waves cannot leave the computational domain without noticeable
re�ections. In Figure 6.19 this can be noticed by areas with lower order of
accuracy around the western out�ow boundary.
So, in order to be able to determine the impact of the cut-cell method on the

order of accuracy, the impact of this out�ow boundary should be eliminated.
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6.2.5 Impact of the Cut-Cell Procedure

In order to eliminate the impact of the out�ow boundary the western out�ow
boundary is replaced by a solid wall. Thus, the boundary conditions at x = �5
are given by:

@p
@n = 0,
u � n = 0, (113)

where n = ( 1 0 )T the normal direction of the wall.
Now, the impact of the cut-cell method can be detected. The order of

accuracy of this adapted problem is determined and plotted in Figure 6.20.

Figure 6.20: Order of accuracy at a) t = 8:4. b) t = 12:6.

From Figure 6.20 it appears that the order of accuracy of four is not main-
tained in the entire re�ected wave. At some locations the order of accuracy
is poor and even negative, at some locations it is still about four and at some
locations it is about three. In Figure 6.21 the slice x = 0 at t = 12:6 is plotted
to illustrate this.
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Figure 6.21: Slice x = 0 at t = 12:6 of order of accuracy from Figure 6.19 b).

In Figure 6.21 it can clearly be seen that the magnitude of the order of accu-
racy is three in some areas. However, there are also areas where the magnitude
is still four. In the next section the interpolation method, that is used for the
calculation of the �uxes on the cut faces, is investigated.

Interpolation
For the calculation of the �ux on the cut faces an interpolation method is

used, which is described in Section 3.3.2. This interpolation method is derived
to have fourth order of accuracy. This will be tested with the testcase that is
also used in Section 5.1.3.
For every grid the interpolated values at points that need interpolation are

stored in a vector, say Vint. The analytical values of these points are also known
and stored in a vector, say Van. The error vector is de�ned as E = Van � Vint.
Three scaled norms are chosen to measure the order of accuracy: the L1-norm,
the L2-norm and the L1-norm. The norms are scaled because when the grid
spacing is decreasing, the number of points that need interpolation is increasing.
So, the norm L1-norm is divided by N , the number of cells in x-direction, the
L2-norm is divided by

p
N and the L1-norm is not divided by anything. The

scaled norms are given in Figure 6.22.
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Figure 6.22: Scaled norm of the error vector.

The order of accuracy can be derived from Figure 6.22. The three norms all
give similar results and, obviously, all three orders of accuracy are not satisfac-
tory. From this �gure it appears that the order of accuracy is about zero for all
norms.
Based on the experiences from Section 5.1.2 it is obvious that it is hard to

�nd an accurate interpolation method in the vicinity of the wall by not using the
wall condition. In spite of the poor performance of the interpolation method
the cut-cell method performs quite well for coarse grids. However, when the
grid spacing decreases the interpolation method will have a bigger impact on
the performance of the cut-cell method. So, the fact that the solution with grid
spacing �x

4 does not give satisfactory results can be clari�ed by the interpolation
method.

6.2.6 Extrapolation

In this section there will be investigated whether Richardson extrapolation can
be used to improve the numerical solution. Richardson extrapolation is designed
such that it improves the solution by cancelling the leading truncation error
term. However, for wave problems there is an additional condition for improving
the solution: the extrapolated solution must be a smooth wave again.
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Implementation
From Section 6.2.1 it appears that at locations, where singularities appear, the

solutions are equal within round-o¤ error. This implies that no extrapolation
is needed at these locations. Furthermore, formulas (79) and (111) cannot be
applied if the order of accuracy is 0. The implementation of Richardson extrap-
olation is made such that extrapolation is done at locations where the solutions
are converging. This means that at locations where the order of accuracy is
negative, there will be no extrapolation.
The nonlinear equation (110) for solving the order of accuracy must be solved

accurately for not a¤ecting the order of accuracy and the improved solution.
The extrapolation procedure is applied at t = 4:2 and the order of accuracy

of the complete domain is in Figure 6.15 b). In Figure 6.23 the results of the
extrapolation are shown in the slice x = 0.

Figure 6.23: Slice x = 0 at t = 4:2 of a) solutions P (�x), P (�x2 ) and
P (�x3 ) and extrapolated solution PE . b) order of accuracy.

From Figure 6.23 it appears that the extrapolation works very well for the
wave, but extrapolation in the wavefront gives problems. In the wavefront are
local peaks, which are caused by the order of accuracy. So, the wave is not
smooth anymore. From Figure 6.15 it appears that the order of accuracy in
the wavefront is poor and is not very well-structured, which also appears from
Figure 6.23 b). The poor order of accuracy in the wavefront is caused by the
boundary and initial condition. When the time derivative of the initial condition
is taken, it can be seen that it is discontinuous at y = 0.
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In the next section Richardson extrapolation is applied to the acoustic pulse
in order to investigate whether this gives better results.

Acoustic Pulse
The acoustic pulse without the use of the �lter has already been investigated

in Section 6.2.1. Results of the order of accuracy at t = 1 and t = 2 and its slices
x = 0 can be found in Figure 6.8 and Figure 6.9, respectively. For investigating
this problem, the standard formulas for Richardson extrapolation (76) and (79)
are used again. Slices x = 0 of the results are given in Figure 6.24 and 6.25.

Figure 6.24: Slice x = 0 at t = 1 of a) solution P (�x8 ) and extrapolated
solution PE of pulse. b) order of accuracy of pulse.
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Figure 6.24: Slice x = 0 at t = 2 of a) solution P (�x8 ) and extrapolated
solution PE of pulse. b) order of accuracy of pulse.

From Figures 6.24 and 6.25 it appears that the extrapolation for the propaga-
tion of an acoustic pulse does not give problems. The wave after extrapolation
is smooth and by the construction of Richardson extrapolation this gives an
improved solution of the solved linearized Euler equations.
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7 Conclusions

This thesis focused on an intensive investigation of the results obtained by
Popescu, Shyy and Tai [4]. Schemes for spatial discretization and time in-
tegration have been developed which optimize the dispersion and dissipation
errors. These schemes are suitable for cartesian grids. For a complex geome-
try a cut-cell method has been developed, which has to handle irregular cells
near the complex boundary. The derived order of accuracy of the complete
method is four. Popescu, Shyy and Tai [4] developed a testcase in order to test
this approach and concluded that this approach could be e¤ective for acoustic
problems with complex geometry.

One of the main objectives of this thesis is to determine the order of accu-
racy of the complete numerical method. However, this problem does not have
an analytical solution and therefore, Richardson extrapolation can be used to
determine the order of accuracy. Three numerical solutions, which have di¤er-
ent grid spacings, are needed to apply Richardson extrapolation. The numerical
solutions have to be interpolated to a common grid, on which Richardson ex-
trapolation can be applied.

The interpolation procedure should not a¤ect the accuracy of the numerical
solutions, because this could lead to results, which are not reliable. So, the
interpolation of these numerical solutions should be done by a higher order
method. In Section 4.2.1 and 5.1 a sixth order interpolation method has been
developed that also deals with the complex geometry. For this interpolation
method systems have to be solved, which could be ill-conditioned. To avoid the
ill-conditioned systems the interpolation procedure was shifted to the origin.
Furthermore, row scaling has been applied to the systems, which led to better
condition numbers of the matrices. Also, taking the boundary condition @p

@n =
0 had a big positive impact on the interpolation method. This interpolation
method has been tested with a testcase, which showed that the method is 6th

order.

With three numerical solutions on a common grid the order of accuracy
can be determined. This has been done for the original problem formulated
in Section 2.2 before the waves hit the wall. The order of accuracy was very
poor at some locations and the magnitude was about two (Figure 6.4), which is
much less than the derived fourth order. Discontinuities in the boundary and
initial condition (13a) were the cause of the poor order of accuracy. However,
by removing the discontinuities the order of accuracy was still not the derived
fourth order.
In the implementation a �lter has been used in order to obtain smooth so-

lutions. At the boundaries a lower order �lter has been used. By removing the
lower order boundary �lter the numerical results were still smooth and satisfac-
tory. Moreover, the magnitude of the order of accuracy was four. However, by
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removing the lower order boundary �lter in the problem with the discontinuities,
the order of accuracy became worse.
It is recommended for further research to develop higher order boundary

�lters, which maintain the order of accuracy for both continuous and discontin-
uous problems.
Another phenomenon in the order of accuracy is the appearence of singulari-

ties. These singularities were caused by solutions that are equal within round-o¤
error.

The out�ow boundary condition is such that the outgoing wave should prop-
agate out of the computational domain without any noticeable re�ections. The
out�ow boundary condition can handle waves from only one direction, which
are the waves from the ba­ ed piston around the origin. This means that when
the re�ected wave arrives at the out�ow boundary, it cannot propagate out of
the domain without re�ections. This can also been seen in the order of accuracy
(Figure 6.19), which is lower near the out�ow boundary.
It is recommended for further research to investigate out�ow boundary con-

ditions that can handle waves from all directions.

The out�ow boundary condition at the west boundary has been replaced
by an oblique wall in order to eliminate the impact of the out�ow boundary
condition and to investigate the impact of the cut-cell method. Figure 6.20
and 6.21 showed that the the cut-cell method has an impact on the order of
accuracy. Before the waves hit the wall the order of accuracy was about four in
the complete wave. After the waves hit the wall the order of accuracy decreased
to three at some locations in the re�ected wave and at some locations the order
of accuracy is even less. The interpolation method used in the cut-cell method
to determine the �ux on the cut faces, caused this performance.
It is recommended for further research to develop an interpolation method

that has a high order of accuracy. In Section 5.1.2 could already be seen that
this is very hard, because the systems are ill-conditioned. Therefore, it is recom-
mended to develop a di¤erent kind of interpolation method, for example spline
interpolation for complex geometries.

For the investigation whether Richardson extrapolation can be a tool to
improve numerical solutions, Richardson extrapolation was �rst applied on the
waves before hitting the wall. This did not give smooth results, because of the
poor and unstructured order of accuracy in the wavefront, which was caused
by a discontinuity in the time derivative of the initial condition. By applying
Richardson extrapolation to an acoustic pulse, which is completely continuous,
it appeared that Richardson extrapolation gives a smooth improved solution.
So, Richardson extrapolation can be a tool to improve numerical solution if

the problem does not have any discontinuities.
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9 Appendix

9.1 Appendix A

The equivalence is shown for the fourth order Runge-Kutta scheme and the
following ordinary di¤erential equation:

du
dt = F (u),

where F (u) is a linear operator.
1. Standard notation:

k1 = �tF (u
n),

k2 = �tF (u
n + 1

2k1),
k3 = �tF (u

n + 1
2k2),

k4 = �tF (u
n + k3),

un+1 = un + 1
6 (k1 + 2k2 + 2k3 + k4).

2. Notation used in this work:
K1 = �tF (u

n),
...

Ki = �tF (u
(i�1)),

u(i) = un + biKi, i = 1:::p,
...

un+1 = u(p),
where bp = 1 and p = 4 for fourth order.

Writing out both:
1. un+1 = un + 1

6 (k1 + 2k2 + 2k3 + k4) =

un+ 1
6 (�tF (u

n)+2�tF (un+ 1
2k1)+2�tF (u

n+ 1
2k2)+�tF (u

n+k3)) =

un + 1
6 (6�tF (u

n) + �tF (k1) + �tF (k2) + �tF (k3)) =

un + 1
6 (6�tF (u

n) + �t2F (F (un)) + �t2F (F (un + 1
2k1))+

�t2F (F (un + 1
2k2))) =

un + 1
6 (6�tF (u

n) + �t2FF (un) + �t2FF (un) + �t2FF ( 12k1)+
�t2FF (un) + �t2FF ( 12k2)) =

un + 1
6 (6�tF (u

n) + 3�t2FF (un) + 1
2�t

3FFF (un)+
1
2�t

3FFF (un + 1
2k1)) =

un+ 1
6 (6�tF (u

n)+3�t2FF (un)+�t3FFF (un)+ 1
4�t

4FFFF (un)) =

un +�tF (un) + 1
2�t

2FF (un) + 1
6�t

3FFF (un) + 1
24�t

4FFFF (un).

2. un+1 = u(p) = un+b4K4 = u
n+b4�tF (u

(3)) = un+b4�tF (u
n+b3K3) =

un + b4�tF (u
n) + b4b3�tF (�tF (u

(2))) = un + b4�tF (u
n)+

b4b3�t
2FF (un + b2K2) =

un + b4�tF (u
n) + b4b3�t

2FF (un) + b4b3b2�t
2FF (�tF (u(1))) =

un + b4�tF (u
n) + b4b3�t

2FF (un) + b4b3b2�t
3FFF (un + b1K1) =

un+b4�tF (u
n)+b4b3�t

2FF (un)+b4b3b2�t
3FFF (un)+b4b3b2b1�t

4FFFF (un).

With:
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b4 = 1, b3 = 1
2 , b2 =

1
3 , b1 =

1
4 ,

this notation is equivalent with the standard Runge-Kutta fourth order no-
tation.
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9.2 Appendix B

Code document
This document describes the main adaptations made in the code. First,

�xing the wall will be discussed. Second, the �lter will be discussed. And last,
some small adaptations to the code will be given.
The code has been made in one �le: InterpCC.for.

Fixing the wall
The wall was de�ned by the starting point at the southwest corner of the

cell close to y = 2. The statement used for this:

j_init=int(2/dy)+1,

So, j_init is the cell in y-direction where the wall starts. Obviously, this
has been done because now there are only cells which need a cut-cell approach
and cells with the out�ow boundary condition. However, the wall is not �xed
in this way, it is �y- and �x-dependent.
In cooperation with Tai, the wall starting point has been de�ned at (x; y) =

(�5 � �x
2 ; 2 �

�x tan(�)
2 ). (The wall starting point has been chosen like this,

because the cell centers are chosen to be on the boundaries.) Therefor, a cell
has been introduced with a cut face and an out�ow face. Now, the wall always
intersects the point (x; y) = (�5; 2).

Filter
In the �ltering procedure near the boundary the solutions of p, u and v were

damped by a factor 1
10 at j = 1 and a factor

1
2 at j = 2:

j=1
DO i=nnx(j),imax

uu(i,j)= (ui(i,j)-filter_dom*(ui(i,j)-ui(i,j+1))) *.1
ENDDO
j=2

DO i=nnx(j),imax
uu(i,j)=(ui(i,j)+filter_dom*(ui(i,j-1)-

2*ui(i,j)+ui(i,j+1))) *.5
ENDDO

Solutions with damping are completely di¤erent than solutions without damp-
ing:

1. Obviously the amplitudes di¤er.

2. The shape of the wave is di¤erent. Without the damping the wave prop-
agates much more spherical.

3. With damping the phases of the wave di¤er a lot with a di¤erent �x and
CFL.
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Moreover, it makes the �ltering procedure space-dependent.
Issues 1 and 2 are illustrated in Figure B.1:
The wall has not been plotted in the �gures.

Figure B.1: Solutions at t = 4:2. a) Solution without damping. b) Solution with
damping.

Issue 3 is clearly illustrated in Figure B.2:
Left is �x = 0:1 and CFL = 1

8 and right is �x = 0:025 and CFL =
1
2 , both

on t = 4:2 and with the described damping.
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Figure B.2: Solutions at t = 4:2 and both with damping. a) Solution with �x = 0:1
and � = 1

8 . b) Solution with �x = 0:025 and � =
1
2 .

Furthermore, there was no �ltering in x�direction. Filtering in x�direction
was done in the domain above the wall, so that was implemented wrongly.
Filtering in x�direction in the domain below the wall has been implemented
now. The di¤erence can be seen in Figure B.3. Here a j�slice is plotted, so
y =constant (Obviously blue is after �ltering):
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Figure B.3: j-Slice of the solution.

For �ltering three di¤erent expressions have been used:

1. uu(i,j)= ui(i,j)-filter_dom*(ui(i,j)-ui(i,j+1))

2. uu(i,j)=ui(i,j)+filter_dom*(ui(i,j-1)-2*ui(i,j)+ui(i,j+1))

3. uu(i,j)=ui(i,j)+filter_dom*(-0.25*ui(i,j-2)+ui(i,j-1)-1.5*ui(i,j)

+ui(i,j+1)-0.25*ui(i,j+2))

These expressions are for �ltering in y�direction and similar expressions
are used for �ltering in x�direction. Expression 1 is used for �ltering at the
boundaries (j = 1; j = N; i = 1; i = M), expression 2 is used for �ltering near
the boundaries (j = 2; j = N � 1; i = 2; i = M � 1) and expression 3 is used
for �ltering the interior. However, in the code expression 3 has been used for
�ltering near the wall, so it uses also points that are not in the domain, but
left of the wall. Now, expression 1 has been implemented at locations that are
closest to the wall and expression 2 at locations next to that.
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Small adaptations

1. The variable pp (characteristic of the piston) has been adapted in order
to �x the geometry:

pp=0.5/dx+1 becomes pp=0.5/dx.

The boundary condition is implemented with the following loop:

do i=cx-pp,cx+pp

2. The boundary condition was "delayed" by dt. When cos(t) should be
implemented, cos(t� dt) was implemented.

3. New subroutines has been made for writing solutions to �les. The �le-
name has been changed into, for example, dx4_c�50_0001.txt. Here, 4
represents 1

10�x (so �x = 0:025) and 50 represents 100�cfl (so cfl = 0:5).

4. The variable writecontor has been introduced. After every "writecontor"
timesteps the solution will be written to a txt-�le.

5. New subroutines has been made for writing x� and y�coordinates to �les.

6. For space discretization ue and uw (40) have to be calculated. Actually,
uei = u

w
i+1, so only the east faces or the west faces need to be calculated

and one west or east boundary face, respectively. This saves work and
storage. However, the storage that is saved is neglegible, because the
procedure is done row by row (and column by column).
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