Image Reconstruction in MRI

The Possibilities of Portable, Low-cost MRI Scanners

M.S. Wijchers

TU Delft

August 31, 2016

Research goal

To develop a sufficiently accurate image reconstruction algorithm that is able to effectively process signals produced by a low-cost MRI scanner.

Research goal

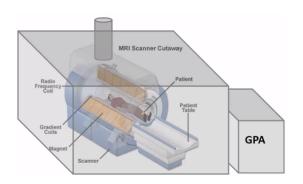
Hardware

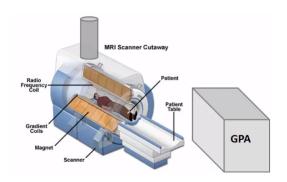
Modeling the signal

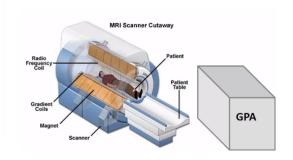
Analysis of the model

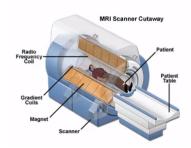
Results

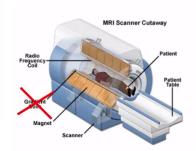
Conclusion

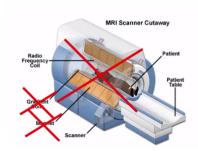




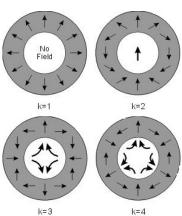








Main Magnet



Magnetic Flux Density Field

(Loading video)

$$S(t) = \int_{\mathbf{r} \in \mathbb{D}} c(\mathbf{r}) \omega_0(\mathbf{r}) \mathrm{e}^{-t/T_2(\mathbf{r})} \mathrm{e}^{-\mathrm{i}\phi(\mathbf{r},t)} f(\mathbf{r}) d\mathbf{r}$$

$$y = A$$

$$S(t) = \int_{\mathbf{r} \in \mathbb{D}} c(\mathbf{r}) \omega_0(\mathbf{r}) e^{-t/T_2(\mathbf{r})} e^{-i\phi(\mathbf{r},t)} f(\mathbf{r}) d\mathbf{r}$$

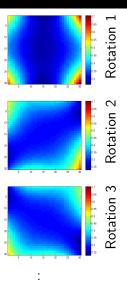
$$\mathbf{y} = A$$

$$S(t) = \int_{\mathbf{r} \in \mathbb{D}} c(\mathbf{r}) \omega_0(\mathbf{r}) e^{-t/T_2(\mathbf{r})} e^{-i\phi(\mathbf{r},t)} f(\mathbf{r}) d\mathbf{r}$$

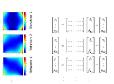
$$y = A$$
 f

$$S(t) = \int_{\mathbf{r} \in \mathbb{D}} c(\mathbf{r}) \omega_0(\mathbf{r}) e^{-t/T_2(\mathbf{r})} e^{-i\phi(\mathbf{r},t)} f(\mathbf{r}) d\mathbf{r}$$

$$y = A$$



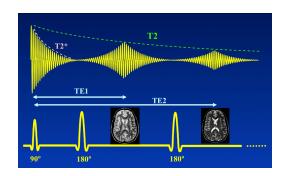
System of equations



$$\begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_{n_r} \end{bmatrix} = \begin{bmatrix} A_1 \\ \vdots \\ A_{n_r} \end{bmatrix} \mathbf{f} + \begin{bmatrix} \mathbf{n}_1 \\ \vdots \\ \mathbf{n}_{n_r} \end{bmatrix}$$

$$\mathbf{y} \in \mathbb{C}^{Nn_r \times 1}$$
, $A \in \mathbb{C}^{Nn_r \times n_p}$, $\mathbf{f} \in \mathbb{C}^{n_p \times 1}$ and $\mathbf{n} \in \mathbb{C}^{Nn_r \times 1}$.

T_2 relaxation

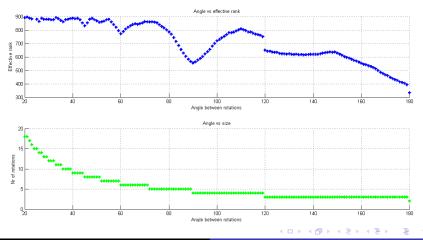


$$\frac{1}{T_2^*} = \frac{1}{T_2} + \frac{1}{T_2'}$$

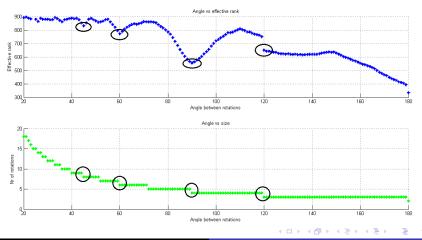
Nyquist

Sampling rate	Nyquist rate	Upperbound	
$(f_s = bw)$	$(2.2f_s = 2.2bw)$	dt	
1 MHz	$2.2~\mathrm{MHz}$	$4.5455 \cdot 10^{-7} \text{ s}$	
2 MHz	$4.4~\mathrm{MHz}$	$2.2727 \cdot 10^{-7} \text{ s}$	
3 MHz	$6.6~\mathrm{MHz}$	$1.5152 \cdot 10^{-7} \text{ s}$	

Method of rotating



Method of rotating



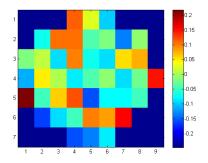
Method of rotating

Bandwidth	min. number	max.	optimal	effective
bw	of rotations	angles	angles	rank
3	5	89	72	860
2	7	59	48	864
1	10	39	33	813

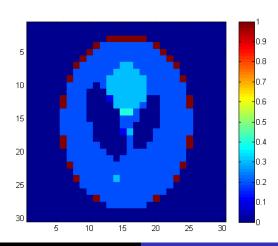
Field perturbations

► 10⁻¹ mT: accuracy measuring tool

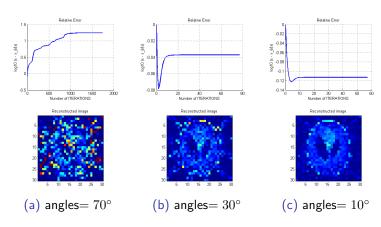
▶ 1 mT: human mistakes



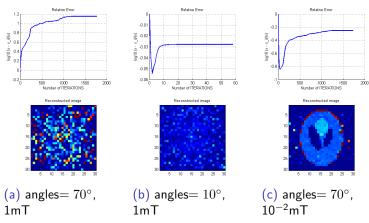
Phantom image



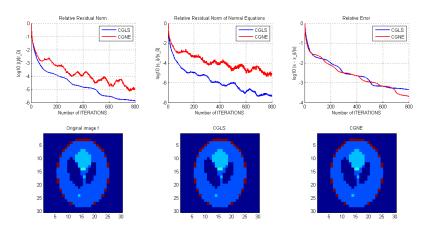
Field perturbations $10^{-1} \mathrm{\ mT}$



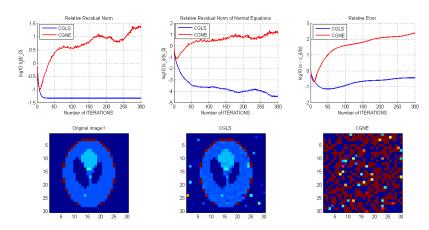
Field perturbations $1~\mathrm{mT}$ and $10^{-2}~\mathrm{mT}$



CGLS vs CGNE without noise



CGLS vs CGNE with noise



$$\arg\min_{\mathbf{f}}||\mathbf{y}-A\mathbf{f}||_2+\lambda^2R(\mathbf{f}), \qquad R(\mathbf{f})=||L\mathbf{f}||.$$

$$\arg \min_{\mathbf{f}} \ \frac{||\mathbf{y} - A\mathbf{f}||_2}{||\mathbf{f}||_2} + \lambda^2 R(\mathbf{f}), \qquad R(\mathbf{f}) = ||L\mathbf{f}||_2.$$

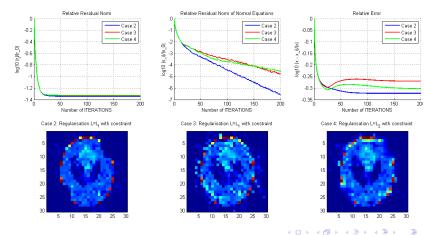
$$\arg\min_{\mathbf{f}} ||\mathbf{y} - A\mathbf{f}||_2 + \lambda^2 \frac{R(\mathbf{f})}{R(\mathbf{f})}, \qquad R(\mathbf{f}) = ||L\mathbf{f}||_2.$$

$$\arg\min_{\mathbf{f}}||\mathbf{y}-A\mathbf{f}||_2+\frac{\lambda^2}{\lambda^2}R(\mathbf{f}), \qquad R(\mathbf{f})=||L\mathbf{f}||_2.$$

$$\arg\min_{\mathbf{f}} ||\mathbf{y} - A\mathbf{f}||_2 + \frac{\lambda^2}{\lambda^2} R(\mathbf{f}), \qquad R(\mathbf{f}) = ||L\mathbf{f}||_2.$$

- 1. regularisation type 0: L = I,
- 2. regularisation type 0 with air constraint: $L = \begin{bmatrix} I & \text{constraint} \end{bmatrix}^T$,
- 3. regularisation type 1 with air constraint: $L = \begin{bmatrix} L_1 & \text{constraint} \end{bmatrix}^T$,
- 4. regularisation type 2 with air constraint: $L = \begin{bmatrix} L_2 & \text{constraint} \end{bmatrix}^T$,

Regularisation, case 2,3,4



- Analysis of the model (Nyquist rate, rotations, frequency bandwidth, perturbations)
- ► T₂*
- ▶ CGLS, Tikhonov, L = I

Future research

- Analysis encoding methods
- modeling coil sensitivity and T_2 or T_2^*
- ▶ 2D to 3D

M.S. Wijchers

Image Reconstruction in MRI