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Chapter 1

Introduction

Climate change is one of the biggest challenges of the twenty-first century. Since the industrial revo-
lution, human actions have increased the atmospheric concentration of greenhouse gas emissions. The
shifts in recent global climate patterns primarily driven by human activities are referred to as contempo-
rary climate change. It involves shifts in long-term averages and variation around these averages, with
extreme weather events occurring more frequently. By 2017, the average temperature had increased
with 1.0°C compared to pre-industrial levels [1]. To combat climate change, the Paris Agreement was
signed and adopted by 195 parties at the UN Climate Change Conference (COP21) in Paris in 2015 [2].
Its overarching goal is to

‘Hold the increase in the global average temperature to well below 2.0°C above pre-
industrial levels and to pursue efforts to limit the temperature increase to 1.5°C above
pre-industrial levels’.

—Paris Agreement, 2015

Additionally, the Dutch Climate Act states that The Netherlands must be climate neutral in 2050 with
an energy system with greenhouse gas emissions that are 95% lower than 1990 [3].

1.1 Motivation

To achieve the climate goals of the Paris Agreement [2] and Dutch Climate Act [3], the emission of
greenhouse gases has to be reduced. This requires fossil fuel burning to be significantly reduced, while
rapidly growing the share of sustainable energy. This type of energy largely consists of renewable en-
ergy, which is derived from natural sources that are replenished on a human timescale, such as wind
or solar power. It is projected that ultimately renewable energy will account for the vast majority of
electricity generation around 2050 [4]. These renewable energy sources are often inherently intermittent
and variable, meaning that they are not constantly available. Incorporation of renewables is therefore
not straightforward. Energy networks that include more than one carrier of energy, such as electricity,
heat or hydrogen gas, are referred to as multi-carrier energy networks (MCNs). In order to properly
incorporate renewable energy in MCNs, it is important to have reliable and fast simulations that can
show the effects of coupling various energy carriers [4, 5].

Modelling of energy networks is done by determining the flows of energy within the network, also
referred to as ‘load-flow analysis’. Mathematically, the load-flow analysis leads to the network’s load-
flow equations, whose solution determines the steady-state flow of energy within the network. These
equations are often non-linear and lead to large-scale sparse systems. In recent studies, it has been
shown that a steady-state load-flow analysis can be performed for MCNs [6, 7, 8, 9, 10, 11]. However,
the methods employed showed convergence problems in terms of accuracy and/or speed for large scale
MCNs. Therefore, scalability and solvability are important when investigating and modelling these
large scale networks.
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1.2 Research Context and Scope

This literature review aims to get an insight into recent developments related to modelling and numeri-
cal simulation of large scale multi-carrier energy networks to identify open problems and research gaps,
focussing on the numerical solution methods used in the load-flow analysis. This is done by including
and comparing studies on the modelling of MCNs as well as single-carrier (SC) networks in terms of
solution methods and high-lighting computational challenges.

Dynamic simulations, market-based models, control strategies, and optimization problems are con-
sidered outside the scope for this review, and should be considered as applications of the models men-
tioned in this report. Additionally, the formulation and models used to represent energy networks are
mentioned and discussed in this report, but are not part of the scope of the research.

1.3 Report Overview

The rest of this literature review is structured as follows:

e Chapter 2: ‘Single-Carrier Energy Networks’, provides an introduction to the relevant topics
related to modelling electricity and gas networks. It first provides fundamental concepts needed
to understand electricity and gas networks, after which the corresponding systems of equations
are derived.

e Chapter 3: ‘Multi-Carrier Energy Networks’ describes how electricity and gas networks are coupled
into one MCN. The chosen method of coupling is described and justified. The chapter concludes
with the system of equations for a general MCN.

e Chapter 4: ‘Solvers and Preconditioners’ contains an overview of solution methods used in mod-
elling and simulation energy networks. Various iterative solution methods and preconditioning
techniques are discussed, concluding with domain decomposition methods.

e Chapter 5: ‘State of the Art’ provides an overview of research and studies on solving large scale
electricity, gas and MCNs, focussing on the method of solving the corresponding system of equa-
tions.

e Chapter 6: ‘Conclusion’ provides the implications of the literature review and contains the research
questions for the next phase of the thesis.
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Single-Carrier Energy Networks

The modelling of large scale multi-carrier energy networks is based on the coupling and interaction
between different energy carriers, such as electricity, gas and heat. These carriers are based on different
physical concepts and operate on different time-scales. In order to interpret and work with the models
and equations of multi-carrier energy networks, it is important to have a good understanding of the
energy networks of each carrier individually. The aim of this chapter is to get a basic understanding of
the physical phenomena in each single-carrier network, with a focus on the mathematical derivation of
the load-flow equations. The contents and aim of this chapter as a whole are based on the PhD thesis
of Markensteijn [6].

This chapter gives the concepts and models used in the modelling of electricity and gas networks.
Electricity networks are discussed in Section 2.1, and gas networks in Section 2.2. The modelling of gas
and electricity energy networks in the context of graphs is explained in Section 2.3. Finally, Section 2.4
derives the steady-state load flow equations for both single-carrier energy networks.

2.1 Electricity Networks

Electricity plays a central role in many modern technologies as a carrier of electric energy. It is based on
electric charge, a physical property of matter that can result in attraction or repulsion in the presence
of other matter with charge. The movement of this electric charge is known as electric current. The
charge can flow along a closed path, referred to as a circuit, and is used to power components, such as
lamps, motors and other electronic devices. In practice, electricity is generated at a centralized source
and transported over power lines to the end users.

This section provides an overview of electricity as an energy carrier and introduces the reader to some
fundamental concepts. Additionally, the modelling of power transmission lines is presented. The con-
tents of this section are based on [12, 13, 14, 15].

2.1.1 Electricity Network Fundamentals

Fundamentals of electricity network modelling include the concepts of voltage, current and power, as
well as important physical laws and properties of circuit elements.

Voltage and Current in AC Circuits

A circuit with alternating current (AC) is one where the current alternates between positive and negative
over time. The currents and voltages in an AC power system usually follow a time-dependent sinusoidal
function. In a steady-state system, the behaviour of the system no longer varies over time. In an AC
circuit this implies that the current and voltage still follow a time-dependent sinusoid, but with a fixed
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frequency w. The steady-state voltage is then as follows
v(t) = Vi, cos (wt + 0y ),

with V;,, the voltage amplitude in V, w the angular frequency in Hz and &y the phase of the voltage.
Similarly, for the current we have
i(t) = I, cos (wt + d1),

with I,,, the current amplitude in amps, w the angular frequency in Hz and §; the phase of the current.
The fixed angular frequency w is usually 50 or 60 Hz for domestic use, depending on the country or
region.

In AC power system modelling it is customary to work with the root mean squared (RMS) wvalue,
denoted with | - |, which is the value of the equivalent direct voltage (or current) that dissipates the
same amount of power in a given resistor during one time period of the alternating voltage (or current).
They are computed as

Vie 2 [ o aie Ly
= — v = — y
T J v2'

)
1 [T 1
Il =14/ = ()2 dt = —=1,,.
4 \/T/O W=

Without loss of generality, we can write the sinusoidal expressions for voltage and current as

v(t) = V2|V cos (wt), (2.1)
i(t) = V2|I| cos (wt — o). (2.2)

Here, phase shift angle ¢ represents the difference in phase of the voltage and current sinusoids.

Phasor Notation

The angular frequency w is constant in a steady-state system. Therefore, we are only interested in the
amplitude and phase shift of the voltages and currents, which is why phasor notation is widely used. A
phasor is a complex number that represents the amplitude and phase of a sinusoid. The use of phasor
notation allows to switch from the time domain to the phasor domain, so that time-dependency is
dropped, simplifying steady-state calculations and analysis. In the phasor domain the time-dependency
is not denoted, as the frequency is constant in a steady-state system. A phasor can be seen as an
equivalent of a sinusoid or complex number. Using Euler’s identity, we see the equivalence relation
between a sinusoid, complex number and phasor as follows

v(t) = V2|V |cos (wt + dy) = V2Re (‘V‘ei(thL(sv)) — VaRe (Vi)

with V' = |V]e*V the voltage phasor. In phasor notation we denote the amplitude and phase angle,

V =|V[e? = |V|Loy.

Resistance and Ohm’s Law

Various materials are known to resist the flow of electric charge, where the amount of resistance to
the flow is a material property. This resistance is measured in ohms (2). Ohm’s law states that the
voltage v across an element (resistor) is directly proportional to the current ¢ flowing through. This
proportionality is defined as the resistance R of an element, which in computed in the phasor domain
as

R=—. (2.3)
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Kirchhoff’s Voltage and Current Laws in AC Systems

Besides Ohm’s law, there are two other important physical laws often used in circuit analysis. There
are Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL).

KCL is based on conservation of charge and states that the sum of current phasors entering and leaving
a node is always zero,

] =

I, =0. (2.4)

Il
_

n

This implies that the magnitude of currents entering the node equals the magnitude of currents leaving
the node.

KVL is based on conservation of energy and states that the sum of all voltage phasors around a closed

path is zero,
M
> V=0
m=1

This implies that the sum of all voltage drops within a closed loop equals the sum of all voltage rises.

Power

The concept of power is defined as the time rate of the expending and absorbing energy, and is measured
in watts (W = J/s). The instantaneous power p, is the power absorbed or supplied by an element in
a circuit at a specific time. It is computed as the product of the voltage across the element and the
current through it,

p(t) =v(t) - i(¢). (2.5)

Substitution of voltage and current definitions (2.1) and (2.2) into instantaneous power (2.5) results in

p(t) = 2|V ||I] cos (wt) cos (wt — @), (2.6)

= |V||I] cos (¢) (1 + cos (2wt)) + |V||I|sin (¢) sin (2wt). )
In an AC circuit, the voltage and current are constantly changing over time, and thus so is the power.
Similarly to how RMS values of voltage and current are used in AC circuits, the real power P is defined
as the average of the instantaneous power during one time period,

P = %/0 p(t) dt = |V||I]cos (¢). (2.7)

Note that the real power corresponds to the time-independent part of the first term in (2.6). The real
power can be interpreted as the useful power that is actually dissipated by the load, and is measured
in watts.

Besides the real power, in AC systems there is also a reactive power, denoted by . This is the power
that oscillates back and forth between the source and the load, and does not do work. It is however
a necessary part for the functioning of AC systems. The reactive power is measured in volt-ampere
reactive (VAR) and corresponds to the time-independent part of the second term in (2.6), which has
average zero. We thus have

Q = [V[/I]sin (¢). (2.8)

Both the real and reactive power depend on phase shift angle ¢, which indicates how in phase the
voltage and current are. If ¢ > 0, the current is lagging behind the voltage, and when ¢ < 0, the
current is leading the voltage. The power factor is defined as

pf = cos (¢) = cos (dy — d1),
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the cosine of the phase shift angle.

The phase shift angle ¢ influences the magnitude of the real and reactive powers. If ¢ is zero, the
power factor is 1 and the voltage and current sinusoids are in phase, resulting in a large true power P,
and zero reactive power QQ. This can be interpreted as a perfect system where all electricity from the
source is used to do work. On the other hand, when ¢ is near :I:%w and the power factor is near 0 the
true power P becomes zero, and reactive power Q becomes large. This implies that no electricity is
used to do work and is instead stored in magnetic or electric fields.

In order to simplify power relations and expressions, the complexr power is used. It combines the
real and reactive power into a single complex number, defined as

S=VvI*, (2.9)

the product of the voltage phasor V and complex conjugate of current phasor I. The complex power
can equivalently be written in polar coordinates, phasor notation and Cartesian coordinates as follows

S=VI,
= [VI[I] (cos (¢) + isin(9)),
= |V||I]e*?, Polar
= |V||I|14¢ = |S|£L, Phasor
=P +1Q. Cartesian

In the phasor notation, the complex power has magnitude |S| = |V||I| = /P? + Q?, defined as the
apparent power. This is a practical quantity often used as an electrical apparatus specification.

Impedance and Admittance

Besides resistors, there are also other passive circuit elements. The most relevant in power system anal-
ysis are the storage elements capacitors and inductors. A resistor dissipates energy, whereas capacitors
and inductors store energy.

A capacitor stores energy in an electric field. The amount of energy stored is proportional to the
applied voltage. The effect of a capacitor in an AC circuit is that the voltage sinusoid will lag behind
the current sinusoid, making them out of phase. With a lagging voltage there is a decrease in the real
power and increase in the reactive power. The energy stored in the electric field is indicated as the
reactive power.

Similarly, an inductor stores energy, but in a magnetic field. The amount of energy stored is pro-
portional to the current flowing through. The effect of an inductor in an AC circuit is that the current
sinusoid will lag behind the voltage sinusoid, making them out of phase. With a lagging current there
is a decrease in the real power and increase in the reactive power. The energy stored in the magnetic
field is indicated as the reactive power.

Similar to the complex power notation, the resistance, capacitance and inductance as voltage-current re-
lations in the phasor domain, can be combined into one complex quantity, the impedance Z. Impedance
represents the opposition that the circuit exhibits to the flow of sinusoidal current. The general expres-

sion of the impedance is given as

Z:¥:R+M} (2.10)

a complex number measured in ohms. The real component R is the resistance and the imaginary com-
ponent X is the reactance. If the reactance is positive, so X > 0, the component is inductive and results
in a lagging current. If the reactance is negative, X < 0, the component is capacitive and results in a
lagging voltage. Note that impedance is a ratio of two phasors, but is not itself a phasor.
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Figure 2.1: Equivalent lumped circuit of a long transmission line.

Conversely, admittance Y represents how easily current flows through a circuit. It is defined as the
reciprocal of the impedance,

1 R Y X
= —_— = VA

Z R2+X? R24+X?2
The real component G is referred to as the conductance, while the imaginary component B is called

the susceptance. Similar but opposite to the reactance, if B > 0 the component is capacitive, while it
is inductive when B < 0.

Y

=G +iB. (2.11)

2.1.2 Transmission Line Modelling

Transmission lines are an important part of power systems modelling, as they transport electricity to the
end user. The derivation of different transmission line models can be found in more detail in Chapter 4
of [13] and Appendix E of [12]. This section discusses the properties of transmission lines and uses the
derivation of the transmission and admittance matrices to relate sending currents, receiving currents
and related voltages. Besides transmission lines, there are also other electricity network components
that have to be modelled, most commonly transformers. More about the modelling of transformers can
be found in Chapter 6 of [15], Chapter 3 of [12] or Chapter 13 of [14].

There are four different important parameters to consider for the modelling of a transmission line,
which are series resistance, inductance, shunt capacitance and conductance. The series resistance and
inductance refer to resistance and voltage lagging in line with the path of the current, whereas shunt
capacitance and conductance refers to leakage current that is in parallel with the transmission line. The
series impedance can be written as

z =71+ twx,

with z the series impedance, r the series resistance and x the series inductance. Similarly, the shunt
admittance is given by
y =g+ wwb,

with y the shunt admittance, g the shunt conductance and b the shunt capacitance. An equivalent
circuit of a transmission line can be found in Figure 2.1. The left side of the circuit, with subscripts 4
is the sending side, while the right side corresponds to the receiving side, indicated with subscripts j.
The shunt admittance is split into half, with one part on the sending end and one part on the receiving
end of the line. Define the total series impedance and total shunt capacitance per phase as

Z =zL, Y =uylL,

where L is the transmission line length. The equivalent circuit is given in Figure 2.1 is a so-called
lumped equivalent circuit. The term ‘lumped’ refers to the assumption that circuit components are
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concentrated at discrete points, rather than being spread out along the entire line. Therefore, we define
the equivalent lumped series impedance and shunt admittance as

7 _ 7. sinh (yL) Vvi—y. tanh (yL/2)

~L vL/2
respectively. Here, v = ,/zy is the propagation constant. Notice the dependence of the lumped
impedance and admittance on the transmission line length L.

Transmission parameters refer to the parameters that relate the input variables Vi, I;; to the out-
put variables Vj;, —I;;. The corresponding transmission matriz of the lumped equivalent circuit in
Figure 2.1 follows from two-port theory and is given as

vil_[ S+l 2 )Ty 2.12
I’L“ - (Z/4Y/_|_1) Y/ Z’2)/I+1 7]’]74 . ( . )

Using this transmission matrix for the lumped equivalent circuit we can express sending current I;; in
terms of the sending and receiving voltages V;, V;,

1 1
L; =(V;-Vj) 7 + §Y’Vi. (2.13)
Note that impedance and admittance are related through (2.11). Therefore we will from now on denote

the series elements with the superscript -, and the shunt elements with the superscript -**. Substituting
Z'" and Y’ and working out the series and shunt admittances, (2.13) becomes

se ]‘ S S
L= {Y’ + 5Y’ h] Vi — Yy,

L
o

| . c . .
_ {C(sz B+ G+ zBf]}-‘)} Vi — { (2.14)
1

=Yy Vi — Y4V,

(G5 + i)

and coefficients

with C; = Si“};(L’YL)7 Cy = tan:I(;};/Q)

1 se . Dse 02 S > S
Ty = E(Glj +4iBjj) + 7(@? +iBj)),
1 se - se
T = a(G%j +1iBj3).

These coefficients describe the relation between the sending current I;; and related voltages V; and V.
The term Y; ; is the sum of the shunt and series admittances connected to element 7 via the transmission
line with sending current I;;. The term T;; is the series admittance of the direct transmission line
between elements ¢ and j. Since admittances are a property of the line itself, Y;; = T;; and Y45 ; = 15 ;.
The relations from the transmission matrix (2.13) can also be represented by the matrix

Lj | | Yiy —Yig| |Vi
—Li| |-y Yag] Vi)

The total current at element ¢ is defined as the sum of all sending currents leaving the element,

==Y Lj=-Y [Tu,Vi-TyVj]. (2.15)
Jigti Jigti
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Substitution of the sending current expression in terms of voltages (2.14) into the total current leads
to the admittance matriz 'Y,

L _Zj,j;ﬁl Tll,j =Tz T -Tin %
I —Ti2 Dojze Yoz oo —Tan Va
In L -Tin —Ton o iian INng] VN (2.16)
Yu Yo - Yy | (W
Yor Yoo -0 Yoy | [ Vo
[ Ynv1 Y2 - Yaw] |[Vn
with Y;; = Zj ki Y and Y;; = Y;; = —7;;. The admittance matrix of a circuit can be constructed

by noticing that the elements are determined as
e The diagonal terms Y;; are the sum of all admittances directly connected to element 7.
e Y;; equals the negative value of the admittance connected between elements i and j.

With the derived expression of sending current in terms of voltages (2.14), we can formulate the complex
power S;; at the sending end of the transmission line using (2.9)

Siy = Vil
= [V;]edvi [(|Vi|e—6vﬂ - |vj|e—5vji) G;ifB + % (G2 — iB™) Cy|Vile v | (2.17)
= P +1Qij,
with sending real and reactive powers
Py = e - VIVt s (9y) + i (01)] + S IViPGPC, (218)
Qij = — “@23% - M(‘J'I/j' (G sin (¢;) — B> cos (¢4;)] — %mPBS‘“CQ. (2.19)

Note that the length of the transmission line L appears in the definition of the equivalent lumped
impedance and admittance. When modelling a transmission line, one therefore has to distinguish
between long, medium and short length lines. In a long transmission line (L > 240 km) all components
in the series impedance and shunt admittance are non-zero and thus have to be taken into account.
For a medium length transmission line (80 < L < 240 km), simplifications can be made by assuming
that sinh (yL) & L. Therefore Z' ~ Z and Y’ = Y (C;,C2 = 1). Additionally, we can assume
that the shunt conductance g** becomes negligible. For a short transmission line (L < 80 km), even
more simplifications apply such that the shunt capacitance b" also becomes negligible. For a short
transmission line the shunt admittance Y is therefore assumed to be zero. The equivalent circuits of
medium- and short-length transmission lines can be found in Figure 2.2.

2.2 Gas Networks

The energy carrier gas refers to any gaseous substance that is transported or consumed for its energy
content. Some common gas energy carriers are natural gas, hydrogen and biogas. The gas is transported
and converted into other energy carriers, such as electricity and heat, via processes such as combustion.
The modelling of a gas network focuses on the transport of gas through pipes based on mass flow and
pressure.

This section gives a brief derivation of the mass flow of a gas in a pipe, based on [6], Chapter 4 of
[16] and Chapter 2 of [17]. The section ends with a brief discussion on other common gas network
elements.
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(a) Medium transmission line. (b) Short transmission line.

Figure 2.2: Equivalent circuits of medium and short transmission lines, taken from [12].

2.2.1 Mass Flow in a Pipe

According to [16], there are many different models and formulas used to describe steady-state flow of
gas through a pipe. The gas dynamics within a single pipe are described by a set of PDEs, often called
the Euler equations. For our use-case, assumptions have to be made, as we are interested in steady-state
isothermal flow. This implies that there is no time-dependence and the gas temperatures are constant.
Additionally, assumptions are made to simplify calculations and derivations. Thus we assume negligible
kinetic energy change in a pipe, constant compressibility of gas in a pipe, constant friction coefficient
along the pipe length, validity of Darcy friction loss relationship across the pipe and horizontal pipes.

Under steady-state isothermal conditions, the governing Euler equations reduce to

[vjv

wv 2.2
5P =0 (2.20)

Jp
PP

where we have gas pressure p(z) in pascal, dimensionless constant friction factor f, gas velocity v(z) in
meters per second, gas density p(x) in kilograms per cubic meter and constant inner pipe diameter D
in meter. Denote by q(p1, p2) the constant gas mass flow in a pipe (kg-s~1), depending on the pressure
p1 at the inlet of the pipe, and pressure py at the outlet side of the pipe. Solving (2.20), as is done in
detail in [16] and [17], results in the following expression of the mass flow,

oo, pz) = sign(Ap)Cy [ 22 (2.21)

with CY9 the pipe constant defined differently for high-pressure and low-pressure systems as

SD> ; .
\ TRLTZ High pressure, 599
2p, SD5 (2.22)
T, Low pressure.

The pressure drop Ap in (2.21) is also defined differently for high- and low-pressure systems as

CY =

|3 ool

Ap— {p% — p2, High pressure, (2.23)

p1 — p2, Low pressure.

In the pipe constant expression (2.22) we have S the dimensionless specific gravity of the gas, T' the
constant gas temperature in Kelvin, R,;, the gas constant of air in Joules per kilogram-Kelvin, L the
length of the pipe in meters and Z the dimensionless compressibility factor. For low-pressure systems
we were able to make the following additional assumptions:

1. Z = 1: In a low pressure system the real gas is close to ideal gas.

2. T = T,: In the low-pressure system we can assume that the temperature 7' is close to the standard
temperature 7T,.

10
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3. p? — p3 ~ 2p,(p1 — p2): Linearization around p,,, the standard pressure.

There are various models that one can use for the friction factor. It can be assumed that the friction
is a constant, dependent on the pipe parameters or dependent on the gas mass flow, f = f(g). Several
models are discussed in Chapter 2 of [6] and Chapter 4 of [16].

2.2.2 Gas Network Elements

Besides pipes, there are also other important network elements in gas networks.

e Valves: Valves are used to route or block gas flow, and can be either closed or open. If the valve
is open, we have p; = p;, T; = T} and g¢;; # 0. If the valve is closed the gas is prevented from
flowing, which results in ¢;; = 0 and p;, p; are decoupled.

e Control valves: Also known as pressure regulators, control valves are used to interconnect
network parts operating at high pressure with the low pressure parts. If the valve is active, the
pressure at the outlet can be reduced to a controllable value. As a result of the pressure drop, the
temperature of the gas also drops. If the control valve is closed, we have ¢;; = 0 and p;, p; are
decoupled. If the control valve is active, the pressure difference can be kept within a predetermined
range around pressure Py, so we have 0 < pey, — € < Ap;j < pey + € and g;; > 0.

e Compressor machines: Compressors are used to increase the pressure of the incoming gas to
a higher outflow pressure. There are different types of compressor machines that can be some of
the most complex parts of gas networks. A general compressor can be described by p; = rp;, with
the constant r depending on the compressor used, and g;; > 0.

2.3 Graph Representation of Energy Networks

Energy systems can be represented by graphs to visualize the connection between network components,
producers of energy and consumers. This section discusses some general concepts from networks in
graph theory to understand network modelling, based on Chapters 1 and 6 of [18]. It is also derived
how electricity and gas networks can be interpreted as graphs, using notation, concepts and principles
from [16] and [19].

2.3.1 Graphs and Networks

A graph G is a pair (V, ) of sets such that & C [V]2. The set V is a set of nodes or vertices v; and € is
a set of pairs of nodes e = {v;,v;}, referred to as links or edges. A graph is undirected if the links €
form an unordered set nodes. Conversely, a graph is directed if the links form an ordered set of nodes
er = (v;,v;), so that the link has a direction from node v; to v;. The size or order of a graph, denoted
by |V|, is the number of nodes of the graph. Denote with |£| the number of links.

The incidence matriz A € RIVIXIEl describes the interconnection between nodes V = {v1,...,v,}
and links & = {ej,..., v} in a graph G. If the graph is undirected, the incidence matrix is defined as

1, link ey is connected to node v;
A =

0, otherwise.

If the graph is directed, the incidence matrix is defined as

1, link e leaves node v;,
A = —1, link e enters node v;, (2.24)
0, otherwise.

A terminal link or half link is a special type of link that is only connected to one node and can be
denoted by t; = {v;}. By definition, a terminal link can only be connected to one node, while a node

11
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Figure 2.3: Electricity network with two nodes.

can have more than one terminal link connected to it. The set of terminal links ¢; in a graph is denoted
by 7 and the set of terminal links connected to node v; is denoted by T (v;).

A network is a graph with an associated physical model. The links of a network carry some kind
of flow, such as water, electricity, data, etc. In this report, we will focus on a network that represents
the flow/transport of energy along its links, called an energy (transportation) network. Denote the
energy network by N = {G, T} = {V, &, T}, a graph with a set of nodes and links, and a set of terminal
links. Note that if graph G is (un)directed, then so is network N.

The terminal links in an energy network are used to model inflow (source) and outflow (sinks) of
energy. A node can represent such a source or sink, but since flow in a network is defined through links
we associate the inflow and outflow of the sources with the terminal links. The terminal links thus
represent the in- or outflow of the source or sink.

2.3.2 Electricity Network

A balanced AC power grid is represented by an undirected network, which we denote with N¢ =
{Ve,€°,T¢}. In an electricity network a node, also called a bus in literature, is an electrical component
in the circuit. A link represents a transmission line. An example of an electricity network is given in
Figure 2.3. Generators and loads are represented by nodes and terminal links, and are modelled as
power injections, which is the complex power supplied/consumed by the generator/load. It consists of
the injected real power P and injected reactive power Q. The injected real and reactive power through
terminal link ¢; supplied to node v; is denoted by P;; and Q;;, respectively. Note that multiple loads
or generators can be connected to a single node. Therefore, define the total real and reactive powers at
node v; as

Pi:=) Py Qi:=) Qi (2.25)
! 1

Additionally, we denote the real power flow from node v; to v; with P;;. Similarly, the reactive power
flow Q;; denotes the flow of reactive power. The convention is to denote consumed power as positive,
and generated power as negative, following the direction of the terminal link arrows in Figure 2.3.

The additional variables of interest are the nodal voltage V' and link current I. The voltage at node v;
is denoted as V;. The current leaving node v; and flowing to v; is called I;;. Conversely, the current
leaving node v; and flowing to v; is denoted as I;;. Note that if a transmission line does not contain
any admittances, we have I;; = —I;;. Such a line is referred to as a lossless line. If there are series
and/or shunt admittances present, we generally have I;; # —I;; and the relation between I;; and I;
is determined via the transmission matrix (2.12), as described in Subsection 2.1.2. The total injected
current at node v; is given as
Ii = Z I“.
1

The admittance matrix Y (2.16) or transmission matrix T' (2.12) of the network describes the relation
between the link current injected at the nodes and the nodal voltages. Note that the admittance matrix
describes the currents in terms of voltages, whereas the transmission matrix describes the sending

12
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Table 2.1: Electricity network node types

Node type Specified | Unknown | Size notation
PQ or load bus P,Q V], PO
PV or generator bus | P,|V] Q,0 [PV
Slack bus V],o P,Q |S]

current and voltage in terms of receiving current and voltage. They can be used interchangeably for
the modelling of a single link that connects two nodes. Using the admittance matrix Y or transmission
matrix T', we can express the link currents [;; in terms of the nodal voltages V;. Therefore, we can fully
describe the state of a electricity network by four nodal parameters. For each node we thus describe

e Voltage phasor magnitude |V;|: The magnitude of the voltage phasor at node v;,
e Voltage phasor angle §;: The angle of the voltage phasor at node v;,
e Total real power P;: The net generation or consumption of real power connected to node v;,

e Total reactive power @;: The net generation or consumption of reactive power connected to node
V;.

There are different types of nodes/buses in a system. They represent different types of circuit elements
and mathematically differ by which two of the four nodal parameters are known.

e PQ bus: Also known as a load bus, loads are modelled as constant power sinks. They do not
have control over voltage levels, but their consumption is known through the total injected real
and reactive powers P; and @Q;. The unknown quantities are therefore the voltage magnitude |V;|
and voltage phase angle J;. The amount of PQ-buses in a system is denoted by |PQ].

e PV bus: At a PV bus, also called a generator bus, the total real power P; supplied by a generator
and the voltage magnitude |V;| are known. In a real-life power system, the voltage at a generator
is usually kept within a predetermined range, which is needed for the functioning and efficiency
of the power system. The unknown quantities are therefore the reactive power @Q; and voltage
phase angle §;. The amount of PV-buses in a system is denoted by |PV|.

e Slack bus: A slack bus is a special type of bus that acts as a reference point for the entire
network. The voltage magnitude |V;| and voltage phase angle J; are specified. Within a power
network the total injected power supplied minus the total injected power consumed and total
losses must balance to be zero. This balance is done by the slack node(s). The total injected real
power P; and injected reactive power @); are thus unknowns. The slack bus can be interpreted
as a generator load that injects exactly the remaining power the system needs. The voltage
magnitude |V;| and phase angle §; are known quantities and serve as a reference for the other
voltages, meaning that we compute the voltage phase angles of the PQ and PV buses relative to
the slack bus. There is typically only one slack bus in a system. However, in larger or specific
systems there can be multiple slack buses. The amount of slack buses in a system is denoted by

|SI.

An overview of electricity network node types can be found in Table 2.1.

2.3.3 Gas Network

A gas system is represented by a directed network, which we denote with N9 = {V9,£9,T9}. In a gas
network a node can represent a sink, source or junction, which is an intersection of pipes where the gas
is redistributed. A link can represent a pipe, compressor, valve and other gas network elements. An
example of a gas network is given in Figure 2.4. The arrows in the directed graph show the direction of
flow. The gas mass flow from a sink or source through terminal link ¢; flowing to node v; is denoted by

13
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Figure 2.4: Gas network with two nodes.

Table 2.2: Gas network node types

Node type | Specified | Unknown | Size notation
Load node q p 19
Slack node P q |P|

gi,1- Note that multiple sinks or sources can be connected to a single node. Therefore, the total injected
gas flow at node v; is defined as
=Y g (2.26)
1

The convention is to denote a supply of gas as negative and a sink as negative g; ;, following the direction
of the arrow in Figure 2.4.

We can describe a gas network with the following parameters
e Nodal pressure p;: The pressure at node v;,
e Link gas flow ¢;;: The gas mass flow from node v; to node v;.

There are different types of nodes in a gas network system. They represent different network elements
and mathematically differ by which of the two nodal parameters are known.

e Load node: Loads are modelled as gas flow sinks. Their consumption of gas flow is known
through the total injected gas mass flow ¢;. The unknown quantity is therefore the pressure p;.
The amount of load nodes in a system is denoted by |Q|.

e Slack node: A slack node is a special type of node that acts as a reference point for the entire
network. There is only one slack node in a system, and the pressure p; is specified. Within a gas
network, the total gas mass flow must balance to be zero. This balance is done by the slack node
where the gas mass flow ¢; is unknown. The slack bus can be interpreted as a generator or load
that injects (consumes or supplies) exactly the remaining gas flow the system needs. The pressure
p; serves as a reference for the other nodal pressures. We therefore compute the pressure of the
load nodes relative to the slack node. The amount of slack nodes in a system is denoted by |P].

An overview of gas network node types can be found in Table 2.2.

2.4 Load Flow Equations

This section mathematically derives the load flow equations used in simulations of energy networks for
electricity and gas networks, based on the principles discussed in previous sections of this chapter.

2.4.1 Load Flow Equations: Electricity Networks

A steady-state AC power grid is completely described by KCL (2.4), an equation linking the current and
voltages through admittance (based on Ohm’s law), and the complex power equation (2.9). These lead
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to the load flow or power flow equations. They relate the four quantities described in Subsection 2.3.2
at all nodes v; € V¢, by expressing nodal real power P; and nodal reactive power ); in terms of system
voltage magnitudes and phase angles.

In every node v; € V¢, KCL (see Subsection 2.1.1) holds, stating that the sum of all injected cur-
rents must equal the sum of all outgoing currents. Following the notation used in Subsection 2.3.2, we

can write KCL as
Y Lu=L=-> I (2.27)
l JgFi
the sum of all injected currents in node v;, I;;, equals the sum of all currents leaving the node, I;;,
where the minus sign follows from the convention of choosing the direction of flow.

Additionally, the complex power equation (see Subsection 2.1.1) holds in every node. It states that
in every node v;, the product of the nodal voltage V; and complex conjugate of the nodal current I; can
be expressed as a complex number that relates the real and reactive powers P; and @);, so

> 8= 8 =Vi(L;)* = P, +iQ;,
1
with S; the total injected complex power at node v;.

Using Ohm’s law, we can denote the current I;; from node v; to node v; in terms of the voltages
and total admittance. The result of this substitution is the admittance matrix (2.16) or the trans-
mission matrix (2.12). The derivation of both matrices can be found in Subsection 2.1.2. Using the
transmission matrix we can substitute (2.14) into KCL (2.27), resulting in

I =— Z (Yii i Vi + Ti5V5)
JJ#

== YV
J

Here, Y;; is a component of the admittance matrix Y. Therefore, one can alternatively directly use the
admittance matrix (2.16) in place of substitution of the transmission matrix into KCL to obtain this
same result. Denote the real and complex parts of the admittance term Y,;; as Re(Y;;) = G;; and
Im(Y;;) = B;j. As a result, we can compute the complex conjugate of the current, I},

Iy ==Y YVir ==Y (Gi; —iByj) (Vile ).
J J
Using this expression, the nodal complex power equation can be expressed in nodal real and reactive

powers,
Sy = Vi(L)",

—[Vile®® | Y (Gij = iByj) (|Vile™™7)
i
—|Vil* (G —iBu) = > (Gij — iBy) V||V el 0%,
joiti
I (2.28)
= — [VilPGii + ) IVillV;| (Gij cos 65 + Bijsin 6y;)
PR

i |[=|Vil*Bi — D |Vil[Vj| (Byj cos 6ij — Gijsinéy) |
i
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where d;; = §; — 0;. This result for the complex power equation leads us to the formulation of the load
for equations for electricity networks.

Load Flow Equations

The load flow equations for an electricity network can thus be written as the following non-linear system
of equations
Fe(z°) =0. (2.29)

== |

The vectors § and V' contain the unknown nodal voltage angles and magnitudes. The number of un-
known voltage angles is |[V¢| — |S|, as the slack nodes have a known voltage angle. Similarly, the number
of unknown voltage magnitudes is |V¢| — |S| — |PV)|, as the slack nodes and PV nodes have prescribed
voltage magnitude. The vector ¢ thus has 2(]V¢| — |S]) — |PV| entries.

The argument x¢ is defined as

The function F°(x¢) is defined as
F(z¢)
Fe(x°) = . 2.30

@) = | polee (2.30)
The vectors F¥ (x¢) and F?(x¢) contain the complex power equation for the nodes with known injected
real and reactive power, respectively. The number of nodes with known total real power is |PV|+|PQ),
whereas the number of nodes with known total reactive power is [PQ|. The vector F°(x®) thus has
|PV| + 2|PQ| components. Suppose that the i-th entry of FP(xe) corresponds to node v;,, which has

known total real power, and that the i-th entry of F%(z¢) corresponds to node v;,, which has known
total real power, then the entries of F¢(x°) are determined using the result in (2.28),

F{P(CBC) =P, + |Vil|QGi1i1 + Z |V11HV]| (Gilj cos 5i1j + Bi,jsin 5i1j);
it
F2(af) = Qi, — |Vi,[*Biyi, — >, [ViulIVi| (Biyj cos iy — Giyjsin iy ) .

33712

(2.31)

Recall that P;, and @Q;, are defined as the sum of injected powers, (2.25).

Note that |V¢| = [PQ| + |PV| + |S|, so |[PV| + 2|PQ| = 2(|V¢| — |S|) — [PV|. The total system
(2.29) thus contains [PV| + 2|PQ| equations with |PV| + 2|P Q| unknown variables.

2.4.2 Load Flow Equations: Gas Networks

A steady-state gas network can be completely described by conservation of mass and link equations
that model the network elements the links represent. This leads to the load flow equations that relate
the nodal pressures and total injected gas flow described in Subsection 2.3.3 at all nodes v;.

In every node v; € V9, conservation of mass must hold. Therefore, the sum of all flows going into
node v; and all flows going out of node v; must balance to be zero. This leads to

Z qji — Z ¢ij —qi = 0. (2.32)
JJFi J.gFi

The first term corresponds to gas flowing into node v; from other connected nodes, the second corre-
sponds to the gas flowing out of node v; to other connected nodes, and the final term ¢; is the total
injected gas flow (2.26). The signs follow from the convention of choosing the direction of flow.
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Additionally, each link has a link equation, which differs per gas network element. If a link repre-
sents a pipe, then the results of Subsection 2.2.1 can be used, leading to the pipe link equation. For
the pipe that allows for gas mass flow between nodes v; and v;, we have pipe link equation

. Api;
5 (P, Pj) =Slgn(APij)C‘q\/ | JZZA’ (2.33)

where Ap;; represents the pressure difference between the nodes v; and v;, defined in (2.23), and
constant CY is given by (2.22). Alternatively, instead of expressing the gas mass flow in terms of
pressure difference as ¢(Ap), one can express the pressure difference in terms of gas mass flow as Ap(q).
This leads to equivalent pipe link equation

Apij = (C)% flaijla;- (2.34)

Load Flow Equations

The load flow equations for a gas network can be written as the following system of equations
F(z9) =0. (2.35)

There are various formulations used for the load flow equations of a gas network. All describe the
same network but define F' and x9 differently. The formulations used are the nodal, loop, nodal-loop
and full formulations. In the nodal formulation there is a substitution of link equations (2.33) into
the conservation of mass equations (2.32), as is done in [16]. The unknown quantities then consist of
the unknown total injected gas flows and the unknown nodal pressures. However, one can only sub-
stitute link equations into conservation of mass if the link equations contain the variable g;;. If the
link represents a pipe, this is the case, see (2.33), but if the link represents different network element,
such as a compressor, the gas mass flow term is not present in the equation, see Subsection 2.2.2. The
nodal formulation is therefore only used where all links represent pipes. In the full formulation, there
is no substitution. The unknown quantities consist of the unknown nodal pressures, the unknown total
injected gas flows and gas mass flows along all links. This formulation is more widely applicable as it
can include all gas network elements. Therefore, the full formulation is considered in the remainder of
this report.

In the full formulation, the argument x¥ is defined as

--[)

The vector q contains the unknown link flows. Since all link flows are unknown, this vector is of length
|€9|. The vector p consists of all unknown nodal pressures. The number of unknown nodal pressures
is [V9| — |P| = |Q|, the total number of nodes minus the number of slack nodes with specified nodal
pressure. The vector x9 thus has |£9| + | Q)| entries.

The function F?(x?) is defined as
F(z9
F9(z9) = [ (@ )} . (2.36)
The vector F?(x9) is the vector of conservation of mass, and contains the components as in (2.32) for

only the nodes with known total injected gas flow. Suppose that the i-th entry of F%(x9) corresponds
to node v;, which has known total injected gas flow ¢;, then we have

F?(fvg) = Z 45i — Z Qij — Gi-
J,J#i JJ7#i
Note that this is a linear relation of components and we can therefore write conservation of mass as
a linear system using the directed incidence matrix of the network as defined in (2.24). Since we are
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only considering the conservation of mass equation for nodes with known total injected gas flow, the
reduced incidence matrix A9’ of the network is used, which only contains the rows of the incidence
matrix corresponding to the nodes with known total injected gas flow. This result in the linear system

Fi=A9q— g™, (2.37)
where g™ is the vector with all known total injected gas flows. The vector F¢ thus has length |Q)|.

The vector F- (x9) is the vector of unknown link flows. If the network consists of only pipes, the
link equations are given by (2.33) or (2.34). In this derivation, we will use (2.34), as this formulation
is generally more robust when linearising and solving the load flow equations. Additionally, for a low
pressure system, (2.34) results in an equation that is linear in the pressures. Suppose that the k-th
entry of F*(x9) corresponds to a link (gas pipe) from node v; to node v;, then we have

Fi(2%) = Apyy — (C9) 7 flaijlas- (2.38)
The vector FX(x9) is of length |£9], as we assume all link flows are unknown.

The total system (2.36) thus contains |Q| + |£9] equations with |Q| + |£9| unknowns.
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Chapter 3

Multi-Carrier Energy Networks

Different energy carriers such as electricity, gas and heat, can interact with each other, leading to one
combined system referred to as a multi-energy system (MES). Such a system can be represented by a
multi-carrier energy network (MCN) by coupling nodes of different carriers. Such an integrated network
can be used to more realistically model and analyse the energy grid.

This chapter discusses various methods of coupling that can be used for a multi-carrier energy net-
work in Section 3.1 and includes the formulation introduced in [6]. The integrated load flow equations
and node types of an integrated system can be found in Section 3.2.

3.1 Coupling

The coupling of single-carrier networks to form a multi-carrier network is a key element of integrated
network modelling. This section first introduces types of coupling units that convert energy from one
carrier to another. These coupling units can be included in the multi-carrier network in various ways,
which is discussed next. Finally, the coupling method proposed in [6] is described in more detail.

3.1.1 Coupling Units

In an MES, the single-carrier systems interact with each other through various elements, called coupling
units. These elements represent conversion units that transfer energy from one carrier to one or more
other carriers. Table 3.1 shows an overview of conversion units in an MES that transform energy from
one carrier to another. A combined heat and power plant (CHP) makes use of the residual heat that
might occur in a coupling unit such that less energy is lost during conversion.

3.1.2 Methods for Coupling Single-Carrier Networks

As described in [6] there are three main methods for generally coupling different energy carriers:

Table 3.1: Conversion units and examples in multi-carrier energy networks

Input carrier | Output carriers | Abbreviation Example
Gas Electricity G2P Gas-fired generator
Gas Heat G2H Gas boiler
Gas Electricity, heat CHP Combined heat and power plant
Electricity Gas P2G Electrolyser
Electricity Heat E2H Electric boiler
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1. Coupling link: Connect two nodes of a different energy carrier by a link. This method has no
straightforward interpretation of a coupling link and it is less intuitive how more than two different
energy carriers are coupled.

2. Merged node: Merge two nodes of a different carrier into one node. This method has the practical
downside that nodal parameters might have to be doubly defined. Additionally, it has to be
possible to differentiate between links of different carriers connected to the merged node in order
to apply Kirchhoff’s law in constructing the load flow equations.

3. Coupling nodes and dummy links: Introduce an additional coupling node and connect the two
different energy carrier nodes with dummy links to the coupling node. With this method the
models of the single-carrier parts are only slightly altered and the connection between the carriers
is shown explicitly.

In the rest of this report the coupling of single-carrier parts is considered to be done with coupling
nodes and dummy links.

3.1.3 Coupling Nodes and Dummy Links

The coupling node represents an MES element as described in Subsection 3.1.1 that couples at least
two energy carriers. An example of a graph representation of an MES with one coupling node is given
in Figure 3.1. By definition, no parameters are associated with the coupling node and it is not part
of any of the single-carrier parts, but rather belongs to its own coupling part. If a coupling node
couples nodes of the same carrier, it is referred to as homogeneous. Such a node can be introduced
when for example coupling high-voltage and low-voltage electricity networks. A network with only
homogeneous (coupling) nodes is a homogeneous network. Conversely, if a coupling node couples nodes
of different carriers, it is referred to as heterogeneous. A network with at least one heterogeneous cou-
pling node is a heterogeneous network. The total number of coupling nodes in an MES is denoted by V°.

The different single-carrier parts in an MES are connected to the coupling node via dummy links.
They only represent connections between the single-carrier parts and therefore do not represent phys-
ical system components. However, they have the same parameter types associated with them as the
links of the single-carrier network they are connected to and could therefore be seen as lossless links.
Gas and electricity dummy links are interpreted as follows:

e Gas dummy link: A gas dummy link only has a gas mass flow ¢ along the link but not a link
equation.

e Electricity dummy link: An electricity dummy link has a current I and real and reactive powers
P and @ associated with it. Since the dummy link can be interpreted as a lossless power line, it
must therefore hold that I;; = —1I;; as well as that P;; = —Pj; and Q45 = —Qjs-

Following the introduction of dummy links, the MES can be easily separated in single-carrier parts
by transforming the dummy links into terminal links. This flexibility allows for general application to
MES.

3.2 Load Flow Equations

Using the coupling method described in Section 3.1, this section describes the formulation of a multi-
carrier network. The newly introduced coupling equations and occurance of new node types lead to the
load flow equations of a multi-carrier energy network.

3.2.1 Coupling Equations

In every heterogeneous coupling node one or more (non)linear coupling equations hold. The general
form of the nodal coupling equations associated with coupling node v; € V¢ connected to homogeneous
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Figure 3.1: Taken from [6]: ‘Network representation of a coupling node, showing quantities of interest
for LF and the network elements they are associated with.’

node v; is given as

F{(x¢) =0. (3.1)
The coupling parameters are given as
q.
z¢= | P.|, (3.2)
Q.

where g, is the vector of gas mass flows of the gas dummy links, and P. and Q,_ are the real and
reactive power of the electricity dummy links.

3.2.2 Additional Node Types

Generally, the coupling of single-carrier networks results in more added variables than added equations.
A necessary condition for a well-posed linear system is to have as many variables as equations, called
a square system. The load flow equations of the electricity and gas are generally non-linear. As a
result, it is no longer necessary to have as many unknown variables as equations for the system to be
well-posed. However, these linear systems are often linearized during the solution process, such as in the
Newton-Raphson (NR) method. A necessary condition for the existence of the inverse of the Jacobian
in NR is that it must be square. It is thus generally desirable for the non-linear system of equations for
an MES to be square by having as many unknown variables as equations. In order for the multi-carrier
load flow problem to have as many equations as unknown parameters, we require additional parameters
to be known beforehand. More practically, the interpretations of the scenarios modelled using coupling
nodes often naturally result in more known parameters in order to solve the load flow problem. For
example, parameters of the slack node in one single-carrier network can be replaced by the coupling
parameters, essentially using the other coupled single-carrier network as the slack. Consequently, new
node types are introduced that only occur in the multi-carrier networks.

Possible gas and electricity node types in a multi-carrier network are given in Table 3.2 and 3.3, re-
spectively. Mathematically, more electrical node types are possible by combining different known and
unknown parameters. However, the node types mentioned in Table 3.2 and 3.3 are the node types that
are generally physically possible in an MES with an electrical component. As a result of the additional
node types and thus a possible transfer of the slack function from one carrier to another, it can occur
that the load flow problem of one single-carrier network is overdetermined, while the load flow problem
of the other single-carrier network is underdetermined. However, the final multi-carrier network is a
square system.
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Table 3.2: Gas node types in a multi-carrier network

Node type Specified | Unknown
Load node q P
Slack node P q
Reference load node P, q -
Slack node - D, q

Table 3.3: Electricity node types in a multi-carrier network

Node type Specified | Unknown
PQ or load bus PQ [V],o
PV or generator bus P,|V| Q.6
Slack bus V], 6 PQ
PQJ bus P,Q,6 V|
QVé bus Q,V],d P
PQV§ bus P,Q,|V|,5 -

3.2.3 Steady-State Load Flow Problem of Multi-Energy Systems

To construct the load flow equations of a coupled network, one first constructs the load flow equations of
the single-carrier parts according to carrier-specific formulation. The load flow equations for electricity
and gas are described in Sections 2.4.1 and 2.4.2, respectively. During the construction of the single-
carrier components the dummy link variables are taken into account, whereas the coupling nodes are
not. The load flow equation(s) for the coupling nodes follow from the specific unit used for coupling
and are of general form (3.1). Combining the load flow equations of the individual carriers and the
coupling nodes results in the following MES load flow problem

F9(x9,x°) x9
F(x)= |F°(x°%x%| =0, = |z°|. (3.3)
Fe(x°) x°

The load flow expressions for the gas network in the multi-carrier system are included in FY that depend
on the gas network parameters included in x¢, the nodal pressures and link gas mass flows, as well as
on the dummy link gas mass flows included in ¢. Similarly, the load flow expressions corresponding
to the electricity network are included in F° that depend on the electricity network parameters in x¢,
which are the nodal voltage magnitudes and angles. Additionally, electricity load flow also depends on
the real and reactive powers of the dummy links included in €. Finally, the nodal coupling expressions
are included in F'° that model the coupling units. The coupling equations only depend on the dummy
link coupling variables x°.
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Chapter 4

Solvers and Preconditioners

An energy network can be represented by a system of equations. The systems of equations for electricity,
gas and heat networks are described in Chapter 2. The systems of equations for a multi-energy system
where different energy carriers are combined are described in Chapter 3. In order to solve the energy
flow problems they represent, these systems of generally non-linear equations have to be solved.

A general linear system of equations can be written as a matrix-vector product
Az = f, (4.1)

with A € R™ ™ a non-singular coefficient matrix, f € R™ a right-hand side or forcing vector and
x € R" the unknown solution vector. The goal is to solve this system reliably and efficiently. Generally,
a direct computation of the inverse A~! is computationally expensive and inefficient, especially for
larger systems. Different solution methods have been developed to determine the solution vector @
without directly computing the inverse. They are either direct methods or iterative methods. In a
direct solution method the coefficient matrix A is factorized into a product of matrices in such a way
that computation of solution vector @ is simplified and less expensive. Direct solution methods that are
used in solving multi-energy system problems can be found in Section 4.1. The second class of solution
methods is based on an iterative process that aims to improve an approximation of the solution vector x
or minimise errors in each iteration. Such iterative methods are often used for large systems due to their
efficiency compared to direct solution methods. In [20] and [21], it is concluded that an iterative method
is the optimal method for large-scale power systems. Iterative methods that are used in solving multi-
energy system problems can be found in Section 4.2. Preconditioners play an important role in iterative
solution methods, that improve the efficiency and robustness. They are discussed in Section 4.3. The
next section in this chapter briefly introduces the Newton-Raphson (NR) method, which iteratively
solved non-linear systems of equations, such as the load flow equations of energy networks. Finally,
Section 4.5 discusses domain decomposition methods. The theory on direct and iterative solvers for
linear systems is based on methods described in [22] and [23].

4.1 Direct Solution Methods

A commonly used direct solution method is LU factorization. It is based on the Gaussian elimination
principle. In this method one factorizes the coefficient matrix A as

A=LU, (4.2)

with L a lower-triangular matrix and U an upper-triangular matrix. This factorization is unique with
the requirement that all diagonal elements of either L or U consist only of ones. The solution vector x
is then found by solving the systems

Ly=§f, Ux=uy.
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The lower-triangular system with Ly = f is solved first using forward substitution. With the intermedi-
ate result y, the upper-triangular system with Uy = « is solved using backward substitution, resulting
in the solution vector .

Determining the solution vector & with LU factorization consists of computing the factorization (4.2),
the forward substitution and backward substitution. For a dense coefficient matrix, the LU decomposi-
tion requires O(n?) flops. The computational cost of both substitution steps is O(n?) flops. The total
complexity of determining the solution vector « is thus dominated by the factorization of the coefficient
matrix.

LU factorization is used in solving load flow equations of single-carrier as well as multi-carrier net-
works. It is often used as the linear solution step in the non-linear NR solution method, as is mentioned
in for example [24] and done in [25]. The NR method is discussed in more detail in 4.4.1.

4.2 TIterative Solvers for Linear Systems

In an iterative solution method one starts with an initial guess xy of the solution vector and aims to
iteratively improve the approximation of . When after k iterations, the iterate xj is sufficiently close
to the exact solution x, ) can be used as an approximation. The error vector of the k-th iteration is
defined as the difference between the exact solution and the solution approximation,

€ =T — k.

In practice the exact solution & is unknown. Therefore the residual vector is used instead. The residual
vector of the k-th iteration is the difference between the right-hand side and left-hand side of (4.1),

Tk Zf—A:Bk.

The residual can be computed for every solution approximation xp and is used as a measure of the
quality of the approximation. Note that the residual vector can be computed from the error vector via
the residual equation Aej = rg.

There are various classes and types of iterative methods. The basic iterative methods (BIMs) such
as Jacobi, Gauss-Seidel and Successive Overrelaxation are methods based on relaxation steps. In each
iteration one or more components of the approximation are modified in a certain order such that compo-
nents in the residual vector reduce to zero. These methods are rarely used on their own in practice, but
form the basis of more advanced methods. Since they are not often used in solving load-flow equations,
they are not discussed in more detail in this report. More about BIMs can be found in Chapter 4 of [22].

Other classes of methods employed in energy system modelling are Krylov subspace methods. These
methods are commonly used in practice in many different fields of research and are discussed in Sub-
section 4.2.1.

4.2.1 Krylov Subspace Methods

The class of Krylov subspace methods is based on generating solution vector approximations xj of the
form

T € o + Kr(A, 7o), (4.3)
where Ky (A4, ro) is the Krylov subspace, defined as

Kr(A,rg) = span {rg, Arg, ..., Akilro} . (4.4)

Krylov subspace methods can be interpreted as projection methods. In a general projection method
the k-th solution approximation is based on the initial guess g, updated with a vector from the search
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subspace Ky, such that the new residual has no components in the left subspace £ (the new residual is
orthogonal to all components in Ly),

:Bk:mo+6, 5€Kk,
(ro— Ad,w) =0, Yw € Ly.

In Krylov subspace methods the search subspace Ky is the Krylov subspace K(A,ro) as defined in
(4.4). The choice of subspace L, in part determines the type of Krylov subspace method. In orthogonal
projection methods one chooses L = Ky, whereas in oblique methods one takes L = AK.

The general procedure of a Krylov subspace method is described in Algorithm 1. As can be seen
from the general Krylov subspace method algorithm, there are different methods used to compute the
expanded basis vectors of the Krylov and left subspaces as well as computing the reduced systems. Two
main methods to compute an orthogonal basis of the Krylov subspace are Arnoldi’s orthogonalization
method and Lanczos’ biorthogonalization method. These methods give rise to different solvers.

Algorithm 1 General Krylov Subspace Method

1: Choose initial guess xy and compute initial residual rq = f — Axg

2: for k=1,2,...,n—1do

3: Expand the Krylov subspace K (A, 7o) = span{rg, Arg, ..., A¥"1ry}

4: Generate/update basis vectors Vj, of Ky (A, 7o) and possibly Wy, of £; (method-dependent)
5: Form the projected matrix Hy = W AV}

6: Solve the reduced system (method-dependent) for y,

7

8

9

Update approximate solution x = o + Viy,
Compute residual 7, = f — Axy
: if converged then
10: break

11: end if
12: end for

Arnoldi’s orthogonalization method computes an orthonormal basis of a Krylov subspace K4+1(A, o).
It determines the basis vector v, 1 that contains the components of A*v( not spanned by span {vg, v, . .
span {’uo, Avg, ... ,Ak_l'uo}. This is done by multiplying previous basis vector v; by A and orthonor-
malising it against all previous basis vectors by a standard Gram-Schmidt procedure. As a result, the
basis V}, satisfies VkTVk = I. The Arnoldi method results in the Arnoldi relation,

AV, =V, Hy, + wkef, VkTAVk = Hy, (4.5)

where Hy, is the Hessenberg matrix. It represents how the coefficient matrix A acts inside the Krylov
subspace. The shape of Hy is called upper-Hessenberg, where all entries below the first sub-diagonal
are zero. It thus follows that solving a system with the Hessenberg matrix Hj is generally cheaper than
solving a system with the original coefficient matrix A.

Lanczos’ bi-orthogonalization algorithm forms dual bases of the right subspace K (A, 7o) and left sub-
space Ki(AT, 7o) that satisfy the bi-orthogonality condition where each left vector w; is orthogonal to
all right vectors v, except v;. This is done by multiplying previous basis vectors v, and wy by A and
AT respectively. As a result of the bi-orthogonality, Av, and ATwj, is spanned by a linear combination
of the previous two basis vectors and a new residual component. These new vectors are computed and
orthogonalized against the previous two vectors in each sequence. As a result, the dual bases V}, and
W), satisfy the relation W,;*F Vi = I. The bi-Lanczos algorithm results in the following relations,

AVy, = Vi Ty + Spr1vier, ATWip = WiT)F + Beprwrer, WAV, =Ty, (4.6)

where T}, is a tri-diagonal matrix. The bases Vi and W) are dual and as a result, the projection of the
coefficient matrix A from the oblique projection process onto K (AT, 7o) and orthogonally to Ky (A4, r),
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is a tri-diagonal matrix. It follows that solving systems with T} is cheaper than solving systems with

A.

The bi-Lanczos algorithm is cheaper to execute than the Arnoldi algorithm. In bi-Lanczos, basis
vectors have to be orthogonalized against only the previous two, whereas for Arnoldi the new basis
vector has to be orthogonalized against all previous basis vectors. Additionally, the matrix T} requires
less storage than the full Hessenberg matrix Hy. However, in the bi-Lanczos algorithm there are more
opportunities for breakdown due to sensitivity to rounding errors.

In some scenarios the coefficient matrix A is symmetric positive definite (SPD), for example when
the Poisson equation is solved using a finite difference method. When the coefficient matrix is SPD, the
Arnoldi method reduces to Lanczos. The SPD property is an advantageous property of the coefficient
matrix to have and there are therefore several methods that make use of this property, such as the well-
known conjugate gradient (CG) method. However, the coefficient matrices that arise from linearization
of load flow problems of energy systems are generally not symmetric. This class of methods will thus
not be discussed in this report, but are described in detail in [22].

Generalized Minimum Residual Method (GMRES)

The generalized minimum residual (GMRES) method is a Krylov subspace method commonly used
in practice for solving linear systems of equations [26]. Is it a projection method, taking K = Ky,
the Krylov subspace, and £ = AKj. The iterations are based on Arnoldi’s orthogonalization method.
The procedure for computing the k-th iterate with GMRES is given in Algorithm 2. Each iteration of
GMRES consists of the following steps:

1. Construct an orthonormal basis of the Krylov subspace K using Arnoldi’s method by finding a
vector vy, orthogonal to all vectors in Vj,_1, an orthonormal basis of K;_; (lines 3-14 in Algorithm
2).

2. Find the vector y,, that minimizes ||74||2, the k-th residual (line 16 in Algorithm 2).
3. Compute iterate &y, = xo + Viy;, (line 17 in Algorithm 2).

The second step of the GMRES iteration is to determine the vector y; that minimizes the k-th residual.
During this step, the Hessenberg matrix computed with the Arnoldi orthogonalization is used to define
a minimization problem equivalent to minimizing the residual, but is less costly to compute. Using the
Hessenberg matrix and Arnoldi relation (4.5)

f—Ax = f — A(xo + Viy),
=ro— AWy,
= fv1 — Vg1 Hpy,
= Vit1 (Ber — Hyy) .

(4.7)

Since Vi41 is an orthonormal basis, it follows that c_omputing the @y that minimizes ||f — Ax||s is
equivalent to finding the y, that minimizes ||fe; — Hyyl||2 and computing @41 = 2o + Vit 1Ypy1-

The GMRES method is a suitable method for solving large power systems as it is a robust method
for non-symmetric coefficient matrices A that is well-suited for preconditioning.

Bi-conjugate Gradient method (Bi-CG)

The bi-conjugate gradient (Bi-CG) method is a Krylov subspace method used for solving linear systems
of equations. The iterations are based on Lanczos’ bi-orthogonalization method. The algorithm there-
fore not only solves the system Az = f, but also the dual system ATx* = f*. It is a projection method,
taking K = Ky(A,vo), the Krylov subspace, and £ = Kj(AT,wg). The procedure for computing the
k-th iterate with Bi-CG is given in Algorithm 3. The algorithm makes use of the bi-orthogonality
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Algorithm 2 Generalized minimum residual method (GMRES) algorithm

1: Choose initial guess xg
2 o = f — Amo, B = [|ro[|2, v1 = 7}
3 for j=1,2,...,k do
4: w; = A’Uj
fori=1,2,...,j5 do
hij = (wj, v;)
’LU]' = U)j — hijvj
end for
hjt1,i = |lwjl2
10: if hj+1,i =0 then

11: k=7
12: end if

. Wy
13: Vjt+1 = i
14: end for

15: Hy = {hij f1<i<k+1,1<j<k
16: y;, = argmin ,|[Be1 — Hyyl|2
17 T = o + Viyy

properties in computing the next iterate. The relation in (4.7) also holds here and therefore the k-th
iterate is computed as
x), = xo + Viyy, = zo + Vi1, ' (Ber), (4.8)

where T}, is tri-diagonal. Denote the LU factorization of Ty as Ty = LiUg. A substitution of this LU
factorization into (4.8) leads to
T = ®o + Przg, (4.9)

where P, = ViU, ' and z; = L;'(Be1). Due to the short recurrences from the bi-orthogonality
property, the matrix Py is structured as

Py = [P_1,p;],

where column p;, can be computed from the previous p;_; and vy. Similarly, the vector zj is structured

as
Zk—1
ZE =
{ Ck ]’

where entry ( can be computed from (1. As a result, (4.9) is equivalent to

Ty = Tp—1 + CkDy»

so the next iterate x; can be computed with the previous iterate.

From the derivations above and the bi-orthogonality we thus have the original and dual identities

Tpy1 = Tp + Py, Thel =Tk — OAPL,  Pri1 = Tht1 + BePys

(4.10)
* * Kk * * * * * * * %
Tpp1 =T+ QpPrs Ther = Tr — OADPL, Pryr = Trpr + Bepy-

Using the bi-orthogonality properties and substitution it is determined that the constants o and g are
given as

(re, %) (Tht1,Thy1)

(Apy, PJ) (T 75)
In Algorithm 3 these coefficients are computed and used to update the previous iterate. The solution
of the dual problem «x is not explicitly computed in Algorithm 3 since it is not directly needed in the
computation of xy. However, if one would want to simultaneously solve the dual problem, only the line
Ty, = T} + axpy has to be added.

, Br=0, =

ap = a) =
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Algorithm 3 Bi-conjugate gradient method (Bi-CG) algorithm

1: Choose initial guess xg

2: 79 = f — Axg, choose r{ such that (rg,r§) #0
3 Py =T0,P5 =T

4: for j=1,2,...,k do

(rj )7';)

o ¥ = Tp,.p))
6: Tjt1 = & + oszj
7 Tjy1 =T; — CVjApj
. * ok AT %
8: Tii1 (— T *ozj)A p;
. o i1 Ti4
N e o
10: Piyy =741+ 5D,
11 =7+ 8Dk
Pjt1 =Tjt1 T PP

12: end for

Bi-conjugate Gradient stabilized method (Bi-CGSTAB)

In the Bi-CG method, the coefficient matrix transpose A7 occurs in the computation of the coeffi-
cients oy and 8. However, in some applications this transpose is not available, motivating to consider
transpose-free methods. Additionally, these methods can converge faster for roughly the same compu-
tational costs. The bi-conjugate gradient stabilized (Bi-CGSTAB) method can be found in Algorithm
4 and is an iterative, transpose-free Krylov method that stabilizes the convergence behaviour seen in
Bi-CG [27]. In Bi-CGSTAB, iterates are produced whose residual vectors are of the form

ry = Tr(A)p(A)ro,

where ¢ (t) is the Bi-CG residual polynomial and Y (¢) the newly introduced stabilization polynomial.
This stabilization polynomial aims to smooth the convergence behaviour of the Bi-CG algorithm and

is defined recursively,
Tk(t) = (]. — wkt)Tk,l(t).

Adding this stabilization polynomial to the identities of the original problem in Bi-CG as in (4.10), one
gets the following residual and conjugate updates

Tep1 = (I —wpA)(rr — arApy),  DPiy1 = Thy1 + Be(l — wpA)py,.

The computation of the coefficients «y and S are rewritten algebraically such that direct application
of AT is not needed. The full derivation is given in [27] and in Chapter 7 of [22]. The parameter wy,
that occurs in the stabilization polynomial is chosen such that a steepest descent step is achieved in the
residual direction.

The bi-conjugate gradient stabilized (Bi-CGSTAB) method has faster iteration times than GMRES
and uses less memory. However, it is less robust than GMRES, especially when the (non-symmetric)
coefficient matrix is ill-conditioned.

4.3 Preconditioning

Preconditioning is a technique used to improve the efficiency and robustness of iterative solution meth-
ods. The principle is based on transforming the original linear system into a system that is easier to
solve, but has the same solution vector. The quality of the preconditioner that is used is influential
on the performance of the iterative method. Preconditioning is done by incorporating a non-singular
preconditioning matrix M, such that the linear system Max = f is cheap and easy to solve. This
section first discusses how iterative solution methods can be preconditioned. Next, different types of
preconditioners are highlighted.
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Algorithm 4 Bi-conjugate gradient stabilized method (Bi-CGSTAB) algorithm

1: Choose initial guess xg
2: 79 = f — Axg, choose r{ such that (rg,r§) #0
3: Py =To0,
4: for j=1,2,...,k do

. e (7'177'3)
YT Tpry)
6 S; =T; — OéjApj

— (AS_',S_‘)

7 Wi = (Asjij;j)

8 Tjt1 = Tj + ;p; +Ww;s;

9 Tjt1 = 8; — WjASj

) (i) oy
10: Bi = rirg) o
11: Pjt1 = Ti+1+ Bi(p; — wjAp;)
12: end for

4.3.1 Preconditioning Methods
A preconditioner can be applied from the left, resulting in the preconditioned system
M ‘Az =M"'f. (4.11)
Alternatively, the preconditioner can be applied to the right, leading to system
AM™'u = f, € = M 'u. (4.12)
When the preconditioning matrix can be factorized as M = M; M, one can apply split preconditioning
M{'AMy 'u = MY, 2 = My M. (4.13)
Note that taking Mfl = I leads to right preconditioning as in (4.12), while M{l = I leads to left
preconditioning as in (4.11).
Preconditioned GMRES

In the left-preconditioned GMRES algorithm, Arnoldi’s orthogonalization method constructs an or-
thogonal basis of the left-preconditioned Krylov subspace

Kp(M~tA, M~'ry) = span {M_lro, M~*AM rg, ..., (M_lA)k_lM_lro} , (4.14)

resulting from linear system (4.11). The algorithm of the left-preconditioned GMRES method is similar
to the un-preconditioned GMRES as in Algorithm 2, but all actions of coefficient matrix A are replaced
with with M ~1A. A downside of the left-preconditioned GMRES method is that the un-preconditioned
residuals, 7, are not explicitly computed. It is therefore difficult to define a stopping criterium based
on these residuals unless they are explicitly computed.

In the right-preconditioned GMRES algorithm, Arnoldi’s orthogonalization method constructs an or-
thogonal basis of the right-preconditioned subspace

Ke(AM ™! 7r¢) = span {ro, AM 'rq,..., (AMfl)kflro} , (4.15)

based in linear system (4.12). The algorithm of the right-reconditioned GMRES method is similar to the
un-preconditioned GMRES as in Algorithm 2, but all actions of coefficient matrix A are replaced with
AM ™! and the iterate solution computation is replaced with z, = &g + M ~1V,y,. The transformed
variable u is not directly computed.

The preconditioned algorithms for GMRES can be found in Chapter 9 of [22]. The difference in

convergence behaviour of the left- and right-preconditioned GMRES is not significant, unless the pre-
conditioner M is ill-conditioned [22].
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A u’ L Lo

Figure 4.1: Taken from [28]: ‘ILU(0) Factorization.’

Preconditioned Bi-CGSTAB

In the left-preconditioned Bi-CGSTAB algorithm an orthonormal basis is constructed of the same left-
preconditioned subspace as for the GMRES method, (4.14). The left-preconditioned algorithm is similar
to Algorithm 4, where all actions of A are replaced by M ~!A.

The Krylov subspace for the right-preconditioned Bi-CGSTAB method is given in (4.15). In Algo-
rithm 4 all actions of A are replaced by AM~! and the update of = is multiplied from the left with
M~'. The transformed variable u does not have to be computed directly.

The fully preconditioned algorithms for Bi-CGSTAB can be found in [27].

4.3.2 Preconditioning Techniques

Finding a good preconditioner is an important step of applying iterative solvers such as Krylov subspace
methods. Despite general results and guidelines, there are no fixed detailed theoretical results on how
a preconditioner should be constructed and what their effect is on the solver performance. However, a
general principle is that the preconditioning matrices are derived from the original coefficient matrix
and the action of the preconditioner should be inexpensive to apply to a vector.

Incomplete LU factorization

An intuitive way of defining a preconditioner is by an incomplete LU (ILU) factorization of the original
coefficient matrix,

A=LU—R,

where R is the residual matrix of the factorization. For a sparse matrix A, the matrices L and U often
become more dense during the factorization process. The term fill-in refers to elements of the upper
triangular part of U and lower triangular part of L that are non-zero, that were originally zero in the
coefficient matrix A. This is an undesirable phenomenon since sparse matrices are less computationally
expensive to work with.

There are different variations of ILU methods and preconditioners. Most ILU preconditioning methods
aim at reducing the number of fill-ins so that the preconditioner is inexpensive to apply. How one
determines which fill-ins to tackle differs per method and can be done in various ways. Most commonly
either the location of the fill-in or its magnitude is used. Below, several commonly used ILU precondi-
tioning techniques will be discussed. A more comprehensive list can be found in Section 10.3 of [22].

The zero fill-in ILU factorization technique, denoted by ILU(0), takes the zero pattern of the incom-
plete factorization to be precisely the zero pattern of A. No fill-in is thus allowed, which is what the ‘0’
indicates. The zero pattern of the factorization refers to the zero pattern of the lower triangular part
of L and the upper triangular part of U. Note that the product LU can therefore have a different zero
pattern than A, see Figure 4.1.
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A un” L Ly

Figure 4.2: Taken from [28]: ‘ILU(1) Factorization.’

In the ILU(p) factorization technique, all fill-in elements of level p or smaller are kept during the
factorization process. For example, in ILU(1) only first-level fill-in elements are allowed. The rationale
of the fill level is that the level of an element should be indicative of the size, such that a higher level
corresponds to smaller elements. The initial level of fill of an element a;; of sparse matrix A is defined

by
if a: =,
lev(ai;) = 0, i aj;é.()orz J
oo, otherwise.

During the Gaussian elimination process (the LU factorization) the fill-level is updated through
lev(a;;) = min {lev(a;;), lev(aix) +lev(ag;) + 1}

According to the above definition, the fill-level of an element does not increase during the elimination
process. The zero pattern of ILU(p) may thus be written as

P, ={(i,7) : lev(ai;) <p}.

An example of the zero patterns of the ILU(1) factorization is given in Figure 4.2, based on the same
coefficient matrix A as the zero pattern of the ILU(0) factorization from Figure 4.1.

Another commonly used ILU factorization uses a dropping tolerance in determining which fill-in el-
ements to keep or discard. This can be done in various ways, but the general aim of applying a
dropping rule to an element is to replace the element with a zero if it satisfies a set of criteria. In the
ILUT approach, where ‘T’ stands for ‘threshold’, denoted by ILUT(p,7), two general dropping criteria
can be considered. First, during the Gaussian elimination process an element is dropped if it is less than
the relative tolerance 7; obtained by multiplying 7 by the original norm of the ¢-th row. The goal of this
criterion is to drop all elements that are of small magnitude. As the second dropping criteria, keep only
the p largest elements in the row in addition to the diagonal element (which is always kept). The goal
of this dropping rule is to control the number of elements per row, which can help reduce memory usage.

The ILUT approach can be combined with pivoting of the original coefficient matrix, leading to the
ILUTP approach. Using pivoting is beneficial when the ILUT method encounters a zero pivot, over-
or underflow or results in an unstable preconditioner. At the i-th step of the elimination process the
largest entry of the row is selected to be the new i-th variable. The corresponding permutation matrices
are updated accordingly.

Target matrix

An ILU preconditioner can be based on different matrices related to the coefficient matrix A. In the
i-th NR iteration, the coefficient matrix is given by the Jacobian J;. In [29] the performance of ILU
methods based on the Jacobian J;, initial Jacobian Jy and a Jacobian simplification known as fast
decoupled load flow (FDLF) were compared. More about the conclusions of this research can be read
in Section 5.3.
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4.4 Non-Linear Systems

The systems of equations that describe steady-state load flow of electricity and gas networks, and thus
multi-carrier networks, are non-linear. A commonly used principle in solving these non-linear equations
is to linearize and use a direct or iterative linear solver, as described in Sections 4.1 and 4.2. This
section introduces the classic NR as well as inexact NR method. Additionally, the general Jacobian
matrices of electricity, gas and coupled networks are derived.

4.4.1 Newton-Raphson

The NR method is used to iteratively solve non-linear systems of the form
F(x)=0.

The Jacobian matriz J of F(x), F : RN — RN is given by

OF .. OF
Oz ox N
Jp=VF=| : o
OFNy .. OFy
oxq ox N

The NR method is based on a first-order multivariate Taylor expansion around iterate xy, such that
for the next iterate ;1 we have

F(xi11) = F(x) + Jr(xg) (€1 — o) + h.o.t.
The aim is to find @11 such that F(xg41) gets close to zero. The above equation therefore becomes
Jr(x)sk = —F(x),
where s, = xy1 — Xk, referred to as the update. The NR update equation is thus given as
Jr(xr)sy = —F(x), (4.16)

During each iteration, the linear system is solved using a linear solution method (direct or iterative),
after which the new solution approximation xjy; is determined using the computed update, 11 =
T + Sk

4.4.2 Inexact Newton-Raphson

The class of Inezact Newton methods compute an approximate solution to the Newton equations (4.16)
in some unspecified manner such that
|7l

< k- (4.17)

|| ()|
Here vy, = Jp(xk)sk + F(x) is the residual, ||7g||/||F (xk)|| the relative residual and 7, a non-negative
forcing sequence used to control the level of accuracy [30, 31, 29]. Under the assumption that the
forcing sequence is uniformly less than one, all such inexact Newton methods are locally convergent and
exhibit the same quadratic convergence as the NR method [30].

4.4.3 Jacobian Matrices of Energy Networks

The Jacobian of a (non)linear system of equations is fundamental in the application of NR. It is in-
sightful to investigate the general form of the Jacobian matrices of energy networks, since their spectral
properties influence the convergence and accuracy of NR. This section gives the general form of the Ja-
cobian matrix of electricity, gas and coupled networks, using the load flow equations of Subsection 2.4.1,
2.4.2 and 3.2, respectively.
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Jacobian matrix electricity network
The Jacobian matrix of an electricity network based on steady-state load flow (2.30) is given as
oFF  9FFf
a5 OV
JFE = <6FQ 6.|FQ|> . (418)
06 |V
In (2.28), note that the load flow equations contain the components
Pij = |V;||V}| (G” COS (51']' + Bij sin (5”) 5 Qij = —|V;||VH (B” COS 51-]- - Gij sinéij) .
Therefore we can write the non-linear steady-state load flow equations for an electricity network as
Ff(we) =P+ Zpij(we) =P+ |VZ|2G“ + Z ’Pij(aze) =0,
J JJ#i

FPxf) = Q; + Z Qij(x®) = Qi — |Vi]*Bis — Z Q;j(x) = 0.
J

J,J7#i

The Jacobian (4.18) then contains the components

OFF ,
= —|Vil[Vj[ (Bij cos 8ij — Giij sin bi;) = Qij»
85,
OF; . 2
%, > IVillVi| (Bij cos 6i5 — Gij sin dij) =— > Qi = —Qi— |[Vi’By,
J,3Fi 5,3 7#0
OF?
L= —|‘/ZH‘/3| (G” COS(Sij + Bij sinéij) = —Pij,
94,
OF? ,
5%, > VillVj| (Gij cos b5 + By sin i) = > Py =P —|Vi[’Ga,
J,3F J,3 70
OFF P..
= = |Vi| (Gjj cos &;; + By sind;; = L
6“/]| ‘ |( J J J ]) |V]|
OF; > ;.21 Pid P+ |Vi]*Gy;
L =2|V;|Gi il (G ij + Bijsind;; = SZhiZitY g Gy = —F——
g = 2VIG Jrj;i‘/ﬂ((?]coséjJr jsind;;) T H2IvG AR
OF; = |V;| (Byj cos d;; — Gyj sin d;;) _ Qi
a‘le - 3 1] 1] 1] (] - |V]|5
OF¢ 271 Qg Qi — |Vil*Bii
= —2|Vi| By — i| (Bij ij — Gijsindyy) = T2 9B, = 4 —.
g = 2vilB > Vil (Bij cos bi; — Gij sin dij) i Vil v

J,J#4
The matrices % and % have the property that the diagonal element is the negative value of the
sum of the other elements in the row. The Jacobian is a not-symmetric matrix.
Jacobian matrix gas network
The Jacobian of a gas network based on steady-state load flow (2.35) is given as

OF?  OF1
JFg=<£§L 8“1?) (4.19)

dq op
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where conservation of mass system F'? is given by (2.37) and F' é is given by gas pipe link equation
(2.38). The components of the Jacobian are given as

OF1
0q
OF1
p
OFE
gy

OF%
g

— A9/
_A’

:0’

1 0
—2(C9) 2 |qu| <fk + 2%8?]:) ;

:07

BFé L low-pressure,
Op; 2p;, high-pressure.

OF é { -1, low-pressure,

Op; —2p;, high-pressure,
where link g represents gas flow from nodes v; to v;. It follows that % is a diagonal matrix. If the

pipe friction factor fi is independent of the gas pipe flow, then % = 0. Note that in a low-pressure

gas network we have
)
op
the transpose of the reduced incidence matrix. The general matrix structure of the Jacobian of a
low-pressure gas network is

1T
= Ag 3

A9’ 0
J g = . .
77 | diag [*2(0")*2\q| (f + %%q)] A"
The Jacobian matrix of a gas network is thus a (non-symmetric) lower block-triangular matrix.

Jacobian matrix coupled energy network

The non-linear system of equations for a steady-state load flow of a coupled energy network with
electricity and gas is given by (3.3). The Jacobian of a coupled electricity and gas network is given as

L SR (1)
_ x°,x ¢, _ z°,x
Jpe = 0 (2 | = 0 Jpe -l | (4.20)
x @
0 0 oxc 0 0 Oxe

The coupling parameters x. consist of q,, P. and Q., as in (3.2). In the gas component F, only the
. . . OF9 . .

conservation of mass equations Fg can depend on g.. The matrix ach is thus a slice of the reduced

incidence matrix of the coupled gas network of the columns corresponding to the dummy links. Denote

this incidence matrix by AZ.

OF9  9FI  OFY
Oz, oF} OFj OF] 0 00
dq, 0oP. 0Q,

A similar observation can be done for the energy network components. The coupling parameters P,
. . . = OF¢ . .. .

only occur in F'p, and Q, only in F,. The matrices % and 55¢ are slices of the incidence matrix of

the coupled electrical network of the columns corresponding to the dummy links. Denote these matrices

by AP and A%, respectively. Since a dummy link connects to only one node in a single-carrier network,
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the matrices A%, AT and AQ are square with the number of rows/columns equal to the number of

connected coupling units.
dF%  OF%  OFS
o o ) -0 % )
oz, Q Qo 9%%q 0 0 A9

dq, 0oP. Q.

The components of matrix ‘gf: " depend on the equations used to model the coupling units.

The non-zero blocks in (4.20) are generally not square, due to the occurrence of new node types in
coupled networks, see Subsection 3.2.2. Actually, if the Jacobian of a coupled network is upper block-
triangular with square sub-matrices on the diagonal, the single-carrier parts of the network are not
interdependent on each other [6].

4.5 Domain Decomposition Methods

The class of domain decomposition (DD) methods consists of methods where a problem on a global
domain is split into several problems on smaller domains, and iterating to determine the global solution.
These methods revolve around the principle of ‘divide-and-conquer’, where a large problem is split
into smaller sub-problems of the same type, until the sub-problems become simple enough to solve.
Domain decomposition techniques can be advantageous, since sub-problems might be easier to solve,
but also for their natural parallelizability. Saad [22] mentions that DD techniques are distinguished by
four features: Type of partitioning, overlap between subdomains, processing of interface values, and
subdomain solution methods and qualities.

4.5.1 Schur Complement Approaches

Assume that the linear system Ax = f can be written in block-form

Ll M R I R H I ]

such that B is non-singular. The reduced system of Ax = f is given by
(C—FB'E)z=g—FB™'b. (4.21)

The matrix
S=(C-FB'E),

is called the Schur complement of A. Solving the original system Ax = f is then equivalent to solving
the reduced system, whose result can be used to compute

y=B"1(b-Ez),

which leads to the solution vector x.

Schur complement methods are based on solving the reduced system (4.21) by a (preconditioned)
Krylov subspace method.

4.5.2 Schwarz Alternating Procedures

The methods referred to as Schwarz alternating procedures (SAPs), are based on alternating between
overlapping subdomains, solving a new problem on each subdomain and exchanging boundary informa-
tion. We thus have subdomains 2 such that

N
o=, 2ca,
=1
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with a d-level overlap between neighbouring subdomains. An overlap of § = 1 implies that only the
actual boundary of the subdomain is used. There is a distinction between multiplicative and additive
Schwarz procedures, based on how boundary information is exchanged. In the multiplicative Schwarz
procedure, the algorithm sweeps through the N subdomains and solves the original problem in each
subdomain by using the most recent boundary information (initial guess or solution of a previous sub-
domain). In the additive Schwarz (AS) procedure, the boundary components in each subdomain are
updated after the sweep through all subdomains, not during. The multiplicative Schwarz procedure
uses the most recent available information and will thus require less iterations than the AS procedure.
However, the subdomain solves in the AS procedure can be done in parallel, which can reduce total com-
putational time to find the global solution. Note that the multiplicative Schwarz procedure is analogous
to the block Gauss-Seidel iteration, whereas the AS procedure is analogous to the block Jacobi iteration.

We aim to solve the linear system Ax = f, on global domain ) using an iterative Schwarz proce-
dure. Let © C R"™ and Q C R"™ for overlapping subdomains Q2. Define R : Q — Q¢ as the
restriction operator from global domain Q to subdomain Q9. It keeps only those components of a
vector in {2 that are also in Qf, and thus R? is an n;s x n matrix. Conversely, define the transpose

of the restriction operator as a prolongation operator, RfT : Q9 — Q, which takes the variables from a
vector with components in Qf and extends them to the equivalent components of 2. The prolongation
operator is thus an n x n; s matrix. Using the restriction and prolongation operators, we can define the
associated linear system on a subdomain. Consider

A = ROAR. (4.22)

Here, A; is an n; 5 X n; s matrix, which is the restriction of global matrix A to subdomain Q?.

Multiplicative Schwarz preconditioner

In the multiplicative Schwarz procedure, the global solution « is updated after each local solve. Here,
the subscript x; is used to denote the restriction of & to subdomain §2;, thus x; = RfTw. The superscript
x' denotes the global solution x after updating with the solution of subdomain Q2. With Ax;, denote
the update on the subdomain Q?, such that the global update is computed using the prolongation

operator RfTAmi. The local update is thus denoted by
xl =z + Axy, (4.23)

(3 7

while the global update is given by
2l =21+ R Aa,. (4.24)

The local update is computed through solving local problem A;x¢ = f,. Substitution of (4.23) in the
local solve an rewriting results in

R Az = RVATRN(f — AxY).

This update is performed for each subdomain Qf, and Xnew = ¥ after all N subdomain updates. The
multiplicative Schwarz procedure can be found in Algorithm 5. Note that in the update formula there
is an inverse of the restricted coefficient matrix A;. This does not necessarily imply that the inverse is
directly computed, but indicates that the smaller subdomain problem has to be solved. Depending on
the problem size and application, the resulting linear system subdomain problem can be solved with a
direct or iterative method. The error after each subdomain update is given by e; = &* — z?, where =*
is the exact solution. The following relation holds for this error

T _
e, = (I - Pz) €e;_1, Pz = Rf Az lRfA
This relation indicates that the final error e,y = ey can be expressed using the P; and initial error

€y,
enewZBNZ(I—PN)(I—PN_l)...(I—PQ)(I—Pl)eo.
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Algorithm 5 Multiplicative Schwarz procedure
1: fori=1,...,N do
2: =1 4 RfTAi_lR?(f — Ax)
3: end for
4: Tpew = T

N

Denote this product by Qn such that

enew:QN607 QN:(I_PN)(I_Pl)’

explaining the name of the multiplicative Schwarz method. This implies that the updated solution
vector Tyew can be computed from x directly,

Lnew = QNw + (I - QN)w* (425)

This multiplicative Schwarz procedure update formula is written as a fixed-point iteration. Let a general
fixed point iteration be of the form
Tnew = G + b. (4.26)

For the multiplicative Schwarz update (4.25) we then have
G=Qn, b={I-Qn)x".

Note that a left-preconditioned system M ~'Ax = M~!f is also solved using a fixed-point iteration of
the form 4.26, where
G=I-M"1'A b=M'f. (4.27)

Therefore, the multiplicative Schwarz procedure sweep is equivalent to a fixed-point iteration for the
left-preconditioned system in which

M™7'A=1-Qn, M7'f=(-Qn)z",

referred to as the multiplicative Schwarz preconditioner. The exact solution x* is of course unknown
and cannot be used directly in computing #,e,. However, one can operate with M ~! iteratively without
having to explicitly form A~!, using new definitions and recurrence relations. Define

T, =RITATRY, Zi=1-Q; M =ZA", (4.28)
such that M~' = My. Then the following recurrence relations hold

=P, Z;=Z_1+P(I-2Z_4),

4.29
M, =Ty, M;=M;_y+T;(I—-AM;_1). (4.29)

Using these definitions and recurrence relations, we can compute the action of M~! = My on an
arbitrary vector v and on Aw iteratively, see Algorithm 6. In the algorithm, the contribution of each
subdomain solve to the preconditioner application is computed and added to form the final application
of preconditioner. Note that the T; and P; include local solves with A;, which can be done using a
direct or iterative solver.

Additive Schwarz preconditioner

In the AS procedure, the updates from the local solves in the form of (4.24) are added to the global
solution vector after all updates have been computed, leading to Algorithm 7. The update in line 4 of
Algorithm 7 is already in a fixed-point form, (4.26), with

N N
G:I—ZPZ-, b:ZTiAflf.
i=1 i=1
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Algorithm 6 Multiplicative Schwarz preconditioner action on v

Input: v
zZ] = Tl’U
fori=2,...,N do
zi=2zi1+Ti(v—Azi_1) =2z;—1 + RfTAi_lRf(v —Az; 1)
end for
Output: M];{lsv =zN

Algorithm 7 Additive Schwarz procedure
1: fori=1,...,N do
2 Ax;=RTATIR(b— Ax)
3: end for
4 Tpew = T + Zfil Az,

The left-preconditioned system is solved using a fixed-point iteration with (4.27). Therefore, the AS
procedure sweep is equivalent to a fixed-point iteration for the left-preconditioned system in which

N N N
MA=Y"P, M'=YT,= RA'R], (4.30)
=1 =1

i=1

explaining the name of the AS method. Using the same definitions (4.28) as for the multiplicative
Schwarz preconditioner, the action of the preconditioner on an arbitrary vector v and Av can be
computed iteratively, see Algorithm 8. Similarly to the multiplicative procedures, the contribution of
each subdomain solve to the preconditioner application is computed and stored. Once all updates have
been computed, the final application of the preconditioner is returned. Note that the computations in
line 4 of Algorithm 8 can be done in parallel.

Algorithm 8 Additive Schwarz preconditioner action on v

Input: v
fori=1,...,N do
z; = Ti'l} = RfTAflRfU
end for
z=2z1+ - +2zn
Output: M v = z

Schwarz preconditioners and Krylov subspace methods

The multiplicative and additive Schwarz preconditioners can be applied to solving the general system
Az = f with a Krylov subspace method, such as GMRES. The algorithm of the preconditioned Krylov
method is used, as described in Subsection 4.3.1, combined with the algorithms used to compute the
action of the preconditioner on the desired vector, see Algorithms 6 and 8. These Schwarz precondition-
ers apply local corrections that are easier to fix than the global error. The overlap of the subdomains
allows for propagation of the corrections such that the global error is smoothed. The combination of
the local corrections results in a reduction of the global error.

The level of overlap § used in SAPs has an influence on the performance and effectiveness of the
multiplicative and additive Schwarz preconditioners.

Restricted Additive Schwarz preconditioners
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The restricted additive Schwarz (RAS) preconditioner is a variant of the AS preconditioner that reduces
the number of iterations needed and CPU time required to compute the preconditioner, proposed by
Cai and Sarkis [32]. The RAS preconditioner is defined as

~ T
ras = > RY A7T'RL. (4.31)

AT
Here, R? is the prolongation operator corresponding to a zero-level overlap R?T, extended with zero-

AT
columns such that it is a n X n; s matrix. Equivalently, RY is the prolongation operator corresponding

to a d-level overlap, R? T, where the non-zero entries of the columns corresponding to the overlap points
are set to zero. This RAS preconditioner uses known information from all points in Qf, including
overlap, to compute the local update. However, only the update for the internal points, so those in Q7,
is used for the global update. As a result, half of the communication costs can be saved in a parallel

A T
implementation, since RY A 1 does not involve any data exchange.

Cai and Sarkis [32] found that the RAS preconditioner outperformed the standard AS preconditioner
for all considered test cases, in terms of iteration counts, CPU time and communication costs if imple-
mented in parallel. It was also shown that for M-matrices the RAS preconditioner does not require a
damping parameter for convergence, while AS often does [33].

Two-level additive Schwarz preconditioners

The principle of a multigrid method can also be combined with AS preconditioners, referred to as two-
level AS methods. In addition to the regular AS preconditioner, as in (4.30), that consists of the sum
of solves on subdomains, a coarse solve on a coarse domain is also done. This results in the two-level
AS preconditioner, given by

N
Myt =S RTATIR v 0T A g, (4.32)

=1

where ® : Q — € is the restriction operator for coarse space ', and A’ = PADT is the restriction of
the global matrix A to the coarse subdomain [34, 35]. The goal of the added coarse space correction
to the preconditioner is to correct global error that are not fixed by the local subdomain solves. The
coarse subspace does not have to coincide or depend on the subdomains Q?, but it is done often in
practice. As an example, a node v; in the coarse space representing a gas network can represent the
average value of the nodal pressures for the nodes in subdomain Qf.

4.5.3 Graph Partitioning

The method used for partitioning of an energy network directly determines the computational efficiency
of preconditioner-based algorithms [36]. There are various methods to partition a graph, generally
classified as link-based (or edge-based) and node-based (or vertex-based) partitioning, see Figure 4.3. A
link-based partitioning does not allow links to be split between two subdomains. Instead, the boundary
is made up of vertices. Interface links are the links that connect nodes that do not belong to the
same subdomain, such as the link connecting nodes 6 and 7 in Figure 4.3a. Conversely, a node-based
partitioning does not allow vertices to be split between to subdomains such that the boundary consists
of links. Interface nodes are the nodes that are connected by links belonging to at least two different
subdomains, such as node 6 in Figure 4.3b. In a node-based partitioning, the links are cut to create
the subdomains. The number of link-cuts refers to the number of links e, = {v;,v;} between nodes v;
and vj, such that v; € €, while vy € Qg.

A multi-level graph partitioning algorithm is an algorithm that determines a partition in three phases
[37].
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Figure 4.3: Taken from [22]: ‘Link-based and node-based partitioning of a of a 4 x 3 mesh into two
subregions.’

1. Coarsening phase: The original graph is transformed into a sequence of coarsened graph, such
that each coarsening reduces the number of nodes.

2. Partitioning phase: A partitioning of the coarsened graph is determined.

3. Un-coarsening and refinement phase: The partition is projected back to the original graph
and refined.

Such multi-level graph partitioning algorithms that are often applied in parallel processes are METIS
and ParMETIS [37, 38, 36]. The METIS algorithm is based on the three steps mentioned previously, and
is widely applicable to both structured and unstructured graphs. It is an efficient algorithm for balanced
partitions, but slower on irregular structures. The parMETIS algorithm is a parallelized version of the
METIS algorithm, using parallel methods in the coarsening and un-coarsening and refinement phase.
Runtime improves with the parallelized algorithms, but scalability diminishes due to synchronization
costs.
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Chapter 5

State of the Art

This Chapter gives an overview of research done related to large scale multi-carrier energy networks.
The overview includes research into an integrated multi-carrier energy system as well as research of a
single carrier, such as electricity and gas. The aim of this chapter is to get an insight into recent devel-
opments related to modelling and simulating large scale multi-carrier energy networks and to identify
research gaps.

The chapter starts with an overview of research identifying when and why Jacobian matrices of energy
networks are ill-conditioned. The next section identifies which solution methods, direct and iterative,
are used in simulating the multi-carrier and single-carrier networks and includes the argumentation of
the authors. Section 5.3 lists two types of preconditioners found in recent developments and compares
their performances in different studies. Next, Section 5.4 briefly discusses studies that proposed do-
main decomposition type methods for single-carrier networks. Section 5.5 includes studies that focus
on solving multi-carrier networks, either using decomposed or integrated methods. The different types
of partitioning methods used in studies through domain decomposition methods as well as decomposed
multi-carrier solution methods are listed in Section 5.6. The chapter concludes with a section that
summarizes the important findings and conclusions of the literature study.

5.1 Ill-Conditioned Jacobian Matrices

The convergence of Krylov solvers is highly dependent on the condition number of the coefficient matrix.
If a matrix has poor spectral properties, the method will converge very slowly or even diverge. The
application of an appropriate preconditioner can improve the condition number, and therefore the con-
vergence behaviour of the Krylov solver. It is thus relevant to investigate how the coefficient matrices
(Jacobians) are conditioned prior to applying an iterative solver. Literature mentions several aspects
that worsen the condition number of the Jacobian matrices of power and gas networks.

In [21], it was observed that power systems with more buses have larger condition numbers and that
the eigenvalues take up larger regions than systems with less buses. The same observation was done for
differently-sized gas networks in [39].

High and extreme loading of power systems leads to a higher condition number of the associated
Jacobian [29, 40, 41]. High loading of a power system pushes it closer to an infeasible operation zone,
leading to an ill-conditioned Jacobian. The methods used in [29] were able to solve the load-flow prob-
lems of sample networks with loading levels up to 160%, which they mention is beyond practical loading
levels.

The electrical properties of the transmission lines also affects the condition number of the Jacobian
of power systems [21, 41]. The R/X-ratio is the ratio of the inductive reactance and the resistance and
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a high ratio indicates that the system is more inductive. It results in the off-diagonal elements of the
Jacobian to become much smaller than the diagonal elements, leading to near singularity.

A fourth aspect that influences the structure and conditioning of power system Jacobians is the topol-
ogy of the network. In [41], it is mentioned that radial power systems have high condition numbers.
In a radial power system there is only one path in the network from a source to a load point. This
topology occurs often in distribution systems. There are no loops in a radial network, thus a fault
anywhere in the network will result in a loss of power for all downstream users. The corresponding
Jacobian matrix has more zero-entries, leading to a highly sparse structure that can result in a high
condition number. In [21], the condition numbers of longitudinal and meshed networks are compared.
A longitudinal network models weak and long-distance power grids, often with a radial structure. A
meshed network models an interconnected network where power can flow along multiple paths (loops).
It was concluded that the longitudinal systems have condition numbers that are significantly higher
than meshed systems. Additionally, they conclude that the location of the slack bus is more influential
in meshed networks than in longitudinal networks.

5.2 Choice of Solution Method

Various methods exist to solve the linear systems resulting for energy flow simulations. The choice of
linear solution method is important to ensure convergence, efficiency and to keep the required compu-
tational time within reasonable limits. Solution methods for linear systems can be direct methods or
iterative methods. Commonly used methods are described in Sections 4.1 and 4.2.

Direct methods, such as LU decomposition, are often used in practice [40], as there are powerful direct
solvers available that can solve large, sparse and ill-conditioned systems. Additionally, a direct method
is usually less difficult to work with and implement than iterative methods. Methods based on LU
decomposition have become the standard for the linear systems solve in the power systems community
[24], and are also employed for small coupled gas-electric systems [7]. Current research on direct solvers
for power systems focuses on their performance and implementation based on central processing unit
(CPU)/graphics processing unit (GPU) accelerations [24, 42].

Direct solvers scale poorly in problem size, increasing the computational efforts needed to converge
significantly. This indicates that iterative solvers are more suitable to the problem. In research by
Idema et al. [29], all considered preconditioned generalized minimum residual (GMRES) methods con-
verged in less than one minute, whereas the direct linear solver took more than an hour to solve the
large-scale linear problem. It is thus generally recommended to use iterative solvers for solving large
power flow problems [21, 28, 43]. The same results have been observed for transient gas networks [44].
In their experiments with large-scale networks, the direct solver either took up too much CPU time or
ran out of memory, while the Krylov solvers converged. However, for smaller networks, the direct solver
shows an advantage over the preconditioned Krylov solvers due to their big overhead. Thus for smaller
energy networks a direct solver is more suitable, while for larger networks the class of Krylov solvers
should be considered.

The most commonly used Krylov solver for the linear solution step in power flow, as well as gas network
simulations, is the GMRES method, although different arguments are given for this choice. The only
general requirement for the coefficient matrix for GMRES is non-singularity, making it widely applica-
ble, also to coupled networks [31]. Other argumentations for using GMRES is related to its behaviour
and convergence properties. Full GMRES solves the problem in the least number of matrix-vector
multiplications, which is the reason for Idema et al. [29] to use this method. Additionally, they state
that the performance of GMRES can indicate whether bi-conjugate gradient stabilized (Bi-CGSTAB)
or IDR(s) would be more suitable. Another advantage of GMRES is given in [40], where it is mentioned
that GMRES is free of problems that interrupt the iterative process of constructing an orthonormal
basis due to the underlying use of the Arnoldi method with Gram-Schmidt, opposed to methods based
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on Lanczos’ method.

Another Krylov subspace method that is mentioned in literature is Bi-CGSTAB. The performance
of Bi-CGSTAB is investigated in [28] as it is a variant of the extended (preconditioned) CG method,
which had shown good convergence characteristics in DC power flow calculations. The preconditioned
Bi-CGSTAB method outperformed the preconditioned conjugate gradient squared (CGS) method and
preconditioned conjugate residual (CR) method in terms of computational effort. Additionally, pre-
conditioned Bi-CGSTAB outperformed other Krylov methods such as CGS, GMRES and Bi-CG in the
experiments done in [21]. In the application of steady-state gas networks, the authors of [39] observed
similar performance for preconditioned GMRES, Bi-CGSTAB and IDR(s).

The iterative Krylov method applied to energy system modelling that is used most often in practice is
GMRES. It is a robust method that is applicable to a large range of problems and serves as a good
method to start with. Moreover, the choice of preconditioner is at least as important and influential on
the convergence and performance as the selected method [22].

5.3 Preconditioning

The choice of preconditioner is at least as important, if not even more, as the iterative method in solving
large linear systems. The general preconditioning procedure is discussed in Section 4.3.

5.3.1 ILU preconditioner

A class of preconditioners that is often used in energy system modelling is based on an incomplete LU
factorization.

Roque et al. [40] combined an incomplete LU (ILU) preconditioner with GMRES to study the perfor-
mance of Krylov solvers for ill-conditioned systems resulting from the Newton-Raphson (NR) method
applied to electricity systems. They investigate the effect dropping tolerance on the performance of the
preconditioner. In the LU decomposition, every element with |l;;| < e;ry and |u;;| < €rpy is replaced
with a zero, with dropping tolerances e;r ranging from 1072 to 10~7. A larger tolerance drops more
fill-in elements, making the preconditioner cheaper to apply, but the approximation of the ILU pre-
conditioner of the original coefficient matrix is less accurate. As the dropping tolerance increases, the
preconditioner gets closer to the full LU matrix and the linear system tends to converge faster. In a
later article, the same authors mentioned that this tolerance-based dropping rule can introduce large
errors, resulting in a low quality preconditioner [45]. As a remedy, they propose a dropping rule based
on different criteria and highlight the effects reordering can have on the preconditioner quality.

Nguyen, Romate, and Vuik [39] also combined an ILU preconditioner with GMRES, but in the appli-
cation of gas network load-flow equations. More specifically, the ILUTP preconditioner is used, which
is based on an incomplete LU factorization with a dropping threshold and pivoting. They conclude
that for the used test networks, the ILU preconditioner is not suitable, since the computation of the
preconditioner requires nearly the same amount of work as for the LU factorization. In that scenario,
using a direct solver based on LU is more suitable. For future research they recommend the Inexact-
Newton method, keeping the same ILU factorization until the non-linear system has changed sufficiently.

Idema et al. [29] compared different ILU(k) preconditioners in simulations of large power flow prob-
lems, where good performance of ILU(k) with GMRES was observed. Additionally, they emphasize
the importance of reordering methods in computing ILU factorizations. They concluded that using the
approximate minimum degree (AMD) reordering for an ILU(k) preconditioner in GMRES resulted in
around 25% less iterations needed for convergence compared to using no reordering. They also com-
pared the performance of the ILU(k) preconditioner of different target matrices, the Jacobian J;, the
initial Jacobian Jy and the fast decoupled load flow (FDLF) matrix ®. Using Jy or ® generally per-
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formed better than J;. Since the Jy preconditioner is the same in each iteration, only a single expensive
factorization has to be made.

Mori and Tizuka [28] compared the performance of the ILU(k) preconditioner for & = 0,1,2 for three
different Krylov subspace methods, applied to three differently sized power systems. For the largest
test case considered, the use of the ILU(2) preconditioner resulted in the lowest total computation
times as well as iterations. For the smaller test cases, the ILU(2) preconditioner always resulted in the
fewest amount of iterations needed for convergence, but not always the lowest computation time. This
is attributed to the more expensive factorization of ILU(2) compared to ILU(1) or ILU(0).

The differences in performance and results of ILU preconditioned GMRES for electricity load-flow
and gas networks, highlight that preconditioning is problem-dependent. The different versions and
techniques used in ILU preconditioning such as reordering, dropping rule definitions and tolerances, all
influence convergence and performance. On one hand this can lead to customized ILU preconditioners
that can enhance convergence of Krylov methods. On the other hand, this makes the search for the
best combination of parameters a complicated procedure.

5.3.2 Additive Schwarz Preconditioner

Additive and multiplicate Schwarz alternating procedures (SAPs) form the basis of additive and mul-
tiplicative Schwarz preconditioners, where corrections on local subdomains aim to reduce the global
error. The additive Schwarz (AS) preconditioner is popular in research focussing on reducing total
computational time to solve load-flow problems, due to its natural parallelizability.

The overlapping restricted additive Schwarz (RAS) preconditioner applied to very large power flow
problems was evaluated by Abhyankar, Smith, and Constantinescu [46] and in [47]. They combine the
RAS preconditioner with the GMRES method to solve several large power flow problems. They compare
the performance of the preconditioner with a block-Jacobi preconditioner and a parallel direct solver
based on LU decomposition. Their results show a substantial speed-up of the RAS preconditioner com-
pared to the other methods, ranging from 6 to 9 on 16 cores. The influence of the level of overlap was
also investigated, and the authors concluded that a speed-up saturation and slowdown were observed
for a level of overlap higher than 3. This observation is attributed to the increase in communications
for higher levels of overlap.

5.4 Domain Decomposition in Single-Carrier Energy Networks

A single-carrier (SC) energy network can be solved using the principle of divide-and-conquer, where the
global domain is split into several subdomains. Solving the local problems sequentially then solves the
global problem. Several applications in SC networks can be found in literature.

A study of Kootte, Sereeter, and Vuik [43] reviewed the numerical performance of connection methods
of integrated transmission-distribution electrical networks. A transmission network is often modelled
differently than a distribution network due to differences in assumptions, simplifications and physical
properties. It is therefore not straightforward to integrate these separate domains. The study considers
unified methods that solve the integrated network as a whole using a transformer, and splitting meth-
ods that keep the sub-networks separate to iteratively solve on the boundary of the domain. These
splitting methods are also referred to as master-slave splitting (MSS) methods. Their results show
that the unified methods outperform the splitting methods for the considered test cases, since splitting
methods must solve the separate transmission and distribution networks multiple times until conver-
gence, increasing the total CPU time. However, the authors mention that MSS methods are suitable in
practical situations where full network information cannot be shared. For future work, they recommend
to consider preconditioned Newton-Krylov methods for very large systems and note that MSS methods
are parallelizable.
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Zhang et al. [8] introduced a partial decoupling method for fast calculation of energy flow in large-
scale heat and electricity integrated energy systems, that operate in a heat-load-following mode. They
propose a partial decoupling method for disctrict heating system (DHS) to decouple a network of ar-
bitrary topology into several radial subsystems and one main system. Radial systems are preferred
over looped systems as the hydraulic part of the load-flow equations of radial systems are linear. All
unknowns of the subsystems are initialized, after which the DHS load-flow equations are solved itera-
tively. The values of the boundary nodes are updated after each subsystem solve. The global system
has converged when the differences in temperatures and nodal mass flows of the boundary nodes in
both systems become sufficiently small. This principle is similar to the multiplicative Schwarz proce-
dure. Their partial decoupling method for various DHS performs about the same as traditional methods
in terms of accuracy, while improving computational efficiency and sensitivity to improper hydraulic
initialization.

5.5 Solvers for Multi-Carrier Energy Systems

Studies on hybrid energy flow of multi-carrier energy systems often focus on the establishment of models
and formulations [9, 10], while only a few studies are dedicated to the solution methods used in such
energy flow calculations [31]. Several studies on smaller multi-carrier energy networks make use of NR,
combined with direct solvers for the linear systems [7, 9]. Solving large integrated energy networks all
at once remains an open challenge [25].

5.5.1 Decomposed Methods

Some studies on a solving multi-energy system (MES) investigate the possibility of decoupling a coupled
MES, and using direct solvers to solve the smaller or simpler sub-systems.

Markensteijn formulated a decoupled approach to solve load flow problems of coupled multi-carrier
energy networks [6]. Through the use of interface conditions (IFCs), she describes how a coupled net-
work can be formulated such that the single-carrier networks can be solved separately. The blocks in
the Jacobian of a coupled network are generally not square. In her decoupled formulation, the SC sub-
matrices in the Jacobian are made square by including information obtained from the coupling in the
SC subnetwork. It is mentioned that the decoupled formulation is equivalent to a permutation of the
Jacobian matrix of the coupled system, as in (4.20). Markensteijn states that when the Jacobian matrix
of a coupled network is permuted such that the SC sub-matrices are square, domain decomposition or
block iterative methods can be used to solve the linear system.

Zhang et al. [8] introduced a partial decoupling method for fast calculation of energy flow in large-scale
heat and electricity integrated energy systems, that operate in a heat-load-following mode. Although
the focus of the study is on the partial decoupling method for a DHS, they also solve a coupled electro-
thermal system. Since they consider a coupled system in heat-load-following mode, their methodology
of solving the coupled system consists of first solving the DHS iteratively, then updating the electric
power of the combined heat and power (CHP) units, and finally calculating the electric power flow using
NR combined with a direct solver. The errors in the partial decoupling method for the DHS have little
effect on the convergence of NR for the coupled electrical network, which is desirable.

5.5.2 Integrated Methods

Jia et al. [11] conducted an investigation into problems of the integrated method for electro-thermal
energy systems. The integrated method fails in exceptional cases when energy reverses during iterations.
Additionally, it is sensitive to the choice of initial values.
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Krylov subspace methods in multi-carrier systems

Qi, Li, and Bie [31] studied the Inexact Newton method with preconditioned GMRES for hybrid energy
flow calculation of integrated energy systems, using an electro-thermal coupling system as a test case
[31]. Their results show a significant acceleration effect on the calculation speed compared to classi-
cal methods, and it is therefore recommended to further investigate (preconditioned) iterative solvers
applied to integrated energy systems.

5.6 Partitioning Methods

Various methods of partitioning SC and multi-carrier energy networks are used in research. Sections 5.4
and 5.5.1 discussed the effects of the partitioning on solving the load-flow equations of the various en-
ergy networks. In this section, the partitioning methods used in literature are mentioned and compared.

The coupled MES in the study of Markensteijn [6] are partitioned using a node-based partitioning,
by cutting all dummy links that connect a homogeneous node to a coupling node. This cutting of
dummy links results in two terminal links, one in each subdomain. Due to this natural partition, the
subdomains consist of the individual electricity, gas and heat networks, as well as a subdomain with
only coupling nodes. A similar partitioning was used in [8] to decouple an electro-thermal system into
several DHS, one large electrical system and coupling units.

The partial decoupling method for a DHS used by Zhang et al. [8] makes use of link-based parti-
tioning (see Subsection 4.5.3) by splitting an intermediate node (branch bus, no load or source) into a
load node for the first subsystem, and a slack node for the second subsystem. The goal of the parti-
tioning is to create only radial subsystems that are more robust regarding initialization.

Abhyankar, Smith, and Constantinescu [46] also make use of a partitioning method of power systems in
order to use a RAS preconditioner. It is mentioned that obtaining a good graph partition is a critical
aspect for parallel linear solution methods, but that it is beyond the scope of their research. For the
partitioning of the electricity network, they used a multi-level graph partitioning algorithm.

The study of [36] compares efficient graph partitioning algorithms for sparse matrices, considering
various multi-level algorithms. The application of METIS and ParMETIS, among other methods, to
standard datasets showed that METIS had consistent performance, ideal for small and medium number
of partitions. ParMETIS demonstrated superior scalability for a higher number of partitions.

From the literature mentioned above we can see that partitioning used in energy systems can be based
on the physical structure of the network as well as computational optimality. The physics-based parti-
tioning used to partition a multi-carrier energy network is generally node-based, such that nodes of the
same carrier are partitioned together. The partitioning of nodes of the same carrier is done in various
ways, either focussing on accuracy of the obtained solution of the partitioned system or computational
efficiency.

5.7 Conclusion and Summary of Findings

Research into solvers for large scale multi-carrier energy networks (MCNs) has been limited so far. Most
studies either focus on the formulation of such MCNs or on the solvers used in a SC network. Extensive
research has been done on power networks, for small as well as large scale networks. It was found that
for large scale SC as well as MCNs, the use of iterative solvers is necessary to achieve accurate and fast
solutions to the load-flow equations. Direct solvers should be used for smaller (sub)networks or as a
local solver within a decomposition method.

The use of a preconditioner is important when using an iterative solver, and the choice of precon-
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ditioner is a highly influential choice in terms of solver performance. However, choosing an appropriate
preconditioner is problem-dependent. Due to the customizability of many preconditioning methods,
finding an appropriate one is not always a straightforward task. A commonly used preconditioning
technique is based on ILU decomposition, and many variants of this method are used in energy network
modelling. These methods show good results for power flow problems in multiple studies. However, it
was found that ILU is not a well-suited preconditioner for gas network modelling.

A different class of methods and preconditioners arises from the domain decomposition (DD) prin-
ciple. A large scale and/or coupled energy system naturally leads to partitioning the global problem
into smaller and local problems. Research has been done on solving SC as well as MCNs using such
DD methods, although the test problems were mostly small or medium scale. The performance of a
variant of the AS preconditioner was studied in a power flow setting, but not yet for gas and coupled
networks. With the usage of a DD method, comes the task of partitioning the domain. In the context
of energy network modelling, such a partition can either be done based on the physical properties of the
network, or on the mathematical properties of the network graph. Research on partitioning methods
has been done in other fields where DD is often used and in some SC energy network settings, but not
in the context of gas and coupled energy networks.

Some research has been done on solving MCNs, either by decomposing the network into SC com-

ponents, or by employing an integrated method. These studies show promising results, but extensive
research on this topic is still lacking.
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Chapter 6

Conclusion

This chapter contains the concluding remarks of this literature study. The findings of the literature
review are summarized in Section 5.7. In this chapter, the implications of the literature study are listed,
and can be found in Section 6.1. Finally, the research question and sub-questions are presented and
elaborated on in Section 6.2.

6.1 Implications and Open Problems

The following implications and corresponding open problems in modelling and simulating large scale
multi-carrier energy networks (MCNs) were determined, based on the findings in Chapter 5.

e The selection of an appropriate preconditioner can be as important as the choice of iterative
solution method. Furthermore, the performance of a preconditioned iterative method is problem-
dependent and the number of hyperparameters often makes them highly customizable.

e Integrated solution methods for MCNs are at an early stage and present research opportunities.

e The numerical performance of solution methods is the limiting factor for fast, robust and accurate
simulations for large scale MCNs and requires research into preconditioned iterative methods,
using a decomposition of the network.

e The application of preconditioners based on Schwarz alternating procedures (SAPs) and graph-
based (multi-level) partitioning methods applied to gas and coupled energy networks present
research opportunities.

e The application of incomplete LU (ILU) preconditioners in power flow problems has been studied
extensively and is generally found to perform well. ILU preconditioning is not appropriate for gas
network simulations. Alternative preconditioning strategies are therefore an open problem.

6.2 Preliminary Research Questions and Scope

Based on the literature review in Chapter 5 and the implications in Section 6.1, the research scope,
question and sub-questions for the continuation of the research were determined.

The scope of this research project is to study fast and robust preconditioned Krylov methods for solving
the steady-state load-flow equations of large scale MCNs, focussing on finding a suitable preconditioner.
Based on the literature review and implications it was decided to focus the research on the application of
additive Schwarz (AS) preconditioners. This choice was made firstly because the restricted AS precon-
ditioner gave good numerical results in research done by Abhyankar, Smith, and Constantinescu [46].
Secondly, the AS preconditioner was chosen instead of the ILU preconditioner for this research, since the

48



6.2. Preliminary Research Questions and Scope Chapter 6. Conclusion

performance of ILU has been studied extensively already, also in the application to power flow problems.

The preliminary research question for the next phase of this research study is:

How does an additive Schwarz preconditioner perform when applied to a Krylov solver
in the solution process of the steady-state load flow equations of large scale coupled
gas-electricity energy networks?

In order to answer this research question, there were several sub-questions formulated to support the
main research goal:

1. How does an additive Schwarz preconditioner perform when solving steady-state load flow equa-
tions of gas and electricity networks separately?

2. How do different partitioning strategies affect the performance of the additive Schwarz precondi-
tioner?

3. How do variants of additive Schwarz preconditioner compare?

4. What is the effect of coupling gas and electricity networks on the performance of an additive
Schwarz preconditioner?

The first steps of the next phase of the research project consist of acquiring and constructing appro-
priate data sets, and gaining insight into the application and implementation of AS preconditioners,
combined with partitioning methods. Note that parallel implementations are out of scope for this phase
of the research, since the focus is to find a suitable solution method that leads to fast and accurate load
flow simulations.

The main preliminary research question is about investigating the performance of the AS preconditioner.
In order to answer this question, it has to be clarified on what performance metrics the preconditioner
will be analysed and against what alternative methods. Various methods of comparison used in research
to get an indication of the performance of a preconditioner are:

e Accuracy: Compute and keep track of the error and/or residual during the iterative solution
process. Most importantly, this indicates whether the methods converge. Additionally, this
gives an indication of how accurate the approximate solution is at what iteration and how many
iterations are required to reach a predetermined tolerance.

e Speed: Keep track of the number of iterations required for convergence, for the inner as well as
the outer loop. Additionally, it is insightful to measure the CPU time of the phases of the solution
process. Both of these metrics indicate how fast the solution is computed, and what potential
bottlenecks are.

e Cost: The amount of memory and number of matrix-vector products required by the solution
method indicates how much storage is required and how costly it is to execute the method. These
results can also be used to identify potential bottlenecks and areas of improvement.

e Robustness: The conditioning of the underlying coefficient matrix is influential on the performance
of the methods. Comparing the robustness of solution methods indicates how robust the method
is and whether it is sensitive to the matrix conditioning or initialization.

e Scalability: The research area of this study includes large scale energy networks. Therefore it
is important to consider the scalability of the solution method, such that it is able to solve
large systems of linearized load-flow equations. The algorithmic scalability can be determined by
comparing the performance of the solution method in terms of speed, accuracy and/or cost for
test problems varying in problem size.
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