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Abstract

Although useful for hedging purposes, the valuation of continuously monitored barrier options comes

with its challenges. This thesis applies the Dimension-reduced Fourier-cosine series expansion [2]

in combination with the pricing PDE to approximate the price function of continuously monitored

knock-out barrier options. We significantly extend earlier work presented in [3] in several ways:

1. While [3] focuses on solving option pricing problems under Heston’s stochastic volatility model,

we tackle a more complex stochastic volatility model, the Stochastic-𝛼𝛽𝜌 (SABR) model, for which

no analytical solution exists for the associated distribution;

2. The curse of dimensionality in the original method is addressed using the COS-CPD approach,

developed in [2], [4]. "COS" stands for the Fourier-Cosine series expansion method initially

introduced in [5] and "CPD" is short for Canonical Polyadic Decomposition [6], [7];

3. We demonstrate that the COS-CPD method corresponds to a Neural Network architecture, which

is fully interpretable by construction. We name this network the COS-CPD network;

4. The fully interpretable COS-CPD network is applied to price barrier options under Geometric

Brownian Motion (GBM) and SABR model.

We first replicate results of [3] for the case where the underlying asset follows GBM and later directly

extend the original method in [3] to the SABR model. That is, the valuation problem of continuously

monitored barrier options can be transformed into finding the survival characteristic function.

This survival characteristic function satisfies another PDE, resulting from inserting the Fourier series

expansion of option price, acquired through the COS method [5], into the option pricing PDE. As in

[3], the choice of sine or cosine expansions is motivated separately for each dimension. For the time

dimension especially, we expand on the first order derivative of the unknown function in time instead of

expanding on the unknown function directly. Integrating the Fourier expansion of the time derivative

then yields the trigonometric expansion. Results in both [3] and our tests demonstrate that the resulting

trigonometric expansion in the time dimension has better convergence than directly expanding the

unknown function in the time dimension.

We then address the curse of dimensionality in the original method of [3] by applying CPD on the

series expansion coefficient tensor, following the idea from [4]. The decomposition is performed via

supervised machine learning, where the components, or factor matrices, are solved using Alternating

Least Squares (ALS). This algorithm can be formulated as a neural network, which is fully interpretable

since it completely based on mathematical derivations.

One issue in this new method is that over fitting can result in very large condition numbers in the

linear systems of which the solutions are the factor matrices. By incorporating regularization into the

ALS, this problem can be greatly alleviated.

Testing results suggest that the computational time is far superior to Monte Carlo simulations. Note

that our method trains the neural network offline, allowing option prices to be instantly computed for

a range of maturity times and initial asset prices. Additionally, our COS-CPD model demonstrates

superior accuracy compared to other numerical methods and machine learning models.

Keywords: Option pricing, Barrier option, Pricing PDE, Geometric Brownian Motion, SABR Model,

COS method, COS-CPD, Fourier series expansion, Canonical Polyadic Decomposition, Neural Network,

Machine Learning
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1
Introduction

Derivative pricing is one of the most researched areas in quantitative finance. Accurate pricing

of derivatives plays a crucial role in hedging and portfolio management in general. Among these

derivatives, options are particularly interesting for their versatility and the various hedging strategies

they enable.

Options can roughly be categorized into vanilla options (European and American) and exotic options.

Examples of exotic options include Bermudan options, all-or-nothing options, and path dependent

options like Asian options and Barrier options. This thesis focuses on Barrier options, which act

like European options unless the underlying asset breaches a predetermined barrier before maturity.

This breach can be checked on discrete monitoring dates or continuously. We consider continuously

monitored Barrier options.

A closed-form pricing formula for continuously monitored barrier options is only available if

we assume the underlying asset follows Geometric Brownian Motion (GBM) dynamics. This GBM

assumption, however, is not very realistic for modelling stock processes. To better reflect the volatility

smiles implied from the market, other models have been developed. Among these models are the

stochastic volatility models, where not only the asset price, but also the volatility follows a stochastic

process. For this reason, these models are more complex and as a result, closed-form solutions are much

more difficult to derive. The stochastic volatility model researched in this thesis is the Stochastic-𝛼𝛽𝜌
(SABR) model.

1.1. Literature review
Over the years, option pricing has seen many different approaches. In their ground breaking research in

1973 [8], Black and Scholes provide an analytic solution for European call and put options where the

underlying asset follows a GBM process. All parameters of the Black-Scholes model are easily observed

except for the volatility. The implied volatility can be computed by finding the volatility 𝜎𝐼𝑉 for which the

analytically computed option price is equal to the market option price. This implied volatility varies

with different strikes and maturities, forming what is known as the implied volatility surface.
For barrier options, Hagan et al. [9] noted that we do not know whether we should use the implied

volatility at the strike price, the boundaries or somewhere in between. These uncertainties lead to

problems with hedging.

Local volatility model

To address these issues, local volatility models were developed [10], [11]. In local volatility models, the

volatility is considered piecewise constant. Since options are usually available for specific exercise dates

(e.g. 1,2,3,6,12 months from now), the volatility is considered constant for the time periods between

those exercise dates. Then the implied volatility for the first month is calibrated on the option prices for

the first month, similar to the Black-Scholes method. The implied volatility for the second month is then

calibrated on the option prices with a 2-month exercise date, incorporating the previously obtained

implied volatility for the first month. This process continues for all time intervals.

1



1.1. Literature review 2

With this calibration, the local volatility model can reproduce the market prices for all strikes and

maturity times. The model provides consistent delta and vega risks, and thus resolves the hedging

issues. However, Hagan et al. [9] commented that "the local volatility model predicts the wrong

dynamics of the implied volatility curve, which leads to inaccurate and unstable hedges". They found

that the local volatility models predict the market smile and the price of the underlying asset to move in

opposite directions.

SABR model

In 2002, Hagan et al. [9] introduced the SABR model. Their goal was to develop a model that accurately

fits the market smile and follows the dynamics of the implied volatility curve. The SABR model

dynamics consist of the forward price and the stochastic volatility, with the former described by a

Constant Elasticity of Variance (CEV) process and the latter by a GBM without drift. Both processes

are correlated by correlation coefficient 𝜌. Hagan et al. have derived analytic formula’s for the implied

volatility, which can be used to fit the parameters. For long maturities and strikes far out of the money,

however, these formulas are not arbitrage free and predict wrong dynamics [12].

The SABR model offers great flexibility in skewness. This allows for providing a good fit to the

volatility surface.

Option pricing methods

While Black-Scholes provides exact analytic solution, such results are rarely available for more complex

dynamics. Therefore, other methods have been developed to price options with more complicated

underlying asset dynamics.

The first method we discuss is closely connected to these exact analytic solutions. Although

exact solutions might not be available, closed-form approximations can still be derived. In [13] an

approximation of the survival density function under SABR is provided. The barrier option price is

then found by evaluating a one-dimensional integral of its payoff function and the survival density.

This method has low computational complexity. However, due to the closed-form approximation, there

is no convergence to decrease the errors by increasing computational complexity. Therefore, if more

accurate results are required, this method may no longer be satisfactory.

The next method is the well-known Monte-Carlo simulation, which is widely used in industry [14].

Paths of the underlying are simulated and the correct option price is the average of the discounted payoff

function value for each realisation of the path. According to the law of large numbers, this method

converges to the true option price. In practice, Monte Carlo simulation often requires many paths to

achieve the desired accuracy. Additionally, discretization of the time dimension also introduces errors,

necessitating many time steps for good results, leading to a computationally complex method.

To combat these errors from time discretization Broadie and Kaya [15] introduced an exact sim-

ulation scheme to simulate asset prices at time 𝑇 given some initial values at time 𝑡. Their paper

focuses on Heston’s model, another stochastic volatility model. A similar exact simulation scheme

is given for asset prices following SABR dynamics in [16]. These simulation schemes are accurate

for non path-dependent options like European options, since they bypass the time discretization

completely. As for path-dependent options, no closed-form approximation exists yet, and thus the

valuation of those options would still require one to simulate the asset price at multiple time steps

to check these path dependencies. A more advanced numerical method, such as the COS method

[5], is unfortunately not directly applicable, since the analytic characteristic function of SABR is unknown.

Another popular method of pricing options assuming more complicated stochastic processes is

deriving the pricing PDE and solving it. Various numerical methods can be applied to solve these

PDEs [17]–[20]. These numerical methods often require extensive calculations to acquire good accuracy.

Additionally, for each set of model parameters and initial values, recalculation is required.

A type of methods for option pricing that has recently been very popular, is machine learning. Early

methods used an artificial neural network to directly approximate the option price given the values of

input parameters [21], [22]. These neural networks are calibrated through fitting to the output values of

the unknown functions using corresponding input values. Once the function is trained, option price
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computation is instantaneous, as long as the computational complexity is linear in the number of nodes.

These machine learning models, however, are only applicable after they are trained. Another significant

disadvantage of these models is the lack of interpretability. They are thus called "Black box" models. The

machine is trained on input/output pairs, but the relationship between these pairs is not understood,

making it difficult to validate and explain the model behaviours and capture the induced risks.

Another machine learning method, supervised deep neural networks (SDNNs), developed in [23],

does explicitly assume an underlying stochastic process. Therefore, it requires more inputs, but results

in a more generally trained model that is applicable to any option where the underlying follows the

given stochastic process. This model, however, still lacks interpretability.

In summary, existing methods of option pricing have their advantages and disadvantages.

On the one hand, numerical methods and Monte Carlo simulations, for instance, are highly

interpretable and generally intuitive. They allow for a clear understanding of the underlying processes

and the assumptions made. However, these methods suffer from large computational costs and need to

be recalculated for each option, which can be time-consuming and resource-intensive.

On the other hand, machine learning models offer the advantage of speed. Once trained, these models

can instantly provide multiple option prices, making them highly efficient for real-time applications.

However, they lack interpretability, often functioning as “black boxes”.

A new barrier pricing method

Recent research work at FF Quant aims to combine the strengths of machine learning methods and

the interpretability of analytical/numerical methods [3]. Their model is based on the pricing PDE

and combines with the COS method to price continuously monitored barrier options both GBM and

Heston’s model. By approximating the function price using the COS method from [5] and substituting

this approximation into the pricing PDE, a PDE for the survival characteristic function (ch.f.) is derived.

A trigonometric expansion is then used to approximate these survival ch.f.’s. By selecting training

points within the expansion domain and substituting the survival ch.f.’s into the new PDE, the problem

is translated to a linear system, which can be solved by a direct or iterative solver. The method yielded

good accuracy, but suffers greatly from the curse of dimensionality.

Another branch of research carried out at FF Quant focuses on addressing this curse of dimensionality

[2], [4]. Their solution, called COS-CPD, combines Canonical Polyadic Decomposition (CPD) with

the COS method. The resulting method is sufficiently accurate, while less prone to the curse of

dimensionality. CPD decomposes the coefficient tensor of the original approximation into a product of

factor matrices. Due to this product of matrices, the problem can no longer be translated into a linear

system, so another algorithm, Alternating Least Squares (ALS), is used to train the coefficients. CPD

has been studied extensively in literature, of which a comprehensive overview is given by [24]. Regular

and fast convergence of the COS-CPD method has been reported in [2] and [4].

1.2. Thesis objective and outline
Following prior research at FF Quant [3], we aim to extend their model and develop an interpretable

neural network to price continuously monitored barrier options. These extensions can be divided into

two parts. Firstly, unlike [3] which focuses on Heston’s stochastic volatility model, we focus the more

complex SABR model, for which no analytical solutions exist for the associated distribution. Secondly,

we address the curse of dimensionality by applying the COS-CPD method from [2], [4]. We demonstrate

that the COS-CPD method can be presented as a neural network, which we name the COS-CPD network.

The rest of the thesis is organized as follows. In Chapter 2 we go over the preliminary results

required for the later chapters. To relate our COS-CPD work to existing neural networks, we discuss

several neural networks in Chapter 3. This chapter revisits the COS-CPD method developed in [2], [4]

and works out its neural network representation, which is used in later chapters. Chapter 4 then shows

numerical results for the convergence rate of trigonometric expansion. Next, in Chapter 5, we replicate

results from [3] under the assumption that the underlying asset follows a GBM process. We also extend

the original method for better accuracy using change of variables. Chapter 6 closely follows the steps of

Chapter 5, but extends SABR dynamics. The stochastic volatility yields a more realistic model, but also
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increases dimensionality, which leads to computational problems. Therefore, in Chapters 7 and 8 we

apply the COS-CPD network for GBM and SABR respectively, which scales better with a higher number

of dimensions. Lastly, in Chapter 9 we summarize the results, draw conclusions on the performance

and suggest areas for future research.



2
Mathematical Framework

This thesis uses various mathematical tools and techniques. This chapter presents the relevant techniques

and some basic derivations to be able to find option prices later in the thesis.

2.1. Stochastic calculus
This section provides definitions and theorems from the field of stochastic calculus. The contents are

based on [25] and [26].

Definition 2.1.1 (Filtration). Let (Ω,ℱ , P) be a probability space. A filtration on (Ω,ℱ , P) is a family of sub
𝜎-fields {ℱ𝑡 , 𝑡 ≥ 0} of ℱ indexed by 𝑡 ∈ [0,∞), such that ℱ𝑠 ⊂ ℱ𝑡 for every 𝑠 ≤ 𝑡 ≤ ∞.

Definition 2.1.2 (Adapted process). A process 𝑋 = {𝑋𝑡 , 𝑡 ≥ 0} is said to be adapted to a filtration {ℱ𝑡 , 𝑡 ≥ 0}
if for all 𝑡 ≥ 0, 𝑋𝑡 is ℱ𝑡 measurable.

Definition 2.1.3 (Martingale). Let 𝑀 = {𝑀𝑡 , 𝑡 ≥ 0} be a process defined on the probability space (Ω,ℱ , P)
equipped with a filtration {ℱ𝑡 , 𝑡 ≥ 0}. Then 𝑀 is said to be a martingale if

1. Adepted: 𝑀𝑡 is ℱ𝑡 measurable for all 𝑡 ≥ 0,
2. Integrable: 𝑀𝑡 is integrable for all 𝑡 ≥ 0,
3. Martingale property: For all 0 ≤ 𝑠 < 𝑡

E(𝑀𝑡 |ℱ𝑠) = 𝑀𝑠 , ∀0 ≤ 𝑠 ≤ 𝑡.

Definition 2.1.4 (Stopping time). A stopping time 𝜏 : Ω → [0,∞) is a random variable such that for all 𝑡 ≥ 0,
the event 𝜏 ≤ 𝑡 belongs to ℱ𝑡 .

Definition 2.1.5 (Local martingale). A rightcontinuous with left limits adapted process 𝐿 is said to be a local
martingale if there exist stopping times 𝜏𝑛 ↑ ∞ such that for each 𝑛, the process 𝑀𝑛 defined by 𝑀𝑛

:= 𝐿𝑡∧𝜏𝑛 is a
martingale.

Definition 2.1.6 (Semimartingale). A stochastic process 𝑋 = {𝑋𝑡 , 𝑡 ≥ 0} is called a semimartingale if it can be
decomposed as

𝑋 = 𝑋0 +𝑀 + 𝐴,
where the random variable 𝑋0 is finite and ℱ0 measurable, the stochastic process 𝑀 is a local martingale and the
stochastic process 𝐴 has finite variation.

Definition 2.1.7 (Brownian motion). A real-valued process𝑊𝑡 = {𝑊(𝑡), 𝑡 ≥ 0} is called a Brownian motion if

1. Starting at 0: 𝑊(0) = 0,
2. Normally distributed increments: For all 0 ≤ 𝑠 < 𝑡 ,𝑊(𝑡) −𝑊(𝑠) ≃ 𝑁(0, 𝑡 − 𝑠).
3. Independent increments: For 0 ≤ 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 the random variables 𝑌𝑖 := 𝑊(𝑡𝑖) −𝑊(𝑡𝑖−1), 𝑖 =

1, . . . , 𝑛 are independent.

5
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4. Continuous trajectories: The map 𝑡 ↦→𝑊(𝑡) is continuous.
Definition 2.1.8 (Itô integral). For any square-integrable adapted process 𝑔(𝑡) with continuous sample paths,
the Itô integral is given by

𝐼(𝑇) =
∫ 𝑇

0

𝑔(𝑡)𝑑𝑊(𝑡) := lim

𝑚→∞
𝐼𝑚(𝑇), in 𝐿2 ,

where 𝐼𝑚(𝑇) =
∫ 𝑇

0

𝑔𝑚(𝑡)𝑑𝑊(𝑡) for some elementary process 𝑔𝑚(𝑡) =
∑𝑚−1

𝑗=0
𝜂 𝑗1[𝑡 𝑗 ,𝑡 𝑗+1) satisfying

lim

𝑚→∞
E

(∫ 𝑇

0

(𝑔𝑚(𝑡) − 𝑔(𝑡))2𝑑𝑡
)
= 0,

where 𝜂 𝑗 is ℱ𝑡 𝑗 measurable for all 𝑗 = 0, . . . , 𝑚 − 1 and square-integrable.
Definition 2.1.9 (Itô isometry). For any stochastic process 𝑔(𝑡), satisfying the usual regularity conditions, the
following holds

E

[(∫ 𝑇

0

𝑔(𝑡)𝑑𝑊(𝑡)
)2

]
=

∫ 𝑇

0

E
[
𝑔2(𝑡)

]
𝑑𝑡.

Definition 2.1.10 (Itô’s formula). Let 𝑓 ∈ 𝐶2(R) and consider a continuous semimartingale 𝑋 with decomposi-
tion 𝑋 = 𝑀 + 𝐴. Then, the stochastic process ( 𝑓 (𝑋𝑡))𝑡≥0 is also a semimartingale and holds

𝑓 (𝑋𝑡) = 𝑓 (𝑋0) +
∫ 𝑡

0

𝜕 𝑓

𝜕𝑥
(𝑋𝑢)𝑑𝑋𝑢 +

1

2

∫ 𝑡

0

𝜕2 𝑓

𝜕𝑥2

(𝑋𝑢)𝑑[𝑋]𝑢 ,

where [𝑋] denotes the quadratic variation of process (𝑋𝑡)𝑡≥0. Itô’s formula is often expressed in differential form

𝑑𝑓 (𝑋𝑡) =
𝜕 𝑓

𝜕𝑥
(𝑋𝑡)𝑑𝑋𝑡 +

1

2

𝜕2 𝑓

𝜕𝑥2

(𝑋𝑡)𝑑[𝑋]𝑡 .

2.2. Underlying process dynamics
The asset price is a continuous stochastic process. Since we do not know its value at future times, we

must model the price with a suitable stochastic process for future calculations. This thesis investigates

two such models. The first model, geometric brownian motion (GBM), is the most well-known process

and allows for simpler expressions at the cost of less realistic assumptions. Many closed-form solutions

are known, making it a excellent model to test new pricing approaches. The GBM model is investigated

in Chapter 5, reproducing results found in [3]. The second model, the Stochastic-𝛼𝛽𝜌 (SABR) model, is

a stochastic volatility model. This has more realistic assumptions, but this comes at the cost of more

complicated expressions, no closed-form exact solutions and other challenges. This model is used in

Chapter 6.

Geometric brownian motion

A process 𝑆𝑡 following a GBM dynamics satisfies the Stochastic Differential Equation (SDE)

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊
P
𝑡 ,

where 𝜇 is the drift, 𝜎 the volatility, and𝑊P
𝑡 a Brownian motion under real world measure P. We have

to convert this into the risk-neutral measure Q before we can use it for our calculations. Under the

risk-neutral measure, we want the expected asset price value at a future time to grow at the same rate as

the risk-free interest rate 𝑟. Then

EQ
(
𝑒−𝑟(𝑇−𝑡)𝑆𝑇 |ℱ𝑡

)
= 𝑆𝑡 ,

where 𝑇 is the future time, 𝑡 the current time at which we have information ℱ𝑡 . Note that this is true if

the underlying stock price follows the GBM process

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊
Q
𝑡 , (2.1)

where we assume both 𝑟 and 𝜎 to be constant. Through the martingale approach explained in more

detail in Section 5.1, we find the Black Scholes pricing PDE (5.1)

𝜕𝑉

𝜕𝑡
+ 𝑟𝑆 𝜕𝑉

𝜕𝑆
+ 𝜎2𝑆2

2

𝜕2𝑉

𝜕𝑆2

− 𝑟𝑉 = 0.
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SABR

The Stochastic-𝛼𝛽𝜌 (SABR) model is a stochastic volatility model. This means that not only the asset

price, but also the volatility follows a stochastic process. The model was introduced by Hagan et al. [9]

and follows the dynamics

𝑑𝑆𝑡 = 𝜎𝑡𝑆
𝛽
𝑡 𝑑𝑊

Q
𝑡

𝑑𝜎𝑡 = 𝛼𝜎𝑡𝑑𝑍
Q
𝑡 ,

(2.2)

where𝑊
Q
𝑡 and 𝑍

Q
𝑡 are correlated Brownian motions with correlation 𝜌, so 𝑑𝑊

Q
𝑡 𝑑𝑍

Q
𝑡 = 𝜌𝑑𝑡, −1 < 𝜌 < 1.

0 ≤ 𝛽 ≤ 1 is the skewness parameter and 𝛼 ≥ 0 is the volatility of volatility.

We can also rewrite these dynamics in terms of 2 independent Brownian motions.

𝑑𝑆𝑡 = 𝜎𝑡𝑆
𝛽
𝑡 𝑑𝑊̃

Q
𝑡

𝑑𝜎𝑡 = 𝛼𝜎𝑡
(
𝜌𝑑𝑊̃Q

𝑡 +
√

1 − 𝜌2𝑑𝑍̃
Q
𝑡

)
,

2.3. Options
Options are financial contracts that give the holder the right (but not the obligation) to purchase (or sell)

an underlying asset for a predetermined price at some future time.

Option pricing is widely researched. Since you can never lose more than the price you paid for the

option, it is an attractive investment and at the same time, options can be used for hedging. The most

basic form of options are European call and put options.

Definition 2.3.1 (European call/put option). A European call/put option is a contract signed between two
parties at some time 𝑡 from which the right (but not the obligation) arises to buy/sell a basic asset 𝑆 with price 𝑆𝑡
(underlying) at predetermined time 𝑇 > 𝑡 (maturity) for a predetermined price 𝐸 (strike).

At maturity time 𝑇 the holder of the option can choose to either exercise the option or to do nothing.

Therefore, the payoff for an option is always non-negative. The payoff can be written as

𝑉𝑐𝑎𝑙𝑙(𝑇, 𝑆) = (𝑆𝑡 − 𝐸)+ = max(𝑆𝑡 − 𝐾, 0)
𝑉𝑝𝑢𝑡(𝑇, 𝑆) = (𝐸 − 𝑆𝑡)+ = max(𝐾 − 𝑆𝑡 , 0),

where 𝑆𝑇 is the value of the underlying asset at maturity 𝑇 and 𝐸 is the strike price.

Many other options exist, most of which we will not discuss in this thesis. The option type that we

discuss in detail is a type of exotic option. These options are called exotic because they consider the

path of the underlying asset. The type of options we consider are barrier options.

Definition 2.3.2 (Barrier option). A Barrier option is a contract signed between two parties at some time
𝑡 from which the right (but not the obligation) arises to buy/sell a basic asset 𝑆 with price 𝑆𝑡 (underlying) at
predetermined time 𝑇 > 𝑡 (maturity) for a predetermined price 𝐸 (strike) if the barrier condition is satisfied. The
four main types of barrier conditions are

• Up-and-out: Asset price starts below the barrier level and does not cross the cross the barrier level 𝐵 or the
contract becomes void. 𝑆𝑡 < 𝐵, 𝑆𝜏 < 𝐵∀𝑡 < 𝜏 ≤ 𝑇,

• Down-and-out: Asset price starts above the barrier level and does not cross the cross the barrier level 𝐵 or
the contract becomes void. 𝑆𝑡 > 𝐵, 𝑆𝜏 > 𝐵∀𝑡 < 𝜏 ≤ 𝑇,

• Up-and-in: Asset price starts below the barrier level and has to cross the cross the barrier level 𝐵 or the
contract becomes void. 𝑆𝑡 < 𝐵, 𝑆𝜏 > 𝐵 for some 𝑡 < 𝜏 ≤ 𝑇,

• Down-and-in: Asset price starts below the barrier level and has to cross the cross the barrier level 𝐵 or the
contract becomes void. 𝑆𝑡 > 𝐵, 𝑆𝜏 < 𝐵 for some 𝑡 < 𝜏 ≤ 𝑇.

In this thesis we look at the up-and-out barrier option, but the methodology for down-and-out barrier

options is identical. Since the sum of knock-out and knock-in barrier options is a European option, these

knock-in barrier option prices can be found given a good approximation for the European option price.
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If we consider stopping time 𝜏 = inf{𝑡 ≥ 𝑡 : 𝑆𝑡 ≥ 𝐵} the first time that asset price 𝑆𝑡 is greater or equal

than barrier 𝐵, we find the payoff functions for a up-and-out barrier put and call option

𝑉𝐵
𝑐𝑎𝑙𝑙

(𝑇, 𝑆) = (𝑆𝑇 − 𝐸)+1𝜏>𝑇

𝑉𝐵
𝑝𝑢𝑡(𝑇, 𝑆) = (𝐸 − 𝑆𝑇)+1𝜏>𝑇 ,

where 𝐸 is the strike price. If the barrier is not crossed before the maturity time, this payoff is just equal

to that of the European options.

2.3.1. Option valuation
In quantitative finance, the fair value of options is heavily researched. A fair price is a price that both

the buyer and the seller find acceptable. One of the key principles on which option valuation theory is

based, is the no-arbitrage principle.

Definition 2.3.3 (Arbitrage). An investment strategy is called an arbitrage if the value process 𝑉𝑡 of the strategy
satisfies the following properties:

• Zero initial cost: 𝑉𝑡 ≤ 0,
• Positive probability of gain: P

(
𝑉𝑇 > 𝑒𝑟(𝑇−𝑡)

)
𝑉𝑡 > 0,

• Certainty of no loss: P
(
𝑉𝑇 < 𝑒𝑟(𝑇−𝑡)𝑉𝑡

)
= 0,

where 𝑡 is the initial time, 𝑇 > 𝑡 the maturity time and 𝑟 is the risk-free interest rate.

In other words, the no-arbitrage principle ensures that there can not be an investment strategy with

gain without risk.

2.4. Fourier series expansions
Let a function 𝑓 (𝑥) satisfy the Dirichlet conditions on [𝑎, 𝑏], i.e. "the piecewise function 𝑓 must be periodic
with at most a finite number of discontinuities, and/or a finite number of minima or maxima within one period"

[27, p. 176]. Then there are three common Fourier representations. These are the half-range Fourier

cosine-series, the half-range Fourier-sine series, and the full-range Fourier series [28].

𝑓 (𝑥) =
∞∑
𝑘=0

′𝐴𝑘 cos

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)
, (2.3a)

𝐴𝑘 =
2

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑓 (𝑥) cos

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑥,

𝑓 (𝑥) =
∞∑
𝑘=1

𝐵𝑘 sin

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)
, (2.3b)

𝐵𝑘 =
2

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑓 (𝑥) sin

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑥,

𝑓 (𝑥) = 𝐴0

2

+
∞∑
𝑘=1

𝐴𝑘 cos

(
2𝑘𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)
+ 𝐵𝑘 sin

(
2𝑘𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)
, (2.3c)

𝐴𝑘 =
1

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑓 (𝑥) cos

(
2𝑘𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑥,

𝐵𝑘 =
1

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑓 (𝑥) sin

(
2𝑘𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑥,

where the prime in 2.3a indicates that the first term is multiplied by
1

2
.
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2.4.1. Convergence of Fourier series
Theorem 2.4.1 (Dirichlet-Jordan test for Fourier series). Let 𝑓 (𝑥) be a periodic function of bounded variation.
Then the Fourier series expansion 𝑆𝑛 𝑓 (𝑥) converges as 𝑛 → ∞ at each point of the domain to

lim

𝜀→0

𝑓 (𝑥 + 𝜀) + 𝑓 (𝑥 − 𝜀)
2

.

In particular, if 𝑓 is continuous at 𝑥, then the Fourier series converges to 𝑓 (𝑥). Moreover, if 𝑓 is continuous
everywhere, then the convergence is uniform.

2.4.2. Spectral filters
At discontinuities and steep ascents/descents, functions described by Fourier series expansions often

show oscillations related to the Gibbs phenomenon. Through spectral filters we aim to reduce the effect

of these oscillations and find faster convergence. With filtering we multiply the expansion coefficients

by a decreasing function, such that coefficients will decay faster. The following definition is from [29]

and [30].

Definition 2.4.1 (Fourier space filter of order 𝑝). A real and even function 𝑠(𝜂) is called a filter of order 𝑝 if

1. 𝑠(0) = 1, 𝜕𝑚

𝜕𝜂𝑚 𝑠(0) = 0, 1 ≤ 𝑚 ≤ 𝑝 − 1,
2. 𝑠(𝜂) = 0, |𝜂| ≥ 1 ,
3. 𝑠(𝜂) ∈ 𝐶𝑝−1, 𝜂 ∈ (−∞,∞)

If we consider the Fourier-cosine series, the filtered partial sum would be defined by

𝑓𝑁 (𝑥) =
𝑁−1∑
𝑘=0

′𝑠

(
𝑘

𝑁

)
𝐴̂𝑘 cos

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)
. (2.4)

Before we show some examples of filters, we first look at an important property that results from the

definition.

From conditions (2) and (3) it follows that
𝜕𝑚

𝜕𝜂𝑚 𝑠(1) = 0 for 0 ≤ 𝑚 ≤ 𝑝 − 1. Essentially, at higher modes

(𝑘 → 𝑁), the function will be 0.

Filters have already been widely researched and therefore there are many examples available. We

will consider relatively simple examples in this report

• Lanczos filter: 𝑠(𝜂) = sin(𝜋𝜂)
𝜋𝜂 . This is a filter of order 𝑝 = 1

• Raised cosine filter: 𝑠(𝜂) = 1

2
(1 + cos(𝜋𝜂)). This is a filter of order 𝑝 = 2

• Exponential filter: 𝑠(𝜂) = exp(−𝛼𝜂𝑝), where 𝛼 = − log(𝜖𝑚), with 𝜖𝑚 the machine epsilon. This

filter has general order 𝑝, but 𝑝 is required to be even.

2.4.3. Option pricing via Fourier-sine (cosine) series
This section presents the sine counterpart of the work of [5]. The sine option pricing formula is derived

in Appendix A.1.1. We use the characteristic function, which forms a Fourier pair with the conditional

probability density function (pdf) used in the pricing formula. This characteristic function can be

used to approximate the conditional pdf through the half-range Fourier-sine series. This results in an

approximation of the pricing function (A.1).

𝑉2(𝑡 , 𝑋) = 𝑒−𝑟(𝑇−𝑡)
𝑁∑
𝑝=1

𝜙̂𝑝(𝑡 , 𝑋)𝑉𝑝 (2.5)

𝜙̂𝑝(𝑡 , 𝑋) = ℑ
[
𝜙

( 𝑝𝜋

𝑏 − 𝑎 , 𝑡; 𝑥
)
· 𝑒−𝑖𝑝𝜋 𝑎

𝑏−𝑎
]

𝑉𝑝 =
2

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑉(𝑇, 𝑦) sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦,

where 𝜙 is the characteristic function corresponding to 𝑓 (𝑦|𝑥), ℑ[·] denotes the imaginary part, and 𝑉𝑝
can be determined analytically if we have a European style payoff. For a European call option we find
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two analytic solutions. One for a model that considers the log-asset price and one for the asset price as

shown in Equations (A.5) and (A.6).

𝑉
𝐿𝑜𝑔𝐴𝑠𝑠𝑒𝑡,𝑐𝑎𝑙𝑙
𝑝 =

2

𝑏 − 𝑎
(
𝜒
𝐿𝑜𝑔𝐴𝑠𝑠𝑒𝑡
𝑝 (ln(𝐸), 𝑏) − 𝐾Ψ𝑝(ln(𝐸), 𝑏)

)
(2.6)

𝑉𝐴𝑠𝑠𝑒𝑡,𝑐𝑎𝑙𝑙
𝑝 =

2

𝑏 − 𝑎
(
𝜒𝐴𝑠𝑠𝑒𝑡𝑝 (𝐸, 𝑏) − 𝐾Ψ𝑝(𝐸, 𝑏)

)
(2.7)

where Ψ is as in Equation (A.2) and 𝜒 is defined in Equations (A.3) and (A.4).

2.5. Closed-form solutions
In this section we present some closed-form solutions that can be used as benchmark values for later

approximations.

2.5.1. Up-and-out barrier under GBM
The up-and-out barrier call option with strike price 𝐸, barrier 𝐵 and maturity 𝑇 has a closed-form

solution under GBM [31]. Assume 𝑆𝑡 follows GBM with interest rate 𝑟 and volatility 𝜎, then the option

price is given by

𝑉(𝑡 , 𝑆) =𝑆
(
Φ(𝑑1) −Φ(𝑒1) −

(
𝐵

𝑆

)
1+ 2𝑟

𝜎2

(Φ( 𝑓2) −Φ(𝑔2))
)

− 𝐸𝑒−𝑟(𝑇−𝑡)
(
Φ(𝑑2) −Φ(𝑒2) −

(
𝐵

𝑆

)−1+ 2𝑟

𝜎2

(Φ( 𝑓1) −Φ(𝑔1))
)
,

(2.8)

where Φ(·) is the cumulative distribution function of a standard normal distribution and

𝑑1 =

ln

(
𝑆
𝐸

)
+

(
𝑟 + 𝜎2

2

)
(𝑇 − 𝑡)

𝜎
√
𝑇 − 𝑡

𝑑2 =

ln

(
𝑆
𝐸

)
+

(
𝑟 − 𝜎2

2

)
(𝑇 − 𝑡)

𝜎
√
𝑇 − 𝑡

𝑒1 =

ln

(
𝑆
𝐵

)
+

(
𝑟 + 𝜎2

2

)
(𝑇 − 𝑡)

𝜎
√
𝑇 − 𝑡

𝑒2 =

ln

(
𝑆
𝐵

)
+

(
𝑟 − 𝜎2

2

)
(𝑇 − 𝑡)

𝜎
√
𝑇 − 𝑡

𝑓1 =

ln

(
𝑆
𝐵

)
−

(
𝑟 − 𝜎2

2

)
(𝑇 − 𝑡)

𝜎
√
𝑇 − 𝑡

𝑓2 =

ln

(
𝑆
𝐵

)
−

(
𝑟 + 𝜎2

2

)
(𝑇 − 𝑡)

𝜎
√
𝑇 − 𝑡

𝑔1 =

ln

(
𝑆𝐸
𝐵2

)
−

(
𝑟 − 𝜎2

2

)
(𝑇 − 𝑡)

𝜎
√
𝑇 − 𝑡

𝑔2 =

ln

(
𝑆𝐸
𝐵2

)
−

(
𝑟 + 𝜎2

2

)
(𝑇 − 𝑡)

𝜎
√
𝑇 − 𝑡

.

2.5.2. Characteristic function of option price under GBM
Section 4.2 of [3] finds a benchmark solution for 𝜙(𝜔; 𝑡 , 𝑥) by transforming the pricing PDE to a heat

equation. This is done under the log-asset GBM model, therefore it is important that input 𝑥 in the
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function is the log-asset price and 𝑎, 𝑏 are the lower and upper bounds of the log-asset price. The

benchmark function is

𝜙(𝜔; 𝑡 , 𝑥) =
∞∑
𝑘=1

𝑒
− 1

2
𝜎2(𝑇−𝑡)

(
( 𝑘𝜋
𝑏−𝑎 )2+𝛼2

)
𝑒𝛼𝑥 sin

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

) (
2

𝑏 − 𝑎

∫ ∞

−∞
𝑒(𝑖𝜔−𝛼)𝑦 sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

)
≈

∞∑
𝑘=1

𝑒
− 1

2
𝜎2(𝑇−𝑡)

(
( 𝑘𝜋
𝑏−𝑎 )2+𝛼2

)
𝑒𝛼𝑥 sin

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

) (
2

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑒(𝑖𝜔−𝛼)𝑦 sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

)
, (2.9)

where the integral is analytically evaluated in Section A.1.2.∫ 𝑏

𝑎

𝑒(𝑖𝜔−𝛼)𝑦 sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦 =

1

(𝑖𝜔 − 𝛼)2 + ( 𝑘𝜋𝑏−𝑎 )2
𝑘𝜋
𝑏 − 𝑎

(
𝑒(𝑖𝜔−𝛼)𝑎 − 𝑒(𝑖𝜔−𝛼)𝑏 cos(𝑘𝜋)

)
.

Note that this is a benchmark for the survival ch.f., but not for 𝜙̂𝑝 , so to find the benchmark for 𝜙̂𝑝 we

still have to use the formula

𝜙̂𝑝(𝑡 , 𝑋) = ℑ
[
𝜙

( 𝑝𝜋

𝑏 − 𝑎 ; 𝑡 , 𝑥
)
𝑒−𝑖𝑝𝜋

𝑎
𝑏−𝑎

]
2.6. Collocation methods
Collocation methods are numerical techniques used for solving integral and differential equations.

These methods transform the problem into a linear system of equations while introducing some

approximations. Collocation methods have a similar approach to those discussed in Chapters 5 and 6.

Selection of basis functions
The collocation method builds an approximation of the function using basis functions. The three most

commonly used basis functions are:

• Polynomial basis functions.

• Trigonometric basis functions. Trigonometric basis functions are used for expansions like the

Fourier series expansions.

• Radial basis functions (RBF). RBFs are functions whose values depend on the distance from the

origin [32]. Functions satisfying 𝜙(x) = 𝜙(∥x∥2), where ∥·∥2 is the Euclidean norm, are called

radial functions.

Approximation of the function
Using the basis functions, an approximation can be made for the function that has to be found. This

approximation will be of the form

𝑉(𝑡 , 𝑆) ≈ 𝑢(𝑡 , 𝑆) =
𝑁∑
𝑛=1

𝑎𝑛𝑢𝑛(𝑡 , 𝑆), (2.10)

where 𝑢𝑛(𝑡 , 𝑆) are the basis functions and 𝑎𝑛 are expansion coefficients. The goal now shifts from finding

𝑉(𝑡 , 𝑆) to finding the coefficients 𝑎𝑛 for which the approximation becomes sufficiently accurate.

Discretization of the domain and selecting collocation points
We start by discretizing the asset and time domains into a finite set of discrete points. Choosing how we

want to discretize the dimensions is crucial to the performance of the method. The collocation points we

choose, will determine where the PDE is enforced. We can split the discretization into two main types.

• Uniform grid: We select a number 𝑁 of collocation points per dimension and select equidistant

points over the domain of the dimension. Consider domain [𝑎, 𝑏] then the points would be

𝑥𝑖 = 𝑎 + 𝑖(𝑏−𝑎)
𝑁−1

, 𝑖 = 0, . . . , 𝑁 − 1.

• Non-uniform grid: If we know some properties of the function we wish to approximate, a

non-uniform grid could give a more accurate result. If there are parts of the function where the

function has very erratic changes, we require more collocation points around that part to get more

accuracy, whereas other parts might require much less points.
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A poor choice of collocation points can lead to very wrong results. If we look at the sine function for

example, taking the value of sin(𝑥) at 𝑥 = 𝑘𝜋, 𝑘 ∈ N, the value is always 0, so one might think we are

looking at the function 𝑓 (𝑥) = 0.

Enforcing the PDE and solving the linear system
Next we enforce the PDE. By substituting approximation (2.10) into the PDE. This then results into a

linear system where coefficients 𝑎𝑛 are the unknowns. The coefficients 𝑎𝑛 that satisfy this linear system

can be substituted into approximation (2.10) to find the final approximation.

2.7. Tensor calculus
Tensors will play a major role in Canonical Polyadic Decomposition (CPD) and the results of Chapters 7

and 8. This section introduces the general concepts of Tensor calculus.

We start by introducing tensors and basic tensor operations. The definitions, terminology and

theorems follow the works of [24] and [33].

Definition 2.7.1 (Tensor). An 𝑁th-order tensor 𝒜 ∈ R𝐼1×𝐼2×···×𝐼𝑁 is a real 𝑁-dimensional array, where the
index range in the 𝑘-th mode is [1, . . . , 𝐼𝑘].

First and second order tensors are also called vectors and matrices respectively. We now introduce some

terminology related to tensors.

• Entries: To denote a specific entry of the tensor, we can use either one of the following notations.

𝒜[𝑖1 , 𝑖2 , . . . , 𝑖𝑁 ] = 𝑎𝑖1 ,𝑖2 ,...,𝑖𝑁 = 𝑎i, where i = (𝑖1 , . . . , 𝑖𝑁 )
• Fibers: Fibers are the higher order analogue of matrix rows and columns. Third order tensors

have row (𝒜[:, 𝑖2 , 𝑖3]), column (𝒜[𝑖1 , :, 𝑖3]) and tube (𝒜[𝑖1 , 𝑖2 , :]) fibers.

• Slices: For third order tensors, there is a term for 2-dimensional components of the tensor, where

1 dimension has fixed entry. These are called slices. Horizontal slices fix rows (𝒜[𝑖1 , :, :]), lateral

slices fix columns (𝒜[:, 𝑖2 , :]) and frontal slices fix tubes (𝒜[:, :, 3]).

A visual representation of fibers and slices is given in Figure 2.1.

Definition 2.7.2 (Outer product). Let u ∈ R𝑀 , v ∈ R𝑁 be two vectors. Their outer product, denoted by
u ◦ v ∈ R𝑀×𝑁 is defined as

u ◦ v =

©­­­­­«
𝑢1𝑣1 𝑢1𝑣2 · · · 𝑢1𝑣𝑁

𝑢2𝑣1

. . . 𝑢2𝑣𝑁
...

. . .
...

𝑢𝑀𝑣1 𝑢𝑀𝑣2 · · · 𝑢𝑀𝑣𝑁

ª®®®®®¬
An outer product of 𝑁 vectors a𝑛 will be denoted as

𝑁◦
𝑛=1

a𝑛 = a1 ◦ a2 ◦ · · · ◦ a𝑁
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Figure 2.1: Fibers and slices of a third-order tensor [34, p. 25]

For first and second order tensors we know many calculation rules, so rewriting higher order tensors as

tensors of order 1 (vectorization) or 2 (unfolding/matricization) increases the number of tools we can use.

Definition 2.7.3 (Vectorization). Vectorization is the reordering of an 𝑁th-order tensor into a vector. The
order of vectorization is not unique, but has to be consistent throughout calculations.

Definition 2.7.4 (mode-n Unfolding). Mode-n unfolding or mode-n matricization is the reordering of an
𝑁th-order tensor into a matrix, where the columns are defined by the 𝑚th mode. The order of reordering is not
unique, but has to be consistant throughout calculations.
The mode-n unfolding of tensor 𝒜 is denoted as 𝒜(𝑛)

If we consider an example 𝒜 ∈ R2×4×3
, we can vectorize this as:

vec(𝒜) =

©­­­­­­­­­­­­­­­­«

𝑎1,1,1

𝑎1,1,2

𝑎1,1,3

𝑎1,2,1

...
𝑎1,4,3

𝑎2,1,1

𝑎2,1,2

...
𝑎2,4,3

ª®®®®®®®®®®®®®®®®¬

,

where we iterate over the third mode first. Then over the second mode and finally over the first mode.
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If we consider unfolding of the same matrix, we find that the newly found matrix could be:

𝒜(1) =

(
𝑎1,1,1 𝑎1,1,2 𝑎1,1,3 𝑎1,2,1 𝑎1,2,2 𝑎1,2,3 𝑎1,3,1 𝑎1,3,2 𝑎1,3,3 𝑎1,4,1 𝑎1,4,2 𝑎1,4,3

𝑎2,1,1 𝑎2,1,2 𝑎2,1,3 𝑎2,2,1 𝑎2,2,2 𝑎2,2,3 𝑎2,3,1 𝑎2,3,2 𝑎2,3,3 𝑎2,4,1 𝑎2,4,2 𝑎2,4,3

)
𝒜(2) =

©­­­«
𝑎1,1,1 𝑎1,1,2 𝑎1,1,3 𝑎2,1,1 𝑎2,1,2 𝑎2,1,3

𝑎1,2,1 𝑎1,2,2 𝑎1,2,3 𝑎2,2,1 𝑎2,2,2 𝑎2,2,3

𝑎1,3,1 𝑎1,3,2 𝑎1,3,3 𝑎2,3,1 𝑎2,3,2 𝑎2,3,3

𝑎1,4,1 𝑎1,4,2 𝑎1,4,3 𝑎2,4,1 𝑎2,4,2 𝑎2,4,3

ª®®®¬
𝒜(3) =

©­«
𝑎1,1,1 𝑎1,2,1 𝑎1,3,1 𝑎1,1,1 𝑎2,1,1 𝑎2,2,1 𝑎2,3,1 𝑎2,4,1

𝑎1,1,2 𝑎1,2,2 𝑎1,3,2 𝑎1,1,2 𝑎2,1,2 𝑎2,2,2 𝑎2,3,2 𝑎2,4,2

𝑎1,1,3 𝑎1,2,3 𝑎1,3,3 𝑎1,1,3 𝑎2,1,3 𝑎2,2,3 𝑎2,3,3 𝑎2,4,3

ª®¬ ,
where in each we again iterate over the last non-fixed mode first. So for mode-2 unfolding, we first

iterate over the third mode and then the first mode. Note that we could have chosen to iterate over the

first mode first and the third mode last.

In order to make full use of this vectorized and unfolded form, we also introduce special matrix

multiplications.

Definition 2.7.5 (Kronecker Product). The Kronecker product of matrices 𝐴 ∈ R𝐼×𝐽 and 𝐵 ∈ R𝑀×𝑁 is denoted
as 𝐴 ⊗ 𝐵 ∈ R𝐼𝑀×𝐽𝑁 and is defined as

𝐴 ⊗ 𝐵 =

©­­­­­«
𝑎1,1𝐵 𝑎1,2𝐵 · · · 𝑎1,𝑁

𝑎2,1𝐵
. . . 𝑎2,𝑁

...
. . .

...
𝑎𝑀,1𝐵 𝑎𝑀,2 · · · 𝑎𝑀,𝑁

ª®®®®®¬
.

Definition 2.7.6 (Khatri-Rao product). The Khatri-Rao product can be seen as a column-wise Kronecker
product. For matrices 𝐴 =

(
a1 · · · a𝑁

)
∈ R𝐾×𝑁 , 𝐵 =

(
b1 · · · b𝑁

)
∈ R𝑀×𝑁 we define the Khatri-Rao

product, denoted as 𝐴 ⊙ 𝐵 ∈ R𝐾𝑀×𝑁 , as

𝐴 ⊙ 𝐵 =
(
a1b1 · · · a𝑁b𝑁

)
Definition 2.7.7 (Hadamard product). The Hadamard product is the element-wise matrix multiplication.
Let 𝐴, 𝐵 ∈ R𝑀×𝑁 . Denoted by 𝐴 ⊛ 𝐵 ∈ R𝑀×𝑁 , the Hadamard product is defined as

𝐴 ⊛ 𝐵 =

©­­­­­«
𝑎1,1𝑏1,1 𝑎1,2𝑏1,2 · · · 𝑎1,𝑁𝑏1,𝑁

𝑎2,1𝑏2,1
. . . 𝑎2,𝑁𝑏2,𝑁

...
. . .

...
𝑎𝑀,1𝑏𝑀,1 𝑎𝑀,2𝑏𝑀,2 · · · 𝑎𝑀,𝑁𝑏𝑀,𝑁

ª®®®®®¬
The final definition we introduce is about the Frobenius norm of a tensor. The definition is analogous

to that of the Frobenius norm for matrices. The Frobenius norm is often used for optimization problems

with tensor decomposition, since the objective function is often described as a minimization of the

Frobenius norm.

Definition 2.7.8 (Frobenius norm). For a tensor 𝒜 ∈ R𝐼1×𝐼2×···×𝐼𝑁 its Frobenius norm, also called F-norm, is
defined as the square root of the sum of all entries squared

∥𝒜∥𝐹 =

√√√ 𝐼1∑
𝑖1=1

𝐼2∑
𝑖2=1

· · ·
𝐼𝑁∑
𝑖𝑁=1

(
𝒜[𝑖1 , 𝑖2 , · · · , 𝑖𝑁 ]

)
2

2.8. Canonical Polyadic Decomposition (CPD)
This section explores the basic concept of Canonical Polyadic Decomposition (CPD) and how CPD can

be applied to the Fourier-cosine/Fourier-sine series expansions introduced in Equations (2.3a) and

(2.3b).
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CPD is a tensor decomposition technique. Calculations involving higher order tensors typically

result in large computational complexities. Tensor decomposition techniques aim to reduce this

computational complexity. Using CPD we can represent high-dimensional tensors as a product of

multiple lower-dimensional tensors, making computations more efficient.

Rank-one tensors play a critical role in CPD methods. An 𝑁th-order tensor 𝒜 is called a rank-one
tensor if it can be written as an outer product of 𝑁 vectors

𝒜 =
𝑁◦
𝑛=1

a𝑛 .

CPD is the factorization of an 𝑁th-order tensor as a sum of component rank-one tensors.

Definition 2.8.1 (Tensor rank). Let 𝒜 be an 𝑁th-order tensor. Rank 𝑅 is the minimum number of components
for which

𝒜 = ⟦A1 ,A2 , . . . ,A𝑁⟧𝑅 =

𝑅∑
𝑟=1

𝑁◦
𝑛=1

A𝑛[𝑟]

holds, where A𝑛 =
[
a𝑛

1
, . . . , a𝑛

𝑅

]
∈ R𝐼𝑛×𝑅 for 𝑛 = 1, . . . , 𝑁 . The minimal rank is commonly called the canonical

rank.

Every tensor admits a CPD of finite rank and is "unique under mild conditions [6, p. 1]". As stated by [7],

however, finding this canonical rank is an NP-hard problem. Therefore, there is no easily computable

charactarization of the rank. In practice, a lower rank 𝑅̃ is often used to approximate the original tensor.

Then

𝒜 ≈
𝑅̃∑
𝑟=1

𝑁◦
𝑛=1

A𝑛[𝑟]. (2.11)

This lower-rank CPD can be used to break the curse of dimensionality.

To find the CPD of a tensor, the matrices A𝑛 must be determined. This is done by minimizing the

least square error (using the Frobenius norm) between the original tensor and the CPD approximation.

Then, we aim to solve

min

{A𝑛}𝑁𝑛=1




𝒜 − ⟦A1 ,A2 , . . . ,A𝑁⟧𝑅




2

𝐹
= min

{A𝑛}𝑁𝑛=1






𝒜 −
𝑅∑
𝑟=1

𝑁◦
𝑛=1

A𝑛[𝑟]





2

𝐹

.

This optimization problem appears difficult to solve, but its complexity can be reduced significantly

through some rewriting. The method we use to solve this is called Alternating Least Squares (ALS). The

main idea of ALS is fixing all variables except for one, and then, by variating the one left over, you can

cycle over each variable until some stopping criterion is met.

First we provide an equation that relates unfolding to the Khatri-Rao product [6].

𝒜(𝑛) = A𝑛

(⊙
𝑖≠𝑛

A𝑖

)𝑇
, 𝑛 = 1, . . . , 𝑁 , (2.12)

where (⊙
𝑖≠𝑛

A𝑖

)
= A𝑁 ⊙ · · · ⊙ A𝑛+1 ⊙ A𝑛−1 ⊙ · · · ⊙ A1.

The order of unfolding is not unique, but for this equation to hold, we require a specific order. Appendix

A.3.1 shows that one should first iterate over A1, then A2, and A𝑁 last.

With this new formulation, we can rewrite our minimization problem to 𝑁 minimizations for a

single tensor mode.

min

{A𝑛}𝑁𝑛=1






𝒜(𝑛) − A𝑛

(⊙
𝑖≠𝑛

A𝑖

)𝑇




2

𝐹

, 𝑛 = 1, . . . , 𝑁.
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This is a multilinear problem, but through ALS we update the factor matrices A𝑛 one by one while

fixing all other matrices A𝑖 . We loop over the matrices A𝑛 and solve

A𝑛𝑒𝑤
𝑛 = arg min

{A𝑛}𝑁𝑛=1






𝒜(𝑛) − A𝑛

(⊙
𝑖≠𝑛

A𝑖

)𝑇




2

𝐹

until some stopping criterion is met.

2.8.1. Dimension reduced Fourier-cosine series expansions via CPD
This section is based on the works of a previous thesis performed at FF Quant [2], [4]. They combine

CPD with the Fourier-cosine series expansion from [5]. We follow the same steps, but apply it to the

Fourier-sine series expansion described in Section 2.4. For a one dimensional function 𝑓 (𝑥) on domain

[𝑎, 𝑏], this sine expansion will be given by

𝑓 (𝑥) =
∞∑
𝑘=1

𝐴𝑘 sin

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)
𝐴𝑘 =

2

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑓 (𝑦) sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦.

The approximation would then be

𝑓 (𝑥) ≈
𝐾∑
𝑘=1

𝐴𝑘 sin

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)
,

where coefficients 𝐴𝑘 are the entries of a first order tensor (vector) of 𝐾 elements.

For an 𝑁-dimensional expansion on the domain [𝑎1 , 𝑏1] × · · · × [𝑎𝑁 , 𝑏𝑁 ], we have

𝑓 (𝑥1 , 𝑥2 , . . . , 𝑥𝑁 ) =
∞∑
𝑘1=1

· · ·
∞∑

𝑘𝑁=1

𝒜k

𝑁∏
𝑛=1

sin

(
𝑘𝑛𝜋

𝑥𝑛 − 𝑎𝑛
𝑏𝑛 − 𝑎𝑛

)
𝑓 (𝑥1 , 𝑥2 , . . . , 𝑥𝑁 ) ≈

𝐾∑
𝑘1=1

· · ·
𝐾∑

𝑘𝑁=1

𝒜k

𝑁∏
𝑛=1

sin

(
𝑘𝑛𝜋

𝑥𝑛 − 𝑎𝑛
𝑏𝑛 − 𝑎𝑛

)
(2.13)

𝐴k =

∫ 𝑏1

𝑎1

· · ·
∫ 𝑏𝑁

𝑎𝑁

𝑓 (𝑦1 , 𝑦2 , . . . , 𝑦𝑁 )
𝑁∏
𝑛=1

sin

(
𝑘𝑛𝜋

𝑥𝑛 − 𝑎𝑛
𝑏𝑛 − 𝑎𝑛

)
𝑑𝑦𝑁 · · · 𝑑𝑦1

𝑁∏
𝑛=1

2

𝑏𝑛 − 𝑎𝑛
,

where k = (𝑘1 , 𝑘2 , . . . , 𝑘𝑁 ) is a multi-index. Now the coefficients 𝒜k are the entries of an 𝑁th-order

tensor 𝒜 with 𝐾 elements in each mode. Note that this tensor has 𝐾𝑁 entries, so it scales with 𝒪(𝑁𝐾).
If we apply tensor decomposition to this tensor, we find

𝒜 ≈
𝑅∑
𝑟=1

𝑁◦
𝑛=1

A𝑛[𝑟],

𝒜k ≈
𝑅∑
𝑟=1

𝑁∏
𝑛=1

A𝑛[𝑘𝑛 , 𝑟],
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where 𝒜 is a sum of 𝑅 tensors created by taking the outer product of 𝑁 vectors of size 𝐾, so 𝒪(𝑁𝐾𝑅).
Substituting this approximation for 𝒜k into Equation 2.13 yields

𝑓 (𝑥1 , 𝑥2 , . . . , 𝑥𝑁 ) ≈
𝐾∑

𝑘1=1

· · ·
𝐾∑

𝑘𝑁=1

[(
𝑅∑
𝑟=1

𝑁∏
𝑛=1

A𝑛[𝑘𝑛 , 𝑟]
)
·
(
𝑁∏
𝑛=1

sin

(
𝑘𝑛𝜋

𝑥𝑛 − 𝑎𝑛
𝑏𝑛 − 𝑎𝑛

))]
=

𝐾∑
𝑘1=1

· · ·
𝐾∑

𝑘𝑁=1

𝑅∑
𝑟=1

𝑁∏
𝑛=1

(
A𝑛[𝑘𝑛 , 𝑟] sin

(
𝑘𝑛𝜋

𝑥𝑛 − 𝑎𝑛
𝑏𝑛 − 𝑎𝑛

))
=

𝑅∑
𝑟=1

𝐾∑
𝑘1=1

· · ·
𝐾∑

𝑘𝑁=1

𝑁∏
𝑛=1

A𝑛[𝑘𝑛 , 𝑟]s𝑛[𝑘𝑛](𝑥𝑛), , (2.14)

where

s𝑛(𝑥𝑛) =
(
sin

(
1𝜋 𝑥𝑛−𝑎𝑛

𝑏𝑛−𝑎𝑛

)
· · · sin

(
𝐾𝜋 𝑥𝑛−𝑎𝑛

𝑏𝑛−𝑎𝑛

))𝑇
∈ R𝐾

s𝑛[𝑘𝑛](𝑥𝑛) = sin

(
𝑘𝑛𝜋

𝑥𝑛 − 𝑎𝑛
𝑏𝑛 − 𝑎𝑛

)
i.e. s2[3](4) = sin

(
3𝜋

4 − 𝑎2

𝑏2 − 𝑎2

)
.

Note that

𝐾∑
𝑘𝑁=1

𝑁∏
𝑛=1

A𝑛[𝑘𝑛 , 𝑟]s𝑛[𝑘𝑛](𝑥𝑛) =
𝐾∑

𝑘𝑁=1

(
A𝑁 [𝑘𝑁 , 𝑟]s𝑁 [𝑘𝑁 ](𝑥𝑁 )

) 𝑁−1∏
𝑛=1

A𝑛[𝑘𝑛 , 𝑟]s𝑛[𝑘𝑛](𝑥𝑛)

=

(
𝑁−1∏
𝑛=1

A𝑛[𝑘𝑛 , 𝑟]s𝑛[𝑘𝑛](𝑥𝑛)
)

𝐾∑
𝑘𝑁=1

(
A𝑁 [𝑘𝑁 , 𝑟]s𝑁 [𝑘𝑁 ](𝑥𝑁 )

)
,

because the product up to 𝑁 − 1 is no longer dependent on 𝑘𝑁 . By rewriting

𝑓𝑛,𝑟(𝑥𝑛) =
𝐾∑

𝑘𝑛=1

(
A𝑛[𝑘𝑛 , 𝑟]s𝑛[𝑘𝑛](𝑥𝑛)

)
= s𝑇𝑛 (𝑥𝑛)A𝑛[:, 𝑟],

we can iterate over each sum of Equation 2.14 and find a new expression for the approximation of 𝑓 :

𝑓 (𝑥1 , 𝑥2 , . . . , 𝑥𝑁 ) =
𝑅∑
𝑟=1

𝑁∏
𝑛=1

𝑓𝑛,𝑟(𝑥𝑛) (2.15)

=

(
𝑁
⊛
𝑛=1

s𝑇𝑛 (𝑥𝑛)A𝑛

)
1, (2.16)

where 1 = (1, . . . , 1)𝑇 ∈ R𝑅. With this we have now rewritten the original approximation with an

𝑁th-order tensor 𝒜 of unknown coefficients to a problem with 𝑁 factor matrices of size 𝐾 × 𝑅 that hold

unknown coefficients.

2.9. Other theorems
Theorem 2.9.1 (Fundamental Theorem of Calculus (FTC)). Let 𝑓 : [𝑎, 𝑏] → R be continuous. Let
𝐹 : [𝑎, 𝑏] → R be defined as

𝐹(𝑥) =
∫ 𝑥

𝑎

𝑓 (𝑦)𝑑𝑦.

Then 𝐹(𝑥) is uniformly continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏), and

𝐹′(𝑥) = 𝑓 (𝑥),
for all 𝑥 ∈ (𝑎, 𝑏). 𝐹 is the antiderivative of 𝑓 .
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Corollary 2.9.1.1. Let 𝑓 : [𝑎, 𝑏] → R be continuous and let 𝐹 be the antiderivative of 𝑓 on [𝑎, 𝑏]. Then∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎).

Theorem 2.9.2 (Lebesgue’s Dominated Convergence Theorem (DCT)). Let ( 𝑓𝑛)𝑛≥1 be a sequence of
measurable functions on a measure space (𝑆,Σ, 𝜇). Suppose that the sequence converges pointwise to a function 𝑓 ,
i.e.

lim

𝑛→∞
𝑓𝑛(𝑥) = 𝑓 (𝑥)

exists for all 𝑥 ∈ 𝑆. Assume that sequence 𝑓𝑛 is dominated by some integrable function g in the sence that

| 𝑓𝑛(𝑥)| ≤ 𝑔(𝑥)

for all points 𝑥 ∈ 𝑆 and all 𝑛. Then 𝑓𝑛 and 𝑓 are Lebesgue integrable and

lim

𝑛→∞

∫
𝑆

𝑓𝑛𝑑𝜇 =

∫
𝑆

lim

𝑛→∞
𝑓𝑛𝑑𝜇 =

∫
𝑆

𝑓 𝑑𝜇,

and we have
lim

𝑛→∞

∫
𝑆

| 𝑓𝑛 − 𝑓 |𝑑𝜇 = 0

Remark 2.9.2.1. Pointwise convergence of the sequence can be relaxed to hold only 𝜇-almost everywhere. So the
set of points where pointwise convergence does not hold should be a measurable set 𝑍 with 𝜇(𝑍) = 0



3
Artificial Neural Networks

Partial Differential Equations (PDEs) are extensively studied in mathematics due to their relevance in

multiple fields such as physics and finance. Solving these PDEs is rarely a trivial task. Traditional

numerical methods for solving PDEs include the Finite Difference Method (FDM), Finite Elements

Method (FEM), Finite Volume Method (FVM), and spectral methods like Fourier series expansion.

These methods, however, generally suffer heavily from the curse of dimensionality, where the required

memory and computational time grows exponentially with respect to the number of dimensions. Spectral

methods have additional drawbacks like Gibbs phenomenon at discontinuities or sharp gradients.

In recent decades, machine learning has been investigated to address the weaknesses of these

traditional methods. The machine learning methods that we discuss in this thesis belong to the class

of Artificial Neural Networks (ANNs). ANNs were initially inspired by the biological neural networks

structure in brains. In this thesis, "neural networks" refers to artificial neural networks.

An ANN is a group of nodes called neurons, connected by edges, that represent the synapses (signals)

between neurons in a brain. Neurons receive signals from connected neurons. The architecture for these

networks depends on the chosen model.

This chapter explores several subclasses of neural networks. We first consider two types of Multilayer

Perceptrons (MLPs): Physics-informed neural networks (PINNs) and Fourier neural networks (FNNs).

Then, we present Deep Operator Networks (DeepONets) and Kolmogorov-Arnold networks (KANs).

Lastly, we introduce a neural network representation of the dimension-reduced COS Method from

[5], which we will name the "COS-CPD" network, respecting that it is purely based on mathematical

derivation using CPD and COS. The COS-CPD network is used in this thesis.

3.1. Multilayer Perceptrons
The first well-known subclass of ANNs is Multilayer Perceptrons (MLPs) [35]. An MLP assigns a scalar

weight to each edge, representing the ’strength’ of the signal. Within a neuron, non-linear activation
functions process input signals and send out other signals to the next neurons. An MLP consists of layers

of neurons. The first layer is called the input layer and its neurons have no incoming edges, whereas the

final layer, the output layer, has neurons with exclusively incoming edges and no outgoing edges. In

between there are 𝑛 hidden layers of neurons. If 𝑛 > 1, the network is called a deep neural network. Figure

3.1 shows the general network architecture for an MLP, where all neurons of layer 𝑖 are connected to all

neurons of layer 𝑖 + 1.

19
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Figure 3.1: Network architecture for general MLPs

MLPs are feed forward networks, meaning that there are no loops inside the neural network. Therefore,

training must be done using some structure outside the architecture seen in Figure 3.1. To train the model,

data pairs of input and output values are required. The output of the neural network is then compared

to the known output value through a loss function. Commonly, methods such as backpropagation are

used to update the weights of the edges to minimize the loss function.

The choice of loss function, activation function and training process differ among types of MLPs.

We discuss two of these types.

3.1.1. Physics-Informed Neural Networks
Physics-informed neural networks (PINNs), introduced in [36], are neural networks specifically trained

to respect physical laws described by nonlinear PDEs. In [36], the activation function is chosen to be the

hyperbolic tangent. The PDE is incorporated into their choice of the loss function. Given a nonlinear

PDE of the form

𝑓 =
𝜕𝑢

𝜕𝑡
+ 𝒩[𝑢;𝜆] = 0,

where 𝒩 denotes a nonlinear operator parametrized by 𝜆, the loss function is defined as

𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑢 +𝑀𝑆𝐸 𝑓

𝑀𝑆𝐸𝑢 =
1

𝑁𝑢

𝑁𝑢∑
𝑖=1

|𝑢(𝑡 𝑖𝑢 , 𝑥 𝑖𝑢) − 𝑢 𝑖|2

𝑀𝑆𝐸 𝑓 =
1

𝑁 𝑓

𝑁 𝑓∑
𝑖=1

| 𝑓 (𝑡 𝑖
𝑓
, 𝑥 𝑖

𝑓
)|2 ,

where {𝑡 𝑖𝑢 , 𝑥 𝑖𝑢} are the initial and boundary training points on 𝑢(𝑡 , 𝑥) and {𝑡 𝑖
𝑓
, 𝑥 𝑖

𝑓
} are collocation points

for 𝑓 (𝑡 , 𝑥).
The PINN is trained by minimizing this loss function through updating the parameters of 𝑢(𝑡 , 𝑥).

3.1.2. Fourier Neural Networks
Fourier Neural Networks (FNNs) were introduced in 2013 by Liu S. [37]. The FNN model is, as the

name suggests, based on Fourier series expansion. For a network with 𝑁 neurons, the approximation of

a function 𝑢 ∈ R𝑛 → R would look like

𝑢̂(𝑥1 , . . . , 𝑥𝑛) =
𝑁∑
𝑖=1

𝜆2𝑖Φ2𝑖 + 𝜆2𝑖+1Φ2𝑖+1 ,

where

Φ2𝑘 = sin (𝑤2𝑘,1𝑥1 + · · · + 𝑤2𝑘,𝑛𝑥𝑛)
Φ2𝑘+1 = cos (𝑤2𝑘+1,1𝑥1 + · · · + 𝑤2𝑘+1,𝑛𝑥𝑛)
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are the sine and cosine terms. The 𝜆𝑘 and 𝑤𝑘 are weights. This means that an FNN with 𝑁 neurons

has 4𝑁 weights to optimize. We should note that, while based on Fourier series expansion, the

approximation itself is actually not a multi-dimensional Fourier series expansion.

The machine learning structure can be seen as a network with an input layer, one hidden layer and

an output layer. The input layer consists of input variables 𝑥𝑛 and the output layer is the function

approximation 𝑢̂(x). In the hidden layer, the activation function 𝑥 ↦→ sin(𝜔1𝑥) + cos(𝜔2𝑥) is applied.

Figure 3.2 depicts the scheme for a FNN with a one-dimensional input 𝑥.

The weights are updated through backpropagation until a sufficiently accurate approximation 𝑢̂.

This requires a loss function that efficiently captures the accuracy of 𝑢̂(𝑥). Commonly, this loss function

is a combination of a least squares estimation ∥𝑢̂ − 𝑢∥2

2
and regularization terms 𝑎1∥𝜆∥2

and 𝑎2∥𝑤∥2
.

Through numerical studies [38] found that 𝐿2
-norm regularization seems to yield convergence to the

actual solution. While 𝐿1
-norm has quicker convergence, it does not always converge to the true solution.

From this numerical studies, 𝐿2
-norm seems like the better option.

Figure 3.2: FNN scheme with one-dimensional input 𝑥. [38, p. 3]

[38] extends the regular FNN structure to compute periodic solutions of differential equations of

the form 𝑃𝑢 = 𝑓 , where 𝑃 is the differential operator. The loss function is set to be the residual of the

differential equation, so ℒ = ∥𝑃𝑢̂− 𝑓 ∥2

2
. They also include regularization terms 𝑎1∥𝜆∥2

2
and 𝑎2∥𝑤∥2

2
in the

loss function. To ensure periodicity of the solution, periodicity requirement terms 𝑎3∥𝑢̂(𝑥 + 𝑇) − 𝑢̂(𝑥)∥2

2

and 𝑎4∥𝑢̂(𝑥 − 𝑇) − 𝑢̂(𝑥)∥2

2
are included in the loss function. This gives rise to the combined loss function

𝐿(𝜆, 𝑤) = ∥𝑃𝑢̂ − 𝑓 ∥2

2
+ 𝑎1∥𝜆∥2

2
+ 𝑎2∥𝑤∥2

2
+ 𝑎3∥𝑢̂(𝑥 + 𝑇) − 𝑢̂(𝑥)∥2

2
+ 𝑎4∥𝑢̂(𝑥 − 𝑇) − 𝑢̂(𝑥)∥2

2

3.2. DeepONets
Deep Operator Networks (DeepONets), introduced in [39], take a very different approach compared to

MLPs. Instead of learning how a function output depends on its input, they learn the general structure

of the function based on input functions. Let us consider a PDE

𝑃𝑢 = 𝑓 ,

where 𝑃 is the differential operator, 𝑢 the solution function and 𝑓 some other function. DeepONets are

networks that represent the operator 𝐺, which takes function 𝑓 as the input and outputs solution vector

𝑢. Operator 𝐺 is thus a function of functions, that maps one function space to another.
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Training this network is not a trivial task. One needs to split the network into two parts. The first

part focuses on the input functions, and the second part considers the input for function 𝑢.

For the first part, named the trunk network, the continuous input functions must be sampled at

discrete points. The most straightforward way to do this is by evaluating these functions in sufficiently,

but also finitely many points {𝑥1 , . . . , 𝑥𝑚}. These points are called sensors. The inputs {𝑢(𝑥1), . . . , 𝑢(𝑥𝑚)}
are translated to outputs {𝑡1 , . . . , 𝑡𝑝}.

The second part is the branch network, which encodes the location of the output function. If we want

to know the value 𝑢(𝑦), this input 𝑦 is fed into the branch network. The outputs of the branch network

are called {𝑏1 , . . . , 𝑏𝑝}.

Together, these trunk and branch networks form an approximation

𝐺(𝑢)(𝑦) ≈
𝑝∑
𝑘=1

𝑡𝑘𝑏𝑘 .

3.3. Kolmogorov-Arnold Networks
Kolmogorov-Arnold Networks (KANs) are a novel neural network approach introduced very recently

in [40]. KANs have a similar structure to MLPs, but differ in the location of activation functions. MLPs

have scalar weights on the edges and have fixed activation functions in the neurons that combine the

inputs. KANs, however, have variable splines, which act as activation functions, on the edges and the

neurons simply sum all the incoming edges. KANs are based on the equation

𝑓 (x) = 𝑓 (𝑥1 , . . . , 𝑥𝑛) =
2𝑛+1∑
𝑞=1

Φ𝑞
©­«
𝑛∑
𝑝=1

𝜙𝑞,𝑝(𝑥𝑝)ª®¬ ,
where 𝑓 : [0, 1]𝑛 → R is a smooth function and Φ𝑞 : R → R, 𝜙𝑞,𝑝 : [0, 1] → R are the splines. This

equation represents a one layer KAN. With this formulation, the general KAN architecture can be

derived for multiple layers. Figure 3.3a visualises the architecture of a one-layer KAN. The edges

between the input neuron 𝑝 and hidden layer neuron 𝑞 represent splines 𝜙𝑝,𝑞 . Inside the hidden layer

neurons, the inner sum is computed. The edges from hidden layer neuron 𝑞 to the output neuron

describe spline Φ𝑞 . Thus, one layer of KAN can be described by a matrix of 1D functions

Φ = {𝜙𝑞,𝑝}, 𝑝 ∈ {1, 2, . . . , 𝑛𝑖𝑛}, 𝑞 = {1, 2, . . . , 𝑛𝑜𝑢𝑡}.

A KAN with multiple layer can be described by stacking these layers. For clearer notation, we write the

𝑖-th neuron in layer 𝑙 as 𝑥𝑙 ,𝑖 , there are 𝑛𝑙 neurons in layer 𝑙, and the outgoing edge from 𝑥𝑙 ,𝑖 to 𝑥𝑙+1, 𝑗 is

𝜙𝑙 , 𝑗 ,𝑖(𝑥𝑙 ,𝑖). Then

𝑥𝑙+1, 𝑗 =

𝑛𝑙∑
𝑖=1

𝜙𝑙 , 𝑗 ,𝑖(𝑥𝑙 ,𝑖)

and the matrix between layers 𝑙 and 𝑙 + 1 can be described as

x𝑙+1 = Φ𝑙x𝑙 (3.1)©­­­­«
𝑥𝑙+1,1

𝑥𝑙+1,2

...
𝑥𝑙+1,𝑛𝑙+1

ª®®®®¬
=

©­­­­«
𝜙𝑙 ,1,1(·) 𝜙𝑙 ,1,2(·) · · · 𝜙𝑙 ,1,𝑛𝑙 (·)
𝜙𝑙 ,2,1(·) 𝜙𝑙 ,2,2(·) · · · 𝜙𝑙 ,2,𝑛𝑙 (·)

...
...

...
𝜙𝑙 ,𝑛𝑙+1

,1(·) 𝜙𝑙 ,𝑛𝑙+1
,𝑖(·) · · · 𝜙𝑙 ,𝑛𝑙+1

,𝑛𝑙 (·)

ª®®®®¬
©­­­­«
𝑥𝑙 ,1
𝑥𝑙 ,2
...

𝑥𝑙 ,𝑛𝑙

ª®®®®¬
. (3.2)

We now consider a KAN with 𝐿 layers (including input and output layers). Suppose we have input

x0 ∈ R𝑛0
, the output will be

𝐾𝐴𝑁(x0) = (Φ𝐿−1 ◦ Φ𝐿−2 ◦ · · · ◦ Φ0)x0 , (3.3)

which is the composition of all layer matrices. A visualisation of a multilayer KAN is provided in Figure

3.3b.
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(a) Network architecture of a Shallow KAN (b) Network architecture of a Deep KAN

Figure 3.3: Network architectures of a Shallow and Deep KAN. [40, p. 1]

We now know how the KAN architecture works, but how can we actually use variable activation

functions on the edges and how can we train them? The activation functions are a sum of a basis

function part and a spline function part.

𝜙(𝑥) = 𝑤𝑏𝑏(𝑥) + 𝑤𝑠 𝑠𝑝𝑙𝑖𝑛𝑒(𝑥)

𝑏(𝑥) = 𝑥

1 + 𝑒−𝑥 .

The 𝑠𝑝𝑙𝑖𝑛𝑒(𝑥) function is parametrized as a linear combination of B-splines 𝐵𝑖(𝑥) (B-splines are piecewise

polynomial functions)

𝑠𝑝𝑙𝑖𝑛𝑒(𝑥) =
∑
𝑖

𝑐𝑖𝐵𝑖(𝑥),

where coefficients 𝑐𝑖 are trainable. These B-splines are defined recursively. A B-spline has degree 𝑝. For

𝑝 = 0, we define

𝐵𝑖 ,𝑝(𝑥) =
{

1 𝑡𝑖 ≤ 𝑥 < 𝑡𝑖+1

0 𝑒𝑙𝑠𝑒.

For higher degree B-splines, we define

𝐵𝑖 ,𝑝(𝑥) =
𝑡 − 𝑡𝑖
𝑡𝑖+𝑝 − 𝑡𝑖

𝐵𝑖 ,𝑝(𝑥) +
𝑡𝑖+𝑝+1 − 𝑡
𝑡𝑖+𝑝+1 − 𝑡𝑖+1

𝐵𝑖 ,𝑝(𝑥).

Our next question is how to train these coefficients 𝑐𝑖 . In the code provided by [40] they have done

this by implementing a choice for either Adaptive Moment Estimation (ADAM) or Limited-memory

Broyden-Fletcher-Goldfarb-Shanno (LBFGS).

Lastly, it is important to note that KANs can also be used to solve PDEs. Similar to the PINNs

mentioned before, KANs include the boundary conditions into the loss function.

3.4. Our contribution 1: COS-CPD network representation
COS-CPD, introduced in [2] and [4], combines the cos method from [5] and CPD for dimension reduction.

In Section 2.8.1, we discussed how a function can be approximated through sine/cosine expansion
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with CPD. In this section, we demonstrate that the COS-CPD method corresponds to a neural network

structure. For a function 𝑓 : R𝑁 → R, we can approximate it as

𝑓 (𝑥1 , 𝑥2 , . . . , 𝑥𝑁 ) ≈
(
𝑁
⊛
𝑛=1

s𝑇𝑛 (𝑥𝑛)A𝑛

)
1,

where s𝑛 are the vectors with sine/cosine terms and A𝑛 are the CPD factor matrices.

Figure 3.4 depicts the network architecture corresponding to the COS-CPD method. Neurons

𝑥1 , . . . , 𝑥𝑁 are the inputs for function 𝑓 . Each input dimension forms its own part of the network

architecture. Later these parts will join for the final function approximation. All black edges represent

weight 1, so all inputs are passed to the neurons s𝑛[𝑘] with weight 1. Inside neurons s𝑛[𝑘] there are

activation functions sin

(
𝑘𝜋 𝑥𝑛−𝑎𝑛

𝑏𝑛−𝑎𝑛

)
.

The next set of neurons are the labelled (s𝑇𝑛A𝑛)[𝑟]. These are linear combinations of the previous

set of neurons with the same dimension 𝑛. Since a vector matrix product is the same as taking linear

combinations, the weights on the red edges are determined by the entries of factor matrices A𝑛 .

In the next step, the dimensions come together by multiplying the 𝑟-th element of each dimension to

find neuron (⊛𝑁
𝑖=1

s𝑇
𝑖

A𝑖)[𝑟], so the activation function is simply the product of inputs.

Lastly, all 𝑟 elements are summed with weight 1 to get the final output 𝑓 (x). Note that the only edges

with trainable weights are the red edges represented by entries of the factor matrices. All other edges

have weight one and are included solely to give a clearer representation of what happens within the

network architecture.
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1
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1
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Figure 3.4: Network architecture of COS-CPD

To actually train the network, initial values must be chosen for all factor matrices. Then, the loss

function can be minimized through ALS.

In later chapters of this thesis, we demonstrate how to adapt COS-CPD to solve an option pricing

PDE. The training procedure for this network is intuitive and straightforward. For instance, consider a

partial derivative term with respect to 𝑥𝑛 . We can take the derivative of vector s𝑛(𝑥𝑛) and use it as the
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new activation function in the second set of neurons. All other blocks of 𝑥𝑚 , 𝑚 ≠ 𝑛 remain unchanged.

Initial and boundary conditions, similar to those in PINNs and KANs, can be incorporated into the loss

function. This thesis considers barrier options, simplifying the problem since the option values on the

boundaries are 0. Therefore, by choosing a sine expansion, the network inherently satisfy the boundary

conditions.

Similarly, the initial condition is also inherently satisfied, because the approximation is created

through expansion on the derivative with respect to time. For initial conditions with value 0, the initial

condition can be seen as a left boundary on the function in the time dimension, which is satisfied for the

same reasons as the asset boundary conditions.

In other situations, when the boundary and initial conditions are not zero, they must be incorporated

into the loss function.

3.4.1. Error analysis
To give a first impression of the performance of the COS-CPD network, we compare it to the KAN

method. [40] has worked out an example of solving the Poisson equation. They find an approximation

for solution function 𝑓 (𝑥, 𝑦) for the problem

𝑓𝑥𝑥 + 𝑓𝑦𝑦 = −2𝜋 sin(𝜋𝑥) sin(𝜋𝑦)
𝑓 (𝑥,−1) = 𝑓 (𝑥, 1) = 𝑓 (−1, 𝑦) = 𝑓 (1, 𝑦) = 0.

The analytic solution for this problem is 𝑓 (𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦).
Since we attain 0 as values on the boundaries, it makes sense to choose a sine expansion on both

dimensions. Therefore, following Section 2.8.1, we find approximation

𝑓 (𝑥, 𝑦) =
(
s1(𝑥)𝑇A1 ⊛ s2(𝑦)𝑇A2

)
1

s𝑖(𝑥𝑖) =
(
sin

(
1𝜋
𝑥𝑖 − 𝑎𝑖
𝑏𝑖 − 𝑎𝑖

)
, · · · , sin

(
𝐾𝜋

𝑥𝑖 − 𝑎𝑖
𝑏𝑖 − 𝑎𝑖

))𝑇
z𝑖(𝑥𝑖) = −

((
1𝜋

𝑏𝑖 − 𝑎𝑖

)
2

sin

(
1𝜋
𝑥𝑖 − 𝑎𝑖
𝑏𝑖 − 𝑎𝑖

)
, · · · ,

(
𝐾𝜋

𝑏𝑖 − 𝑎𝑖

)
2

sin

(
𝐾𝜋

𝑥𝑖 − 𝑎𝑖
𝑏𝑖 − 𝑎𝑖

))𝑇
,

where z𝑖 is the second partial derivative of s𝑖 with respect to 𝑥𝑖 . With this, we can find the CPD

representation of the PDE and vectorized PDE. In Section 7.4 this process will be further explained.

Here we just want to check the accuracy and speed of the COS-CPD method.

𝑃𝐷𝐸(𝑥, 𝑦) = z1(𝑥)𝑇A1A𝑇
2

s2(𝑦) + s𝑇
1
(𝑥)A1A𝑇

2
z2(𝑦) + 2𝜋 sin(𝜋𝑥) sin(𝜋𝑦) = 0

𝑉𝐸𝐶𝑃𝐷𝐸1 =

(
s𝑇

2
(𝑦)A2 ⊗ z𝑇

1
(𝑥) + z𝑇

2
(𝑦)A2 ⊗ s𝑇

1
(𝑥)

)
Vec(A1) + 2𝜋 sin(𝜋𝑥) sin(𝜋𝑦) = 0

𝑉𝐸𝐶𝑃𝐷𝐸2 =

(
z𝑇

1
(𝑥)A1 ⊗ s𝑇

2
(𝑦) + s𝑇

1
(𝑥)A1 ⊗ z𝑇

2
(𝑦)

)
Vec(A2) + 2𝜋 sin(𝜋𝑥) sin(𝜋𝑦) = 0.

Through alternating least squares (ALS), we can determine values for the factor matrices A𝑖 . ALS is a

method that separates the dimensions of the network by freezing the variable weights on edges of the

dimensions not being iterated over and trains one dimension at a time. ALS will be described in further

detail in Section 7.4.The results of COS-CPD and KAN for this problem are shown in Figure 3.5. For

COS-CPD, 𝐾 = 21 was chosen to match the number of points used for KAN. The time COS-CPD took for

training was 0.050075 seconds, whereas KAN took a total of 49 (36 + 13) seconds for both training parts.

As shown in Figure 3.5, both COS-CPD and KAN perform well, with COS-CPD achieving near machine

precision. Additionally, COS-CPD has 0 error on the boundaries due to the choice of sine expansion,

which is a great feature of COS-CPD.

This could also explain the performance difference between the two methods. Whereas COS-CPD

only needs to train the factor matrices to satisfy the internal points, KAN’s training must also satisfy the

boundary points. If the errors on these boundary points are weighed more, the training will be less

accurate on the internal points.

However, it is important to note that this example involves a simple two-dimensional function.

Although CPD aims to mitigate the curse of dimensionality, higher dimensions will still significantly
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increase the computational complexity of the method in the training step. Additionally, the current

example is a periodic function in 𝒞∞
, which exhibits great convergence behaviour for the Fourier based

COS-CPD.

Figure 3.5: COS-CPD and KAN methods for finding a solution to Poisson equation ∇2 𝑓 = −2𝜋 sin(𝜋𝑥) sin(𝜋𝑦)



4
Convergence of the trigonometric

expansion

In this chapter, we examine the convergence behaviour of the trigonometric expansion, resulting

from Fourier series expansion of the first-order derivative of the unknown function compared to the

convergence of the Fourier series expansion directly on the function.

First, we present numerical testing results that suggest not only a regular convergence of the

trigonometric expansion to the original function, but also a faster convergence rate than Fourier series

expansion in some cases. Next, we prove convergence of trigonometric expansion.

4.1. Numerical testing results
We consider two functions to demonstrate the numerical convergence of the trigonometric expansion.

The first, 𝑓 (𝑥) = (𝑥 − 2)3 + 4, is odd around 𝑥 = 2. The second, 𝑔(𝑥) = (𝑥 − 2)4 + 4, is even around

𝑥 = 2. We apply this expansion on the functions on the domain [0, 4]. Then on the boundaries we have

𝑓 ′(0) = 𝑓 ′(4) and 𝑔(0) = 𝑔(4).
We show the convergence and error behaviour of two types of expansions. The first type, which we

will refer to as sine-based, examines the behaviour of Fourier-Sine expansion on the function itself, which

we call 𝑓 𝑠
1
(𝑥). We compare this to the trigonometric expansion, 𝑓 𝑠

2
(𝑥), obtained via integrating out the

Fourier-Cosine expansion on the first-order derivative of the function, and the trigonometric expansion,

𝑓 𝑠
3
(𝑥), resulting from integrating out the Fourier-Sine expansion on the second-order derivative. Then

all approximations have sine functions in the expansion sums. We derive these expansions in A.4 and

find

𝑓 𝑠
1
(𝑥) ≈

𝐾∑
𝑘=1

𝐴𝑘 sin

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)
𝑓 𝑠
2
(𝑥) ≈ 𝑓 (𝑎) + 𝐴0

𝑥 − 𝑎
2

+
𝐾−1∑
𝑘=1

𝐴𝑘 sin

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)
𝑓 𝑠
3
(𝑥) ≈ 𝑓 (𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎) +

𝐾∑
𝑘=1

𝐴𝑘
𝑏 − 𝑎
𝑘𝜋

[
𝑥 − 𝑎 − 𝑏 − 𝑎

𝑘𝜋
sin

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)]
.

The second type of expansions are cosine-based. The expansion on the function is a Fourier-cosine

expansion, trigonometric expansion based on expanding the derivative is done with Fourier-sine, and

trigonometric expansion based on the second derivative uses Fourier-cosine. These expansions are

27
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again derived in A.4 and look like

𝑓 𝑐
1
(𝑥) ≈ 𝐴0

2

+
𝐾−1∑
𝑘=0

𝐴𝑘 cos

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)
𝑓 𝑐
2
(𝑥) ≈ 𝑓 (𝑎) +

𝐾∑
𝑘=1

𝐴𝑘
𝑏 − 𝑎
𝑘𝜋

[
1 − cos

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)]
𝑓 𝑐
3
(𝑥) ≈ 𝑓 (𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎) + 𝐴0

4

(𝑥 − 𝑎)2 +
𝐾−1∑
𝑘=1

𝐴𝑘

(
𝑏 − 𝑎
𝑘𝜋

)
2 [

1 − cos

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)]
.

Note that in both cases, we need to know the function value at the lower boundary, 𝑓 (𝑎), to derive the

trigonometric expansion based on expansion on the first order derivative, and we need 𝑓 (𝑎) and 𝑓 ′(𝑎) to

build the trigonometric expansion through the second order derivative.

4.1.1. Error behaviour of different types of expansions
Before analysing the behaviour of the constructed expansions, we should note that all expansions are

applied on the domain [0, 4], resulting in Gibbs phenomenon at the boundary points {0, 4}. Note that,

as detailed in [3], the Gibbs phenomenon can be greatly alleviated via enlarging the expansion interval

slightly. That is, expanding on the domain [−𝜀, 4 + 𝜀] to avoid Gibbs’ phenomenon on these points.

However, to fairly compare the point-wise convergence including on the boundaries, we choose to

expand the function exactly on its definition interval.

Considering how we constructed the expansions, we would expect direct expansion to suffer the

most from Gibbs phenomenon on these points. Due to its construction, trigonometric expansion should

perfectly match the original function at the left boundary. Trigonometric expansion based on the sec-

ond order derivative should additionally match the derivative of the original function at the left boundary.

Figures 4.1 and 4.2 show that, as expected, direct expansion on the function leads to Gibbs

phenomenon on both boundaries. Trigonometric expansion matches the function’s value at the left

boundary, and if it is based on the second derivative, it matches the derivative’s value at the left

boundary.

On the right boundary, all expansions struggle to match the actual function value and even more so

to match the value of the derivative of the function. The sine-based trigonometric expansion, build with

expansion on the derivative, seems to struggle the least with this, especially for the even function from

Figure 4.2, this trigonometric expansion matches the function value at the right boundary.
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(a) sine-based expansions with 𝐾 = 16 expansion points

(b) cosine-based expansions with 𝐾 = 16 expansion points

(c) sine-based expansions with 𝐾 = 256 expansion points

(d) cosine-based expansions with 𝐾 = 256 expansion points

Figure 4.1: Cosine and sine-based expansions of 𝑓 (𝑥) = (𝑥 − 2)3 + 4. Left plots show the function and approximations. Right plots

show the errors.
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(a) sine-based expansions with 𝐾 = 16 expansion points

(b) cosine-based expansions with 𝐾 = 16 expansion points

(c) sine-based expansions with 𝐾 = 256 expansion points

(d) cosine-based expansions with 𝐾 = 256 expansion points

Figure 4.2: Cosine and sine-based expansions of 𝑓 (𝑥) = (𝑥 − 2)4 + 4. Left plots show the function and approximations. Right plots

show the errors.
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4.1.2. Error convergence of different types of expansions
Next, we study the convergence behaviour of the different expansion types. We examine the mean

square error of 200 points within the domain [0, 4], but exclude the points {0, 4}. At these points, the

Gibbs phenomenon occurring at some methods would give an error that dominates all other errors,

obscuring the actual error convergence. Figure 4.3 presents the error convergence. For sine-based

expansions, trigonometric expansion, built via integrating out the Fourier series expansion of the

first order derivative, seems to have a faster convergence rate, regardless of the type of function. For

cosine-based expansions, this honour goes to the trigonometric expansion based on the second order

derivative. However, both of these expansions do require knowledge of the true function at the left

boundary.

In this thesis, the initial condition is available, which is the value of the function on the left boundary

in the time dimension. Therefore, based on the numerical examples from this section, sine-based

trigonometric expansion, based on expansion of the derivative, would have the best accuracy.

(a) Error convergence of sine-based expansions on odd functions (b) Error convergence of cosine-based expansions on odd functions

(c) Error convergence of sine-based expansions on even functions (d) Error convergence of cosine-based expansions on even functions

Figure 4.3: Convergence behaviour of sine-based and cosine-based expansion types

4.2. Pointwise convergence of trigonometric expansion based on
derivative

In this section we prove that trigonometric expansion, derived from integrating the half range Fourier-

cosine expansion on the derivative of function 𝑓 (sine-based) has pointwise convergence to function 𝑓 .

Let 𝑓 : [0, 𝐿] → R be the continuous function we wish to approximate. Then doing the half range

Fourier-cosine series expansion means that we first create 𝑔 : [−𝐿, 𝐿] → R as the even extension of

𝑓 . Then 𝑔(𝑥) = 𝑔(−𝑥) and 𝑔′(−𝑥) = −𝑔′(𝑥), 𝑥 ∈ (−𝐿, 𝐿)\{0}. If we were to periodically extend 𝑔 to
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ℎ : R → R, we find that ℎ(𝑥) = ℎ(−𝑥) and

ℎ′(−𝑥)
{
𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑, 𝑥 = 𝑘𝐿, 𝑘 ∈ Z
−ℎ′(𝑥), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

We should note that ℎ is a 2𝐿-periodic continuous function and ℎ′ is a 2𝐿-periodic piecewise continuous

function with jumps on 𝑥 = 𝑘𝐿, 𝑘 ∈ Z. ℎ′ is a function of bounded variation and therefore we can apply

the Dirichlet-Jordan test for Fourier series (Theorem 2.4.1). Therefore, the Fourier expansion 𝑆𝑛ℎ
′(𝑥)

converges to ℎ′(𝑥) on all 𝑥 except for the points 𝑥 = 𝑘𝐿, 𝑘 ∈ Z. Since ℎ′ is 2𝐿-periodic, it is sufficient to

look at points 𝑥 = 0 and 𝑥 = 𝐿. For these points we find

𝑆𝑛ℎ
′(𝑥) = lim

𝜀→0

ℎ′(𝑥 + 𝜀) + ℎ′(𝑥 − 𝜀)
2

𝑆𝑛ℎ
′(0) = lim

𝜀→0

ℎ′(𝜀) + ℎ′(−𝜀)
2

= lim

𝜀→0

ℎ′(𝜀) − ℎ′(𝜀)
2

= 0

𝑆𝑛ℎ
′(𝐿) = lim

𝜀→0

ℎ′(𝐿 + 𝜀) + ℎ′(𝐿 − 𝜀)
2

= lim

𝜀→0

ℎ′(𝐿 + 𝜀) + ℎ′(𝐿 − 𝜀 − 2𝐿)
2

= lim

𝜀→0

ℎ′(𝐿 + 𝜀) + ℎ′(−(𝐿 + 𝜀))
2

= lim

𝜀→0

ℎ′(𝐿 + 𝜀) − ℎ′(𝐿 + 𝜀)
2

= 0.

So using the Dirichlet-Jordan test, we find that the Fourier series expansion of ℎ′ converges pointwise to

lim

𝑛→∞
𝑆𝑛ℎ

′(𝑥) =
{

0, 𝑥 = 𝑘𝐿, 𝑘 ∈ Z
ℎ′(𝑥), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

If we consider the domain of interest [0, 𝐿], we converge pointwise to 𝑓 ′(𝑥) for all points except for on

the boundaries, where it converges to 0.

Gibbs phenomenon around boundaries

At the boundaries we suffer from Gibbs phenomenon. Since we have pointwise convergence for all

points near the boundary, we know that the domain where this Gibbs phenomenon causes inaccuracies

is decreasingly small for 𝑛 → ∞. We should, however, also tell something about the magnitude of these

errors.

The first thing we should note is that the jump at these points is of size 𝑗 = | 𝑓 ′(0) − 𝑓 ′(𝐿)|. From the

piecewise continuity of 𝑓 ′(𝑥) and boundedness of 𝑓 , we know that this jump size 𝑗 is also finite.

It is known that the jump size approximated by the Fourier series (and therefore the Gibbs jump size

inaccuracy) is of size 𝑗 ∗ 𝐺𝑐 , where 𝐺𝑐 is the Gibbs constant, equal to 1.8519 . . . [41], [42]. Therefore, the

approximation including its errors around the boundaries can be bounded by some value |𝑆𝑛ℎ′(𝑥)| ≤ 𝑀
for some 𝑀 ∈ R.

Dominated convergence

We consider domain [0, 𝐿], where we find that lim𝑛→∞ 𝑆𝑛ℎ′(𝑥) = 𝑓 ′(𝑥) for all 𝑥 ∈ (0, 𝐿). The set of points

that do not converge pointwise to 𝑓 ′(𝑥), {0, 𝐿}, has measure 𝜇({0, 𝐿}) = 0, since there are finitely many

points. We also know that 𝑓 ′(𝑥) is bounded, so with the Gibbs phenomenon, which is just a percentage

of the jump, we have a bounded functions |𝑆𝑛ℎ′(𝑥)| ≤ 𝑀 for some 𝑀 ∈ R.
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From this we can apply the dominated convergence Theorem 2.9.2 to find

lim

𝑛→∞

∫ 𝑥

0

𝑆𝑛ℎ
′(𝑦)𝑑𝜇 =

∫ 𝑥

0

𝑓 ′(𝑦)𝑑𝜇 = 𝑓 (𝑥) − 𝑓 (0). (4.1)

So the integral of Fourier expansion on the derivative converges to 𝑓 (𝑥) − 𝑓 (0).

𝑓 (𝑥) = 𝑓 (0) + lim

𝑛→∞

∫ 𝑥

0

𝑆𝑛ℎ
′(𝑥)𝑑𝑦. (4.2)



5
Pricing barrier options under GBM

using trigonometric expansion

In this chapter, we mainly repeat the main derivations presented in [3], which constructs a trigonometric

expansion, to approximate the barrier option price. Sections 5.1 to 5.5 replicate results from [3], whereas

Section 5.6 introduces the first improvement to the method.

We start from deriving the pricing PDE for barrier options. From this PDE, we derive another PDE

that the survival ch.f. satisfies, together with the associated boundary and initial conditions. This PDE

is our target to solve, of which the solution is an approximation for the survival ch.f.. Consequently,

the one dimensional COS method is used for getting the barrier option price. This approximation is

then tested against a closed-form solution to determine the error of the method. Section 5.5 introduces

improvements to the approach, which are again tested against the closed-form solution.

Following the idea from Section 5.5, the method is improved even further in Section 5.6.

5.1. The pricing PDE
To find the pricing PDE for an option price 𝑉(𝑡 , 𝑆) with an underlying 𝑆 that follows GBM, we start

from the process dynamics in Equation (2.1)

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 .

We use the martingale approach to derive the pricing PDE. First, use Itô’s lemma on 𝑉(𝑡 , 𝑆) to find

𝑑𝑉𝑡 =
𝜕𝑉

𝜕𝑡
𝑑𝑡 + 𝜕𝑉

𝜕𝑆
𝑑𝑆 + 1

2

𝜕2𝑉

𝜕2𝑆
𝑑𝑆𝑑𝑆

=
𝜕𝑉

𝜕𝑡
𝑑𝑡 + 𝜕𝑉

𝜕𝑆
(𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡) +

1

2

𝜕2𝑉

𝜕2𝑆
𝜎2𝑆2

𝑡 𝑑𝑡

=

(
𝜕𝑉

𝜕𝑡
+ 𝑟𝑆𝑡

𝜕𝑉

𝜕𝑆
+

𝜎2𝑆2

𝑡

2

𝜕2𝑉

𝜕2𝑆

)
𝑑𝑡 + 𝜎𝑆𝑡

𝜕𝑉

𝜕𝑆
𝑑𝑊𝑡

The option pricing theory requires the discounted option price 𝑒−𝑟𝑡𝑉𝑡 to be a martingale, so 𝑑(𝑒−𝑟𝑡𝑉𝑡)
should not have a 𝑑𝑡 term. Use Itô’s product rule on 𝑑(𝑒−𝑟𝑡𝑉𝑡) to find

𝑑
(
𝑒−𝑟𝑡𝑉𝑡

)
= 𝑒−𝑟𝑡𝑑𝑉𝑡 +𝑉𝑡𝑑𝑒−𝑟𝑡 + 𝑑𝑒−𝑟𝑡𝑑𝑉𝑡
= 𝑒−𝑟𝑡𝑑𝑉𝑡 +𝑉𝑡𝑑𝑒−𝑟𝑡

= 𝑒−𝑟𝑡
(
𝜕𝑉

𝜕𝑡
+ 𝑟𝑆 𝜕𝑉

𝜕𝑆
+ 1

2

𝜎2𝑆2
𝜕2𝑉

𝜕2𝑆
− 𝑟𝑉𝑡

)
𝑑𝑡 + 𝑒−𝑟𝑡𝜎𝑆 𝜕𝑉

𝜕𝑆
𝑑𝑊𝑡

Therefore, we find the pricing PDE under GBM:

𝜕𝑉

𝜕𝑡
+ 𝑟𝑆 𝜕𝑉

𝜕𝑆
+ 1

2

𝜎2𝑆2
𝜕2𝑉

𝜕2𝑆
− 𝑟𝑉 = 0. (5.1)

34
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We can also transform to a log-asset price using 𝑋𝑡 = ln(𝑆𝑡) to get

𝜕𝑉

𝜕𝑆
=

𝜕𝑉

𝜕𝑋

𝜕𝑋

𝜕𝑆

=
1

𝑆

𝜕𝑉

𝜕𝑋
𝜕2𝑉

𝜕𝑆2

=
𝜕

𝜕𝑆

(
1

𝑆

𝜕𝑉

𝜕𝑋

)
=

−1

𝑆2

𝜕𝑉

𝜕𝑋
+ 1

𝑆2

𝜕2𝑉

𝜕𝑋2

.

Therefore, the log-asset price PDE is then

𝜕𝑉

𝜕𝑡
+

(
𝑟 − 𝜎2

2

)
𝜕𝑉

𝜕𝑋
+ 1

2

𝜎2
𝜕2𝑉

𝜕2𝑋
− 𝑟𝑉𝑡 = 0. (5.2)

5.1.1. Valuation of barrier options
Barrier options act like European options unless their respective barrier has been breached at some

time before the maturity of the option. We define 𝜏𝐵 to be the stopping time for the first time that

the process 𝑆𝑡 hits barrier 𝐵. For an up-and-out barrier this would be 𝜏𝐵 = inf{𝑡 ≥ 𝑡 : 𝑆𝑡 ≥ 𝐵} or

𝜏𝐵 = inf{𝑡 ≥ 𝑡 : 𝑋𝑡 ≥ 𝑏}, 𝑏 = ln 𝐵 in the log-asset case. We can use this stopping time to write our payoff

function as 𝑓 (𝑆𝑡)1{𝜏𝐵>𝑇}, where 𝑓 (·) is the regular payoff function of a European option. We use the

tower property E(𝑋𝑌) = E(E(𝑋𝑌|𝑌)) to rewrite the option pricing formula

𝑉(𝑡 , 𝑠) = 𝑒−𝑟(𝑇−𝑡)EQ (
𝑓 (𝑆𝑇)1{𝜏𝐵>𝑇}|ℱ𝑡

)
= 𝑒−𝑟(𝑇−𝑡)EQ (

𝑓 (𝑆𝑇)1{𝜏𝐵>𝑇}|𝑆𝑡 = 𝑠
)

= 𝑒−𝑟(𝑇−𝑡)EQ
(
EQ (

𝑓 (𝑆𝑇)1{𝜏𝐵>𝑇}|𝑆𝑡 = 𝑠, 𝜏𝐵 > 𝑇
) )

= 0 · 𝑝(𝜏𝐵 ≤ 𝑇|𝑆𝑡 = 𝑠) + 𝑒−𝑟(𝑇−𝑡)EQ (
𝑓 (𝑆𝑇)|𝑆𝑡 = 𝑠, 𝜏𝐵 > 𝑇

)
𝑝(𝜏𝐵 > 𝑇|𝑆𝑡 = 𝑠)

= 𝑒−𝑟(𝑇−𝑡)EQ (
𝑓 (𝑋𝑇)|𝑋𝑡 = 𝑠, 𝜏𝐵 > 𝑇

)
𝑝(𝜏𝐵 > 𝑇|𝑆𝑡 = 𝑠)

= 𝑒−𝑟(𝑇−𝑡)
∫
R
𝑓 (𝑦)𝑝(𝑦|𝑆𝑡 = 𝑠, 𝜏𝐵 > 𝑇)𝑑𝑦 · 𝑝(𝜏𝐵 > 𝑇|𝑆𝑡 = 𝑠)

= 𝑒−𝑟(𝑇−𝑡)
∫
R
𝑓 (𝑦)𝑝(𝑦, 𝜏𝐵 > 𝑇|𝑆𝑡 = 𝑠)𝑑𝑦.

Here 𝑝(𝑦, 𝜏𝐵 > 𝑇|𝑆𝑡 = 𝑠) is the joint transition density function such that the realized path does not hit

the barrier 𝐵 before maturity 𝑇. In this thesis, this probability density will be called the survival density
function. The corresponding characteristic function will be called the survival characteristic function
(survival ch.f.)

We only evaluate the expectation if the barrier is not breached. Therefore, we can formulate a

localized version of the Feynman-Kac theorem on an interval [𝑎, 𝑏] such that boundary conditions for 𝑉
are established at the barrier.

Theorem 5.1.1 (Localized Feynman-Kac for GBM). Consider a process 𝑆𝑡 whose dynamics follow GBM and
define 𝜏𝑎∨𝑏 = inf{𝑡 ≥ 𝑡 : 𝑆𝑡 ≤ 𝑎 ∨ 𝑆𝑡 ≥ 𝑏} to be the first time that 𝑆𝑡 exits the interval (𝑎, 𝑏). Let 𝑣 : [𝑎, 𝑏] → R
be a continuous payoff function with a compact support (value 0 outside the compact set). Then

𝑉(𝑡 , 𝑠) = 𝑒−𝑟(𝑇−𝑡)EQ
[
𝑣(𝑆𝑇)1{𝜏𝑎∨𝑏>𝑇}

���𝑆𝑡 = 𝑠
]

is the unique, bounded solution of the PDE

𝜕𝑉

𝜕𝑡
+ 𝑟𝑆 𝜕𝑉

𝜕𝑆
+ 1

2

𝜎2𝑆2
𝜕2𝑉

𝜕2𝑆
− 𝑟𝑉 = 0, 𝑎 < 𝑆 < 𝑏, 0 ≤ 𝑡 ≤ 𝑇,
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with boundary and terminal conditions

𝑉(𝑡 , 𝑎) = 0, 0 ≤ 𝑡 ≤ 𝑇

𝑉(𝑡 , 𝑏) = 0, 0 ≤ 𝑡 ≤ 𝑇

𝑉(𝑇, 𝑆) = 𝑣(𝑆𝑇), 𝑎 < 𝑆𝑇 < 𝑏.

Proof. We start with uniqueness of the solution. Let 𝑢(𝑡 , 𝑠) be a solution to the PDE. We also consider

process {𝑀𝑡 , 𝑡 ≥ 0} defined as 𝑀𝑡 = 𝑒−𝑟𝑡𝑢(𝑡 , 𝑠). Using Itô’s lemma, we find

𝑑𝑀𝑡 = 𝑢𝑑𝑒
−𝑟𝑡 + 𝑒−𝑟𝑡𝑑𝑢

= 𝑒−𝑟𝑡
(
𝜕𝑢

𝜕𝑡
+ 𝑟𝑆 𝜕𝑢

𝜕𝑆
+ 1

2

𝜎2𝑆2
𝜕2𝑢

𝜕2𝑆
− 𝑟𝑢

)
𝑑𝑡 + 𝑒−𝑟𝑡𝜎𝑆 𝜕𝑢

𝜕𝑆
𝑑𝑊𝑡 .

Since 𝑢(𝑡 , 𝑠) satisfies the PDE, the 𝑑𝑡 term is equal to 0 and therefore 𝑀𝑡 is a martingale. Since 𝑀𝑡 is

bounded and therefore integrable, we know

𝑀𝑡 = EQ(𝑀𝑇 |ℱ𝑡) = EQ(𝑒−𝑟𝑇𝑢(𝑇, 𝑆)|ℱ𝑡)
= EQ(𝑒−𝑟𝑇𝑣(𝑆𝑇)1{𝜏𝑎∨𝑏>𝑇}|ℱ𝑡)
= 𝑒−𝑟𝑡 𝑒−𝑟(𝑇−𝑡)EQ(𝑣(𝑆𝑇)1{𝜏𝑎∨𝑏>𝑇}|ℱ𝑡)
= 𝑒−𝑟𝑡𝑉(𝑡 , 𝑠).

So we uniquely get 𝑢(𝑡 , 𝑠) = 𝑉(𝑡 , 𝑠).
To show that 𝑉 is indeed a solution of the PDE, we simply check 𝑉(𝑡 , 𝑎), 𝑉(𝑡 , 𝑏), 𝑉(𝑇, 𝑠) to see that it

satisfies the boundary and terminal conditions. 𝑉(𝑡 , 𝑠) is a Q-martingale, since

EQ
[
𝑒−𝑟𝑇𝑉(𝑇, 𝑠)|ℱ𝑡

]
= 𝑒−𝑟𝑡EQ

[
𝑒−𝑟(𝑇−𝑡)𝑣(𝑆𝑇)1{𝜏𝑎∨𝑏>𝑇}|ℱ𝑡

]
= 𝑒−𝑟𝑡𝑉(𝑡 , 𝑠).

Using smoothness of 𝑉 , we can apply Itô’s formula (The martingale approach at the start of Section 5.1)

to show that 𝑉 satisfies the PDE.

From this we can derive the pricing initial boundary value problem (IBVP) for barrier options
𝜕𝑉
𝜕𝑡 + 𝑟𝑆 𝜕𝑉

𝜕𝑆 + 1

2
𝜎2𝑆2 𝜕2𝑉

𝜕2𝑆
− 𝑟𝑉 = 0, 𝑎 < 𝑆 < 𝑏, 0 ≤ 𝑡 ≤ 𝑇

𝑉(𝑡 , 𝑎) = 0, 0 ≤ 𝑡 ≤ 𝑇

𝑉(𝑡 , 𝑏) = 0, 0 ≤ 𝑡 ≤ 𝑇

𝑉(𝑇, 𝑆) = 𝑣(𝑆𝑇), 𝑎 < 𝑆𝑇 < 𝑏.

(5.3)

A similar theorem can be formulated for the log-asset case. Then the PDE will be changed to

Equation (5.2) and its boundaries follow the same log transformation. So 𝐴 = ln(𝑎), 𝐵 = ln(𝑏) would be

the new boundaries with the same 0 value attained at the boundary. Then the IBVP will be
𝜕𝑉
𝜕𝑡 +

(
𝑟 − 𝜎2

2

)
𝜕𝑉
𝜕𝑋 + 1

2
𝜎2 𝜕2𝑉

𝜕2𝑋
− 𝑟𝑉 = 0, 𝐴 < 𝑋 < 𝐵, 0 ≤ 𝑡 ≤ 𝑇

𝑉(𝑡 , 𝐴) = 0, 0 ≤ 𝑡 ≤ 𝑇

𝑉(𝑡 , 𝐵) = 0, 0 ≤ 𝑡 ≤ 𝑇

𝑉(𝑇, 𝑋) = 𝑣(𝑋𝑇), 𝐴 < 𝑋𝑇 < 𝐵.

(5.4)

5.2. The PDE for the survival characteristic function
We have found an IBVP for the barrier option price. The next step is to solve this problem using the

approximation for 𝑉(𝑡 , 𝑆) found in Equation 2.5, derived in Appendix A.1.1.

𝑉2(𝑡 , 𝑠) = 𝑒−𝑟(𝑇−𝑡)
𝐾∑
𝑝=1

𝜙̂𝑝(𝑡 , 𝑠)𝑉𝑝

𝜙̂𝑝(𝑡 , 𝑠) = ℑ
[
𝜙

( 𝑝𝜋

𝑏 − 𝑎 , 𝑡; 𝑠
)
· 𝑒−𝑖𝑝𝜋 𝑎

𝑏−𝑎
]

𝑉𝑝 =
2

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑉(𝑇, 𝑦) sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦.
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We substitute this into the PDE of the IBVP to find

𝜕𝑉2

𝜕𝑡
+ 𝑟𝑆 𝜕𝑉2

𝜕𝑆
+ 1

2

𝜎2𝑆2
𝜕2𝑉2

𝜕2𝑆
− 𝑟𝑉 = 0

𝑟𝑉 + 𝑒−𝑟(𝑇−𝑡)
𝐾∑
𝑝=1

𝜕𝜙̂𝑝(𝑡 , 𝑆)
𝜕𝑡

𝑉𝑝 + 𝑟𝑆𝑒−𝑟(𝑇−𝑡)
𝐾∑
𝑝=1

𝜕𝜙̂𝑝(𝑡 , 𝑆)
𝜕𝑆

𝑉𝑝 +
𝜎2𝑆2

2

𝑒−𝑟(𝑇−𝑡)
𝐾∑
𝑝=1

𝜕2𝜙̂𝑝(𝑡 , 𝑆)
𝜕𝑆2

𝑉𝑝 − 𝑟𝑉 = 0

𝑒−𝑟(𝑇−𝑡)
𝐾∑
𝑝=1

[
𝜕𝜙̂𝑝(𝑡 , 𝑆)

𝜕𝑡
+ 𝑟𝑆

𝜕𝜙̂𝑝(𝑡 , 𝑆)
𝜕𝑆

+ 𝜎2𝑆2

2

𝜕2𝜙̂𝑝(𝑡 , 𝑆)
𝜕𝑆2

]
𝑉𝑝 = 0.

Note that this sum can be seen as the inner product of a vector of payoff coefficients and a vector of the

PDEs of 𝜙̂𝑝 . An inner product attain value zero in three cases: the vectors are independent, or either

vector is the zero vector. Since this holds for all types of payoff coefficients 𝑉𝑝 , this is clearly not a zero

vector or independent from the vector of PDEs. Therefore the only remaining possibility is that the

vector of PDEs is the zero vector, so

𝜕𝜙̂𝑝(𝑡 , 𝑆)
𝜕𝑡

+ 𝑟𝑆
𝜕𝜙̂𝑝(𝑡 , 𝑆)

𝜕𝑆
+ 𝜎2𝑆2

2

𝜕2𝜙̂𝑝(𝑡 , 𝑆)
𝜕𝑆2

= 0

for all 𝑝 ∈ {1, . . . , 𝐾}. We had boundaries 𝑉(𝑡 , 𝑎) = 𝑉(𝑡 , 𝑏) = 0. Therefore, since 𝑉𝑝 is not 0,

𝜙̂𝑝(𝑡 , 𝑎) = 𝜙̂𝑝(𝑡 , 𝑏) = 0. To find the terminal condition 𝜙̂𝑝(𝑇, 𝑆), we observe the Fourier-sine series

expansion of 𝑉2(𝑇, 𝑆)

𝑉2(𝑇, 𝑆) =
𝐾∑
𝑝=1

𝐵𝑝 sin

(
𝑝𝜋

𝑆 − 𝑎
𝑏 − 𝑎

)
𝐵𝑝 =

2

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑉2(𝑇, 𝑦) sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦.

Note that 𝐵𝑝 = 𝑉𝑝 and therefore, 𝜙̂𝑝(𝑇, 𝑆) = sin

(
𝑝𝜋 𝑆−𝑎

𝑏−𝑎
)
. We apply change of variables 𝜏 = 𝑇 − 𝑡 such

that we have an initial condition instead of terminal condition and find IBVP
− 𝜕𝜙̂𝑝

𝜕𝜏 + 𝑟𝑆 𝜕𝜙̂𝑝
𝜕𝑆 + 𝜎2𝑆2

2

𝜕2𝜙̂𝑝
𝜕𝑆2

= 0, 𝑎 < 𝑆 < 𝑏

𝜙̂𝑝(𝜏, 𝑎) = 0

𝜙̂𝑝(𝜏, 𝑏) = 0

𝜙̂𝑝(0, 𝑆) = sin

(
𝑝𝜋 𝑆−𝑎

𝑏−𝑎
)
.

(5.5)

Of course we can use the same approach to derive an IBVP for the log-asset price model
− 𝜕𝜙̂𝑝

𝜕𝜏 +
(
𝑟 − 𝜎2

2

)
𝜕𝜙̂𝑝
𝜕𝑋 + 𝜎2

2

𝜕2𝜙̂𝑝
𝜕𝑋2

= 0, 𝐴 < 𝑋 < 𝐵

𝜙̂𝑝(𝜏, 𝐴) = 0

𝜙̂𝑝(𝜏, 𝐵) = 0

𝜙̂𝑝(0, 𝑋) = sin

(
𝑝𝜋𝑋−𝑎

𝑏−𝑎
)
.

(5.6)

5.3. Approximating the survival characteristic function
Using the one-dimensional COS method, the option price is an inner product of Fourier-cosine coefficients

and the survival density function, which can be accurately approximated by the survival ch.f., and the

coefficients of the payoff function, 𝑉𝑝 . We can derive an analytic expression for 𝑉𝑝 , so we only need

to determine the value of the survival ch.f.’s. The idea, same as in [3], is to resemble the survival ch.f.

using Fourier series expansion.

5.3.1. Choices of expansion
The expansions are based on the half-range Fourier series. The expansion coefficients have analytic

formulas shown in Equations (2.3b) and (2.3a), but we will not repeat these formulas in this section.

This is because we generally do not have the information available to evaluate these analytic formulas.

Therefore, we must determine these coefficients through other means.
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Fourier-sine expansion

The Fourier-sine expansion for 𝑓 : [𝑎, 𝑏] → R is given by

𝑓 (𝑥) ≈
𝐾∑
𝑘=1

𝐵𝑘 sin

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑓 (𝑥)
𝑑𝑥

≈
𝐾∑
𝑘=1

𝐵𝑘
𝑘𝜋
𝑏 − 𝑎 cos

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)
.

Expanding a function using the Fourier-sine expansion would result in the function attaining the value

zero at the boundaries of its domain [𝑎, 𝑏]. Its derivative, however, has no such fixed values at the

boundaries.

Therefore, the Fourier-sine expansion is a great choice for dimensions with Dirichlet boundary

conditions with value zero.

Fourier-cosine expansion

The Fourier-cosine expansion for 𝑓 : [𝑎, 𝑏] → R is given by

𝑓 (𝑥) ≈
𝐾−1∑
𝑘=0

′𝐴𝑘 cos

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑓 (𝑥)
𝑑𝑥

≈ −
𝐾−1∑
𝑘=0

′𝐴𝑘
𝑘𝜋
𝑏 − 𝑎 sin

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)
.

Unlike its sine counterpart, the Fourier-cosine expansion has non-zero values on the boundaries. Its

derivative, however, does attain value zero at its boundaries.

For similar reasoning as its sine counterpart, the Fourier-cosine expansion is best chosen for

dimensions that have Neumann boundary conditions with value zero.

Boundary relaxation

Both types of Fourier expansions are best suited for dimensions with some type of boundary conditions

on both boundaries. If only one of the boundaries were to have boundary condition 0, this would lead

to a less accurate approximation. Boundary relaxation could be a solution for this. Without loss of

generality, we will consider the example Dirichlet boundary conditions 𝑓 (𝑎) = 0, 𝑓 (𝑏) = 𝑐 ≠ 0. The

Dirichlet boundary condition on 𝑥 = 𝑎 would suggest choosing the Fourier-sine expansion. To prevent

our approximation from having 𝑓 (𝑏) = 0, we expand on [𝑎, 𝑏 + 𝜖]. Then 𝑓 (𝑏 + 𝜖) = 0, but since this is

outside the actual range we consider, 𝑓 (𝑏) is not forced to be 0. The expansion would then be

𝑓 (𝑥) ≈
𝐾∑
𝑘=1

𝐵𝑘 sin

(
𝑘𝜋

𝑥 − 𝑎
𝑏 − 𝑎 + 𝜖

)
.

Similar arguments hold for [𝑎 − 𝜖, 𝑏] if we want relaxation on the lower boundary.

Expansion on the first order derivative

A main insight of [3] is that, if the value at the left boundary is known, we can expand on the derivative

of the function. Then through integration, we derive an approximation for the function itself. The

resulting trigonometric expansion is tested in [3] to have better convergence than directly expanding on

the function (as shown in Chapter 4).
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𝑑𝑓 (𝑥)
𝑑𝑥

≈
𝐾∑
𝑘=0

′𝐶𝑘 cos

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)
𝑓 (𝑥) − 𝑓 (𝑎) ≈

∫ 𝑥

𝑎

𝐶0

2

+
𝐾∑
𝑘=1

𝐶𝑘 cos

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

𝑓 (𝑥) − 𝑓 (𝑎) ≈ 𝐶0

2

(𝑥 − 𝑎) +
𝐾∑
𝑘=1

𝐶𝑘
𝑏 − 𝑎
𝑘𝜋

sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑓 (𝑥) ≈ 𝑓 (𝑎) + 𝐶0

2

(𝑥 − 𝑎) +
𝐾∑
𝑘=1

𝐶𝑘
𝑏 − 𝑎
𝑘𝜋

sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
.

We call this trigonometric expansion on 𝑓 (𝑥). In the time dimension 𝑎 = 0, so we automatically satisfy

the initial condition 𝑓 (0).

5.3.2. Asset-dimension
First we consider the asset-dimension. In this dimension we have Dirichlet boundary conditions, which

would suggest a sine series expansion. Then on the boundaries 𝑥 = 𝑎, 𝑥 = 𝑏 we force the function

to attain the value 0. We write the asset-dimension as a function 𝑓1(𝑥) and call the sine expansion

approximation of this function 𝑆𝑁 𝑓1(𝑥).

𝑓1(𝑥) ≈ 𝑆𝑁 𝑓1(𝑥) =
𝐾∑

𝑘1=1

𝐴𝑘1
sin

(
𝑘1𝜋

𝑥 − 𝑎1

𝑏1 − 𝑎1

)
,

where 𝑎1 , 𝑏1 are the bounds of the expansion interval. If we consider the asset price as underlying, we

set 𝑎1 = 𝑎, 𝑏1 = 𝑏 to force the boundary conditions to hold. When considering the log-asset case, we set

𝑎1 = 𝐴 = ln(𝑎), 𝑏1 = 𝐵 = ln(𝑏).

5.3.3. 𝜏-dimension
As shown in [3], a sine or cosine expansion for 𝜙̂𝑝 in 𝜏-dimension is not suitable. Therefore, we use a

cosine expansion on the derivative with respect to 𝜏. Let us write 𝑓2(𝜏) as the function in the 𝜏-dimension.

Then 𝐶𝑁 𝑓
′
2
(𝜏) is the cosine expansion of the 𝜏 derivative. From this, we can use the fundamental

theorem of calculus to find a suitable expansion for 𝑓2(𝜏).

𝑓 ′
2
(𝜏) ≈ 𝐶𝑁 𝑓

′
2
(𝜏) =

𝐾−1∑
𝑘2=0

′𝐴𝑘2
cos

(
𝑘2𝜋

𝜏 − 𝑎2

𝑏2 − 𝑎2

)
𝑇𝑁 𝑓2(𝜏) − 𝑓2(𝑎2) =

1

2

𝐴0(𝜏 − 𝑎2) +
𝐾−1∑
𝑘2=1

𝐴𝑘2

𝑏2 − 𝑎2

𝑘2𝜋
sin

(
𝑘2𝜋

𝜏 − 𝑎2

𝑏2 − 𝑎2

)
𝑇𝑁 𝑓2(𝜏) =

1

2

𝐴0(𝜏 − 𝑎2) + 𝑓2(𝑎2) +
𝐾−1∑
𝑘2=1

𝐴𝑘2

𝑏2 − 𝑎2

𝑘2𝜋
sin

(
𝑘2𝜋

𝜏 − 𝑎2

𝑏2 − 𝑎2

)
,

where 𝑎2 = 0. With this trigonometric expansion, we automatically satisfy initial condition 𝑇𝑁 𝑓2(0) =
𝑓2(0)

5.3.4. Trigonometric expansion of 𝜙̂𝑝
We now choose to expand

𝜕𝜙̂𝑝
𝜕𝜏 in the way we just described. This results in

𝜕𝜙̂𝑝

𝜕𝜏
(𝜏, 𝑥) ≈

𝐾∑
𝑘1=1

𝐾−1∑
𝑘2=0

′𝐴𝑘1 ,𝑘2
cos

(
𝑘2𝜋

𝜏 − 𝑎2

𝑏2 − 𝑎2

)
sin

(
𝑘1𝜋

𝑥 − 𝑎1

𝑏1 − 𝑎1

)
,
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where 𝑥 can be asset price 𝑆 if 𝑎1 = 𝑎, 𝑏1 = 𝑏 or log-asset price 𝑋 if 𝑎1 = 𝐴, 𝑏1 = 𝐵. Like before, we use

the fundamental theorem of calculus to find

𝜙̂𝑝(𝜏, 𝑥) ≈ 𝑇𝐾 𝜙̂𝑝(𝜏, 𝑥) =
𝐾∑

𝑘1=1

𝐾−1∑
𝑘2=1

𝐴𝑘1 ,𝑘2

𝑏2 − 𝑎2

𝑘2𝜋
sin

(
𝑘2𝜋

𝜏 − 𝑎2

𝑏2 − 𝑎2

)
sin

(
𝑘1𝜋

𝑥 − 𝑎1

𝑏1 − 𝑎1

)
+

𝐾∑
𝑘1=1

𝐴𝑘1 ,0
1

2

(𝜏 − 𝑎2) sin

(
𝑘1𝜋

𝑥 − 𝑎1

𝑏1 − 𝑎1

)
+ 𝜙̂𝑝(𝑎2 , 𝑥).

The only time at which we have information is the initial time 𝜏 = 0. Therefore, we can use this 𝑎2 = 0 to

further evaluate the trigonometric expansion

𝑇𝐾 𝜙̂𝑝(𝜏, 𝑥) =
𝐾∑

𝑘1=1

𝐾−1∑
𝑘2=1

𝐴𝑘1 ,𝑘2

𝑏2 − 𝑎2

𝑘2𝜋
sin

(
𝑘2𝜋

𝜏 − 𝑎2

𝑏2 − 𝑎2

)
sin

(
𝑘1𝜋

𝑥 − 𝑎1

𝑏1 − 𝑎1

)
+

𝐾∑
𝑘1=1

𝐴𝑘1 ,0
𝜏
2

sin

(
𝑘1𝜋

𝑥 − 𝑎1

𝑏1 − 𝑎1

)
+ sin

(
𝑝𝜋

𝑥 − 𝑎1

𝑏1 − 𝑎1

)
, 𝑎2 = 0.

(5.7)

We substitute this into the PDE of IBVP 5.5 or 5.6. By construction, the trigonometric expansion

automatically satisfies the boundary conditions and initial condition of both IBVPs. Before we substitute

into the PDE, we first define 5 vectors that will aid us with calculating and representing the equation.

We introduce row vectors v1 and v2 that represent the 𝑥 terms for different values of 𝑘1 and the 𝜏
terms for different values of 𝑘2 respectively. We also create row vectors z1 , z2 , z3 that are the partial

derivative of v1 to 𝑥, the partial derivative of v2 to 𝜏 and the second partial derivative of v1 to 𝑥,

respectively.

v1 =

(
sin

(
𝜋 𝑥−𝑎1

𝑏1−𝑎1

)
sin

(
2𝜋 𝑥−𝑎1

𝑏1−𝑎1

)
· · · sin

(
𝑁𝜋 𝑥−𝑎1

𝑏1−𝑎1

))
v2 =

(
1

2
𝜏 𝑏2−𝑎2

𝜋 sin

(
𝜋 𝜏−𝑎2

𝑏2−𝑎2

)
· · · 𝑏2−𝑎2

(𝑁−1)𝜋 sin

(
(𝑁 − 1)𝜋 𝜏−𝑎2

𝑏2−𝑎2

))
z1 =

(
𝜋

𝑏1−𝑎1

cos

(
𝜋 𝑥−𝑎1

𝑏1−𝑎1

)
2𝜋

𝑏1−𝑎1

cos

(
2𝜋 𝑥−𝑎1

𝑏1−𝑎1

)
· · · 𝑁𝜋

𝑏1−𝑎1

cos

(
𝑁𝜋 𝑥−𝑎1

𝑏1−𝑎1

))
z2 =

(
1

2
cos

(
𝜋 𝜏−𝑎2

𝑏2−𝑎2

)
· · · cos

(
(𝑁 − 1)𝜋 𝜏−𝑎2

𝑏2−𝑎2

))
z3 = −

((
𝜋

𝑏1−𝑎1

)
2

sin

(
𝜋 𝑥−𝑎1

𝑏1−𝑎1

) (
2𝜋

𝑏1−𝑎1

)
2

sin

(
2𝜋 𝑥−𝑎1

𝑏1−𝑎1

)
· · ·

(
𝑁𝜋
𝑏1−𝑎1

)
2

sin

(
𝑁𝜋 𝑥−𝑎1

𝑏1−𝑎1

))
.

(5.8)

We show matrix 𝐴 with the expansion coefficients and show the vectorized form of this matrix, since we

will need this soon.

𝐴 =

©­­­­«
𝐴1,0 𝐴1,1 · · · 𝐴1,𝐾−1

𝐴2,0 𝐴2,1 · · · 𝐴2,𝐾−1

...
...

. . .
...

𝐴𝐾,0 𝐴𝐾,1 · · · 𝐴𝐾,𝐾−1

ª®®®®¬
vec(𝐴) =

©­­­­«
𝐴[:, 0]
𝐴[:, 1]
...

𝐴[:, 𝐾 − 1]

ª®®®®¬
,

where 𝐴[:, 𝑘] is the 𝑘-th column of 𝐴. With these vectors and matrix we can give easy formulations for

the partial derivatives of 𝜙̂𝑝

𝜕𝜙̂𝑝

𝜕𝜏
= v1𝐴z𝑇

2

𝜕𝜙̂𝑝

𝜕𝑥
= z1𝐴v𝑇

2
+ 𝑝𝜋

𝑏1 − 𝑎1

cos

(
𝑝𝜋

𝑥 − 𝑎1

𝑏1 − 𝑎1

)
𝜕2𝜙̂𝑝

𝜕𝑥2

= z3𝐴v𝑇
2
−

(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑥 − 𝑎1

𝑏1 − 𝑎1

)
,
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where 𝑥 represents the asset or log-asset price.

For higher order tensors we are not able to represent these partial derivatives in the form of a matrix

vector multiplications. We can use our vectorized matrix 𝐴 and the Kronecker product for a different

formulation for the partial derivatives. Note that the order of the vectors in the Kronecker product is

dependent on the vectorization order chosen for A.

𝜕𝜙̂𝑝

𝜕𝜏
= (z2 ⊗ v1)vec(𝐴)

𝜕𝜙̂𝑝

𝜕𝑋
= (v2 ⊗ z1)vec(𝐴) + 𝑝𝜋

𝑏1 − 𝑎1

cos

(
𝑝𝜋

𝑥 − 𝑎1

𝑏1 − 𝑎1

)
𝜕2𝜙̂𝑝

𝜕𝑋2

= (v2 ⊗ z3)vec(𝐴) −
(

𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑥 − 𝑎1

𝑏1 − 𝑎1

)
.

By substituting this into the PDE and plugging in training points 𝜏 and 𝑥, where we evaluate this PDE,

we find a linear system of equations in which the coefficients of 𝐴 are the unknowns. In [3] it has been

investigated that 𝑀 equidistant training points give slightly better results than a non-equidistant grid,

where 𝑀 = 𝐾, with 𝐾 the number of expansion terms. We use the previously defined vectors to define

several matrices. We let 𝑥𝑚 and 𝜏𝑙 be the training points and 𝑚, 𝑙 = 1, . . . , 𝑀. We define the matrices as

V1[𝑚, :] =
(
sin

(
𝜋 𝑥𝑚−𝑎1

𝑏1−𝑎1

)
sin

(
2𝜋 𝑥𝑚−𝑎1

𝑏1−𝑎1

)
· · · sin

(
𝑁𝜋 𝑥𝑚−𝑎1

𝑏1−𝑎1

))
.

Matrices V2 ,Z1 ,Z2 ,Z3 are defined equivalently. Then at training point (𝑥𝑚 , 𝜏𝑙) we have equation(
(Z2[𝑙 , :] ⊗ V1[𝑚, :]) − V2[𝑙 , :] ⊗

[
𝑟𝑆𝑚Z1[𝑚, :] +

𝜎2𝑆2

𝑚

2

Z3[𝑚, :]
] )

vec(𝐴)

= 𝑟𝑆𝑚
𝑝𝜋

𝑏1 − 𝑎1

cos

(
𝑝𝜋

𝑆𝑚 − 𝑎1

𝑏1 − 𝑎1

)
− 𝜎2𝑆2

𝑚

2

(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑆𝑚 − 𝑎1

𝑏1 − 𝑎1

) (5.9)

for the asset case or(
(Z2[𝑙 , :] ⊗ V1[𝑚, :]) − V2[𝑙 , :] ⊗

[(
𝑟 − 𝜎2

2

)
Z1[𝑚, :] +

𝜎2

2

Z3[𝑚, :]
] )

vec(𝐴)

=

(
𝑟 − 𝜎2

2

)
𝑝𝜋

𝑏1 − 𝑎1

cos

(
𝑝𝜋

𝑥𝑚 − 𝑎1

𝑏1 − 𝑎1

)
− 𝜎2

2

(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑥𝑚 − 𝑎1

𝑏1 − 𝑎1

) (5.10)

for the log-asset case.

It is worth noting, that this construction is very similar to the collocation method, but with one

distinct difference: existing methods in literature apply finite difference in the time dimension, whereas

we expand on the time dimension using the trigonometric expansion.

5.4. Results for the GBM log-asset model
In this section, we replicate results from [3] for the GBM model, where we fix 𝐾 = 𝑀 = 64. We consider

an up-and-out barrier option with strike price 𝐸 = 90 and barrier 𝐵 = 120. Therefore, 𝑏1 = ln(120)
and we choose 𝑎1 = ln(40) as a lower bound such that P(𝑥𝑡 < 𝑎1) ≈ 0. We take model parameters

(𝑟, 𝜎) = (0.1, 0.1) and evaluate the option prices at 𝜏 ∈ {0, 0.1, 0.25, 0.5, 1}. We compare the prices

obtained with trigonometric expansion to the prices from the benchmark Solution (2.8). The results for

the log-asset model are shown in Figure 5.1.

The relative errors,

|𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛−𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘|
𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 , are set to be 0 whenever the benchmark option price is

lower than 10
−1

. Below that threshold, it is more informative to look at the absolute errors. We can see

that for options in the money, the relative error barely exceeds 10
−2

.

There are two cases where we exceed this threshold, namely 𝜏 = 0 with any 𝑆0 and 𝑆0 > 115 for all 𝜏.

To see why this happened we have to go back to Equation 5.7 and substitute 𝜏 = 0, which yields

𝑇𝐾 𝜙̂𝑝(0, 𝑥) = sin

(
𝑝𝜋

𝑥 − 𝑎1

𝑏1 − 𝑎1

)
.
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Next, we also look at the approximation for the option price in Equation 2.5. If we substitute 𝜏 = 0 here

(𝑡 = 𝑇), we find

𝑉2(𝑇, 𝑋) =
𝑁∑
𝑝=1

𝜙̂𝑝(𝑡 , 𝑋)𝑉𝑝

𝜙̂𝑝(𝑇, 𝑋) ≈ sin

(
𝑝𝜋

𝑥 − 𝑎1

𝑏1 − 𝑎1

)
𝑉𝑝 =

2

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑉(𝑇, 𝑦) sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦,

which is simply a Fourier-sine series expansion on 𝑉(𝑇, 𝑥). From this, we can make two conclusions.

Firstly, the approximation of 𝜙̂𝑝 at 𝜏 = 0 is independent of the expansion coefficients and, therefore,

also from the method used to train these coefficients. Secondly, Since the payoff function 𝑉(𝑇, 𝑥)
is non-continuous as a periodic function at the barrier, we experience the Gibbs phenomenon here.

Furthermore, we have a non-continuous derivative at the strike price.

Since our approximation 𝑇𝐾 𝜙̂𝑝(𝜏, 𝑥) is the sum of this initial sine term and a multidimensional sum

of the expansion coefficients multiplied with sine or cosine functions, we expect the errors in this initial

condition to also effect the approximate option price at other times to maturity. This is observed in

the absolute errors in Subfigure 5.1a, which shows that errors significantly increase when the initial

asset price is above the strike price, especially near the barrier. This behaviour also appears in other

subfigures for a larger time to maturity, although it smoothens for larger maturities.
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(a) Option price, absolute error and relative error for 𝜏 = 0

(b) Option price, absolute error and relative error for 𝜏 = 0.1

(c) Option price, absolute error and relative error for 𝜏 = 0.25

(d) Option price, absolute error and relative error for 𝜏 = 0.5

(e) Option price, absolute error and relative error for 𝜏 = 1

Figure 5.1: Option price and errors for various 𝜏 using trigonometric expansion vs closed-form solution for an up-and-out barrier

option with parameters (𝑟, 𝜎, 𝐸, 𝐵) = (0.1, 0.1, 90, 120) under GBM log-asset dynamics.
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5.5. Matching the mass of the survival pdf
The coefficients of the trigonometric expansion are found by a supervised machine learning method, in

which we insert training points into the PDE and then solve the resulting linear system.

The survival pdf corresponding to a barrier option has concentrated mass towards the barrier. [3]

chose an equidistant grid in the log-asset domain, but if we translate it back to the asset-domain, we

can see that these points are denser near the lower range of asset points. Figure 5.2 shows how an

equidistant grid in the log-asset domain is translated to the corresponding points in the asset domain.

We can clearly see that the translated points are more denser for lower values of the asset price,

which is opposite of where the concentrated mass of the survival pdf lies. Therefore, [3] proposed to

construct the trigonometric expansion in the asset domain, and consequently use equidistant training

points in the asset domain, to better capture the concentrated mass of the survival pdf in the training

step. We already found the linear system for the asset domain in Equation 5.9.

Figure 5.2: Training point density on the asset domain for equidistant points 𝑆 and points 𝑦 = ln(𝑆) that were equidistant on the

log-asset domain.

5.5.1. Results for the GBM model
Using the same parameters as for the log-asset model, we now solve the asset model. We again fix

𝐾 = 𝑀 = 64 and use parameters (𝑟, 𝜎, 𝐸, 𝐵) = (0.1, 0.1, 90, 120) and 𝜏 ∈ {0, 0.1, 0.25, 0.5, 1}. The results

are shown in Figure 5.3. For each time to maturity, 𝜏, we can see that the accuracy is better after we

move from the log-asset to the asset domain, but the error patterns are very similar: for initial asset

prices near the barrier, we have larger errors and for 𝜏 = 0 we still suffer from the Gibbs phenomenon.

We also compare the results with those from a high-order finite difference scheme [17] and an

uninterpretable neural network [23] in Table 5.1. We should note that the methods all assume GBM

dynamics, but with different parameters and barrier options with different strike prices and barrier

levels. Therefore, the comparison is done through the maximum relative error
𝑒𝑟𝑟𝑜𝑟
𝐸 . We also split

the metric into two parts. The first, 𝑀𝑅𝐸1, considers relative error near-the-money, which we take

as [75, 105] in our case. The second, 𝑀𝑅𝐸2, considers errors far-from-the money, which we take as

[105, 120].
The trigonometric expansion has similar order errors to the high order finite difference method from

[17]. The trigonometric expansion has the advantage of the calculating time being offline. Whenever we

want to calculate the option price after training the model, the calculations are almost instant.

The neural network from [23] has slightly lower relative errors, but it should be noted that they do

not have an interpretable neural network. Furthermore, we have no information on the time it takes to

train their model.

Method 𝑀𝑅𝐸1 𝑀𝑅𝐸2 Time taken (seconds)

Trigonometric expansion (asset model, 𝐾 = 64) 10
−3

10
−2

194 (offline)

Neural network [23] 10
−4

10
−3

- (offline)

High order finite difference [17] 10
−3

10
−3

0.0087

Table 5.1: Performance for different methods of barrier option pricing under GBM. We consider the Maximum relative error(
𝑒𝑟𝑟𝑜𝑟

E

)
for non-0 time to maturity. 𝑀𝑅𝐸1 and 𝑀𝑅𝐸2 are near-the-money (𝑆0 ∈ [75, 105] for trigonometric expansion) and

far-out-of-the-money respectively.
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(a) Option price, absolute error and relative error for 𝜏 = 0

(b) Option price, absolute error and relative error for 𝜏 = 0.1

(c) Option price, absolute error and relative error for 𝜏 = 0.25

(d) Option price, absolute error and relative error for 𝜏 = 0.5

(e) Option price, absolute error and relative error for 𝜏 = 1

Figure 5.3: Option price and errors for various 𝜏 using trigonometric expansion vs closed-form solution for an up-and-out barrier

option with parameters (𝑟, 𝜎, 𝐸, 𝐵) = (0.1, 0.1, 90, 120) under GBM asset dynamics.
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5.6. Our contribution 2: Inverted Log-Asset model
In Section 5.5 it is shown that the accuracy of the model is improved when using an equidistant grid of

points in the asset domain in the training step, compared to an equidistant grid in the log-asset domain.

The reasoning for this, is that the survival pdf has more mass near the barrier compared to relatively

low asset prices.

The previous results lead to an insight: if we apply a different change of variables, such that an

equidistant grid in that domain leads to a grid slightly denser near the barrier, this might improve the

method even further. Figure 5.4 shows translated grid in the asset domain from an equidistant grid in

other domains. Two new domains have been included and investigated. The inverted-log-asset domain

and the exponential-asset domain, respectively defined as

𝑦 = ln(𝐵 + 𝜆 − 𝑆)
𝑦 = 𝑒𝜆𝑆 ,

where 𝜆 > 0 is a parameter related to how dense the points are near the barrier. As seen in Figure 5.4,

for the inverted-log-asset domain, a low 𝜆 means high density near the barrier and a high 𝜆 means a

more equidistant grid in the asset domain. For the exponential-asset domain, low 𝜆 is more spread out

and high 𝜆 results in a higher density near the barrier. Later we look into the choice of 𝜆, but first we

must decide on which transformation to use.

Figure 5.4: Distribution of 𝑀 = 64 training points on the asset domain for equidistant grids on other domains.

5.6.1. Choosing a change of variables
𝑦 = 𝑒𝜆𝑆 is an easier function to use for change of variables for the PDE and doesn’t require the extra

parameter 𝐵, but for our analytically solved integral 𝜒𝑝(𝑐, 𝑑), we would get

𝜒𝑝(𝑐, 𝑑) =
∫ 𝑑

𝑐

1

𝜆
ln(𝑦) sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦,

which is very hard to solve analytically.

For 𝑦 = ln(𝐵 + 𝜆 − 𝑆), the change of variables for the PDE is slightly more complex, but for 𝜒𝑝(𝑐, 𝑑)
we have

𝜒𝑝(𝑐, 𝑑) =
∫ 𝑑

𝑐

(𝐵 + 𝜆 − 𝑒𝑦) sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

= (𝐵 + 𝜆)
∫ 𝑑

𝑐

sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦 −

∫ 𝑑

𝑐

𝑒𝑦 sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦,

which is analytically solvable. Therefore, we choose the form 𝑦 = ln(𝐵 + 𝜆 − 𝑆).
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5.6.2. Choice of 𝜆
Next, we determine which value of 𝜆 to use. We consider a lower bound 𝐴 and upper bound 𝐵 for the

asset domain. The training points are taken from an equidistant grid between 𝑎 = ln(𝐵 + 𝜆 − 𝐵) and

𝑏 = ln(𝐵 + 𝜆 − 𝐴). This means that the points 𝑦𝑖 , where 𝑖 = 0, . . . , 𝑀 − 1, are defined as

𝑦𝑖 = 𝑎 + 𝑖(𝑏 − 𝑎)
𝑀 − 1

= ln(𝜆) + 𝑖

𝑀 − 1

(ln(𝐵 + 𝜆 − 𝐴) − ln(𝜆)).

These would be represented on the asset domain as

𝑆𝑖 = 𝐵 + 𝜆 − 𝑒𝑦𝑖

= 𝐵 + 𝜆 − 𝑒 ln(𝜆)𝑒
𝑖

𝑀−1
(ln(𝐵+𝜆−𝐴)−ln(𝜆))

= 𝐵 + 𝜆 − 𝜆𝑒
𝑖

𝑀−1
(ln(𝐵+𝜆−𝐴)−ln(𝜆))

The distance between points on the asset domain would be

𝑆𝑖+1 − 𝑆𝑖 = 𝐵 + 𝜆 − 𝜆𝑒
𝑖+1

𝑀−1
(ln(𝐵+𝜆−𝐴)−ln(𝜆)) − 𝐵 − 𝜆 + 𝜆𝑒

𝑖
𝑀−1

(ln(𝐵+𝜆−𝐴)−ln(𝜆))

= 𝜆
(
𝑒

𝑖
𝑀−1

(ln(𝐵+𝜆−𝐴)−ln(𝜆)) − 𝑒 𝑖+1

𝑀−1
(ln(𝐵+𝜆−𝐴)−ln(𝜆))

)
= 𝜆𝑒

𝑖
𝑀−1

(ln(𝐵+𝜆−𝐴)−ln(𝜆))
(
1 − 𝑒 1

𝑀−1
(ln(𝐵+𝜆−𝐴)−ln(𝜆))

)
= 𝜆𝑒

𝑖
𝑀−1

(ln(𝐵+𝜆−𝐴)−ln(𝜆))
(
1 −

(
𝑒 ln(𝐵+𝜆−𝐴)

𝑒 ln(𝜆)

) 1

𝑀−1

)
= 𝜆𝑒

𝑖
𝑀−1

(ln(𝐵+𝜆−𝐴)−ln(𝜆))
(
1 −

(
𝐵 + 𝜆 − 𝐴

𝜆

) 1

𝑀−1

)
Note that for 𝜆 → ∞, we find that ln(𝐵 + 𝜆 − 𝐴) → ln(𝜆) and therefore,

𝑒
𝑖

𝑀−1
(ln(𝐵+𝜆−𝐴)−ln(𝜆)) ≈ 1.

Then for large 𝜆, 𝑆𝑖+1 − 𝑆𝑖 is no longer dependent on 𝑖 and therefore, there must be an equidistant grid

in the asset domain. Since the left and right boundary are fixed, we find that this grid must coincide

with the training points from an equidistant grid in the asset domain. For smaller values of 𝜆, however,

there is still a dependency on 𝑖.
The ’best’ choice of 𝜆 would depend on many factors like the time to maturity and the interest rate,

since these influence the survival pdf of the barrier option. For larger maturities, we want a more evenly

spaced grid and for very small 𝜏, it might be better to use smaller 𝜆. We construct an equation that can

solve for optimal 𝜆 for a given proportion 𝑝 of points that should be to the right of an asset price 𝑃. For

example, say we have bounds (𝑎, 𝑏) = (40, 120), 𝑀 = 32 points and we want 𝑝 = 0.75 of the points to be

on the left of 𝑃 = 65. Then we want 𝑆𝑖 = 𝑃, where 𝑖 = 0.25 ∗ 32 = 8. Note that this transformation does

not allow us to have a grid that is denser on the left side, and therefore we find a bound for 𝑝

𝑝 ≥ 1 − 𝑃 − 𝑎
𝑏 − 𝑎 .

Now we can introduce the equation that would solve for 𝜆

ln(𝑏 + 𝜆 − 𝑃) = ln(𝑏 + 𝜆 − 𝑏) + 𝑝
[
ln(𝑏 + 𝜆 − 𝑎) − ln(𝑏 + 𝜆 − 𝑏)

]
ln(𝑏 + 𝜆 − 𝑃) = ln(𝜆) + 𝑝

[
ln(𝑏 + 𝜆 − 𝑎) − ln(𝜆)

]
𝑏 + 𝜆 − 𝑃 = 𝜆

(
𝑏 + 𝜆 − 𝑎

𝜆

)𝑝
. (5.11)

This does not have a closed form solution, but can be solved numerically. Furthermore, the choice of 𝑝
and 𝑃 have high influence to the model and these have to be chosen based on personal insight.
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5.6.3. Applying change of variables to the PDE
We let 𝑦 = log(𝐵 + 𝜆 − 𝑆), which means 𝑆 = 𝐵 + 𝜆 − 𝑒𝑦 then

𝜕𝑦

𝜕𝑆
=

−1

𝐵 + 𝜆 − 𝑆
𝜕2𝑦

𝜕𝑆2

=
−1

(𝐵 + 𝜆 − 𝑆)2
𝜕𝑉

𝜕𝑆
=

𝜕𝑉

𝜕𝑦

𝜕𝑦

𝜕𝑆
=

−1

𝐵 + 𝜆 − 𝑆
𝜕𝑉

𝜕𝑦

= −𝑒−𝑦 𝜕𝑉
𝜕𝑦

𝜕2𝑉

𝜕𝑆2

=
𝜕𝑉

𝜕𝑆

(
−1

𝐵 + 𝜆 − 𝑆
𝜕𝑉

𝜕𝑦

)
=

−1

(𝐵 + 𝜆 − 𝑆)2
𝜕𝑉

𝜕𝑦
+ 1

(𝐵 + 𝜆 − 𝑆)2
𝜕2𝑉

𝜕𝑦2

= −𝑒−2𝑦 𝜕𝑉

𝜕𝑦
+ 𝑒−2𝑦 𝜕

2𝑉

𝜕𝑦2

.

Plugging this into our PDE yields:

𝜕𝑉

𝜕𝑡
+ 𝑟𝑆 𝜕𝑉

𝜕𝑆
+ 1

2

𝜎2𝑆2
𝜕2𝑉

𝜕𝑆2

− 𝑟𝑉 = 0

𝜕𝑉

𝜕𝑡
−

(
𝑟𝑆𝑒−𝑦 + 𝑆2𝜎2𝑒−2𝑦

2

)
𝜕𝑉

𝜕𝑦
+ 𝑆2𝜎2𝑒−2𝑦

2

𝜕2𝑉

𝜕𝑦2

− 𝑟𝑉 = 0

𝜕𝑉

𝜕𝑡
− (𝐵 + 𝜆 − 𝑒𝑦)

𝑒𝑦

(
𝑟 + (𝐵 + 𝜆 − 𝑒𝑦)𝜎

2

2

𝑒−𝑦
)
𝜕𝑉

𝜕𝑦
+ (𝐵 + 𝜆 − 𝑒𝑦)2𝜎2𝑒−2𝑦

2

𝜕2𝑉

𝜕𝑦2

− 𝑟𝑉 = 0.

We again use the approximation

𝑉(𝑡 , 𝑦) ≈ 𝑉2(𝑡 , 𝑦) = 𝑒−𝑟(𝑇−𝑡)
𝐾∑
𝑝=1

𝜙̂𝑝(𝑡 , 𝑦)𝑉𝑝 ,

and identical arguments as before to yield


− 𝜕𝜙̂𝑝

𝜕𝜏 − (𝐵+𝜆−𝑒𝑦 )
𝑒𝑦

(
𝑟 + (𝐵 + 𝜆 − 𝑒𝑦) 𝜎2

2
𝑒−𝑦

)
𝜕𝜙̂𝑝
𝜕𝑦 + (𝐵+𝜆−𝑒𝑦 )2𝜎2𝑒−2𝑦

2

𝜕2𝜙̂𝑝
𝜕𝑦2

= 0, 𝑎 < 𝑦 < 𝑏

𝜙̂𝑝(𝜏, 𝑎) = 0

𝜙̂𝑝(𝜏, 𝑏) = 0

𝜙̂𝑝(0, 𝑦) = sin

(
𝑝𝜋

𝑦−𝑎
𝑏−𝑎

)
,

(5.12)

where 𝑎 = log(𝐵 + 𝜆 − 𝑏𝑎𝑠𝑠𝑒𝑡), 𝑏 = log(𝐵 + 𝜆 − 𝑎𝑎𝑠𝑠𝑒𝑡), so the lower and upper boundaries switch due to

the −𝑆 in the transformation. Of course, for barrier options, 𝑎𝑎𝑠𝑠𝑒𝑡 and 𝑏𝑎𝑠𝑠𝑒𝑡 are the lower and upper

barrier of the option.

As noted before, we can analytically solve 𝑉𝑝 . Equations (A.2) and (A.3) derived in Appendix A are

the closed-form solutions.
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Ψ𝑝(𝑐, 𝑑) =
∫ 𝑑

𝑐

sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

=

{
𝑏−𝑎
𝑝𝜋

[
cos

(
𝑝𝜋 𝑐−𝑎

𝑏−𝑎
)
− cos

(
𝑝𝜋 𝑑−𝑎

𝑏−𝑎
) ]
, 𝑝 ≠ 0

0 𝑝 = 0

𝜒
𝐿𝑜𝑔𝐴𝑠𝑠𝑒𝑡
𝑝 (𝑐, 𝑑) =

∫ 𝑑

𝑐

𝑒𝑦 sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

=
1

1 +
( 𝑝𝜋
𝑏−𝑎

)
2

[
𝑒𝑑 sin

(
𝑝𝜋

𝑑 − 𝑎
𝑏 − 𝑎

)
− 𝑒 𝑐 sin

(
𝑝𝜋

𝑐 − 𝑎
𝑏 − 𝑎

)
− 𝑝𝜋

𝑏 − 𝑎 𝑒
𝑑

cos

(
𝑝𝜋

𝑑 − 𝑎
𝑏 − 𝑎

)
+ 𝑝𝜋

𝑏 − 𝑎 𝑒
𝑐
cos

(
𝑝𝜋

𝑐 − 𝑎
𝑏 − 𝑎

)]
Note that 𝑝 = 0 is not a valid case, since the sine expansion makes it such that we start at 𝑝 = 1.

Again, we have 𝐸 as the strike price. For a European call option in our log-asset setting we have payoff

𝑉(𝑇, 𝑦) = (𝐵 + 𝜆 − 𝑒𝑦 − 𝐸)+. So for 𝑦 ≥ ln(𝐵 + 𝜆 − 𝐸), we have payoff 0. Therefore, we can rewrite 𝑉𝑝 as

𝑉𝑝 =
2

𝑏 − 𝑎

∫ 𝑏

𝑎

(𝐵 + 𝜆 − 𝑒𝑦 − 𝐸)+ sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

=
2

𝑏 − 𝑎

∫
ln(𝐵+𝜆−𝐸)

𝑎

(𝐵 + 𝜆 − 𝑒𝑦 − 𝜉) sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

=
2

𝑏 − 𝑎
(
−𝜒𝐿𝑜𝑔𝐴𝑠𝑠𝑒𝑡𝑝 (𝑎, ln(𝐵 + 𝜆 − 𝐸)) + (𝐵 + 𝜆 − 𝐸)Ψ𝑝(𝑎, ln(𝐵 + 𝜆 − 𝐸))

)
.

5.6.4. Trigonometric expansion
Now we check whether any update is needed to the trigonometric expansion after applying the change

of variables. For 𝑦 = 𝑎, 𝑦 = 𝑏 we still have boundaries of the PDE that are equal to 0, so a sine expansion

is still appropriate in the asset (inverted-log-asset) dimension. For the time (𝜏) dimension, nothing has

changed, so the trigonometric expansion obtained from integrating out the Fourier-cosine expansion on

the derivative with respect to time is also still the desired expansion.

Since the expansions themself have not changed, the matrices involved in the linear system from

the training step remain unchanged. The only thing that has changed, is the PDE. The resulting linear

system reads(
− (Z2[𝑙 , :] ⊗ V1[𝑚, :]) + V2[𝑙 , :] ⊗

[
−(𝐵 + 𝜆 − 𝑒𝑦𝑚 )

𝑒𝑦𝑚

(
𝑟 + (𝐵 + 𝜆 − 𝑒𝑦)𝜎

2

2

𝑒−𝑦𝑚
)

Z1[𝑚, :]

+ (𝐵 + 𝜆 − 𝑒𝑦𝑚 )2𝜎2𝑒−2𝑦𝑚

2

Z3[𝑚, :]
])

vec(𝐴)

=
(𝐵 + 𝜆 − 𝑒𝑦𝑚 )

𝑒𝑦𝑚

(
𝑟 + (𝐵 + 𝜆 − 𝑒𝑦)𝜎

2

2

𝑒−𝑦𝑚
)

𝑝𝜋

𝑏1 − 𝑎1

cos

(
𝑝𝜋

𝑦𝑚 − 𝑎1

𝑏1 − 𝑎1

)
+ (𝐵 + 𝜆 − 𝑒𝑦𝑚 )2𝜎2𝑒−2𝑦𝑚

2

(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑦𝑚 − 𝑎1

𝑏1 − 𝑎1

)
.

5.6.5. Results
The performance of the new model is dependent on 𝜆. Therefore, we investigated 3 values of 𝜆. The

first 𝜆 value is very large to check whether the results correspond to those of the regular asset-domain

model, as indicated from analytic analysis in Section 5.6.2. The next choice of 𝜆 is for a relatively small

value, such that we have a far denser allocation of training points towards the barrier. Lastly we also

choose a value of 𝜆 based on Equation (5.11).
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Inverted-log-asset domain with large 𝜆
The first value of 𝜆 for which we analyse the results is ’a large value’. In the experiments, we use

𝜆 = 1 · 10
10

. The option prices and absolute and relative erros can be seen in Figure 5.6. If we compare

these plots to the plots of the asset dynamics in Figure 5.3, we can see that they are (almost) identical.

This further confirms our analytic findings from Section 5.6.2: for large 𝜆, the inverted-log-asset model

and the asset model perform the same, because the training points are identical. Figure 5.5 shows the

difference between the asset model and inverted-log-asset model for different values of 𝜏 and 2 values of

𝜆. We can see that the difference decreases for larger 𝜆. Clearly, both models perform almost identically.

(a) Difference for 𝜆 = 1.000.000 (b) Difference for 𝜆 = 100.000.000

Figure 5.5: Difference between the option price found with the asset model vs the inverted-log-asset model with large 𝜆
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(a) Option price, absolute error and relative error for 𝜏 = 0

(b) Option price, absolute error and relative error for 𝜏 = 0.1

(c) Option price, absolute error and relative error for 𝜏 = 0.25

(d) Option price, absolute error and relative error for 𝜏 = 0.5

(e) Option price, absolute error and relative error for 𝜏 = 1

Figure 5.6: Option price and errors for various 𝜏 using trigonometric expansion vs closed-form solution for an up-and-out barrier

option with parameters (𝑟, 𝜎, 𝐸, 𝐵) = (0.1, 0.1, 90, 120) under GBM inverted-log-asset dynamics with 𝜆 = 10
10

.
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Inverted-log-asset domain with small 𝜆
Next, we look at the behaviour of the model when 𝜆 is relatively small. We choose 𝜆 = 10

−5
. The results

for this model can be seen in Figure 5.7. Compared to a large 𝜆 (or equivalently, an equidistant grid in

the asset domain), we see that errors near the barrier have decreased, but errors near the money and

near the lower bound have increased significantly.

This is expected from how the transformation was defined. Due to the small 𝜆 and consequently very

few training points for lower asset prices, the density mass on the low asset prices part is poorly captured.

Equation (5.11) suggests that portion 𝑝 of points lie to the right of the halfway point 𝑃 = 𝑎+𝑏
2

= 80 is

𝑝 ≈ 0.96. So with 𝑀 = 64 training points, this results in approximately 2 to 3 training points in the lower

half of the asset price domain.
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(a) Option price, absolute error and relative error for 𝜏 = 0

(b) Option price, absolute error and relative error for 𝜏 = 0.1

(c) Option price, absolute error and relative error for 𝜏 = 0.25

(d) Option price, absolute error and relative error for 𝜏 = 0.5

(e) Option price, absolute error and relative error for 𝜏 = 1

Figure 5.7: Option price and errors for various 𝜏 using trigonometric expansion vs closed-form solution for an up-and-out barrier

option with parameters (𝑟, 𝜎, 𝐸, 𝐵) = (0.1, 0.1, 90, 120) under GBM inverted-log-asset dynamics with 𝜆 = 10
−5

.
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Inverted-log-asset domain with optimal 𝜆
Lastly we look at a value of 𝜆 that should give us better accuracy in theory. We assume the same

model parameters as before, so (𝑟, 𝜎, 𝑎, 𝑏, 𝐸) = (0.1, 0.1, 40, 120, 90). We choose 𝑃 = 𝑏+𝑎
2

= 80 in the

center between 𝑎 and 𝑏. Then 𝑝 ↓ 0.5 would lead to 𝜆 → ∞. We first decide the value of 𝑝 and then,

using Equation (5.11), we can find 𝜆 that satisfies the equation through a numerical root finder like

scipy.optimize.root().
For a general feel of the performance, several values of 𝜆 have been tested. Of the values 𝜆 ∈

{1 · 10
−5 , 0.001, 0.1, 1, 10, 1 · 10

10}, 𝜆 = 1 had the best looking performance and 𝜆 = 10 also performed

quite well. 𝜆 = 1 corresponds to 𝑝 ≈ 0.845. Three other cases that have been tested were 𝑝 = 0.85

(𝜆 = 0.85356746), which had very similar performance to 𝜆 = 1, 𝑝 = 0.8 (𝜆 = 3.12380311), which had

slightly worse performance, and 𝑝 = 0.75 (𝜆 = 7.65951536), which had performance somewhat similar

to 𝜆 = 10 but out of the 3 it appeared to give the worst fit. Therefore, the results in this section are based

on a model with 𝜆 = 1.

The results for 𝜆 = 1 are presented in Figure 5.8. We compare these results to the results from the

Figure 5.3 (or 5.6, since they look identical).

A general trend we see, which we already noticed for very small 𝜆, is that the errors near the barrier

decrease and errors near the money and for lower asset prices increase. For smaller maturities we see

modest improvements. For 𝜏 = 1, however, the error has been decreased by tenfold in some places and

barely increased for low asset prices. We have already seen that longer maturities seem to lead to a

smoother trigonometric function, and thus seem to be in favour of this change of variables.

Table 5.2 summarizes the same comparison to other methods from literature as Table 5.1, but now

also with the inverted log-asset model. Except for 𝜏 = 0, where there is only a slight improvement,

we significantly improve the general performance of the method. The inverted log-asset model also

outperforms both methods from literature.

Method 𝑀𝑅𝐸1 𝑀𝑅𝐸2 Time taken (seconds)

Trigonometric expansion (asset model, 𝐾 = 64) 10
−3

10
−2

194 (offline)

Trig. exp. (inv. log-asset model 𝐾 = 64) 10
−5

10
−3

190 (offline)

Neural network [23] 10
−4

10
−3

- (offline)

High order finite difference [17] 10
−3

10
−3

0.0087

Table 5.2: Performance for different methods of barrier option pricing under GBM. We consider the Maximum relative error(
𝑒𝑟𝑟𝑜𝑟

E

)
for non-0 time to maturity. 𝑀𝑅𝐸1 and 𝑀𝑅𝐸2 are near-the-money (𝑆0 ∈ [75, 105] for trigonometric expansion) and

far-from-the-money respectively.
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(a) Option price, absolute error and relative error for 𝜏 = 0

(b) Option price, absolute error and relative error for 𝜏 = 0.1

(c) Option price, absolute error and relative error for 𝜏 = 0.25

(d) Option price, absolute error and relative error for 𝜏 = 0.5

(e) Option price, absolute error and relative error for 𝜏 = 1

Figure 5.8: Option price and errors for various 𝜏 using trigonometric expansion vs closed-form solution for an up-and-out barrier

option with parameters (𝑟, 𝜎, 𝐸, 𝐵) = (0.1, 0.1, 90, 120) under GBM inverted-log-asset dynamics with 𝜆 = 1.
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5.7. Conclusions
In Sections 5.1 and 5.2 we derived the pricing PDE and an IBVP for the survival ch.f., which can be used

to approximate the barrier option price using the COS method from [5].

Section 5.3 constructs a trigonometric expansion, to approximate the survival ch.f., with unknown

expansion coefficients. The approximation is inserted into the PDE of the survival ch.f., resulting in a

linear system that can be solved to find the unknown coefficients.

In Section 5.4 we compare the results for the log-asset model to an analytic solution. While promising,

the model had significantly increasing errors when the initial asset price approaches the upper barrier.

Additionally, for 𝜏 = 0, the method’s construction leads to worse convergence behaviour, due to the

Gibbs phenomenon near the barrier, even affecting options with longer maturity times.

To improve performance near the upper boundary, where the probability density mass is denser,

more training points near the upper barrier are allocated. Conversely, fewer training points are required

at lower initial asset prices due to less probability density mass. Section 5.5 addresses this by moving to

the asset domain, which yields more favourable results.

Finally, Section 5.6 further improves the accuracy of the method through a variable transformation,

resulting in the inverted-log-asset model. This model outperforms the previous models, as well as the

finite difference method and neural network method from literature.

One potential problem with the trigonometric expansion model is that the resulting linear system

from the PDE, has a matrix with 𝐾2𝑁
elements, where 𝐾 is the number of expansion points and 𝑁 is the

dimension. Therefore, this system becomes very large as the number of dimensions increases.



6
Our contribution 3: Pricing barrier

options under SABR using
trigonometric expansion

In Chapter 5 we used trigonometric expansion to approximate the barrier option price under GBM.

In [3] this method was also applied to Heston’s model. In this chapter, we explore another stochastic

volatility model, the SABR model.

We follow the same steps as in Chapter 5, starting with the pricing PDE in Section 6.1. Next, we find

the corresponding survival ch.f. PDE in Section 6.2, and in Section 6.3 we use trigonometric expansion

to approximate that function. Section 6.4 presents and discusses the results, followed by variable

transformation, similar to Section 5.6, to improve the results in Section 6.5.

6.1. The pricing PDE
The first step for pricing the barrier options under SABR, following the previous chapter, is to find the

pricing PDE for an option price 𝑉(𝑡 , 𝑆, 𝜎) with underlying 𝑆 and volatility 𝜎. We start from the SABR

dynamics in Equation (2.2)

𝑑𝑆𝑡 = 𝜎𝑡𝑆
𝛽
𝑡 𝑑𝑊

Q
𝑡

𝑑𝜎𝑡 = 𝛼𝜎𝑡𝑑𝑍
Q
𝑡

𝑑𝑊
Q
𝑡 𝑑𝑍

Q
𝑡 = 𝜌𝑑𝑡,

where 𝛼 is the volatility of volatility and 𝛽 determines the slope of the implied skew. 𝛽 is often fixed

before calibrating the model to a market. In this thesis, we consider the commonly used 𝛽 = 0.5 when

showing and analysing results. Lastly, 𝜌 is the correlation between the Brownian Motion processes.

The parameters can also be described by their effect on the implied volatility curve. Generally we fix

𝛽. Then 𝜎 mainly determines the curve’s height, 𝛼 controls the curvature of the implied volatility curve,

and 𝜌 controls the curve’s skew (similar effect on the curve as beta).

We use the martingale approach to find the PDE (derivation in Appendix A.2.1) as follows:

𝜕𝑉

𝜕𝑡
+ 1

2

𝜎2

𝑡 𝑆
2𝛽
𝑡

𝜕2𝑉

𝜕𝑆2

+ 1

2

𝛼2𝜎2

𝑡

𝜕2𝑉

𝜕𝜎2

+ 𝛼𝜎2

𝑡 𝑆
𝛽
𝑡 𝜌

𝜕2𝑉

𝜕𝑆𝜕𝜎
− 𝑟𝑉 = 0. (6.1)

6.1.1. Pricing PDE for barrier options
To find the IBVP for pricing barrier options, we follow the exact same steps as for the GBM case from

Section 5.1.1, but with slightly different equations.

Theorem 6.1.1 (Localized Feynman-Kac for SABR). Consider a process 𝑆𝑡 whose dynamics follow SABR and
define 𝜏𝑎∨𝑏 = inf{𝑡 ≥ 𝑡 : 𝑆𝑡 ≤ 𝑎 ∨ 𝑆𝑡 ≥ 𝑏} to be the first time that 𝑆𝑡 exits the interval (𝑎, 𝑏). Let 𝑣 : [𝑎, 𝑏] → R

57
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be a continuous payoff function with a compact support (value 0 outside the compact set). Then

𝑉(𝑡 , 𝑠 , 𝜎0) = 𝑒−𝑟(𝑇−𝑡)EQ
[
𝑣(𝑆𝑇)1{𝜏𝑎∨𝑏>𝑇}

���𝑆𝑡 = 𝑠, 𝜎𝑡 = 𝜎0

]
is the unique, bounded solution of the PDE

𝜕𝑉

𝜕𝑡
+ 1

2

𝜎2

𝑡 𝑆
2𝛽
𝑡

𝜕2𝑉

𝜕𝑆2

+ 1

2

𝛼2𝜎2

𝑡

𝜕2𝑉

𝜕𝜎2

+ 𝛼𝜎2

𝑡 𝑆
𝛽
𝑡 𝜌

𝜕2𝑉

𝜕𝑆𝜕𝜎
− 𝑟𝑉 = 0, 0 ≤ 𝑡 ≤ 𝑇, 𝑎 < 𝑆 < 𝑏, 𝜎 > 0

with boundary and terminal conditions

𝑉(𝑡 , 𝑎, 𝜎) = 0, 0 ≤ 𝑡 ≤ 𝑇, 𝜎 > 0

𝑉(𝑡 , 𝑏, 𝜎) = 0, 0 ≤ 𝑡 ≤ 𝑇, 𝜎 > 0

𝜕𝑉

𝜕𝑡

��
𝜎=0

− 𝑟𝑉(𝑡 , 𝑆, 0) = 0, 0 ≤ 𝑡 ≤ 𝑇, 𝑎 < 𝑆 < 𝑏

𝑉(𝑇, 𝑆, 𝜎) = 𝑣(𝑆𝑇), 𝑎 < 𝑆𝑇 < 𝑏, 𝜎 > 0.

The proof is analogous to that in Theorem 5.1.1. From the localized Feynman-Kac theorem, we find the

IBVP for the SABR model, i.e.,

𝜕𝑉
𝜕𝑡 + 1

2
𝜎2

𝑡 𝑆
2𝛽
𝑡

𝜕2𝑉
𝜕𝑆2

+ 1

2
𝛼2𝜎2

𝑡
𝜕2𝑉
𝜕𝜎2

+ 𝛼𝜎2

𝑡 𝑆
𝛽
𝑡 𝜌

𝜕2𝑉
𝜕𝑆𝜕𝜎 − 𝑟𝑉 = 0, 0 ≤ 𝑡 ≤ 𝑇, 𝑎 < 𝑆 < 𝑏, 𝜎 > 0

𝑉(𝑡 , 𝑎, 𝜎) = 0, 0 ≤ 𝑡 ≤ 𝑇, 𝜎 > 0

𝑉(𝑡 , 𝑏, 𝜎) = 0, 0 ≤ 𝑡 ≤ 𝑇, 𝜎 > 0

𝜕𝑉
𝜕𝑡

��
𝜎=0

− 𝑟𝑉(𝑡 , 𝑆, 0) = 0, 0 ≤ 𝑡 ≤ 𝑇, 𝑎 < 𝑆 < 𝑏

𝑉(𝑇, 𝑆, 𝜎) = 𝑣(𝑆𝑇), 𝑎 < 𝑆𝑇 < 𝑏, 𝜎 > 0.

(6.2)

6.2. The PDE for the survival characteristic function
Following the method laid out in Chapter 5, we substitute the SIN pricing formula for 𝑉 into the

problem. We use the approximation from Equation (2.5).

𝑉2(𝑡 , 𝑆, 𝜎) = 𝑒−𝑟(𝑇−𝑡)
𝐾∑
𝑝=1

𝜙̂𝑝(𝑡 , 𝑆, 𝜎)𝑉𝑝 (6.3)

𝜙̂𝑝(𝑡 , 𝑆) = ℑ
[
𝜙

( 𝑝𝜋

𝑏 − 𝑎 , 𝑡; 𝑥, 𝜎
)
· 𝑒−𝑖𝑝𝜋 𝑎

𝑏−𝑎
]

𝑉𝑝 =
2

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑉(𝑇, 𝑦) sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦,

After substituting this into the PDE and based on the same arguments as in Section 5.2, we find the PDE

for the survival ch.f.:

𝜕𝜙̂𝑝

𝜕𝑡
+ 1

2

𝜎2

𝑡 𝑆
2𝛽
𝑡

𝜕2𝜙̂𝑝

𝜕𝑆2

+ 1

2

𝛼2𝜎2

𝑡

𝜕2𝜙̂𝑝

𝜕𝜎2

+ 𝛼𝜎2

𝑡 𝑆
𝛽
𝑡 𝜌

𝜕2𝜙̂𝑝

𝜕𝑆𝜕𝜎
= 0. (6.4)

Again, like in the GBM case, the boundary conditions easily follow, since 𝑉𝑝 is not zero, so 𝜙̂𝑝(𝑡 , 𝑎, 𝜎) =
𝜙̂𝑝(𝑡 , 𝑏, 𝜎) = 0. Based on the same reasoning as before, we use sine expansion on𝑉(𝑇, 𝑆, 𝜎) to derive the

terminal condition for the survival ch.f.:

𝜙̂𝑝(𝑇, 𝑆, 𝜎) = sin

(
𝑝𝜋

𝑆 − 𝑎
𝑏 − 𝑎

)
.

With these bounds and the initial condition, we can formulate the IBVP for our survival ch.f., i.e.,

− 𝜕𝜙̂𝑝
𝜕𝜏 + 1

2
𝜎2

𝜏𝑆
2𝛽
𝜏

𝜕2𝜙̂𝑝
𝜕𝑆2

+ 1

2
𝛼2𝜎2

𝜏
𝜕2𝜙̂𝑝
𝜕𝜎2

+ 𝛼𝜎2

𝜏𝑆
𝛽
𝜏𝜌

𝜕2𝜙̂𝑝
𝜕𝑆𝜕𝜎 = 0, 0 ≤ 𝜏 ≤ 𝑇, 𝑎 < 𝑆 < 𝑏, 𝜎 > 0

𝜙̂𝑝(𝜏, 𝑎, 𝜎) = 0, 0 ≤ 𝜏 ≤ 𝑇, 𝜎 > 0

𝜙̂𝑝(𝜏, 𝑏, 𝜎) = 0, 0 ≤ 𝜏 ≤ 𝑇, 𝜎 > 0

𝜕𝜙̂𝑝
𝜕𝜏 (𝜏, 𝑆, 0) = 0, 0 ≤ 𝜏 ≤ 𝑇, 𝑎 < 𝑆 < 𝑏

𝜙̂𝑝(0, 𝑆, 𝜎) = sin

(
𝑝𝜋 𝑆−𝑎

𝑏−𝑎
)
, 𝑎 < 𝑆𝑇 < 𝑏, 𝜎 > 0.

(6.5)
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6.3. Approximating the survival characteristic function
The final step is to construct the trigonometric expansion for the survival ch.f.. In Section 5.3 we already

decided on the expansions for 𝜏 and 𝑆, so we only need to determine this for the volatility 𝜎.

6.3.1. Expansion for volatility-dimension
Since the volatility is not bounded from above, we should choose an upper bound 𝑏3 such that the

probability 𝑝(𝜎 > 𝑏3) ≈ 0. Note that a large value for 𝑏3 leads to a large domain, which would require

more training points.

For the volatility dimension, we have one boundary condition:

𝜕𝜙̂𝑝
𝜕𝜏 (𝜏, 𝑆, 0) = 0. Note that taking the

derivative with respect to the time dimension would consider the volatility dimension as a constant,

which holds for all values of the volatility. Therefore, we can treat it as a Dirichlet boundary condition.

We choose Fourier-sine expansion with boundary relaxation for the upper boundary.

Our approximation for the volatility dimension reads

𝑓3(𝜎) ≈
𝐾∑

𝑘3=1

𝐴𝑘3
sin

(
𝑘3𝜋

𝜎 − 𝑎3

𝑏3 − 𝑎3 + 𝜖

)
.

6.3.2. Trigonometric expansion of the survival characteristic function
We can now expand the time derivative of 𝜙̂𝑝 as a 3D Fourier series to find

𝜕𝜙̂𝑝

𝜕𝜏
(𝜏, 𝑆, 𝜎) ≈

𝐾∑
𝑘1=1

𝐾−1∑
𝑘2=0

′
𝐾∑

𝑘3=1

𝒜𝑘1 ,𝑘2 ,𝑘3
cos

(
𝑘2𝜋

𝜏 − 𝑎2

𝑏2 − 𝑎2

)
sin

(
𝑘1𝜋

𝑆 − 𝑎1

𝑏1 − 𝑎1

)
sin

(
𝑘3𝜋

𝜎 − 𝑎3

𝑏3 − 𝑎3 + 𝜖

)
.

Then using the fundamental theorem of calculus to integrate this with respect to time, we find

𝜙̂𝑝(𝜏, 𝑆, 𝜎) ≈
𝐾∑

𝑘1=1

𝐾−1∑
𝑘2=1

𝐾∑
𝑘3=1

𝒜𝑘1 ,𝑘2 ,𝑘3

𝑏2 − 𝑎2

𝑘2𝜋
sin

(
𝑘2𝜋

𝜏 − 𝑎2

𝑏2 − 𝑎2

)
sin

(
𝑘1𝜋

𝑆 − 𝑎1

𝑏1 − 𝑎1

)
sin

(
𝑘3𝜋

𝜎 − 𝑎3

𝑏3 − 𝑎3 + 𝜖

)
+

𝐾∑
𝑘1=1

𝐾∑
𝑘3=1

𝒜𝑘1 ,0,𝑘3

𝜏
2

sin

(
𝑘1𝜋

𝑆 − 𝑎1

𝑏1 − 𝑎1

)
sin

(
𝑘3𝜋

𝜎 − 𝑎3

𝑏3 − 𝑎3 + 𝜖

)
+ sin

(
𝑝𝜋

𝑆 − 𝑎1

𝑏1 − 𝑎1

)
.

(6.6)

Note that all boundary conditions and the initial condition are satisfied by this formulation. Therefore,

we do not have to consider the boundary and initial conditions when training the model.

Next, we consider 𝑀 ×𝑀 ×𝑀 training points. 𝜏𝑙 , 𝑆𝑚 , 𝜎𝑛 are the 𝑙-th time training point, 𝑚-th asset

training point and 𝑛-th volatility training point respectively.

From an implementation point of view, we define matrices for which the rows are defined as

V1[𝑚, :] =
(
sin

(
𝜋 𝑆𝑚−𝑎1

𝑏1−𝑎1

)
sin

(
2𝜋 𝑆𝑚−𝑎1

𝑏1−𝑎1

)
· · · sin

(
𝑁𝜋 𝑆𝑚−𝑎1

𝑏1−𝑎1

))
V2[𝑙 , :] =

(
1

2
𝜏 𝑏2−𝑎2

𝜋 sin

(
𝜋 𝜏𝑙−𝑎2

𝑏2−𝑎2

)
· · · 𝑏2−𝑎2

(𝑁−1)𝜋 sin

(
(𝑁 − 1)𝜋 𝜏𝑙−𝑎2

𝑏2−𝑎2

))
V3[𝑛, :] =

(
sin

(
𝜋 𝜎𝑛−𝑎3

𝑏3−𝑎3+𝜖

)
sin

(
2𝜋 𝜎𝑛−𝑎3

𝑏3−𝑎3+𝜖

)
· · · sin

(
𝑁𝜋 𝜎𝑛−𝑎3

𝑏3−𝑎3+𝜖

))
Z1[𝑚, :] =

(
𝜋

𝑏1−𝑎1

cos

(
𝜋 𝑆𝑚−𝑎1

𝑏1−𝑎1

)
2𝜋

𝑏1−𝑎1

cos

(
2𝜋 𝑆𝑚−𝑎1

𝑏1−𝑎1

)
· · · 𝑁𝜋

𝑏1−𝑎1

cos

(
𝑁𝜋 𝑆𝑚−𝑎1

𝑏1−𝑎1

))
Z2[𝑙 , :] =

(
1

2
cos

(
𝜋 𝜏𝑙−𝑎2

𝑏2−𝑎2

)
· · · cos

(
(𝑁 − 1)𝜋 𝜏𝑙−𝑎2

𝑏1−𝑎2

))
Z3[𝑛, :] =

(
𝜋

𝑏3−𝑎3+𝜖 cos

(
𝜋 𝜎𝑛−𝑎3

𝑏3−𝑎3+𝜖

)
2𝜋

𝑏3−𝑎3+𝜖 cos

(
2𝜋 𝜎𝑛−𝑎3

𝑏3−𝑎3+𝜖

)
· · · 𝑁𝜋

𝑏3−𝑎3+𝜖 cos

(
𝑁𝜋 𝜎𝑛−𝑎3

𝑏3−𝑎3+𝜖

))
Z4[𝑚, :] = −

((
𝜋

𝑏1−𝑎1

)
2

sin

(
𝜋 𝑆𝑚−𝑎1

𝑏1−𝑎1

) (
2𝜋

𝑏1−𝑎1

)
2

sin

(
2𝜋 𝑆𝑚−𝑎1

𝑏1−𝑎1

)
· · ·

(
𝑁𝜋
𝑏1−𝑎1

)
2

sin

(
𝑁𝜋 𝑆𝑚−𝑎1

𝑏1−𝑎1

))
Z5[𝑛, :] = −

((
𝜋

𝑏3−𝑎3+𝜖

)
2

sin

(
𝜋 𝜎𝑛−𝑎3

𝑏3−𝑎3+𝜖

) (
2𝜋

𝑏3−𝑎3+𝜖

)
2

sin

(
2𝜋 𝜎𝑛−𝑎3

𝑏3−𝑎3+𝜖

)
· · ·

(
𝑁𝜋

𝑏3−𝑎3+𝜖

)
2

sin

(
𝑁𝜋 𝜎𝑛−𝑎3

𝑏3−𝑎3+𝜖

))
.
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These matrices correspond to the sine and cosine expansion terms for 𝜙̂𝑝 and its partial derivatives.

Similar to the GBM case we can use these matrix representations combined with a vectorized 𝒜. We

plug this into the PDE for 𝜙̂𝑝 and use

𝐾∑
𝑘1=1

𝐾−1∑
𝑘2=0

𝐾∑
𝑘3=1

𝒜[𝑘1 , 𝑘2 , 𝑘3] (Z2[𝑙 , 𝑘2] · V3[𝑛, 𝑘3] · V1[𝑚, 𝑘1]) = (Z2[𝑙 , :] ⊗ V3[𝑛, :] ⊗ V1[𝑚, :])vec(𝒜).

Then the LHS of the equation becomes[
−
(
Z2[𝑙 , :] ⊗ V3[𝑛, :] ⊗ V1[𝑚, :]

)
+ V2[𝑙 , :] ⊗

(
𝜎2

𝑛

2

V3[𝑛, :] ⊗ 𝑆
2𝛽
𝑚 Z4[𝑚, :] + 𝛼𝜌𝜎2

𝑛Z3[𝑛, :] ⊗ 𝑆
𝛽
𝑚Z1[𝑚, :] +

𝛼2𝜎2

𝑛

2

Z5[𝑛, :] ⊗ V1[𝑚, :]
)]

vec(𝒜),

where the vectorized vec(𝒜) is created by first variating the 𝑘1, then the 𝑘3 and lastly 𝑘2, so it looks like

©­­­­­­­­«

𝐴[:, 𝑘2 = 0, 𝑘3 = 1]
...

𝐴[:, 𝑘2 = 0, 𝑘3 = 𝑁]
𝐴[:, 𝑘2 = 1, 𝑘3 = 1]

...
𝐴[:, 𝑘2 = 𝑁 − 1, 𝑘3 = 𝑁]

ª®®®®®®®®¬
,

where 𝐴[:, 𝑘2 , 𝑘3] is the column vector with all values for 𝑘1 and fixed 𝑘2 , 𝑘3.

The RHS becomes

𝜎2

𝑛𝑆
2𝛽
𝑚

2

(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑆𝑚 − 𝑎1

𝑏1 − 𝑎1

)
.

6.4. Results
The linear system derived in the previous section consists of a R𝐾

3×𝐾3

matrix and a R𝐾
3

vector. The

solution of the linear system is the R𝐾
3

vector of expansion coefficients of the survival ch.f.. These large

matrices quickly lead to memory issues. Due to these memory constraints, the largest possible 𝐾 that

could be used was 𝐾 = 26. The scipy.linalg.solve() function was used to solve the linear system.

For 𝐾 = 26, computing the coefficients took a little over 1 hour.

Benchmark values

For GBM, we had a closed-form solution to use as a benchmark for the trigonometric expansion.

However, for SABR, no such closed-form solution exists for barrier options (though [9] does provide

a closed-form approximation for European options). Therefore, we use Monte Carlo simulation with

1000 timesteps and 1, 000, 000 simulation paths as a benchmark. The convergence order for Monte

Carlo simulation is known to be 𝒪(
√
𝑛), with 𝑛 the number of simulations. We use the Euler Forward

scheme for the Monte Carlo simulation, which has a convergence rate of 𝒪(Δ𝑡). Note that this time

discretization also causes continuously monitored barrier options to be discretely monitored. There

is no guarantee that this benchmark is sufficiently accurate. Therefore, we also use five points with

100, 000, 000 simulations and 10, 000 timesteps. If the error at these points is better than with fewer

timesteps and paths, the benchmark is not sufficiently accurate. The five sample points on which the

errors are measured are (𝑆0 , 𝜏) = {(90, 0.5), (90, 1), (105, 0.1), (105, 0.5), (115, 0.9)}, providing a good mix

of at-the-money, near-barrier and near the "highest price" cases. The errors related to these points are

shown in Table 6.1.

Performance of trigonometric expansion under SABR

For these results, we use model parameters (𝑟, 𝛼, 𝛽, 𝜌, 𝜎0) = (0.1, 0.2, 0.5,−0.85, 0.8), and for the option
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and expansion parameters, we use (𝑎1 , 𝑏1 , 𝐸, 𝑎3 , 𝑏3 , 𝐾) = (40, 120, 90, 0, 2, 26). The results are shown in

Figure 6.1. In most cases, the relative error is under 1%. However, near the barrier, the relative error

increases, similar to the behaviour observed in Chapter 5. Initial asset prices slightly below the strike

price also incur a large relative error, but the absolute error does not increase, indicating that the higher

relative error comes from the lower benchmark price.

Next, we examine Table 6.1 to determine whether these errors with more accurate benchmark are

lower than those shown in the figure. For all sample points, the errors are nearly identical, suggesting

that the Monte Carlo benchmark with 1, 000 time steps and 1, 000, 000 paths is sufficiently accurate as a

benchmark for this method.

Point Absolute Error Relative Error

(90, 0.5) 4.44 · 10
−3

4.94 · 10
−5

(90, 1) 1.15 · 10
−2

1.28 · 10
−4

(105, 0.1) 2.97 · 10
−2

2.8 · 10
−4

(105, 0.5) 4.19 · 10
−2

3.99 · 10
−4

(115, 0.9) 1.32 · 10
−1

1.11 · 10
−3

Table 6.1: Absolute and relative errors of trigonometric expansion with 𝐾 = 26

Comparing performance to closed-form approximations

We also compare our model to results from Yang et al. [13], where up-and-out put options are priced

for small maturity times 𝑇 = 1

12
, 𝑇 = 1

52
and 𝑇 = 1

252
. They used parameters and initial values

(𝑆0 , 𝜎0 , 𝛽, 𝐸, 𝑏𝑎𝑟𝑟𝑖𝑒𝑟) = (100, 0.1, 0.9, 100, 103), and used various values of 𝛼 and 𝜌. For our pricing

with the trigonometric expansion, we use 𝐾 = 26 and we choose our model bounds to be [90, 103] for

the asset, [0, 1/11] for time to maturity and [0, 1] for volatility. The option price in [13] is given as the

expectation of the payoff without discounting, so risk-free interest rate 𝑟 is set to 0. For the results of

this paper and our model, a Monte Carlo simulation with 1, 000, 000 samples and 25, 200 timesteps per

year is used as benchmark. In Table 6.2 these results are summarized. MC denotes the Monte Carlo

benchmark, Yang denotes absolute relative error of the prices from [13] and Trig is the absolute relative

error of option prices using our model. The absolute relative error is calculated using

|𝑎𝑝𝑝𝑟.−𝑀𝐶|
𝑀𝐶 .

Note that Yang et al. [13] and our model have similar performance for 𝜏 = 1

12
, but for the smaller times

to maturity, our models errors are larger. This supports our earlier findings that for small maturities, our

method suffers from the Gibbs phenomenon at 𝜏 = 0. We should also consider that 𝜏 = 1

252
is less than

1

20
of the expansion domain in the time dimension. If we were to take a smaller expansion domain for

the time dimension, we can achieve higher accuracy, but this does require us to train multiple models.

𝜏 = 1

252
𝜏 = 1

52
𝜏 = 1

12

(𝜌, 𝛼) MC Yang Trig. MC Yang Trig. MC Yang Trig.

(0,0.1) 0.1570 0.79% 6.15% 0.3454 0.58% 1.00% 0.7230 0.57% 0.54%

(0,0.3) 0.1568 0.91% 6.01% 0.3460 0.40% 0.80% 0.7217 0.38% 0.65%

(0,0.5) 0.1569 0.82% 6.07% 0.3463 0.31% 0.71% 0.7257 0.93% 0.09%

(-0.1,0.1) 0.1570 0.78% 6.15% 0.3457 0.48% 0.89% 0.7233 0.60% 0.39%

(-0.3,0.1) 0.1573 0.61% 6.33% 0.3470 0.09% 0.46% 0.7213 0.32% 0.64%

(-0.5,0.1) 0.1572 0.65% 6.10% 0.3441 0.95% 1.31% 0.7205 0.21% 0.75%

Table 6.2: Comparisons of up-and-out option prices obtained with Monte Carlo, a Closed-Form approximation [13] and the

trigonometric expansion.
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(a) Option price, absolute error and relative error for 𝜏 = 0

(b) Option price, absolute error and relative error for 𝜏 = 0.1

(c) Option price, absolute error and relative error for 𝜏 = 0.25

(d) Option price, absolute error and relative error for 𝜏 = 0.5

(e) Option price, absolute error and relative error for 𝜏 = 1

Figure 6.1: Option price and errors for various 𝜏 using trigonometric expansion vs Monte Carlo benchmark for an up-and-out

barrier option with parameters (𝑟, 𝛼, 𝛽, 𝜌, 𝜎0) = (0.1, 0.2, 0.5,−0.85, 0.8) and (𝑎1 , 𝑏1 , 𝐸, 𝑎3 , 𝑏3 , 𝐾) = (40, 120, 90, 0, 2, 26) under

SABR regular asset and regular volatility dynamics.
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6.5. Model improvements through change of variables
For GBM we have seen that change of variables can improve the accuracy of our method. First in Section

5.5 we found that moving to the asset price domain improves the accuracy of our method. In Section 5.6

we go one step further in trying to cover more of the concentrated density mass near the barrier via

change of variables.

6.5.1. Log-volatility
The SABR model introduces the stochastic volatility dimension. From the definition of the dynamics,

𝜎 ≥ 0, but we do not have an upper bound for the volatility. In practice, the volatility is usually under

100%. It can, however, stay relatively small. Then equidistant training points between 0 and 𝑏3 might

not sufficiently capture the main mass of the density function in volatility. A solution is transforming

the volatility domain to a log-volatility domain. 𝑥 = ln(𝜎 + 𝜆𝑣𝑜𝑙), where 𝜆𝑣𝑜𝑙 > 0 influences how much

the training points skewed to the lower boundary of the volatility. Large 𝜆𝑣𝑜𝑙 behaves the same as the

regular volatility domain and small 𝜆𝑣𝑜𝑙 corresponds to a very skewed distribution of training points.

Transformed PDE and linear system
We use transformation of variables 𝑥 = ln(𝜎 + 𝜆𝑣𝑜𝑙), so

𝑑𝑥
𝑑𝜎 = 1

𝜎+𝜆𝑣𝑜𝑙 . The partial derivatives of 𝑉 are

changed to:

𝜕𝑉

𝜕𝜎
=

𝜕𝑉

𝜕𝑥

𝜕𝑥

𝜕𝜎

=
1

𝜎 + 𝜆𝑣𝑜𝑙

𝜕𝑉

𝜕𝑥

𝜕2𝑉

𝜕𝜎2

=
𝜕

𝜕𝜎

(
1

𝜎 + 𝜆𝑣𝑜𝑙

𝜕𝑉

𝜕𝑥

)
=

1

(𝜎 + 𝜆𝑣𝑜𝑙)2
𝜕2𝑉

𝜕𝑥2

− 1

(𝜎 + 𝜆𝑣𝑜𝑙)2
𝜕𝑉

𝜕𝑥

𝜕𝑉

𝜕𝑆𝜕𝜎
=

1

𝜎 + 𝜆𝑣𝑜𝑙

𝜕𝑉

𝜕𝑆𝜕𝑥
.

This yields the PDE of the log-volatility SABR model

𝜕𝑉

𝜕𝑡
+ 1

2

𝜎2𝑆2𝛽 𝜕
2𝑉

𝜕𝑆2

+ 1

2

𝛼2𝜎2
𝜕2𝑉

𝜕𝜎2

+ 𝛼𝜎2𝑆𝛽𝜌
𝜕2𝑉

𝜕𝑆𝜕𝜎
− 𝑟𝑉 = 0

𝜕𝑉

𝜕𝑡
+ (𝑒𝑥 − 𝜆𝑣𝑜𝑙)2

2

𝑆2𝛽 𝜕
2𝑉

𝜕𝑆2

+ 𝛼2

2

(𝑒𝑥 − 𝜆𝑣𝑜𝑙)2
𝑒2𝑥

(
𝜕2𝑉

𝜕𝑥2

− 𝜕𝑉

𝜕𝑥

)
+ 𝛼

(𝑒𝑥 − 𝜆𝑣𝑜𝑙)2
𝑒𝑥

𝑆𝛽𝜌
𝜕𝑉

𝜕𝑆𝜕𝑥
− 𝑟𝑉 = 0 (6.7)

Our boundary conditions change to
𝑉(𝑡 , 𝑎, 𝑥) = 0

𝑉(𝑡 , 𝑏, 𝑥) = 0

𝜕𝑉
𝜕𝑡

��
𝑥=−∞ − 𝑟𝑉(𝑡 , 𝑆,−∞) = 0

𝑉(𝑇, 𝑆, 𝑥) = 𝑣(𝑆𝑇),

Our approximation 𝑉2(𝑡 , 𝑆, 𝑥) is identical to the regular volatility case. The analytic evaluation of

coefficients𝑉𝑘 has not changed either. Therefore, we can plug this approximation into our PDE to obtain

the PDE for the survival ch.f., following the same reasoning as before:

− 𝜕𝜙̂𝑝
𝜕𝜏 + (𝑒𝑥−𝜆𝑣𝑜𝑙 )2

2
𝑆2𝛽 𝜕2𝜙̂𝑝

𝜕𝑆2
+ 𝛼2

2

(𝑒𝑥−𝜆𝑣𝑜𝑙 )2
𝑒2𝑥

(
𝜕2𝜙̂𝑝
𝜕𝑥2

− 𝜕𝜙̂𝑝
𝜕𝑥

)
+ 𝛼 (𝑒𝑥−𝜆𝑣𝑜𝑙 )2

𝑒𝑥 𝑆𝛽𝜌
𝜕𝜙̂𝑝
𝜕𝑆𝜕𝑥 = 0

𝜙̂𝑝(𝜏, 𝑎, 𝑥) = 0

𝜙̂𝑝(𝜏, 𝑏, 𝑥) = 0

𝜕𝜙̂𝑝
𝜕𝜏

��
𝑥=−∞ = 0

𝜙̂𝑝(0, 𝑆, 𝑥) = sin

(
𝑝𝜋 𝑆−𝑎

𝑏−𝑎
)
,
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Trigonometric expansion
For the time-to-maturity and asset-price dimensions we keep the same expansions as in Chapter 5. For

𝑥 the bounds change compared to what we had before. Before, we clearly had a bound 𝑎3 = 0 where we

wanted the function to attain the value 0. Therefore, the sine-expansion was a logical choice. If we keep

sine expansion on [𝑎3 , 𝑏3 + 𝜖], we find LHS[
−
(
Z2[𝑙 , :] ⊗ V3[𝑛, :] ⊗ V1[𝑚, :]

)
+ V2[𝑙 , :] ⊗

(
(𝑒𝑥𝑛 − 𝜆𝑣𝑜𝑙)2

2

V3[𝑛, :] ⊗ 𝑆
2𝛽
𝑚 Z4[𝑚, :]

+ 𝛼𝜌
(𝑒𝑥𝑛 − 𝜆𝑣𝑜𝑙)2

𝑒𝑥𝑛
Z3[𝑛, :] ⊗ 𝑆

𝛽
𝑚Z1[𝑚, :] +

𝛼2

2

(𝑒𝑥𝑛 − 𝜆𝑣𝑜𝑙)2
𝑒2𝑥𝑚

(
Z5[𝑛, :] − Z3[𝑛, :]

)
⊗ V1[𝑚, :]

)]
vec(𝒜),

and RHS

(𝑒𝑥𝑛 − 𝜆𝑣𝑜𝑙)2
2

𝑆2𝛽

(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑆𝑚 − 𝑎1

𝑏1 − 𝑎1

)
.

Choice of 𝜆𝑣𝑜𝑙
Before we analyse the results of the transformed model, we should choose an appropriate value for

𝜆𝑣𝑜𝑙 . We use Monte Carlo simulation to find an empirical probability density for the volatility. Then

by comparing some values of 𝜆𝑣𝑜𝑙 , we can choose the optimal value. As mentioned before, taking

log-volatility would likely be most useful for smaller values of 𝜎0. Other parameters that will greatly

influence the distribution of the volatility are the volatility of volatility 𝛼 and the time to maturity 𝜏.

Figure 6.2 shows the distribution of 𝜎 after running a Monte Carlo simulation with 1000 time steps

and 50,000 paths. We can clearly see that a smaller 𝜏 results in less spread of the values and a larger

cluster of values close to the initial volatility 𝜎0. A smaller initial volatility value obviously shifts the

distribution towards smaller values, but also seems to yield slightly less spread of the points. Lastly, an

increase in the volatility of volatility 𝛼 seems to increase the spread somewhat and slightly shifts the

points towards smaller values of 𝜎.

For low values of 𝜎0, a lower value of 𝜆𝑣𝑜𝑙 would be a great fit. For these examples, however, 𝜆𝑣𝑜𝑙 = 0.01

seems to be the worst fit of the 3. In plots 6.2a and 6.2d, 𝜆𝑣𝑜𝑙 = 0.5 seems to be the best fit by a small

margin, whereas 𝜆𝑣𝑜𝑙 = 0.1 seems to be better for 6.2b and 6.2c.
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(a) 𝜎0 = 0.4, 𝛼 = 0.3 and 𝜏 = 1 (b) 𝜎0 = 0.2, 𝛼 = 0.3 and 𝜏 = 1

(c) 𝜎0 = 0.4, 𝛼 = 0.6 and 𝜏 = 1 (d) 𝜎0 = 0.4, 𝛼 = 0.3 and 𝜏 = 0.1

Figure 6.2: Behaviour of the empirical probability density of volatility under SABR when 𝜏, 𝜎0 or 𝛼 changes.

Results
Figure 6.3 shows the results for 𝜆𝑣𝑜𝑙 = 0.5. For shorter maturities, we seem to have slightly better

performance, especially for the asset prices in the money. For longer maturities, the error levels seems

to be similar to the original one before the log-transformation in volatility. In general, this looks like a

slight improvement, but we should note that we gain a lot of freedom using this transformation. With

𝜆𝑣𝑜𝑙 → ∞, this acts like the regular volatility SABR model, so we can always choose 𝜆𝑣𝑜𝑙 such that the

performance does not decrease.
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(a) Option price, absolute error and relative error for 𝜏 = 0

(b) Option price, absolute error and relative error for 𝜏 = 0.1

(c) Option price, absolute error and relative error for 𝜏 = 0.25

(d) Option price, absolute error and relative error for 𝜏 = 0.5

(e) Option price, absolute error and relative error for 𝜏 = 1

Figure 6.3: Option price and errors for various 𝜏 using trigonometric expansion vs Monte Carlo benchmark for an up-and-out

barrier option with parameters (𝑟, 𝛼, 𝛽, 𝜌, 𝜎0) = (0.1, 0.2, 0.5,−0.85, 0.8) and (𝑎1 , 𝑏1 , 𝐸, 𝑎3 , 𝑏3 , 𝐾) = (40, 120, 90, 0, 2, 26) under

SABR regular asset and log-volatility dynamics with 𝜆𝑣𝑜𝑙 = 0.5.
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6.5.2. Inverted-log-asset
Besides the log-volatility, we also apply the inverted-log-asset transformation, 𝑦 = ln(𝐵 + 𝜆𝑎𝑠𝑠𝑒𝑡 − 𝑆).
Here 𝜆𝑎𝑠𝑠𝑒𝑡 can again be chosen using Equation (5.11). Since 𝜆𝑣𝑜𝑙 = 1 (so 𝑝 ≈ 0.845) worked well for the

GBM case, it thus makes sense to use it in the SABR model as well. It is, however, noteworthy that we

now have significantly less expansion terms (26 vs 64), so there are only 4 training points to the left

of the midway point instead of the 10 training points we had with GBM. Therefore, we also test for

𝑝 = 0.75, which yields 𝜆𝑎𝑠𝑠𝑒𝑡 ≈ 7.5.

Transformed PDE and linear system
The transformation is identical to that for the GBM case in Section 5.6.3, which, after being applied to

PDE (6.7), result in the following PDE

𝜕𝑉

𝜕𝑡
+ (𝑒𝑥 − 𝜆𝑣𝑜𝑙)2

2

(𝐵 + 𝜆𝑎𝑠𝑠𝑒𝑡 − 𝑒𝑦)2𝛽𝑒−2𝑦

(
𝜕2𝑉

𝜕𝑦2

− 𝜕𝑉

𝜕𝑦

)
− 𝛼

(𝑒𝑥 − 𝜆𝑣𝑜𝑙)2
𝑒𝑥

(𝐵 + 𝜆𝑎𝑠𝑠𝑒𝑡 − 𝑒𝑦)𝛽𝜌𝑒−𝑦
𝜕𝑉

𝜕𝑦𝜕𝑥

+ 𝛼2

2

(𝑒𝑥 − 𝜆𝑣𝑜𝑙)2
𝑒2𝑥

(
𝜕2𝑉

𝜕𝑥2

− 𝜕𝑉

𝜕𝑥

)
− 𝑟𝑉 = 0,

(6.8)

where 𝐵 is the upper barrier (= 𝑏𝑎𝑠𝑠𝑒𝑡). We then find the IBVP for the survival ch.f. to be

− 𝜕𝜙̂𝑝
𝜕𝜏 + (𝑒𝑥−𝜆𝑣𝑜𝑙 )2

2
(𝐵 + 𝜆𝑎𝑠𝑠𝑒𝑡 − 𝑒𝑦)2𝛽𝑒−2𝑦

(
𝜕2𝜙̂𝑝
𝜕𝑦2

− 𝜕𝜙̂𝑝
𝜕𝑦

)
−𝛼 (𝑒𝑥−𝜆𝑣𝑜𝑙 )2

𝑒𝑥 (𝐵 + 𝜆𝑎𝑠𝑠𝑒𝑡 − 𝑒𝑦)𝛽𝜌𝑒−𝑦
𝜕𝜙̂𝑝
𝜕𝑦𝜕𝑥 +

𝛼2

2

(𝑒𝑥−𝜆𝑣𝑜𝑙 )2
𝑒2𝑥

(
𝜕2𝜙̂𝑝
𝜕𝑥2

− 𝜕𝜙̂𝑝
𝜕𝑥

)
= 0,

𝜙̂𝑝(𝜏, 𝑎, 𝑥) = 0,

𝜙̂𝑝(𝜏, 𝑏, 𝑥) = 0,
𝜕𝜙̂𝑝
𝜕𝜏

��
𝑥=−∞ = 0,

𝜙̂𝑝(0, 𝑦, 𝑥) = sin

(
𝑝𝜋

𝑦−𝑎
𝑏−𝑎

)
,

(6.9)

where 𝑎 = ln(𝐵 + 𝜆 − 𝑏𝑎𝑠𝑠𝑒𝑡), 𝑏 = ln(𝐵 + 𝜆 − 𝑎𝑎𝑠𝑠𝑒𝑡). We have seen in the GBM case, that the expansions

can be kept the same. Then the linear system will have LHS matrix defined as[
−
(
Z2[𝑙 , :] ⊗ V3[𝑛, :] ⊗ V1[𝑚, :]

)
+ V2[𝑙 , :] ⊗

(
(𝑒𝑥𝑛 − 𝜆𝑣𝑜𝑙)2

2

V3[𝑛, :] ⊗ (𝐵 + 𝜆𝑎𝑠𝑠𝑒𝑡 − 𝑒𝑦𝑚 )2𝛽𝑒−2𝑦𝑚
(
Z4[𝑚, :] − Z1[𝑚, :]

)
− 𝛼𝜌

(𝑒𝑥𝑛 − 𝜆𝑣𝑜𝑙)2
𝑒𝑥𝑛

Z3[𝑛, :] ⊗ (𝐵 + 𝜆𝑎𝑠𝑠𝑒𝑡 − 𝑒𝑦𝑚 )𝛽𝑒−𝑦𝑚Z1[𝑚, :]

+ 𝛼2

2

(𝑒𝑥𝑛 − 𝜆𝑣𝑜𝑙)2
𝑒2𝑥𝑛

(
Z5[𝑛, :] − Z3[𝑛, :]

)
⊗ V1[𝑚, :]

)]
vec(𝒜),

and RHS vector as

(𝑒𝑥𝑛 − 𝜆𝑣𝑜𝑙)2
2

(𝐵 + 𝜆𝑎𝑠𝑠𝑒𝑡 − 𝑒𝑦𝑚 )2𝛽𝑒−2𝑦𝑚

[(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑦𝑚 − 𝑎1

𝑏1 − 𝑎1

)
+

(
𝑝𝜋

𝑏1 − 𝑎1

)
cos

(
𝑝𝜋

𝑦𝑚 − 𝑎1

𝑏1 − 𝑎1

)]
.

results
Numerical tests were conducted for both values of 𝜆𝑎𝑠𝑠𝑒𝑡 ∈ {1, 7.5} and 𝜆𝑎𝑠𝑠𝑒𝑡 = 7.5 seems to perform

slightly better. If a larger number of expansion terms becomes possible, 𝜆𝑎𝑠𝑠𝑒𝑡 = 1 should be investigated

again. The results with 𝜆𝑎𝑠𝑠𝑒𝑡 = 7.5 are provided in Figure 6.4. There seems to be a slight improvement,

but it is negligible compared to the improvement we saw for GBM in Section 5.6. Since this change of

variables is based on having training points at denser parts of the probability density, it is possible that

this improvement is more noticeable for a larger number of expansion points.
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(a) Option price, absolute error and relative error for 𝜏 = 0

(b) Option price, absolute error and relative error for 𝜏 = 0.1

(c) Option price, absolute error and relative error for 𝜏 = 0.25

(d) Option price, absolute error and relative error for 𝜏 = 0.5

(e) Option price, absolute error and relative error for 𝜏 = 1

Figure 6.4: Option price and errors for various 𝜏 using trigonometric expansion vs Monte Carlo benchmark for an up-and-out

barrier option with parameters (𝑟, 𝛼, 𝛽, 𝜌, 𝜎0) = (0.1, 0.2, 0.5,−0.85, 0.8) and (𝑎1 , 𝑏1 , 𝐸, 𝑎3 , 𝑏3 , 𝐾) = (40, 120, 90, 0, 2, 26) under

SABR inverted-log-asset and log-volatility dynamics with 𝜆𝑎𝑠𝑠𝑒𝑡 = 7.5,𝜆𝑣𝑜𝑙 = 0.5.
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6.6. Conclusion
By applying the same method as in Chapter 5, we approximated 𝜙̂𝑝 with trigonometric expansion.

Substituting this expansion into the PDE yielded a large linear system. Since SABR considers expansion

in three dimensions, compared to the two dimensional case of GBM, the memory required to solve the

linear system increased dramatically. The largest possible number of expansion points was 𝐾 = 26. This

curse of dimensionality is a major problem for this method.

The results from this method, however, do seem promising if this curse of dimensionality is tackled.

We have seen that the error level and behaviour are comparable to those for GBM. For options with a

very small time to maturity, the errors are relatively large. This is likely due to the Gibbs phenomenon

close to 𝜏 = 0. Compared to the closed-form approximation in [13], our errors are very similar for larger

maturities. It is important to note, however, that our training took over an hour for each set of model

parameters, whereas the closed form approximation only had to compute a one dimensional integral

and therefore had a computation time of under 1 second. Theory tells us that we should converge to

smaller errors for a larger number of expansion points.

For SABR, the variable transformations did not improve the accuracy much. A possible explanation

for this is that we do not have enough expansion points. For a larger number of expansion points, this

variable transformation can still improve the results, but this requires more investigation.

In general, the results look promising if we are able to use dimension reduction techniques to

increase the number of expansion points per dimension.



7
Our contribution 4: Pricing barrier

options under GBM using the
COS-CPD network

The linear system that we need to solve in the training step consists of an 𝐾𝑁 × 𝐾𝑁 matrix and a 𝐾𝑁

vector. For 𝑁 = 3 in Chapter 6 we already saw that this gave memory issues. In this and the next

chapters, we apply the COS-CPD network that we detailed in Section 3.4 to solve option pricing PDEs.

The aim is to greatly alleviate the curse of dimensionality inherited in the trigonometric expansion

method developed in Chapters 5 and 6.

In this chapter, we focus on the 2-dimensional expansion under GBM, as a testing case, due to the

existence of analytical solutions under GBM. If this method proves to be efficient, the dimensionality

can be increased to solve the expansion under SABR and further improvements to the method can be

explored, when memory is less of an issue.

We start in Section 7.1 with the PDE for the survival ch.f. as a preparation step. In Section 7.2 we

apply CPD to find a new formulation for the survival ch.f. approximation. This formulation is then

inserted into the PDE, leading to multiple representations of the PDE in Section 7.3. In Section 7.4 we

elaborate on the ALS as a means to train the model. Section 7.5 performs an error analysis, before we

discuss the results in Section 7.6.

Lastly, we will also try a different approach, directly approximating the option price instead of the

survival ch.f., resulting in a much simpler model if successful. This approach is discussed and tested in

Section 7.7.

7.1. Characteristic function PDE under GBM
If we look at Equations (5.5), (5.6), and (5.12) we see that the PDE under GBM can be written as

−
𝜕𝜙̂𝑝

𝜕𝜏
+ 𝑐1(𝑆, 𝜏, 𝑟 , 𝜎2)

𝜕𝜙̂𝑝

𝜕𝑆
+ 𝑐2(𝑆, 𝜏, 𝑟 , 𝜎2)

𝜕2𝜙̂𝑝

𝜕𝑆2

= 0, (7.1)

where 𝑐1 and 𝑐2 depend on the type of transformation used. These are defined as

𝑐1(𝑆, 𝜏, 𝑟 , 𝜎2) =

𝑟𝑆, Regular-asset

𝑟 − 𝜎2

2
, Log-asset

− (𝐵+𝜆−𝑒𝑆)
𝑒𝑆

(
𝑟 + (𝐵 + 𝜆 − 𝑒𝑆) 𝜎2

2
𝑒−𝑆

)
, Inverted-log-asset

𝑐2(𝑆, 𝜏, 𝑟 , 𝜎2) =


𝜎2𝑆2

2
, Regular-asset

1

2
𝜎2 , Log-asset

(𝐵+𝜆−𝑒𝑆)2𝜎2𝑒−2𝑆

2
, Inverted-log-asset.

70
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Note that 𝑆 represents the log-asset or inverted-log-asset price in the respective models. The inverted-

log-asset exhibited bad convergence in combination with CPD and will therefore not be used in this

chapter. As seen in Chapter 5, working on the asset domain directly has better properties than the in

log-asset domain, so this chapter considers 𝑆 as the asset price. It is worth investigating why CPD and

the inverted-log-asset transformation do not seem compatible.

7.2. Approximating the ch.f. with CPD
We start from Equation (5.7), which is the trigonometric expansion for 𝜙̂𝑝(𝑆, 𝜏), which is in fact the

function that defines the Fourier-cosine series expansion coefficients of the survival density function,

but is referred to as survival ch.f. for its close relation with the survival ch.f.:

𝑇𝐾 𝜙̂𝑝(𝜏, 𝑆) =
𝐾∑

𝑘1=1

𝐾−1∑
𝑘2=1

𝒜𝑘1 ,𝑘2

𝑏2 − 𝑎2

𝑘2𝜋
sin

(
𝑘2𝜋

𝜏 − 𝑎2

𝑏2 − 𝑎2

)
sin

(
𝑘1𝜋

𝑆 − 𝑎1

𝑏1 − 𝑎1

)
+

𝐾∑
𝑘1=1

𝒜𝑘1 ,0
𝜏
2

sin

(
𝑘1𝜋

𝑆 − 𝑎1

𝑏1 − 𝑎1

)
+ sin

(
𝑝𝜋

𝑆 − 𝑎1

𝑏1 − 𝑎1

)
, 𝑎2 = 0.

We can rewrite this as

𝑇𝐾 𝜙̂𝑝(𝜏, 𝑆) =
𝐾∑

𝑘1=1

𝐾−1∑
𝑘2=0

(
𝒜𝑘1 ,𝑘2

s1(𝑥1)[𝑘1] · s2(𝑥2)[𝑘2]
)
+ sin

(
𝑝𝜋

𝑆 − 𝑎1

𝑏1 − 𝑎1

)
, 𝑎2 = 0, (7.2)

where x = (𝑥1 , 𝑥2) = (𝑆, 𝜏) and

s1(𝑥1) =

©­­­­­­­­­­«

sin

(
1𝜋 𝑥1−𝑎1

𝑏1−𝑎1

)
...

sin

(
𝑘1𝜋

𝑥1−𝑎1

𝑏1−𝑎1

)
...

sin

(
𝐾𝜋 𝑥1−𝑎1

𝑏1−𝑎1

)

ª®®®®®®®®®®¬
, s2(𝑥2) =

©­­­­­­­­­­­­«

𝑥2

2

𝑏2−𝑎2

1𝜋 sin

(
1𝜋 𝑥2−𝑎2

𝑏2−𝑎2

)
...

𝑏2−𝑎2

𝑘2𝜋
sin

(
𝑘2𝜋

𝑥2−𝑎2

𝑏2−𝑎2

)
...

𝑏2−𝑎2

(𝐾−1)𝜋 sin

(
(𝐾 − 1)𝜋 𝑥2−𝑎2

𝑏2−𝑎2

)

ª®®®®®®®®®®®®¬
.

From here we introduce the CPD approximation as described in Equation (2.11).

𝒜 ≈
𝑅∑
𝑟=1

◦2

𝑛=1
A𝑛[:, 𝑟],

𝒜k ≈
𝑅∑
𝑟=1

2∏
𝑛=1

A𝑛[𝑘𝑛 , 𝑟].

Substituting this into our previous expression for 𝜙̂𝑝 results in

𝜙̂𝑝(x) ≈
𝐾∑

𝑘1=1

𝐾−1∑
𝑘2=0

(
𝒜𝑘1 ,𝑘2

2∏
𝑛=1

s𝑛(𝑥𝑛)[𝑘𝑛]
)
+ sin

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)
≈

𝐾∑
𝑘1=1

𝐾−1∑
𝑘2=0

(
𝑅∑
𝑟=1

2∏
𝑛=1

A𝑛[𝑘𝑛 , 𝑟]s𝑛(𝑥𝑛)[𝑘𝑛]
)
+ sin

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)
=

𝑅∑
𝑟=1

𝐾∑
𝑘1=1

𝐾−1∑
𝑘2=0

2∏
𝑛=1

(
A𝑛[𝑘𝑛 , 𝑟]s𝑛(𝑥𝑛)[𝑘𝑛]

)
+ sin

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)
.
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As we have seen in the final parts of Section 2.8.1, this can be rewritten as

𝜙̂𝑝(x) ≈
(

2

⊛
𝑛=1

s𝑇𝑛 (𝑥𝑛)A𝑛

)
1 + sin

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)
=

(
s𝑇

1
(𝑥1)A1 ⊛ s𝑇

2
(𝑥2)A2

)
1 + sin

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)
,

where 1 = (1, . . . , 1)𝑇 ∈ R𝑅. Evaluating the first part of this approximation can also be seen as a

feedforward neural network. This is the COS-CPD neural network described in Section 3.4. Updating

of the edge weights (factor matrices A𝑛) is done using the PDE, which is described in the following

sections.

7.3. Reformulating the ch.f. PDE
We want to substitute this approximation for 𝜙̂𝑝(x) into the PDE, so we first have to introduce the partial

derivatives for the vectors s1(𝑥1) and s2(𝑥2).

z1 =
𝜕

𝜕𝑆
s1 =

©­­­­­­­­­­«

1𝜋
𝑏1−𝑎1

cos

(
1𝜋 𝑥1−𝑎1

𝑏1−𝑎1

)
...

𝑘1𝜋
𝑏1−𝑎1

cos

(
𝑘1𝜋

𝑥1−𝑎1

𝑏1−𝑎1

)
...

𝐾𝜋
𝑏1−𝑎1

cos

(
𝐾𝜋 𝑥1−𝑎1

𝑏1−𝑎1

)

ª®®®®®®®®®®¬
, z2 =

𝜕

𝜕𝜏
s2 =

©­­­­­­­­­­­­«

1

2

cos

(
1𝜋 𝑥2−𝑎2

𝑏2−𝑎2

)
...

cos

(
𝑘2𝜋

𝑥2−𝑎2

𝑏2−𝑎2

)
...

cos

(
(𝐾 − 1)𝜋 𝑥2−𝑎2

𝑏2−𝑎2

)

ª®®®®®®®®®®®®¬
,

z3 =
𝜕2

𝜕𝑆2

s1 = −

©­­­­­­­­­­­«

(
1𝜋

𝑏1−𝑎1

)
2

sin

(
1𝜋 𝑥1−𝑎1

𝑏1−𝑎1

)
...(

𝑘1𝜋
𝑏1−𝑎1

)
2

sin

(
𝑘1𝜋

𝑥1−𝑎1

𝑏1−𝑎1

)
...(

𝐾𝜋
𝑏1−𝑎1

)
2

sin

(
𝐾𝜋 𝑥1−𝑎1

𝑏1−𝑎1

)

ª®®®®®®®®®®®¬
.

Now we have all the ingredients to substitute the characteristic function into PDE (7.1). They yield the

equation:

𝑃𝐷𝐸(x) = −
𝜕𝜙̂𝑝

𝜕𝜏
+ 𝑐1(𝑆, 𝜏, 𝑟 , 𝜎2)

𝜕𝜙̂𝑝

𝜕𝑆
+ 𝑐2(𝑆, 𝜏, 𝑟 , 𝜎2)

𝜕2𝜙̂𝑝

𝜕𝑆2

= 0

𝑃𝐷𝐸(x) = −
(
s𝑇

1
(𝑥1)A1 ⊛ z𝑇

2
(𝑥2)A2

)
1 + 𝑐1(x)

[(
z𝑇

1
(𝑥1)A1 ⊛ s𝑇

2
(𝑥2)A2

)
1 + 𝑝𝜋

𝑏1 − 𝑎1

cos

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)]
+ 𝑐2(x)

[(
z𝑇

3
(𝑥1)A1 ⊛ s𝑇

2
(𝑥2)A2

)
1 −

(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)]
= 0.

Note how this PDE formulation has a Hadamard product between terms with A1 and A2. Therefore,

deriving a linear system for finding their coefficients is no longer possible. In Section 7.4 we will discuss

a method to circumvent this, but to use that method, we need to reformulate the PDE such that one of



7.4. Finding factor matrices A𝑛 through ALS 73

the factor matrices is fully factored out. We rewrite the PDE as

𝑃𝐷𝐸1(x𝑚) = − s𝑇
1
(𝑥𝑚

1
)A1W𝑚

1
+ 𝑐1(x𝑚)

[
z𝑇

1
(𝑥𝑚

1
)A1Q𝑚

1
+ 𝑝𝜋

𝑏1 − 𝑎1

cos

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)]
+ 𝑐2(x𝑚)

[
z𝑇

3
(𝑥𝑚

1
)A1Q𝑚

1
−

(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)]
= 0

W𝑚
1
=

[
A𝑇

2
z2(𝑥𝑚

2
)
]
∈ R𝑅×1

Q𝑚
1
=

[
A𝑇

2
s2(𝑥𝑚

2
)
]
∈ R𝑅×1

𝑃𝐷𝐸2(x𝑚) = − z𝑇
2
(𝑥𝑚

2
)A2W𝑚

2
+ 𝑐1(x𝑚)

[
s𝑇

2
(𝑥𝑚

2
)A2Q𝑚

2𝑎 +
𝑝𝜋

𝑏1 − 𝑎1

cos

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)]
+ 𝑐2(x𝑚)

[
s𝑇

2
(𝑥𝑚

2
)A2Q𝑚

2𝑏
−

(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)]
= 0

W𝑚
2
=

[
A𝑇

1
s1(𝑥𝑚

1
)
]
∈ R𝑅×1

Q𝑚
2𝑎 =

[
A𝑇

1
z1(𝑥𝑚

1
)
]
∈ R𝑅×1

Q𝑚
2𝑏

=

[
A𝑇

1
z3(𝑥𝑚

1
)
]
∈ R𝑅×1.

With this formulation, we can vectorize the factor matrices and find the vectorized forms:

𝑃𝐷𝐸1(x𝑚) =
(
−
[
(W𝑚

1
)𝑇 ⊗ s𝑇

1
(𝑥𝑚

1
)
]
+ 𝑐1(x𝑚)

[
(Q𝑚

1
)𝑇 ⊗ z𝑇

1
(𝑥𝑚

1
)
]
+ 𝑐2(x𝑚)

[
(Q𝑚

1
)𝑇 ⊗ z𝑇

3
(𝑥𝑚

1
)
] )

vec(A1)

+ 𝑐1(x𝑚)
[

𝑝𝜋

𝑏1 − 𝑎1

cos

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)]
− 𝑐2(x𝑚)

[(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)]
= 0

𝑃𝐷𝐸2(x𝑚) =
(
−
[
(W𝑚

2
)𝑇 ⊗ z𝑇

2
(𝑥𝑚

2
)
]
+ 𝑐1(x𝑚)

[
(Q𝑚

2𝑎)𝑇 ⊗ s𝑇
2
(𝑥𝑚

2
)
]
+ 𝑐2(x𝑚)

[
(Q𝑚

2𝑏
)𝑇 ⊗ s𝑇

2
(𝑥𝑚

2
)
] )

vec(A2)

+ 𝑐1(x𝑚)
[

𝑝𝜋

𝑏1 − 𝑎1

cos

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)]
− 𝑐2(x𝑚)

[(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)]
= 0.

Note that these are just linear systems in the form 𝐿𝐻𝑆𝑛vec(A𝑛) − 𝑅𝐻𝑆𝑛 = 0, so linear solvers can be

used to find coefficients of A𝑛 , given that we have the coefficients of all A𝑚 , 𝑚 ≠ 𝑛.

7.4. Finding factor matrices A𝑛 through ALS
As mentioned before, deriving a linear system that solves for both A1 and A2 is not possible. For that

reason we find the coefficients iteratively through the Alternating Least Squares (ALS) algorithm.

Faber, Bro, and Hopke [43] compared ALS with six different methods. Among these, ALS provided

the highest quality solutions, while the alternating slicewise diagonalization (ASD) method [44] was a

viable alternative for scenarios requiring low computation time. In another study, Tomasi and Bro [45]

compared ALS and ASD with four other methods and three variants utilizing Tucker-based compression,

followed by computing a CPD of the reduced array [46]. This comparison included the damped

Gauss-Newton (dGN) method and a variant called PMF3 [47], both of which optimize all factor matrices

simultaneously. Contrary to Faber, Bro, and Hopke’s findings, ASD was found to be inferior to other

alternating-type methods. Derivative-based methods (dGN and PMF3) generally outperformed ALS in

terms of convergence properties but had a larger computational complexity.

In this chapter, we use the same ALS method as used and improved in [2]. Algorithm 1 shows the

pseudocode for ALS. We require a several inputs: dimension 𝑁 , number of expansion points 𝐾, and

CPD rank 𝑅. We also require the model parameters 𝑟, 𝜎2
and lower and upper bounds of expansion

𝑎1 , 𝑏1 , 𝑎2 , 𝑏2.

In Algorithm 1, we compute the residual of the PDE at predetermined points, which should differ

from the training points. Due to the fewer expansion coefficients compared to before, we might not
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fully converge to zero residual at these points. Therefore, we want to set a maximum number of ALS

iterations to avoid getting stuck in an infinite loop.

As shown in [4], the number of training points in each dimension should be equal to the number of

expansion terms 𝐾.

One last remark about the algorithm is why we solve 𝑀vec(A𝑛) = 𝑓 . Note that vec(A𝑛) ∈ R𝐾𝑅 and

𝐿𝐻𝑆𝑛 ∈ R𝐾
𝑁×𝐾𝑅

, because it has as many rows as there are training points. Therefore, this is not a square

linear system and it is not easily solved. To bypass this, we solve this by changing to normal equations

𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏.
Another explanation for choosing these normal equations comes from the essence of the problem.

We try to find vec(A𝑛) such that the Euclidean distance ∥𝐿𝐻𝑆𝑛vec(A𝑛) − 𝑅𝐻𝑆𝑛∥2

2
is minimized. We can

rewrite this distance as

∥𝐿𝐻𝑆𝑛vec(A𝑛) − 𝑅𝐻𝑆𝑛∥2

2
= vec(A𝑛)𝑇𝐿𝐻𝑆𝑇𝑛𝐿𝐻𝑆𝑛vec(A𝑛) − 2𝑅𝐻𝑆𝑇𝑛𝐿𝐻𝑆𝑛vec(A𝑛) + 𝑅𝐻𝑆𝑇𝑛𝑅𝐻𝑆𝑛
= vec(A𝑛)𝑇𝑀vec(A𝑛) − 2 𝑓 𝑇vec(A𝑛) + 𝑅𝐻𝑆𝑇𝑛𝑅𝐻𝑆𝑛

𝑀 = 𝐿𝐻𝑆𝑇𝐿𝐻𝑆

𝑓 = 𝐿𝐻𝑆𝑇𝑅𝐻𝑆

In the minimization problem we can neglect the constant term 𝑅𝐻𝑆𝑇𝑛𝑅𝐻𝑆𝑛 . Furthermore, we can divide

the whole expression by 2, since the minimum would be at the same A𝑛 . We find the gradient

𝑀vec(A𝑛) − 𝑓 .

Finding the minimum is equivalent to setting this gradient equal to zero. This results in the previously

mentioned normal equations.

Automatically 𝑀 is symmetric, which can speed up calculations. The solving step is done using

scipy.linalg.solve().

Algorithm 1 Calibrating A𝑛 through ALS

Input: 𝑁, 𝐾, 𝑅, 𝑟, 𝜎2 , 𝑎1 , 𝑏1 , 𝑎2 , 𝑏2 , 𝑝, 𝑀𝑎𝑥_𝐴𝐿𝑆_𝑖𝑡𝑒𝑟𝑠
Initialize A1 ,A2

Create training points x
for 𝑖 = 1, ..., 𝑀𝑎𝑥_𝐴𝐿𝑆_𝑖𝑡𝑒𝑟𝑠 do

for 𝑛 = 1, 2 do
𝑀 = 𝐿𝐻𝑆𝑇𝑛𝐿𝐻𝑆𝑛
𝑓 = 𝐿𝐻𝑆𝑇𝑛𝑅𝐻𝑆𝑛
Solve 𝑀vec(A𝑛) = 𝑓
Update A𝑛

end for
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 = 𝑃𝐷𝐸(𝑥)2
if 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 < 𝜖 then

stop algorithm and return A𝑛

end if
end for

7.4.1. Choosing the number of ALS iterations
The maximum number of ALS iterations greatly influences the time taken, as the residuals are rarely

small enough to satisfy the stopping criterion. Therefore, we should first analyse what a good choice

would be. Figure 7.1 shows how the mean square error of the residuals behaves for multiple ALS

iterations. One can see that after 3 iterations all errors seem to be fully converged. Additionally, we see

that increasing the rank has a bigger effect when we have a larger number of expansion terms. Initially,

the error dominance comes from the number of expansion terms, but once this is sufficiently large,

the dominant error source becomes the CPD rank. Therefore, an increasingly large 𝐾 also requires

an increasingly large 𝑅 to improve the model accuracy. For the remaining calculations, we choose

Max_ALS_iters = 3.
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Figure 7.1: Mean square error for 200 points with different expansion and CPD parameters

7.4.2. Computational complexity
We introduced CPD to reduce the computational complexity we had in Chapter 5. Table 7.1 summarizes

the memory required for the two most memory intensive steps in the algorithms. In the direct approach

from Chapter 5, the LHS matrix from the linear system is already square and is used for solving the

linear system. The memory required for this matrix is 𝒪(𝐾2𝑁 ).
With the CPD included in the algorithm, the most expensive step is generating the LHS matrix with

memory 𝒪(𝐾𝑁+1𝑅) and performing 𝐿𝐻𝑆𝑇𝐿𝐻𝑆. Solving the system is done for a matrix with memory

𝒪(𝐾𝑅 · 𝐾𝑅).
Note that 𝐿𝐻𝑆 is never used in Algorithm 1 except for finding 𝑀. Therefore, at the cost of much

higher computation time, it would be possible to skip computing the full matrix 𝐿𝐻𝑆 and instantly find

𝑀 instead.

Step Direct approach with CPD

Memory LHS 𝐾𝑁 × 𝐾𝑁 𝐾𝑁 × 𝐾𝑅
Linear system size 𝐾𝑁 × 𝐾𝑁 𝐾𝑅 × 𝐾𝑅

Storing training points - 𝐾𝑁 × 𝑁

Table 7.1: Memory requirements for direct approach and the algorithm with CPD.

7.5. Error analysis of the characteristic function approximation
Before we look at the results using CPD, we first analyse the error behaviour of the approximation of 𝜙̂𝑝
compared to the direct approach of Chapter 5. We also compare 𝜙̂(𝑡 , 𝑆) found using the two methods

with the benchmark as described in Equation (2.9). We set (𝑁, 𝐾, 𝑅) = (2, 64, 7) for our expansions.

For each {𝑝 ∈ 1, . . . , 64} we evaluate 𝜙̂ on an equidistant grid with 200 points in each dimension, i.e.

40.000 points in total. For each of these 𝑝, we take the average over all the points to calculate the mean

square error with respect to benchmark, the average absolute difference between the 2 methods, and the

average relative difference between the 2 methods. The results are presented in Figure 7.2.

In this figure, we can see that both methods have very similar accuracy at the same place. The

absolute errors between the two methods are generally around 10
−4

. This suggests that the option price

approximations should give very similar accuracy levels with and without CPD. Note that there are

some large relative errors. The reason is that |𝜙̂| is very small there. Those large relative errors are more

prominent for larger 𝑝, where |𝜙̂| is smaller. This, however, raises no issues, since the expansion term of

a large 𝑝 will barely contribute to the final pricing function due to the small value of 𝜙̂ thereof.
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Figure 7.2: Error behaviour of 𝜙̂ for the direct method from Chapter 5 and the new method of this chapter that includes CPD.

7.6. Results
We use the same parameters as in Appendix 5, i.e. 𝑁 = 2 and 𝐾 = 64. The model parameters set

(𝑟, 𝜎2) = (0.1, 0.01). For the option parameters, we have (𝐸, 𝐵) = (90, 120). The only new parameter, the

rank, is chosen to be 𝑅 = 8. This choice was made after numerical investigation. A larger 𝑅 leads to

more accurate results, but beyond 𝑅 = 8, the results do not improve significantly relative to the increase

in computing time. The errors are calculated by comparing to the benchmark from Equation (2.8).

The results are presented in Figure 7.3. Compared to the results from Figure 5.3, the error behaviours

are similar in both cases, but in Figure 7.3, the errors for low asset prices are slightly larger. It is expected

that the direct method from Chapter 5 has lower errors, as CPD introduced an extra approximation.

Since the CPD method scales better to higher dimensions and a larger 𝐾, we can conclude that the CPD

method will likely be the method with more potential in higher dimensions.

7.6.1. Condition numbers
It is important to note the large condition numbers of matrix 𝑀 = 𝐿𝐻𝑆𝑇𝐿𝐻𝑆. A large condition number

raises difficulty to the linear system solver, resulting less accurate results. In this algorithm, the condition

number can be quite large at some points, often being around 10
5

in the first ALS iteration and increasing

to between 10
9

and 10
14

, depending on 𝑝 by the third ALS iteration.

Preconditioning can be used to decrease the condition number. Most preconditioning matrices

are designed for sparse matrices, but our matrix 𝑀 is dense. After applying the simple Jacobian

preconditioner (diagonal of 𝑀), the preconditioned matrix has condition number 10
3

for the first ALS

iteration and between 10
8

and 10
12

for the third ALS iteration, depending on the value of 𝑝. No further

investigation has been done on preconditioning due to the complexity of preconditioning with a dense

matrix. A small summary of the condition numbers is made in Table 7.2

We tried to analyse whether the condition number is the main error source, but it is difficult to

isolate this as an error source from the other ones. We should keep the condition number in mind when

increasing the number of dimensions.

ALS iteration Without preconditioning Jacobian preconditioning

1 10
5

10
3

3 (small 𝑝) 10
9

10
8

3 (large 𝑝) 10
14

10
12

Table 7.2: Condition numbers of system matrix 𝑀
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(a) Option price, absolute error and relative error for 𝜏 = 0

(b) Option price, absolute error and relative error for 𝜏 = 0.1

(c) Option price, absolute error and relative error for 𝜏 = 0.25

(d) Option price, absolute error and relative error for 𝜏 = 0.5

(e) Option price, absolute error and relative error for 𝜏 = 1

Figure 7.3: Option price and errors for various 𝜏 using trigonometric expansion with CPD vs closed-form solution for an

up-and-out barrier option with parameters (𝑟, 𝜎2) = (0.1, 0.01) and (𝑎1 , 𝑏1 , 𝑎2 , 𝑏2 , 𝐸) = (40, 120, 0, 1, 90) under regular-asset GBM

dynamics.
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7.7. Directly approximating option price
So far, we have been following the steps laid out in [3], i.e. we first approximate the option price through

the COS method, then inserting the SIN formula into the PDE to yield a new PDE for the survival ch.f.

𝜙̂𝑝 . Then through trigonometric expansion (and optionally CPD), we find approximations for these 𝜙̂𝑝 ,
which can be substituted back into the SIN formula of the option price.

A natural question is whether we can avoid going through these extra steps and directly solve the

pricing PDE via trigonometric expansion (and with CPD). This question is answered below.

7.7.1. Pricing PDE
We first apply 𝜏 = 𝑇 − 𝑡 to Equation (5.1) to find

−𝜕𝑉

𝜕𝜏
+ 𝑟𝑆 𝜕𝑉

𝜕𝑆
+ 1

2

𝜎2𝑆2
𝜕2𝑉

𝜕2𝑆
− 𝑟𝑉 = 0, (7.3)

with the boundary conditions 𝑉(𝜏, 𝑎1) = 𝑉(𝜏, 𝑏1) = 0, where 𝑎1 and 𝑏1 are the lower and upper barrier

of the option. The initial condition 𝑉(0, 𝑆) is defined by the option payoff function. So for a barrier call

option this would be 𝑉(0, 𝑆) = (𝑆 − 𝐸)+.

7.7.2. Trigonometric expansion for the option price
We once again employ trigonometric expansion obtained via integrating out the Fourier expansion of

the first order derivative in time, since this incorporates the initial condition. Again, we can use sine

expansion on the asset dimension to automatically include the boundary conditions, resulting in

𝑉(𝜏, 𝑆) ≈
𝐾∑

𝑘1=1

𝐾−1∑
𝑘2=1

𝒜𝑘1 ,𝑘2

𝑏2 − 𝑎2

𝑘2𝜋
sin

(
𝑘2𝜋

𝜏 − 𝑎2

𝑏2 − 𝑎2

)
sin

(
𝑘1𝜋

𝑆 − 𝑎1

𝑏1 − 𝑎1

)
+

𝐾∑
𝑘1=1

𝒜𝑘1 ,0
𝜏
2

sin

(
𝑘1𝜋

𝑆 − 𝑎1

𝑏1 − 𝑎1

)
+𝑉(0, 𝑆), 𝑎2 = 0.

For 𝑆 = 𝑎1 or 𝑆 = 𝑏1, we get 𝑉(𝜏, 𝑎1) = 𝑉(0, 𝑎1) and 𝑉(𝜏, 𝑏1) = 𝑉(0, 𝑏1). For 𝜏 = 0, we are just left with

the initial condition𝑉(0, 𝑆). So it satisfies the boundary conditions and initial condition. After applying

CPD, we get

𝑉(𝜏, 𝑆) ≈
(
s𝑇

1
(𝑥1)A1 ⊛ s𝑇

2
(𝑥2)A2

)
1 +𝑉(0, 𝑆),

where s𝑖 are still defined the same as for the survival ch.f. expansion.

7.7.3. Reformulating the PDE
When we substitute the expansion of the unknown function into the PDE it satisfies, we have to generate

the derivatives of the expansion approximation. Note that
𝜕𝑉(0,𝑆)

𝜕𝜏 = 0, but the derivative in the asset

price dimension is not fully defined. If we consider European call payoff 𝑉(0, 𝑆) = (𝑆 − 𝐸)+, we get

𝜕𝑉(0, 𝑆)
𝜕𝑆

=


0, 𝑆 < 𝐸

1, 𝑆 > 𝐸

𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑, 𝑆 = 𝐸

𝜕2𝑉(0, 𝑆)
𝜕𝑆2

=

{
0, 𝑆 ≠ 𝐸

𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑, 𝑆 = 𝐸.

This non-continuous behaviour is known to cause issues with Fourier based methods, due to the Gibbs

phenomenon at those discontinuities.

Further steps are identical to Section 7.3. The factor matrices are also solved the same way, i.e. using

Algorithm 1.
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7.7.4. Results
Unfortunately, this method did not converge to the actual solution. Therefore, no comparisons are made

to either the benchmark or the method developed in Chapters 5 and 6.

We could not pinpoint where this lack of convergence comes from, but the discontinuities in the

derivatives of the initial condition could be the reason. Further research can be done along this direction,

but this thesis does not deem this method a viable option.

7.8. conclusion
In this chapter we used CPD to decrease the dimensionality. We have seen that the computational

complexity is greatly reduced, which allows us to deal with a higher number of dimensions.

The accuracy level with CPD is very similar to that of the model without CPD. We do, however, see

somewhat larger errors for far out-of-the-money options. In return for this, we get a method that scales

better with a higher number of dimensions. Whether this trade-off is worth it, can not be seen from the

2-dimensional GBM case.

One big downside of this method is that it is not compatible with the change of variables explored in

Section 5.6. That change of variables gave a significant improvement of performance, which is now lost.

It is not clear why CPD does not work well in combination with the inverted log-asset transformation.

This would require more investigation.

So far, in this thesis, we have applied trigonometric expansion to 𝜙̂𝑝 to get the results. Therefore,

we have to find the expansion coefficients for all 𝑝 ∈ {1, 2, . . . , 𝐾}. At last, we also tried applying

trigonometric expansion method directly to the option price PDE. This did not give converging results,

likely due to the discontinuities in the derivatives of the initial condition.



8
Our contribution 5: Pricing barrier

options under SABR using the
COS-CPD network

This chapter applies the COS-CPD network, as applied in Chapter 7 to the pricing problem discussed in

Chapter 6.

8.1. Characteristic function PDE under SABR
We start from the PDE in IBVP (6.5). As in Chapter 7, we introduce coefficients 𝑐1 , 𝑐2 and 𝑐3 for more

clarity throughout the derivations. Then our target PDE can be written as

−
𝜕𝜙̂𝑝

𝜕𝜏
+ 𝑐1

𝜕2𝜙̂𝑝

𝜕𝑆2

+ 𝑐2

𝜕2𝜙̂𝑝

𝜕𝜎2

+ 𝑐3

𝜕2𝜙̂𝑝

𝜕𝑆𝜕𝜎
= 0

𝑐1 =
1

2

𝜎2𝑆2𝛽

𝑐2 =
1

2

𝛼2𝜎2

𝑐3 = 𝛼𝜌𝜎2𝑆𝛽 .

8.2. Approximating the ch.f. with CPD
We start from Equation (6.6) and rewrite it in the same form as Equation (7.2):

𝜙̂𝑝(𝜏, 𝑆) ≈
𝐾∑

𝑘1=1

𝐾−1∑
𝑘2=0

𝐾∑
𝑘3=1

(
𝒜𝑘1 ,𝑘2 ,𝑘3

s1(𝑥1)[𝑘1] · s2(𝑥2)[𝑘2] · s3(𝑥3)[𝑘3]
)
+ sin

(
𝑝𝜋

𝑆 − 𝑎1

𝑏1 − 𝑎1

)
, (8.1)

where x = (𝑥1 , 𝑥2 , 𝑥3) = (𝑆, 𝜏, 𝜎) and

s1(𝑥1) =

©­­­­­­­­­­«

sin

(
1𝜋 𝑥1−𝑎1

𝑏1−𝑎1

)
...

sin

(
𝑘1𝜋

𝑥1−𝑎1

𝑏1−𝑎1

)
...

sin

(
𝐾𝜋 𝑥1−𝑎1

𝑏1−𝑎1

)

ª®®®®®®®®®®¬
, s2(𝑥2) =

©­­­­­­­­­­­­«

𝑥2

2

𝑏2−𝑎2

1𝜋 sin

(
1𝜋 𝑥2−𝑎2

𝑏2−𝑎2

)
...

𝑏2−𝑎2

𝑘2𝜋
sin

(
𝑘2𝜋

𝑥2−𝑎2

𝑏2−𝑎2

)
...

𝑏2−𝑎2

(𝐾−1)𝜋 sin

(
(𝐾 − 1)𝜋 𝑥2−𝑎2

𝑏2−𝑎2

)

ª®®®®®®®®®®®®¬
, s3(𝑥3) =

©­­­­­­­­­­«

sin

(
1𝜋 𝑥3−𝑎3

𝑏3−𝑎3+𝜖

)
...

sin

(
𝑘3𝜋

𝑥3−𝑎3

𝑏3−𝑎3+𝜖

)
...

sin

(
𝐾𝜋 𝑥3−𝑎3

𝑏3−𝑎3+𝜖

)

ª®®®®®®®®®®¬
.
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Next, we can introduce the CPD approximation from Equation (2.11) again. This results in

𝒜 ≈
𝑅∑
𝑟=1

◦3

𝑛=1
A𝑛[:, 𝑟],

𝒜k ≈
𝑅∑
𝑟=1

3∏
𝑛=1

A𝑛[𝑘𝑛 , 𝑟].

After substituting these into the expression for 𝜙̂𝑝 and rearranging the terms as before, we get the

following:

𝜙̂𝑝(x) ≈
(
s𝑇

1
(𝑥1)A1 ⊛ s𝑇

2
(𝑥2)A2 ⊛ s𝑇

3
(𝑥3)A3

)
1 + sin

(
𝑝𝜋

𝑥1 − 𝑎1

𝑎1 − 𝑏1

)
.

where 1 = (1, . . . , 1)𝑇 ∈ R𝑅.

8.3. Rewriting the ch.f. PDE
Our next step is substituting the new formulation of 𝜙̂𝑝 into the PDE, but before we can do that, we

have to find the partial derivatives of s𝑖 . We write these as

z1 =
𝜕

𝜕𝑆
s1 =

©­­­­­­­­­­«

1𝜋
𝑏1−𝑎1

cos

(
1𝜋 𝑥1−𝑎1

𝑏1−𝑎1

)
...

𝑘1𝜋
𝑏1−𝑎1

cos

(
𝑘1𝜋

𝑥1−𝑎1

𝑏1−𝑎1

)
...

𝐾𝜋
𝑏1−𝑎1

cos

(
𝐾𝜋 𝑥1−𝑎1

𝑏1−𝑎1

)

ª®®®®®®®®®®¬
, z2 =

𝜕

𝜕𝜏
s2 =

©­­­­­­­­­­­­«

1

2

cos

(
1𝜋 𝑥2−𝑎2

𝑏2−𝑎2

)
...

cos

(
𝑘2𝜋

𝑥2−𝑎2

𝑏2−𝑎2

)
...

cos

(
(𝐾 − 1)𝜋 𝑥2−𝑎2

𝑏2−𝑎2

)

ª®®®®®®®®®®®®¬
,

z3 =
𝜕

𝜕𝜎
s3 =

©­­­­­­­­­­«

1𝜋
𝑏3−𝑎3+𝜖 cos

(
1𝜋 𝑥3−𝑎3

𝑏3−𝑎3+𝜖

)
...

𝑘3𝜋
𝑏3−𝑎3+𝜖 cos

(
𝑘3𝜋

𝑥3−𝑎3

𝑏3−𝑎3+𝜖

)
...

𝐾𝜋
𝑏3−𝑎3+𝜖 cos

(
𝐾𝜋 𝑥3−𝑎3

𝑏3−𝑎3+𝜖

)

ª®®®®®®®®®®¬
, z4 =

𝜕2

𝜕𝑆2

s1 = −

©­­­­­­­­­­­«

(
1𝜋

𝑏1−𝑎1

)
2

sin

(
1𝜋 𝑥1−𝑎1

𝑏1−𝑎1

)
...(

𝑘1𝜋
𝑏1−𝑎1

)
2

sin

(
𝑘1𝜋

𝑥1−𝑎1

𝑏1−𝑎1

)
...(

𝐾𝜋
𝑏1−𝑎1

)
2

sin

(
𝐾𝜋 𝑥1−𝑎1

𝑏1−𝑎1

)

ª®®®®®®®®®®®¬
,

z5 =
𝜕2

𝜕𝜎2

s3 = −

©­­­­­­­­­­­«

(
1𝜋

𝑏3−𝑎3+𝜖

)
2

sin

(
1𝜋 𝑥3−𝑎3

𝑏3−𝑎3+𝜖

)
...(

𝑘3𝜋
𝑏3−𝑎3+𝜖

)
2

sin

(
𝑘3𝜋

𝑥3−𝑎3

𝑏3−𝑎3+𝜖

)
...(

𝐾𝜋
𝑏3−𝑎3+𝜖

)
2

sin

(
𝐾𝜋 𝑥3−𝑎3

𝑏3−𝑎3+𝜖

)

ª®®®®®®®®®®®¬
.

With this, we can substitute 𝜙̂𝑝 into the PDE to find

𝑃𝐷𝐸(x) = −
(
s𝑇

1
(𝑥1)A1 ⊛ z𝑇

2
(𝑥2)A2 ⊛ s𝑇

3
(𝑥3)A3

)
1

+ 𝑐1(x)
[(

z𝑇
4
(𝑥1)A1 ⊛ s𝑇

2
(𝑥2)A2 ⊛ s𝑇

3
(𝑥3)A3

)
1 −

(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)]
+ 𝑐2(x)

(
s𝑇

1
(𝑥1)A1 ⊛ s𝑇

2
(𝑥2)A2 ⊛ z𝑇

5
(𝑥3)A3

)
1 + 𝑐3(x)

(
z𝑇

1
(𝑥1)A1 ⊛ s𝑇

2
(𝑥2)A2 ⊛ z𝑇

3
(𝑥3)A3

)
1 = 0.

The vectorized versions of the PDE can be found in Appendix A.5.
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8.4. Results
The methodology for finding the factor matrices through ALS is unaltered. Unlike in the GBM case, we

have no analytic benchmark for 𝜙̂𝑝 so alternative benchmark values or methods are needed.

Figure 8.1 shows the results for the CPD approach with model parameters (𝑁, 𝐾, 𝑅) = (3, 32, 20) and

(𝑎1 , 𝑏1 , 𝑎2 , 𝑏2 , 𝑎3 , 𝑏3) = (40, 120, 0, 1, 0, 1). The dynamic and option parameters are (𝑟, 𝛼, 𝛽, 𝜌, 𝜎0 , 𝐸) =
(0.1, 0.2, 0.5,−0.85, 90). We can compare these results to Figure 6.1.

By including CPD, the computing time and memory were reduced significantly. Training the model

was almost 10 times faster and 𝐾 can now be chosen around 𝐾 = 64. This did come at the cost of

accuracy. Compared to the approach without CPD, the relative error is almost 10 times larger. To

investigate the source of the error, we have increased the rank to 𝑅 = 50, which, however, leads to

no significant decrease in the errors. Increasing the number of expansion terms, 𝐾 = 48, also barely

decreased the errors, despite training of this model taking more than double the time that training of

the non-CPD model with 𝐾 = 26 did.

Like in the case of GBM, the condition numbers are very large. This could have an impact on the

accuracy of the solver used to solve the linear system in the training step. Inaccuracies can also be

caused by the efficiency issue in the ALS procedure, as summarized in [24]: it is not guaranteed that

ALS finds the global optimum solution. A third possible reason for inaccurate results is over-fitting, i.e.

the degrees of freedom provided are larger than the number of constraints. This can cause ALS detect

and return a local optimum.

8.4.1. Condition number
Table 8.1 shows the condition numbers with and without preconditioning. In Table 8.2 we show the

condition numbers for 𝑝 = 1 in every iteration of the ALS algorithm for a better understanding of when

the condition number is large. We can see that the large condition numbers mainly play a role with

the isolated A3, i.e., the third factor matrix. A possible explanation for this is that optimizing the first

and second factor matrix already causes the PDE to almost be satisfied, leading to ALS finding a local

optimum when updating the third factor matrix. This problem is similar to the problem of overfitting.

These condition numbers are much larger compared to the condition numbers in the GBM case,

therefore, it is very likely that these large condition numbers are causes of the low accuracy.

ALS iteration Without preconditioning Jacobian preconditioning

1 10
5

10
3

3 (small 𝑝) 10
20

10
18

3 (large 𝑝) 10
21

10
19

Table 8.1: Condition numbers of system matrix 𝑀

ALS iteration Isolated A1 Isolated A2 Isolated A3

1 10
2

10
5

10
20

2 10
5

10
8

10
20

3 10
5

10
8

10
20

Table 8.2: Condition numbers of system matrix 𝑀 for 𝑝 = 1
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(a) Option price, absolute error and relative error for 𝜏 = 0

(b) Option price, absolute error and relative error for 𝜏 = 0.1

(c) Option price, absolute error and relative error for 𝜏 = 0.25

(d) Option price, absolute error and relative error for 𝜏 = 0.5

(e) Option price, absolute error and relative error for 𝜏 = 1

Figure 8.1: Option price and errors for various 𝜏 using trigonometric expansion with CPD vs Monte Carlo benchmark for an

up-and-out barrier option with parameters (𝑟, 𝛼, 𝛽, 𝜌, 𝜎0) = (0.1, 0.2, 0.5,−0.85) and

(𝑎1 , 𝑏1 , 𝑎2 , 𝑏2 , 𝑎3 , 𝑏3 , 𝐸) = (40, 120, 0, 1, 0, 1, 90) under regular-asset SABR dynamics.
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8.5. Regularization
As discussed in Section 8.4.1, the large condition numbers might be a result of overfitting. Overfitting

is a well-researched problem and therefore multiple solutions are available. One such solution is by

increasing the number of training points. In our case, this might not be a great solution, since the

number of training points determines our main computational complexity.

Another solution is adding regularization. By adding a term to the minimization problem that

regulates how much a coefficient contributes to the overall solution, the coefficients that barely contribute

will be set to 0 or a very small value (depending on the type of regularization). We discuss 2 types of

regularization, Lasso (𝐿1) and Ridge (𝐿2). For now, consider the problem

arg min

𝑥

∥𝐴𝑥 − 𝑏∥2

2

Lasso regularization is regularization using the 𝐿1 norm. The minimization problem is adjusted to

arg min

𝑥

∥𝐴𝑥 − 𝑏∥2

2
+ 𝜆

∑
𝑖

|𝑥[𝑖]|,

where𝜆 is the regularization weight. The main advantage of Lasso regularization is that some coefficients

are driven to be exactly 0. This results into a more sparse solution. It is, however, much harder to

implement, since there is no vectorization possible to incorporate the absolute values.

Ridge regularization acts very similarly to Lasso regularization, but instead uses the 𝐿2 norm. The

minimization problem becomes

arg min

𝑥

∥𝐴𝑥 − 𝑏∥2

2
+ 𝜆

∑
𝑖

∥𝑥[𝑖]∥2

2
,

where 𝜆 is the regularization weight. We can rewrite these norms into vector-matrix form.

∥𝐴𝑥 − 𝑏∥2

2
+ 𝜆

∑
𝑖

∥𝑥[𝑖]∥2

2
= 𝑥𝑇𝐴𝑇𝐴𝑥 − 2𝑏𝑇𝐴𝑥 + 𝑏𝑇𝑏 + 𝜆𝑥𝑇𝑥,

where 𝑏𝑇𝑏 can be left out, since we are doing a minimization problem and this is just a constant. Due to

the convex nature of a least squares problem, minimizing the above equation is equivalent to setting the

gradient to zero.

2𝐴𝑇𝐴𝑥 − 2𝑏𝑇𝐴 + 2𝜆𝑥 = 0

(𝐴𝑇𝐴 + 𝜆𝐼)𝑥 = 𝑏𝑇𝐴,

where 𝐼 is the identity matrix.

Note that this is very similar to the normal equations in Algorithm 1. The only difference is that

matrix 𝑀 now has an additional part, i.e. 𝑀 + 𝜆𝐼.

8.6. Results with regularization
We apply the ridge regularization and analyse the results and condition numbers again. After some

numerical experimentation, we find that 𝜆 = 0.001 seems like the best choice of the regularization

weight.

Table 8.3 shows a table in the same setting as Table 8.2, but now with regularization. Note how the

largest recorded condition number drops from 10
20

to 10
5
. This new largest condition number is for A1

and no longer for A3. This could still be considered a large condition number, but it will likely cause

much less problems than before.

The results are shown in Figure 8.2. Comparing this to the results from Figure 8.1, we see that in

general the the errors are reduced. At some points this difference is about 10
−1

, but compared to the

results from Figure 6.1, we still do not have the level of accuracy as we had before.



8.6. Results with regularization 85

ALS iteration Isolated A1 Isolated A2 Isolated A3

1 10
2

10
3

10
5

2 10
5

10
3

10
5

3 10
5

10
3

10
5

Table 8.3: Condition numbers of regularized system matrix 𝑀 + 𝜆𝐼 for 𝑝 = 1

We also recreate Table 6.2, but now with COS-CPD on SABR. The new results with 𝐾 = 32, 𝑅 =

20,𝜆 = 0.001 are shown in Table 8.4. Note how in general, all errors are larger than without CPD, similar

to what we saw in Figure 8.2. Something that is different, is that the condition numbers were very large

again (mostly 𝒪(10
19)), even with regularization.

Another important measure of performance is the computational time. Our COS-CPD network

required around 15 minutes of training for each model. The closed-form approximation from [13] only

requires a one-dimensional numerical integration, taking several milliseconds per calculated option

price.

𝜏 = 1

252
𝜏 = 1

52
𝜏 = 1

12

(𝜌, 𝛼) MC Yang COS-CPD MC Yang COS-CPD MC Yang COS-CPD

(0,0.1) 0.1570 0.79% 1.93% 0.3454 0.58% 0.51% 0.7230 0.57% 2.27%

(0,0.3) 0.1568 0.91% 2.56% 0.3460 0.40% 4.25% 0.7217 0.38% 1.03%

(0,0.5) 0.1569 0.82% 2.14% 0.3463 0.31% 0.86% 0.7257 0.93% 0.35%

(-0.1,0.1) 0.1570 0.78% 6.90% 0.3457 0.48% 1.30% 0.7233 0.60% 0.73%

(-0.3,0.1) 0.1573 0.61% 5.01% 0.3470 0.09% 1.83% 0.7213 0.32% 2.00%

(-0.5,0.1) 0.1572 0.65% 2.56% 0.3441 0.95% 2.03% 0.7205 0.21% 1.01%

Table 8.4: Comparisons of up-and-out option prices obtained with Monte Carlo, a Closed-Form approximation [13] and the

trigonometric expansion.
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(a) Option price, absolute error and relative error for 𝜏 = 0

(b) Option price, absolute error and relative error for 𝜏 = 0.1

(c) Option price, absolute error and relative error for 𝜏 = 0.25

(d) Option price, absolute error and relative error for 𝜏 = 0.5

(e) Option price, absolute error and relative error for 𝜏 = 1

Figure 8.2: Option price and errors for various 𝜏 using trigonometric expansion with CPD vs Monte Carlo benchmark for an

up-and-out barrier option with parameters (𝑟, 𝛼, 𝛽, 𝜌, 𝜎0) = (0.1, 0.2, 0.5,−0.85) and

(𝑎1 , 𝑏1 , 𝑎2 , 𝑏2 , 𝑎3 , 𝑏3 , 𝐸) = (40, 120, 0, 1, 0, 1, 90) under regular-asset SABR dynamics with regularization.
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8.7. Conclusion
Compared to Chapter 7, applying CPD to the method raised several issues. The first major issue

is the condition numbers. Without any regularization, these condition numbers reached order 10
20

,

significantly influencing solutions of the linear systems. Therefore, we applied Ridge regularization to

the model to prevent potential overfitting that may have caused the problem. With regularization, the

condition numbers decreased to around 10
5

in some of the testing cases. The results of the model also

improved slightly. However, these results are still significantly worse than the results we had in Chapter

6.

This is not fully unexpected, since we also saw a slightly worse results when we included CPD in the

model under GBM. Increasing the rank 𝑅 or number of expansion points 𝐾, however, does not give a

significant improvement in the accuracy. Since we do observe convergence for 𝑅 and 𝐾 in the GBM case,

it leads us to believe that CPD errors and series truncation errors are not the dominating errors in the

case of SABR.

When we applied the regularization to the testing case from Table 8.4, we again encountered very

large condition numbers. Therefore, a direct solver might not be suitable for this model. We have also

tried the model using the Conjugate Gradient (CG) method as a solver for the linear systems, but it

produced almost identical results.



9
Conclusions and discussion

9.1. Conclusions
In this thesis, we outlined the steps leading to the development of an interpretable neural network for

pricing continuously monitored barrier options. Although we primarily discussed up-and-out call

barrier options, this method is applicable to any knock-out barrier option.

We began with a simple model assuming the underlying followed GBM dynamics. Using the COS

method, we translated the problem into finding the survival ch.f.. We approximated this survival

ch.f. with trigonometric expansion, which is based on integrating out the Fourier expansion on the

first order derivative with respect to time. By substituting this approximation into the survival ch.f.

PDE, we derived a linear system, which can be solved to determine the expansion coefficients. Results

are compared with those from other methods in the literature. While the results look promising, it is

important to note that the method has less accuracy for very short maturities, due to the fact that one

unified truncation range is used across different maturities.

Next, we updated the model to assume SABR dynamics for the underlying. The inclusion of the

stochastic volatility, introduced an extra dimension in the trigonometric expansion, making the method

suffer from the curse of dimensionality. Consequently, we were limited to 𝐾 = 26 expansion points in

each dimension by memory consumption. The results were significantly worse than those for GBM,

which was expected as we had fewer expansion points. Compared to literature, our errors were very

comparable, except for options with very short maturities. The change of variables that significantly

improved results for GBM had only a slight effect here. This change of variables worked well because

we matched the density of training points to the area where the function was more variable. With fewer

available training points, this density matching was less effective.

Furthermore, we applied CPD to mitigate issues of expansions in higher dimensions. The accuracy of

the model with CPD was slightly worse than that without CPD. Additionally, with CPD, we were unable

to apply the transformation of variables that previously yielded more accurate results. Furthermore, we

encountered very large condition numbers when solving the linear systems.

When we extended the SABR model with CPD, we faced several issues. As with GBM, the model

was less accurate than the model without CPD. While we resolved the computational complexity

problem, a new error source was included. Increasing the number of expansion points 𝐾 or rank 𝑅 did

not yield significant improvements, indicating that this new error source dominated the overall error.

Regularization was included to improve the performance. This increased accuracy, but not to the level

experienced in the model without CPD. Since the only difference between the models in Chapters 6 and

8 is the inclusion of CPD, this error must have originated from CPD. The fact that adding regularization

helped to some extent in restoring the accuracy level indicates that the key issue could be in the ALS

method. It seems that the optimization procedure based on ALS does not find the global optimum.

To summarize: there is good potential in the method, as we have removed the curse of dimensionality,

providing many opportunities. However, more research work is needed to achieve better accuracy.
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9.2. Discussion
This thesis still has a few open ends that could benefit from further research. This discussion highlights

some of these promising areas.

Error source in CPD
The additional error source introduced by CPD in Chapter 8 is not entirely understood. Increasing

the rank from 𝑅 = 20 to 𝑅 = 50 does not seem to improve convergence. Since COS-CPD has been

successfully applied to other problems, as seen in [4] and our example in Section 3.4.1, the method

itself should have better accuracy. As pointed out earlier, the fact that adding regularization helped to

improve the accuracy indicates the optimization procedure based on ALS does not seem to be finding

the global optimum.

Other dimension reduction techniques, such as tensor train decomposition [48], could be explored

to see if they would improve the performance.

Inverted Log-Asset model
In Section 5.6, we discussed the Inverted Log-Asset transformation for GBM, which yielded much better

results than the regular asset model, with an adequate choice of 𝜆. However, when applying the same

to the SABR dynamics in Section 6.5, the results did not show a similar performance improvement. This

could be due to the relatively low number of expansion points, but this is not certain.

With CPD, this number of expansion points can be increased to properly investigate whether this is

indeed the reason. Unfortunately, as mentioned in Chapter 7, the Inverted Log-Asset transformation

does not converge to the true solution. Understanding why that is the case requires more investigation.

Since the results in the non-CPD model were very promising, this research direction could lead to a

significant performance increase.

Model parameters as variables
Currently, our models expand on two or three variables (GBM and SABR, respectively). If we train

the model and save the coefficients, all options with the same model parameters can be priced almost

instantly. However, if any model parameters differ, the saved coefficients cannot be used and a new set

of coefficients must be trained.

With CPD, we have greatly reduced the impact of the curse of dimensionality. Therefore, it might be

possible to include extra dimensions corresponding to these model parameters. By expanding on those

dimensions, these parameters become inputs for the options price, allowing one training to suffice for

all possible options. For this to be applicable, the CPD methods would need to achieve higher accuracy

first.
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A
Derivations

A.1. Option pricing via Fourier-sine (cosine) series
A.1.1. Option pricing with the sine-method
The steps in this section are analogous to [5], but with the sine expansion instead of cosine expansion.

If pdf 𝑓 and characteristic function 𝜙 form a Fourier pair, they satisfy the relation

𝑓 (𝑥) = 1

2𝜋

∫
R
𝜙(𝜔)𝑒−𝑖𝜔𝑥𝑑𝜔,

𝜙(𝜔) =
∫
R
𝑓 (𝑥)𝑒 𝑖𝑥𝜔𝑑𝑥.

Since 𝑓 will tend to 0 for 𝑥 very small or large, we can approximate this by setting appropriate bounds

𝑎, 𝑏 where 𝑓 (𝑥) outside this range is approximately 0.

𝜙(𝜔) =
∫
R
𝑓 (𝑦)𝑒 𝑖𝜔𝑦𝑑𝑦 ≈

∫ 𝑏

𝑎

𝑓 (𝑦)𝑒 𝑖𝜔𝑦𝑑𝑦 = 𝜙1(𝜔).

Next, we rewrite

sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
= ℑ

[
𝑒 𝑖𝑘𝜋

𝑦−𝑎
𝑏−𝑎

]
= ℑ

[
𝑒 𝑖𝑦

𝑘𝜋
𝑏−𝑎 𝑒−𝑖𝑘𝜋

𝑎
𝑏−𝑎

]
.

Therefore we can rewrite 𝐵𝑘 from the half-range Fourier sine series in Equation 2.3b as

𝐵𝑘 =
2

𝑏 − 𝑎ℑ
[∫ 𝑏

𝑎

𝑓 (𝑦)𝑒 𝑖𝑦 𝑘𝜋
𝑏−𝑎 𝑑𝑦 · 𝑒 𝑖𝑘𝜋 −𝑎

𝑏−𝑎

]
=

2

𝑏 − 𝑎ℑ
[
𝜙1

(
𝑘𝜋
𝑏 − 𝑎

)
· 𝑒 𝑖𝑘𝜋 −𝑎

𝑏−𝑎

]
.

Next we introduce 𝐹𝑘 ≈ 𝐵𝑘 , defined as

𝐹𝑘 =
2

𝑏 − 𝑎ℑ
[
𝜙

(
𝑘𝜋
𝑏 − 𝑎

)
· 𝑒−𝑖𝑘𝜋 𝑎

𝑏−𝑎

]
.

Since we approximated 𝐵𝑘 we can also approximate 𝑓 (𝑦) using this approximation 𝐹𝑘

𝑓1(𝑦) =
∞∑
𝑘=1

𝐹𝑘 sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑓2(𝑦) =

𝑁∑
𝑘=1

𝐹𝑘 sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
.
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We recall the pricing formula for a European option as

𝑉(𝑡 , 𝑥) = 𝑒−𝑟(𝑇−𝑡)EQ (
𝑉(𝑇, 𝑦)|ℱ𝑡

)
= 𝑒−𝑟(𝑇−𝑡)

∫
R
𝑉(𝑇, 𝑦) 𝑓 (𝑦|𝑥)𝑑𝑦.

We apply our approximation of the density function to this conditional density to find and approximation

for the option price.

𝑉(𝑡 , 𝑋) = 𝑒−𝑟(𝑇−𝑡)
∫
R
𝑉(𝑇, 𝑦) 𝑓 (𝑦|𝑥)𝑑𝑦

𝑉1(𝑡 , 𝑋) = 𝑒−𝑟(𝑇−𝑡)
∫ 𝑏

𝑎

𝑉(𝑇, 𝑦) 𝑓 (𝑦|𝑥)𝑑𝑦

𝑉2(𝑡 , 𝑋) = 𝑒−𝑟(𝑇−𝑡)
∫ 𝑏

𝑎

𝑉(𝑇, 𝑦)
𝑁∑
𝑘=1

𝐹𝑘 sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

= 𝑒−𝑟(𝑇−𝑡)
∫ 𝑏

𝑎

𝑉(𝑇, 𝑦)
𝑁∑
𝑘=1

2

𝑏 − 𝑎ℑ
[
𝜙

(
𝑘𝜋
𝑏 − 𝑎 , 𝑡; 𝑥

)
· 𝑒−𝑖𝑘𝜋 𝑎

𝑏−𝑎

]
sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

= 𝑒−𝑟(𝑇−𝑡)
𝑁∑
𝑘=1

ℑ
[
𝜙

(
𝑘𝜋
𝑏 − 𝑎 , 𝑡; 𝑥

)
· 𝑒−𝑖𝑘𝜋 𝑎

𝑏−𝑎

]
2

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑉(𝑇, 𝑦) sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦.

By introducing 2 new variables, we can simplify this expression.

𝜙̂𝑝(𝑡 , 𝑋) = ℑ
[
𝜙

( 𝑝𝜋

𝑏 − 𝑎 , 𝑡; 𝑥
)
· 𝑒−𝑖𝑝𝜋 𝑎

𝑏−𝑎
]

𝑉𝑝 =
2

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑉(𝑇, 𝑦) sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

𝑉2(𝑡 , 𝑋) = 𝑒−𝑟(𝑇−𝑡)
𝑁∑
𝑝=1

𝜙̂𝑝(𝑡 , 𝑋)𝑉𝑝 . (A.1)

Here 𝜙 is the survival ch.f. corresponding to 𝑝(𝑦|𝑥). 𝑉𝑝 is the coefficient corresponding to the payoff of

the option. If we consider a European payoff, we can find an analytic solution for these coefficients 𝑉𝑝 .
We let 𝑋 be the asset price and 𝐸 the strike price. Thenn we have payoff (𝑋 − 𝐸)+ for a call option and

(𝐸 − 𝑋)+ for a put option. If 𝑋 is the log-asset price, we have payoffs (𝑒𝑋 − 𝐸)+ and (𝐸 − 𝑒𝑋)+ for a call

and put option respectively. We introduce an integral Ψ(𝑐, 𝑑) defined as

Ψ𝑝(𝑐, 𝑑) =
∫ 𝑑

𝑐

sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

=

{
𝑏−𝑎
𝑝𝜋

[
cos

(
𝑝𝜋 𝑐−𝑎

𝑏−𝑎
)
− cos

(
𝑝𝜋 𝑑−𝑎

𝑏−𝑎
) ]
, 𝑝 ≠ 0

0 𝑝 = 0,
(A.2)

where [𝑐, 𝑑] ⊂ [𝑎, 𝑏]. Note that in this case (sine expansion) the case 𝑝 = 0 will not occur. We introduce

one more integral. This integral will be different for the asset-price case and the log-asset price case. We



A.1. Option pricing via Fourier-sine (cosine) series 95

treat the log-asset price case first.

𝜒
𝐿𝑜𝑔𝐴𝑠𝑠𝑒𝑡
𝑝 (𝑐, 𝑑) =

∫ 𝑑

𝑐

𝑒𝑦 sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

𝜒
𝐿𝑜𝑔𝐴𝑠𝑠𝑒𝑡
𝑝 (𝑐, 𝑑) =

[
𝑒𝑦 sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)] 𝑑
𝑦=𝑐

− 𝑝𝜋

𝑏 − 𝑎

∫ 𝑑

𝑐

𝑒𝑦 cos

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

=

[
𝑒𝑦 sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)] 𝑑
𝑦=𝑐

− 𝑝𝜋

𝑏 − 𝑎
[
𝑒𝑦 cos

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)] 𝑑
𝑦=𝑐

−
( 𝑝𝜋

𝑏 − 𝑎
)

2

𝜒
𝐿𝑜𝑔𝐴𝑠𝑠𝑒𝑡
𝑝 (𝑐, 𝑑)[

1 +
( 𝑝𝜋

𝑏 − 𝑎
)

2

]
𝜒
𝐿𝑜𝑔𝐴𝑠𝑠𝑒𝑡
𝑝 (𝑐, 𝑑) =

[
𝑒𝑦 sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)] 𝑑
𝑦=𝑐

− 𝑝𝜋

𝑏 − 𝑎
[
𝑒𝑦 cos

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)] 𝑑
𝑦=𝑐

𝜒
𝐿𝑜𝑔𝐴𝑠𝑠𝑒𝑡
𝑝 (𝑐, 𝑑) = 1

1 +
( 𝑝𝜋
𝑏−𝑎

)
2

[
𝑒𝑑 sin

(
𝑝𝜋

𝑑 − 𝑎
𝑏 − 𝑎

)
− 𝑒 𝑐 sin

(
𝑝𝜋

𝑐 − 𝑎
𝑏 − 𝑎

)
− 𝑝𝜋

𝑏 − 𝑎 𝑒
𝑑

cos

(
𝑝𝜋

𝑑 − 𝑎
𝑏 − 𝑎

)
+ 𝑝𝜋

𝑏 − 𝑎 𝑒
𝑐
cos

(
𝑝𝜋

𝑐 − 𝑎
𝑏 − 𝑎

)]
.

(A.3)

For the asset price case, the calculations are slightly easier, which results in

𝜒𝑎𝑠𝑠𝑒𝑡𝑝 (𝑐, 𝑑) =
∫ 𝑑

𝑐

𝑦 sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

=

[
−𝑦 𝑏 − 𝑎

𝑝𝜋
cos

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)] 𝑑
𝑦=𝑐

−
∫ 𝑑

𝑐

−𝑏 − 𝑎
𝑝𝜋

cos

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
=
𝑏 − 𝑎
𝑝𝜋

(
𝑐 cos

(
𝑝𝜋

𝑐 − 𝑎
𝑏 − 𝑎

)
− 𝑑 cos

(
𝑝𝜋

𝑑 − 𝑎
𝑏 − 𝑎

))
+ 𝑏 − 𝑎

𝑝𝜋

∫ 𝑑

𝑐

cos

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
=
𝑏 − 𝑎
𝑝𝜋

(
𝑐 cos

(
𝑝𝜋

𝑐 − 𝑎
𝑏 − 𝑎

)
− 𝑑 cos

(
𝑝𝜋

𝑑 − 𝑎
𝑏 − 𝑎

))
+

(
𝑏 − 𝑎
𝑝𝜋

)
2 [

sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)] 𝑑
𝑦=𝑐

𝜒𝑎𝑠𝑠𝑒𝑡𝑝 (𝑐, 𝑑) = 𝑏 − 𝑎
𝑝𝜋

(
𝑐 cos

(
𝑝𝜋

𝑐 − 𝑎
𝑏 − 𝑎

)
− 𝑑 cos

(
𝑝𝜋

𝑑 − 𝑎
𝑏 − 𝑎

))
+

(
𝑏 − 𝑎
𝑝𝜋

)
2
(
sin

(
𝑝𝜋

𝑑 − 𝑎
𝑏 − 𝑎

)
− sin

(
𝑝𝜋

𝑐 − 𝑎
𝑏 − 𝑎

))
.

(A.4)

Now we can rewrite our coefficients 𝑉𝑝 in terms of Ψ and 𝜒 from Equations (A.2), (A.4) and (A.3). Note

that for a call option with asset price 𝑆, 𝑆 < 𝐸 results in 0 payoff, so the lower bound of the integral can

be set to 𝐸. similarly, for a put option, the upper bound can be set to 𝐸. Therefore we find

𝑉
𝐿𝑜𝑔𝐴𝑠𝑠𝑒𝑡,𝑐𝑎𝑙𝑙
𝑝 =

2

𝑏 − 𝑎

∫ 𝑏

ln(𝐸)
(𝑒𝑦 − 𝐸) sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

𝑉
𝐿𝑜𝑔𝐴𝑠𝑠𝑒𝑡,𝑐𝑎𝑙𝑙
𝑝 =

2

𝑏 − 𝑎
(
𝜒
𝐿𝑜𝑔𝐴𝑠𝑠𝑒𝑡
𝑝 (ln(𝐸), 𝑏) − 𝐸Ψ𝑝(ln(𝐸), 𝑏)

)
(A.5)

𝑉
𝐿𝑜𝑔𝐴𝑠𝑠𝑒𝑡,𝑝𝑢𝑡
𝑝 =

2

𝑏 − 𝑎
(
𝐸Ψ𝑝(𝑎, ln(𝐸)) − 𝜒

𝐿𝑜𝑔𝐴𝑠𝑠𝑒𝑡
𝑝 (𝑎, ln(𝐸))

)
𝑉𝐴𝑠𝑠𝑒𝑡,𝑐𝑎𝑙𝑙
𝑝 =

2

𝑏 − 𝑎

∫ 𝑏

𝐸

(𝑦 − 𝐸) sin

(
𝑝𝜋

𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

𝑉𝐴𝑠𝑠𝑒𝑡,𝑐𝑎𝑙𝑙
𝑝 =

2

𝑏 − 𝑎
(
𝜒𝐴𝑠𝑠𝑒𝑡𝑝 (𝐸, 𝑏) − 𝐸Ψ𝑝(𝐸, 𝑏)

)
(A.6)

𝑉
𝐴𝑠𝑠𝑒𝑡,𝑝𝑢𝑡
𝑝 =

2

𝑏 − 𝑎
(
𝐸Ψ𝑝(𝑎, 𝐸) − 𝜒

𝐿𝑜𝑔𝐴𝑠𝑠𝑒𝑡
𝑝 (𝑎, 𝐸)

)
.
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A.1.2. Survival characteristic function integral under GBM log-asset
The integral of Equation (2.9) can be computed analytically through integration by parts.

𝐼1 =

∫ 𝑏

𝑎

𝑒(𝑖𝜔−𝛼)𝑦 sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

=
1

𝑖𝜔 − 𝛼

[
𝑒(𝑖𝜔−𝛼)𝑦 sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)] 𝑏
𝑦=𝑎

− 1

𝑖𝜔 − 𝛼
𝑘𝜋
𝑏 − 𝑎

∫ 𝑏

𝑎

𝑒(𝑖𝜔−𝛼)𝑦 cos

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

=
1

𝑖𝜔 − 𝛼
(0 − 0) − 1

𝑖𝜔 − 𝛼
𝑘𝜋
𝑏 − 𝑎 𝐼2

= − 1

𝑖𝜔 − 𝛼
𝑘𝜋
𝑏 − 𝑎 𝐼2

We use the same steps on 𝐼2

𝐼2 =

∫ 𝑏

𝑎

𝑒(𝑖𝜔−𝛼)𝑦 cos

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

=
1

𝑖𝜔 − 𝛼

[
𝑒(𝑖𝜔−𝛼)𝑦 cos

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)] 𝑏
𝑦=𝑎

+ 1

𝑖𝜔 − 𝛼
𝑘𝜋
𝑏 − 𝑎

∫ 𝑏

𝑎

𝑒(𝑖𝜔−𝛼)𝑦 sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

=
1

𝑖𝜔 − 𝛼

(
𝑒(𝑖𝜔−𝛼)𝑏 cos(𝑘𝜋) − 𝑒(𝑖𝜔−𝛼)𝑎

)
+ 1

𝑖𝜔 − 𝛼
𝑘𝜋
𝑏 − 𝑎 𝐼1

Substituting this expression for 𝐼2 into the expression of 𝐼1 yields

𝐼1 = − 1

𝑖𝜔 − 𝛼
𝑘𝜋
𝑏 − 𝑎

(
1

𝑖𝜔 − 𝛼

(
𝑒(𝑖𝜔−𝛼)𝑏 cos(𝑘𝜋) − 𝑒(𝑖𝜔−𝛼)𝑎

)
+ 1

𝑖𝜔 − 𝛼
𝑘𝜋
𝑏 − 𝑎 𝐼1

)
(
1 +

(
1

𝑖𝜔 − 𝛼

)
2
(
𝑘𝜋
𝑏 − 𝑎

)
2

)
𝐼1 =

(
1

𝑖𝜔 − 𝛼

)
2

𝑘𝜋
𝑏 − 𝑎

(
𝑒(𝑖𝜔−𝛼)𝑎 − 𝑒(𝑖𝜔−𝛼)𝑏 cos(𝑘𝜋)

)
(
(𝑖𝜔 − 𝛼)2(𝑏 − 𝑎)2 + (𝑘𝜋)2

(𝑖𝜔 − 𝛼)2(𝑏 − 𝑎)2

)
𝐼1 =

(
1

𝑖𝜔 − 𝛼

)
2

𝑘𝜋
𝑏 − 𝑎

(
𝑒(𝑖𝜔−𝛼)𝑎 − 𝑒(𝑖𝜔−𝛼)𝑏 cos(𝑘𝜋)

)
(
(𝑖𝜔 − 𝛼)2(𝑏 − 𝑎)2 + (𝑘𝜋)2

(𝑏 − 𝑎)2

)
𝐼1 =

𝑘𝜋
𝑏 − 𝑎

(
𝑒(𝑖𝜔−𝛼)𝑎 − 𝑒(𝑖𝜔−𝛼)𝑏 cos(𝑘𝜋)

)
𝐼1 =

(𝑏 − 𝑎)2
(𝑖𝜔 − 𝛼)2(𝑏 − 𝑎)2 + (𝑘𝜋)2

𝑘𝜋
𝑏 − 𝑎

(
𝑒(𝑖𝜔−𝛼)𝑎 − 𝑒(𝑖𝜔−𝛼)𝑏 cos(𝑘𝜋)

)
=

1

(𝑖𝜔 − 𝛼)2 + ( 𝑘𝜋𝑏−𝑎 )2
𝑘𝜋
𝑏 − 𝑎

(
𝑒(𝑖𝜔−𝛼)𝑎 − 𝑒(𝑖𝜔−𝛼)𝑏 cos(𝑘𝜋)

)
A.2. Derivations related to pricing under the SABR model
A.2.1. Martingale approach for SABR pricing PDE
We assume the SABR dynamics from (2.2). Note that our discounted price 𝑒−𝑟𝑡𝑉𝑡 should be a martingale

under the risk-neutral measure Q. We apply 2-dimensional Itô’s lemma on 𝑑𝑉(𝑡 , 𝑆, 𝜎), which yields

𝑑𝑉𝑡 =
𝜕𝑉

𝜕𝑡
𝑑𝑡 + 𝜕𝑉

𝜕𝑆
𝑑𝑆 + 𝜕𝑉

𝜕𝜎
𝑑𝜎 + 1

2

𝜕2𝑉

𝜕𝑆2

𝑑𝑆𝑑𝑆 + 1

2

𝜕2𝑉

𝜕𝜎2

𝑑𝜎𝑑𝜎 + 𝜕2𝑉

𝜕𝑆𝜕𝜎
𝑑𝑆𝑑𝜎

=
𝜕𝑉

𝜕𝑡
𝑑𝑡 + 𝜕𝑉

𝜕𝑆
𝜎𝑡𝑆

𝛽
𝑡 𝑑𝑊𝑡 +

𝜕𝑉

𝜕𝜎
𝛼𝜎𝑡𝑑𝑍𝑡 +

1

2

𝜕2𝑉

𝜕𝑆2

𝜎2

𝑡 𝑆
2𝛽
𝑡 𝑑𝑡 +

1

2

𝜕2𝑉

𝜕𝜎2

𝛼2𝜎2

𝑡 𝑑𝑡 +
𝜕2𝑉

𝜕𝑆𝜕𝜎
𝛼𝜎2

𝑡 𝑆
𝛽
𝑡 𝜌𝑑𝑡

=

(
𝜕𝑉

𝜕𝑡
+ 1

2

𝜎2

𝑡 𝑆
2𝛽
𝑡

𝜕2𝑉

𝜕𝑆2

+ 1

2

𝛼2𝜎2

𝑡

𝜕2𝑉

𝜕𝜎2

+ 𝛼𝜎2

𝑡 𝑆
𝛽
𝑡 𝜌

𝜕2𝑉

𝜕𝑆𝜕𝜎

)
𝑑𝑡 + 𝜕𝑉

𝜕𝑆
𝜎𝑡𝑆

𝛽
𝑡 𝑑𝑊𝑡 +

𝜕𝑉

𝜕𝜎
𝛼𝜎𝑡𝑑𝑍𝑡 .
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With this, we can use Itô’s product rule on 𝑑𝑒−𝑟𝑡𝑉𝑡 to find

𝑑𝑒−𝑟𝑡𝑉𝑡 = 𝑒−𝑟𝑡𝑑𝑉𝑡 +𝑉𝑡𝑑𝑒−𝑟𝑡 + 𝑑𝑒−𝑟𝑡𝑑𝑉𝑡
= 𝑒−𝑟𝑡𝑑𝑉𝑡 − 𝑟𝑒−𝑟𝑡𝑉𝑡𝑑𝑡

= 𝑒−𝑟𝑡
[(

𝜕𝑉

𝜕𝑡
+ 1

2

𝜎2

𝑡 𝑆
2𝛽
𝑡

𝜕2𝑉

𝜕𝑆2

+ 1

2

𝛼2𝜎2

𝑡

𝜕2𝑉

𝜕𝜎2

+ 𝛼𝜎2

𝑡 𝑆
𝛽
𝑡 𝜌

𝜕2𝑉

𝜕𝑆𝜕𝜎
− 𝑟𝑉𝑡

)
𝑑𝑡 + 𝜕𝑉

𝜕𝑆
𝜎𝑡𝑆

𝛽
𝑡 𝑑𝑊𝑡 +

𝜕𝑉

𝜕𝜎
𝛼𝜎𝑡𝑑𝑍𝑡

]
.

Since our discounted price is a martingale, this 𝑑𝑡-term should be equal to 0, which yields the PDE

𝜕𝑉

𝜕𝑡
+ 1

2

𝜎2

𝑡 𝑆
2𝛽
𝑡

𝜕2𝑉

𝜕𝑆2

+ 1

2

𝛼2𝜎2

𝑡

𝜕2𝑉

𝜕𝜎2

+ 𝛼𝜎2

𝑡 𝑆
𝛽
𝑡 𝜌

𝜕2𝑉

𝜕𝑆𝜕𝜎
− 𝑟𝑉 = 0.

A.3. CPD
A.3.1. Unfolding and Khatri-Rao product
Although not technically a derivation, it is important to know the order of unfolding that is required for

Equation (2.12) to hold. Without loss of generality we consider the three dimensional case unfolding

around the second mode, so

𝒜 =

𝑅∑
𝑟=1

a1

𝑟 ◦ a2

𝑟 ◦ a3

𝑟

and

𝒜(2) = A2 (A3 ⊙ A1)𝑇 ,

where A1 ,A2 ,A3 ∈ R𝑁×𝑅
We evaluate the Khatri-Rao product to find

A3 ⊙ A1 =
(
a3

1
⊗ a1

1
a3

2
⊗ a1

2
· · · a3

𝑅
⊗ a1

𝑅

)
.

Now evaluating the matrix product yields

A2 (A3 ⊙ A1)𝑇 =

𝑅∑
𝑟=1

©­­­­«
𝑐𝑟[1] · (a3

𝑟 ⊗ a1

𝑟 )[1] 𝑐𝑟[1] · (a3

𝑟 ⊗ a1

𝑟 )[2] · · · 𝑐𝑟[1] · (a3

𝑟 ⊗ a1

𝑟 )[𝑁2]
𝑐𝑟[2] · (a3

𝑟 ⊗ a1

𝑟 )[1] 𝑐𝑟[2] · (a3

𝑟 ⊗ a1

𝑟 )[2] · · · 𝑐𝑟[2] · (a3

𝑟 ⊗ a1

𝑟 )[𝑁2]
...

...
. . .

...

𝑐𝑟[𝑁] · (a3

𝑟 ⊗ a1

𝑟 )[1] 𝑐𝑟[𝑁] · (a3

𝑟 ⊗ a1

𝑟 )[2] · · · 𝑐𝑟[𝑁] · (a3

𝑟 ⊗ a1

𝑟 )[𝑁2]

ª®®®®¬
.

The kronecker product makes it such that we first iterate over the elements of a1

𝑟 and then over a3

𝑟 , so

the unfolding of 𝒜(2) first iterates over A1 and then over A3. For an 𝑀-dimensional tensor, this would

imply iterating in order A1 , . . . ,A𝑚−1 ,A𝑚+1 , . . . ,A𝑀 for mode-𝑚 unfolding.

A.4. Deriving trigonometric expansions
We start with Fourier-Sine series expansion on the regular function. Then the expansion on the derivative

should be cosine based and expansion on the second derivative should be sine based again.

The expansion on the derivative is followed by simply applying the fundamental theorem of calculus.

𝑓 ′(𝑦) ≈ 𝐴0

2

+
𝐾−1∑
𝑘=1

𝐴𝑘 cos

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
∫ 𝑥

𝑎

𝑓 ′(𝑦)𝑑𝑦 ≈
∫ 𝑥

𝑎

𝐴0

2

+
𝐾−1∑
𝑘=1

𝐴𝑘 cos

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

𝑓 (𝑥) − 𝑓 (𝑎) ≈ 𝑥 − 𝑎
2

𝐴0 +
𝐾−1∑
𝑘=1

𝐴𝑘

∫ 𝑥

𝑎

cos

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

𝑓 (𝑥) ≈ 𝑓 (𝑎) + 𝑥 − 𝑎
2

𝐴0 +
𝐾−1∑
𝑘=1

𝐴𝑘
𝑏 − 𝑎
𝑘𝜋

sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
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Now we consider sine based expansion for the second derivative

𝑓 ′′(𝑧) ≈
𝐾∑
𝑘=1

𝐴𝑘 sin

(
𝑘𝜋
𝑧 − 𝑎
𝑏 − 𝑎

)
∫ 𝑥

𝑎

∫ 𝑦

𝑎

𝑓 ′′(𝑧)𝑑𝑧𝑑𝑦 ≈
∫ 𝑥

𝑎

∫ 𝑦

𝑎

𝐾∑
𝑘=1

𝐴𝑘 sin

(
𝑘𝜋
𝑧 − 𝑎
𝑏 − 𝑎

)
𝑑𝑧𝑑𝑦∫ 𝑥

𝑎

𝑓 ′(𝑦) − 𝑓 ′(𝑎)𝑑𝑦 ≈
∫ 𝑥

𝑎

𝐾∑
𝑘=1

−𝐴𝑘
𝑏 − 𝑎
𝑘𝜋

[
cos

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
− 1

]
𝑑𝑦

𝑓 (𝑥) − 𝑓 (𝑎) − 𝑓 ′(𝑎)(𝑥 − 𝑎) ≈
𝐾∑
𝑘=1

𝐴𝑘
𝑏 − 𝑎
𝑘𝜋

∫ 𝑥

𝑎

[
1 − cos

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)]
𝑑𝑦

𝑓 (𝑥) − 𝑓 (𝑎) − 𝑓 ′(𝑎)(𝑥 − 𝑎) ≈
𝐾∑
𝑘=1

𝐴𝑘
𝑏 − 𝑎
𝑘𝜋

[
𝑥 − 𝑎 − 𝑏 − 𝑎

𝑘𝜋
sin

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)]
𝑓 (𝑥) ≈ 𝑓 (𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎) +

𝐾∑
𝑘=1

𝐴𝑘
𝑏 − 𝑎
𝑘𝜋

[
𝑥 − 𝑎 − 𝑏 − 𝑎

𝑘𝜋
sin

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)]
.

We do the same for the Cosine based expansions. For expansion on the derivative we find

𝑓 ′(𝑦) ≈
𝐾∑
𝑘=1

𝐴𝑘 sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
∫ 𝑥

𝑎

𝑓 ′(𝑦)𝑑𝑦 ≈
∫ 𝑥

𝑎

𝐾∑
𝑘=1

𝐴𝑘 sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

𝑓 (𝑥) − 𝑓 (𝑎) ≈
𝐾∑
𝑘=1

𝐴𝑘

∫ 𝑥

𝑎

sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

𝑓 (𝑥) ≈ 𝑓 (𝑎) +
𝐾∑
𝑘=1

𝐴𝑘
𝑏 − 𝑎
𝑘𝜋

[
1 − cos

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)]
.

Similarly, for expansion on the second derivative we get

𝑓 ′′(𝑧) ≈ 𝐴0

2

+
𝐾−1∑
𝑘=1

𝐴𝑘 cos

(
𝑘𝜋
𝑧 − 𝑎
𝑏 − 𝑎

)
∫ 𝑥

𝑎

∫ 𝑦

𝑎

𝑓 ′′(𝑧)𝑑𝑧𝑑𝑦 ≈
∫ 𝑥

𝑎

∫ 𝑦

𝑎

𝐴0

2

+
𝐾−1∑
𝑘=1

𝐴𝑘 cos

(
𝑘𝜋
𝑧 − 𝑎
𝑏 − 𝑎

)
𝑑𝑧𝑑𝑦∫ 𝑥

𝑎

𝑓 ′(𝑦) − 𝑓 ′(𝑎)𝑑𝑦 ≈
∫ 𝑥

𝑎

(𝑦 − 𝑎)
2

𝐴0 +
𝐾−1∑
𝑘=1

𝐴𝑘
𝑏 − 𝑎
𝑘𝜋

sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

𝑓 (𝑥) − 𝑓 (𝑎) − 𝑓 ′(𝑎)(𝑥 − 𝑎) ≈ 𝐴0

4

(
𝑥2 − 2𝑎𝑥 − 𝑎2

)
+
𝐾−1∑
𝑘=1

𝐴𝑘

∫ 𝑥

𝑎

𝑏 − 𝑎
𝑘𝜋

sin

(
𝑘𝜋
𝑦 − 𝑎
𝑏 − 𝑎

)
𝑑𝑦

𝑓 (𝑥) ≈ 𝑓 (𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎) + 𝐴0

4

(𝑥 − 𝑎)2 +
𝐾−1∑
𝑘=1

𝐴𝑘

(
𝑏 − 𝑎
𝑘𝜋

)
2 [

1 − cos

(
𝑘𝜋
𝑥 − 𝑎
𝑏 − 𝑎

)]
.

A.5. SABR CPD PDE expressions
The PDE under SABR has a Hadamard product between factor matrices. Therefore a vectorized version

of the PDE is not possible. We factor out each of factor matrices to find equivalent equations to the
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original PDE that can be vectorized. The original PDE from Section 8.3 is:

𝑃𝐷𝐸(x) = −
(
s𝑇

1
(𝑥1)A1 ⊛ z𝑇

2
(𝑥2)A2 ⊛ s𝑇

3
(𝑥3)A3

)
1

+ 𝑐1(x)
[(

z𝑇
4
(𝑥1)A1 ⊛ s𝑇

2
(𝑥2)A2 ⊛ s𝑇

3
(𝑥3)A3

)
1 −

(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)]
+ 𝑐2(x)

(
s𝑇

1
(𝑥1)A1 ⊛ s𝑇

2
(𝑥2)A2 ⊛ z𝑇

5
(𝑥3)A3

)
1 + 𝑐3(x)

(
z𝑇

1
(𝑥1)A1 ⊛ s𝑇

2
(𝑥2)A2 ⊛ z𝑇

3
(𝑥3)A3

)
1 = 0.

The PDE where factor matrices are factored out looks like:

𝑃𝐷𝐸1(x) = − s𝑇
1
(𝑥1)A1W1𝑎 + 𝑐1(x)

[
z𝑇

4
(𝑥1)A1W1𝑏 −

(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)]
+ 𝑐2(x)s𝑇

1
(𝑥1)A1W1𝑐 + 𝑐3(x)z𝑇

1
(𝑥1)A1W1𝑑 = 0.

W1𝑎 =

[
A𝑇

2
z2(𝑥2) ⊛ A𝑇

3
s3(𝑥3)

]
∈ R𝑅×1

W1𝑏 =

[
A𝑇

2
s2(𝑥2) ⊛ A𝑇

3
s3(𝑥3)

]
∈ R𝑅×1

W1𝑐 =

[
A𝑇

2
s2(𝑥2) ⊛ A𝑇

3
z5(𝑥3)

]
∈ R𝑅×1

W1𝑑 =

[
A𝑇

2
s2(𝑥2) ⊛ A𝑇

3
z3(𝑥3)

]
∈ R𝑅×1

𝑃𝐷𝐸2(x) = − z𝑇
2
(𝑥2)A2W2𝑎 + 𝑐1(x)

[
s𝑇

2
(𝑥2)A2W2𝑏 −

(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)]
+ 𝑐2(x)s𝑇

2
(𝑥2)A2W2𝑐 + 𝑐3(x)s𝑇

2
(𝑥2)A2W2𝑑 = 0.

W2𝑎 =

[
A𝑇

1
s1(𝑥1) ⊛ A𝑇

3
s3(𝑥3)

]
∈ R𝑅×1

W2𝑏 =

[
A𝑇

1
z4(𝑥1) ⊛ A𝑇

3
s3(𝑥3)

]
∈ R𝑅×1

W2𝑐 =

[
A𝑇

1
s1(𝑥1) ⊛ A𝑇

3
z5(𝑥3)

]
∈ R𝑅×1

W2𝑑 =

[
A𝑇

1
z1(𝑥1) ⊛ A𝑇

3
z3(𝑥3)

]
∈ R𝑅×1

𝑃𝐷𝐸3(x) = − s𝑇
3
(𝑥3)A3W3𝑎 + 𝑐1(x)

[
s𝑇

3
(𝑥3)A3W3𝑏 −

(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)]
+ 𝑐2(x)z𝑇

5
(𝑥3)A3W3𝑐 + 𝑐3(x)z𝑇

3
(𝑥3)A3W3𝑑 = 0.

W1𝑎 =

[
A𝑇

1
s1(𝑥1) ⊛ A𝑇

2
z2(𝑥2)

]
∈ R𝑅×1

W1𝑏 =

[
A𝑇

1
z4(𝑥1) ⊛ A𝑇

2
s2(𝑥2)

]
∈ R𝑅×1

W1𝑐 =

[
A𝑇

1
s1(𝑥1) ⊛ A𝑇

2
s2(𝑥2)

]
∈ R𝑅×1

W1𝑑 =

[
A𝑇

1
z1(𝑥1) ⊛ A𝑇

2
s2(𝑥2)

]
∈ R𝑅×1
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From this form, we can easily find the vectorized form.

𝑃𝐷𝐸1(x) =
(
−

[
W𝑇

1𝑎 ⊗ s𝑇
1
(𝑥1)

]
+ 𝑐1(x)

[
W𝑇

1𝑏
⊗ z𝑇

4
(𝑥1)

]
+ 𝑐2(x)

[
W𝑇

1𝑐 ⊗ s𝑇
1
(𝑥1)

]
+ 𝑐3(x)

[
W𝑇

1𝑑
⊗ z𝑇

1
(𝑥1)

] )
vec(A1) = 𝑐1(x)

(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)
𝑃𝐷𝐸2(x) =

(
−

[
W𝑇

2𝑎 ⊗ z𝑇
2
(𝑥2)

]
+ 𝑐1(x)

[
W𝑇

2𝑏
⊗ s𝑇

2
(𝑥2)

]
+ 𝑐2(x)

[
W𝑇

2𝑐 ⊗ s𝑇
2
(𝑥2)

]
+ 𝑐3(x)

[
W𝑇

2𝑑
⊗ s𝑇

2
(𝑥2)

] )
vec(A2) = 𝑐1(x)

(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)
𝑃𝐷𝐸3(x) =

(
−

[
W𝑇

3𝑎 ⊗ s𝑇
3
(𝑥3)

]
+ 𝑐1(x)

[
W𝑇

3𝑏
⊗ s𝑇

3
(𝑥3)

]
+ 𝑐2(x)

[
W𝑇

3𝑐 ⊗ z𝑇
5
(𝑥3)

]
+ 𝑐3(x)

[
W𝑇

3𝑑
⊗ z𝑇

3
(𝑥3)

] )
vec(A3) = 𝑐1(x)

(
𝑝𝜋

𝑏1 − 𝑎1

)
2

sin

(
𝑝𝜋

𝑥1 − 𝑎1

𝑏1 − 𝑎1

)
A.6. Decay of Fourier series expansion coefficients
We will look into the order of convergence of Fourier expansion coefficients.

Lemma A.6.1. Let 𝑓 ∈ 𝐿2[𝑎, 𝑏] and its derivatives up to 𝑓 (𝑘−1) be continuous as periodic functions with
𝑓 (𝑘−1)(𝑎) = 𝑓 (𝑘−1)(𝑏) = 0. Let 𝑓 (𝑘) be piecewise continuous with a finite number of discontinuities in its
derivative. Then the Fourier sine series expansion coefficients are bounded as shown below

𝑓 (𝑥) =
∞∑
𝑛=1

𝐴𝑛 sin

(
𝑛𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)
|𝐴𝑛| ≤

𝐶

𝑛𝑘+1

for some constant 𝐶.

Proof. We start by proving for 𝑘 = 1.

Suppose 𝑓 is continuous as periodic function with 𝑓 (𝑎) = 0, let 𝑓 ′ be piecewise continuous and let

𝑓 ′′ have finitely many discontinuities. Then

𝐴𝑛 =
2

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑓 (𝑥) sin

(
𝑛𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑥

=
2

𝑏 − 𝑎

(
−𝑏 − 𝑎
𝑛𝜋

[
𝑓 (𝑥) · cos

(
𝑛𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)] 𝑏
𝑎
−

∫ 𝑏

𝑎

−𝑏 − 𝑎
𝑛𝜋

𝑓 ′(𝑥) · cos

(
𝑛𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑥

)
=

2

𝑛𝜋

(
−

[
𝑓 (𝑏) · cos (𝑛𝜋) − 𝑓 (𝑎) · cos (0)

]
+

∫ 𝑏

𝑎

𝑓 ′(𝑥) · cos

(
𝑛𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑥

)

Since 𝑓 is continuous as periodic function, 𝑓 (𝑎) = 𝑓 (𝑏) = 0. Therefore,

−
[
𝑓 (𝑏) · cos (𝑛𝜋) − 𝑓 (𝑎)

]
= 0
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We can further evaluate the integral with a second step of integration by parts.

𝐼 =

∫ 𝑏

𝑎

𝑓 ′(𝑥) cos

(
𝑛𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑥

=
𝑏 − 𝑎
𝑛𝜋

[
𝑓 ′(𝑥) sin

(
𝑛𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)] 𝑏
𝑎
− 𝑏 − 𝑎

𝑛𝜋

∫ 𝑏

𝑎

𝑓 ′′(𝑥) sin

(
𝑛𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑥

=
𝑏 − 𝑎
𝑛𝜋

[
𝑓 ′(𝑏) sin (𝑛𝜋) − 𝑓 ′(𝑎) sin (0)

]
− 𝑏 − 𝑎

𝑛𝜋

∫ 𝑏

𝑎

𝑓 ′′(𝑥) sin

(
𝑛𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑥

= −𝑏 − 𝑎
𝑛𝜋

∫ 𝑏

𝑎

𝑓 ′′(𝑥) sin

(
𝑛𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑥

Due to piecewise continuity of 𝑓 ′(𝑥), we know that 𝑓 ′′(𝑥) can be bounded. Combined with the bound

|sin(𝑦)| ≤ 1, ∀𝑦 ∈ R, we can say something about the bounds of expansion coefficients 𝐴𝑛 .

|𝐴𝑛| =
�����2(𝑏 − 𝑎)(𝑛𝜋)2

∫ 𝑏

𝑎

𝑓 ′′(𝑥) sin

(
𝑛𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑥

�����
≤ 2(𝑏 − 𝑎)

(𝑛𝜋)2
∫ 𝑏

𝑎

|𝑀1|𝑑𝑥

=
2(𝑏 − 𝑎)2𝑀1

(𝑛𝜋)2

=
2(𝑏 − 𝑎)2𝑀1

𝜋2

1

𝑛2

=
𝑀2

𝑛2

where 𝑀2 =
2(𝑏−𝑎)2𝑀1

𝜋2
, which is some new constant in R.

For larger 𝑘, so with more continuous derivatives, we repeatedly use integration by parts to find
𝐶
𝑛

term for each further 𝑘. Therefore our bound is |𝐴𝑛| ≤ 𝐶
𝑛𝑘+1

, 𝐶 ∈ R

Corollary A.6.0.1. Let 𝑓 be piecewise continuous on [𝑎, 𝑏] with | 𝑓 (𝑎)|, | 𝑓 (𝑏)| ≤ 𝑀 for some 𝑀 ∈ R and let
𝑓 ′(𝑥) piecewise continuous. Then the Fourier sine series expansion coefficients are bounded as shown below

𝑓 (𝑥) =
∞∑
𝑛=1

𝐴𝑛 sin

(
𝑛𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)
|𝐴𝑛| ≤

𝐶

𝑛

for some constant 𝐶.

Proof. Suppose 𝑓 is piecewise continuous on [𝑎, 𝑏] with | 𝑓 (𝑎)|, | 𝑓 (𝑏)| ≤ 𝑀1 for some 𝑀1 ∈ R and let

𝑓 ′(𝑥) piecewise continuous. From piecewise continuity of 𝑓 and 𝑓 ′(𝑥), we can bound | 𝑓 ′(𝑥)| ≤ 𝑀2 for
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some 𝑀2 ∈ R. Then

𝐴𝑛 =
2

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑓 (𝑥) sin

(
𝑛𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑥

=
2

𝑏 − 𝑎

(
−𝑏 − 𝑎
𝑛𝜋

[
𝑓 (𝑥) · cos

(
𝑛𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)] 𝑏
𝑎
−

∫ 𝑏

𝑎

−𝑏 − 𝑎
𝑛𝜋

𝑓 ′(𝑥) · cos

(
𝑛𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑥

)
=

2

𝑛𝜋

(
−

[
𝑓 (𝑏) · cos (𝑛𝜋) − 𝑓 (𝑎) · cos (0)

]
+

∫ 𝑏

𝑎

𝑓 ′(𝑥) · cos

(
𝑛𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑥

)
|𝐴𝑛| =

2

𝑛𝜋

�����− [
𝑓 (𝑏) · cos (𝑛𝜋) − 𝑓 (𝑎)

]
+

∫ 𝑏

𝑎

𝑓 ′(𝑥) · cos

(
𝑛𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑥

�����
≤ 2

𝑛𝜋

����� 𝑓 (𝑏) · (−1)𝑛 − 𝑓 (𝑎)
����� + 2

𝑛𝜋

�����∫ 𝑏

𝑎

𝑓 ′(𝑥) · cos

(
𝑛𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)
𝑑𝑥

�����
≤ 2

𝑛𝜋

(��� 𝑓 (𝑏)��� · ���(−1)𝑛
��� + ��� 𝑓 (𝑎)���) + 2

𝑛𝜋

∫ 𝑏

𝑎

����� 𝑓 ′(𝑥) · cos

(
𝑛𝜋

𝑥 − 𝑎
𝑏 − 𝑎

)�����𝑑𝑥
≤ 4𝑀1

𝑛𝜋
+ 2

𝑛𝜋

∫ 𝑏

𝑎

��� 𝑓 ′(𝑥)���𝑑𝑥
≤ 4𝑀1

𝑛𝜋
+ 2𝑀2

𝑛𝜋
(𝑏 − 𝑎)

=
𝐶

𝑛

𝐶 =
4𝑀1 + 2𝑀2(𝑏 − 𝑎)

𝜋
.

So we find that the Fourier series coefficients are bounded by |𝐴𝑛| ≤ 𝐶
𝑛 , 𝐶 ∈ R


	Abstract
	Introduction
	Mathematical Framework
	Artificial Neural Networks
	Convergence of the trigonometric expansion
	Pricing barrier options under GBM using trigonometric expansion
	Our contribution 3: Pricing barrier options under SABR using trigonometric expansion
	Our contribution 4: Pricing barrier options under GBM using the COS-CPD network
	Our contribution 5: Pricing barrier options under SABR using the COS-CPD network
	Conclusions and discussion
	Bibliography
	Derivations

